WorldWideScience

Sample records for compound semiconductors sotapocs

  1. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  2. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  3. Compound semiconductor device physics

    CERN Document Server

    Tiwari, Sandip

    2013-01-01

    This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those inter

  4. Compound semiconductor device modelling

    CERN Document Server

    Miles, Robert

    1993-01-01

    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  5. II-VI semiconductor compounds

    CERN Document Server

    1993-01-01

    For condensed matter physicists and electronic engineers, this volume deals with aspects of II-VI semiconductor compounds. Areas covered include devices and applications of II-VI compounds; Co-based II-IV semi-magnetic semiconductors; and electronic structure of strained II-VI superlattices.

  6. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  7. Reliability and radiation effects in compound semiconductors

    CERN Document Server

    Johnston, Allan

    2010-01-01

    This book discusses reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. Johnston's perspective in the book focuses on high-reliability applications in space, but his discussion of reliability is applicable to high reliability terrestrial applications as well. The book is important because there are new reliability mechanisms present in compound semiconductors that have produced a great deal of confusion. They are complex, and appear to be major stumbling blocks in the application of these types of devices. Many of the reliability problems that were prominent research topics five to ten years ago have been solved, and the reliability of many of these devices has been improved to the level where they can be used for ten years or more with low failure rates. There is also considerable confusion about the way that space radiation affects compound semiconductors. Some optoelectronic devices are so sensitive to damage in space that they are very difficu...

  8. Surface passivation process of compound semiconductor material using UV photosulfidation

    Science.gov (United States)

    Ashby, Carol I. H.

    1995-01-01

    A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.

  9. Additional compound semiconductor nanowires for photonics

    Science.gov (United States)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  10. Selective photochemical dry etching of compound semiconductors

    International Nuclear Information System (INIS)

    Ashby, C.I.H.

    1988-01-01

    When laser-driven etching of a semiconductor requires direct participation of photogenerated carriers, the etching quantum yield will be sensitive to the electronic properties of a specific semiconductor material. The band-gap energy of the semiconductor determines the minimum photon energy needed for carrier-driven etching since sub-gap photons do not generate free carriers. However, only those free carriers that reach the reacting surface contribute to etching and the ultimate carrier flux to the surface is controlled by more subtle electronic properties than the lowest-energy band gap. For example, the initial depth of carrier generation and the probability of carrier recombination between the point of generation and the surface profoundly influence the etching quantum yield. Appropriate manipulation of process parameters can provide additional reaction control based on such secondary electronic properties. Applications to selective dry etching of GaAs and related materials are discussed

  11. Handbook of compound semiconductors growth, processing, characterization, and devices

    CERN Document Server

    Holloway, Paul H

    1996-01-01

    This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.

  12. TDPAC study of complex structure semiconductor compounds

    International Nuclear Information System (INIS)

    Shitu, J.; Renteria, M.; Massolo, C.P.; Bibiloni, A.G.; Desimoni, J.

    1992-01-01

    In this paper, a new method for analyzing Time-Differential Perturbed Angular Correlation spectra is presented and applied to study the hyperfine interaction of 100 Rh in the high temperature modification of niobium pentoxide. The measured quadrupole interactions are assigned to about 80% of the radioactive probes replacing niobium atoms in the lattice and about 20% located in perturbed sites. The origin of this perturbation, producing a high frequency component in the measured spectra is discussed and temptatively assigned to remaining radiation damage in the compound. The hyperfine interaction of 111 Cd probes, introduced through thermal diffusion into niobium pentoxide, is also presented. The temperature dependence of the hyperfine parameters in this case is studied in the temperature range RT-800 degrees C. The spectral analyzing method employed allows a direct comparison of experimental data with point charge model calculations and a simultaneous evaluation of the anti-shielding factor β. The obtained values (27 for 100 Rh and 15 for 111 Cd) are discussed in terms of the compound and probe's characteristics

  13. TDPAC study of complex structure semiconductor compounds

    International Nuclear Information System (INIS)

    Shitu, J.; Renteria, M.; Massolo, C.P.; Bibiloni, A.G.; Desimonni, J.

    1992-01-01

    In this paper, a new method for analyzing Time-Differential Perturbed Angular Correlation spectra is presented and applied to study the hyperfine interaction of 100 Rh in the high temperature modification of niobium pentoxide. The measured quadrupole interactions are assigned to about 80% of the radioactive probes replacing niobium atoms in the lattice and about 20% located in perturbed sites. The origin of this perturbation, producing a high frequency component in the measured spectra is discussed and temptatively assigned to remaining radiation damage in the compound. The hyperfine interaction of 111 Cd probes, introduced through thermal diffusion into niobium pentoxide, is also presented. The temperature dependence of the hyperfine parameters in this case is studied in the temperature range RT-800 degrees C. The spectral analyzing method employed allows a direct comparison of experimental data with point charge model calculations and a simultaneous evaluation of the antishielding factor β. The obtained values (27 for 100 Rh and 15 for 111 Cd) are discussed in terms of the compound and probe's characteristics

  14. Method of plasma etching Ga-based compound semiconductors

    Science.gov (United States)

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  15. Rethinking the theoretical description of photoluminescence in compound semiconductors

    Science.gov (United States)

    Valkovskii, V.; Jandieri, K.; Gebhard, F.; Baranovskii, S. D.

    2018-02-01

    Semiconductor compounds, such as Ga(NAsP)/GaP or GaAsBi/GaAs, are in the focus of intensive research due to their unique features for optoelectronic devices. The optical spectra of compound semiconductors are strongly influenced by the random scattering potentials caused by compositional and structural disorder. The disorder potential is responsible for the red-shift (Stokes shift) of the photoluminescence (PL) peak and for the inhomogeneous broadening of the PL spectra. So far, the anomalous broadening of the PL spectra in Ga(NAsP)/GaP has been explained assuming two coexisting length scales of disorder. However, this interpretation appears in contradiction to the recently observed dependence of the PL linewidth on the excitation intensity. We suggest an alternative approach that describes the PL characteristics in the framework of a model with a single length scale of disorder. The price is the assumption of two types of localized states with different, temperature-dependent non-radiative recombination rates.

  16. Ion channeling study of defects in multicomponent semiconductor compounds

    International Nuclear Information System (INIS)

    Turos, A.; Nowicki, L.; Stonert, A.

    2002-01-01

    Compound semiconductor crystals are of great technological importance as basic materials for production of modern opto- and microelectronic devices. Ion implantation is one of the principal techniques for heterostructures processing. This paper reports the results of the study of defect formation and transformation in binary and ternary semiconductor compounds subjected to ion implantation with ions of different mass and energy. The principal analytical technique was He-ion channeling. The following materials were studied: GaN and InGaN epitaxial layers. First the semi empirical method of channeling spectra analysis for ion implanted multicomponent single crystal was developed. This method was later complemented by the more sophisticated method based on the Monte Carlo simulation of channeling spectra. Next, the damage buildup in different crystals and epitaxial layers as a function of the implantation dose was studied for N, Mg, Te, and Kr ions. The influence of the substrate temperature on the defect transformations was studied for GaN epitaxial layers implanted with Mg ions. Special attention was devoted to the study of growth conditions of InGaN/GaN/sapphire heterostructures, which are important component of the future blue laser diodes. In-atom segregation and tetragonal distortion of the epitaxial layer were observed and characterized. Next problem studied was the incorporation of hydrogen atoms in GaAs and GaN. Elastic recoil detection (ERDA) and nuclear reaction analysis (NRA) were applied for the purpose. (author)

  17. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    Science.gov (United States)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  18. Structural trends in off stoichiometric chalcopyrite type compound semiconductors

    International Nuclear Information System (INIS)

    Stephan, Christiane

    2011-01-01

    Energy supply is one of the most controversial topics that are currently discussed in our global community. Most of the energy delivered to the customer today has its origin in fossil and nuclear power plants. Indefinable risks and the radioactive waste repository problem of the latter as well as the global scarcity of fossil resources cause the renewable energies to grow more and more important for achieving sustainability. The main renewable energy sources are wind power, hydroelectric power and solar energy. On the photovoltaic (PV) market different materials are competing as part of different kinds of technologies, with the largest contribution still coming from wafer based crystalline silicon solar cells (95 %). Until now thin film solar cells only contribute a small portion to the whole PV market, but large capacities are under construction. Thin film photovoltaic shows a number of advantages in comparison to wafer based crystalline silicon PV. Among these material usage and production cost reduction are two prominent examples. The type of PV materials, which are analyzed in this work, are high potential compounds that are widely used as absorber layer in thin film solar cells. These are compound semiconductors of the type CuB III C VI 2 (B III = In, Ga and C VI = Se, S). Several years of research have already gone into understanding the efficiency limiting factors for solar cell devices fabricated from this compound. Most of the studies concerning electronic defects are done by spectroscopic methods mostly performed using thin films from different kinds of synthesis, without any real knowledge regarding the structural origin of these defects. This work shows a systematic fundamental structural study of intrinsic point defects that are present within the material at various compositions in CuB III C VI 2 compound semiconductors. The study is done on reference powder samples with well determined chemical composition and using advanced diffraction techniques

  19. Secondary electron emission from metals and semi-conductor compounds

    International Nuclear Information System (INIS)

    Ono, Susumu; Kanaya, Koichi

    1979-01-01

    Attempt was made to present the sufficient solution of the secondary electron yield of metals and semiconductor compounds except insulators, applying the free electron scattering theory to the absorption of secondary electrons generated within a solid target. The paper is divided into the sections describing absorption coefficient and escape depth, quantitative characteristics of secondary yield, angular distribution of secondary electron emission, effect of incident angle to secondary yield, secondary electron yield transmitted, and lateral distribution of secondary electron emission, besides introduction and conclusion. The conclusions are as follows. Based on the exponential power law for screened atomic potential, secondary electron emission due to both primary and backscattered electrons penetrating into metallic elements and semi-conductive compounds is expressed in terms of the ionization loss in the first collision for escaping secondary electrons. The maximum yield and the corresponding primary energy can both consistently be derived as the functions of three parameters: atomic number, first ionization energy and backscattering coefficient. The yield-energy curve as a function of the incident energy and the backscattering coefficient is in good agreement with the experimental results. The energy dependence of the yield in thin films and the lateral distribution of secondary yield are derived as the functions of the backscattering coefficient and the primary energy. (Wakatsuki, Y.)

  20. Reactivity of group IV (100) semiconductor surfaces towards organic compounds

    Science.gov (United States)

    Wang, George T.

    The reactions of simple and multifunctional organic compounds with the clean silicon, germanium, and diamond (100)-2 x 1 semiconductor surfaces have been investigated using a combination of multiple internal reflection infrared spectroscopy and quantum chemistry density functional theory calculations. From these studies, an improved understanding of the atomic level reactivity of these semiconductor surfaces has been obtained, along with insights into how to achieve their selective coupling with organics of desired and varied functionality. In addition to the Si(100) and Ge(100) surfaces, our results show that cycloaddition chemistry can also be extended to the diamond (100) surface. At room temperature, 1,3-butadiene was found to form a Diels-Alder product with the diamond (100) surface, as evidenced by isotopic substitution experiments and comparison of the surface adduct with its direct molecular analogue, cyclohexene. The reactions of other classes of molecules in addition to alkenes on the Si(100) and Ge(100) surfaces, including a series of five-membered cyclic amines, were also examined. For tertiary aliphatic amines on Si(100) and both secondary and tertiary aliphatic amines on Ge(100), a majority of the molecules were observed to become stably trapped in dative-bonded precursor states rather than form energetically favorable dissociation products. For pyrrole, aromaticity was found to play a defining role in its reactivity, and a comparison of its molecular and surface reactivity reveals interesting similarities. To probe the factors controlling the selectivity of organic reactions on clean semiconductor surfaces, the adsorption of acetone and a series of unsaturated ketones was also investigated. The reaction of acetone on Ge(100) was found to be under thermodynamic control at room temperature, resulting in the formation of an "ene" product rather than the kinetically favored [2+2] C=O cycloaddition product previously observed on the Si(100) surface. In

  1. Structural trends in off stoichiometric chalcopyrite type compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Christiane

    2011-03-15

    Energy supply is one of the most controversial topics that are currently discussed in our global community. Most of the energy delivered to the customer today has its origin in fossil and nuclear power plants. Indefinable risks and the radioactive waste repository problem of the latter as well as the global scarcity of fossil resources cause the renewable energies to grow more and more important for achieving sustainability. The main renewable energy sources are wind power, hydroelectric power and solar energy. On the photovoltaic (PV) market different materials are competing as part of different kinds of technologies, with the largest contribution still coming from wafer based crystalline silicon solar cells (95 %). Until now thin film solar cells only contribute a small portion to the whole PV market, but large capacities are under construction. Thin film photovoltaic shows a number of advantages in comparison to wafer based crystalline silicon PV. Among these material usage and production cost reduction are two prominent examples. The type of PV materials, which are analyzed in this work, are high potential compounds that are widely used as absorber layer in thin film solar cells. These are compound semiconductors of the type CuB{sup III}C{sup VI}{sub 2} (B{sup III} = In, Ga and C{sup VI} = Se, S). Several years of research have already gone into understanding the efficiency limiting factors for solar cell devices fabricated from this compound. Most of the studies concerning electronic defects are done by spectroscopic methods mostly performed using thin films from different kinds of synthesis, without any real knowledge regarding the structural origin of these defects. This work shows a systematic fundamental structural study of intrinsic point defects that are present within the material at various compositions in CuB{sup III}C{sup VI}{sub 2} compound semiconductors. The study is done on reference powder samples with well determined chemical composition and

  2. Fabrication and Characterization of Copper System Compound Semiconductor Solar Cells

    Directory of Open Access Journals (Sweden)

    Ryosuke Motoyoshi

    2010-01-01

    Full Text Available Copper system compound semiconductor solar cells were produced by a spin-coating method, and their cell performance and structures were investigated. Copper indium disulfide- (CIS- based solar cells with titanium dioxide (TiO2 were produced on F-doped SnO2 (FTO. A device based on an FTO/CIS/TiO2 structure provided better cell performance compared to that based on FTO/TiO2/CIS structure. Cupric oxide- (CuO- and cuprous oxide- (Cu2O- based solar cells with fullerene (C60 were also fabricated on FTO and indium tin oxide (ITO. The microstructure and cell performance of the CuO/C60 heterojunction and the Cu2O:C60 bulk heterojunction structure were investigated. The photovoltaic devices based on FTO/CuO/C60 and ITO/Cu2O:C60 structures provided short-circuit current density of 0.015 mAcm−2 and 0.11 mAcm−2, and open-circuit voltage of 0.045 V and 0.17 V under an Air Mass 1.5 illumination, respectively. The microstructures of the active layers were examined by X-ray diffraction and transmission electron microscopy.

  3. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  4. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    Science.gov (United States)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-03-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  5. Mixing of III-V compound semiconductor superlattices

    International Nuclear Information System (INIS)

    Mei, Ping.

    1989-01-01

    In this work, the methods as well as mechanisms of III-V compound superlattice mixing are discussed, with particular attention on the AlGaAs based superlattice system. Comparative studies of ion-induced mixing showed two distinct effects resulting from ion implantation followed by a thermal anneal; i.e. collisional mixing and impurity induced mixing. It was found that Ga and As ion induced mixing are mainly due to the collisional effect, where the extent of the mixing can be estimated theoretically, with the parameters of ion mass, incident energy and the implant dose. The impurity effect was dominant for Si, Ge, Be, Zn and Te. Quantitative studies of impurity induced mixing have been conducted on samples doped with Si or Te during the growth process. It was discovered that Si induced AlGaAs superlattice mixing yielded an activation energy of approximately 4 eV for the Al diffusion coefficient with a high power law dependence of the prefactor on the Si concentration. In the Te doped AlGaAs superlattice the Al diffusion coefficient exhibited an activation energy of ∼3.0 eV, with a prefactor approximately proportional to the Te concentration. These results are of importance in examining the current diffusion models. Zn and Si induced InP/InGaAs superlattice mixing are examined. It was found that Zn predominantly induces cation interdiffusion, while Si induces comparable cation and anion interdiffusion. In addition, widely dispersed Zn rich islands form with Zn residing in the InP layers in the form of Zn 3 P 2 . With unstrained starting material, the layer bandgap disparity increases due to mixing induced strain, while in the Si diffused sample the mixed region would be expected to exhibit bandgaps intermediate between those of the original layers. Semiconductor superlattice mixing shows technological potential for optoelectronic device fabrication

  6. Ion implantation in compound semiconductors for high-performance electronic devices

    International Nuclear Information System (INIS)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  7. Semiconductor

    International Nuclear Information System (INIS)

    2000-01-01

    This book deals with process and measurement of semiconductor. It contains 20 chapters, which goes as follows; semiconductor industry, introduction of semiconductor manufacturing, yield of semiconductor process, materials, crystal growth and a wafer forming, PN, control pollution, oxidation, photomasking photoresist chemistry, photomasking technologies, diffusion and ion injection, chemical vapor deposition, metallization, wafer test and way of evaluation, semiconductor elements, integrated circuit and semiconductor circuit technology.

  8. Spin-filter and spin-gapless semiconductors: The case of Heusler compounds

    International Nuclear Information System (INIS)

    Galanakis, I.; Özdoğan, K.; Şaşıoğlu, E.

    2016-01-01

    We review our recent first-principles results on the inverse Heusler compounds and the ordered quaternary (also known as LiMgPdSn-type) Heusler compounds. Among these two subfamilies of the full-Heusler compounds, several have been shown to be magnetic semiconductors. Such material can find versatile applications, e.g. as spin-filter materials in magnetic tunnel junctions. Finally, a special case are the spin-gapless semiconductors, where the energy gap at the Fermi level for the one spin-direction is almost vanishing, offering novel functionalities in spintronic/magnetoelectronic devices.

  9. III-V group compound semiconductor light-emitting element having a doped tantalum barrier layer

    International Nuclear Information System (INIS)

    Oanna, Y.; Ozawa, N.; Yamashita, M.; Yasuda, N.

    1984-01-01

    Disclosed is a III-V Group compound semiconductor light-emitting element having a III-V Group compound semiconductor body with a p-n junction and including a p-type layer involved in forming the p-n junction; and a multi-layer electrode mounted on the p-type layer of the semiconductor body. The electrode comprises a first layer of gold alloy containing a small amount of beryllium or zinc and formed in direct contact with the p-type layer of the semiconductor body and an uppermost layer formed of gold or aluminum. A tantalum layer doped with carbon, nitrogen and/or oxygen is formed between the first layer and the uppermost layer by means of vacuum vapor deposition

  10. Structure of metal-rich (001) surfaces of III-V compound semiconductors

    DEFF Research Database (Denmark)

    Kumpf, C.; Smilgies, D.; Landemark, E.

    2001-01-01

    The atomic structure of the group-III-rich surface of III-V semiconductor compounds has been under intense debate for many years, yet none of the models agrees with the experimental data available. Here we present a model for the three-dimensional structure of the (001)-c(8x2) reconstruction on In......(8 x 2) reconstructions of III-V semiconductor surfaces contain the same essential building blocks....

  11. CCST [Center for Compound Semiconductor Technology] research briefs

    International Nuclear Information System (INIS)

    Zipperian, T.E.; Voelker, E.R.

    1989-12-01

    This paper discusses the following topics: theoretical predictions of valence and conduction band offsets in III-V semiconductors; reflectance modulation of a semiconductor superlattice optical mirror; magnetoquantum oscillations of the phonon-drag thermoelectric power in quantum wells; correlation between photoluminescence line shape and device performance of p-channel strained-layer materials; control of threading dislocations in heteroepitaxial structures; improved growth of CdTe on GaAs by patterning; role of structure threading dislocations in relaxation of highly strained single-quantum-well structures; InAlAs growth optimization using reflection mass spectrometry; nonvolatile charge storage in III-V heterostructures; optically triggered thyristor switches; InAsSb strained-layer superlattice infrared detectors with high detectivities; resonant periodic gain surface-emitting semiconductor lasers; performance advantages of strained-quantum-well lasers in AlGaAs/InGaAs; optical integrated circuit for phased-array radar antenna control; and deposition and novel device fabrication from Tl 2 Ca 2 Ba 2 Cu 3 O y thin films

  12. N-doping of organic semiconductors by bis-metallosandwich compounds

    Science.gov (United States)

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  13. Modulation doping and delta doping of III-V compound semiconductors

    NARCIS (Netherlands)

    Hendriks, P.; Zwaal, E.A.E.; Haverkort, J.E.M.; Wolter, J.H.; Razeghi, M.

    1991-01-01

    The transport properties of the 2D electron gas produced by modulation doping of compound semiconductors are reviewed with attention given to the properties at high electric fields. Experimental studies are discussed in which the transport properties lead to insights into current instabilities and

  14. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    Science.gov (United States)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  15. Thermodynamics and phase equilibria of ternary systems relevant to contact materials for compound semiconductors

    International Nuclear Information System (INIS)

    Ipser, H.; Richter, K.; Micke, K.

    1997-01-01

    In order to investigate the stability of ohmic contacts to compound semiconductors, it is necessary to know the phase equilibria in the corresponding multi-component systems. We are currently studying the phase equilibria and thermophysical properties of several ternary systems which are of interest in view of the use of nickel, palladium and platinum as contact materials for GaSb and InSb compound semiconductors: Ga-Ni-Sb, In-Ni-Sb, Ga-Pd-Sb and Ga-Pt-Sb. Phase equilibria are investigated by thermal analyses, X-ray powder diffraction methods as well as electron microprobe analysis. Thermodynamic properties are derived from vapour pressure measurements using an isopiestic method. It is planned to combine all information on phase equilibria and thermochemistry for the ternary and the limiting binary systems to perform an optimization of the ternary systems by computer calculations using standard software. (author)

  16. Contributions of electron microscopy to the understanding of reactions on compound semiconductor surfaces

    International Nuclear Information System (INIS)

    Sands, T.

    1986-01-01

    Reacted films on compound semiconductor substrates present challenging materials characterization problems which often require the application of transmission electron microscopy (TEM) techniques. In this paper, both the problem - solving potential of the TEM techniques and the limits imposed by preparation of thin film/compound semiconductor TEM specimens are discussed. Studies of the Ni/GaAs, CuCl/aq)/CdS and Pd/GaAs reactions exemplify the role of TEM in identifying and determining the spatial distribution of interface - stabilized polymorphs and new ternary phases (e.g. tetragonal Cu/sub 2/S, Ni/sub 3/GaAs and Pd/sub x/GaAs). These examples also serve to clarify the relationship between TEM and complementary analysis techniques such as Rutherford backscattering spectrometry, Auger electron spectroscopy and glancing-angle x-ray diffraction. In particular, it is argued that a combination of (1) high-spatial-resolution information obtained by TEM and (2) an indication of the ''average'' behavior provided by data from a complementary characterization technique provide the minimum quality and quantity of data necessary to understand most reactions on compound semiconductor substrates

  17. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  18. A new standardless quantitative electron probe microanalysis technique applied to III-V compound semiconductors

    International Nuclear Information System (INIS)

    Zangalis, K.P.; Christou, A.

    1982-01-01

    The present paper introduces a new standardless quantitative scheme for off-line electron microprobe analysis applications. The analysis is based on standard equations of the type Isub(i)=Csub(i)fsub(ZAF)βsub(i) and is specifically suitable for compound semiconductors. The roots to the resultant nth-degree polynomial are the unknown concentrations. Methods for computing Csub(i) when coefficients βsub(i) are unknown are also outlined. Applications of standardless analysis to GaAs and InP specimens are compared with results obtained by Auger electron spectroscopy and quantitative electron probe analysis with standards. (Auth.)

  19. Crystallization of II-VI semiconductor compounds forming long microcrystalline linear assemblies

    Directory of Open Access Journals (Sweden)

    Marcelino Becerril

    2013-04-01

    Full Text Available In this work we report the formation of long microcrystalline linear self-assemblies observed during the thin film growth of several II-VI compounds. Polycrystalline CdTe, CdS, CdCO3, and nanocrystalline CdTe:Al thin films were prepared on glass substrates by different deposition techniques. In order to observe these crystalline formations in the polycrystalline materials, the thin film growth was suspended before the grains reached to form a continuous layer. The chains of semiconductor crystals were observed among many isolated and randomly distributed grains. Since CdTe, CdTe:Al, CdS and CdCO3 are not ferroelectric and/or ferromagnetic materials, the relevant problem would be to explain what is the mechanism through which the grains are held together to form linear chains. It is well known that some nanocrystalline materials form rods and wires by means of electrostatic forces. This occurs in polar semiconductors, where it is assumed that the attraction forces between surface polar faces of the small crystals are the responsible for the chains formation. Since there are not too many mechanisms responsible for the attraction we assume that a dipolar interaction is the force that originates the formation of chain-like grain clusters. The study of this property can be useful for the understanding of nucleation processes in the growth of semiconductor thin films.

  20. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.

    Science.gov (United States)

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang

    2005-02-15

    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  1. Mechanical properties of some binary, ternary and quaternary III-V compound semiconductor alloys

    International Nuclear Information System (INIS)

    Navamathavan, R.; Arivuoli, D.; Attolini, G.; Pelosi, C.; Choi, Chi Kyu

    2007-01-01

    Vicker's microindentation tests have been carried out on InP/InP, GaAs/InP, InGaAs/InP and InGaAsP/InP III-V compound semiconductor alloys. The detailed mechanical properties of these binary, ternary and quaternary epilayers were determined from the indentation experiments. Microindentation studies of (1 1 1) GaAs/InP both A and B faces show that the hardness value increases with load and attains a constant for further increase in load and the microhardness values were found to lie between 3.5 and 4.0 GPa. The microhardness values of InGaAs/InP epilayers with different thickness were found to lie between 3.93 and 4.312 GPa. The microhardness values of InGaAsP/InP with different elemental composition were found to lie between 5.08 and 5.73 GPa. The results show that the hardness of the quaternary alloy drastically increases, the reason may be that the increase in As concentration hardens the lattice when phosphorous concentration is less and hardness decreases when phosphorous is increased. It was interestingly observed that the hardness value increases as we proceed from binary to quaternary III-V compound semiconductor alloys

  2. Density functional study of the group II phosphide semiconductor compounds under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Ali [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, PB 115, Shahrekord (Iran, Islamic Republic of)], E-mail: mokhtari@sci.sku.ac.ir

    2008-04-02

    The full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method, as implemented in the suite of software WIEN2k, has been used to systematically investigate the structural and electronic properties of the group II phosphide semiconductor compounds M{sub 3}P{sub 2} (M = Be, Mg and Ca). The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). Internal parameters were optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The structural parameters, bulk modules, cohesive energy, band structures and density of states have been calculated and compared to the available experimental and theoretical results. These compounds are predicted to be semiconductors with the direct band gap of about 1.60, 2.55 and 2.62 eV for Be{sub 3}P{sub 2}, Mg{sub 3}P{sub 2} and Ca{sub 3}P{sub 2}, respectively. The effects of hydrostatic pressure on the behavior of band parameters such as band gap, valence bandwidths and anti-symmetric gap (the energy gap between two parts of the valence bands) are investigated using both GGA96 and EV-GGA. The contribution of s, p and d orbitals of different atoms to the density of states is discussed in detail.

  3. Density functional study of the group II phosphide semiconductor compounds under hydrostatic pressure

    International Nuclear Information System (INIS)

    Mokhtari, Ali

    2008-01-01

    The full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method, as implemented in the suite of software WIEN2k, has been used to systematically investigate the structural and electronic properties of the group II phosphide semiconductor compounds M 3 P 2 (M = Be, Mg and Ca). The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). Internal parameters were optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The structural parameters, bulk modules, cohesive energy, band structures and density of states have been calculated and compared to the available experimental and theoretical results. These compounds are predicted to be semiconductors with the direct band gap of about 1.60, 2.55 and 2.62 eV for Be 3 P 2 , Mg 3 P 2 and Ca 3 P 2 , respectively. The effects of hydrostatic pressure on the behavior of band parameters such as band gap, valence bandwidths and anti-symmetric gap (the energy gap between two parts of the valence bands) are investigated using both GGA96 and EV-GGA. The contribution of s, p and d orbitals of different atoms to the density of states is discussed in detail

  4. Observed damage during Argon gas cluster depth profiles of compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Anders J., E-mail: anders.barlow@ncl.ac.uk; Portoles, Jose F.; Cumpson, Peter J. [National EPSRC XPS Users' Service (NEXUS), School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2014-08-07

    Argon Gas Cluster Ion Beam (GCIB) sources have become very popular in XPS and SIMS in recent years, due to the minimal chemical damage they introduce in the depth-profiling of polymer and other organic materials. These GCIB sources are therefore particularly useful for depth-profiling polymer and organic materials, but also (though more slowly) the surfaces of inorganic materials such as semiconductors, due to the lower roughness expected in cluster ion sputtering compared to that introduced by monatomic ions. We have examined experimentally a set of five compound semiconductors, cadmium telluride (CdTe), gallium arsenide (GaAs), gallium phosphide (GaP), indium arsenide (InAs), and zinc selenide (ZnSe) and a high-κ dielectric material, hafnium oxide (HfO), in their response to argon cluster profiling. An experimentally determined HfO etch rate of 0.025 nm/min (3.95 × 10{sup −2} amu/atom in ion) for 6 keV Ar gas clusters is used in the depth scale conversion for the profiles of the semiconductor materials. The assumption has been that, since the damage introduced into polymer materials is low, even though sputter yields are high, then there is little likelihood of damaging inorganic materials at all with cluster ions. This seems true in most cases; however, in this work, we report for the first time that this damage can in fact be very significant in the case of InAs, causing the formation of metallic indium that is readily visible even to the naked eye.

  5. Dual passivation of intrinsic defects at the compound semiconductor/oxide interface using an oxidant and a reductant.

    Science.gov (United States)

    Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C

    2015-05-26

    Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.

  6. Velocity overshoot decay mechanisms in compound semiconductor field-effect transistors with a submicron characteristic length

    International Nuclear Information System (INIS)

    Jyegal, Jang

    2015-01-01

    Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc) region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices

  7. Substrate effects on the formation of flat Ag films on (110) surfaces of III-V compound semiconductors

    International Nuclear Information System (INIS)

    Chao, K.; Zhang, Z.; Ebert, P.; Shih, C.K.

    1999-01-01

    Ag films grown at 135 K on (110) surfaces of III-V compound semiconductors and annealed at room temperature are investigated by scanning tunneling microscopy and low-energy electron diffraction. Ag films on Ga-V semiconductors are well ordered, atomically flat, and exhibit a specific critical thickness, which is a function of the substrate material. Films grown on In-V semiconductors are still rather flat, but significantly more disordered. The (111) oriented Ag films on III-arsenides and III-phosphides exhibit a clear twofold superstructure. Films on III-antimonides exhibit threefold low-energy electron diffraction images. The morphology of the Ag films can be explained on the basis of the electronic growth mechanism. copyright 1999 The American Physical Society

  8. Development and application of nuclear radiation detector made from high resistivity silicon and compound semiconductor

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Xiufeng; Zhang Wanchang; Li Jiang

    1995-11-01

    The development of high resistivity silicon detectors and compound semiconductor detectors as well as their application in nuclear medicine are described. It emphasizes on several key techniques in fabricating detectors in order to meet their application in nuclear medicine. As for a high resistivity silicon detector, its counting rate to 125 I 28.5 keV X-ray has to be improved. So employing a conic mesa structure can increase the thickness of samples, and can raise the electric field of collecting charges under the same bias voltage. As for a GaAs detector, its performance of collecting charges has to be improved. So the thicknesses of GaAs samples are decreased and proper thermal treatment to make Ni-Ge-Au ohmic contacts are employed. Applying a suitable reverse bias voltage can obtain a fully depleted detector, and can obtain a lower forward turn-on voltage and a thinner weak electric field region. After resolving these key techniques, the performance of GaAs detectors has been distinctly improved. The count rate to 125 I X-ray has increased by three or five times under the same testing condition and background circumstance (2 refs., 8 figs., 3 tabs.)

  9. Pulse-height loss in the signal readout circuit of compound semiconductor detectors

    Science.gov (United States)

    Nakhostin, M.; Hitomi, K.

    2018-06-01

    Compound semiconductor detectors such as CdTe, CdZnTe, HgI2 and TlBr are known to exhibit large variations in their charge collection times. This paper considers the effect of such variations on the measurement of induced charge pulses by using resistive feedback charge-sensitive preamplifiers. It is shown that, due to the finite decay-time constant of the preamplifiers, the capacitive decay during the signal readout leads to a variable deficit in the measurement of ballistic signals and a digital pulse processing method is employed to correct for it. The method is experimentally examined by using sampled pulses from a TlBr detector coupled to a charge-sensitive preamplifier with 150 μs of decay-time constant and 20 % improvement in the energy resolution of the detector at 662 keV is achieved. The implications of the capacitive decay on the correction of charge-trapping effect by using depth-sensing technique are also considered.

  10. High pressure study of the zinc phosphide semiconductor compound in two different phases

    International Nuclear Information System (INIS)

    Mokhtari, Ali

    2009-01-01

    Electronic and structural properties of the zinc phosphide semiconductor compound are calculated at hydrostatic pressure using the full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method in both cubic and tetragonal phases. The exchange-correlation potential is treated by the generalized gradient approximation within the scheme of Perdew, Burke and Ernzerhof, GGA96 (1996 Phys. Rev. Lett. 77 3865). Also, the Engel and Vosko GGA formalism, EV-GGA (Engel and Vosko 1993 Phys. Rev. B 47 13164), is used to improve the band-gap results. Internal parameters are optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The lattice constants, internal parameters, bulk modulus, cohesive energy and band structures have been calculated and compared to the available experimental and theoretical results. The structural calculations predict that the stable phase is tetragonal. The effects of hydrostatic pressure on the behavior of band parameters such as band-gap, valence bandwidths and internal gaps (the energy gap between different parts of the valence bands) are studied using both GGA96 and EV-GGA.

  11. High pressure study of the zinc phosphide semiconductor compound in two different phases

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Ali [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, PB 115, Shahrekord (Iran, Islamic Republic of)], E-mail: mokhtari@sci.sku.ac.ir

    2009-07-08

    Electronic and structural properties of the zinc phosphide semiconductor compound are calculated at hydrostatic pressure using the full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method in both cubic and tetragonal phases. The exchange-correlation potential is treated by the generalized gradient approximation within the scheme of Perdew, Burke and Ernzerhof, GGA96 (1996 Phys. Rev. Lett. 77 3865). Also, the Engel and Vosko GGA formalism, EV-GGA (Engel and Vosko 1993 Phys. Rev. B 47 13164), is used to improve the band-gap results. Internal parameters are optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The lattice constants, internal parameters, bulk modulus, cohesive energy and band structures have been calculated and compared to the available experimental and theoretical results. The structural calculations predict that the stable phase is tetragonal. The effects of hydrostatic pressure on the behavior of band parameters such as band-gap, valence bandwidths and internal gaps (the energy gap between different parts of the valence bands) are studied using both GGA96 and EV-GGA.

  12. Molding compound development with semiconductor PKGs; Handotai PKG doko to fushi jushi zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, I. [NEC Corp., Tokyo (Japan)

    1998-11-05

    This paper describes the semiconductor packaging and molding compound materials. Major constituents of the molding resins are epoxy resin and inorganic silica, to which various additives are added. In order to make thin packages, biphenyl-based resins with low viscosity are often used in response to high fluidity. To fill the clearance less than 100 {mu}m, size adjusting techniques of the inorganic silica are also significant apart from resins. Since it is heated under the water absorption condition for the packaging in substrates, low water absorption, high adhesion, high strength and low stress are required to avoid peeling and cracking due to the vapor pressure of moisture. Generation of voids is also a problem. Improvement of productivity by reducing the processing period is also significant. In response to the strict environmental regulation, disuse of brominated epoxy and antimony oxide which are flame retardants in the molding resins is an urgent problem to be solved. For the epoxy resins, bisphenol A is to be regulated as a mutation substance. The cost reduction is required with keeping current quality kept. 1 fig.

  13. Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor.

    Science.gov (United States)

    Zhou, Xu; Li, Fei; Li, Xiaona; Li, Hua; Wang, Yong; Sun, Licheng

    2015-01-14

    Photocatalytic oxidation of organic compounds proceeded efficiently in a hybrid system with ruthenium aqua complexes as catalysts, BiVO4 as a light absorber, [Co(NH3)5Cl](2+) as a sacrificial electron acceptor and water as an oxygen source. The photogenerated holes in the semiconductor are used to oxidize molecular catalysts into the high-valent Ru(IV)=O intermediates for 2e(-) oxidation.

  14. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  15. Byproduct-free mass production of compound semiconductor nanowires: zinc phosphide

    Science.gov (United States)

    Chen, Yixi; Polinnaya, Rakesh; Vaddiraju, Sreeram

    2018-05-01

    A method for the mass production of compound semiconductor nanowires that involves the direct reaction of component elements in a chemical vapor deposition chamber (CVD) is presented. This method results in nanowires, without the associated production of any other byproducts such as nanoparticles or three-dimensional (3D) bulk crystals. Furthermore, no unreacted reactants remain mixed with the nanowire product in this method. This byproduct-free nanowire production thus circumvents the need to tediously purify and collect nanowires from a mixture of products/reactants after their synthesis. Demonstration made using zinc phosphide (Zn3P2) material system as an example indicated that the direct reaction of zinc microparticles with phosphorus supplied via the vapor phase results in the production of gram quantities of nanowires. To enhance thermal transport and achieve the complete reaction of zinc microparticles, while simultaneously ensuring that the microparticles do not agglomerate into macroscale zinc particles and partly remain unreacted (owing to diffusion limitations), pellets composed of mixtures of zinc and a sacrificial salt, NH4Cl, were employed as the starting material. The sublimation by decomposition of NH4Cl in the early stages of the reaction leaves a highly porous pellet of zinc composed of only zinc microparticles, which allows for inward diffusion of phosphorus/outward diffusion of zinc and the complete conversion of zinc into Zn3P2 nanowires. NH4Cl also aids in removal of any native oxide layer present on the zinc microparticles that may prevent their reaction with phosphorus. This method may be used to mass produce many other nanowires in a byproduct-free manner, besides Zn3P2.

  16. Theoretical prediction and experimental confirmation of unusual ternary ordered semiconductor compounds in Sr-Pb-S system.

    Science.gov (United States)

    Hao, Shiqiang; Zhao, Li-Dong; Chen, Chang-Qiang; Dravid, Vinayak P; Kanatzidis, Mercouri G; Wolverton, Christopher M

    2014-01-29

    We examine the thermodynamics of phase separation and ordering in the ternary Ca(x)Pb(1-x)S and Sr(x)Pb(1-x)S systems by density-functional theory combined with a cluster expansion and Monte Carlo simulations. Similar to most other ternary III-V or IV-VI semiconductor alloys, we find that bulk phase separation is thermodynamically preferred for PbS-CaS. However, we predict the surprising existence of stable, ordered ternary compounds in the PbS-SrS system. These phases are previously unreported ordered rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. The stability of these predicted ordered phases is confirmed by transmission electron microscopy observations and band gap measurements. We believe this work paves the way for a combined theory-experiment approach to decipher complex phase relations in multicomponent chalcogenide systems.

  17. Tunneling microscopy of 2H-MoS2: A compound semiconductor surface

    OpenAIRE

    Weimer, M.; Kramar, J.; Bai, C.; Baldeschwieler, J. D.

    1988-01-01

    Molybdenum disulfide, a layered semiconductor, is an interesting material to study with the tunneling microscope because two structurally and electronically different atomic species may be probed at its surface. We report on a vacuum scanning tunneling microscopy study of 2H-MoS2. Atomic resolution topographs and current images show the symmetry of the surface unit cell and clearly reveal two distinct atomic sites in agreement with the well-known x-ray crystal structure.

  18. On the impact of isoelectric impurities on band bowing and disorder of compound semiconductors; Ueber den Einfluss von isoelektronischen Stoerstellen auf Bandbiegung und Unordnung in Verbindungshalbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Karcher, Christian

    2012-03-16

    Isolectronic impurities and their impact on the properties of compound semiconductors is discussed in two systems: Nitrogen in Ga(As,P) quantum wells on the one hand and Sulfur and Selenium in bulk ZnTe. The properties are reduced to two experimentally observable aspects: Band Bowing, i.e. the non-linearity of the band gap of the compound semiconductor and disorder, i.e. in particular the formation of a strongly localized density of states beneath the fundamental band gap. Apart of the pure experimental studies an insight into the theoretical model of disorder-induced temperature dependent luminescence properties of the compound semiconductors by means of Monte Carlo Simulations is given.

  19. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui

    2012-01-01

    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.

  20. PEALD grown high-k ZrO{sub 2} thin films on SiC group IV compound semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, A. G., E-mail: agkhairnar@gmail.com; Patil, V. S.; Agrawal, K. S.; Salunke, R. S.; Mahajan, A. M., E-mail: ammahajan@nmu.ac.in [North Maharashtra University, Department of Electronics, School of Physical Sciences (India)

    2017-01-15

    The study of ZrO{sub 2} thin films on SiC group IV compound semiconductor has been studied as a high mobility substrates. The ZrO{sub 2} thin films were deposited using the Plasma Enhanced Atomic Layer Deposition System. The thickness of the thin films were measured using ellipsometer and found to be 5.47 nm. The deposited ZrO{sub 2} thin films were post deposition annealed in rapid thermal annealing chamber at temperature of 400°Ð¡. The atomic force microscopy and X-гау photoelectron spectroscopy has been carried out to study the surface topography, roughness and chemical composition of thin film, respectively.

  1. Growth of anodic films on compound semiconductor electrodes: InP in aqueous (NH sub 4) sub 2 S

    CERN Document Server

    Buckley, D N

    2002-01-01

    Film formation on compound semiconductors under anodic conditions is discussed. The surface properties of InP electrodes were examined following anodization in a (NH sub 4) sub 2 S electrolyte. The observation of a current peak in the cyclic voltammetric curve was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution revealed surface pitting. Thicker films formed at higher potentials exhibited extensive cracking as observed by optical and electron microscopy, and this was explicitly demonstrated to occur ex situ rather than during the electrochemical treatment. The composition of the thick film was identified as In sub 2 S sub 3 by EDX and XPS. The measured film thickness varies linearly with the charge passed, and comparison between experimental thickness measurements and theoretical estimates for the thickness indicate a porosity of over 70 %. Cracking is attributed to shrinkage during drying of the highly porous film and does n...

  2. Attachment to a mass spectrometer for studying the processes of semiconductor compound deposition from a gaseous phase

    International Nuclear Information System (INIS)

    Belousov, V.I.; Zhuravlev, G.I.; Popenko, N.I.; Novozhilov, A.F.; Matveev, I.V.; Murav'ev, V.V.

    1984-01-01

    An attachment to the mass spectrometer for studying the processes of semiconductor compounds deposition from a gaseous phase at the pressure of 1x10 5 Pa and the temperature of 400-1300 K is described. The attachment consists of the Neer ion source with ionization section cooled upto the temperature of liquid nitrogen, a two-zone vacuum furnace, and a quartz epitaxy reactor of the horzontal type.The attachment is equipped with the systems of process gas distribution in 5 flows and temperature stabilization. The rate of mass spectrum recording constitutes 2 mass/s at the resolution being equal to 1000 at the 10% level. The sensitivity at the steam-gas mixture components partial pressure determination constitutes 1x10 -4 Pa

  3. Alpha-ray spectrometry at high temperature by using a compound semiconductor detector.

    Science.gov (United States)

    Ha, Jang Ho; Kim, Han Soo

    2013-11-01

    The use of conventional radiation detectors in harsh environments is limited by radiation damage to detector materials and by temperature constraints. We fabricated a wide-band gap semiconductor radiation detector based on silicon carbide. All the detector components were considered for an application in a high temperature environment like a nuclear reactor core. The radiation response, especially to alpha particles, was measured using an (241)Am source at variable operating voltages at room temperature in the air. The temperature on detector was controlled from 30°C to 250°C. The alpha-particle spectra were measured at zero bias operation. Even though the detector is operated at high temperature, the energy resolution as a function of temperature is almost constant within 3.5% deviation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Fast Etching of Molding Compound by an Ar/O2/CF4 Plasma and Process Improvements for Semiconductor Package Decapsulation

    NARCIS (Netherlands)

    Tang, J.; Gruber, D.; Schelen, J.B.J.; Funke, H.J.; Beenakker, C.I.M.

    2012-01-01

    Decapsulation of a SOT23 semiconductor package with 23 um copper wire bonds is conducted with an especially designed microwave induced plasma system. It is found that a 30%-60% CF4 addition in the O2/CF4 etchant gas results in high molding compound etching rate. Si3N4 overetching which is

  5. Chemical method for producing nanoscale semiconductor compound CdS in a polymer matrix; Khimicheskij metod polucheniya nanorazmernogo poluprovodnikovogo soedineniya CdS v polimernoj matritse

    Energy Technology Data Exchange (ETDEWEB)

    Goglidze, Natalia; Dement' ev, Igor' ; Zadorozhnyj, Aleksandru; Koval' , Andrej; Gashin, Petr [Moldavskij gosudarstvennyj univ., Chisinau (Moldova, Republic of); Gutsul, Tatiana; Taraburkin, Aleksandr [Academiya nauk Moldovy, Chisinau (Moldova, Republic of)

    2012-07-15

    The results of cadmium sulfide synthesis in a polymer matrix from cadmium stearate and tiourea are given. Luminescent properties of the obtained materials were studied. It was shown that the elaborated method allows to efficiently synthesize 2-6 semiconductor compounds with the nano-granulated particles in various organic media including biopolymers. (authors)

  6. Initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds with fast semiconductor switches and energy-releasing elements

    Science.gov (United States)

    Savenkov, G. G.; Kardo-Sysoev, A. F.; Zegrya, A. G.; Os'kin, I. A.; Bragin, V. A.; Zegrya, G. G.

    2017-10-01

    The first findings concerning the initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds via the electrical explosion of a semiconductor bridge are presented. The obtained results indicate that the energy parameters of an explosive conversion depend on the mass of a combustible agent—namely, nanoporous silicon—and the silicon-doping type.

  7. Refractive index of ternary and quaternary compound semiconductors below the fundamental absorption edge: Linear and nonlinear effects

    International Nuclear Information System (INIS)

    Jensen, B.; Torabi, A.

    1985-01-01

    The index of refraction n is calculated as a function of frequency and mole fraction x for the following compounds: Hg/sub l-x/Cd/sub x/Te, Al/sub x/Ga/sub l-x/As, and In/sub l-x/Ga/sub x/As/sub y/P/sub l-y/ lattice matched to InP. Lattice matching of In/sub l-x/Ga/sub x/As/sub y/P/sub l-y/ to InP requires that x = 0.466 y. The theoretical result for the refractive index is obtained from a quantum mechanical calculation of the dielectric constant of a compound semiconductor. It is given in terms of the basic material parameters of band gap energy, effective electron mass m/sub n/, effective heavy hole mass m/sub rho/, spin orbit splitting energy, lattice constant, and carrier concentration n/sub e/ or rho for n-type or rho-type materials, respectively. If these quantities are known as functions of mole fraction x, there are no adjustable parameters involved. A negative change in the refractive index near the fundamental absorption edge is predicted on passing radiation through a crystal if the change in carrier concentration of the initially unoccupied conduction band is assumed proportional to internal intensity I. Comparison of theory with experimental data is given

  8. Passivation of Si solar cells by hetero-epitaxial compound semiconductor coatings

    Science.gov (United States)

    Vernon, S. M.; Spitzer, M. B.; Keavney, C. J.; Haven, V. E.; Sekula, P. A.

    1986-01-01

    A development status evaluation is made for high efficiency Si solar cells, with emphasis on the suppression of the deleterious effects of surface recombination. ZnS(0.9)Se(0.1) and GaP are identified as candidates for the reduction of surface recombination. Attention is given to methods developed for the deposition of heteroepitaxial compounds designed to block minority carrier transport to the Si solar cell surface without interfering with the majority carrier flow.

  9. Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory

    Science.gov (United States)

    Gonzalez Debs, Mariam

    The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy

  10. TDPAC study of complex structure semiconductor compounds; The case of niobium pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Shitu, J.; Renteria, M.; Massolo, C.P.; Bibiloni, A.G.; Desimonni, J. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. No. 67, 1900 La Plata (AR))

    1992-07-20

    In this paper, a new method for analyzing Time-Differential Perturbed Angular Correlation spectra is presented and applied to study the hyperfine interaction of {sup 100}Rh in the high temperature modification of niobium pentoxide. The measured quadrupole interactions are assigned to about 80% of the radioactive probes replacing niobium atoms in the lattice and about 20% located in perturbed sites. The origin of this perturbation, producing a high frequency component in the measured spectra is discussed and temptatively assigned to remaining radiation damage in the compound. The hyperfine interaction of {sup 111}Cd probes, introduced through thermal diffusion into niobium pentoxide, is also presented. The temperature dependence of the hyperfine parameters in this case is studied in the temperature range RT-800{degrees} C. The spectral analyzing method employed allows a direct comparison of experimental data with point charge model calculations and a simultaneous evaluation of the antishielding factor {beta}. The obtained values (27 for {sup 100}Rh and 15 for {sup 111}Cd) are discussed in terms of the compound and probe's characteristics.

  11. TDPAC study of complex structure semiconductor compounds; The case niobium pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Shitu, J.; Renteria, M.; Massolo, C.P.; Bibiloni, A.G.; Desimoni, J. (Dept. de Fisica, Facultad de Ciencias Exactas, Univ. Nacional de La Plata, C.C. No. 67, 1900 La Plata (AR))

    1992-07-10

    In this paper, a new method for analyzing Time-Differential Perturbed Angular Correlation spectra is presented and applied to study the hyperfine interaction of {sup 100}Rh in the high temperature modification of niobium pentoxide. The measured quadrupole interactions are assigned to about 80% of the radioactive probes replacing niobium atoms in the lattice and about 20% located in perturbed sites. The origin of this perturbation, producing a high frequency component in the measured spectra is discussed and temptatively assigned to remaining radiation damage in the compound. The hyperfine interaction of {sup 111}Cd probes, introduced through thermal diffusion into niobium pentoxide, is also presented. The temperature dependence of the hyperfine parameters in this case is studied in the temperature range RT-800{degrees}C. The spectral analyzing method employed allows a direct comparison of experimental data with point charge model calculations and a simultaneous evaluation of the anti-shielding factor {beta}. The obtained values (27 for {sup 100}Rh and 15 for {sup 111}Cd) are discussed in terms of the compound and probe's characteristics.

  12. SÍNTESIS, CARACTERIZACIÓN ESTRUCTURAL Y PROPIEDADES MAGNÉTICAS DE COMPUESTOS SEMICONDUCTORES DEL TIPO Dy (x In (1-x Sb ISYNTHESIS, STRUCTURAL CHARACTERIZATION AND MAGNETIC PROPERTIES OF SEMICONDUCTOR COMPOUNDS OF TYPE Dy x In (1-x S

    Directory of Open Access Journals (Sweden)

    Euclides J. Velazco Rivero

    2018-04-01

    Full Text Available Semiconductor compounds of molecular formula of type DyxIn (1-x Sb (x = 0,02; 0,03; 0,04; 0,05; 0,06 y 0,07 were synthesized by means of direct interaction of the elements under heat treatment to 550°C during 11 days in vacuum sealed quartz ampoules. The analyses by X-rays diffraction showed that the compounds with x = 0,02; 0,03 y 0,04 presented pure phases of InSb doped with Dy without presence of alternate phases of DySb. These compounds, analyzed by scanning electronic microscopy – SEM, showed particles with a variety of shapes and sizes each one. Whereas the magnetic susceptibility measurements showed that those doped compounds, in spite of their paramagnetic behavior, the predominant magnetic interaction is ferromagnetic due to their positive Curie temperature (θ

  13. Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy.

    Science.gov (United States)

    Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa

    2014-06-01

    Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Thermoelectric properties of thin film and superlattice structure of IV-VI and V-VI compound semiconductors

    International Nuclear Information System (INIS)

    Blumers, Mathias

    2012-01-01

    The basic material property governing the efficiency of thermoelectric applications is the thermoelectric figure of merit Z=S 2 .σ/k, where S is the Seebeck-coefficient, σ is the electrical conductivity and k the thermal conductivity. A promising concept of increasing Z by one and two dimensional quantum well superlattices (QW-SL) was introduced in the early 1990s in terms of theoretical predictions. The realization of such low dimensional systems is done by use of semiconductor compounds with different energy gaps. The ambition of the Nitherma project was to investigate the thermoelectric properties of superlattices and Multi-Quantum-Well-structures (MQW) made of Pb 1-x Sr x Te and Bi 2 (Se x Te 1-x ) 3 , respectively. Therefore SL- and MQW-structures of this materials were grown and Z was determined by measuring of S, σ and κ parallel to the layer planes. Aim of this thesis is the interpretation of the transport measurements (S,σ,κ) of low dimensional structures and the improvement of preparation and measurement techniques. The influence of low dimensionality on the thermal conductivity in SL- and MQW-structures was investigated by measurements on structures with different layer thicknesses. In addition, measurements of the Seebeck-coefficient were performed, also to verify the results of the participating groups.

  15. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2009-07-01

    Full Text Available Solar cells are a promising renewable, carbon-free electric energy resource to address the fossil fuel shortage and global warming. Energy conversion efficiencies around 40% have been recently achieved in laboratories using III-V semiconductor compounds as photovoltaic materials. This article reviews the efforts and accomplishments made for higher efficiency III-V semiconductor compound solar cells, specifically with multijunction tandem, lower-dimensional, photonic up/down conversion, and plasmonic metallic structures. Technological strategies for further performance improvement from the most efficient (AlInGaP/(InGaAs/Ge triple-junction cells including the search for 1.0 eV bandgap semiconductors are discussed. Lower-dimensional systems such as quantum well and dot structures are being intensively studied to realize multiple exciton generation and multiple photon absorption to break the conventional efficiency limit. Implementation of plasmonic metallic nanostructures manipulating photonic energy flow directions to enhance sunlight absorption in thin photovoltaic semiconductor materials is also emerging.

  16. Detection of the scintillation light emitted from direct-bandgap compound semiconductors by a Si avalanche photodiode at 150 mK

    International Nuclear Information System (INIS)

    Yasumune, Takashi; Takayama, Nobuyasu; Maehata, Keisuke; Ishibashi, Kenji; Umeno, Takahiro

    2008-01-01

    In this work, the direct-bandgap compound semiconductor materials are irradiated by α particles emitted from 241 Am for the detection of scintillation light at the temperature of 150 mK. For the irradiation experiment, two disk shaped samples were fabricated from an epoxy resin mixed with the powder of PbI 2 and CuI, respectively. Each disk-samples was cooled down to 150 mK by a compact liquid helium-free dilution refrigerator. A Si avalanche photodiode (APD) was employed for detecting the scintillation light emitted from the disk-sample inside the refrigerator. The detection signal current of Si APD was converted into the voltage pulses by a charge sensitive preamplifier. The voltage pulses of the scintillation light emitted from the direct-bandgap semiconductors were observed at the temperature of 150 mK. (author)

  17. Organic materials for semiconductor. Epoxy molding compound for IC encapsulation; Handotai kanren no yuki zairyo. Handotai fushiyo epoxy seikei zairyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kusuhara, A. [Sumitomo Bakelite Co. Ltd., Tokyo (Japan)

    1998-11-05

    This paper describes organic materials for semiconductor. Based on the composition and raw material, typical materials are epoxy resins, curing agents including phenol-novolak resins, fillers including silica and alumina, flame retardants including brominated epoxy resin and antimony oxide, hardening accelerators including amine compounds and phosphorus compounds, coupling agents including silane compounds and titanate compounds, and the others including colorants and mold lubricants. Raw materials are heated and kneaded after mixing, and produced as tablets after cooling and crushing. Recently, the packages have changed from insertion type to surface mounting type for the small thin IC package and for improving the efficiency of soldering during the incorporation of IC package on the print circuit substrate. High temperature of 260degC has been employed from the conventional limit of 100degC. Reduction of water absorption, improvement of adhesion, reduction of thermal expansion coefficient, and reduction of elastic modulus during heating are promoted for avoiding the peeling and cracking due to the sudden evaporation of adsorbed moisture. This paper also describes the organic materials for BGA. 10 figs., 4 tabs.

  18. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  19. Monocrystal growth and characterization of HgI2 semiconductor compound for using in X and gamma spectrometries

    International Nuclear Information System (INIS)

    Faria, L.O.

    1987-01-01

    Mercury Iodide (HgI 2 ) platelets were grown from the vapor phase in the presence of polymers. These platelets are convenient to be used as room temperature operating semiconductor radiation detectors. Experiments demonstrate that the growth of platelets depends on a two-stage mass transport instead of depending on just one, as it has been thought. HgI 2 platelets 30 mm 2 large and 90 μm thick were obtained in a sealed evacuated fused quartz tube and were characterized by etch pit density measurements. (author) [pt

  20. Growth and characterization of monocrystals from HgI2 semiconductor compound for using in X and gamma spectroscopy

    International Nuclear Information System (INIS)

    Faria, L.O. de.

    1987-09-01

    Mercury Iodide (HgI 2 ) platelets were grown from the vapor phase in the presence of polymers. These platelets are convenient to be used as room temperature operating semiconductor radiation detectors. Experiments demonstrate that the growth of platelets depends on a two-stage mass transport instead of depending on just one, as it has been thought. HgI 2 platelets 30 mm 2 large and 90 μm thick were obtained in a sealed evacuated fused quartz tube and were characterized by etch pit density measurements. (author)

  1. Band structure of semiconductor compounds of Mg sub 2 Si and Mg sub 2 Ge with strained crystal lattice

    CERN Document Server

    Krivosheeva, A V; Shaposhnikov, V L; Krivosheev, A E; Borisenko, V E

    2002-01-01

    The effect of isotopic and unaxial deformation of the crystal lattice on the electronic band structure of indirect band gap semiconductors Mg sub 2 Si and Mg sub 2 Ge has been simulated by means of the linear augmented plane wave method. The reduction of the lattice constant down to 95 % results in a linear increase of the direct transition in magnesium silicide by 48%. The stresses arising under unaxial deformation shift the bands as well as result in splitting of degenerated states. The dependence of the interband transitions on the lattice deformation is nonlinear in this case

  2. Method of doping a semiconductor

    International Nuclear Information System (INIS)

    Yang, C.Y.; Rapp, R.A.

    1983-01-01

    A method is disclosed for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient

  3. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  4. Weak antilocalization induced by Rashba spin-orbit interaction in layered III-VI compound semiconductor GaSe thin films

    Science.gov (United States)

    Takasuna, Shoichi; Shiogai, Junichi; Matsuzaka, Shunichiro; Kohda, Makoto; Oyama, Yutaka; Nitta, Junsaku

    2017-10-01

    Magnetoconductance (MC) at low temperature was measured to investigate spin-related transport affected by spin-orbit interaction (SOI) in III-VI compound n -type GaSe thin films. Results reveal that MC shows weak antilocalization (WAL). Its temperature and gate voltage dependences reveal that the dominant spin relaxation is governed by the D'yakonov-Perel' mechanism associated with the Rashba SOI. The estimated Rashba SOI strength in GaSe is much stronger than that of III-V compound GaAs quantum wells, although the energy gap and spin split-off band in GaSe closely resemble those in GaAs. The angle dependence of WAL amplitude in the in-plane magnetic field direction is almost isotropic. This isotropy indicates that the strength of the Dresselhaus SOI is negligible compared with the Rashba SOI strength. The SOI effect in n -GaSe thin films differs greatly from those of III-V compound semiconductors and transition-metal dichalcogenides.

  5. Self-consistent method for quantifying indium content from X-ray spectra of thick compound semiconductor specimens in a transmission electron microscope.

    Science.gov (United States)

    Walther, T; Wang, X

    2016-05-01

    Based on Monte Carlo simulations of X-ray generation by fast electrons we calculate curves of effective sensitivity factors for analytical transmission electron microscopy based energy-dispersive X-ray spectroscopy including absorption and fluorescence effects, as a function of Ga K/L ratio for different indium and gallium containing compound semiconductors. For the case of InGaN alloy thin films we show that experimental spectra can thus be quantified without the need to measure specimen thickness or density, yielding self-consistent values for quantification with Ga K and Ga L lines. The effect of uncertainties in the detector efficiency are also shown to be reduced. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Magnetic phase transitions in strongly chained semiconductor compounds TIFeS2 and TIFeSe2

    International Nuclear Information System (INIS)

    Asgerov, E.B.; Madadzada, A.I.; Beskropvniy, A.I.; Asgerov, E.B.; Mehdiyeva, R.N.; Madadzada, A.I.; Ismayilov, D.I.; Kerimova, E.M.

    2014-01-01

    Full text: The analysis of diffraction data was carried out by the Rietveld method using the programs VMRIA and FullProf, using as a starting model for the calculations of neutron diffraction profile of X-ray data. The neutron data showed that over the entire temperature range of these compounds have a monoclinic crystal structure symmetry

  7. Structural characterization of the high-temperature modification of the Cu_2ZnGeTe_4 quaternary semiconductor compound

    International Nuclear Information System (INIS)

    Nieves, L.; Marcano, G.; Power, C.; Rincon, C.; Delgado, G.E.; Lopez-Rivera, S.A.

    2016-01-01

    A combined study of the X-ray powder diffraction, differential thermal analysis, optical absorption, and Raman spectroscopy of the high-temperature modification of Cu_2ZnGeTe_4 quaternary semiconductor, obtained by fast quenching from 820 K to ice water temperature, has been done. It has been found that this phase crystallizes in a tetragonal kesterite-type structure. From the analysis of the absorption coefficient spectra, the band gap energy of this material at room temperature has been found to be 1.49 eV. An optical transition from defect acceptor states to the conduction band is also observed below the fundamental absorption edge. Three strongest Raman lines observed at 116, 119, and 139 cm"-"1 have been assigned to the A-symmetry modes. Also, lines at 81, 89, 97, and 263 cm"-"1 tentatively ascribed as B or E-symmetry modes have been detected from the spectrum. The presence in this high-temperature modification of ZnTe and Cu_2GeTe_3 secondary phases has been detected by both XRD and Raman spectroscopy. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The influence of pressure on the birefringence in semiconductor compounds ZnS, CuGaS2, and InPS4

    International Nuclear Information System (INIS)

    Lavrentyev, A.A.; Gabrelian, B.V.; Kulagin, B.B.; Nikiforov, I.Ya.; Sobolev, V.V.

    2007-01-01

    Using the modified method of augmented plane waves and the code WIEN2k the calculations of the electron band structure, densities of electron states, and imaginary part of dielectric response function were carried out for different polarization of the vector of electrical field ε xx and ε zz for the semiconductor compounds ZnS, CuGaS 2 , and InPS 4 . The calculations were performed both for undisturbed crystals and for distorted crystals due to the applied pressure. The compounds studied have the similar crystallographic structures: ZnS - sphalerite, CuGaS 2 - chalcopyrite, and InPS 4 - twice defective chalcopyrite. It is known, that in cubic ZnS there is no birefringence, whereas in CuGaS 2 and InPS 4 there is one. But CuGaS 2 has so called isotropic point (where ε xx =ε zz ) in the visible optical range, and InPS 4 has no such point. Our calculations of ε xx and ε zz have shown that in ZnS under the pressure the isotropic points arise, but in InPS 4 they do not exist. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Some physical properties of GaX (X=P, As and Sb) semiconductor compounds using higher-order perturbation theory

    International Nuclear Information System (INIS)

    Jivani, A.R.; Trivedi, H.J.; Gajjar, P.N.; Jani, A.R.

    2005-01-01

    Recently proposed model potential for describing the electron-ion interaction is employed to calculate total energy, energy band gap at Jones-zone face at X, equation of state and bulk modulus of GaP, GaAs and GaSb compounds using higher-order perturbation theory. The covalent correction term corresponding to third- and fourth-order perturbation energy terms are used to take account of covalent bonding effect in such semiconductors. The significant value of the covalent bonding term shows the essentiality of higher-order correction for zincblende-type crystals. We have employed five different screening functions along with the latest screening function proposed by Sarkar et al. in the present work. The numerical results for the total energy, energy band gap at Jones-zone face and bulk modulus of these compounds are in good agreement with the experimental data and found better than other such theoretical findings. The pressure and bulk modulus at different volumes are obtained by using such higher-order perturbation theory with the application of our model potential. The pressure obtained by this method is compared with pressure obtained by equations proposed by Murnarghan and Vinet et al. The present study also shows that the incorporation of different screening functions generates distinct effects

  10. Interaction of tellurium and tellurium-containing semiconductor compounds with solutions of HI-HNO3-H2O system

    International Nuclear Information System (INIS)

    Tomashik, V.N.; Sava, A.A.; Tomashik, Z.F.

    1994-01-01

    As a result of experimental investigations and physical-chemical simulation are established regularities of solution of semiconducting tellurium-containing compounds in HI-HNO 3 -H 2 O systems. In HNO 3 -HI system solutions enriched by HNO 3 are not used for CdTe treatment but HI enriched solution are similar in composition with I 2 -HI solutions. Solution of the given tellurium-containing materials proceeds by a chemical mechanism and is determined by tellurium oxidation with iodine

  11. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    Science.gov (United States)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  12. Synthesis of novel carbazole derived substances using some organoboron compounds by palladium catalyzed and investigation of its semiconductor device characteristics

    Science.gov (United States)

    Gorgun, Kamuran; Caglar, Yasemin

    2018-04-01

    Carbazole compounds in particular represent one of the most intensely used and studied class of semiconducting materials. In this study, considering the information given in the literature the Ullman and Suzuki-Miyaura coupling reaction were carried out using carbazole, 1,4-dibromobenzene and pyrene-1-boronic acid. The synthesized carbazole derivatives are characterized by 1H NMR and elemental analysis. The spectroscopic and thermal properties of the synthesized novel carbazole derivative 9-(4-(pyren-4-yl)phenyl)-9H-carbazole (Cz-py) were investigated. And also, the n-Si/p-Cz:py heterojunction diode was fabricated. The electrical properties of this diode were characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements.

  13. Defect formation energies and homogeneity ranges of rock salt-, pyrite-, chalcopyrite- and molybdenite-type compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, S. [Hahn-Meitner-Institut, Glienicker Strasse 100, Berlin D-14109 (Germany)

    2004-07-01

    Employing the generalisation of Van Vechten's cavity model, formation energies of neutral point defects in pyrites (FeS{sub 2}, RuS{sub 2}), chalcopyrites (II-IV-V{sub 2} and I-III-VI{sub 2}) as well as molybdenites (MoS{sub 2}, WS{sub 2}) have been estimated. As input parameters the fundamental band gaps, work functions, electron affinities, surface energies, coordination numbers, covalent or ionic radii and unit cell parameters were used. The values calculated for tetrahedrally and octahedrally coordinated compounds agreed well with measured values. The data obtained can be used to calculate point defect concentrations and homogeneity ranges as a function of partial pressure and temperature. Introducing charged vacancies, the conductivity type can be predicted.

  14. Structural, optical and vibrational studies of Na{sup +} doped Cd{sub 0.8}Zn{sub 0.2}S semiconductor compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yellaiah, G., E-mail: johngolluri@yahoo.com; Hadasa, K.; Nagabhushanam, M., E-mail: mamidala_nb@yahoo.com

    2013-12-25

    Graphical abstract: FTIR spectra of Cd{sub 0.8}Zn{sub 0.2}S: N{sub x} (x = 0.2 mol%). Highlights: •The energy band gaps of Cd{sub 0.8}Zn{sub 02}S: Nasamples were estimated. •Density and porosity percentages were calculated. •From the FTIR study CdS and ZnS stretching bonds were detected. -- Abstract: Cd{sub 0.8}Zn{sub 0.2}S semiconductor powders doped with different amounts of sodium have been synthesized by controlled co-precipitation technique. X-ray diffraction (XRD), Scanning electron microscope (SEM), Optical absorption and Fourier transform infrared spectroscope (FTIR) studies have been done on all these samples. XRD studies have revealed that the samples are polycrystalline with an average crystallite size ranging from 29 to 55 nm and they crystallize in the hexagonal form with wurtzite structure. The optical measurements revealed that the samples possess direct band gap and the band gap increases with an increase in the dopant concentration. The vibrational modes of Cd–S and Zn–S were obtained from FTIR studies and found to be at 812–618 cm{sup −1} respectively. Experimental and theoretical (XRD) densities were calculated and analyzed. Density from XRD and porosity in percentage varied from 92% to 94% and 5% to 8% respectively. The elemental analysis of the compounds was done by energy dispersive spectroscopy (EDS) and found that the cadmium, zinc, sulphur and sodium elements were present in the compound as per the composition taken. From the theoretical estimations it is understood that the dopant (Na) occupies the interstitial of CdZnS.

  15. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1987-01-01

    In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination.

  16. Semiconductor physics

    CERN Document Server

    Böer, Karl W

    2018-01-01

    This handbook gives a complete survey of the important topics and results in semiconductor physics. It addresses every fundamental principle and most research topics and areas of application in the field of semiconductor physics. Comprehensive information is provided on crystalline bulk and low-dimensional as well as amporphous semiconductors, including optical, transport, and dynamic properties.

  17. Electroluminescence color tuning between green and red from metal-oxide-semiconductor devices fabricated by spin-coating of rare-earth (terbium + europium) organic compounds on silicon

    Science.gov (United States)

    Matsuda, Toshihiro; Hattori, Fumihiro; Iwata, Hideyuki; Ohzone, Takashi

    2018-04-01

    Color tunable electroluminescence (EL) from metal-oxide-semiconductor devices with the rare-earth elements Tb and Eu is reported. Organic compound liquid sources of (Tb + Ba) and Eu with various Eu/Tb ratios from 0.001 to 0.4 were spin-coated on an n+-Si substrate and annealed to form an oxide insulator layer. The EL spectra had only peaks corresponding to the intrashell Tb3+/Eu3+ transitions in the spectral range from green to red, and the intensity ratio of the peaks was appropriately tuned using the appropriate Eu/Tb ratios in liquid sources. Consequently, the EL emission colors linearly changed from yellowish green to yellowish orange and eventually to reddish orange on the CIE chromaticity diagram. The gate current +I G current also affected the EL colors for the medium-Eu/Tb-ratio device. The structure of the surface insulator films analyzed by cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS) has four layers, namely, (Tb4O7 + Eu2O3), [Tb4O7 + Eu2O3 + (Tb/Eu/Ba)SiO x ], (Tb/Eu/Ba)SiO x , and SiO x -rich oxide. The EL mechanism proposed is that electrons injected from the Si substrate into the SiO x -rich oxide and Tb/Eu/Ba-silicate layers become hot electrons accelerated in a high electric field, and then these hot electrons excite Tb3+ and Eu3+ ions in the Tb4O7/Eu2O3 layers resulting in EL emission from Tb3+ and Eu3+ intrashell transitions.

  18. Process Challenges in Compound Semiconductors.

    Science.gov (United States)

    1988-08-01

    dimension in GaAs quantum well wires and boxes. Appl. Phys. Lett. 49:1275. Cox, H. M., S. G. Hummel, and V. G. Keramidas. 1986. Vapor levitation epitaxy...improved materials, and new device concepts. Many of these involve the fabrication of multilayer structures for quantum well lasers and detectors...dimensions, where quantum effects dominate, has already led to a number of conceptual breakthroughs for new devices and circuits. Such breakthroughs are

  19. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  20. WOCSDICE󈧇 The 27th Workshop on Compound Semiconductor Devices and Integrated Circuits Held in Europe May 26 - 28, 2003 Forigen, Switzerland

    Science.gov (United States)

    2003-05-28

    Rodrigues-Girones, M. Saglam, A. Megej, H.L. Hartnagel vi Recent Advances, Remaining Challenges in Wide Bandgap Semiconductors Colin ...R. H. Friend, and H. Sirringhaus, Science, 299, pp. 1881-1884, 2003. 19. C. J. Drury , C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw

  1. A Furan-Thiophene-Based Quinoidal Compound: A New Class of Solution-Processable High-Performance n-Type Organic Semiconductor.

    Science.gov (United States)

    Xiong, Yu; Tao, Jingwei; Wang, Ruihao; Qiao, Xiaolan; Yang, Xiaodi; Wang, Deliang; Wu, Hongzhuo; Li, Hongxiang

    2016-07-01

    The furan-thiophene-based quinoidal organic semiconductor, TFT-CN, is designed and synthesized. TFT-CN displays a high electron mobility of 7.7 cm(2) V(-1) s(-1) , two orders of magnitude higher than the corresponding thiophene-based derivative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Proceedings of the 1997 IEEE International Symposium on Compound Semiconductors (1997) Held in San Diego, California, on 8-11 September 1997

    Science.gov (United States)

    1998-05-01

    AlGa)As on Si 1990 Yasuhiko Arakawa for pioneering work on low-dimensional semiconductor lasers, showing the superior performance of quantum wire...in Molecular Beam Epitaxy Takeyoshi SUGAYA1, Yasuhiko TANUMA2, Tadashi NAKAGAWA1, Yoshinobu SUGIYAMA1 and Kenji YONEI2 1Electrotechnical

  3. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  4. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Fabian, J.; Abiague, A.M.; Ertler, Ch.; Stano, P.; Zutic, I.

    2007-01-01

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  5. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  6. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1962-01-01

    Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co

  7. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  8. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  9. Effects of hydrostatic pressure on the thermoelectric properties of the ɛ-polytype of InSe, GaSe, and InGaSe2 semiconductor compounds: an ab initio study

    Science.gov (United States)

    Elsayed, H.; Olguín, D.; Cantarero, A.

    2017-12-01

    This work presents an ab initio study of the effects of hydrostatic pressure on the Seebeck coefficients and thermoelectric power factors of the ɛ-polytype of InSe, GaSe, and InGaSe2 semiconductor compounds. Our study is performed using the semi-classical Boltzmann theory and the rigid band approach. The electronic band structures of these materials are calculated using the full-potential linearized augmented plane-wave method. The obtained thermoelectric properties are discussed in terms of the results of the electronic structure calculations. As we will show, our calculated Seebeck coefficient values indicate that these materials are good alternatives to other well-studied thermoelectric systems.

  10. Semiconductor sensors

    International Nuclear Information System (INIS)

    Hartmann, Frank

    2011-01-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  11. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  12. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  13. Structural characterization of the high-temperature modification of the Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor compound

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.; Marcano, G.; Power, C.; Rincon, C. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Lopez-Rivera, S.A. [Grupo de Fisica Aplicada, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of)

    2016-06-15

    A combined study of the X-ray powder diffraction, differential thermal analysis, optical absorption, and Raman spectroscopy of the high-temperature modification of Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor, obtained by fast quenching from 820 K to ice water temperature, has been done. It has been found that this phase crystallizes in a tetragonal kesterite-type structure. From the analysis of the absorption coefficient spectra, the band gap energy of this material at room temperature has been found to be 1.49 eV. An optical transition from defect acceptor states to the conduction band is also observed below the fundamental absorption edge. Three strongest Raman lines observed at 116, 119, and 139 cm{sup -1} have been assigned to the A-symmetry modes. Also, lines at 81, 89, 97, and 263 cm{sup -1} tentatively ascribed as B or E-symmetry modes have been detected from the spectrum. The presence in this high-temperature modification of ZnTe and Cu{sub 2}GeTe{sub 3} secondary phases has been detected by both XRD and Raman spectroscopy. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Comparison of the Koster-Slater and the equation-of-motion method for calculation of the electronic structure of defects in compound semiconductors

    International Nuclear Information System (INIS)

    Tit, N.; Halley, J.W.

    1992-01-01

    Traditional methods of calculating the electronic structure of defects in semiconductors rely on matrix-diagonalization methods which use the unperturbed crystalline wave functions as a basis. Equation-of-motion (EOM) methods, on the other hand, give excellent results with strong disorder and many defects and make no use of the basis of unperturbed wave functions, but require self-averaging properties of the wave functions which appear superficially to make them unsuitable for study of local properties. We show here that EOM methods are better than traditional methods for calculating the electronic structure of essentially any finite-range impurity potential. The reason is basically that the numerical cost of the traditional Green's-function methods grows approximately as R 7 o/Iper sitet/P, where R is the range of the potential, whereas the cost of the EOM methods per site is independent of the range of the potential. Our detailed calculations on a model of an oxygen vacancy in rutile TiO 2 show that a crossover occurs very soon, so that equation-of-motion methods are better than the traditional ones in the case of potentials of realistic range

  15. Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure

    Institute of Scientific and Technical Information of China (English)

    Tai Wang; Yong-Quan Guo; Shuai Li

    2017-01-01

    The Eu-doped Cu(In,Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical properties than those of CulnTe2.In this paper,the Eu-doped CulnTe2 (Culn1-xEuxTe2,x =0,0.1,0.2,0.3) are studied systemically based on the empirical electron theory (EET).The studies cover crystal structures,bonding regularities,cohesive energies,energy levels,and valence electron structures.The theoretical values fit the experimental results very well.The physical mechanism of a broadened band-gap induced by Eu doping into CuInTe2 is the transitions between different hybridization energy levels induced by electron hopping between s and d orbitals and the transformations from the lattice electrons to valence electrons for Cu and In ions.The research results reveal that the photovoltaic effect induces the increase of lattice electrons of In and causes the electric resistivity to decrease.The Eu doping into CuInTe2 mainly influences the transition between different hybridization energy levels for Cu atoms,which shows that the 3d electron numbers of Cu atoms change before and after Eu doping.In single phase CuIn1-xEuxTe2,the number of valence electrons changes regularly with increasing Eu content,and the calculated band gap Eg also increases,which implies that the optical properties of Eu-doped CuIn1-xEuxTe2 are improved.

  16. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1981-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices is described in which the device is rapidly heated to a temperature between 450 and 600 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. The process may be enhanced by the application of optical radiation from a Xenon lamp. (author)

  17. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  18. Raman spectra of Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} magnetic quaternary semiconductor compounds with tetragonal stannite type structure

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, C., E-mail: crincon@ula.ve; Quintero, M.; Power, Ch.; Moreno, E.; Quintero, E.; Morocoima, M. [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Henao, J. A.; Macías, M. A. [Grupo de Investigación en Química Estructural, Facultad de Ciencias, Escuela de Química, Universidad Industrial de Santander, Apartado Aéreo 678, Bucaramanga (Colombia)

    2015-05-28

    A comparative study of the Raman spectra of Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} and Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI}(where B = Mn or Fe) magnetic quaternary semiconductor compounds with stannite-type structure (I4{sup ¯}2m) has been done. Most of the fourteen Raman lines expected for these materials were observed in the spectra. The two strongest lines observed have been assigned to the IR inactive A{sub 1}{sup 1} and A{sub 1}{sup 2} stannite modes that originated from the motion of the S or Se anion around the Cu and C{sup IV} cations remaining at rest. The shift in the frequency of these two lines of about 150 cm{sup −1} to lower energies observed in Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI} compounds as compared to those in Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} ones, can then be explained as due to the anion mass effect. Based on the fact that values of these frequencies depend mainly on anion mass and bond-stretching forces between nearest-neighbor atoms, the vibrational frequencies v{sup ¯}(A{sub 1}{sup 2}) and v{sup ¯}(A{sub 1}{sup 2}) of both modes for several Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} stannite compounds (where X = S, Se, or Te) very close to the experimental data reported for these materials were calculated from a simple model that relates these stretching forces to the anion-cation bond-distances.

  19. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  20. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  1. Development of high-efficiency electric-optic conversion compound semiconductor - Lighting of the 21st century. Collection of essays; Kokoritsu denko henkan kagobutsu handotai kaihatsu (21 seiki no akari) seika ronbunshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    Collected in this volume are essays made public in 1998-2001 under the above-named development project intended at the practical application of an illumination light source using light-emission diodes (LED) whose energy consumption efficiency will be approximately twice as high as that of the fluorescent lamp. The project aims to develop a blue/ultraviolet LED capable of high-efficiency light emission at approximately 400 nm and a fluorescent substance capable of efficient radiation of white light as excited by the said LED and to eventually combine the two for the embodiment of a 80-100 lm/W light source device. Being conducted in the field of basics of physical properties, light-emission mechanism, and crystal growth are the elucidation of the physical properties and light-emission mechanism of GaN-based compound semiconductor materials, basic studies of bulk single crystal GaN grown by the solution growth method, studies of substrate crystal surface properties, research and development of GaNAsP-based multi-color luminescent materials, etc. Studies are also under way for the research and development of LED substrates, epitaxial LED devices, and light-source devices. (NEDO)

  2. Thermoelectric properties of thin film and superlattice structure of IV-VI and V-VI compound semiconductors; Thermoelektrische Eigenschaften duenner Schichten und Uebergitterstrukturen von IV-VI- und V-VI-Verbundhalbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Blumers, Mathias

    2012-02-29

    The basic material property governing the efficiency of thermoelectric applications is the thermoelectric figure of merit Z=S{sup 2}.{sigma}/k, where S is the Seebeck-coefficient, {sigma} is the electrical conductivity and k the thermal conductivity. A promising concept of increasing Z by one and two dimensional quantum well superlattices (QW-SL) was introduced in the early 1990s in terms of theoretical predictions. The realization of such low dimensional systems is done by use of semiconductor compounds with different energy gaps. The ambition of the Nitherma project was to investigate the thermoelectric properties of superlattices and Multi-Quantum-Well-structures (MQW) made of Pb{sub 1-x}Sr{sub x}Te and Bi{sub 2}(Se{sub x}Te{sub 1-x}){sub 3}, respectively. Therefore SL- and MQW-structures of this materials were grown and Z was determined by measuring of S, {sigma} and {kappa} parallel to the layer planes. Aim of this thesis is the interpretation of the transport measurements (S,{sigma},{kappa}) of low dimensional structures and the improvement of preparation and measurement techniques. The influence of low dimensionality on the thermal conductivity in SL- and MQW-structures was investigated by measurements on structures with different layer thicknesses. In addition, measurements of the Seebeck-coefficient were performed, also to verify the results of the participating groups.

  3. Ruddlesden-Popper compounds (SrO)(LaFeO3)n (n = 1 and 2) as p-type semiconductors for photocatalytic hydrogen production

    International Nuclear Information System (INIS)

    Chen, Hongmei; Sun, Xiaoqin; Xu, Xiaoxiang

    2017-01-01

    Graphical abstract: Two layered ferrites LaSrFeO 4 and La 2 SrFe 2 O 7 have been investigated which demonstrate interesting p-type semconductivity and efficient hydrogen production from water. Display Omitted -- Abstract: Here we report two Ruddlesden-Popper type ferrite perovskites (SrO)(LaFeO 3 ) n (n = 1 and 2) which demonstrate p-type semiconductivity. Their crystal structure, optical absorption and other physicochemical properties have been systematically explored. Our results show that both ferrites crystallize in tetragonal symmetry with structural lamination along c axis. Efficient photocatalytic hydrogen production has been achieved for both samples under full range and visible light illumination. Better performance is noticed for LaSrFeO 4 with apparent quantum efficiency approaches 0.31% and 0.19% under full range and visible light illumination, respectively. The p-type semiconductivity is verified by their cathodic photocurrent as well as negative Mott-Schottky slop during Photoelectrochemical measurement. The relative lower activity for La 2 SrFe 2 O 7 compared to LaSrFeO 4 is likely due to its higher defect concentration which facilitates charge recombination. Both compounds exhibit anisotropic phenomenon for charge migrations according to theoretical calculations. Their p-type semiconductivity, strong visible light absorption, chemical inertness and high abundance of constituent elements signify promising applications in the field of solar energy conversion and optoelectronics.

  4. Molecular semiconductors photoelectrical properties and solar cells

    CERN Document Server

    Rees, Ch

    1985-01-01

    During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds,...

  5. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  6. Advances in semiconductor photodetectors for scintillators

    International Nuclear Information System (INIS)

    Farrell, R.; Olschner, F.; Shah, K.; Squillante, M.R.

    1997-01-01

    Semiconductors photodetectors have long seemed an attractive alternative for scintillation detection, but only recently have semiconductor photodiodes been proven suitable for some room temperature applications. There are many applications, however for which the performance of standard silicon p-i-n photodiodes is not satisfactory. This article reviews recent progress in two different families of novel semiconductor photodetectors: (1) wide bandgap compound semiconductors and (2) silicon photodetectors with enhanced signal-to-noise ratio. The compounds discussed and compared in this paper are HgI 2 , PbI 2 , InI, TlBr, TlBr 1-x I x and HgBr 1-x I x . The paper will also examine unity gain silicon drift diodes and avalanche photodiodes with maximum room temperature gain greater than 10000. (orig.)

  7. Diffusion in semiconductors, other than silicon compilation

    CERN Document Server

    Fisher, David J

    2011-01-01

    Review from Book News Inc.: Summary reports of 337 experiments provide information on the diffusion of matter and heat in 31 materials used in semiconductors. Most of the compounds are based on cadmium, gallium, indium, lead, and zinc. Mercury telluride is included however, as is silicon carbide for some reason. Each article is thoroughly referenced to the authors and publication number, date, and page. The arrangement is alphabetical by semiconductor material. Indexes cover authors, hosts, and diffusants.

  8. Semiconductor radiation detector

    Science.gov (United States)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  9. Energy distribution in semiconductors

    International Nuclear Information System (INIS)

    Ance, C.

    1979-01-01

    For various semiconductors the dispersive energy Esub(d) defined in the Wemple-Didomenico model is connected with the covalent and ionic energies Esub(h) and C. A continuous curve of ionicity against the ratio of the two energies Esub(A) and Esub(B), connected to Esub(h) and C is reported. Afromowitz's model is applied to the ternary compounds Gasub(1-x)Alsub(x)Sb using optical decomposition. From these results the average energy gap Esub(g) is given by Esub(g) = D 0 M 0 sup((IB))/(epsilon 1 (0)-1) where M 0 sup((IB)) is the interband transition contribution to the optical moment M 0 . (author)

  10. Semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Marstein Erik Stensrud

    2003-07-01

    This thesis presents a study of two material systems containing semiconductor nanocrystals, namely porous silicon (PSi) films and germanium (Ge) nanocrystals embedded in silicon dioxide (SiO2) films. The PSi films were made by anodic etching of silicon (Si) substrates in an electrolyte containing hydrofluoric acid. The PSi films were doped with erbium (Er) using two different doping methods. electrochemical doping and doping by immersing the PSi films in a solution containing Er. The resulting Er concentration profiles were investigated using scanning electron microscopy (SEN1) combined with energy dispersive X-ray analysis (EDS). The main subject of the work on PSi presented in this thesis was investigating and comparing these two doping methods. Ge nanocrystals were made by implanting Ge ions into Si02 films that were subsequently annealed. However. nanocrystal formation occurred only for certain sets of processing parameters. The dependence of the microstructure of the Ge implanted Si02 films on the processing parameters were therefore investigated. A range of methods were employed for these investigations, including transmission electron microscopy (TEM) combined with EDS, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The observed structures, ranging from Ge nanocrystals to voids with diameters of several tens of nanometers and Ge rich Si02 films without any nanocrystals is described. A model explaining the void formation is also presented. For certain sets of processing parameters. An accumulation of Ge at the Si-Si02 interface was observed. The effect of this accumulation on the electrical properties of MOS structures made from Ge implanted SiO2 films was investigated using CV-measurements. (Author)

  11. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  12. Tuning and synthesis of semiconductor nanostructures by mechanical compression

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Li, Binsong

    2015-11-17

    A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.

  13. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  14. Solid spectroscopy: semiconductors

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da

    1983-01-01

    Photoemission as technique of study of the semiconductor electronic structure is shortly discussed. Homogeneous and heterogeneous semiconductors, where volume and surface electronic structure, core levels and O and H chemisorption in GaAs, Schottky barrier are treated, respectively. Amorphous semiconductors are also discussed. (L.C.) [pt

  15. Fabrication and application of amorphous semiconductor devices

    International Nuclear Information System (INIS)

    Kumurdjian, Pierre.

    1976-01-01

    This invention concerns the design and manufacture of elecric switching or memorisation components with amorphous semiconductors. As is known some compounds, particularly the chalcogenides, have a resistivity of the semiconductor type in the amorphous solid state. These materials are obtained by the high temperature homogeneisation of several single elements such as tellurium, arsenic, germanium and sulphur, followed by water or air quenching. In particular these compounds have useful switching and memorisation properties. In particular they have the characteristic of not suffering deterioration when placed in an environment subjected to nuclear radiations. In order to know more about the nature and properties of these amorphous semiconductors the French patent No. 71 28048 of 30 June 1971 may be consulted with advantage [fr

  16. Onset of itinerant ferromagnetism associated with semiconductor ...

    Indian Academy of Sciences (India)

    In this paper, the magnetic and transport properties of the TiNb1−CoSn solid solution compounds with half Heusler cubic MgAgAs-type structure have been studied. This work shows the onset of ferromagnetism associated with a semiconductor to metal transition. The transition occurs directly from ferromagnetic metal to ...

  17. Magnetic properties of diluted magnetic semiconductors

    NARCIS (Netherlands)

    Jonge, de W.J.M.; Swagten, H.J.M.

    1991-01-01

    A review will be given of the magnetic characteristics of diluted magnetic semiconductors and the relation with the driving exchange mechanisms. II–VI as well as IV–VI compounds will be considered. The relevance of the long-range interaction and the role of the carrier concentration will be

  18. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  19. Carrier concentration induced ferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  20. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  1. Fiscal 1974 Sunshine Project result report. R and D on photovoltaic power generation system (R and D on 2-6 group compound semiconductor solar cells); 1974 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. 2-6 zoku kagobutsu handotai taiyo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-31

    This report summarizes the fiscal 1974 research result on 2- 6 group compound semiconductor solar cells. To obtain a probability of the technology for producing photovoltaic power generation systems at a cost less than 1/100 of those by current technology, this research aims at establishment of the pollution-free production technology of the titled solar cells, and development of an innovative photovoltaic power generation system using such solar cells. The research is composed of (1) study on deterioration mechanism, (2) measures against pollution, and (3) basic study on the production system of such semiconductors. In the 1st research, the analysis result showed that deterioration under solar radiation or by short circuit is derived from an increase in resistance around a positive electrode and a decrease around a junction caused by change in Cu{sub 2}S composition due to migration of Cu ions in a Cu{sub 2}S layer by photo current. In the 2nd research, study was made on preventive technology of Cd pollution. In the 3rd research, basic study was made on the production systems of semiconductors such as sintering, chemical separating and vapor-phase growth for cost reduction. (NEDO)

  2. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  3. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  4. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  5. Spin physics in semiconductors

    CERN Document Server

    Dyakonov, Mikhail I

    2008-01-01

    This book describes beautiful optical and transport phenomena related to the electron and nuclear spins in semiconductors with emphasis on a clear presentation of the physics involved. Recent results on quantum wells and quantum dots are reviewed. The book is intended for students and researchers in the fields of semiconductor physics and nanoelectronics.

  6. FY 1977 Annual report on Sunshine Project results. Research and development of photovoltaic power generation systems. (Research and development of solar cells of II-VI group compound semiconductor); 1977 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. II-VI zoku kagobutsu handotai taiyo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at establishment of techniques for pollution-free production of II-VI group compound semiconductor type solar cells. The research items are (1) measures against aging, (2) methods for production of II-VI group compound semiconductors and for forming their joints, and (3) method for assembling solar cell devices.For the item (1), the aging tests are conducted for sintered film type CdS/CdTe solar cells. The C electrode is found to be less aged than the others. The aging tests for the CdS/Cu{sub 2}S cells indicate that it takes 10 years or longer for the performance to be halved under commercial conditions. For the item (2), the sintered film type CdS/CdTe solar cells can be produced by a mass-producible process of screen printing and belt furnace. This production method is promising for producing the solar cells at low cost. For the item (3), it is found that series resistance of the solar cell devices increases as the assembly area increases, resulting in decreased conversion efficiency. The divided structure of the CdTe layer is desired to avoid the above problem. Dividing each unit device increases intrinsic conversion efficiency, but decreases effective power generation area ratio. It is therefore necessary to improve printing precision. (NEDO)

  7. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...

  8. Organic semiconductor crystals.

    Science.gov (United States)

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  9. Defects in semiconductors

    International Nuclear Information System (INIS)

    Pimentel, C.A.F.

    1983-01-01

    Some problems openned in the study of defects in semiconductors are presented. In particular, a review is made of the more important problems in Si monocrystals of basic and technological interest: microdefects and the presence of oxigen and carbon. The techniques usually utilized in the semiconductor material characterization are emphatized according its potentialities. Some applications of x-ray techniques in the epitaxial shell characterization in heterostructures, importants in electronic optics, are shown. The increase in the efficiency of these defect analysis methods in semiconductor materials with the use of synchrotron x-ray sources is shown. (L.C.) [pt

  10. Introduction to Semiconductor Devices

    Science.gov (United States)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  11. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  12. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  13. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  14. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  15. Structure-property relationship of compounds with pyrite and shandite structure with metal-semiconductor transition in InSnCo{sub 3}S{sub 2}; Struktur-Eigenschafts-Beziehungen von Verbindungen mit Pyrit- und Shanditstruktur mit Metall-Halbleiter-Uebergang in InSnCo{sub 3}S{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rothballer, Jan

    2014-12-23

    The aim of this Ph.D thesis is to correlate theoretical calculations and experimental data to understand the building and stabilities of structures to influence the properties due to applications. Properties of compounds are defined by their electronic structures. The electronic structure can be influenced by substitution of elements or even doping. As a matter of fact, electronic design is a basic principle in materials research. It can help to change or switch the electric conductivity or the magnetism of a starting compound. I analyzed compounds with pyrite-type structure and Sn{sub 2}Co{sub 3}S{sub 2} and related compounds to these. Its electronic as well as its crystallographic structure is highly flexible and Sn{sub 2}Co{sub 3}S{sub 2} is a half metallic ferromagnet. By substituting In to Sn one gets a semiconductor due to indium-tin ordering. By doping sulfur against selenium, the magnetism is highly influenced. To verify and to understand these effects I did magnetic, XRD, neutron and conductivity measurements as well as DFT calculations in direct and reciprocal space.

  16. Proceedings of wide band gap semiconductors

    International Nuclear Information System (INIS)

    Moustakas, T.D.; Pankove, J.I.; Hamakawa, Y.

    1992-01-01

    This book contains the proceedings of wide band gap semiconductors. Wide band gap semiconductors are under intense study because of their potential applications in photonic devices in the visible and ultraviolet part of the electromagnetic spectrum, and devices for high temperature, high frequency and high power electronics. Additionally, due to their unique mechanical, thermal, optical, chemical, and electronic properties many wide band gap semiconductors are anticipated to find applications in thermoelectric, electrooptic, piezoelectric and acoustooptic devices as well as protective coatings, hard coatings and heat sinks. Material systems covered in this symposium include diamond, II-VI compounds, III-V nitrides, silicon carbide, boron compounds, amorphous and microcrystalline semiconductors, chalcopyrites, oxides and halides. The various papers addressed recent experimental and theoretical developments. They covered issues related to crystal growth (bulk and thin films), structure and microstructure, defects, doping, optoelectronic properties and device applications. A theoretical session was dedicated to identifying common themes in the heteroepitaxy and the role of defects in doping, compensation and phase stability of this unique class of materials. Important experimental milestones included the demonstrations of bright blue injection luminescence at room temperatures from junctions based on III-V nitrides and a similar result from multiple quantum wells in a ZnSe double heterojunction at liquid nitrogen temperatures

  17. Biggest semiconductor installed

    CERN Multimedia

    2008-01-01

    Scientists and technicians at the European Laboratory for Particle Physics, commonly known by its French acronym CERN (Centre Europen pour la Recherche Nuclaire), have completed the installation of the largest semiconductor silicon detector.

  18. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  19. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J

    2005-01-01

    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  20. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  1. Market survey of semiconductors

    International Nuclear Information System (INIS)

    Mackintosh, I.M.; Diegel, D.; Brown, A.; Brinker, C.S. den

    1977-06-01

    Examination of technology and product trends over the range of current and future products in integrated circuits and optoelectronic displays. Analysis and forecast of major economic influences that affect the production costs of integrated circuits and optoelectronic displays. Forecast of the applications and markets for integrated circuits up to 1985 in West Europe, the USA and Japan. Historic development of the semiconductor industry and the prevailing tendencies - factors which influence success in the semiconductor industry. (orig.) [de

  2. Electronic properties of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Einevoll, G.T.

    1991-02-01

    Ten papers on the electronic properties of semiconductors and semiconductor heterostructures constitute the backbone of this thesis. Four papers address the form and validity of the single-band effective mass approximation for semiconductor heterostructures. In four other papers properties of acceptor states in bulk semiconductors and semiconductor heterostructures are studied using the novel effective bond-orbital model. The last two papers deal with localized excitions. 122 refs

  3. Wave mechanics applied to semiconductor heterostructures

    International Nuclear Information System (INIS)

    Bastard, G.

    1990-01-01

    This book examines the basic electronic and optical properties of two dimensional semiconductor heterostructures based on III-V and II-VI compounds. The book explores various consequences of one-dimensional size-quantization on the most basic physical properties of heterolayers. Beginning with basic quantum mechanical properties of idealized quantum wells and superlattices, the book discusses the occurrence of bound states when the heterostructure is imperfect or when it is shone with near bandgap light

  4. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  5. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R

    1961-01-01

    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  6. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  7. Selection of efficient etchants for nondestructive treatment of semiconductors

    International Nuclear Information System (INIS)

    Tomashik, V.N.; Fomin, A.V.; Tomashik, Z.F.

    1996-01-01

    The scheme for studying etching processes of semiconductor materials and developing new etchants for different semiconductors is proposed. The scheme includes the experiment mathematical planning, computerized physicochemical modeling, kinetic studies, investigation of surface layers, formed by etching. Such on approach makes it possible to optimize the etchant composition in every concrete cage. The scheme is tested in the course of developing optimal methodologies of preepitaxial treatment and selection of etchants composition for semiconductor compounds of the A 1 B 6 and A 3 B 5 type. 13 refs., 4 figs

  8. Magnetic susceptibility of semiconductor melts

    International Nuclear Information System (INIS)

    Kutvitskij, V.A.; Shurygin, P.M.

    1975-01-01

    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  9. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  10. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    enhanced in quantum confined lower-dimensional systems, where exciton and biexciton effects dominate the spectra even at room temperature. The coherent dynamics of excitons are at modest densities well described by the optical Bloch equations and a number of the dynamical effects known from atomic......Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  11. Hydrogen in semiconductors II

    CERN Document Server

    Nickel, Norbert H; Weber, Eicke R; Nickel, Norbert H

    1999-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  12. Photoelectronic properties of semiconductors

    CERN Document Server

    Bube, Richard H

    1992-01-01

    The interaction between light and electrons in semiconductors forms the basis for many interesting and practically significant properties. This book examines the fundamental physics underlying this rich complexity of photoelectronic properties of semiconductors, and will familiarise the reader with the relatively simple models that are useful in describing these fundamentals. The basic physics is also illustrated with typical recent examples of experimental data and observations. Following introductory material on the basic concepts, the book moves on to consider a wide range of phenomena, including photoconductivity, recombination effects, photoelectronic methods of defect analysis, photoeffects at grain boundaries, amorphous semiconductors, photovoltaic effects and photoeffects in quantum wells and superlattices. The author is Professor of Materials Science and Electrical Engineering at Stanford University, and has taught this material for many years. He is an experienced author, his earlier books having fo...

  13. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati

    2012-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  14. Superconductivity in doped semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bustarret, E., E-mail: Etienne.bustarret@neel.cnrs.fr

    2015-07-15

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  15. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B

    1972-01-01

    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  16. Introductory semiconductor device physics

    CERN Document Server

    Parker, Greg

    2004-01-01

    ATOMS AND BONDINGThe Periodic TableIonic BondingCovalent BondingMetallic bondingvan der Waals BondingStart a DatabaseENERGY BANDS AND EFFECTIVE MASSSemiconductors, Insulators and MetalsSemiconductorsInsulatorsMetalsThe Concept of Effective MassCARRIER CONCENTRATIONS IN SEMICONDUCTORSDonors and AcceptorsFermi-LevelCarrier Concentration EquationsDonors and Acceptors Both PresentCONDUCTION IN SEMICONDUCTORSCarrier DriftCarrier MobilitySaturated Drift VelocityMobility Variation with TemperatureA Derivation of Ohm's LawDrift Current EquationsSemiconductor Band Diagrams with an Electric Field Presen

  17. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  18. Producing p-type conductivity in self-compensating semiconductor material

    International Nuclear Information System (INIS)

    Vechten, J.A. van; Woodall, J.M.

    1981-01-01

    This relates to compound type semiconductor materials that exhibit self-compensated n-type conductivity. The process described imparts p-type conductivity to a body of normally n-conductivity self-compensated compound semiconductor material by bombarding it with charged particles, either electrons, protons or ions. Other possible steps include introducing an acceptor impurity and applying a coating onto the crystal body. This technique will allow new semiconductor structures to be made. For example, there are some compound semiconductor materials that exhibit n-conductivity only that have energy gap widths that would permit electrical to light conversion at frequency and colours not readily achieved in semiconductor devices. (U.K.)

  19. Physical principles of semiconductor detectors

    International Nuclear Information System (INIS)

    Micek, S.L.

    1979-01-01

    The general properties of semiconductors with respect to the possibilities of their use as the ionization radiation detectors are discussed. Some chosen types of semiconductor junctions and their characteristics are briefly presented. There are also discussed the physical phenomena connected with the formation of barriers in various types of semiconductor counters. Finally, the basic properties of three main types of semiconductor detectors are given. (author)

  20. Metal semiconductor contacts and devices

    CERN Document Server

    Cohen, Simon S; Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 13: Metal-Semiconductor Contacts and Devices presents the physics, technology, and applications of metal-semiconductor barriers in digital integrated circuits. The emphasis is placed on the interplay among the theory, processing, and characterization techniques in the development of practical metal-semiconductor contacts and devices.This volume contains chapters that are devoted to the discussion of the physics of metal-semiconductor interfaces and its basic phenomena; fabrication procedures; and interface characterization techniques, particularl

  1. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  2. Depletion field focusing in semiconductors

    NARCIS (Netherlands)

    Prins, M.W.J.; Gelder, Van A.P.

    1996-01-01

    We calculate the three-dimensional depletion field profile in a semiconductor, for a planar semiconductor material with a spatially varying potential upon the surface, and for a tip-shaped semiconductor with a constant surface potential. The nonuniform electric field gives rise to focusing or

  3. Nonlinear Elasticity of Doped Semiconductors

    Science.gov (United States)

    2017-02-01

    AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  4. FY 1999 report on the results of the development of high efficiency lightning conversion compound semiconductor. Plan on lighting for the 21st century; Kokoritsu denko henkan kagobutsu handotai kaihatsu seika hokokusho. 21 seiki no akari keikaku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing the white light-emitting diode (LEDs) lightening as 'a plan on lighting for the 21st century,' the results of the following R and D were obtained: 1) basic study of light-emitting mechanism; 2) improvement of epitaxial growth method of blue/ultraviolet LED; 3) substrate for homoepitaxial growth; 4) basic characteristics of phosphor-based light source for white LED lighting. In 1), light emitting mechanisms responsible for high-quantum efficiency of InGaN mixed semiconductors and InGaN/GaN quantum wells were studied by means of temperature-dependent photoluminescence (PL), time-resolved PL and selective-excitation PL spectroscopy. In 2), precise lapping and polishing procedures of sapphire and GaN crystalline substrates for epitaxial growth using metalorganic chemical-vapor-deposition and MBE showed favorable surface characteristics of substrates. In 3), study was made on growth conditions and growth mechanism of GaN bulk single crystals using the nitrogen pressure-controlled solution growth method. A size of 12mm diameter of GaN single crystal showing good crystallinity and PL characteristics were obtained. In 4), excitation, absorption and PL spectra of rare-earth doped Y{sub 2}O{sub 2}S red phosphor were studied in detail. (NEDO)

  5. Semi-conductor rectifiers

    International Nuclear Information System (INIS)

    1981-01-01

    A method is described for treating a semiconductor rectifier, comprising: heating the rectifier to a temperature in the range of 100 0 C to 500 0 C, irradiating the rectifier while maintaining its temperature within the said range, and then annealing the rectifier at a temperature of between 280 0 C and 350 0 C for between two and ten hours. (author)

  6. Semiconductor detector physics

    International Nuclear Information System (INIS)

    Equer, B.

    1987-01-01

    Comprehension of semiconductor detectors follows comprehension of some elements of solid state physics. They are recalled here, limited to the necessary physical principles, that is to say the conductivity. P-n and MIS junctions are discussed in view of their use in detection. Material and structure (MOS, p-n, multilayer, ..) are also reviewed [fr

  7. Interfacial trap states in junctions of molecular semiconductors

    International Nuclear Information System (INIS)

    Schlettwein, D.; Oekermann, T.; Jaeger, N.; Armstrong, N.R.; Woehrle, D.

    2002-01-01

    Interfacial states that were established in contacts of molecular semiconductors with aqueous electrolytes or in contacts with another organic semiconductor as a solid film were analyzed by photoelectrochemical experiments and by photoelectron spectroscopy. A crucial role of such states was indicated in the interfacial charge transfer and recombination kinetics of light-induced charge carriers and also in the energetic alignment in the solid contacts. Unsubstituted zinc-phthalocyanine (PcZn) served as model compound. The role of chemical interactions in the establishment of these interfacial states was investigated by use of different reaction partners, i.e., different redox couples in the electrolyte contacts and molecular semiconductors of different ionization potential in the solid contacts. Implications of these results for the use of organic semiconductor thin films in devices of molecular electronics and of dye molecules in dye-sensitized solar cells were also discussed

  8. Catalyzed reactions at illuminated semiconductor interfaces

    International Nuclear Information System (INIS)

    Wrighton, M.S.

    1984-01-01

    Many desirable minority carrier chemical redox processes are too slow to compete with e - -h + recombination at illuminated semiconductor/liquid electrolyte junction interfaces. Reductions of H 2 O to H 2 or CO 2 to compounds having C--H bonds are too slow to compete with e - -h + recombination at illuminated p-type semiconductors, for example. Approaches to improve the rate of the desired processes involving surface modification techniques are described. Photoanodes are plagued by the additional problem of oxidative decomposition under illumination with > or =E/sub g/ illumination. The photo-oxidation of Cl - , Br - , and H 2 O is considered to illustrate the concepts involved. Proof of concept experiments establish that catalysis can be effective in dramatically improving direct solar fuel production; efficiencies of >10% have been demonstrated

  9. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  10. Basic semiconductor physics

    CERN Document Server

    Hamaguchi, Chihiro

    2017-01-01

    This book presents a detailed description of basic semiconductor physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. Four different methods of energy band calculations in the full band region are explained: local empirical pseudopotential, non-local pseudopotential, KP perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for analysis of transport properties are discussed. Further, the book examines experiments and theoretical analyses of cyclotron resonance in detail. Optical and transport properties, magneto-transport, two-dimensional electron gas transport (HEMT and MOSFET) and quantum transport are reviewed, while optical transition, electron-phonon interaction and electron mobility are also addressed. Energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. The...

  11. Semiconductor physics an introduction

    CERN Document Server

    Seeger, Karlheinz

    1999-01-01

    Semiconductor Physics - An Introduction - is suitable for the senior undergraduate or new graduate student majoring in electrical engineering or physics. It will also be useful to solid-state scientists and device engineers involved in semiconductor design and technology. The text provides a lucid account of charge transport, energy transport and optical processes, and a detailed description of many devices. It includes sections on superlattices and quantum well structures, the effects of deep-level impurities on transport, the quantum Hall effect and the calculation of the influence of a magnetic field on the carrier distribution function. This 6th edition has been revised and corrected, and new sections have been added to different chapters.

  12. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  13. Optically coupled semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Kumagaya, Naoki

    1988-11-18

    This invention concerns an optically coupled semiconductor device using the light as input signal and a MOS transistor for the output side in order to control on-off of the output side by the input signal which is insulated from the output. Concerning this sort of element, when a MOS transistor and a load resistance are planned to be accumulated on the same chip, a resistor and control of impurity concentration of the channel, etc. become necessary despite that the only formation of a simple P-N junction is enough, for a solar cell, hence cost reduction thereof cannot be done. In order to remove this defect, this invention offers an optically coupled semiconductor device featuring that two solar cells are connected in reverse parallel between the gate sources of the output MOS transistors and an operational light emitting element is individually set facing a respective solar cell. 4 figs.

  14. Doping of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Luessem, B.; Riede, M.; Leo, K. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2013-01-15

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Images through semiconductors

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Improved image processing techniques are constantly being developed for television and for scanners using X-rays or other radiation for industrial or medical applications, etc. As Erik Heijne of CERN explains here, particle physics too has its own special requirements for image processing. The increasing use of semiconductor techniques for handling measurements down to the level of a few microns provides another example of the close interplay between scientific research and technological development. (orig.).

  16. Muonium states in semiconductors

    International Nuclear Information System (INIS)

    Patterson, B.D.

    1987-01-01

    There is a brief summary of what is known about the muonium states isotropic, anisotropic and diamagnetic in diamond and zincblende semiconductors. The report deals with muonium spectroscopy, including the formation probabilities, hyperfine parameters and electronic g-factors of the states. The dynamics of the states is treated including a discussion of the transition from isotropic Mu to anisotropic Mu in diamond, temperature-dependent linewidthes in silicon and germanium and effects of daping and radiation damage

  17. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN

    1991-01-01

    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  18. Doping of organic semiconductors

    International Nuclear Information System (INIS)

    Luessem, B.; Riede, M.; Leo, K.

    2013-01-01

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  20. Survey of semiconductor physics

    CERN Document Server

    Böer, Karl W

    1992-01-01

    Any book that covers a large variety of subjects and is written by one author lacks by necessity the depth provided by an expert in his or her own field of specialization. This book is no exception. It has been written with the encouragement of my students and colleagues, who felt that an extensive card file I had accumulated over the years of teaching solid state and semiconductor physics would be helpful to more than just a few of us. This file, updated from time to time, contained lecture notes and other entries that were useful in my research and permitted me to give to my students a broader spectrum of information than is available in typical textbooks. When assembling this material into a book, I divided the top­ ics into material dealing with the homogeneous semiconductor, the subject of the previously published Volume 1, and the inhomoge­ neous semiconductor, the subject of this Volume 2. In order to keep the book to a manageable size, sections of tutorial character which can be used as text for a g...

  1. Semiconductor Ion Implanters

    International Nuclear Information System (INIS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-01-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  2. The Physics of Semiconductors

    Science.gov (United States)

    Brennan, Kevin F.

    1999-02-01

    Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.

  3. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A

    2002-01-01

    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  4. Method to induce a conductivity type in a semiconductor

    International Nuclear Information System (INIS)

    Aboaf, J.A.; Sedgwick, T.O.

    1977-01-01

    The invention deals with a method in which one can produce a region of a desired type of conductivity in a semiconductor as is required for, e.g., field effect transistors. A metal oxide layer combination consisting of several metal oxides is thus deposited on the semiconductor. This is carried out according to the invention in a non-oxidizing atmosphere at temperatures at which the metal oxides do not diffuse into the semiconductor. The sign and degree of the induced conductivity type is adjusted by dosed depositing of the individual metal oxides related to one another. The gaseous metal oxides due to heating, mixed with a non-oxidizing gas are added in compounds to the semiconductor heated to depositing temperature. These compounds decompose at the depositing temperature into the metal oxide and a gaseous residual component. The semiconductor consists of silicon, and nitrogen is used as carrier gas; when depositing aluminium oxide, gaseous aluminium isopropoxide is added; when depositing silicon dioxide, gaseous tetra-ethyl orthosilicate. (ORU) [de

  5. Semiconductors: Still a Wide Open Frontier for Scientists/Engineers

    Science.gov (United States)

    Seiler, David G.

    1997-10-01

    A 1995 Business Week article described several features of the explosive use of semiconductor chips today: ``Booming'' personal computer markets are driving high demand for microprocessors and memory chips; (2) New information superhighway markets will `ignite' sales of multimedia and communication chips; and (3) Demand for digital-signal-processing and data-compression chips, which speed up video and graphics, is `red hot.' A Washington Post article by Stan Hinden said that technology is creating an unstoppable demand for electronic elements. This ``digital pervasiveness'' means that a semiconductor chip is going into almost every high-tech product that people buy - cars, televisions, video recorders, telephones, radios, alarm clocks, coffee pots, etc. ``Semiconductors are everywhere.'' Silicon and compound semiconductors are absolutely essential and are pervasive enablers for DoD operations and systems. DoD's Critical Technologies Plan of 1991 says that ``Semiconductor materials and microelectronics are critically important and appropriately lead the list of critical defense technologies.'' These trends continue unabated. This talk describes some of the frontiers of semiconductors today and shows how scientists and engineers can effectively contribute to its advancement. Cooperative, multidisciplinary efforts are increasing. Specific examples will be given for scanning capacitance microscopy and thin-film metrology.

  6. Novel routes to nanodispersed semiconductors

    International Nuclear Information System (INIS)

    Green, M.A.

    1999-01-01

    Novel synthetic routes to nanodispersed compound semiconductors using organometallic precursors have been developed. The quantum dots have been studied by optical absorption spectroscopy, photoluminescence spectroscopy, transmission electron microscopy, high resolution transmission electron microscopy, infra red spectroscopy and nuclear magnetic resonance. Polar Lewis base solvents such as tri-n-octylphosphine oxide and 4-ethylpyridine were utilized as both passivating agent and dispersing medium. In the the search for new solvent systems and passivating agents, and investigation was also made into the use of dimethyl sulfoxide as a reaction solvent and capping agent in the preparation of nanocrystalline CdS. Existing routes using metal alkyls and silylated precursors in hot TOPO were improved by substituting the metal alkyl with an metal alkyl adduct. Cadmium monothiocarbamate and a related precursor, cadmium thioacetate were investigated as possible single source precursors to nanometer sized CdS. The thermolysis of diorganophosphides in the Lewis bases coordinating solvent (4-ethylpridine) has been investigated, including studies of decompositon mechanisms, and quantum dots of Cd 3 P 2 , Zn 3 P 2 , Inp and GaP have been prepared. The synthesis of InAs using the metal chloride and an aminoarsenide precursor in 4-ethylpridine has also been developed. A simple method for the organization of III-V materials into glass like aggregates has been described. (author)

  7. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  8. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for development of extra-high efficiency solar cells (fundamental research on extra-high efficiency III-V compound semiconductor tandem solar cells); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Chokokoritsu taiyo denchi no gijutsu kaihatsu no tame no kaiseki hyoka (chokokoritsu III-V zoku kagobutsu taiyo denchi gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, T; Kawanami, H; Sakata, I; Nagai, K; Matsumoto, K; Miki, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for development of extra-high efficiency III-V compound semiconductor tandem solar cells. Heteroepitaxial structures of compound semiconductors, such as GaAs, on silicon substrates are analyzed and evaluated by EXAFS, Raman and RHEED for the initial stage of the film growth and heterointerfaces. The device capable of in-situ observation of the growing surface structures during the period of heteroepitaxial film growth is introduced, to investigate the effects of rise-up and initial growth conditions on defects. The effects of atomic hydrogen on growth of a GaAs film on a silicon substrate are investigated from photoluminescence and solar cell characteristics, to confirm the effects of reducing defects. Heteroepitaxial growth of InGaP, which has the optimum band width for forming multi-junction silicon solar cells, on a silicon substrate is investigated, to find that an interfacial buffer layer is necessary to form a good film. 2 figs.

  9. Fiscal 1976 Sunshine Project result report. R and D on photovoltaic power generation system (R and D on 2-6 group compound semiconductor solar cells); 1976 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. 2-6 zoku kagobutsu handotai taiyo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-31

    This report describes the fiscal 1976 research result on 2-6 group compound semiconductor solar cells for photovoltaic power generation systems. The research aims at the system less than 1/100 in cost. Vapor deposition resulted in failure to obtain high-efficiency cells. Vapor-phase growth revealed Cd-Te single-crystal solar cell is promising, however, resulted in failure to obtain high-efficiency thin film elements. Both chemical deposition and sintering succeeded in mass production of prototype high-efficiency elements equal in performance. However, since chemically deposited CdS film is too thin having higher serial resistance, it requires In{sub 2}O{sub 3} auxiliary transmissive electrodes on glass substrates. Since CdTe film and CdS film also require completely different vapor deposition processes in hetero- junction, chemical deposition is more disadvantageous in cost than sintering. CdTe thin film fabricated by screen printing/sintering is most promising. Since Cd is harmful to human bodies, study was made on pollution preventive measures in its production or use stage, and accidents or fires, obtaining some results. (NEDO)

  10. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for thin substrate polycrystalline solar cells (compound semiconductors and their fabrication technologies); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Usumaku taiyo denchi jitsuyoka no tame no kaiseki hyoka (kagobutsu taiyo denchi zairyo oyobi seisaku gijutsu no kaiseki hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    Oyagi, H; Okada, Y; Yamaguchi, H; Shiota, T; Kuroda, S; Igarashi, O; Tanino, H; Makita, Y; Yamada, A; Kimura, S; Ohara, A; Niki, S; Shibata, H; Fons, P [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for analysis and evaluation for thin-film compound semiconductor solar cells. The study on epitaxial growth and optical properties of the thin films of CuInSe2 and CuGaSe2 evaluates the thin epitaxial films grown under various conditions, showing morphology of the defects at the interface of heteroepitaxial growth. These results are used to set the growth conditions under which a thin film of high luminescence by exciter recombination is produced. The study also gives information of luminescence transition in the vicinity of the band ends and of energy level between the bands. The study on structural analysis of the epitaxially grown thin films of CuInSe2 investigates dependence of lattice constants of the MBE-grown CIS layer on film thickness by the X-ray diffractometry based on the bond method. The study on epitaxial growth by the Se(CH3)2-halogen transfer method tests epitaxial growth of the single-crystalline Mo on a substrate of single-crystalline sapphire. 5 figs.

  11. FY 1993 report on the results of the technology development for the commercialization of the photovoltaic power system. Development of the solar cell use compound semiconductor production system - development of flight use testing machine; 1993 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchiyo kagobutsu handotai seizo sochi kaihatsu (hikoyo shikenki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    For a new breakthrough of the technology of the photovoltaic power generation, the paper aims at developing a combined heating furnace, a focal heating furnace and a single heating furnace which are necessary to produce crystals of the substrate of compound semiconductors for high quality solar cell under the microgravity environment obtained in the space, and also the systems related to the functions indispensable to the operation of the above-mentioned furnaces. This report is Vol. 2/3, and described the mission operation in Chapter 7, repair of PFM battery in Chapter 8, mechanical system ground support equipment and maintenance/inspection in Chapter 9, and electrical system ground support equipment and maintenance/repair in Chapter 10. In Chapter 7, described were the arrangement of operation of electrical furnace, operation manual of electrical furnace, procedures for operation, database, training, rehearsal plan, etc. In Chapter 8, of the battery repair plan, the paper carried out the repair design/repair work of battery, and described the state where a test to accept the test specifications is possible. In Chapter 9, indicated were the documents for application and reference of the maintenance/inspection of MGSE. In Chapter 10, the paper reported on the repairs for adaptation for the maintenance and lunching work of EGSE. (NEDO)

  12. FY 1996 Report on the results of development of photovoltaic power generation system commercialization technologies. Development of device for producing compound semiconductors for photovoltaic cells (Development of flying tester); 1996 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchiyo kagobutsu handotai seizo sochi kaihatsu - hikoyo shikenki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The compound semiconductor production process is tested under a microgravity by the space experiment/observation free flier (SFU), to reduce the photovoltaic power generation cost. Described herein are the FY 1996 results. The device is confirmed to work as planned by the full-scale test conducted in FY 1995, when it stood on the orbit and was recovered by the space shuttle STS-72 January, 1996. The recovered SFU-carried devices, including the electrical furnace and related subsystems, were found to normally function, and it was concluded that they could be evaluated and analyzed after the flight. The comprehensive evaluation and analysis of their electrical, mechanical, thermal functions have confirmed that they functioned and showed performance as planned, demonstrating validity of the designs and production procedures. The test samples were taken out of the recovered combined furnace, focus furnace and single-heat furnace for the space environment utilization tests. The other samples had much more uniform compositional distributions than those produced on the ground. (NEDO)

  13. Development of semiconductor electronics

    International Nuclear Information System (INIS)

    Bardeen, John.

    1977-01-01

    In 1931, Wilson applied Block's theory about the energy bands for the motion of electrons in a crystal lattice to semiconductors and showed that conduction can take place in two different ways, by electrons and by holes. Not long afterwards Frenkel showed that these carriers can flow by diffusion in a concentration gradient as well as under the influence of an electric field and wrote down equations for the current flow. The third major contribution, in the late 1930's was the explanation of rectification at a metalsemiconductor contact by Mott and more completely by Schottky. In late 1947 the first transistor of the point contact type was invented by Brattin, Shockley and Bardeen. Then after single crystals of Ge were grown, the junction transistor was developed by the same group. The first silicon transistors appeared in 1954. Then an important step was discovery of the planar transistor by Hoenri in 1960 which led to development of integrated circuits by 1962. Many transistors are produced by batch processing on a slice of silicon. Then in 1965 Mos (Metal-Oxide Semiconductor) transistor and in 1968 LSI (Large Scale Intergration circuits) were developed. Aside from electronic circuits, there are many other applications of semiconductors, including junction power rectifiers, junction luminescence (including lasers), solar batteries, radiation detectors, microwave oscillators and charged-coupled devices for computer memories and devices. One of the latest developments is a microprocessor with thousands of transistors and associated circuitry on a single small chip of silicon. It can be programmed to provide a variety of circuit functions, thus it is not necessary to go through the great expense of LSI's for each desired function, but to use standard microprocessors and program to do the job

  14. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  15. Basic properties of semiconductors

    CERN Document Server

    Landsberg, PT

    2013-01-01

    Since Volume 1 was published in 1982, the centres of interest in the basic physics of semiconductors have shifted. Volume 1 was called Band Theory and Transport Properties in the first edition, but the subject has broadened to such an extent that Basic Properties is now a more suitable title. Seven chapters have been rewritten by the original authors. However, twelve chapters are essentially new, with the bulk of this work being devoted to important current topics which give this volume an almost encyclopaedic form. The first three chapters discuss various aspects of modern band theory and the

  16. Electrowetting on semiconductors

    Science.gov (United States)

    Palma, Cesar; Deegan, Robert

    2015-01-01

    Applying a voltage difference between a conductor and a sessile droplet sitting on a thin dielectric film separating it from the conductor will cause the drop to spread. When the conductor is a good metal, the change of the drop's contact angle due to the voltage is given by the Young-Lippmann (YL) equation. Here, we report experiments with lightly doped, single crystal silicon as the conductive electrode. We derive a modified YL equation that includes effects due to the semiconductor and contact line pinning. We show that light induces a non-reversible wetting transition, and that our model agrees well with our experimental results.

  17. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  18. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  19. Molecular coatings of nitride semiconductors for optoelectronics, electronics, and solar energy harvesting

    KAUST Repository

    Ng, Tien Khee; Zhao, Chao; Priante, Davide; Ooi, Boon S.; Hussein, Mohamed Ebaid Abdrabou

    2018-01-01

    Gallium nitride based semiconductors are provided having one or more passivated surfaces. The surfaces can have a plurality of thiol compounds attached thereto for enhancement of optoelectronic properties and/or solar water splitting properties. The surfaces can also include wherein the surface has been treated with chemical solution for native oxide removal and / or wherein the surface has attached thereto a plurality of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof to create a treated surface for enhancement of optoelectronic properties and / or solar water splitting properties. Methods of making the gallium nitride based semiconductors are also provided. Methods can include cleaning a native surface of a gallium nitride semiconductor to produce a cleaned surface, etching the cleaned surface to remove oxide layers on the surface, and applying single or multiple coatings of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof attached to the surface.

  20. Molecular coatings of nitride semiconductors for optoelectronics, electronics, and solar energy harvesting

    KAUST Repository

    Ng, Tien Khee

    2018-02-01

    Gallium nitride based semiconductors are provided having one or more passivated surfaces. The surfaces can have a plurality of thiol compounds attached thereto for enhancement of optoelectronic properties and/or solar water splitting properties. The surfaces can also include wherein the surface has been treated with chemical solution for native oxide removal and / or wherein the surface has attached thereto a plurality of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof to create a treated surface for enhancement of optoelectronic properties and / or solar water splitting properties. Methods of making the gallium nitride based semiconductors are also provided. Methods can include cleaning a native surface of a gallium nitride semiconductor to produce a cleaned surface, etching the cleaned surface to remove oxide layers on the surface, and applying single or multiple coatings of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof attached to the surface.

  1. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  2. Single filament semiconductor laser

    International Nuclear Information System (INIS)

    Botez, D.

    1980-01-01

    A semiconductor laser comprising: a body of semiconductor material including a substrate having a surface and a pair of spaced, substantially parallel dove-tailed shaped grooves in said surface, said body having a pair of end surfaces between which said grooves extend, said end surfaces being reflective to light with at least one of said end surfaces being partially transparent to light a first epitaxial layer over said surface of the substrate and the surfaces of the grooves, said first epitaxial layer having a flat surface portion over the portion of the substrate surface between the grooves, a thin second epitaxial layer over said first epitaxial layer, a third epitaxial layer over said second epitaxial layer, said first and third epitaxial layers being of opposite conductivity types and the second epitaxial layer being the active recombination region of the laser with the light being generated therein in the vicinity of the portion which is over the flat surface portion of the first epitaxial layer, and a pair of contacts on said body with one contact being over said third epitaxial body and the other being on said substrate

  3. Electronic structure of semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F

    1983-02-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.

  4. Quantum transport in semiconductor nanowires

    NARCIS (Netherlands)

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS)

  5. Semiconductor photocatalysis principles and applications

    CERN Document Server

    Kisch, Horst

    2014-01-01

    Focusing on the basic principles of semiconductor photocatalysis, this book also gives a brief introduction to photochemistry, photoelectrochemistry, and homogeneous photocatalysis. In addition, the author - one of the leading authorities in the field - presents important environmental and practical aspects. A valuable, one-stop source for all chemists, material scientists, and physicists working in this area, as well as novice researchers entering semiconductor photocatalysis.

  6. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  7. Semiconductor materials and their properties

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre; Reinders, Angele; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Semiconductor materials are the basic materials which are used in photovoltaic (PV) devices. This chapter introduces solid-state physics and semiconductor properties that are relevant to photovoltaics without spending too much time on unnecessary information. Usually atoms in the group of

  8. Optical coherent control in semiconductors

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher

    2001-01-01

    of quantum control including the recent applications to semiconductors and nanostructures. We study the influence of inhomogeneous broadening in semiconductors on CC results. Photoluminescence (PL) and the coherent emission in four-wave mixing (FWM) is recorded after resonant excitation with phase...

  9. Terahertz Nonlinear Optics in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2013-01-01

    We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...... breathing of a single-cycle THz pulse in a semiconductor....

  10. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    Herman, F.

    1983-01-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt

  11. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I

    2002-01-01

    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  12. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  13. Semiconductor testing method

    International Nuclear Information System (INIS)

    Brown, Stephen.

    1992-01-01

    In a method of avoiding use of nuclear radiation, eg gamma rays, X-rays, electron beams, for testing semiconductor components for resistance to hard radiation, which hard radiation causes data corruption in some memory devices and 'latch-up' in others, similar fault effects can be achieved using a xenon or other 'light' flash gun even though the penetration of light is significantly less than that of gamma rays. The method involves treating a device with gamma radiation, measuring a particular fault current at the onset of a fault event, repeating the test with light to confirm the occurrence of the fault event at the same measured fault current, and using the fault current value as a reference for future tests using light on similar devices. (author)

  14. Radial semiconductor drift chambers

    International Nuclear Information System (INIS)

    Rawlings, K.J.

    1987-01-01

    The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)

  15. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  16. Disorder phenomena in covalent semiconductors

    International Nuclear Information System (INIS)

    Popescu, M.A.

    1975-01-01

    The structure of the amorphous semiconductors has been investigated by means of X-ray diffraction and by computer simulation of random network models. Amorphous germanium contains mainly five and six-membered rings of atoms. In glassy state, the ternary compounds A 2 B 4 C 2 5 , such as CdGeAs 2 contain only even rings of atoms (six-membered and eight-membered rings). In the memory glasses of the type A 2 B 4 C 2 5 , such as GeAs 2 Te 7 , the valency state of every element is that from the crystal and important van der Waals forces are effective in the network. No Ge-Ge, Ge-As and As-As bonds are formed. The high pressure forms of the germanium have been simulated by computer. The force constants of the covalent bonds in Ge III and Ge IV differ from those in Ge I. The bond bending force constant decreases rapidly when the density of the crystal increases, a fact which has been imparted to a reduction of the sp 3 hybridization. The compressibility curve of the Ge I has been explained. The effect of the radial and uniaxial deformation on the non-crystalline networks has been studied. The compressibility of the amorphous germanium is by 1.5 per cent greater than that of crystalline germanium. The Poisson coefficient for a-Ge network is 0.233. The structure of the As 2 S 3 glass doped with different amounts of germanium (up to 40 at. per cent) and silver (up to 12 at. per cent) has been investigated. The As 2 S 3 Gesub(x) compositions are constituted from a disordered packing of structural units whose chemical composition and relative proportion in the glass essentially depends on the germanium content. (author)

  17. Binding Energy, Vapor Pressure and Melting Point of Semiconductor Nanoparticles

    International Nuclear Information System (INIS)

    H. H. Farrell; C. D. Van Siclen

    2007-01-01

    Current models for the cohesive energy of nanoparticles generally predict a linear dependence on the inverse particle diameter for spherical clusters, or, equivalently, on the inverse of the cube root of the number of atoms in the cluster. Although this is generally true for metals, we find that for the group IV semiconductors, C, Si and Ge, this linear dependence does not hold. Instead, using first principles, density functional theory calculations to calculate the binding energy of these materials, we find a quadratic dependence on the inverse of the particle size. Similar results have also been obtained for the metallic group IV elements Sn and Pb. This is in direct contradiction to current assumptions. Further, as a consequence of this quadratic behavior, the vapor pressure of semiconductor nanoparticles rises more slowly with decreasing size than would be expected. In addition, the melting point of these nanoparticles will experience less suppression than experienced by metal nanoparticles with comparable bulk binding energies. This non-linearity also affects sintering or Ostwald ripening behavior of these nanoparticles as well as other physical properties that depend on the nanoparticle binding energy. The reason for this variation in size dependence involves the covalent nature of the bonding in semiconductors, and even in the 'poor' metals. Therefore, it is expected that this result will hold for compound semiconductors as well as the elemental semiconductors

  18. Magnetic excitations in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Furdyna, J.K.; Liu, X.; Zhou, Y.Y.

    2009-01-01

    Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors

  19. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  20. Induced Charge Fluctuations in Semiconductor Detectors with a Cylindrical Geometry

    Science.gov (United States)

    Samedov, Victor V.

    2018-01-01

    Now, compound semiconductors are very appealing for hard X-ray room-temperature detectors for medical and astrophysical applications. Despite the attractive properties of compound semiconductors, such as high atomic number, high density, wide band gap, low chemical reactivity and long-term stability, poor hole and electron mobility-lifetime products degrade the energy resolution of these detectors. The main objective of the present study is in development of a mathematical model of the process of the charge induction in a cylindrical geometry with accounting for the charge carrier trapping. The formulae for the moments of the distribution function of the induced charge and the formulae for the mean amplitude and the variance of the signal at the output of the semiconductor detector with a cylindrical geometry were derived. It was shown that the power series expansions of the detector amplitude and the variance in terms of the inverse bias voltage allow determining the Fano factor, electron mobility lifetime product, and the nonuniformity level of the trap density of the semiconductor material.

  1. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1990-01-01

    The state of the art in semiconductor detectors for elementary particle physics and X-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; i) classical semiconductor diode detectors and ii) semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. (orig.)

  2. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1989-01-01

    The state of the art in semiconductor detectors for elementary particle physics and x-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; classical semiconductor diode detectors; and semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. 13 refs., 8 figs

  3. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  4. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications

    Science.gov (United States)

    Zhang, Liping; Jaroniec, Mietek

    2018-02-01

    Semiconductor photocatalysts show a great potential for environmental and energy-related applications, however one of the major disadvantages is their relatively low photocatalytic performance due to the recombination of electron-hole pairs. Therefore, intensive research is being conducted toward design of heterojunctions, which have been shown to be effective for improving the charge-transfer properties and efficiency of photocatalysts. According to the type of band alignment and direction of internal electric field, heterojunctions are categorized into five different types, each of which is associated with its own charge transfer characteristics. Since the design of heterojunctions requires the knowledge of band edge positions of component semiconductors, the commonly used techniques for the assessment of band edge positions are reviewed. Among them the electronegativity-based calculation method is applied for a large number of popular visible-light-active semiconductors, including some widely investigated bismuth-containing semiconductors. On basis of the calculated band edge positions and the type of component semiconductors reported, heterojunctions composed of the selected bismuth-containing semiconductors are proposed. Finally, the most popular synthetic techniques for the fabrication of heterojunctions are briefly discussed.

  5. Method of manufacturing a semiconductor device and semiconductor device obtained with such a method

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method of manufacturing a semiconductor device (10) with a semiconductor body (1) which is provided with at least one semiconductor element, wherein on the surface of the semiconductor body (1) a mesa- shaped semiconductor region (2) is formed, a masking layer (3) is

  6. Selective, electrochemical etching of a semiconductor

    Science.gov (United States)

    Dahal, Rajendra P.; Bhat, Ishwara B.; Chow, Tat-Sing

    2018-03-20

    Methods for facilitating fabricating semiconductor structures are provided which include: providing a multilayer structure including a semiconductor layer, the semiconductor layer including a dopant and having an increased conductivity; selectively increasing, using electrochemical processing, porosity of the semiconductor layer, at least in part, the selectively increasing porosity utilizing the increased conductivity of the semiconductor layer; and removing, at least in part, the semiconductor layer with the selectively increased porosity from the multilayer structure. By way of example, the selectively increasing porosity may include selectively, anodically oxidizing, at least in part, the semiconductor layer of the multilayer structure.

  7. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  8. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  9. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  10. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  11. Semiconductor technology program. Progress briefs

    Science.gov (United States)

    Bullis, W. M.

    1980-01-01

    Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.

  12. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  13. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  14. Temperature controller of semiconductor laser

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Vít; Číp, Ondřej

    2003-01-01

    Roč. 73, č. 3 (2003), s. 10 - 12 ISSN 0928-5008 Institutional research plan: CEZ:AV0Z2065902 Keywords : temperature controller * semiconductor laser * laser diode Subject RIV: BH - Optics, Masers, Lasers

  15. Wake fields in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1994-05-01

    It is shown that an intense short laser pulse propagating through a semiconductor plasma will generated longitudinal Langmuir waves in its wake. The measurable wake field can be used as a diagnostic to study nonlinear optical phenomena. For narrow gap semiconductors (for examples InSb) with Kane-type dispersion relation, the system can simulate, at currently available laser powers, the physics underlying wake-field accelerators. (author). 9 refs, 1 fig

  16. Semiconductor research with reactor neutrons

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1992-01-01

    Reactor neutrons play an important role for characterization of semiconductor materials as same as other advanced materials. On the other hand reactor neutrons bring about not only malignant irradiation effects called radiation damage, but also useful effects such as neutron transmutation doping and defect formation for opto-electronics. Research works on semiconductor materials with the reactor neutrons of the Kyoto University Reactor (KUR) are briefly reviewed. In this review, a stress is laid on the present author's works. (author)

  17. Semiconductor crystal high resolution imager

    Science.gov (United States)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  18. Dissipative chaos in semiconductor superlattices

    Directory of Open Access Journals (Sweden)

    F. Moghadam

    2008-03-01

    Full Text Available In this paper the motion of electron in a miniband of a semiconductor superlattice (SSL under the influence of external electric and magnetic fields is investigated. The electric field is applied in a direction perpendicular to the layers of the semiconductor superlattice, and the magnetic field is applied in different direction Numerical calculations show conditions led to the possibility of chaotic behaviors.

  19. Reducing leakage current in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol

    2018-03-06

    A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.

  20. Optical orientation in ferromagnet/semiconductor hybrids

    International Nuclear Information System (INIS)

    Korenev, V L

    2008-01-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin–spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism

  1. Optical orientation in ferromagnet/semiconductor hybrids

    Science.gov (United States)

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  2. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    OpenAIRE

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  3. Free Surface Properties of III-V Compound Semiconductor Surfaces.

    Science.gov (United States)

    1980-06-01

    selvage. Most important is the fact that atomic displacements also occur up to two layers into the substrate in the IaSb (ll0) selvage, presumably because of...result is that the interaction is of a disordering nature. 1 2,1 3 We took LEED measurements for a very large range of exposure to molecular oxygen (103...which the Al replaces the Ga. Arguments in favor of this reaction are given by measured photoemission peak shifts: 1 8󈧗 the Ga 3-d core level shifts

  4. Preparation and characterization of Bi2S3 compound semiconductor

    Indian Academy of Sciences (India)

    microscopy (SEM) pictures indicate the presence of layer lines on the surface of crystals thereby proving that these crystals are ... Hall effect, resistivity, ther- ... 3.1 Elemental and structural characterization ... temperature range 306–403 K using dc four-probe method. ... tice vibrations is dominant scattering mechanism in this.

  5. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  6. Ion Implantation in III-V Compound Semiconductors

    Science.gov (United States)

    1984-09-01

    340 keV H + -0 Ga P  O UES-723-292 !:• (H o>ray *P-K X - rayO Ga-K X -ray iii! RBS * ..I -iO.. 0 10I to1. 01 • .0 -. I0 1 LI =i, O I 0 01 0.J 10...Identity by blo ," pume) Ion Implantation, GaAs, Hall effect, electrical resistivity, Rutherford Backscattering (RBS), channeling, Proton induced x -ray...Mebility (jH) upon Aiinealing Temperature (TA) for 1 X 101 /cm• Dose Samples of GaAs:Mg with Three Different Capping Methods 33 p 14 Dependence of Surface

  7. Semiconductors for plasmonics and metamaterials

    DEFF Research Database (Denmark)

    Naik, G.V.; Boltasseva, Alexandra

    2010-01-01

    Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with semiconduct......Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals...... with semiconductors can alleviate these problems if only semiconductors could exhibit negative real permittivity. Aluminum doped zinc oxide (AZO) is a low loss semiconductor that can show negative real permittivity in the NIR. A comparative assessment of AZO-based plasmonic devices such as superlens and hyperlens...... with their metal-based counterparts shows that AZO-based devices significantly outperform at a wavelength of 1.55 µm. This provides a strong stimulus in turning to semiconductor plasmonics at the telecommunication wavelengths. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)....

  8. Ripening of Semiconductor Nanoplatelets.

    Science.gov (United States)

    Ott, Florian D; Riedinger, Andreas; Ochsenbein, David R; Knüsel, Philippe N; Erwin, Steven C; Mazzotti, Marco; Norris, David J

    2017-11-08

    Ostwald ripening describes how the size distribution of colloidal particles evolves with time due to thermodynamic driving forces. Typically, small particles shrink and provide material to larger particles, which leads to size defocusing. Semiconductor nanoplatelets, thin quasi-two-dimensional (2D) particles with thicknesses of only a few atomic layers but larger lateral dimensions, offer a unique system to investigate this phenomenon. Experiments show that the distribution of nanoplatelet thicknesses does not defocus during ripening, but instead jumps sequentially from m to (m + 1) monolayers, allowing precise thickness control. We investigate how this counterintuitive process occurs in CdSe nanoplatelets. We develop a microscopic model that treats the kinetics and thermodynamics of attachment and detachment of monomers as a function of their concentration. We then simulate the growth process from nucleation through ripening. For a given thickness, we observe Ostwald ripening in the lateral direction, but none perpendicular. Thicker populations arise instead from nuclei that capture material from thinner nanoplatelets as they dissolve laterally. Optical experiments that attempt to track the thickness and lateral extent of nanoplatelets during ripening appear consistent with these conclusions. Understanding such effects can lead to better synthetic control, enabling further exploration of quasi-2D nanomaterials.

  9. A semiconductor laser device

    Energy Technology Data Exchange (ETDEWEB)

    Takaro, K.; Naoki, T.; Satosi, K.; Yasutosi, K.

    1984-03-17

    A device is proposed which makes it possible to obtain single vertical mode emission in the absence of noise. Noise suppression is achieved by a method which determines the relationship between the donor densities in the second and third layers of an n type semiconductor laser, and the total output optical emission of layers with respect to the emission from the entire laser. The device consists of a photoresist film with a window applied to a 100 GaAs n type conductivity substrate using a standard method. Chemical etching through this window in the substrate is used to generate a slot approximately 1 micrometer in size. After the photoresist film is removed, the following layers are deposited from the liquid phase onto the substrate in the sequence indicated: a telurium doped protective layer of n type AlxGa(1-x) As; 2) an undoped active p type AlyGa(1-6) As layer and a tellurium doped upper protective n type conductivity GaAs layer.

  10. Semiconductor integrated circuits

    International Nuclear Information System (INIS)

    Michel, A.E.; Schwenker, R.O.; Ziegler, J.F.

    1979-01-01

    An improved method involving ion implantation to form non-epitaxial semiconductor integrated circuits. These are made by forming a silicon substrate of one conductivity type with a recessed silicon dioxide region extending into the substrate and enclosing a portion of the silicon substrate. A beam of ions of opposite conductivity type impurity is directed at the substrate at an energy and dosage level sufficient to form a first region of opposite conductivity within the silicon dioxide region. This impurity having a concentration peak below the surface of the substrate forms a region of the one conductivity type which extends from the substrate surface into the first opposite type region to a depth between the concentration peak and the surface and forms a second region of opposite conductivity type. The method, materials and ion beam conditions are detailed. Vertical bipolar integrated circuits can be made this way when the first opposite type conductivity region will function as a collector. Also circuits with inverted bipolar devices when this first region functions as a 'buried'' emitter region. (U.K.)

  11. Impurity gettering in semiconductors

    Science.gov (United States)

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  12. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  13. Deep-level defects in semiconductors: studies by magnetic resonance

    International Nuclear Information System (INIS)

    Ammerlaan, C.A.J.

    1983-01-01

    This work is divided into two parts. In the first one, the following topics are discussed: paramagnetic centers in semiconductors, principles of magnetic resonance, spin-Hamiltonian, g-tensor, hyperfine interaction, magnetic resonance spectrometer. In the second part it is dicussed defects studied by magnetic resonance including vacancy and divacancy in silicon, iron in silicon, nitrogen in diamond and antisite defects in III-V compounds. (A.C.A.S.) [pt

  14. Hydrogen-related effects in crystalline semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1988-08-01

    Recent experimental and theoretical information regarding the states of hydrogen in crystalline semiconductors is reviewed. The abundance of results illustrates that hydrogen does not preferentially occupy a few specific lattice sites but that it binds to native defects and impurities, forming a large variety of neutral and electrically active complexes. The study of hydrogen passivated shallow acceptors and donors and of partially passivated multivalent acceptors has yielded information on the electronic and real space structure and on the chemical composition of these complexes. Infrared spectroscopy, ion channeling, hydrogen isotope substitution and electric field drift experiments have shown that both static trigonal complexes as well as centers with tunneling hydrogen exist. Total energy calculations indicate that the charge state of the hydrogen ion which leads to passivation dominates, i.e., H + in p-type and H/sup /minus// in n-type crystals. Recent theoretical calculations indicate that is unlikely for a large fraction of the atomic hydrogen to exist in its neutral state, a result which is consistent with the total absence of any Electron Paramagnetic Resonance (EPR) signal. An alternative explanation for this result is the formation of H 2 . Despite the numerous experimental and theoretical results on hydrogen-related effects in Ge and Si there remains a wealth of interesting physics to be explored, especially in compound and alloy semiconductors. 6 refs., 6 figs

  15. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors

    Science.gov (United States)

    Biyikli, Necmi; Haider, Ali

    2017-09-01

    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.

  16. Heavy ions amorphous semiconductors irradiation study

    International Nuclear Information System (INIS)

    Benmalek, M.

    1978-01-01

    The behavior of amorphous semiconductors (germanium and germanium and arsenic tellurides) under ion bombardment at energies up to 2 MeV was studied. The irradiation induced modifications were followed using electrical parameter changes (resistivity and activation energy) and by means of the transmission electron microscopy observations. The electrical conductivity enhancement of the irradiated samples was interpreted using the late conduction theories in amorphous compounds. In amorphous germanium, Electron Microscopy showed the formations of 'globules', these defects are similar to voids observed in irradiated metals. The displacement cascade theory was used for the interpretation of the irradiation induced defects formation and a coalescence mechanism of growth was pointed out for the vacancy agglomeration [fr

  17. New antiferromagnetic semiconductor CuCr1.5Sb0.5S4

    International Nuclear Information System (INIS)

    Kesler, Ya.A.; Koroleva, L.I.; Mikheev, M.G.; Odintsov, A.G.; Filimonov, D.S.

    1993-01-01

    New halcogenide compound with spinel-antiferromagnetic semiconductor CuCr 1.5 Sb 0.5 S 4 are obtained and studied for the first time. Magnetic properties of this compound, namely, magnetization linear dependence, maximum on PHI(T) curve in the low-temperature area and realization of the Curie-Weis law for paramagnetic susceptibility with negative paramagnetic temperature testiby to the fact that this compound is antiferromagnetic

  18. Transmutation doping of semiconductors by charged particles (review)

    International Nuclear Information System (INIS)

    Kozlovskii, V.V.; Zakharenkov, L.F.; Shustrov, B.A.

    1992-01-01

    A review is given of the state of the art in one of the current topics in radiation doping of semiconductors, which is process of nuclear transmutation doping (NTD) charged particles. In contrast to the neutron and photonuclear transmutation doping, which have been dealt with in monographs and reviews, NTD caused by the action of charged particles is a subject growing very rapidly in the last 10-15 years, but still lacking systematic accounts. The review consists of three sections. The first section deals with the characteristics of nuclear reactions in semiconductors caused by the action of charged particles: the main stress is on the modeling of NTD processes in semiconductors under the action of charged particles. An analysis is made of the modeling intended to give the total numbers of donors and acceptor impurities introduced by the NTD process, to optimize the compensation coefficients, and to estimate the distributions of the dopants with depth in a semiconductor crystal. In the second section the state of the art of experimental investigations of NTD under the influence of charged particles is considered. In view of the specific objects that have been investigated experimntally, the second section is divided into three subsections: silicon, III-V compounds, other semiconductors and related materials (such as high-temperature superconductors, ferroelectric films, etc.). An analysis is made of the communications reporting experimental data on the total numbers of dopants which are introduced, concentration of the electrically active fraction of the impurity, profiles of the dopant distributions, and conditions for efficient annealing of radiation defects. The third section deals with the suitability of NTD by charged particles for the fabrication of semiconductor devices. 45 refs

  19. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  20. Semiconductor optoelectronic infrared spectroscopy

    International Nuclear Information System (INIS)

    Hollingworth, A.R.

    2001-08-01

    We use spectroscopy to study infrared optoelectronic inter and intraband semiconductor carrier dynamics. The overall aim of this thesis was to study both III-V and Pb chalcogenide material systems in order to show their future potential use in infrared emitters. The effects of bandstructure engineering have been studied in the output characteristics of mid-IR III-V laser diodes to show which processes (defects, radiative, Auger and phonon) dominate and whether non-radiative processes can be suppressed. A new three-beam pump probe experiment was used to investigate interband recombination directly in passive materials. Experiments on PbSe and theory for non-parabolic near-mirror bands and non-degenerate statistics were in good agreement. Comparisons with HgCdTe showed a reduction in the Auger coefficient of 1-2 orders of magnitude in the PbSe. Using Landau confinement to model spatial confinement in quantum dots (QDs) 'phonon bottlenecking' was studied. The results obtained from pump probe and cyclotron resonance saturation measurements showed a clear suppression in the cooling of carriers when Landau level separation was not resonant with LO phonon energy. When a bulk laser diode was placed in a magnetic field to produce a quasi quantum wire device the resulting enhanced differential gain and reduced Auger recombination lowered I th by 30%. This result showed many peaks in the light output which occurred when the LO phonon energy was a multiple of the Landau level separation. This showed for the first time evidence of the phonon bottleneck in a working laser device. A new technique called time resolved optically detected cyclotron resonance, was used as a precursor to finding the carrier dynamics within a spatially confined quantum dot. By moving to the case of a spatial QD using an optically detected intraband resonance it was possible to measure the energy separation interband levels and conduction and valence sublevels within the dot simultaneously. Furthermore

  1. Simulation of semiconductor devices

    International Nuclear Information System (INIS)

    Oriato, D.

    2001-09-01

    In this thesis a drift diffusion model coupled with self-consistent solutions of Poisson's and Schroedinger's equations, is developed and used to investigate the operation of Gunn diodes and GaN-based LEDs. The model also includes parameters derived from Monte Carlo calculations of the simulated devices. In this way the characteristics of a Monte Carlo approach and of a quantum solver are built into a fast and flexible drift-diffusion model that can be used for testing a large number of heterostructure designs in a time-effective way. The full model and its numerical implementation are described in chapter 2. In chapter 3 the theory of Gunn diodes is presented. A basic model of the dynamics of domain formation and domain transport is described with particular regard to accumulation and dipole domains. Several modes of operation of the Gunn device are described, varying from the resonance mode to the quenched mode. Details about transferred electron devices and negative differential resistance in semiconductor materials are given. In chapter 4 results from the simulation of a simple conventional gunn device confirm the importance of the doping condition at the cathode. Accumulation or dipole domains are achieved respectively with high and low doping densities. The limits of a conventional Gunn diode are explained and solved by introducing the heterostructure Gunn diode. This new design consists of a conventional GaAs transit region coupled with an electron launcher at the cathode, made using an AIGaAs heterostructure step. Simulations show the importance of the insertion of a thin highly-doped layer between the transit region and the electron launcher in order to improve device operation. Chapter 5 is an introduction to Ill-nitrides, in particular GaN and its alloy ln-GaN. We outline the discrepancy in the elastic and piezoelectric parameters found in the literature. Strain, dislocations and piezoelectricity are presented as the main features of a InGaN/GaN system

  2. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  3. Introduction to cathodoluminescence in semiconductors

    International Nuclear Information System (INIS)

    Dussac, M.

    1985-01-01

    The use of cathodoluminescence in a scanning electron microscope leads to acquire a spectrum in a place of the sample surface, or to register the intensity profile of a special emission band along a scanning line, or also to realize a map of the irradiated sample. Composition variations can then, at ambient temperature, be determined, also defects can be shown, together with grain joints and dislocations, radiative and non radiative regions can be distinguished and, at low temperature, elementary processes of luminescence can be studied and impurities identified in semiconductors. Through this analysis method is applicable to every insulating or semiconductor material (that is to say to every material having a gap), in this article only crystalline semi-conductor will be studied [fr

  4. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  5. High mobility emissive organic semiconductor

    Science.gov (United States)

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-01-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V−1 s−1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m−2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323

  6. Thiophene-Based Organic Semiconductors.

    Science.gov (United States)

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-10-24

    Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).

  7. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    CERN Multimedia

    2002-01-01

    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  8. Absolute instability of polaron mode in semiconductor magnetoplasma

    Science.gov (United States)

    Paliwal, Ayushi; Dubey, Swati; Ghosh, S.

    2018-01-01

    Using coupled mode theory under hydrodynamic regime, a compact dispersion relation is derived for polaron mode in semiconductor magnetoplasma. The propagation and amplification characteristics of the wave are explored in detail. The analysis deals with the behaviour of anomalous threshold and amplification derived from dispersion relation, as function of external parameters like doping concentration and applied magnetic field. The results of this investigation are hoped to be useful in understanding electron-longitudinal optical phonon interplay in polar n-type semiconductor plasmas under the influence of coupled collective cyclotron excitations. The best results in terms of smaller threshold and higher gain of polaron mode could be achieved by choosing moderate doping concentration in the medium at higher magnetic field. For numerical appreciation of the results, relevant data of III-V n-GaAs compound semiconductor at 77 K is used. Present study provides a qualitative picture of polaron mode in magnetized n-type polar semiconductor medium duly shined by a CO2 laser.

  9. Organic semiconductors in sensor applications

    CERN Document Server

    Malliaras, George; Owens, Róisín

    2008-01-01

    Organic semiconductors offer unique characteristics such as tunability of electronic properties via chemical synthesis, compatibility with mechanically flexible substrates, low-cost manufacturing, and facile integration with chemical and biological functionalities. These characteristics have prompted the application of organic semiconductors and their devices in physical, chemical, and biological sensors. This book covers this rapidly emerging field by discussing both optical and electrical sensor concepts. Novel transducers based on organic light-emitting diodes and organic thin-film transistors, as well as systems-on-a-chip architectures are presented. Functionalization techniques to enhance specificity are outlined, and models for the sensor response are described.

  10. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  11. Introduction to semiconductor manufacturing technology

    CERN Document Server

    2012-01-01

    IC chip manufacturing processes, such as photolithography, etch, CVD, PVD, CMP, ion implantation, RTP, inspection, and metrology, are complex methods that draw upon many disciplines. [i]Introduction to Semiconductor Manufacturing Technologies, Second Edition[/i] thoroughly describes the complicated processes with minimal mathematics, chemistry, and physics; it covers advanced concepts while keeping the contents accessible to readers without advanced degrees. Designed as a textbook for college students, this book provides a realistic picture of the semiconductor industry and an in-depth discuss

  12. Wide gap semiconductor microwave devices

    International Nuclear Information System (INIS)

    Buniatyan, V V; Aroutiounian, V M

    2007-01-01

    A review of properties of wide gap semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, GaN and AlGaN/GaN that are relevant to electronic, optoelectronic and microwave applications is presented. We discuss the latest situation and perspectives based on experimental and theoretical results obtained for wide gap semiconductor devices. Parameters are taken from the literature and from some of our theoretical works. The correspondence between theoretical results and parameters of devices is critically analysed. (review article)

  13. Detection of radioactivity by semiconductors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The class of detectors discussed in this chapter has a responsive component involving a diode, a junction between two types of semiconductor materials. Although diode detectors are not particularly efficient in counting radioactive emissions, they are superior to other commercially available detectors in spectroscopy. Consequently, diode detectors are used extensively for quanlitative purposes and for quantitative purposes when mixtures of radionuclides are present, not the usual situation with biological or medical research. Topics addressed in this chapter are as follows: Band Theory; Semiconductors and Junctions; and Radiation Detectors. 6 refs., 14 figs

  14. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  15. Semiconductor X-ray spectrometers

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1978-02-01

    An outline is given of recent developments in particle and photon induced x-ray fluorescence (XRF) analysis. Following a brief description of the basic mechanism of semiconductor detector operation a comparison is made between semiconductor detectors, scintillators and gas filled proportional devices. Detector fabrication and cryostat design are described in more detail and the effects of various device parameters on system performance, such as energy resolution, count rate capability, efficiency, microphony, etc. are discussed. The main applications of these detectors in x-ray fluorescence analysis, electron microprobe analysis, medical and pollution studies are reviewed

  16. Integrating magnetism into semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, Boris P; Korenev, Vladimir L [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2005-06-30

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor-making the hybrid an electronic-write-in and electronic-read-out elementary storage unit. (methodological notes)

  17. Integrating magnetism into semiconductor electronics

    International Nuclear Information System (INIS)

    Zakharchenya, Boris P; Korenev, Vladimir L

    2005-01-01

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor-making the hybrid an electronic-write-in and electronic-read-out elementary storage unit. (methodological notes)

  18. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  19. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  20. Semiconductor structure and recess formation etch technique

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.

  1. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  2. Nuclear radiation detection by a variband semiconductor

    International Nuclear Information System (INIS)

    Volkov, A.S.

    1981-01-01

    Possibilities of using a variband semiconductor for detecting nuclear radiations are considered. It is shown that the variaband quasielectric field effectively collects charges induced by a nuclear particle only at a small mean free path in the semiconductor (up to 100 μm), the luminescence spectrum of the variband semiconductor when a nuclear particle gets into it, in principle, permits to determine both the energy and mean free path in the semiconductor (even at large mean free paths) [ru

  3. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  4. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    Tighineanu, I.; Dorogan, V.; Suruceanu, G.

    2003-01-01

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  5. Diode having trenches in a semiconductor region

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  6. Automation and Integration in Semiconductor Manufacturing

    OpenAIRE

    Liao, Da-Yin

    2010-01-01

    Semiconductor automation originates from the prevention and avoidance of frauds in daily fab operations. As semiconductor technology and business continuously advance and grow, manufacturing systems must aggressively evolve to meet the changing technical and business requirements in this industry. Semiconductor manufacturing has been suffering pains from islands of automation. The problems associated with these systems are limited

  7. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  8. Semiconductor nanostructures for infrared applications

    NARCIS (Netherlands)

    Zurauskiene, N.; Asmontas, S.; Dargys, A.; Kundrotas, J.; Janssen, G.; Goovaerts, E.; Marcinkevicius, S.; Koenraad, P.M.; Wolter, J.H.; Leon, R.

    2004-01-01

    We present the results of time-resolved photoluminescence (TRPL) and optically detected microwave resonance (ODMR) spectroscopy investigations of semiconductor quantum dots and quantum wells. The ODMR spectra of InAs/GaAs QDs were detected via modulation of the total intensity of the QDs emission

  9. A Brief History of ... Semiconductors

    Science.gov (United States)

    Jenkins, Tudor

    2005-01-01

    The development of studies in semiconductor materials is traced from its beginnings with Michael Faraday in 1833 to the production of the first silicon transistor in 1954, which heralded the age of silicon electronics and microelectronics. Prior to the advent of band theory, work was patchy and driven by needs of technology. However, the arrival…

  10. Semiconductor radiation detectors: device physics

    National Research Council Canada - National Science Library

    Lutz, Gerhard

    1999-01-01

    ..., including nuclear physics, elementary particle physics, optical and x-ray astronomy, medicine, and materials testing - and the number of applications is growing continually. Closely related, and initiated by the application of semiconductors, is the development of low-noise low-power integrated electronics for signal readout. The success of semicond...

  11. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  12. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  13. Radiation damage in semiconductor detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced

  14. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  15. Microscopical Studies of Structural and Electronic Properties of Semiconductors

    CERN Multimedia

    2002-01-01

    The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...

  16. Bond charges and electronic charge transfer in ternary semiconductors

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    By means of a simple molecule-theoretic model of 'linear superposition of two-electron molecules' the bond charges between nearest neighbours and the effective charges of ions are calculated for ternary zinc-blende structure alloys as well as chalcopyrite semiconductors. Taking into account both, the charge transfer among the ions caused by the differences of electronegativities of atoms used and between the bonds created by the internal stress of the lattice a nearly unvaried averaged bond charge amount of the alloy is found, but rather dramatically changed local bond charge parameters in comparison with the respective values of binary compounds used. This fact should influence the noncentral force interaction in such semiconductors. (author)

  17. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  18. Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces

    International Nuclear Information System (INIS)

    Walukiewicz, W.

    1988-02-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs

  19. Organolanthanoid compounds

    International Nuclear Information System (INIS)

    Schumann, H.

    1984-01-01

    Up to little more than a decade ago organolanthanoid compounds were still a curiosity. Apart from the description of an isolated number of cyclopentadienyl and indenyl derivatives, very few significant contributions had been made to this interesting sector of organometallic chemistry. However, subsequent systematic studies using modern preparative and analytical techniques, together with X-ray single crystal structure determinations, enabled the isolation and characterization of a large number of very interesting homoleptic and heteroleptic compounds in which the lanthanoid is bound to hydrogen, to substituted or unsubstituted cyclopentadienyl groups, to allyl or alkynyl groups, or even to phosphorus ylides, trimethylsilyl, and carbonylmetal groups. These compounds, which are all extremely sensitive to oxygen and water, open up new possibilities in the field of catalysis and have great potential in organic synthesis - as recent studies with pentamethylcyclopentadienyl derivatives, organolanthanoid(II) compounds, and hexamethyllanthanoid complexes have already shown. (orig.) [de

  20. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1992-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  1. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1995-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. copyright 1995 American Institute of Physics

  2. Photocatalysis of irradiated semiconductor surfaces: Its application to water splitting and some organic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, T

    1985-05-01

    Hydrogen production from organic compounds and water was investigated using powdered semiconductor photocatalysts. The complete decomposition observed for several organic compounds demonstrated that water is involved in the reactions as an oxidizing agent. Photocatalyses of dyes and semiconductors were found to be applicable to amino acid synthesis. The quantum yields of photocatalytic amino acid synthesis using visible light are about 20%-40% in the absence of a metal catalyst such as platinum. Moreover the reactions are highly selective and depend strongly on the type of semiconductor. This method was applied to the asymmetric synthesis of amino acids using asymmetric catalysts. Rather high optical yields of 50% were achieved for the synthesis of L-phenylalanine.

  3. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    Science.gov (United States)

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  4. Crystal structure of the quaternary compounds CuFe2AlSe4 and ...

    Indian Academy of Sciences (India)

    2014-05-29

    May 29, 2014 ... semiconductor compound families of the third-, fourth- and fifth-order derivatives of the .... showed single phases. The powder patterns were ... and tetragonal cells with similar magnitudes to the parent chalcopyrite structures,.

  5. Transversal light forces in semiconductors

    CERN Document Server

    Lindberg, M

    2003-01-01

    The transversal light force is a well established effect in atomic and molecular systems that are exposed to spatially inhomogeneous light fields. In this paper it is shown theoretically that in an excited semiconductor, containing an electron-hole plasma or excitons, a similar light force exists, if the semiconductor is exposed to an ultrashort spatially inhomogeneous light field. The analysis is based on the equations of motion for the Wigner distribution functions of charge carrier populations and interband polarizations. The results show that, while the light force on the electron-hole plasma or the excitons does exist, its effects on the kinetic behaviour of the electron-hole plasma or the excitons are different compared to the situation in an atomic or molecular system. A detailed analysis presented here traces this difference back to the principal differences between atoms and molecules on the one hand and electron-hole plasmas or excitons on the other hand.

  6. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  7. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  8. Dielectric function of semiconductor superlattice

    International Nuclear Information System (INIS)

    Qin Guoyi.

    1990-08-01

    We present a calculation of the dielectric function for semiconductor GaAs/Ga 1-x Al x As superlattice taking account of the extension of the electron envelope function and the difference of both the dielectric constant and width between GaAs and Ga 1-x Al x As layers. In the appropriate limits, our results exactly reduce to the well-known results of the quasi two-dimensional electron gas obtained by Lee and Spector and of the period array of two-dimensional electron layers obtained by Das Sarma and Quinn. By means of the dielectric function of the superlattice, the dispersion relation of the collective excitation and the screening property of semiconductor superlattice are discussed and compared with the results of the quasi two-dimensional system and with the results of the periodic array of the two-dimensional electron layers. (author). 4 refs, 3 figs

  9. Spectroscopic analysis of optoelectronic semiconductors

    CERN Document Server

    Jimenez, Juan

    2016-01-01

    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  10. Efficient Spin Injection into Semiconductor

    International Nuclear Information System (INIS)

    Nahid, M.A.I.

    2010-06-01

    Spintronic research has made tremendous progress nowadays for making future devices obtain extra advantages of low power, and faster and higher scalability compared to present electronic devices. A spintronic device is based on the transport of an electron's spin instead of charge. Efficient spin injection is one of the very important requirements for future spintronic devices. However, the effective spin injection is an exceedingly difficult task. In this paper, the importance of spin injection, basics of spin current and the essential requirements of spin injection are illustrated. The experimental technique of electrical spin injection into semiconductor is also discussed based on the experimental experience. The electrical spin injection can easily be implemented for spin injection into any semiconductor. (author)

  11. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials

    NARCIS (Netherlands)

    Reiss, Peter; Carrière, Marie; Lincheneau, Christophe; Vaure, Louis; Tamang, Sudarsan

    2016-01-01

    We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive

  12. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.

    Science.gov (United States)

    Yu, William W

    2008-10-01

    Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.

  13. Electronic properties and phase transitions in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Panich, A M

    2008-01-01

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX 2 (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX 2 compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)

  14. Semiconductors put spin in spintronics

    International Nuclear Information System (INIS)

    Weiss, Dieter

    2000-01-01

    Electrons and holes, which carry the current in semiconductor devices, are quantum-mechanical objects characterized by a set of quantum numbers - the band index, the wave-vector (which is closely related to the electron or hole velocity) and spin. The spin, however, is one of the strangest properties of particles. In simple terms, we can think of the spin as an internal rotation of the electron, but it has no classical counterpart. The spin is connected to a quantized magnetic moment and hence acts as a microscopic magnet. Thus the electron spin can adopt one of two directions (''up'' or ''down'') in a magnetic field. The spin plays no role in conventional electronics and the current in any semiconductor device is made up of a mixture of electrons with randomly oriented spins. However, a new range of electronic devices that transport the spin of the electrons, in addition to their charge, is being developed. But the biggest obstacle to making practical ''spin electronic'' or ''spintronic'' devices so far has been finding a way of injecting spin-polarized electrons or holes into the semiconductor and then detecting them. Recently a team of physicists from the University of Wuerzburg in Germany, and also a collaboration of researchers from Tohoku University in Japan and the University of California at Santa Barbara, have found a way round these problems using either semi-magnetic or ferromagnetic semiconductors as ''spin aligners'' (R Fiederling et al. 1999 Nature 402 787; Y Ohno et al. 1999 Nature 402 790). In this article the author presents the latest breakthrough in spintronics research. (UK)

  15. Dry etching technology for semiconductors

    CERN Document Server

    Nojiri, Kazuo

    2015-01-01

    This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits.  The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes.  The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning ...

  16. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  17. Radiation tolerance of amorphous semiconductors

    International Nuclear Information System (INIS)

    Nicolaides, R.V.; DeFeo, S.; Doremus, L.W.

    1976-01-01

    In an attempt to determine the threshold radiation damage in amorphous semiconductors, radiation tests were performed on amorphous semiconductor thin film materials and on threshold and memory devices. The influence of flash x-rays and neutron radiation upon the switching voltages, on- and off-state characteristics, dielectric response, optical transmission, absorption band edge and photoconductivity were measured prior to, during and following irradiation. These extensive tests showed the high radiation tolerance of amorphous semiconductor materials. Electrical and optical properties, other than photoconductivity, have a neutron radiation tolerance threshold above 10 17 nvt in the steady state and 10 14 nvt in short (50 μsec to 16 msec) pulses. Photoconductivity increases by 1 1 / 2 orders of magnitude at the level of 10 14 nvt (short pulses of 50 μsec). Super flash x-rays up to 5000 rads (Si), 20 nsec, do not initiate switching in off-state samples which are voltage biased up to 90 percent of the threshold voltage. Both memory and threshold amorphous devices are capable of switching on and off during nuclear radiation transients at least as high as 2 x 10 14 nvt in 50 μsec pulses

  18. Thienoacene-based organic semiconductors.

    Science.gov (United States)

    Takimiya, Kazuo; Shinamura, Shoji; Osaka, Itaru; Miyazaki, Eigo

    2011-10-11

    Thienoacenes consist of fused thiophene rings in a ladder-type molecular structure and have been intensively studied as potential organic semiconductors for organic field-effect transistors (OFETs) in the last decade. They are reviewed here. Despite their simple and similar molecular structures, the hitherto reported properties of thienoacene-based OFETs are rather diverse. This Review focuses on four classes of thienoacenes, which are classified in terms of their chemical structures, and elucidates the molecular electronic structure of each class. The packing structures of thienoacenes and the thus-estimated solid-state electronic structures are correlated to their carrier transport properties in OFET devices. With this perspective of the molecular structures of thienoacenes and their carrier transport properties in OFET devices, the structure-property relationships in thienoacene-based organic semiconductors are discussed. The discussion provides insight into new molecular design strategies for the development of superior organic semiconductors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Identification of defects in semiconductors

    CERN Document Server

    Stavola, Michael; Weber, Eicke R; Stavola, Michael

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors.The"Willardson and Beer"Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices,Oxygen in Silicon, and others promise indeed that this traditi...

  20. The Electrical Characteristics of The N-Organic Semiconductor/P-Inorganic Semiconductor Diode

    International Nuclear Information System (INIS)

    Aydin, M. E.

    2008-01-01

    n-organic semiconductor (PEDOT) / p-inorganic semiconductor Si diode was formed by deep coating method. The method has been achieved by coating n-inorganic semiconductor PEDOT on top of p-inorganic semiconductor. The n-organic semiconductor PEDOT/ p-inorganic semiconductor diode demonstrated rectifying behavior by the current-voltage (I-V) curves studied at room temperature. The barrier height , ideality factor values were obtained as of 0.88 eV and 1.95 respectively. The diode showed non-ideal I-V behavior with an ideality factor greater than unity that could be ascribed to the interfacial layer

  1. Multipurpose Compound

    Science.gov (United States)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  2. EPR of defects in semiconductors: past, present, future

    International Nuclear Information System (INIS)

    Watkins, G.D.

    1999-01-01

    Important physical concepts learned from early EPR studies of defects in silicon are reviewed. Highlighted are the studies of shallow effective-mass-liked donors and acceptors of deep transition element impurities, and of vacancies and interstitials. It is shown that the concepts learned in silicon translate remarkable well to the corresponding defects in the other elemental and compound semiconductors. The introduction of sensitive optical and electrical detection methods and the recent progress in single defects detection insure the continued vital role of EPR in the future

  3. Theory of ferromagnetic (III,Mn)V semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Sinova, J.; Mašek, Jan; Kučera, Jan; MacDonald, A. H.

    2006-01-01

    Roč. 78, - (2006), s. 809-859 ISSN 0034-6861 R&D Projects: GA MŠk LC510; GA ČR GA202/05/0575 Grant - others:EPSRC(GB) GR/S81407/01; U.S. Department of Energy(US) DE-FG03-02ER45958; U.S. Office of Naval research(US) OMR-N000140610122 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductors * (III,Mn)V compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 33.508, year: 2006

  4. Study of lead iodide semiconductor crystals doped with silver

    Czech Academy of Sciences Publication Activity Database

    Matuchová, Marie; Žďánský, Karel; Zavadil, Jiří; Maixner, J.; Alexiev, D.; Procházková, Olga

    2006-01-01

    Roč. 9, 1/3 (2006), s. 394-398 ISSN 1369-8001. [DRIP /11./. Beijing, 15.09.2005-19.09.2005] R&D Projects: GA ČR(CZ) GA102/03/0379; GA ČR(CZ) GA102/04/0959; GA AV ČR(CZ) KSK1010104 Institutional research plan: CEZ:AV0Z20670512 Keywords : rare earth compounds * detector circuits * semiconductor technology Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.038, year: 2006

  5. Conductivity in transparent oxide semiconductors.

    Science.gov (United States)

    King, P D C; Veal, T D

    2011-08-24

    Despite an extensive research effort for over 60 years, an understanding of the origins of conductivity in wide band gap transparent conducting oxide (TCO) semiconductors remains elusive. While TCOs have already found widespread use in device applications requiring a transparent contact, there are currently enormous efforts to (i) increase the conductivity of existing materials, (ii) identify suitable alternatives, and (iii) attempt to gain semiconductor-engineering levels of control over their carrier density, essential for the incorporation of TCOs into a new generation of multifunctional transparent electronic devices. These efforts, however, are dependent on a microscopic identification of the defects and impurities leading to the high unintentional carrier densities present in these materials. Here, we review recent developments towards such an understanding. While oxygen vacancies are commonly assumed to be the source of the conductivity, there is increasing evidence that this is not a sufficient mechanism to explain the total measured carrier concentrations. In fact, many studies suggest that oxygen vacancies are deep, rather than shallow, donors, and their abundance in as-grown material is also debated. We discuss other potential contributions to the conductivity in TCOs, including other native defects, their complexes, and in particular hydrogen impurities. Convincing theoretical and experimental evidence is presented for the donor nature of hydrogen across a range of TCO materials, and while its stability and the role of interstitial versus substitutional species are still somewhat open questions, it is one of the leading contenders for yielding unintentional conductivity in TCOs. We also review recent work indicating that the surfaces of TCOs can support very high carrier densities, opposite to the case for conventional semiconductors. In thin-film materials/devices and, in particular, nanostructures, the surface can have a large impact on the total

  6. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.

    Science.gov (United States)

    Zamani, Reza R; Hage, Fredrik S; Lehmann, Sebastian; Ramasse, Quentin M; Dick, Kimberly A

    2018-03-14

    Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.

  7. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  8. Mesoionic Compounds

    Indian Academy of Sciences (India)

    Organic Chemistry. Kamatak University,. Dharwad. Her research interests are synthesis, reactions and synthetic utility of sydnones. She is currently working on electrochemical and insecticidal/antifungal activities for some of these compounds. Keywords. Aromaticity, mesoionic hetero- cycles, sydnones, tandem re- actions.

  9. Thermoelectricity in correlated narrow-gap semiconductors

    Science.gov (United States)

    Tomczak, Jan M.

    2018-05-01

    We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class—such as FeSi and FeSb2—display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie–Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators—such as Ce3Bi4Pt3 for which we present new results—and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.

  10. Roadmap on semiconductor-cell biointerfaces

    Science.gov (United States)

    Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen

    2018-05-01

    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

  11. Scanning electron microscopy of semiconductor materials

    International Nuclear Information System (INIS)

    Bresse, J.F.; Dupuy, M.

    1978-01-01

    The use of scanning electron microscopy in semiconductors opens up a large field of use. The operating modes lending themselves to the study of semiconductors are the induced current, cathodoluminescence and the use of the potential contrast which can also be applied very effectively to the study of the devices (planar in particular). However, a thorough knowledge of the mechanisms of the penetration of electrons, generation and recombination of generated carriers in a semiconductor is necessary in order to attain a better understanding of the operating modes peculiar to semiconductors [fr

  12. Reflection technique for thermal mapping of semiconductors

    Science.gov (United States)

    Walter, Martin J.

    1989-06-20

    Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.

  13. Porous and Nanoporous Semiconductors and Emerging Applications

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2006-01-01

    Full Text Available Pores in single-crystalline semiconductors can be produced in a wide range of geometries and morphologies, including the “nanometer” regime. Porous semiconductors may have properties completely different from the bulk, and metamaterials with, for example, optical properties not encountered in natural materials are emerging. Possible applications of porous semiconductors include various novel sensors, but also more “exotic” uses as, for example, high explosives or electrodes for micro-fuel cells. The paper briefly reviews pore formation (including more applied aspects of large area etching, properties of porous semiconductors, and emerging applications.

  14. Metallurgy and purification of semiconductor materials

    International Nuclear Information System (INIS)

    Mughal, G.R.; Ali, M.M.; Ali, I.

    1996-01-01

    In this article the metallurgical aspects of semiconductor science and technology have been stressed here rather than of the physical and electronic aspect of the subject. Semiconductor technology has not merely presented the metallurgist with new challenges. The ease with which the semiconductor planes cleave make possible, the preparation and study of virgin surface. Semiconductor materials were being widely employed in the study of sub-boundaries and structures and can largely contribute to the study of certain aspects of nucleation and growth, precipitation phenomena, mechanical behaviour, in metallurgy. (A.B.)

  15. Emission and Absorption Entropy Generation in Semiconductors

    DEFF Research Database (Denmark)

    Reck, Kasper; Varpula, Aapo; Prunnila, Mika

    2013-01-01

    While emission and absorption entropy generation is well known in black bodies, it has not previously been studied in semiconductors, even though semiconductors are widely used for solar light absorption in modern solar cells [1]. We present an analysis of the entropy generation in semiconductor...... materials due to emission and absorption of electromagnetic radiation. It is shown that the emission and absorption entropy generation reduces the fundamental limit on the efficiency of any semiconductor solar cell even further than the Landsberg limit. The results are derived from purely thermodynamical...

  16. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2008-01-01

    This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.

  17. Defect identification in semiconductors with positron annihilation: experiment and theory

    Science.gov (United States)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  18. Method of manufacturing a semiconductor sensor device and semiconductor sensor device

    NARCIS (Netherlands)

    2009-01-01

    The invention relates to a method of manufacturing a semiconductor sensor device (10) for sensing a substance comprising a plurality of mutually parallel mesa-shaped semiconductor regions (1) which are formed on a surface of a semiconductor body (11) and which are connected at a first end to a first

  19. Ultrafast laser-semiconductor interactions

    International Nuclear Information System (INIS)

    Schile, L.A.

    1996-01-01

    Studies of the ultrafast (< 100 fs) interactions of infrared, sub-100 fs laser pulses with IR, photosensitive semiconductor materials InGaAs, InSb, and HgCdTe are reported. Both the carrier dynamics and the associated Terahertz radiation from these materials are discussed. The most recent developments of femtosecond (< 100 fs) Optical Parametric Oscillators (OPO) has extended the wavelength range from the visible to 5.2 μm. The photogenerated semiconductor free carrier dynamics are determined in the 77 to 300 degrees K temperature range using the Transmission Correlation Peak (TCP) method. The electron-phonon scattering times are typically 200 - 600 fs. Depending upon the material composition and substrate on which the IR crystalline materials are deposited, the nonlinear TCP absorption gives recombination rates as fast as 10's of picoseconds. For the HgCdTe, there exists a 400 fs electron-phonon scattering process along with a much longer 3600 fs loss process. Studies of the interactions of these ultrashort laser pulses with semiconductors produce Terahertz (Thz) radiative pulses. With undoped InSb, there is a substantial change in the spectral content of this THz radiation between 80 - 260 degrees K while the spectrum of Te-doped InSb remains nearly unchanged, an effect attributed to its mobility being dominated by impurity scattering. At 80 degrees K, the terahertz radiation from undoped InSb is dependent on wavelength, with both a higher frequency spectrum and much larger amplitudes generated at longer wavelengths. No such effect is observed at 260 degrees K. Finally, new results on the dependence of the emitted THz radiation on the InSb crystal's orientation is presented

  20. n-Channel semiconductor materials design for organic complementary circuits.

    Science.gov (United States)

    Usta, Hakan; Facchetti, Antonio; Marks, Tobin J

    2011-07-19

    Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an

  1. Ion implantation in semiconductor bodies

    International Nuclear Information System (INIS)

    Badawi, M.H.

    1984-01-01

    Ions are selectively implanted into layers of a semiconductor substrate of, for example, semi-insulating gallium arsenide via a photoresist implantation mask and a metallic layer of, for example, titanium disposed between the substrate surface and the photoresist mask. After implantation the mask and metallic layer are removed and the substrate heat treated for annealing purposes. The metallic layer acts as a buffer layer and prevents possible contamination of the substrate surface, by photoresist residues, at the annealing stage. Such contamination would adversely affect the electrical properties of the substrate surface, particularly gallium arsenide substrates. (author)

  2. Method of manufacturing semiconductor devices

    International Nuclear Information System (INIS)

    Sun, Y.S.E.

    1980-01-01

    A method of improving the electrical characteristics of semiconductor devices such as SCR's, rectifiers and triacs during their manufacture is described. The system consists of electron irradiation at an energy in excess of 250 KeV and most preferably between 1.5 and 12 MeV, producing an irradiation dose of between 5.10 12 and 5.10 15 electrons per sq. cm., and at a temperature in excess of 100 0 C preferably between 150 and 375 0 C. (U.K.)

  3. Physics with isotopically controlled semiconductors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1994-08-01

    Control of the isotopic composition of semiconductors offers a wide range of new scientific opportunities. In this paper a number of recent results obtained with isotopically pure as well as deliberately mixed diamond and Ge bulk single crystals and Ge isotope superlattices will be reviewed. Isotopic composition affects several properties such as phonon energies, bandstructure and lattice constant in subtle but theoretically well understood ways. Large effects are observed for thermal conductivity, local vibrational modes of impurities and after neutron transmutation doping (NTD). Several experiments which could profit greatly from isotope control are proposed

  4. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  5. Chaotic bursting in semiconductor lasers

    Science.gov (United States)

    Ruschel, Stefan; Yanchuk, Serhiy

    2017-11-01

    We investigate the dynamic mechanisms for low frequency fluctuations in semiconductor lasers subjected to delayed optical feedback, using the Lang-Kobayashi model. This system of delay differential equations displays pronounced envelope dynamics, ranging from erratic, so called low frequency fluctuations to regular pulse packages, if the time scales of fast oscillations and envelope dynamics are well separated. We investigate the parameter regions where low frequency fluctuations occur and compute their Lyapunov spectra. Using the geometric singular perturbation theory, we study this intermittent chaotic behavior and characterize these solutions as bursting slow-fast oscillations.

  6. Processing of insulators and semiconductors

    Science.gov (United States)

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  7. Bistable amphoteric centers in semiconductors

    International Nuclear Information System (INIS)

    Nikitina, A. G.; Zuev, V. V.

    2008-01-01

    It is shown that, at thermodynamic equilibrium, the release of charge carriers from the localized states of bistable amphoteric centers into quasi-free states depends on the degree of compensation. This brings about different functional dependences of the concentration of free charge carriers on temperature. It is found that, in uncompensated semiconductors, the concentration of free charge carriers follows the same dependence in the case of bistable amphoteric centers and bistable amphoteric U - centers, although the distributions of charge carriers over the charge states and configurations are different for these types of centers. The results can be used for interpreting various experimental data insufficiently explained in the context of the traditional approach

  8. Electron beam writing on semiconductors

    International Nuclear Information System (INIS)

    Bierhenke, H.; Kutzer, E.; Pascher, A.; Plitzner, H.; Rummel, P.; Siemens A.G., Muenchen; Siemens A.G., Muenchen

    1979-08-01

    Reported are the results of the 3 1/2 year research project 'Electron beam Writing on Semiconductors'. Work has been done in the field of direct wafer exposure techniques, and of mask making. Described are resist technology, setting up of a research device, exploration of alignment procedures, manufacturing of devices and their radiation influence. Furthermore, investigations and measurements of an electron beam machine bought for mask making purposes, the development of LSI-circuits with this machine, the software necessary and important developments of digital subsystems are reported. (orig.) [de

  9. Trace analysis of semiconductor materials

    CERN Document Server

    Cali, J Paul; Gordon, L

    1964-01-01

    Trace Analysis of Semiconductor Materials is a guidebook concerned with procedures of ultra-trace analysis. This book discusses six distinct techniques of trace analysis. These techniques are the most common and can be applied to various problems compared to other methods. Each of the four chapters basically includes an introduction to the principles and general statements. The theoretical basis for the technique involved is then briefly discussed. Practical applications of the techniques and the different instrumentations are explained. Then, the applications to trace analysis as pertaining

  10. Compound odontoma

    Directory of Open Access Journals (Sweden)

    Monica Yadav

    2012-01-01

    Full Text Available Odontomas have been extensively reported in the dental literature, and the term refers to tumors of odontogenic origin. Though the exact etiology is still unknown, the postulated causes include: local trauma, infection, inheritance and genetic mutation. The majority of the lesions are asymptomatic; however, may be accompanied with pain and swelling as secondary complaints in some cases. Here, we report a case of a compound odontome in a 14 year old patient.

  11. Epitaxial crystal growth by sputter deposition: Applications to semiconductors. Part 2

    International Nuclear Information System (INIS)

    Greene, J.E.

    1984-01-01

    The understanding of the physics of ion-surface interactions has progressed sufficiently to allow sputter depositinn to be used as a crystal growth technique for depositing a wide variety of single crystal elemental, compound, alloy, and superlattice semiconductors. In many cases, films with essentially bulk values of carrier concentrations and mobilities have been obtained. The controlled use of low energy particle bombardment of the growing film during sputter deposition has been shown to affect all stages of crystal growth ranging from adatom mobilities and nucleation kinetics to elemental incorporation probabilities. Such effects provide inherent advantages for sputter deposition over other vapor phase techniques for the low temperature growth of compound and alloy semiconductors and are essential in allowing the growth of new and unique single crystal metastable semiconductors. Part 1 of this review includes sections on experimental techniques, the physics of ion-surface interactions, and ion bombardment effects on film nucleation and growth, while Part 2 presents a discussion of recent results in the growth of elemental, III-V, II-VI, IV-VI, metastable, and other compound semiconductors

  12. High-mobility pyrene-based semiconductor for organic thin-film transistors.

    Science.gov (United States)

    Cho, Hyunduck; Lee, Sunyoung; Cho, Nam Sung; Jabbour, Ghassan E; Kwak, Jeonghun; Hwang, Do-Hoon; Lee, Changhee

    2013-05-01

    Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.

  13. Quadrupole interaction in ternary chalcopyrite semiconductors experiments and theory

    CERN Document Server

    Dietrich, M; Degering, D; Deicher, M; Kortus, J; Magerle, R; Möller, A; Samokhvalov, V; Unterricker, S; Vianden, R

    2000-01-01

    Electric field gradients have been measured at substitutional lattice sites in ternary semiconductors using perturbed gamma - gamma angular correlation spectroscopy. The experimental results for A/sup I/B/sup III/C/sub 2//sup VI/ chalcopyrite structure compounds and Square Operator A/sup II/B/sub 2//sup III/C/sub 4//sup VI/ defect chalcopyrites are compared with ab-initio calculations. The latter were carried out with the WIEN code that uses the full potential linearized augmented plane wave method within a density functional theory. The agreement between experiment and theory is in most cases very good. Furthermore, the anion displacements in AgGaX/sub 2/- compounds (X: S, Se, Te) have been determined theoretically by determining the minimum of the total energy of the electrons in an elementary cell. (20 refs).

  14. Charge transport in amorphous organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Alexander

    2011-03-15

    Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e. g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e. g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8- hydroxyquinoline)aluminium (Alq{sub 3}). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq{sub 3}, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated

  15. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    van Wanum, Maurice; Lebouille, Tom; Visser, Guido; van Vliet, Frank Edward

    2009-01-01

    Abstract In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are silicon, gallium arsenide and gallium nitride. The diodes in the diverse semiconductor technologies themselves are

  16. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    Science.gov (United States)

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  17. Semiconductor nanostructures for artificial photosynthesis

    Science.gov (United States)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  18. Dopants and defects in semiconductors

    CERN Document Server

    McCluskey, Matthew D

    2012-01-01

    "The book goes beyond the usual textbook in that it provides more specific examples of real-world defect physics … The book will be most useful for beginning graduate students in materials science. … an easy reading, broad introductory overview of the field …"-Materials Today, July-August 2012"… well written, with clear, lucid explanations …"-Chemistry World"The scientific development towards the method of controllable doping transformed the erratic and not reproducible family of semiconductor materials into the truly wonderful basis of modern microelectronics. This book tells the remarkable success story and I recommend it!"-Hans J. Queisser, Max-Planck-Institute, Stuttgart, Germany"McCluskey and Haller have written an outstanding modern guide to this field that will be useful to newcomers, and also to active researchers who want to broaden their horizons, as a means to learn the capabilities and limitations of the many techniques that are used in semiconductor-defect science."-Professor Michael J....

  19. The ATLAS semiconductor tracker (SCT)

    International Nuclear Information System (INIS)

    Jackson, J.N.

    2005-01-01

    The ATLAS detector (CERN,LHCC,94-43 (1994)) is designed to study a wide range of physics at the CERN Large Hadron Collider (LHC) at luminosities up to 10 34 cm -2 s -1 with a bunch-crossing rate of 40 MHz. The Semiconductor Tracker (SCT) forms a key component of the Inner Detector (vol. 1, ATLAS TDR 4, CERN,LHCC 97-16 (1997); vol. 2, ATLAS TDR 5, CERN,LHCC 97-17 (1997)) which is situated inside a 2 T solenoid field. The ATLAS Semiconductor Tracker (SCT) utilises 4088 silicon modules with binary readout mounted on carbon fibre composite structures arranged in the forms of barrels in the central region and discs in the forward region. The construction of the SCT is now well advanced. The design of the SCT modules, services and support structures will be briefly outlined. A description of the various stages in the construction process will be presented with examples of the performance achieved and the main difficulties encountered. Finally, the current status of the construction is reviewed

  20. Charge transport in organic semiconductors.

    Science.gov (United States)

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  1. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces

    International Nuclear Information System (INIS)

    Birner, Stefan

    2011-01-01

    The main objective of Part I is to give an overview of some of the methods that have been implemented into the nextnano 3 software. Examples are discussed that give insight into doping, strain and mobility. Applications of the single-band Schroedinger equation include three-dimensional superlattices, and a qubit that is manipulated by a magnetic field. Results of the multi-band k.p method are presented for HgTe-CdTe and InAs-GaSb superlattices, and for a SiGe-Si quantum cascade structure. Particular focus is put on a detailed description of the contact block reduction (CBR) method that has been developed within our research group. By means of this approach, quantum transport in the ballistic limit in one, two and three dimensions can be calculated. I provide a very detailed description of the algorithm and present several well documented examples that highlight the key points of this method. Calculating quantum transport in three dimensions is a very challenging task where computationally efficient algorithms - apart from the CBR method - are not available yet. Part II describes the methods that I have implemented into the nextnano 3 software for calculating systems that consist of a combination of semiconductor materials and liquids. These biosensors have a solid-electrolyte interface, and the charges in the solid and in the electrolyte are coupled to each other through the Poisson-Boltzmann equation. I apply this model to a silicon based protein sensor, where I solve the Schroedinger equation together with the Poisson-Boltzmann equation self-consistently, and compare theoretical results with experiment. Furthermore, I have developed a novel approach to model the charge density profiles at semiconductor-electrolyte interfaces that allows us to distinguish hydrophobic and hydrophilic interfaces. Our approach extends previous work where ion specific potentials of mean force describe the distribution of ion species at the interface. I apply this new model to recently

  2. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Birner, Stefan

    2011-11-15

    The main objective of Part I is to give an overview of some of the methods that have been implemented into the nextnano{sup 3} software. Examples are discussed that give insight into doping, strain and mobility. Applications of the single-band Schroedinger equation include three-dimensional superlattices, and a qubit that is manipulated by a magnetic field. Results of the multi-band k.p method are presented for HgTe-CdTe and InAs-GaSb superlattices, and for a SiGe-Si quantum cascade structure. Particular focus is put on a detailed description of the contact block reduction (CBR) method that has been developed within our research group. By means of this approach, quantum transport in the ballistic limit in one, two and three dimensions can be calculated. I provide a very detailed description of the algorithm and present several well documented examples that highlight the key points of this method. Calculating quantum transport in three dimensions is a very challenging task where computationally efficient algorithms - apart from the CBR method - are not available yet. Part II describes the methods that I have implemented into the nextnano{sup 3} software for calculating systems that consist of a combination of semiconductor materials and liquids. These biosensors have a solid-electrolyte interface, and the charges in the solid and in the electrolyte are coupled to each other through the Poisson-Boltzmann equation. I apply this model to a silicon based protein sensor, where I solve the Schroedinger equation together with the Poisson-Boltzmann equation self-consistently, and compare theoretical results with experiment. Furthermore, I have developed a novel approach to model the charge density profiles at semiconductor-electrolyte interfaces that allows us to distinguish hydrophobic and hydrophilic interfaces. Our approach extends previous work where ion specific potentials of mean force describe the distribution of ion species at the interface. I apply this new model

  3. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  4. Terahertz plasmonics with semiconductor surfaces and antennas

    NARCIS (Netherlands)

    Gómez Rivas, J.; Berrier, A.

    2009-01-01

    Semiconductors have a Drude-like behavior at terahertz (THz) frequencies similar to metals at optical frequencies. Narrow band gap semiconductors have a dielectric constant with a negative real component and a relatively small imaginary component. This permittivity is characteristic of noble metals

  5. Redox properties of small semiconductor particles

    International Nuclear Information System (INIS)

    Liver, N.; Nitzan, A.

    1992-01-01

    The size dependence of electrical and thermodynamic quantities of intermediate-sized semiconductor particles in an electrolyte solution with a given redox pair are studied. The equilibrium constant for this system is then derived based on the relationship of the electrolytic redox components to the size, charges, and concentration of the semiconductor particles. 25 refs., 9 figs., 1 tab

  6. neutron-Induced Failures in semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-13

    Single Event Effects are a very significant failure mode in modern semiconductor devices that may limit their reliability. Accelerated testing is important for semiconductor industry. Considerable more work is needed in this field to mitigate the problem. Mitigation of this problem will probably come from Physicists and Electrical Engineers working together

  7. Semiconductor composition containing iron, dysprosium, and terbium

    Science.gov (United States)

    Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.; Malasi, Abhinav; Taz, Humaira; Farah, Annettee E.; Kalyanaraman, Ramakrishnan; Duscher, Gerd Josef Mansfred; Patel, Maulik K.

    2017-09-26

    An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.

  8. Epitaxy of semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Krogstrup, P.; Ziino, N.L.B.; Chang, W.

    2015-01-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface...

  9. Power semiconductor device adaptive cooling assembly

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to a power semiconductor device (100) cooling assembly for cooling a power semiconductor device (100), wherein the assembly comprises an actively cooled heat sink (102) and a controller (208; 300), wherein the controller (208; 300) is adapted for adjusting the cooling

  10. Two-fluid hydrodynamic model for semiconductors

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2018-01-01

    The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended theory is required. We present a two-fluid hydrodynamic model for semiconductors...

  11. Miniature semiconductor detectors for in vivo dosimetry

    International Nuclear Information System (INIS)

    Rosenfeld, A. B.; Cutajar, D.; Lerch, M. L. F.; Takacs, G.; Cornelius, I. M.; Yudelev, M.; Zaider, M.

    2006-01-01

    Silicon mini-semiconductor detectors are found in wide applications for in vivo personal dosimetry and dosimetry and Micro-dosimetry of different radiation oncology modalities. These applications are based on integral and spectroscopy modes of metal oxide semiconductor field effect transistor and silicon p-n junction detectors. The advantages and limitations of each are discussed. (authors)

  12. Dispersion-induced nonlinearities in semiconductors

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, A.

    2002-01-01

    A dispersive and saturable medium is shown, under very general conditions, to possess ultrafast dynamic behaviour due to non-adiabatic polarisation dynamics. Simple analytical expressions relating the effect to the refractive index dispersion of a semiconductor ire derived and the magnitude...... of the equivalent Kerr coefficient is shown to be in qualitative agreement with measurements on active semiconductor waveguides....

  13. Electronic structure of filled tetrahedral semiconductors

    NARCIS (Netherlands)

    Wood, D.M.; Zunger, Alex; Groot, R. de

    1985-01-01

    We discuss the susceptibility of zinc-blende semiconductors to band-structure modification by insertion of small atoms at their tetrahedral interstitial states. GaP is found to become a direct-gap semiconductor with two He atoms present at its interstitial sites; Si does not. Analysis of the factors

  14. Apparatus for testing semiconductor devices and capacitors

    International Nuclear Information System (INIS)

    York, R.A.

    1984-01-01

    An apparatus is provided for testing semiconductor devices. The apparatus tests the impedance of the semiconductor devices in both conducting and non-conducting states to detect semiconductors whose impedance in the conducting state is too high or whose impedance in the non-conducting state is too low. The apparatus uses a battery source for low voltage d.c. The circuitry for detecting when the impedance is too high in the conducting state includes a lamp in series with the battery source and the semiconductor device, whereby the impedance of the semiconductor device determines whether sufficient current will flow through the lamp to cause the lamp to illuminate. A d.c. to d.c. converter is provided to boost the voltage from the battery source to a relatively high voltage d.c. The relatively high voltage d.c. can be connected by a switch to circuitry for detecting when the impedance of the semiconductor device in the non-conducting state is too low. The circuitry for detecting when the impedance of the semiconductor device is too low includes a resistor which senses the current flowing in the device and converts the current into a voltage proportional to the leakage current. This voltage is then compared against a fixed reference. Further circuitry is provided for providing a visual indication when the voltage representative of leakage in relation to the reference signal indicates that there is excessive current flow through the semiconductor device

  15. Manipulating semiconductor colloidal stability through doping.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  16. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  17. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  18. On the epoxy moulding compound aging effect on package reliability

    NARCIS (Netherlands)

    Noijen, S.P.M.; Engelen, R.A.B.; Martens, J.; Opran, A.; Sluis, van der O.

    2009-01-01

    Most semi-conductor devices are encapsulated by epoxy moulding compound (EMC) material. Even after curing at the prescribed temperature and time in accordance with the supplier's curing specifications often the product is not yet 100% fully cured. As a consequence, the curing process of a product

  19. IRIS Toxicological Review of Thallium and Compounds (External Review Draft)

    Science.gov (United States)

    Thallium compounds are used in the semiconductor industry, the manufacture of optic lenses and low-melting glass, low-temperature thermometers, alloys, electronic devices, mercury lamps, fireworks, and imitation germs, and clinically as an imaging agent in the diagnosis of certai...

  20. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  1. Study on Characteristic of CdZnTe Semiconductor Detectors for Alpha Particle Measurement

    International Nuclear Information System (INIS)

    Kang, Sang Mook; Ha, Jang Ho; Kim, Yong Kyun; Park, Se Hwan; Kim, Han Soo; Chung, Chong Eun

    2005-01-01

    The last 2-3 years have seen continued effort in the development of a wide band gap room-temperature compound semiconductor devices aimed principally at photon imaging covering hard X-rays, synchrotrons, and low to medium energy gamma rays. Especially, among the semiconductor materials of a wide band gap, CdZnTe(CZT) has commonly used X-ray and gammaray detection applications because of the opportunity to achieve and excellent spectral and spatial resolution. It has recently been demonstrated that CZT can be used as an ancillary detector with the ability to detect both alpha particles and X-ray at room temperature. CZT detectors are relatively inexpensive compared with some silicon detectors, and are priced about the same as amorphous silicon and photodiodes which are routinely used for charged particle detection. In this paper, we investigated the use of the CZT semiconductor material as an alpha particles detector

  2. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    Science.gov (United States)

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure-property relationships and in turn help us design high-performance semiconductors based on DA complexes. In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure-property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.

  3. TSOM method for semiconductor metrology

    Science.gov (United States)

    Attota, Ravikiran; Dixson, Ronald G.; Kramar, John A.; Potzick, James E.; Vladár, András E.; Bunday, Benjamin; Novak, Erik; Rudack, Andrew

    2011-03-01

    Through-focus scanning optical microscopy (TSOM) is a new metrology method that achieves 3D nanoscale measurement sensitivity using conventional optical microscopes; measurement sensitivities are comparable to what is typical when using scatterometry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). TSOM can be used in both reflection and transmission modes and is applicable to a variety of target materials and shapes. Nanometrology applications that have been demonstrated by experiments or simulations include defect analysis, inspection and process control; critical dimension, photomask, overlay, nanoparticle, thin film, and 3D interconnect metrologies; line-edge roughness measurements; and nanoscale movements of parts in MEMS/NEMS. Industries that could benefit include semiconductor, data storage, photonics, biotechnology, and nanomanufacturing. TSOM is relatively simple and inexpensive, has a high throughput, and provides nanoscale sensitivity for 3D measurements with potentially significant savings and yield improvements in manufacturing.

  4. Semirelativity in semiconductors: a review.

    Science.gov (United States)

    Zawadzki, Wlodek

    2017-09-20

    An analogy between behavior of electrons in narrow-gap semiconductors (NGS) and relativistic electrons in vacuum is reviewed. Energy band structures [Formula: see text] are considered for various NGS materials and their correspondence to the energy-momentum relation in special relativity is emphasized. It is indicated that special relativity for vacuum is analogous to a two-band [Formula: see text] description for NGS. The maximum electron velocity in NGS is [Formula: see text], which corresponds to the light velocity in vacuum. An effective mass of charge carriers in semiconductors is introduced, relating their velocity to quasimomentum and it is shown that this mass depends on electron energy (or velocity) in a way similar to the mass of free relativistic electrons. In [Formula: see text] alloys one can reach vanishing energy gap at which electrons and light holes become three-dimensional massless Dirac fermions. A wavelength [Formula: see text] is defined for NGS, in analogy to the Compton wavelength in relativistic quantum mechanics. It is estimated that [Formula: see text] is on the order of tens of Angstroms in typical semiconducting materials which is experimentally confirmed in tunneling experiments on energy dispersion in the forbidden gap. Statistical properties of the electron gas in NGS are calculated and their similarity is demonstrated to those of the Juttner gas of relativistic particles. Interband electron tunneling in NGS is described and shown to be in close analogy to the predicted but unobserved tunneling between negative and positive energies resulting from the Dirac equation for free electrons. It is demonstrated that the relativistic analogy holds for orbital and spin properties of electrons in the presence of an external magnetic field. In particular, it is shown that the spin magnetic moment of both NGS electrons and relativistic electrons approaches zero with increasing energy. This conclusion is confirmed experimentally for NGS. Electrons

  5. Reconfigurable engineered motile semiconductor microparticles.

    Science.gov (United States)

    Ohiri, Ugonna; Shields, C Wyatt; Han, Koohee; Tyler, Talmage; Velev, Orlin D; Jokerst, Nan

    2018-05-03

    Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.

  6. High throughput semiconductor deposition system

    Science.gov (United States)

    Young, David L.; Ptak, Aaron Joseph; Kuech, Thomas F.; Schulte, Kevin; Simon, John D.

    2017-11-21

    A reactor for growing or depositing semiconductor films or devices. The reactor may be designed for inline production of III-V materials grown by hydride vapor phase epitaxy (HVPE). The operating principles of the HVPE reactor can be used to provide a completely or partially inline reactor for many different materials. An exemplary design of the reactor is shown in the attached drawings. In some instances, all or many of the pieces of the reactor formed of quartz, such as welded quartz tubing, while other reactors are made from metal with appropriate corrosion resistant coatings such as quartz or other materials, e.g., corrosion resistant material, or stainless steel tubing or pipes may be used with a corrosion resistant material useful with HVPE-type reactants and gases. Using HVPE in the reactor allows use of lower-cost precursors at higher deposition rates such as in the range of 1 to 5 .mu.m/minute.

  7. Volatile organometallic and semiconductor materials

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1991-01-01

    This article reports on a project concerned with the metal organic chemical vapour deposition (MOCVD) of mercury-cadmium telluride (MCT) undertaken by a research consortium based in the Clayton area involving Monash University Chemistry Department, Telecom Research Laboratories, and CSIRO Division of Material Sciences and Technology. An M.R. Semicon 226 MOCVD reactor, operating near atmospheric presure with hydrogen carrier gas has been used. Most applications of MCT are direct consequence of its responsiveness to radiation in infrared region spectrum. The main aims of the project were to prepare and assess a range of volatile organometallics that might find use as a dopant sources for MCT, to prepare and study the properties of a range of different lanthanide complexes for MOCVD applications and to fully characterize the semiconductor wafers after growth. 19 refs., 3 figs

  8. Theory of Defects in Semiconductors

    CERN Document Server

    Drabold, David A

    2007-01-01

    Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.

  9. Semirelativity in semiconductors: a review

    Science.gov (United States)

    Zawadzki, Wlodek

    2017-09-01

    An analogy between behavior of electrons in narrow-gap semiconductors (NGS) and relativistic electrons in vacuum is reviewed. Energy band structures \\varepsilon ≤ft(\\mathbf{k}\\right) are considered for various NGS materials and their correspondence to the energy-momentum relation in special relativity is emphasized. It is indicated that special relativity for vacuum is analogous to a two-band \\mathbf{k}\\centerdot \\mathbf{p} description for NGS. The maximum electron velocity in NGS is u≃ 1× {{10}8}~\\text{cm}~{{\\text{s}}-1} , which corresponds to the light velocity in vacuum. An effective mass of charge carriers in semiconductors is introduced, relating their velocity to quasimomentum and it is shown that this mass depends on electron energy (or velocity) in a way similar to the mass of free relativistic electrons. In \\text{H}{{\\text{g}}1-x}\\text{C}{{\\text{d}}x}\\text{Te} alloys one can reach vanishing energy gap at which electrons and light holes become three-dimensional massless Dirac fermions. A wavelength {λz} is defined for NGS, in analogy to the Compton wavelength in relativistic quantum mechanics. It is estimated that {λz} is on the order of tens of Angstroms in typical semiconducting materials which is experimentally confirmed in tunneling experiments on energy dispersion in the forbidden gap. Statistical properties of the electron gas in NGS are calculated and their similarity is demonstrated to those of the Juttner gas of relativistic particles. Interband electron tunneling in NGS is described and shown to be in close analogy to the predicted but unobserved tunneling between negative and positive energies resulting from the Dirac equation for free electrons. It is demonstrated that the relativistic analogy holds for orbital and spin properties of electrons in the presence of an external magnetic field. In particular, it is shown that the spin magnetic moment of both NGS electrons and relativistic electrons approaches zero with increasing

  10. Semiconductor processing with excimer lasers

    International Nuclear Information System (INIS)

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications

  11. Photodiodes based on fullerene semiconductor

    International Nuclear Information System (INIS)

    Voz, C.; Puigdollers, J.; Cheylan, S.; Fonrodona, M.; Stella, M.; Andreu, J.; Alcubilla, R.

    2007-01-01

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum

  12. Fundamentals of semiconductor processing technology

    CERN Document Server

    El-Kareh, Badih

    1995-01-01

    The drive toward new semiconductor technologies is intricately related to market demands for cheaper, smaller, faster, and more reliable circuits with lower power consumption. The development of new processing tools and technologies is aimed at optimizing one or more of these requirements. This goal can, however, only be achieved by a concerted effort between scientists, engineers, technicians, and operators in research, development, and manufac­ turing. It is therefore important that experts in specific disciplines, such as device and circuit design, understand the principle, capabil­ ities, and limitations of tools and processing technologies. It is also important that those working on specific unit processes, such as lithography or hot processes, be familiar with other unit processes used to manufacture the product. Several excellent books have been published on the subject of process technologies. These texts, however, cover subjects in too much detail, or do not cover topics important to modem tech­ n...

  13. Zinc Alloys for the Fabrication of Semiconductor Devices

    Science.gov (United States)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  14. Compound odontoma

    Directory of Open Access Journals (Sweden)

    José Marcelo Vargas Pinto

    2008-01-01

    Full Text Available Odontomas are the most common types of odontogenic tumors, as they are considered more as a developmental anomaly (hamartoma than as a true neoplasia. The aim of the present study is to describe a clinical case of compound odontoma, analyzing its most commonsigns, its region of location, the decade of life and patient’s gender, disorders that may occur as well as the treatment proposed. In order to attain this objective, the method was description of the present clinical case and bibliographic revision, arriving at the result that the treatment for this type of lesion invariably is surgical removal (enucleation and curettage and the prognosis is excellent. The surgical result was followed up in the post-operative period by radiographic exam, and it was possible to conclude that there was complete cicatrization and tissue repair.

  15. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  16. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  17. Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors.

    Science.gov (United States)

    de Echegaray, Paula; Mancheño, María J; Arrechea-Marcos, Iratxe; Juárez, Rafael; López-Espejo, Guzmán; López Navarrete, J Teodomiro; Ramos, María Mar; Seoane, Carlos; Ortiz, Rocío Ponce; Segura, José L

    2016-11-18

    There is a great interest in peryleneimide (PI)-containing compounds given their unique combination of good electron accepting ability, high abosorption in the visible region, and outstanding chemical, thermal, and photochemical stabilities. Thus, herein we report the synthesis of perylene imide derivatives endowed with a 1,2-diketone functionality (PIDs) as efficient intermediates to easily access peryleneimide (PI)-containing organic semiconductors with enhanced absorption cross-section for the design of tunable semiconductor organic materials. Three processable organic molecular semiconductors containing thiophene and terthiophene moieties, PITa, PITb, and PITT, have been prepared from the novel PIDs. The tendency of these semiconductors for molecular aggregation have been investigated by NMR spectroscopy and supported by quantum chemical calculations. 2D NMR experiments and theoretical calculations point to an antiparallel π-stacking interaction as the most stable conformation in the aggregates. Investigation of the optical and electrochemical properties of the materials is also reported and analyzed in combination with DFT calculations. Although the derivatives presented here show modest electron mobilities of ∼10 -4 cm 2 V -1 s -1 , these preliminary studies of their performance in organic field effect transistors (OFETs) indicate the potential of these new building blocks as n-type semiconductors.

  18. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  19. Frequency modulation of semiconductor disk laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G [Ulyanovsk State University, Ulyanovsk (Russian Federation)

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  20. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  1. Laser Cooling of 2-6 Semiconductors

    Science.gov (United States)

    2016-08-12

    AFRL-AFOSR-JP-TR-2016-0067 Laser Cooling of II-VI Semiconductors Qihua Xiong NANYANG TECHNOLOGICAL UNIVERSITY Final Report 08/12/2016 DISTRIBUTION A...From - To) 15 May 2013 to 14 May 2016 4. TITLE AND SUBTITLE Laser Cooling of II-VI Semiconductors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1...13. SUPPLEMENTARY NOTES 14. ABSTRACT The breakthrough of laser cooling in semiconductor has stimulated strong interest in further scaling up towards

  2. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    Science.gov (United States)

    Yang, Peidong [El Cerrito, CA; Choi, Heonjin [Seoul, KR; Lee, Sangkwon [Daejeon, KR; He, Rongrui [Albany, CA; Zhang, Yanfeng [El Cerrito, CA; Kuykendal, Tevye [Berkeley, CA; Pauzauskie, Peter [Berkeley, CA

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  3. Improvements in or relating to semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, K.; Groves, I.S.; Leigh, P.A.; McIntyre, N.; O'Hara, S.; Speight, J.D.

    1980-01-01

    A method of producing semiconductor devices is described consisting of a series of physical and chemical techniques which results in the production of semiconductor devices such as IMPATT diodes of DC-RF efficiency and high reliability (lifetime). The diodes can be mass produced without significant variation of the technology. One of the techniques used is the high energy proton bombardment of the semiconductor material in depth to passivate specific zones. The energy of the protons is increased in stages at intervals of less than 0.11 MeV up to a predetermined maximum energy. (UK)

  4. Thermal oxidation of III-V compounds

    International Nuclear Information System (INIS)

    Monteiro, O.R.; Evans, J.W.

    1988-01-01

    The thermal oxidation of two important III-V compound semiconductor materials, namely GaAs and InP, has been studied between 300 and 600 0 C. In-situ TEM, cross-sectional TEM (XTEM) and SIMS analyses were used to characterize the reaction products. The first technique allows us to access the reactions at the very moment they are occurring. XTEM provides a clearer picture of the distribution of phases in the oxidized samples. SIMS gives us information on the dopant redistribution after oxidation as well as enrichment of group V element at the oxide semiconductor interface. Based on those results, the reaction products were characterized and reaction mechanisms proposed

  5. Insight on a novel layered semiconductors: CuTlS and CuTlSe

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Ziya S., E-mail: ziyasaliev@gmail.com [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku (Azerbaijan); Donostia International Physics Center (DIPC), 20080 San Sebastian (Spain); Zúñiga, Fco. Javier [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Koroteev, Yury M. [Institute of Strength Physics and Materials Science, Russian Academy of Sciences, Siberian Branch, 634055 Tomsk (Russian Federation); Tomsk State University, Tomsk, 634050 (Russian Federation); Breczewski, Tomasz [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Babanly, Nizamaddin B. [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); Amiraslanov, Imamaddin R. [Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku (Azerbaijan); Politano, Antonio [Department of Physics, University of Calabria, 87036 Rende (CS) (Italy); Madariaga, Gotzon [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); Babanly, Mahammad B. [Institute of Catalysis and Inorganic Chemistry, ANAS, H.Javid ave. 113, AZ1143 Baku (Azerbaijan); and others

    2016-10-15

    Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and are narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.

  6. OPENING ADDRESS: Heterostructures in Semiconductors

    Science.gov (United States)

    Grimmeiss, Hermann G.

    1996-01-01

    Good morning, Gentlemen! On behalf of the Nobel Foundation, I should like to welcome you to the Nobel Symposium on "Heterostructures in Semiconductors". It gives me great pleasure to see so many colleagues and old friends from all over the world in the audience and, in particular, to bid welcome to our Nobel laureates, Prof. Esaki and Prof. von Klitzing. In front of a different audience I would now commend the scientific and technological importance of heterostructures in semiconductors and emphatically emphasise that heterostructures, as an important contribution to microelectronics and, hence, information technology, have changed societies all over the world. I would also mention that information technology is one of the most important global key industries which covers a wide field of important areas each of which bears its own character. Ever since the invention of the transistor, we have witnessed a fantastic growth in semiconductor technology, leading to more complex functions and higher densities of devices. This development would hardly be possible without an increasing understanding of semiconductor materials and new concepts in material growth techniques which allow the fabrication of previously unknown semiconductor structures. But here and today I will not do it because it would mean to carry coals to Newcastle. I will therefore not remind you that heterostructures were already suggested and discussed in detail a long time before proper technologies were available for the fabrication of such structures. Now, heterostructures are a foundation in science and part of our everyday life. Though this is certainly true, it is nevertheless fair to say that not all properties of heterostructures are yet understood and that further technologies have to be developed before a still better understanding is obtained. The organisers therefore hope that this symposium will contribute not only to improving our understanding of heterostructures but also to opening new

  7. IRIS Toxicological Review of Thallium and Compounds ...

    Science.gov (United States)

    Thallium compounds are used in the semiconductor industry, the manufacture of optic lenses and low-melting glass, low-temperature thermometers, alloys, electronic devices, mercury lamps, fireworks, and imitation germs, and clinically as an imaging agent in the diagnosis of certain tumors. EPA's assessment of noncancer health effects and carcinogenic potential of thallium compounds was last prepared and added to the IRIS database between 1988 and 1990. The IRIS program is preparing an assessment that will incorporate current health effects information available for thallium and compounds, and current risk assessment methods. The IRIS assessment for thallium compounds will consist of a Toxicological Review and IRIS Summary. The Toxicological Review is a critical review of the physiochemical and toxicokinetic properties of a chemical, and its toxicity in humans and experimental systems. The assessment will present reference values for the noncancer effects of thallium compounds (RfD and Rfc), and a cancer assessment. The Toxicological Review and IRIS Summary have been subject to Agency review, Interagency review, and external scientific peer review. The final product will reflect the Agency opinion on the overall toxicity of thallium and compounds. EPA is undertaking an Integrated Risk Information System (IRIS) health assessment for thallium and compounds. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effec

  8. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  9. Semiconductor applications of plasma immersion ion implantation ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 6. Semiconductor applications of plasma immersion ion implantation technology ... Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, India ...

  10. Second harmonic spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Yu, Ping; Bozhevolnyi, Sergey I.

    1999-01-01

    Semiconductor nanostructures and their application to optoelectronic devices have attracted much attention recently. Lower-dimensional structures, and in particular quantum dots, are highly anisotropic resulting in broken symmetry as compared to their bulk counterparts. This is not only reflected...

  11. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  12. Semiconductors detectors: basics principals, fabrication and repair

    International Nuclear Information System (INIS)

    Souza Coelho, L.F. de.

    1982-05-01

    The fabrication and repairing techniques of semiconductor detectors, are described. These methods are shown in the way they are applied by the semiconductor detector laboratory of the KFA-Julich, where they have been developed during the last 15 years. The history of the semiconductor detectors is presented here, being also described the detector fabrication experiences inside Brazil. The key problems of manufacturing are raised. In order to understand the fabrication and repairing techniques the working principles of these detectors, are described. The cases in which worked during the stay in the KFA-Julich, particularly the fabrication of a plane Ge (Li) detector, with side entry, and the repair of a coaxial Ge (Li) is described. The vanguard problems being researched in Julich are also described. Finally it is discussed a timetable for the semiconductor detector laboratory of the UFRJ, which laboratory is in the mounting stage now. (Author) [pt

  13. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  14. Analysis and simulation of semiconductor devices

    CERN Document Server

    Selberherr, Siegfried

    1984-01-01

    The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the s...

  15. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  16. Semiconductor Photonic Components for RF Applications

    National Research Council Canada - National Science Library

    Yu, Paul

    2002-01-01

    ... time delay beam formation and beam steering subsystem in phased array antennas. Device and material approaches were investigated to improve the modulator based on semiconductor structures for achieving high spur free dynamic range (SFDR...

  17. Semiconductor Photonic Components for RF Applications

    National Research Council Canada - National Science Library

    Yu, Paul

    2001-01-01

    ... delay beam formation and beam steering subsystems in phased array antennas. Device and material approaches were investigated to improve the modulator based on semiconductor structures for achieving high spur free dynamic range (SFDR...

  18. Room-temperature ductile inorganic semiconductor

    Science.gov (United States)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  19. X-ray absorption spectroscopy of semiconductors

    CERN Document Server

    Ridgway, Mark

    2015-01-01

    X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-sit...

  20. Revenue sharing in semiconductor industry supply chain ...

    Indian Academy of Sciences (India)

    to reduce demand opportunities, inventory needs and production efficiencies, in addition to reducing .... design based on coalition structures in semiconductor supply chain. ..... supplier/contract manufacturer for a product/component category.

  1. Transmission electron microscopy in situ investigation of dislocation mobility in semiconductors

    CERN Document Server

    Vanderschaeve, G; Insa, P D T; Caillard, D

    2000-01-01

    TEM in situ straining experiments provide a unique way to investigate in real time the behaviour of individual dislocations under applied stress. The results obtained on a variety of semiconductors are presented: numerous dislocation sources are observed which makes it possible to measure the dislocation velocity as a function of different physical parameters (local shear stress, temperature, dislocation character, length of the moving dislocation, ...). The experimental results are consistent with a dislocation glide governed by the Peierls mechanism, even for II-VI compounds which have a significant degree of ionic character. For compounds, a linear dependence of the dislocation velocity on the length of the moving segment is noticed, whereas for elemental semiconductors a transition between a length-dependent and a length-independent velocity regime is observed. Analysed in the framework of the kink diffusion model (Hirth and Lothe theory), these results allow an estimation of the kink formation and migrat...

  2. Passivation of electrically active centers by Hydrogen and Lithium in Semiconductors

    CERN Multimedia

    2002-01-01

    The hyperfine technique of Perturbed Angular Correlation Spectroscopy (PAC) has proven to be excellently suited for the microscopic investigation of impurity complexes in semiconductors. But this method is seriously limited by the small number of chemically different isotopes which are suitable for PAC measurements and represent electrically active centers in semiconductors. This bottleneck can be widely overcome by the ISOLDE facility which provides a great variety of shortliving PAC isotopes. The probe atom $^{111m}$Cd, provided by ISOLDE opened the first successful access to PAC investigations of III-V compounds and enabled also the first PAC experiments on double acceptors in silicon and germamum. \\\\ \\\\ At the new ISOLDE facility our experiments were concentrated on the passivation of electrically active centres by hydrogen and lithium in Si, Ge and III-V compounds. Experiments on $^{111m}$Cd in Ge revealed the formation of two different acceptor hydrogen and two different acceptor lithium complexes respe...

  3. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    Science.gov (United States)

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  4. Crystal structure of the new diamond-like semiconductor CuMn2InSe4

    Indian Academy of Sciences (India)

    Abstract. The crystal structure of the semiconductor compound CuMn2InSe4 was analysed using X-ray powder ... properties arising from the presence of magnetic ions in the ... by SEM technique, using a Hitachi S2500 microscope equip-.

  5. Small-signal analysis of granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  6. Small-signal analysis of granular semiconductors

    International Nuclear Information System (INIS)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-01-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  7. Nitride semiconductor devices fundamentals and applications

    CERN Document Server

    Morkoç, Hadis

    2013-01-01

    This book gives a clear presentation of the necessary basics of semiconductor and device physics and engineering. It introduces readers to fundamental issues that will enable them to follow the latest technological research. It also covers important applications, including LED and lighting, semiconductor lasers, high power switching devices, and detectors. This balanced and up-to-date treatment makes the text an essential educational tool for both advanced students and professionals in the electronics industry.

  8. Gain and Index Dynamics in Semiconductor Lasers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    Semiconductor optical amplifiers (SOAs) provide ultrafast, i.e. broadband components for optical communication systems. They enter not only as signal generators and amplifiers, but also as nonlinear elements for ultrafast signal processing such as wavelength conversion, switching, and regeneration...... changed character from bulk semiconductor to quantum wells and most recently to quantum dots. By quantum confinement of the carriers, the light-matter interactions can be significantly modified and the optical properties, including dynamics, can be engineered to match the required functionalities...

  9. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  10. Work on the ATLAS semiconductor tracker barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. All work on these delicate components must be performed in a clean room so that impurities in the air, such as dust, do not contaminate the detector. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions.

  11. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  12. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  13. Charge regulation at semiconductor-electrolyte interfaces.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Quantum transport in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, Tillmann Christoph

    2009-11-15

    The main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the presence of phonons and device imperfections. It is well known that the nonequilibrium Green's function method (NEGF) is a very general and all-inclusive scheme for the description of exactly this kind of transport problem. Although the NEGF formalism has been derived in the 1960's, textbooks about this formalism are still rare to find. Therefore, we introduce the NEGF formalism, its fundamental equations and approximations in the first part of this thesis. Thereby, we extract ideas of several seminal contributions on NEGF in literature and augment this by some minor derivations that are hard to find. Although the NEGF method has often been numerically implemented on transport problems, all current work in literature is based on a significant number of approximations with often unknown influence on the results and unknown validity limits. Therefore, we avoid most of the common approximations and implement in the second part of this thesis the NEGF formalism as exact as numerically feasible. For this purpose, we derive several new scattering self-energies and introduce new self-adaptive discretizations for the Green's functions and self-energies. The most important improvements of our NEGF implementation, however, affect the momentum and energy conservation during incoherent scattering, the Pauli blocking, the current conservation within and beyond the device and the reflectionless propagation through open device boundaries. Our uncommonly accurate implementation of the NEGF method allows us to analyze and assess most of the common approximations and to unveil numerical artifacts that have plagued previous approximate implementations in literature. Furthermore, we apply our numerical implementation of the NEGF method on the stationary electron transport in THz quantum cascade lasers (QCLs) and answer

  15. Self Organization in Compensated Semiconductors

    Science.gov (United States)

    Berezin, Alexander A.

    2004-03-01

    In partially compensated semiconductor (PCS) Fermi level is pinned to donor sub-band. Due to positional randomness and almost isoenergetic hoppings, donor-spanned electronic subsystem in PCS forms fluid-like highly mobile collective state. This makes PCS playground for pattern formation, self-organization, complexity emergence, electronic neural networks, and perhaps even for origins of life, bioevolution and consciousness. Through effects of impact and/or Auger ionization of donor sites, whole PCS may collapse (spinodal decomposition) into microblocks potentially capable of replication and protobiological activity (DNA analogue). Electronic screening effects may act in RNA fashion by introducing additional length scale(s) to system. Spontaneous quantum computing on charged/neutral sites becomes potential generator of informationally loaded microstructures akin to "Carl Sagan Effect" (hidden messages in Pi in his "Contact") or informational self-organization of "Library of Babel" of J.L. Borges. Even general relativity effects at Planck scale (R.Penrose) may affect the dynamics through (e.g.) isotopic variations of atomic mass and local density (A.A.Berezin, 1992). Thus, PCS can serve as toy model (experimental and computational) at interface of physics and life sciences.

  16. Photoemission studies of semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Hamad, K.S.; Roth, R.; Alivisatos, A.P.

    1997-01-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface

  17. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  18. Faraday effect in semimagnetic semiconductors

    International Nuclear Information System (INIS)

    Nikitin, P.I.; Savchuk, A.I.

    1990-01-01

    Experimental and theoretical studies of the Faraday effect in a new class of materials -semimagnetic semiconductors (SS) have been received. Mechanisms of the giant Faraday effect in SS based on s, p-d exchange interaction of excitons, electrons and holes with magnetic ions have been discussed. Faraday rotation as a function of a radiation wavelength, magnetic component concentration, temperature, magnetic field intensity for crystals A 2 B 6 (Mn)A 2 x -1Mn xB 6 : and other SS (GaAs(Mn), CdP 2 (Mn),Pb 1-X2 )Mn x J 2 have been considered. We have attended to use FR for the study of a paramagnetic-spin glass transmission for determining the role of the relaxation effects with a participation of magnetic Mn 2+ ions, exitons, polarons in the direct and inverse Faraday effects. In addition the features of FR in thin films of SS and in spin superlattices have been discussed. Finally, we have analysed possibilities of applying the SS Faraday effect for developing magnetooptic devices (optical isolators and fibre optic sensors of magnetic fields)

  19. Studies of optical properties and applications of some mixed ternary semiconductors

    International Nuclear Information System (INIS)

    Ghosh, P.S.; Ghosh, D.K.; Samanta, L.K.

    1989-01-01

    Refractive indices of some mixed compound semiconductors below the bandgap are presented on the basis of some fundamental parameters and the effect of lattice mismatch on the refractive index step is also studied. The results help to design a variety of opto-electronic devices for the use in optical fiber communication and heterostructure lasers. The calculated values agree well with available experimental values thus justifying the approach. (author)

  20. High-z semiconductor nuclear radiation detectors for room-temperature gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Bornand, Bernard; Friant, Alain.

    1978-09-01

    A bibliographical review (182 articles of periodicals, conferences, reports, thesis and french patents) is presented, as addendum of the report CEA-BIB-210 (1974) on high-Z semiconductor compounds used as materials for the gamma and X-ray detection and spectrometry. This publication reviews issues from 1974 to 1977. References and summaries (in french) are incorporated into 182 bibliograhical notices. Index for authors, corporate authors, documents and periodicals, and subjects is included [fr

  1. Overview of atomic layer etching in the semiconductor industry

    Energy Technology Data Exchange (ETDEWEB)

    Kanarik, Keren J., E-mail: keren.kanarik@lamresearch.com; Lill, Thorsten; Hudson, Eric A.; Sriraman, Saravanapriyan; Tan, Samantha; Marks, Jeffrey; Vahedi, Vahid; Gottscho, Richard A. [Lam Research Corporation, 4400 Cushing Parkway, Fremont, California 94538 (United States)

    2015-03-15

    Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.

  2. Nuclear Electrical and Optical Studies of Hydrogen in Semiconductors.

    CERN Multimedia

    Dietrich, M; Toulemonde, M

    2002-01-01

    During the last years, the understanding of H and its interaction with dopant atoms in Si, Ge and III-V semiconductors has improved considerably concerning the stability of the formed complexes their structural arrangements, and the implications of this interaction on the electrical properties of the semiconductors " passivation " The perturbed angular correlation technique (PAC) has contributed to the understanding of this phenomena on an atomistic scale using radioactive isotopes provided by ISOLDE. \\\\ \\\\The aim of the proposed experiments is twofold: \\\\ \\\\\\begin{enumerate} \\item The H passivation mechanism of acceptors in GaN and ternary III-V compounds (AlGaAs, GaInP, AlGaN) shall be investigated, using the PAC probe atom $^{111m}$Cd as a 'representative' of group II-B metal acceptors. The problems addressed in these technological important systems are microscopic structure, formation and stability of the hydrogen correlated complexes as function of doping and stoichiometry (i.e. the size of the band gap)...

  3. A microprocessor based on a two-dimensional semiconductor

    Science.gov (United States)

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-04-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  4. Overview of atomic layer etching in the semiconductor industry

    International Nuclear Information System (INIS)

    Kanarik, Keren J.; Lill, Thorsten; Hudson, Eric A.; Sriraman, Saravanapriyan; Tan, Samantha; Marks, Jeffrey; Vahedi, Vahid; Gottscho, Richard A.

    2015-01-01

    Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices

  5. Ohmic metallization technology for wide band-gap semiconductors

    International Nuclear Information System (INIS)

    Iliadis, A.A.; Vispute, R.D.; Venkatesan, T.; Jones, K.A.

    2002-01-01

    Ohmic contact metallizations on p-type 6H-SiC and n-type ZnO using a novel approach of focused ion beam (FIB) surface-modification and direct-write metal deposition will be reviewed, and the properties of such focused ion beam assisted non-annealed contacts will be reported. The process uses a Ga focused ion beam to modify the surface of the semiconductor with different doses, and then introduces an organometallic compound in the Ga ion beam, to effect the direct-write deposition of a metal on the modified surface. Contact resistance measurements by the transmission line method produced values in the low 10 -4 Ω cm 2 range for surface-modified and direct-write Pt and W non-annealed contacts, and mid 10 -5 Ω cm 2 range for surface-modified and pulse laser deposited TiN contacts. An optimum Ga surface-modification dosage window is determined, within which the current transport mechanism of these contacts was found to proceed mainly by tunneling through the metal-modified-semiconductor interface layer

  6. Quasiparticle semiconductor band structures including spin-orbit interactions.

    Science.gov (United States)

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  7. Electrical characterization of organic-on-inorganic semiconductor Schottky structures

    International Nuclear Information System (INIS)

    Guellue, Oe; Tueruet, A; Asubay, S

    2008-01-01

    We prepared a methyl red/p-InP organic-inorganic (OI) Schottky device formed by evaporation of an organic compound solution directly to a p-InP semiconductor wafer. The value of the optical band gap energy of the methyl red organic film on a glass substrate was obtained as 2.0 eV. It was seen that the Al/methyl red/p-InP contacts showed a good rectifying behavior. An ideality factor of 2.02 and a barrier height (Φ b ) of 1.11 eV for the Al/methyl red/p-InP contact were determined from the forward bias I-V characteristics. It was seen that the value of 1.11 eV obtained for Φ b for the Al/methyl red/p-InP contact was significantly larger than the value of 0.83 eV for conventional Al/p-InP Schottky diodes. Modification of the interfacial potential barrier for the Al/p-InP diode was achieved using a thin interlayer of the methyl red organic semiconductor. This ascribed to the fact that the methyl red interlayer increases the effective Φ b by influencing the space charge region of InP

  8. Binary copper oxide semiconductors: From materials towards devices

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; Heiliger, C.; Heinemann, M. [1. Physics Institute, Justus-Liebig University of Giessen (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics (IEP), Otto-von-Guericke University Magdeburg (Germany); Shokovets, S. [Institute of Physics, Ilmenau University of Technology (Germany); Mueller, C.; Ronning, C. [Institute of Solid State Physics, Friedrich Schiller University Jena (Germany)

    2012-08-15

    Copper-oxide compound semiconductors provide a unique possibility to tune the optical and electronic properties from insulating to metallic conduction, from bandgap energies of 2.1 eV to the infrared at 1.40 eV, i.e., right into the middle of the efficiency maximum for solar-cell applications. Three distinctly different phases, Cu{sub 2}O, Cu{sub 4}O{sub 3}, and CuO, of this binary semiconductor can be prepared by thin-film deposition techniques, which differ in the oxidation state of copper. Their material properties as far as they are known by experiment or predicted by theory are reviewed. They are supplemented by new experimental results from thin-film growth and characterization, both will be critically discussed and summarized. With respect to devices the focus is on solar-cell performances based on Cu{sub 2}O. It is demonstrated by photoelectron spectroscopy (XPS) that the heterojunction system p-Cu{sub 2}O/n-AlGaN is much more promising for the application as efficient solar cells than that of p-Cu{sub 2}O/n-ZnO heterojunction devices that have been favored up to now. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Modeling bidirectionally coupled single-mode semiconductor lasers

    International Nuclear Information System (INIS)

    Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.

    2002-01-01

    We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power

  10. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    a polarization-induced stabilization of a molecule in its charged and neutral states can lead to large shifts, broadening, and traps in the distribution of charge energies. These results are especially important for multi-component systems (the emission layer of an OLED or the donor-acceptor interface of an organic solar cell), if the change in polarizability upon charging (or excitation in case of energy transport) is different for the components. Thus, the polarizability change upon charging or excitation should be added to the set of molecular parameters essential for understanding charge and energy transport in organic semiconductors. We also studied charge transport in self-assembled systems, where intermolecular packing motives induced by side chains can increase electronic couplings between molecules. This leads to larger charge mobility, which is essential for devices such as organic field effect transistors. However, it is not sufficient to match the average local molecular order induced by the side chains with maxima of the electronic couplings. It is also important to make the corresponding distributions, e.g. of the pitch angle between consecutive molecules, as narrow as possible compared to the window determined by the closest minima of the electronic couplings. The immediate implication for compound design is that the side chains should assist the self-assembling process not only via ''soft'' entropic interactions, but also via stronger specific interactions, such as hydrogen bonding.

  11. Special Heusler compounds for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Balke, B.

    2007-07-01

    This work emphasizes the potential of Heusler compounds in a wide range of spintronic applications. Using electronic structure calculations it is possible to design compounds for specific applications. Examples for GMR and TMR applications, for spin injection into semiconductors, and for spin torque transfer applications will be shown. After a detailed introduction about spintronics and related materials chapter 5 reports about the investigation of new half-metallic compounds where the Fermi energy is tuned in the middle of the gap to result in more stable compounds for GMR and TMR applications. The bulk properties of the quaternary Heusler alloy Co{sub 2}Mn{sub 1-x}Fe{sub x}Si with the Fe concentration ranging from x=0 to 1 are reported and the results suggest that the best candidate for applications may be found at an iron concentration of about 50%. Due to the effect that in the Co{sub 2}Mn{sub 1-x}Fe{sub x}Si series the transition metal carrying the localized moment is exchanged and this might lead to unexpected effects on the magnetic properties if the samples are not completely homogeneous chapter 6 reports about the optimization of the Heusler compounds for GMR and TMR applications. The structural and magnetic properties of the quaternary Heusler alloy Co{sub 2}FeAl{sub 1-x}Si{sub x} with varying Si concentration are reported. From the combination of experimental (better order for high Si content) and theoretical findings (robust gap at x=0.5) it is concluded that a compound with an intermediate Si concentration close to x=0.5-0.7 would be best suited for spintronic applications, especially for GMR and TMR applications. In chapter 7 the detailed investigation of compounds for spin injection into semiconductors is reported. It is shown that the diluted magnetic semiconductors based on CoTiSb with a very low lattice mismatch among each other are interesting materials for spintronics applications like Spin-LEDs or other spin injection devices. Chapter 8 refers

  12. Wavelength modulation spectroscopy of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.E.

    1977-10-01

    The use of modulation spectroscopy to study the electronic properties of solids has been very productive. The construction of a wide range Wavelength Modulation Spectrometer to study the optical properties of solids is described in detail. Extensions of the working range of the spectrometer into the vacuum ultraviolet are discussed. Measurements of the reflectivity and derivative reflectivity spectra of the lead chalcogenides, the chalcopyrite ZnGeP/sub 2/, the layer compounds GaSe and GaS and their alloys, the ferroelectric SbSI, layer compounds SnS/sub 2/ and SnSe/sub 2/, and HfS/sub 2/ were made. The results of these measurements are presented along with their interpretation in terms of band structure calculations.

  13. Antiferromagnetic phase of the gapless semiconductor V3Al

    Science.gov (United States)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D.; Lewis, L. H.; Saúl, A. A.; Radtke, G.; Heiman, D.

    2015-03-01

    Discovering new antiferromagnetic (AF) compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The AF gapless semiconducting D 03 phase of V3Al was successfully synthesized via arc-melting and annealing. The AF properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-thirds of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction, and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing AF elements.

  14. Resin bleed improvement on surface mount semiconductor device

    Science.gov (United States)

    Rajoo, Indra Kumar; Tahir, Suraya Mohd; Aziz, Faieza Abdul; Shamsul Anuar, Mohd

    2018-04-01

    Resin bleed is a transparent layer of epoxy compound which occurs during molding process but is difficult to be detected after the molding process. Resin bleed on the lead on the unit from the focused package, SOD123, can cause solderability failure at end customer. This failed unit from the customer will be considered as a customer complaint. Generally, the semiconductor company has to perform visual inspection after the plating process to detect resin bleed. Mold chase with excess hole, split cavity & stepped design ejector pin hole have been found to be the major root cause of resin bleed in this company. The modifications of the mold chase, changing of split cavity to solid cavity and re-design of the ejector pin proposed were derived after a detailed study & analysis conducted to arrive at these solutions. The solutions proposed have yield good results during the pilot run with zero (0) occurrence of resin bleed for 3 consecutive months.

  15. Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only)

    International Nuclear Information System (INIS)

    Olsson, Paer; Guillemoles, J-F; Domain, C

    2008-01-01

    Present photovoltaic devices, based on p/n junctions, are limited from first principles to maximal efficiencies of 31% (40% under full solar concentration; Shockley and Queisser 1961 J. Appl. Phys. 32 510). However, more innovative schemes may overcome the Shockley-Queisser limit since the theoretical maximal efficiency of solar energy conversion is higher than 85% (Harder and Wuerfel 2003 Semicond. Sci. Technol. 18 S151). To date, the only practical realization of such an innovative scheme has been multi-junction devices, which at present hold the world record for efficiency at nearly 41% at significant solar concentration (US DOE news site: http://www.energy.gov/news/4503.htm). It has been proposed that one could make use of the solar spectrum in much the same way as the multi-junction devices do but in a single cell, using impurity induced intermediate levels to create gaps of different sizes. This intermediate level semiconductor (ILSC) concept (Green and Wenham 1994 Appl. Phys. Lett. 65 2907; Luque and MartI1997 Phys. Rev. Lett. 78 5014) has a maximal efficiency similar to that of multi-junction devices but suffers from prohibitively large non-radiative recombination rates. We here propose to use a ferromagnetic impurity scheme in order to reduce the non-radiative recombination rates while maintaining the high theoretical maximum efficiency of the ILSC scheme, that is about 46%. Using density functional theory calculations, the electronic and energetic properties of transition metal impurities for a wide range of semiconductors have been analysed. Of the several hundred compounds studied, only a few fulfil the design criteria that we present here. As an example, wide gap AlP is one of the most promising compounds. It was found that inclusion of significant amounts of Mn in AlP induces band structures providing conversion efficiencies potentially close to the theoretical maximum, with an estimated Curie temperature reaching above 100 K

  16. Design and exploration of semiconductors from first principles: A review of recent advances

    Science.gov (United States)

    Oba, Fumiyasu; Kumagai, Yu

    2018-06-01

    Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal–semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III–V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In–Ga–Zn–O transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II–VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1‑ x Ga x Se2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and Cu

  17. Recent advances in Tl Br, Cd Te and CdZnTe semiconductor radiation detectors: a review

    International Nuclear Information System (INIS)

    Oliveira, Icimone B.

    2011-01-01

    The success in the development of radiation spectrometers operating at room temperature is based on many years of effort on the part of large numbers of workers around the world. These individuals have contributed to the understanding of the fundamental materials issues associated with the growth of semiconductors for this application, the development of device fabrication and processing technology, and advances in low noise electronics and pulse processing. Progress in this field continues at an accelerated pace, as in evidenced by the improvements in detector performance and by the growing number of commercial products. Thus, the last years have been seen continued effort in the development of room temperature compound semiconductors devices. High-Z compound semiconductor detectors has been explored for high energy resolution, high detection efficiency and are of low cost. Compound semiconductors detectors are well suited for addressing needs of demanding applications such as bore hole logging where high operating temperature are encountered. In this work recent developments in semiconductors detectors were reviewed. This review concentrated on thallium bromide (TlBr), cadmium zinc telluride (CdZnTe) and cadmium telluride (CdTe) crystals detectors. TlBr has higher stopping power compared to common semiconductor materials because it has the higher photoelectric and total attenuation coefficients over wide energy range from 100 keV to 1 MeV. CdTe and CdZnTe detectors have several attractive features for detecting X-ray and low energy gamma ray. Their relatively large band gaps lead to a relatively low leakage current and offer an excellent energy resolution at room temperature. A literature survey and bibliography was also included. (author)

  18. Recent advances in Tl Br, Cd Te and CdZnTe semiconductor radiation detectors: a review

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone B. [Universidade Bandeirante (UNIBAN), Sao Paulo, SP (Brazil)

    2011-07-01

    The success in the development of radiation spectrometers operating at room temperature is based on many years of effort on the part of large numbers of workers around the world. These individuals have contributed to the understanding of the fundamental materials issues associated with the growth of semiconductors for this application, the development of device fabrication and processing technology, and advances in low noise electronics and pulse processing. Progress in this field continues at an accelerated pace, as in evidenced by the improvements in detector performance and by the growing number of commercial products. Thus, the last years have been seen continued effort in the development of room temperature compound semiconductors devices. High-Z compound semiconductor detectors has been explored for high energy resolution, high detection efficiency and are of low cost. Compound semiconductors detectors are well suited for addressing needs of demanding applications such as bore hole logging where high operating temperature are encountered. In this work recent developments in semiconductors detectors were reviewed. This review concentrated on thallium bromide (TlBr), cadmium zinc telluride (CdZnTe) and cadmium telluride (CdTe) crystals detectors. TlBr has higher stopping power compared to common semiconductor materials because it has the higher photoelectric and total attenuation coefficients over wide energy range from 100 keV to 1 MeV. CdTe and CdZnTe detectors have several attractive features for detecting X-ray and low energy gamma ray. Their relatively large band gaps lead to a relatively low leakage current and offer an excellent energy resolution at room temperature. A literature survey and bibliography was also included. (author)

  19. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  20. Controlling Molecular Doping in Organic Semiconductors.

    Science.gov (United States)

    Jacobs, Ian E; Moulé, Adam J

    2017-11-01

    The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structural properties of III-V zinc-blende semiconductors under pressure

    International Nuclear Information System (INIS)

    Froyen, S.; Cohen, M.L.

    1983-01-01

    The pseudopotential method within the local-density approximation is used to investigate the static and structural properties of some III-V compound semiconductors. Comparisons of calculated total energies as a function of volume and structure yield information about solid-solid phase transformations. At high pressures the results indicate that several metallic structures are lower in energy than the zinc-blende structure. From our results the compounds (AlP, AlAs, GaP, and GaAs) can be divided into two classes. In the Ga compounds, we find a pressure-induced phase transformation to either rocksalt, β-Sn, or NiAs, whereas in the Al compounds rocksalt and NiAs are stabilized with respect to β-Sn. All structures except zinc blende are metallic. We discuss the electronic structure of each phase and show how it relates to structural stability

  2. Transport Imaging of Spatial Distribution of Mobility-Lifetime (Micro Tau) Product in Bulk Semiconductors for Nuclear Radiation Detection

    Science.gov (United States)

    2012-06-01

    reproducibility for currents of 3×10-10 A, and 6×10-10 A. An operating current of 1×10-10 A shows higher variations in the distribution beginning at...York: John Wiley & Sons, 2000. [21] A. Owens and A. Peacock , “Compound semiconductor radiation detectors,” Nucl. Instr. and Meth. A, vol. 531, pp. 18...A. G. Kozorezov, J. K. Wigmore, A. Owens, R. den Hartog, A. Peacock , and H. A. Al-Jawari, “Resolution degradation of semiconductor detectors due to

  3. Positron annihilation and Wheeler complexes in semiconductors

    International Nuclear Information System (INIS)

    Prokop'ev, E.P.

    1995-01-01

    Properties of Ps-Ex (positron-exciton) complex nature Wheeler complexes that may be formed at irradiation of semiconductors and ion crystals by positrons at low temperature under conditions of optical excitation by excitons are studied. Binding energy of similar and more complex systems regarding decomposition in Ps and Ex and/or Ex ± exceeds, at least, 0.1 eV, while lifetime regarding biquantum-self-annihilation constitutes τ 2γ ∼5.02x10 - 10 κ c 3 c (κ c -phenomenological parameter of the effective mass method). The lifetime estimations enabled to conclude that Ps-Ex complexes may be detected in some oxide semiconductors, in zinc sulfide, as well as, in alkaline-haloid crystals. At the same time, in silicon, gallium arsenide and in other semiconductors of A 3 B 5 and A 2 B 6 it is highly improbable to observe these complexes. 27 refs

  4. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  5. Long wave polar modes in semiconductor heterostructures

    CERN Document Server

    Trallero-Giner, C; García-Moliner, F; Garc A-Moliner, F; Perez-Alvarez, R; Garcia-Moliner, F

    1998-01-01

    Long Wave Polar Modes in Semiconductor Heterostructures is concerned with the study of polar optical modes in semiconductor heterostructures from a phenomenological approach and aims to simplify the model of lattice dynamics calculations. The book provides useful tools for performing calculations relevant to anyone who might be interested in practical applications. The main focus of Long Wave Polar Modes in Semiconductor Heterostructures is planar heterostructures (quantum wells or barriers, superlattices, double barrier structures etc) but there is also discussion on the growing field of quantum wires and dots. Also to allow anyone reading the book to apply the techniques discussed for planar heterostructures, the scope has been widened to include cylindrical and spherical geometries. The book is intended as an introductory text which guides the reader through basic questions and expands to cover state-of-the-art professional topics. The book is relevant to experimentalists wanting an instructive presentatio...

  6. Slow and fast light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Mørk, Jesper; Hansen, Per Lunnemann; Xue, Weiqi

    2010-01-01

    Investigations of slow and fast light effects in semiconductor waveguides entail interesting physics and point to a number of promising applications. In this review we give an overview of recent progress in the field, in particular focusing on the physical mechanisms of electromagnetically induced...... transparency and coherent population oscillations. While electromagnetically induced transparency has been the most important effect in realizing slowdown effects in atomic gasses, progress has been comparatively slow in semiconductors due to inherent problems of fast dephasing times and inhomogeneous...... broadening in quantum dots. The physics of electromagnetically induced transparency in semiconductors is discussed, emphasizing these limitations and recent suggestions for overcoming them. On the other hand, the mechanism of coherent population oscillations relies on wave mixing effects and is well suited...

  7. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2010-01-01

    This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems...

  8. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  9. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  10. Semiconductor laser using multimode interference principle

    Science.gov (United States)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao

    2018-01-01

    Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.

  11. Developing New Nanoprobes from Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.

  12. Optical Biosensors Based on Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Raúl J. Martín-Palma

    2009-06-01

    Full Text Available The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented.

  13. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    Science.gov (United States)

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  14. Rubber compounding and processing

    CSIR Research Space (South Africa)

    John, MJ

    2014-06-01

    Full Text Available This chapter presents an overview on the compounding and processing techniques of natural rubber compounds. The introductory portion deals with different types of rubbers and principles of rubber compounding. The primary and secondary fillers used...

  15. Temperature dependent electronic conduction in semiconductors

    International Nuclear Information System (INIS)

    Roberts, G.G.; Munn, R.W.

    1980-01-01

    This review describes the temperature dependence of bulk-controlled electronic currents in semiconductors. The scope of the article is wide in that it contrasts conduction mechanisms in inorganic and organic solids and also single crystal and disordered semiconductors. In many experimental situations it is the metal-semiconductor contact or the interface between two dissimilar semiconductors that governs the temperature dependence of the conductivity. However, in order to keep the length of the review within reasonable bounds, these topics have been largely avoided and emphasis is therefore placed on bulk-limited currents. A central feature of electronic conduction in semiconductors is the concentrations of mobile electrons and holes that contribute to the conductivity. Various statistical approaches may be used to calculate these densities which are normally strongly temperature dependent. Section 1 emphasizes the relationship between the position of the Fermi level, the distribution of quantum states, the total number of electrons available and the absolute temperature of the system. The inclusion of experimental data for several materials is designed to assist the experimentalist in his interpretation of activation energy curves. Sections 2 and 3 refer to electronic conduction in disordered solids and molecular crystals, respectively. In these cases alternative approaches to the conventional band theory approach must be considered. For example, the velocities of the charge carriers are usually substantially lower than those in conventional inorganic single crystal semiconductors, thus introducing the possibility of an activated mobility. Some general electronic properties of these materials are given in the introduction to each of these sections and these help to set the conduction mechanisms in context. (orig.)

  16. Blasting detonators incorporating semiconductor bridge technology

    Energy Technology Data Exchange (ETDEWEB)

    Bickes, R.W. Jr.

    1994-05-01

    The enormity of the coal mine and extraction industries in Russia and the obvious need in both Russia and the US for cost savings and enhanced safety in those industries suggests that joint studies and research would be of mutual benefit. The author suggests that mine sites and well platforms in Russia offer an excellent opportunity for the testing of Sandia`s precise time-delay semiconductor bridge detonators, with the potential for commercialization of the detonators for Russian and other world markets by both US and Russian companies. Sandia`s semiconductor bridge is generating interest among the blasting, mining and perforation industries. The semiconductor bridge is approximately 100 microns long, 380 microns wide and 2 microns thick. The input energy required for semiconductor bridge ignition is one-tenth the energy required for conventional bridgewire devices. Because semiconductor bridge processing is compatible with other microcircuit processing, timing and logic circuits can be incorporated onto the chip with the bridge. These circuits can provide for the precise timing demanded for cast effecting blasting. Indeed tests by Martin Marietta and computer studies by Sandia have shown that such precise timing provides for more uniform rock fragmentation, less fly rock, reduce4d ground shock, fewer ground contaminants and less dust. Cost studies have revealed that the use of precisely timed semiconductor bridges can provide a savings of $200,000 per site per year. In addition to Russia`s vast mineral resources, the Russian Mining Institute outside Moscow has had significant programs in rock fragmentation for many years. He anticipated that collaborative studies by the Institute and Sandia`s modellers would be a valuable resource for field studies.

  17. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  18. α-particle shielding of semiconductor device

    International Nuclear Information System (INIS)

    McKeown, P.J.A.; Perry, J.P.; Waddell, J.M.; Barker, K.D.

    1981-01-01

    Soft errors in semiconductor devices, e.g. random access memories, arising from the bombardment of the device by alpha particles produced by the disintegration of minute traces of uranium or thorium in the packaging materials are prevented by coating the active surface of the semiconductor chip with a thin layer, e.g. 20 to 100 microns of an organic polymeric material, this layer being of sufficient thickness to absorb the particles. Typically, the polymer is a poly-imide formed by u.v. electron-beam or thermal curing of liquid monomer applied to the chip surface. (author)

  19. Optically induced Hall effect in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M; Gray, E Mac A, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2009-03-01

    We describe an experiment which investigates the effect of a longitudinal electric field on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a Hall voltage resulting from nonequilibrium magnetization induced by the spin-carrier electrons accumulating at the transverse boundaries of the sample as a result of asymmetries in scattering for spin-up and spin-down electrons in the presence of spin-orbit interaction. It is found that the effect depends on the longitudinal electric field and doping density as well as on temperature. The results are presented by discussing the dominant spin relaxation mechanisms in semiconductors.

  20. Ion implantation in semiconductors and other materials

    International Nuclear Information System (INIS)

    Guernet, G.; Bruel, M.; Gailliard, J.P.; Garcia, M.; Robic, J.Y.

    1977-01-01

    The evolution of ion implantation techniques in the field of semiconductors and its extension to various fields such as metallurgy, mechanics, superconductivity and opto-electronics are considered. As for semiconductors ion implantation is evoked as: a means of predeposition of impurities at low doping level (10 11 to 10 14 cm -2 ); a means for obtaining profiles of controlled concentration; a means of reaching high doping levels with using 'strong current' implantation machines of the second generation. Some results obtained are presented [fr