WorldWideScience

Sample records for compound nucleus formation

  1. Formation and decay of a hot compound nucleus

    Directory of Open Access Journals (Sweden)

    Carlson B.V.

    2014-04-01

    Full Text Available The compound nucleus plays an important role in nuclear reactions over a wide range of projectile-target combinations and energies. The limits that angular momentum places on its formation and existence are, for the most part, well understood. The limits on its excitation energy are not as clear. Here we first analyze general geometrical and thermodynamical features of a hot compound nucleus. We then discuss the manners by which it can decay and close by speculating on the high energy limit to its formation and existence.

  2. Dynamical hindrance to compound nucleus formation in heavy ion reactions

    International Nuclear Information System (INIS)

    Blocki, J.; Feldmeier, H.; Swiatecki, W.J.

    1987-01-01

    A large number of dynamical trajectories corresponding to colliding nuclei, as represented by an idealized, sharp-surfaced liquid-drop model with one-body dissipation are examined. The objective was to delineate quantitatively, within this model, the behaviour of the extra-extra-push energy E XX in its dependence on the mass /or charge/ numbers of the colliding nuclei. Qualitatively, the results are as anticipated on the basis of earlier studies: the appearance of a dynamical limitation on compound nucleus formation beyond a certain threshold locus in the A 1 . A 2 plane, with the energy E XX rising smoothly but rapidly beyond the threshold. The reduction of the two-dimensional function E XX /A 1 ,A 2 / to a one-dimensional function of a mean fissility x m appears possible as a rough approximation. As expected, the mean fissility x and the entrance channel fissility x 0 . The optimum choice appears to be one in which x is given about twice the weight of x 0

  3. Various processes occurring in strong interactions between heavy ions: Compound nucleus formation, incomplete fusion, and quasifission

    International Nuclear Information System (INIS)

    Lefort, M.

    1975-01-01

    This paper deals with the problem of various deep processes occurring when two complex nuclei enter in collision. It is suggested that very deep inelastic processes may lead to either a compound nucleus or a composite system which shortly decays into two fission fragments (quasifission process). Particularly for heavy projectiles and targets, the predominant Coulomb potential inhibits the compound nucleus formation for low l waves. Then a critical angular momentum can be defined as the limit below which both processes (quasifission and compound nucleus formation) occur. For the heaviest nuclei, nearly all l waves below l) contribute to the quasifission phenomenon

  4. A systematics of optical model compound nucleus formation cross sections for neutrons, proton, deuteron, 3He and alpha particle incidents

    International Nuclear Information System (INIS)

    Murata, Toru

    2000-01-01

    Simple formulae to reproduce the optical model compound nucleus formation cross sections for neutron, proton, deuteron, triton, 3 He and alpha particles are presented for target nuclei of light to medium weight mass region. (author)

  5. Dependence of compound nucleus formation probability on K equilibration time in heavy-ion reactions

    International Nuclear Information System (INIS)

    Yadav, C.; Thomas, R.G.; Mohanty, A.K.; Kapoor, S.S.

    2014-01-01

    In the present work, we have carried out the analysis of fragment anisotropy data of various systems selected for cases Z 1 Z 2 < 1600 and Z CN < 96 so that both QF and FF are absent and the anomalous anisotropies are only due to PEF. It may also be noted that in such cases J cr (the J above which the fusion pocket vanishes) is less than J Bf = 0 (the J at which the liquid drop fission barrier vanishes) so that all J's will be contributing to PEF as well. According to PEF model, the observed angular anisotropy of fission fragments in heavy-ion induced reactions can be written as an admixture of two components: the anisotropy from compound nucleus fission (CN) and anisotropy due to non-compound nucleus fission (NCN)

  6. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1986-01-01

    Collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two-center shell model in the Strutinsky method. It is shown that fusion of two colliding heavy ions occurs by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers, whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determines whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Coulomb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102 < or =Z < or =114

  7. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1985-07-01

    The collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two centre shell model in Strutinsky method. It is shown that fusion of two colliding heavy ions occur by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determine whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus, can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Couloumb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102<=Z<=114. (author)

  8. Fast fission phenomenon, deep inelastic reactions and compound nucleus formation described within a dynamical macroscopic model

    International Nuclear Information System (INIS)

    Gregoire, C.; Ngo, C.; Remaud, B.

    1982-01-01

    We present a dynamical model to describe dissipative heavy ion reactions. It treats explicitly the relative motion of the two ions, the mass asymmetry of the system and the projection of the isospin of each ion. The deformations, which are induced during the collision, are simulated with a time-dependent interaction potential. This is done by a time-dependent transition between a sudden interaction potential in the entrance channel and an adiabatic potential in the exit channel. The model allows us to compute the compound-nucleus cross section and multidifferential cross-sections for deep inelastic reactions. In addition, for some systems, and under certain conditions which are discussed in detail, a new dissipative heavy ion collision appears: fast-fission phenomenon which has intermediate properties between deep inelastic and compound nucleus reactions. The calculated properties concerning fast fission are compared with experimental results and reproduce some of those which could not be understood as belonging to deep inelastic or compound-nucleus reactions. (orig.)

  9. Dynamical hindrance to compound-nucleus formation in heavy-ion reactions

    International Nuclear Information System (INIS)

    Blocki, J.P.; Swiatecki, W.J.; Feldmeier, H.

    1986-05-01

    The model of a sharp-surfaced drop with one-body dissipation is used to map out the extra-extra push energy Esub(xx)(A 1 ,A 2 ) (i.e. the excess bombarding energy above the Coulomb barrier required to form a compound nucleus) in its dependence on the mass numbers A 1 , A 2 of the colliding nuclei. The calculated two-dimensional function Esub(xx)(A 1 ,A 2 ) may be scaled approximately to a one-dimensional dependence on a mean fissility parameter xsub(m) = (2/3)x + (1/3)xsub(e), where x is the total system's fissility and xsub(e) is the entrance channel 'effective' fissility. Apart from indications of possible nuclear structure effects, the theoretical predictions seem consistent with experimental data on evaporation residue measurements for system with A 1 =A 2 . For asymmetric systems the relation to experiment is unclear. A by-product is the calculation of nucleus-nucleus sticking times, which are generally found to be in the range around a few times 10 -21 s, but could be longer in special cases. (orig.)

  10. Hyperon compound nucleus

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1987-11-01

    The formation of various hypernuclei from K - absorption at rest is discussed from the viewpoints of compound decay of highly excited hypernuclei in contrast to the direct reaction mechanism. Recent (stopped K - , π) experiments at KEK as well as old data of emulsion and bubble chamber experiments are discussed. Some future direction of hypernuclear spectroscopy is suggested. (author)

  11. Synthesis of superheavy elements and dinuclear-system concept of compound-nucleus formation

    Energy Technology Data Exchange (ETDEWEB)

    Antonenko, N.V.; Adamian, G.G.; Cherepanov, E.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)] [and others

    1996-12-31

    Dinuclear system concept is applied to the analysis of reactions used for the synthesis of elements with Z = 110, 112, 114, and 116. The inner fusion barriers obtained for these reactions are in good agreement with the experimental estimations resulted from the excitation energies of compound nuclei. A model is suggested for the calculation of the competition between complete fusion and quasifission in reactions with heavy nuclei. The fusion rate through the inner fusion barrier in mass asymmetry is found by using the multidimensional Kramers-type stationary solution of the Fokker-Planck equation. The influence of dissipative effects on the dynamics of nuclear fusion is considered.

  12. Compound nucleus studies withy reverse kinematics

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1985-06-01

    Reverse kinematics reactions are used to demonstrate the compound nucleus origin of intermediate mass particles at low energies and the extension of the same mechanism at higher energies. No evidence has appeared in our energy range for liquid-vapor equilibrium or cold fragmentation mechanisms. 11 refs., 12 figs

  13. Formation of light particles in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Penionzhkevich, Yu.

    1993-01-01

    The principal experimental results on the yield of the light charged particles in nucleus-nucleus collisions at the low and intermediate energies are reviewed. Inclusive spectra of light particles and their coincidences with the characteristic KX-rays, γ-rays, neutrons, projectile-like fragments, other light particles, fission fragments, and evaporation residues are analyzed. The main theoretical models used for the description of the light particle formation are briefly outlined together with their merits and shortcomings. The unsolved problems of fast light particle formation, in particular, and of nucleus-nucleus interaction dynamics, on the whole, are discussed with the outlooks of new experiments able to clear up some of these problems. (author) 144 refs., 40 figs., 2 tabs

  14. Nuclear alignment following compound nucleus reactions

    International Nuclear Information System (INIS)

    Butler, P.A.; Nolan, P.J.

    1981-01-01

    A procedure for calculating the alignment of a nuclear state populated by a compound nucleus reaction is given and used to investigate how alignment varies for different types of population mechanisms. The calculations are compared to both predictions of Gaussian models for the state population distribution and to experimental data, for a variety of types of nuclear reactions. The treatment of alignment in the analysis of γ-ray angular distribution is discussed. (orig.)

  15. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Mitchell, G. E.; Crawford, B. E.; Grossmann, C. A.; Lowie, L. Y.; Bowman, J. D.; Knudson, J.; Penttilae, S.; Seestrom, S. J.; Smith, D. A.; Yen, Yi-Fen; Yuan, V. W.; Delheij, P. P. J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N. R.; Sharapov, E. I.; Stephenson, S. L.

    1999-01-01

    Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized

  16. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Bowman, J.D.; Frankle, C.M.; Green, A.A.

    1994-01-01

    The status of parity violation in the compound nucleus is reviewed. The results of previous experimental results obtained by scattering polarized epithermal neutrons from heavy nuclei in the 3-p and 4-p p-wave strength function peaks are presented. Experimental techniques are presented. The extraction of the mean squared matrix element of the parity-violating interaction, M 2 , between compound-nuclear levels and the relationship of M 2 to the coupling strengths in the meson exchange weak nucleon-nucleon potential are discussed. The tendency of measured asymmetries to have a common sign and theoretical implications are discussed. New experimental results are presented that show that the common sign phenomenon is not universal, as theoretical models developed up to now would predict

  17. Semi classical model of the neutron resonance compound nucleus

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1995-01-01

    A Semi-classical model of compound nucleus is developed, where time evolution and recurrence for many degrees of freedom (oscillators) excited simultaneously are explicitly considered. The effective number of oscillators plays the role in the compound nucleus, and the nuclear temperatures are derived, which are in good agreement with the traditional values. Time structures of the compound nucleus at resonance are considered, from which equidistant level series with an envelope of strength function of giant resonance nature is obtained. S-matrix formulation for fine structure resonance is derived. (author)

  18. New quasibound states of the compound nucleus in α -particle capture by the nucleus

    Science.gov (United States)

    Maydanyuk, Sergei P.; Zhang, Peng-Ming; Zou, Li-Ping

    2017-07-01

    We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states (called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus. With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1) a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN, (3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4) high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture reaction of α +44Ca . We predict quasibound energy levels and determine fusion probabilities for this reaction. The difference between our approach and theory of quasistationary states with complex energies applied for the α capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture (according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches describe different states of the α capture (for the same α -nucleus potential).

  19. Oriented heavy ions and the choice of a cool compound nucleus reaction

    International Nuclear Information System (INIS)

    Aroumougame, R.; Gupta, R.K.

    1980-01-01

    Potential energy surfaces are calculated within the mechanism of fragmentation theory with a view to selecting the target-projectile combinations for producing new elements through cool compound nucleus formation. The orientation of the colliding nuclei is also included. It is shown that both the reaction partners of a cool compound nucleus, formed in either a central or a nearly central collision, should preferably be spherical and either nearly symmetric or extremely asymmetric. For reactions with deformed nuclei, it is suggested that polarised targets should be used. The calculations are illustrated for the compound nuclei 258 104 and 260 106. (author)

  20. Statistical emission of complex fragments from highly excited compound nucleus

    International Nuclear Information System (INIS)

    Matsuse, T.

    1991-01-01

    A full statistical analysis has been given in terms of the Extended Hauser-Feshbach method. The charge and kinetic energy distributions of 35 Cl+ 12 C reaction at E lab = 180, 200 MeV and 23 Na+ 24 Mg reaction at E lab = 89 MeV which form the 47 V compound nucleus are investigated as a prototype of the light mass system. The measured kinetic energy distributions of the complex fragments are shown to be well reproduced by the Extended Hauser-Feshbach method, so the observed complex fragment production is understood as the statistical binary decay from the compound nucleus induced by heavy-ion reaction. Next, this method is applied to the study of the complex production from the 111 In compound nucleus which is formed by the 84 Kr+ 27 Al reaction at E lab = 890 MeV. (K.A.) 18 refs., 10 figs

  1. Centrifugal fragmentation of a dinuclear system in the process of its evolution to the compound nucleus

    International Nuclear Information System (INIS)

    Volkov, V.V.

    2005-01-01

    The physical content of centrifugal fragmentation is discussed. It is a specific nuclear process which is realized in the evolution of a dinuclear system into a compound nucleus at large angular momenta and large mass asymmetry of the system. The dinuclear system concept which describes the process of the compound nucleus formation in heavy ion reactions predicts the possibility of centrifugal fragmentation. Experimental data giving evidence of the realization of this nuclear process are given. A possible scheme of the centrifugal fragmentation model is discussed

  2. Centrifugal Fragmentation of a Dinuclear System in the Process of Its Evolution to the Compound Nucleus

    CERN Document Server

    Volkov, V V

    2005-01-01

    The physical content of centrifugal fragmentation is discussed. It is a specific nuclear process which is realized in the evolution of a dinuclear system into a compound nucleus at large angular momenta and large mass asymmetry of the system. The dinuclear system concept which describes the process of the compound nucleus formation in heavy ion reactions predicts the possibility of centrifugal fragmentation. Experimental data giving evidence of the realization of this nuclear process are given. A possible scheme of the centrifugal fragmentation model is discussed.

  3. Compound nucleus effects in spin-spin cross sections

    International Nuclear Information System (INIS)

    Thompson, W.J.

    1976-01-01

    By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)

  4. Monte Carlo Simulation for Statistical Decay of Compound Nucleus

    Directory of Open Access Journals (Sweden)

    Chadwick M.B.

    2012-02-01

    Full Text Available We perform Monte Carlo simulations for neutron and γ-ray emissions from a compound nucleus based on the Hauser-Feshbach statistical theory. This Monte Carlo Hauser-Feshbach (MCHF method calculation, which gives us correlated information between emitted particles and γ-rays. It will be a powerful tool in many applications, as nuclear reactions can be probed in a more microscopic way. We have been developing the MCHF code, CGM, which solves the Hauser-Feshbach theory with the Monte Carlo method. The code includes all the standard models that used in a standard Hauser-Feshbach code, namely the particle transmission generator, the level density module, interface to the discrete level database, and so on. CGM can emit multiple neutrons, as long as the excitation energy of the compound nucleus is larger than the neutron separation energy. The γ-ray competition is always included at each compound decay stage, and the angular momentum and parity are conserved. Some calculations for a fission fragment 140Xe are shown as examples of the MCHF method, and the correlation between the neutron and γ-ray is discussed.

  5. Likelihood analysis of parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Bowman, D.; Sharapov, E.

    1993-01-01

    We discuss the determination of the root mean-squared matrix element of the parity-violating interaction between compound-nuclear states using likelihood analysis. We briefly review the relevant features of the statistical model of the compound nucleus and the formalism of likelihood analysis. We then discuss the application of likelihood analysis to data on panty-violating longitudinal asymmetries. The reliability of the extracted value of the matrix element and errors assigned to the matrix element is stressed. We treat the situations where the spins of the p-wave resonances are not known and known using experimental data and Monte Carlo techniques. We conclude that likelihood analysis provides a reliable way to determine M and its confidence interval. We briefly discuss some problems associated with the normalization of the likelihood function

  6. On the hadron formation time in pion-nucleus interaction

    International Nuclear Information System (INIS)

    Bravina, L.V.; Korotkikh, V.L.; Sarycheva, L.I.; Sivoklokov, S.Yu.

    1992-01-01

    Differences in the observable characteristics of pion-nucleus interactions at high energy are investigated for two definitions of the hadron formation time. The Monte Carlo simulation of hadron-nucleus interactions and quark-gluon string model for hadron-hadron collisions are used. It is shown that the momentum spectrum of the protons in the target fragmentation region is most sensitive to the definition of the formation time. The inclusive meson and meson resonance spectra are similar in the both versions. 20 refs.; 4 figs.; 1 tab

  7. Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus

    Science.gov (United States)

    Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan

    2005-05-01

    In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.

  8. Failure of the statistical hypothesis for compound nucleus decay

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1976-01-01

    In the past five years, conclusive evidence has accumulated that channel correlations are important in resonance reactions. Experiments showing the failure of the statistical hypothesis for compound nucleus decay are described. The emphasis is on the radiative neutron capture reaction, where much detailed work has been done. A short summary of the theory of the (n,γ) reaction is presented; it is demonstrated that this reaction is a sensitive probe of the wave functions for highly excited nuclear states. Various experimental techniques using reactor and accelerator-based neutron sources are presented. The experiments have shown that both resonant and non-resonant reactions can show single particle effects where the external part of configuration space is dominant. In the non-resonant case, hard sphere capture is important; on resonances, valence particle motion and the contributions of 1 and 3 quasi-particle doorway states make up a significant fraction of the radiative width

  9. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bazarov, E.Kh.; Olimov, K.; Petrov, V.I.; Lutpullaev, S.L.

    2006-01-01

    Full text: The investigation of production of protons in hadron- and nucleus-nucleus interactions is a key problem allowing one to establish the singularities of dynamics of nuclear interactions. The formation of proton-fragments at high energies of colliding particles proceeds within both the interaction of hadrons with nuclei and in the process of decay of the nucleus or its de-excitation at peripheral interactions. At different stages of interaction of impinging particle with target nucleus, the different mechanisms of formation of proton-fragments: the direct knock-out of intranuclear nucleons in the process of high energy cascade of an initial hadron, intranuclear cascade of produced particles, decay of the excited multi-nucleon fragments and of the thermalized remnant nucleus, and the coalescence of nuclear fragments to the new clusters are realized with the certain probability, connected to the interaction parameters (the interaction energy, the parameter of collision, the intranuclear density, the configuration of Fermi momentum of nucleons and clusters of target nucleus et al.). In its turn, the mechanisms of formation of the final nuclear fragments are closely related to the type of excitation of an initial nucleus. The peripheral interactions proceed at small transfers of the momentum of an impinging particle and represent the wide class of reactions covering the processes from diffractive or coulomb collective excitations of the whole nucleus to the direct quasi-elastic knock-out of the separate nucleons. Non-peripheral interactions are caused by comparatively high local transfers of momentum to the intranuclear clusters allowing the development of intranuclear cascade and the asymmetric redistribution of energy of an impinging particle. The central collisions causing the full decay of nucleus on nucleons or few-nucleon fragments, are the limiting case of the maximal development of the intranuclear cascade. The interaction of the initial particles with

  10. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... In this article, some of our recent results on fission fragment/product angular distributions are discussed in the context of non-compound nucleus fission. Measurement of fission fragment angular distribution in 28Si+176Yb reaction did not show a large contribution from the non-compound nucleus fission.

  11. Data on parity violation in the compound nucleus and its interpretation

    International Nuclear Information System (INIS)

    Bowman, J.D.; Frankle, C.M.; Knudson, J.N.

    1993-01-01

    This report discusses the measurement of parity-violating asymmetries in the compound nucleus; summary of data on this process; theories of the random asymmetry, M 2 ; and theories of the constant asymmetry

  12. Quark matter formation in high energy nucleus-nucleus collisions - predictions and observations

    International Nuclear Information System (INIS)

    Otterlund, I.

    1983-01-01

    In this talk I give a short summary of the recent discussion around predictions and possible observations of quark-gluon plasma and fireballs in ultrarelativistic nucleus-nucleus collisions. In particular this talk is focused on heavy ion reactions at 200 A GeV. (orig./HSI)

  13. Study of η-nucleus interaction through the formation of η-nucleus ...

    Indian Academy of Sciences (India)

    Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using ...

  14. A study of compound particles in pion-nucleus interactions

    International Nuclear Information System (INIS)

    Ahmad, Tufail

    2012-01-01

    In this paper, the phenomenon of multiparticle production has been studied using the nuclear emulsion technique. Nuclear emulsion is a material which memorises the tracks of charged particles. When an incident particle interacts with the nuclei of the emulsion, secondary particles are produced. These secondary particles are classified into three categories viz., shower (Ns), grey (Ng) and black (Nb) particles. The investigation of particle-nucleus collisions is fundamental for understanding the nature of the interaction process. In such studies most of the attention was paid to the relativistic charged particles that is showers (1-3). From the survey of literature it is found that slow particles (grey and black) are less studied in comparison to charged shower particles. Grey particles may provide some valuable information and it may be taken as good measure of number of collisions made by the incident particle

  15. Compound hypernucleus interpretation of the Λ4H formation probabilities in the stopped K- absorption

    International Nuclear Information System (INIS)

    Tamura, H.; Yamazaki, T.; Sano, M.; Yamamoto, Y.; Wakai, M.; Bando, H.

    1988-06-01

    For the abundant Λ 4 H production observed in the stopped K - absorption on light nuclei, a theoretical model is proposed, in which the basic ingredient is formation and fragmentation of a Λ compound nucleus. The estimated Λ 4 H formation probabilities per stopped K - are in rather good agreement with the observed values. (author)

  16. Compound nucleus in Livsic open-system theory: Factorization of the S matrix

    International Nuclear Information System (INIS)

    Avishai, Y.

    1988-01-01

    The compound-nucleus system fits into a mathematical theory of open systems in physics developed by the mathematician M. Livsic [Translations of Mathematical Monographs (American Mathematical Society, Providence, Rhode Island, 1973), Vol. 34]. In this article we review some basic concepts of the above theory and apply it to study the structure of the compound-nucleus S matrix. One of the results is a factorization of the S matrix in the form S(ω) = S +iA/sub k//(tau/sub k/-ω)], where A/sub k/ are known matrices and tau/sub k/ are the complex resonance energies

  17. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    Data on the evaporation residue cross-sections, in addition to those on mass and angular distributions, are necessary for better understanding of the contribution from non-compound nucleus fission in the pre-actinide region. Measurement of mass-resolved angular distribution of fission products in 20Ne+232Th reaction ...

  18. Compound Nucleus Reactions in LENR, Analogy to Uranium Fission

    Science.gov (United States)

    Hora, Heinrich; Miley, George; Philberth, Karl

    2008-03-01

    The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.

  19. Study of η-nucleus interaction through the formation of η-nucleus ...

    Indian Academy of Sciences (India)

    Abstract. The question of possible existence of η-mesic nuclei is quite intriguing. An- swer to this question will deeply enrich our understanding of η-nucleus interaction which is not so well-understood. We review the experimental efforts for the search of η-mesic nuclei and describe the physics motivation behind it.

  20. Survival and compound nucleus probability of super heavy element Z = 117

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First grade College, Department of Physics, Kolar, Karnataka (India)

    2017-05-15

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of {sup 289-297}Ts, we have calculated the transmission probability (T{sub l}), compound nucleus formation probabilities (P{sub CN}) and survival probability (P{sub sur}) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of {sup 289-297}Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei {sup 289-297}Ts are worked out and listed explicitly. We have also studied the variation of P{sub CN} and P{sub sur} with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  1. Survival and compound nucleus probability of super heavy element Z = 117

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sridhar, K.N.

    2017-01-01

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of "2"8"9"-"2"9"7Ts, we have calculated the transmission probability (T_l), compound nucleus formation probabilities (P_C_N) and survival probability (P_s_u_r) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of "2"8"9"-"2"9"7Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei "2"8"9"-"2"9"7Ts are worked out and listed explicitly. We have also studied the variation of P_C_N and P_s_u_r with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  2. Total and Compound Formation Cross Sections for Americium Nuclei: Recommendations for Coupled-Channels Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-11

    Calculations for total cross sections and compound-nucleus (CN) formation cross sections for americium isotopes are described, for use in the 2017 NA-22 evaluation effort. The code ECIS 2006 was used in conjunction with Frank Dietrich's wrapper `runtemplate'.

  3. Centrifugal fragmentation of a dinuclear system in the process of its evolution toward a compound nucleus

    International Nuclear Information System (INIS)

    Volkov, V. V.

    2007-01-01

    The centrifugal fragmentation of a dinuclear system in the process of evolution toward a compound nucleus is examined. If the angular momentum in the collision of primary nuclei is quite high, centrifugal forces become dominant at the final stage of the evolution of the dinuclear system formed, causing the decay of this dinuclear system to two strongly asymmetric nuclear fragments. Experimental data in which this specific nuclear process manifests itself are presented. Centrifugal fragmentation makes it possible to reveal the cluster facet of the evolution of a dinuclear system toward a compound nucleus. The possibility of this fragmentation process is a logical consequence of the concept of a dinuclear system for the complete fusion of nuclei

  4. X detection in heavy ion induced reactions. Application to the lifetime measurement of a compound nucleus

    International Nuclear Information System (INIS)

    Liatard, E.

    1984-01-01

    The ionization of inner electronic shells can be used to determine the lifetime of a compound nucleus formed in a nuclear reaction. The principle of the measure is based on the comparison between the unknown lifetime of the nuclear process and the known lifetime of a K-shell vacancy created during the collision. Besides testing this method, which we call the ''atomic-clok'' method with the compound nucleus 112 Te formed by the reaction 20 Ne (205 MeV) + 92 Mo, the work in this thesis basically consists of a description and a study of the problems presented by the use of X-ray spectroscopy in nuclear-decay-time measurements and Z-identification of heavy nuclear products [fr

  5. On the criterion for the optimum choice of a compound nucleus reaction for producing superheavy elements

    International Nuclear Information System (INIS)

    Aroumougame, R.; Gupta, R.K.

    1979-01-01

    The possible reaction partners of a cool compound nucleus reaction for the synthesis of the elements Z = 104, 106 and 108 are studied in terms of the potential energy surfaces, interaction barriers and the nuclear shapes calculated within the frame work of the Fragmentation theory based on two centre shell model. An estimate of the total reaction cross-section suggests that for larger fusion probabilities, the mass and charge asymmetries are the only essential criterion for the optimum choice of a cooler compound nuclear reaction. Larger the mass and charge asymmetries, larger is the fusion cross-section. (auth.)

  6. Physical phenomena stipulating nucleus formation, growth and structure films

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, L N [AN SSSR, Novosibirsk. Inst. Fiziki Poluprovodnikov

    1975-03-01

    This review is concerned with the physical phenomena responsible for the nucleation, growth and structure of films. Emphasis is placed on the study of films of solid-metal systems, semiconductors (In, As, Cd, Se, CdS), and dielectrics. The following problems are discussed in the paper: general regularities of the thermodynamics and kinetics of film formation, methods of obtaining a solid film, the process of film formation, the rate of growth of individual grains. The critical film thickness and its measurement are also considered. The results of investigating the process of formation of mono- and polycrystalline films are discussed. It is concluded, on the basis of studies into the relaxation processes accompanying the growth of films, that an insight into these processes will permits improving film properties.

  7. Producing a compound Nucleus via Inelastic Scattering: The 90Zr(alpha,alpha')90Zr* Case

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Dietrich, F S

    2008-05-23

    In a Surrogate reaction a compound nucleus is produced via a direct reaction (pickup, stripping, or inelastic scattering). For a proper application of the Surrogate approach it is necessary to predict the resulting angular momentum and parity distribution in the compound nucleus. A model for determining these distributions is developed for the case of inelastic alpha scattering off a spherical nucleus. The focus is on obtaining a first, simple description of the direct-reaction process that produces the compound nucleus and on providing the basis for a more complete treatment of the problem. The approximations employed in the present description are discussed and the extensions required for a more rigorous treatment of the problem are outlined. To illustrate the formalism, an application to {sup 90}Zr({alpha},{alpha}{prime}){sup 90}Zr* is presented.

  8. Neutron resonances in the compound nucleus: Parity nonconservation to dynamic temperature measurements

    International Nuclear Information System (INIS)

    Yuan, V.W.

    1997-08-01

    Experiments using epithermal neutrons that interact to form compound-nuclear resonances serve a wide range of scientific applications. Changes in transmission which are correlated to polarization reversal in incident neutrons have been used to study parity nonconservation in the compound nucleus for a wide range of targets. The ensemble of measured parity asymmetries provides statistical information for the extraction of the rms parity-violating mean-square matrix element as a function of mass. Parity nonconservation in neutron resonances can also be used to determine the polarization of neutron beams. Finally the motion of target atoms results in an observed temperature-dependent Doppler broadening of resonance line widths. This broadening can be used to determine temperatures on a fast time scale of one microsecond or less

  9. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    Science.gov (United States)

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  10. Odd-Z Transactinide Compound Nucleus Reactions Including the Discovery of 260Bh

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Sarah L. [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Several reactions producing odd-Z transactinide compound nuclei were studiedwith the 88-Inch Cyclotron and the Berkeley Gas-Filled Separator at the Lawrence Berkeley National Laboratory. The goal was to produce the same compound nucleus ator near the same excitation energy with similar values of angular momentum via differentnuclear reactions. In doing so, it can be determined if there is a preference in entrancechannel, because under these experimental conditions the survival portion of Swiatecki, Siwek-Wilcznska, and Wilczynski's"Fusion By Diffusion" model is nearly identical forthe two reactions. Additionally, because the same compound nucleus is produced, theexit channel is the same. Four compound nuclei were examined in this study: 258Db, 262Bh, 266Mt, and 272Rg. These nuclei were produced by using very similar heavy-ion induced-fusion reactions which differ only by one proton in the projectile or target nucleus (e.g.: 50Ti + 209Bi vs. 51V + 208Pb). Peak 1n exit channel cross sections were determined for each reaction in each pair, and three of the four pairs' cross sections were identical within statistical uncertainties. This indicates there is not an obvious preference of entrancechannel in these paired reactions. Charge equilibration immediately prior to fusionleading to a decreased fusion barrier is the likely cause of this phenomenon. In addition to this systematic study, the lightest isotope of element 107, bohrium, was discovered in the 209Bi(52Cr,n) reaction. 260Bh was found to decay by emission of a 10.16 MeV alpha particle with a half-life of 35$+19\\atop{-9}$ ms. The cross section is 59 pb at an excitation energy of 15.0 MeV. The effect of the N = 152 shell is also seen in this isotope's alpha particle energy, the first evidence of such an effect in Bh. All reactions studied are also compared to model predictions by Swiatecki

  11. Odd-Z Transactinide Compound Nucleus Reactions Including the Discovery of 260Bh

    International Nuclear Information System (INIS)

    Nelson, Sarah L; Nelson, Sarah L

    2008-01-01

    Several reactions producing odd-Z transactinide compound nuclei were studied with the 88-Inch Cyclotron and the Berkeley Gas-Filled Separator at the Lawrence Berkeley National Laboratory. The goal was to produce the same compound nucleus at or near the same excitation energy with similar values of angular momentum via different nuclear reactions. In doing so, it can be determined if there is a preference in entrance channel, because under these experimental conditions the survival portion of Swiatecki, Siwek-Wilcznska, and Wilczynski's 'Fusion By Diffusion' model is nearly identical for the two reactions. Additionally, because the same compound nucleus is produced, the exit channel is the same. Four compound nuclei were examined in this study: 258Db, 262Bh, 266Mt, and 272Rg. These nuclei were produced by using very similar heavy-ion induced-fusion reactions which differ only by one proton in the projectile or target nucleus (e.g.: 50Ti + 209Bi vs. 51V + 208Pb). Peak 1n exit channel cross sections were determined for each reaction in each pair, and three of the four pairs; cross sections were identical within statistical uncertainties. This indicates there is not an obvious preference of entrance channel in these paired reactions. Charge equilibration immediately prior to fusion leading to a decreased fusion barrier is the likely cause of this phenomenon. In addition to this systematic study, the lightest isotope of element 107, bohrium, was discovered in the 209Bi(52Cr,n) reaction. 260Bh was found to decay by emission of a 10.16 MeV alpha particle with a half-life of 35 ms. The cross section is 59 pb at an excitation energy of 15.0 MeV. The effect of the N = 152 shell is also seen in this isotope's alpha particle energy, the first evidence of such an effect in Bh. All reactions studied are also compared to model predictions by Swiatecki, Siwek-Wilcznska, and Wilczynski's 'Fusion By Diffusion' theory

  12. Dynamic effects in the decay of the 59Cu compound nucleus

    International Nuclear Information System (INIS)

    Fornal, B.; Natositz, J.B.; Nebbia, G.; Prete, G.; Viesti, G.

    1990-01-01

    In the last few years a number of light particle emission measurements were performed to study angular momentum effects in the decay of light mass compound nuclei at excitation energies ∼100 MeV formed in heavy ion induced complete fusion reactions. A general observation in these kind of experiments is that for spin ranges where the rotating liquid drop model (RLDM) predicts near spherical shapes the deexcitation of 59 Cu compound nucleus is well described by the standard statistical model calculations. However, as the angular momentum increases to values for which the RLDM predicts significant deformations, important differences between the experimental and calculated spectra are observed. The statistical calculations using standard parameters: RLDM yrast line, Lang level density formula and transmission coefficients from the optical model, lead to the more high energy α-particles then experimentally observed. The situation is illustrated in this paper where the experimental and calculated spectra are compared for α-emission from 59 Cu nuclei produced in the reaction of 150 MeV 32 S with 27 Al. The experiments were performed at the Tandem XTU in Laboratori Nazionali di Legnaro. A subtraction technique was used to isolate spectra corresponding to compound nucleus angular moments 27 ℎ max /F min = 1.2 at J = 27ℎ to R max /R min = 2.0 at J = 39ℎ. It was recognized that the fitting of the α-spectra required a level density enhancement estimated to be ∼ 100 times then that calculated using the Lang formula in the case of 59 Cu at J = 34 ℎ and E x = 60 MeV

  13. Formation of tRNA granules in the nucleus of heat-induced human cells

    International Nuclear Information System (INIS)

    Miyagawa, Ryu; Mizuno, Rie; Watanabe, Kazunori; Ijiri, Kenichi

    2012-01-01

    Highlights: ► tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. ► tRNAs form the unique granules in the nucleus. ► tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA Met (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA Met was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  14. Binary fragmentation based studies for the near super-heavy compound nucleus {sup 256}Rf

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Meenu; Behera, B.R.; Mahajan, Ruchi; Kaur, Gurpreet; Sharma, Priya; Kapoor, Kushal; Rani, Kavita [Panjab University, Department of Physics, Chandigarh (India); Saneesh, N.; Dubey, R.; Yadav, A.; Sugathan, P.; Jhingan, A.; Chatterjee, A.; Chatterjee, M.B. [Inter University Accelerator Centre, New Delhi (India); Kumar, Neeraj; Mandal, S. [University of Delhi, Department of Physics and Astrophysics, Delhi (India); Kumar, S. [Andhra University, Department of Nuclear Physics, Visakhapatnam (India); Saxena, A.; Kailas, S. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Pal, Santanu [CS, Kolkata (India); Nasirov, Avazbek [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); National University, Department of Physics, Tashkent (Uzbekistan); Kayumov, Bakhodir [National University, Department of Physics, Tashkent (Uzbekistan)

    2017-06-15

    Binary fragmentation of the near super-heavy compound nucleus {sup 256}Rf has been studied through the reaction {sup 48}Ti + {sup 208}Pb at a bombarding energy well above the Coulomb barrier. For a better understanding of its reaction dynamics, the mass distribution, mass-energy distribution and mass-angle distribution of the fission fragments produced from {sup 256}Rf have been investigated thoroughly. The masses and kinetic energies of the fission fragments were reconstructed event-by-event from their measured velocities and emission angles. From the mass-energy analysis, a sizeable contribution from the asymmetric fission was observed on the edges of symmetric mass distribution. Evidence of asymmetric fission was also clued from the observed correlation between the masses and emission angles of the fission fragments. Contribution of the quasi-fission products has also been estimated by performing the theoretical dinuclear system calculations. (orig.)

  15. Formation and elution of toxic compounds from sterilized medical products: toxic compound formation from irradiated products

    International Nuclear Information System (INIS)

    Shintani, Hideharu

    1996-01-01

    No formation of MDA was observed in chain-extended thermoplastic polyurethane (PU) when sterilized by autoclave or γ-ray irradiation. No formation of MDA was observed in nonchain-extended thermoplastic PU when sterilized by γ-ray irradiation. Less than 1 ppm MDA was produced in nonchain-extended thermoplastic PU sterilized by autoclave sterilization. Autoclave sterilization did not produce MDA in thermosetting PU potting material. MDA formation in potting material was promoted by γ-irradiation and increased with increasing irradiation at a quadratic equation of regression. MDA formation at 100 kGy irradiation is a few ppm and < 1 ppm at 25kGy irradiation, therefore the potential risk to human recipients was not significant. The elution of compounds other than MDA from potting material was more problematic. Solvent extracts from potting material presented mutagenicity in the absence of metabolic activity. MDA presented mutagenicity in the presence of metabolic activity, therefore MDA was not the mutagenic trigger. The chemical and biological characteristics of the specific mutagens required to identify in a further study. Negative promotion of MDA formation and a less presence of mutagen in autoclave sterilized potting material indicated that autoclave sterilization was preferable. (Author)

  16. Formation of tRNA granules in the nucleus of heat-induced human cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Ryu [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Mizuno, Rie [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Watanabe, Kazunori, E-mail: watanabe@ric.u-tokyo.ac.jp [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Ijiri, Kenichi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  17. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiqiang [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Division of Infectious Diseases, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 (United States); Zhang, Jingdong; Hu, Yifan; Chi, Qijin [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Mortensen, Ninell P. [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37932 (United States); Qu, Di [Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Molin, Soren [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Ulstrup, Jens, E-mail: ju@kemi.dtu.dk [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2009-07-15

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  18. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan; Chi, Qijin; Mortensen, Ninell P.; Qu, Di; Molin, Soren; Ulstrup, Jens

    2009-01-01

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  19. Formation of flavour compounds in the Maillard reaction

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2006-01-01

    This paper discusses the importance of the Maillard reaction for food quality and focuses on flavour compound formation. The most important classes of Maillard flavour compounds are indicated and it is shown where they are formed in the Maillard reaction. Some emphasis is given on the kinetics of

  20. Formation of low-dimensional crystalline nucleus region during insulin amyloidogenesis process

    International Nuclear Information System (INIS)

    Amdursky, Nadav; Gazit, Ehud; Rosenman, Gil

    2012-01-01

    Highlights: ► We observe lag-phase crystallization process in insulin. ► The crystallization is a result of the formation of higher order oligomers. ► The crystallization also changes the secondary structure of the protein. ► The spectroscopic signature can be used for amyloid inhibitors assay. -- Abstract: Insulin, as other amyloid proteins, can form amyloid fibrils at certain conditions. The self-assembled aggregation process of insulin can result in a variety of conformations, starting from small oligomers, going through various types of protofibrils, and finishing with bundles of fibrils. One of the most common consensuses among the various self-assembly processes that are suggested in the literature is the formation of an early stage nucleus conformation. Here we present an additional insight for the self-assembly process of insulin. We show that at the early lag phase of the process (prior to fibril formation) the insulin monomers self-assemble into ordered nanostructures. The most notable feature of this early self-assembly process is the formation of nanocrystalline nucleus regions with a strongly bound electron–hole confinement, which also change the secondary structure of the protein. Each step in the self-assembly process is characterized by an optical spectroscopic signature, and possesses a narrow size distribution. By following the spectroscopic signature we can measure the potency of amyloid fibrils inhibitors already at the lag phase. We further demonstrate it by the use of epigallocatechin gallate, a known inhibitor for insulin fibrils. The findings can result in a spectroscopic-based application for the analysis of amyloid fibrils inhibitors.

  1. Standard enthalpies of formation of uranium compounds

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Ouweltjes, W.

    1977-01-01

    Enthalpies of solution of β-UO 2 SO 4 and α-UO 2 SeO 4 in H 2 SO 4 (aq) and of UO 2 SeO 3 in H 2 SO 4 (aq) + Ce(SO 4 ) 2 have been measured calorimetrically. Together with measurements of the enthalpy of solution of γ-UO 3 in these solvents, the standard enthalpies of formation of anhydrous β-UO 2 SO 4 , α-UO 2 SeO 4 , and UO 2 SeO 3 have been derived. The results obtained are: ΔHsub(f) 0 (s, 298.15 K)/ kcalsub(th) mol -1 : β-UO 2 SO 4 , -(440.9 +- 0.2); α-UO 2 SeO 4 , -(367.9 +- 0.8); UO 2 SeO 3 , -(363.8 +- 0.2). (author)

  2. Experimental formation enthalpies for intermetallic phases and other inorganic compounds

    Science.gov (United States)

    Kim, George; Meschel, S. V.; Nash, Philip; Chen, Wei

    2017-01-01

    The standard enthalpy of formation of a compound is the energy associated with the reaction to form the compound from its component elements. The standard enthalpy of formation is a fundamental thermodynamic property that determines its phase stability, which can be coupled with other thermodynamic data to calculate phase diagrams. Calorimetry provides the only direct method by which the standard enthalpy of formation is experimentally measured. However, the measurement is often a time and energy intensive process. We present a dataset of enthalpies of formation measured by high-temperature calorimetry. The phases measured in this dataset include intermetallic compounds with transition metal and rare-earth elements, metal borides, metal carbides, and metallic silicides. These measurements were collected from over 50 years of calorimetric experiments. The dataset contains 1,276 entries on experimental enthalpy of formation values and structural information. Most of the entries are for binary compounds but ternary and quaternary compounds are being added as they become available. The dataset also contains predictions of enthalpy of formation from first-principles calculations for comparison. PMID:29064466

  3. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan

    2009-01-01

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S....... epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both...... air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamicle derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four...

  4. ambient volatile organic compounds pollution and ozone formation

    African Journals Online (AJOL)

    OLUMAYEDE

    2013-08-01

    Aug 1, 2013 ... Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field.

  5. Determination of heats of formation of compounds melting incongruently

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Y.A.; Cheshnitskii, S.M.; Fotiev, A.A.; Tret' yakov, Y.D.

    1985-09-01

    Of significant interest is the development of new procedures for experimental determination of heats of formation of compounds, making it possible to expand the range of substances for which the standard, well-developed methods are unacceptable. The use of hightemperature Calvet microcalorimeters offers great possibilities for this. They recently have been used to determine the most important thermodynamic characteristics of many inorganic substances. In this paper the authors consider the use of drop calorimetry, i.e., the dropping of a sample thermostated at 298/sup 0/K into a calorimeter cell kept at a preassigned temperature for the study of peritecticdecomposition reactions of compounds, to determine their heats of formation. The authors used the compounds Fe/sub 2/V/sub 4/O/sub 13/ and FeVO/sub 4/, as well as high-purity V/sub 2/O/sub 5/.

  6. PROJECTIONS OF THE PARVOCELLULAR RETICULAR-FORMATION TO THE CONTRALATERAL MESENCEPHALIC TRIGEMINAL NUCLEUS IN THE RAT

    NARCIS (Netherlands)

    MINKELS, RF; JUCH, PJW; TERHORST, GJ; VANWILLIGEN, JD

    1991-01-01

    Projections of the parvocellular reticular nucleus (PCRt) to the contralateral mesencephalic trigeminal nucleus (Me5) were studied in the rat with neurophysiological and neuroanatomical techniques. Three types of responses (classified by latencies) were recorded extracellularly in the Me5 area after

  7. Chapter 3. Physicochemical aspects of structure formation and physico technical properties of materials obtained from soil-cement mixtures. 3.1. Formation features of nucleuses of binding materials

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    It is determined that structure formation of hardening systems depends on their thermodynamic stability. According to the investigations author concluded that probability of nucleuses formation depended on surface energy of new formations, chemical potential, temperature and value of interphase energy.

  8. Determination of formation enthalpies of incongruently fusing compounds

    International Nuclear Information System (INIS)

    Kesler, Ya.A.; Cheshnitskij, S.M.; Fotiev, A.A.; Tret'yakov, Yu.D.

    1985-01-01

    Using the method of drop-calorimetry i.e. drop into the calorimeter cell being at the specified temperature of the specimen thermostated at 298 K, for studying reactions of peritectic decomposition of compounds for determining their formation enthalpies is considered. The measurements have been performed at 973 K using high temperature double microcalorimeter. The values ΔH 1 =(367.0+-2.8) kJ/mol and ΔH 2 =)343.9+-3.1) kJ/mol are obtained as a result of two series of measurements (6 experiments in each). The advantage of the described technique consists in the fact that the value of enthalpy of compound formation is obtained as a result of direct calorimetric measurements while in the e.m.f. method this value is determined as a coefficient in the Gibbs energy temperature dependence. The method is simple and does not require much time (one measurement takes 30-40 min)

  9. Formation of heavy compound nuclei, their survival and correlation with longtime-scale fission

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Yakushev, A.B.

    2006-01-01

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reactions for the synthesis of Z c 110-118 nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94 Kr or 100 Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at the final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed

  10. Effect of excitation energy and angular momentum on the characteristics of 208Po and 210Po compound nucleus fission fragments

    International Nuclear Information System (INIS)

    Itkis, M.G.; Kalpakchieva, R.; Okolovich, V.N.; Penionzhkevich, Yu.Eh.; Tolstikov, V.N.

    1982-01-01

    To study characteristics of fissioning nucleus fragments, investigated were reactiiiiiiiiiiiiiiiH8Pt+ 12 C → 210 Po in the 12 C ion energy range of 86-110.5 MeV, of 192 Os+ 16 O → 208 Po in 90-131 MeV range, 204 Pb+ 3 He → 207 Po, 206 Pb+ 3 He → 209 Po, 207 Pb+ 3 He → 210 Po with 60 MeV 3 He ion energy. Using a correlation technique for measuring energies of two fragments mass and energy distributions of fission fragments of 208 Po and 210 Po compound nuclei produced in the reactions have been studied. Mass and energy distributions of fragments from fission of 208 Po and 210 Po in the reactions with ions 16 O, 12 C and 3 He were investigated in an ample energy range, using the correlational techniques for measurement of energies of two fragments. An increase in the total kinetic energy with rise of the angular momentum was observed, the fact indicating a weak coupling of one-particle and collective modes of motion in the fissile nucleus resulting in that the rolational energy is transfered mainly to translation energies of the fragments

  11. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination.

    Science.gov (United States)

    Fu, Jing; Wang, Xiaomao; Bai, Weiliang; Yang, Hongwei; Xie, Yuefeng F

    2017-05-01

    The chlorination of azo compounds can produce halonitromethanes (HNMs), which have attracted increasing concern due to their high genotoxicity. By impacting the speciation of chlorine and azo compounds, pH impacts apparent second-order rate constants of Methyl Orange (MO, 27.5-1.4 × 10 3  M -1  s -1 ), Acid Orange II (AO, 16.7-99.3 M -1  s -1 ), and Acid Red 1 (AR 1, 3.7-72.5 M -1  s -1 ) (pH range 6.3-9.0). The two-compartment first-order model successfully described the chloropicrin (TCNM) formation kinetics, suggesting that both fast- and slow-reacting precursors of TCNM are generated from the chlorination of azo compounds. The ratios between fast and slow formation rate constants for MO and AO were 15.6-5.4 × 10 2 , while that of AR 1 was 9.8-19.4 (pH range 6.5-9.0). The fraction of the fast-reacting TCNM precursors decreased with increasing pH for MO and AO; while that for AR 1 decreased when pH increased from 6.5 to 8.0, and then increased when pH increased from 8.0 to 9.0. The impact of pH on TCNM formation was also precursor-specific. The highest molar yields of TCNM predicted from the model in this study were 2.4%, 2.5%, and 1.5% for MO, AO, and AR 1, respectively. The study demonstrates that azo compounds are important HNM precursors, and pose a potential threat to drinking water safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Width and strength of the hot giant dipole resonance. The role of the life time of the compound nucleus and the transition from order to chaos

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    A bump in the γ decay spectrum is observed at high energies which is due to the excitation of the Giant Dipole Resonance (GDR) in the compound nucleus. The fact is discussed that the total width of the γ-ray spectrum of the GDR transitions must contain twice the width of the compound nucleus levels. This implies that one must except a rapid increase of the width of the GDR. This increase contributes to the observed saturation of the photon multiplicity. A new suppression factor due to the lost of collectivity induced by the fast particle emission is proposed. (K.A.)

  13. Cascade γ-decay of a heavy nucleus compound state: the experimental picture

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    1997-01-01

    Peculiarities of excitation and decay (for assigned final state of excited levels of 35 nuclei from 114 Cd to 200 Hg in energy range, equal approximately to the neutron binding energy, were studied in experiments with the use of the method of summation of amplitudes of coinciding pulses from Ge-detectors. Main features of the process of cascade γ-decay of compound states (neutron resonances) of the most complex nuclei were revealed in the whole range of levels dictating this process

  14. On the Formation of Verb Compounds in Early Middle Japanese

    Directory of Open Access Journals (Sweden)

    Wenchao LI

    2013-12-01

    Full Text Available This paper is dedicated to the formation of verb compounds in Early Middle Japanese, a stage of the Japanese language used in the Heian Period (794–1185. The findings reveal that current verb compounds have come a long way from Old Japanese. Multiple verbs in Old Japanese are assigned to an associate type, rather than a compounding type of relation. Thus, the serial constituents receive equal syntactic weight, giving rise to the extensive use of the coordinate type and succession type of multi-verbs. In Early Middle Japanese, the combinations of the two constituents seem much tighter, giving rise the frequent use of the modifier-predicate V-V. The conclusion emerging from this study is that it was not until Early Middle Japanese that verb compounds in the strict sense appeared. Moreover, two types of verb weakening are observed in Early Middle Japanese: (a transformation of the first verb into a prefix, (b grammaticalization of the second verb into a directional/resultative complement.

  15. Formation of highly oxygenated organic molecules from aromatic compounds

    Science.gov (United States)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs

    2018-02-01

    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  16. Formation of highly oxygenated organic molecules from aromatic compounds

    Directory of Open Access Journals (Sweden)

    U. Molteni

    2018-02-01

    Full Text Available Anthropogenic volatile organic compounds (AVOCs often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs, such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene and ethylbenzene, as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl. We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  17. Quest for consistent modelling of statistical decay of the compound nucleus

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2018-01-01

    A statistical model description of heavy ion induced fusion-fission reactions is presented where shell effects, collective enhancement of level density, tilting away effect of compound nuclear spin and dissipation are included. It is shown that the inclusion of all these effects provides a consistent picture of fission where fission hindrance is required to explain the experimental values of both pre-scission neutron multiplicities and evaporation residue cross-sections in contrast to some of the earlier works where a fission hindrance is required for pre-scission neutrons but a fission enhancement for evaporation residue cross-sections.

  18. Phenolic compounds participating in mulberry juice sediment formation during storage.

    Science.gov (United States)

    Zou, Bo; Xu, Yu-Juan; Wu, Ji-Jun; Yu, Yuan-Shan; Xiao, Geng-Sheng

    The stability of clarified juice is of great importance in the beverage industry and to consumers. Phenolic compounds are considered to be one of the main factors responsible for sediment formation. The aim of this study is to investigate the changes in the phenolic content in clarified mulberry juice during storage. Hence, separation, identification, quantification, and analysis of the changes in the contents of phenolic compounds, both free and bound forms, in the supernatant and sediments of mulberry juice, were carried out using high performance liquid chromatographic system, equipped with a photo-diode array detector (HPLC-PDA) and HPLC coupled with quadrupole-time of flight mass spectrometric (HPLC-QTOF-MS/MS) techniques. There was an increase in the amount of sediment formed over the period of study. Total phenolic content of supernatant, as well as free phenolic content in the extracts of the precipitate decreased, whereas the bound phenolic content in the sediment increased. Quantitative estimation of individual phenolic compounds indicated high degradation of free anthocyanins in the supernatant and sediment from 938.60 to 2.30 mg/L and 235.60 to 1.74 mg/g, respectively. A decrease in flavonoids in the supernatant was also observed, whereas the contents of bound forms of gallic acid, protocatechuic acid, caffeic acid, and rutin in the sediment increased. Anthocyanins were the most abundant form of phenolics in the sediment, and accounted for 67.2% of total phenolics after 8 weeks of storage. These results revealed that phenolic compounds, particularly anthocyanins, were involved in the formation of sediments in mulberry juice during storage.

  19. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    International Nuclear Information System (INIS)

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N.; Mullaney, James R.; Alexander, David M.; Goulding, Andy D.

    2014-01-01

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  20. Mechanisms contributing to cluster formation in the inferior olivary nucleus in brainstem slices from postnatal mice

    DEFF Research Database (Denmark)

    Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik

    2014-01-01

    The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5-P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synch......The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5-P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve...

  1. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system.

    NARCIS (Netherlands)

    Cafarelli-Dees, D.; Dillier, N.; Lai, W.K.; Wallenberg, E. von; Dijk, B. van; Akdas, F.; Aksit, M.; Batman, C.; Beynon, A.J.; Burdo, S.; Chanal, J.M.; Collet, L.; Conway, M.; Coudert, C.; Craddock, L.; Cullington, H.; Deggouj, N.; Fraysse, B.; Grabel, S.; Kiefer, J.; Kiss, J.G.; Lenarz, T.; Mair, A.; Maune, S.; Muller-Deile, J.; Piron, J.P.; Razza, S.; Tasche, C.; Thai-Van, H.; Toth, F.; Truy, E.; Uziel, A.; Smoorenburg, G.F.

    2005-01-01

    One hundred and forty-seven adult recipients of the Nucleus 24 cochlear implant system, from 13 different European countries, were tested using neural response telemetry to measure the electrically evoked compound action potential (ECAP), according to a standardised postoperative measurement

  2. Determination of formation enthalpies of incongruently fusing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Ya.A.; Cheshnitskij, S.M.; Fotiev, A.A.; Tret' yakov, Yu.D.

    1985-04-01

    Using the method of drop-calorimetry i.e. drop into the calorimeter cell being at the specified temperature of the specimen thermostated at 298 K, for studying reactions of peritectic decomposition of compounds for determining their formation enthalpies is considered. The measurements have been performed at 973 K using high temperature double microcalorimeter. The values ..delta..H/sub 1/=(367.0 +- 2.8) kJ/mol and ..delta..H/sub 2/=)343.9 +- 3.1) kJ/mol are obtained as a result of two series of measurements (6 experiments in each). The advantage of the described technique consists in the fact that the value of enthalpy of compound formation is obtained as a result of direct calorimetric measurements while in the e.m.f. method this value is determined as a coefficient in the Gibbs energy temperature dependence. The method is simple and does not require much time (one measurement takes 30-40 min).

  3. Effect of Flux onto Intermetallic Compound Formation and Growth

    Directory of Open Access Journals (Sweden)

    Idris Siti Rabiatull Aisha

    2016-01-01

    Full Text Available In this study, the effect of different composition of no-clean flux onto intermetallic compound (IMC formation and growth was investigated. The solder joint between Sn-3Ag-0.5Cu solder alloy and printed circuit board (PCB was made through reflow soldering. They were further aged at 125°C and 150°C for up to 1000 hours. Results showed that fluxes significantly affect the IMC thickness and growth. In addition, during aging, the scallop and columnar morphology of IMC changed to a more planar type for both type of flux during isothermal aging. It was observed that the growth behavior of IMC was closely related to initial soldering condition.

  4. Distinctive features of Phox2b-expressing neurons in the rat reticular formation dorsal to the trigeminal motor nucleus.

    Science.gov (United States)

    Nagoya, Kouta; Nakamura, Shiro; Ikeda, Keiko; Onimaru, Hiroshi; Yoshida, Atsushi; Nakayama, Kiyomi; Mochizuki, Ayako; Kiyomoto, Masaaki; Sato, Fumihiko; Kawakami, Kiyoshi; Takahashi, Koji; Inoue, Tomio

    2017-09-01

    Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b + ) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b + RdV neurons is still unclear. We investigated the physiological and morphological properties of Phox2b + RdV neurons using postnatal day 2-7 transgenic rats expressing yellow fluorescent protein under the control of Phox2b. Almost all of Phox2b + RdV neurons were glutamatergic, whereas Phox2b-negative (Phox2b - ) RdV neurons consisted of a few glutamatergic, many GABAergic, and many glycinergic neurons. The majority (48/56) of Phox2b + neurons showed low-frequency firing (LF), while most of Phox2b - neurons (35/42) exhibited high-frequency firing (HF) in response to intracellularly injected currents. All, but one, Phox2b + neurons (55/56) did not fire spontaneously, whereas three-fourths of the Phox2b - neurons (31/42) were spontaneously active. K + channel and persistent Na + current blockers affected the firing of LF and HF neurons. The majority of Phox2b + (35/46) and half of the Phox2b - neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b + (5/12) and Phox2b - RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b + RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b - RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  6. The formation of lithium diarylargentates from arylsilver compounds and the corresponding aryllithium compounds

    NARCIS (Netherlands)

    Blenkers, J.; Hofstee, H.K.; Boersma, J.; Kerk, G.J.M. van der

    1979-01-01

    Diarylsilverlithium compounds of the type Ar2AgLi are formed by treating arylsilver compounds with the corresponding aryllithium compounds. Cryoscopy in benzene shows that the Ar2AgLi compounds are associated into dimers. NMR spectroscopic data indicate that only one type of aryl group is present in

  7. Surface of the comet 67P from PHILAE/CIVA images as clues to the formation of the comet nucleus

    Science.gov (United States)

    Poulet, Francois; Bibring, Jean-Pierre; Carter, John; Eng, Pascal; Gondet, Brigitte; Jorda, Laurent; Langevin, Yves; Le Mouélic, Stéphane; Pilorget, Cédric

    2015-04-01

    The CIVA cameras onboard PHILAE provided the first ever in situ images of the surface of a comet (Bibring et al., this conf). The panorama acquired by CIVA at the landing site reveals a rough terrain dominated by agglomerates of consolidated materials similar to cm-sized pebbles. While the composition of these materials is unknown, their nature will be discussed in relation to both endogenic and exogenic processes that may sculpted the landscape of the landing site. These processes includes erosion (spatially non-uniform) by sublimation, redeposition of particles after ejection, fluidization and transport of cometary material on the surface, sintering effect, thermal fatigue, thermal stress, size segregation due to shaking, eolian erosion due to local outflow of cometary vapor and impact cratering at various scales. Recent advancements in planet formation theory suggest that the initial planetesimals (or cometestimals) may grow directly from the gravitational collapse of aerodynamically concentrated small particles, often referred to as "pebbles" (Johansen et al. 2007, Nature 448, 1022; Cuzzi et al. 2008, AJ 687, 1432). We will then discuss the possibility that the observed pebble pile structures are indicative of the formation process from which the initial nucleus formed, and how we can use this idea to learn about protoplanetary disks and the early processes involved in the Solar System formation.

  8. What Plurals and Compounds Reveal about Constraints in Word Formation

    Science.gov (United States)

    Jaensch, Carol; Heyer, Vera; Gordon, Peter; Clahsen, Harald

    2014-01-01

    Morphological systems are constrained in how they interact with each other. One case that has been widely studied in the psycholinguistic literature is the avoidance of plurals inside compounds (e.g. *"rats eater" vs. "rat eater") in English and other languages, the so-called "plurals-in-compounds effect." Several…

  9. Role of higher-multipole deformations and noncoplanarity in the decay of the compound nucleus *220Th within the dynamical cluster-decay model

    Science.gov (United States)

    Hemdeep, Chopra, Sahila; Kaur, Arshdeep; Kaushal, Pooja; Gupta, Raj K.

    2018-04-01

    Background: The formation and decay of the *220Th compound nucleus (CN) formed via some entrance channels (16O+204Pb,40Ar+180Hf,48Ca+172Yb,82Se+138Ba ) at near barrier energies has been studied within the dynamical cluster-decay model (DCM) [Hemdeep et al. Phys. Rev. C 95, 014609 (2017), 10.1103/PhysRevC.95.044603], for quadrupole deformations (β2 i) and "optimum" orientations (θopt) of the two nuclei or decay fragments lying in the same plane (coplanar nuclei, Φ =0∘ ). Purpose: We aim to investigate the role of higher-multipole deformations, the octupole (β3 i) and hexadecupole (β4 i), and "compact" orientations (θc i) together with the noncoplanarity degree of freedom (Φc) in the noncompound nucleus (nCN) cross section, already observed in the above mentioned study with quadrupole deformations (β2 i) alone, the Φ =0∘ case. Methods: The dynamical cluster-decay model (DCM), based on the quantum mechanical fragmentation theory (QMFT), is used to analyze the decay channel cross sections σx n for various experimentally studied entrance channels. The parameter Ra (equivalently, the neck length Δ R in Ra=R1+R2+Δ R ), which fixes both the preformation and penetration paths, is used to best fit both unobserved (1 n ,2 n ) and observed (3 n -5 n ) decay channel cross sections, keeping the root-mean-square (r.m.s) deviation to the minimum, which allows us to predict the nCN effects, if any, and fusion-fission (ff) cross sections in various reactions at different CN excitation energies E*. Results: For the decay of CN *220Th, the mass fragmentation potential V (Ai ) and preformation yields P0( Ai ) show an asymmetric fission mass distribution, in agreement with one observed in experiments, independent of adding or not adding (β3 i,β4 i ), and irrespective of large changes (by 36° and 34°), respectively, in "compact" orientations θc i and noncoplanarity Φc, and also in the potential energy surface V (Ai ) in light mass (1 n -5 n ) decays. Whereas the 3 n

  10. A new method for determining gas phase heat of formation of aromatic energetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz, Mohammad H. [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P. O. Box 83145/115 (Iran); Tehrani, Masoud K. [Department of Physics, Malek-ashtar University of Technology, Shahin-shahr P. O. Box 83145/115 (Iran)

    2007-04-15

    A new correlation is introduced for desk calculation of gas phase heat of formation of aromatic energetic compounds that contain the elements of carbon, hydrogen, nitrogen and oxygen. Predicted gas phase heats of formation for 26 energetic compounds have a root mean square of deviation from experiment of 20.67 kJ/mol, which is in good agreement with respect to measured values of oxygen-lean and oxygen-rich aromatic energetic compounds. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  11. Volatile compounds formation in alcoholic fermentation from grapes collected at 2 maturation stages: Influence of nitrogen compounds and grape variety

    OpenAIRE

    Martínez-Gil, A. M.; Garde-Cerdán, Teresa; Lorenzo, Cándida; Félix Lara, J.; Pardo, F.; Rosario Salinas, M.

    2012-01-01

    The aim of this work was to study the influence of nitrogen compounds on the formation of volatile compounds during the alcoholic fermentation carried out with 4 nonaromatic grape varieties collected at 2 different maturation stages. To do this, Monastrell, Merlot, Syrah, and Petit Verdot grapes were collected 1 wk before harvest and at harvest. Then, the musts were inoculated with the same Saccharomyces cerevisiae yeast strain and were fermented in the same winemaking conditions. Amino acids...

  12. Crystal nucleus formation on the cathode under conditions of supersaturation of melt by lower valent forms

    International Nuclear Information System (INIS)

    Kaliev, K.A.; Aksent'ev, A.G.; Baraboshkin, A.N.

    1979-01-01

    Nucleation on the cathode of sodium-tungsten bronzes forom the Na 2 WO 4 -WO 3 melt, containing 40 mol.% WO 3 is studied. It has been found that in the initial period the cathode deposition of sodium-tungsten bronze is preceeded by the formation of tungsten soluble lower reduced forms, the concentration of which can considerably exceed the equilibrium one because of excessive overstress of oxide bronze crystal nucleation. The polarization of cathode and change of its potential at the crystal nucleation of sodium-tungsten bronze and switching-off of the electrolysis current has been studied

  13. On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates.

    Science.gov (United States)

    Goetz, Laurent; Piallat, Brigitte; Bhattacharjee, Manik; Mathieu, Hervé; David, Olivier; Chabardès, Stéphan

    2016-05-04

    The mesencephalic reticular formation (MRF) is formed by the pedunculopontine and cuneiform nuclei, two neuronal structures thought to be key elements in the supraspinal control of locomotion, muscle tone, waking, and REM sleep. The role of MRF has also been advocated in modulation of state of arousal leading to transition from wakefulness to sleep and it is further considered to be a main player in the pathophysiology of gait disorders seen in Parkinson's disease. However, the existence of a mesencephalic locomotor region and of an arousal center has not yet been demonstrated in primates. Here, we provide the first extensive electrophysiological mapping of the MRF using extracellular recordings at rest and during locomotion in a nonhuman primate (NHP) (Macaca fascicularis) model of bipedal locomotion. We found different neuronal populations that discharged according to a phasic or a tonic mode in response to locomotion, supporting the existence of a locomotor neuronal circuit within these MRF in behaving primates. Altogether, these data constitute the first electrophysiological characterization of a locomotor neuronal system present within the MRF in behaving NHPs under normal conditions, in accordance with several studies done in different experimental animal models. We provide the first extensive electrophysiological mapping of the two major components of the mesencephalic reticular formation (MRF), namely the pedunculopontine and cuneiform nuclei. We exploited a nonhuman primate (NHP) model of bipedal locomotion with extracellular recordings in behaving NHPs at rest and during locomotion. Different MRF neuronal groups were found to respond to locomotion, with phasic or tonic patterns of response. These data constitute the first electrophysiological evidences of a locomotor neuronal system within the MRF in behaving NHPs. Copyright © 2016 the authors 0270-6474/16/364917-13$15.00/0.

  14. A Critical Role for the Nucleus Reuniens in Long-Term, But Not Short-Term Associative Recognition Memory Formation.

    Science.gov (United States)

    Barker, Gareth R I; Warburton, Elizabeth Clea

    2018-03-28

    nucleus reuniens (NRe) of the thalamus. However, the role of the NRe itself in associative recognition memory is unknown. Here, we reveal the crucial role of the NRe in encoding and retrieval of long-term object-in-place memory, but not for remembrance of an individual object or individual location and such involvement is cholinergic receptor and protein synthesis dependent. This is the first demonstration that the NRe is a key node within an associative recognition memory network and is not just a simple relay for information within the network. Rather, we argue, the NRe actively modulates information processing during long-term associative memory formation. Copyright © 2018 the authors 0270-6474/18/383208-10$15.00/0.

  15. Nucleus--nucleus potential

    International Nuclear Information System (INIS)

    Jaqaman, H.R.

    1977-01-01

    The nucleus--nucleus interaction is studied within the framework of the generator coordinate method that permits an easy incorporation of the full effects of antisymmetrization. It is found that the interaction, as far as the elastic scattering problem is concerned, can be described by a simple effective potential that is equivalent to the original many-body (and hence non-local) problem. The potential is obtained by dividing the wavefunction into a long-range part and a short-range part and requiring the former to satisfy a Schroedinger equation. This enables avoiding dealing with the troublesome short-range part of the wavefunction and provides a direct link with the optical model so that the potential obtained here is equivalent to the real part of the optical potential (the imaginary part is not investigated). The effective potential is found to consist of three parts: an interaction term between the nucleons belonging to different nuclei, a kinetic energy term due to the change in the intrinsic kinetic energy of the system as a result of the antisymmetrization, and finally an l-dependent part. The kinetic energy term is found to be very repulsive and effectively gives a hard core, and is calculated for the α--α and 16 O-- 16 O cases. The full potential is calculated for the α--α case for the S, D, and G partial waves and then used to calculate the corresponding phase shifts that are then compared with experimental results and other microscopic calculations. Finally, some recent results and analyses of fusion and deep inelastic reactions are reviewed that seem to indicate the presence of a hard core in the nucleus--nucleus potential. Such a hard core is present in the potential obtained in the sudden approximation

  16. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu_3Sn and Cu_6Sn_5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu_3Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu_3Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu_3Sn thickness and an accelerated growth rate of Cu_6Sn_5. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu_3Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu_3Sn to be consumed by Cu_6Sn_5.

  17. A new F-actin structure in fungi: actin ring formation around the cell nucleus of Cryptococcus neoformans.

    Science.gov (United States)

    Kopecká, Marie; Kawamoto, Susumu; Yamaguchi, Masashi

    2013-04-01

    The F-actin cytoskeleton of Cryptococcus neoformans is known to comprise actin cables, cortical patches and cytokinetic ring. Here, we describe a new F-actin structure in fungi, a perinuclear F-actin collar ring around the cell nucleus, by fluorescent microscopic imaging of rhodamine phalloidin-stained F-actin. Perinuclear F-actin rings form in Cryptococcus neoformans treated with the microtubule inhibitor Nocodazole or with the drug solvent dimethyl sulfoxide (DMSO) or grown in yeast extract peptone dextrose (YEPD) medium, but they are absent in cells treated with Latrunculin A. Perinuclear F-actin rings may function as 'funicular cabin' for the cell nucleus, and actin cables as intracellular 'funicular' suspending nucleus in the central position in the cell and moving nucleus along the polarity axis along actin cables.

  18. Gibbs free energy of formation of UPb(s) compound

    International Nuclear Information System (INIS)

    Samui, Pradeep; Agarwal, Renu; Mishra, Ratikanta

    2012-01-01

    Liquid lead and lead-bismuth eutectic (LBE) are being explored as primary candidates for coolants in accelerator driven systems and in advanced nuclear reactors due to their favorable thermo-physical and chemical properties. They are also proposed to be used as spallation neutron source in ADS Reactor Systems. However, corrosion of structural materials (i.e. steel) presents a critical challenge for the use of liquid lead or LBE in advanced nuclear reactors. The interactions of liquid lead or LBE with clad and fuel is of great scientific and technological importance in the development of advanced nuclear reactors. Clad failure/breach can lead to reaction of coolant elements with fuel components. Thus the study of fuel-coolant interaction of U with Pb/Bi is important. The paper deals with the determination of Gibbs free energy of formation of U-rich phase i.e. UPb in Pb-U system, employing Knudsen effusion mass loss technique

  19. Volatile compounds formation in alcoholic fermentation from grapes collected at 2 maturation stages: influence of nitrogen compounds and grape variety.

    Science.gov (United States)

    Martínez-Gil, Ana M; Garde-Cerdán, Teresa; Lorenzo, Cándida; Lara, José Félix; Pardo, Francisco; Salinas, M Rosario

    2012-01-01

    The aim of this work was to study the influence of nitrogen compounds on the formation of volatile compounds during the alcoholic fermentation carried out with 4 nonaromatic grape varieties collected at 2 different maturation stages. To do this, Monastrell, Merlot, Syrah, and Petit Verdot grapes were collected 1 wk before harvest and at harvest. Then, the musts were inoculated with the same Saccharomyces cerevisiae yeast strain and were fermented in the same winemaking conditions. Amino acids that showed the highest and the lowest concentration in the must were the same, regardless of the grape variety and maturation stage. Moreover, the consumption of amino acids during the fermentation increased with their concentration in the must. The formation of volatile compounds was not nitrogen composition dependent. However, the concentration of amino acids in the must from grapes collected 1 wk before harvest can be used as a parameter to estimate the concentration of esters in wines from grapes collected at harvest and therefore to have more information to know the grape oenological capacity. Application of principal components analysis (PCA) confirmed the possibility to estimate the concentration of esters in the wines with the concentration of nitrogen compounds in the must. © 2011 Institute of Food Technologists®

  20. Superconducting transition temperature and the formation of closed electron shells in the atoms of superconducting compounds

    International Nuclear Information System (INIS)

    Chapnik, I.M.

    1985-01-01

    The relationship between the regularities in the tansition temperature (T/sub c/) values in analogous compounds (having the same structure and stoichiometry) and the formation of the closed electron shells outside inert gas shells in the atoms of the variable component of the 158 intermetallic superconducting compounds has been discussed. The T/sub c/ data for compounds of the elements from the first long period of the Periodic Table (K to Se) are compared with the T/sub c/ data for the analogous compounds of the elements from the second long period (Rb to Te)

  1. Void formation and its impact on Cu−Sn intermetallic compound formation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Glenn, E-mail: Glenn.Ross@aalto.fi; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-08-25

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu{sub 3}Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu{sub 3}Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu{sub 3}Sn thickness and an accelerated growth rate of Cu{sub 6}Sn{sub 5}. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu{sub 3}Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu{sub 3}Sn to be consumed by Cu{sub 6}Sn{sub 5}.

  2. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn–Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Prelas, M.A. [University of Missouri, Columbia, MO (United States); Hora, H. [University of New South Wales, Sydney (Australia); Miley, G.H. [University of Illinois, Urbana-Champaign (United States)

    2014-07-04

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q{sub α}, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus {sup 310}X{sub 126} was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing.

  3. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn–Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    International Nuclear Information System (INIS)

    Prelas, M.A.; Hora, H.; Miley, G.H.

    2014-01-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q α , arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus 310 X 126 was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing

  4. Low molecular weight compounds as effective dispersing agents in the formation of colloidal silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Jun; Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp; Abe, Takao [Shinshu University, Faculty of Textile Science and Technology (Japan)

    2013-03-15

    A convenient method to synthesize uniform, well-dispersed colloidal silver nanoparticles is described. Aldonic acid or {alpha}-hydroxy acid compounds of low molecular weight are used instead of polymeric compounds as dispersing agents to prepare silver nanoparticles. The size, conformation, and electrical conductivity of the silver nanoparticles, and the effect and function of the dispersing agents are investigated in detail. Using these low molecular weight compounds as dispersing agents, silver nanoparticles with a diameter of 10 nm or less and high electrical conductivity can be obtained. In addition, this procedure allows silver nanoparticles to be sintered at 150 Degree-Sign C, which is lower than that required for silver nanoparticle formulation using polymeric compounds (200 Degree-Sign C). The silver nanoparticles produced by this process can be used to prepare various inks and to manufacture electronic circuits. It is found that low molecular weight compounds are more effective dispersing agents than polymeric compounds in the formation of silver nanoparticles.

  5. A CLOSER VIEW OF THE RADIO-FIR CORRELATION: DISENTANGLING THE CONTRIBUTIONS OF STAR FORMATION AND ACTIVE GALACTIC NUCLEUS ACTIVITY

    International Nuclear Information System (INIS)

    Moric, I.; Smolcic, V.; Riechers, D. A.; Scoville, N.; Kimball, A.; Ivezic, Z.

    2010-01-01

    We extend the Unified Radio Catalog, a catalog of sources detected by various (NVSS, FIRST, WENSS, GB6) radio surveys, and SDSS, to IR wavelengths by matching it to the IRAS Point and Faint Source catalogs. By fitting each NVSS-selected galaxy's NUV-NIR spectral energy distribution (SED) with stellar population synthesis models we add to the catalog star formation rates (SFRs), stellar masses, and attenuations. We further add information about optical emission-line properties for NVSS-selected galaxies with available SDSS spectroscopy. Using an NVSS 20 cm (F 1.4 G Hz ∼> 2.5 mJy) selected sample, matched to the SDSS spectroscopic ('main' galaxy and quasar) catalogs and IRAS data (0.04 < z ∼< 0.2) we perform an in-depth analysis of the radio-FIR correlation for various types of galaxies, separated into (1) quasars, (2) star-forming, (3) composite, (4) Seyfert, (5) LINER, and (6) absorption line galaxies using the standard optical spectroscopic diagnostic tools. We utilize SED-based SFRs to independently quantify the source of radio and FIR emission in our galaxies. Our results show that Seyfert galaxies have FIR/radio ratios lower than, but still within the scatter of, the canonical value due to an additional (likely active galactic nucleus (AGN)) contribution to their radio continuum emission. Furthermore, IR-detected absorption and LINER galaxies are on average strongly dominated by AGN activity in both their FIR and radio emission; however their average FIR/radio ratio is consistent with that expected for star-forming galaxies. In summary, we find that most AGN-containing galaxies in our NVSS-IRAS-SDSS sample have FIR/radio flux ratios indistinguishable from those of the star-forming galaxies that define the radio-FIR correlation. Thus, attempts to separate AGNs from star-forming galaxies by their FIR/radio flux ratios alone can separate only a small fraction of the AGNs, such as the radio-loud quasars.

  6. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds.

    Science.gov (United States)

    Marti, Erica J; Pisarenko, Aleksey N; Peller, Julie R; Dickenson, Eric R V

    2015-04-01

    Nitrosamines are a class of toxic disinfection byproducts commonly associated with chloramination, of which several were included on the most recent U.S. EPA Contaminant Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse applications, particularly for direct or indirect potable reuse, since recent studies show direct formation during ozonation of natural water and treated wastewaters. Only a few studies have identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, were subjected to a 10 M excess of ozone. In parallel experiments, the precursor solutions in ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA precursor compounds that have not been previously reported in the literature, including compounds with hydrazone and carbamate moieties. Molar yields in deionized water were 61-78% for 3 precursors, 12-23% for 5 precursors and NDMA formation for the other precursors. NDMA formation due to chloramination was minimal compared to formation due to ozonation, suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical reactions with the precursors will produce NDMA, but formation is much greater in the presence of molecular ozone. Also, hydroxyl radical scavenging during ozonation leads to increased NDMA formation. Molar conversion yields were higher for several precursors in wastewater as compared to deionized water, which could be due to catalyzed reactions with constituents found in wastewater or hydroxyl radical scavenging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Precipitation of organic arsenic compounds and their degradation products during struvite formation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jin-Biao; Yuan, Shoujun [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Wang, Wei, E-mail: dwhit@126.com [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Hu, Zhen-Hu, E-mail: zhhu@hfut.edu.cn [School of Civil Engineering, Hefei University of Technology, Hefei 230009 (China); Institute of Water Treatment and Wastes Reutilization, Hefei University of Technology, Hefei 230009 (China); Yu, Han-Qing [Department of Chemistry, University of Science & Technology of China, Hefei 230026 (China)

    2016-11-05

    Highlights: • Organic and inorganic arsenic compounds precipitated during struvite formation. • Precipitation of organic arsenic compounds in struvite decreased with increasing pH. • Arsenate easily precipitate in struvite as compared to organic arsenic compounds. • Arsenic compounds in solution affected the shape of struvite crystallization products. - Abstract: Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH{sub 4}{sup +}-N) and phosphate (PO{sub 4}{sup 3−}-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO{sub 4}{sup 3−}-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation.

  8. Formation of Flavor Compounds by Amino Acid Catabolism in Cheese (Turkish with English Abstract

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Biochemical reactions which contribute flavor formation occur in result of proteolysis during cheese ripening. Casein as the main protein of cheese has a significant effect on the flavor and textural properties of cheeses via its degradation to small peptides and free amino acids by various factors like coagulant enzymes. Specific flavors of cheeses occur as a result of amino acid catabolism by starter and non-starter bacteria. Some flavor compounds are formed by enzymatic transformations as well as by non-enzymatic, chemical changes in cheese. In this paper, formation of flavor compounds by amino acid catabolism during cheese ripening reviewed.

  9. Formation of Haloacetonitriles, Haloacetamides, and Nitrogenous Heterocyclic Byproducts by Chloramination of Phenolic Compounds.

    Science.gov (United States)

    Nihemaiti, Maolida; Le Roux, Julien; Hoppe-Jones, Christiane; Reckhow, David A; Croué, Jean-Philippe

    2017-01-03

    The potential formation of nitrogenous disinfection byproducts (N-DBPs) was investigated from the chloramination of nitrogenous and non-nitrogenous aromatic compounds. All molecules led to the formation of known N-DBPs (e.g., dichloroacetonitrile, dichloroacetamide) with various production yields. Resorcinol, a major precursor of chloroform, also formed di/trichloroacetonitrile, di/trichloroacetamide, and haloacetic acids, indicating that it is a precursor of both N-DBPs and carbonaceous DBPs (C-DBPs) upon chloramination. More detailed experiments were conducted on resorcinol to understand N-DBPs formation mechanisms and to identify reaction intermediates. Based on the accurate mass from high resolution Quadrupole Time-of-Flight GC-MS (GC-QTOF) and fragmentation patterns from electronic impact and positive chemical ionization modes, several products were tentatively identified as nitrogenous heterocyclic compounds (e.g., 3-chloro-5-hydroxy-1H-pyrrole-2-one with dichloromethyl group, 3-chloro-2,5-pyrroledione). These products were structurally similar to the heterocyclic compounds formed during chlorination, such as the highly mutagenic MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone) or halogenated pyrroles. To our knowledge, this is the first time that the formation of halogenated nitrogenous heterocyclic compounds is reported from chloramination process. The formation of these nitrogenous byproducts during chloramination might be of concern considering their potential toxicity.

  10. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways.

    Science.gov (United States)

    Huang, Feng; Tahmasebi, Arash; Maliutina, Kristina; Yu, Jianglong

    2017-12-01

    The formation of nitrogen-containing compounds in bio-oil during microwave pyrolysis of Chlorella and Spirulina microalgae has been investigated in this study. Activated carbon (AC) and magnetite (Fe 3 O 4 ) were used as microwave receptors during microwave pyrolysis experiments. It has been found that the use of Fe 3 O 4 increased the total yield of bio-oil. The use of different microwave receptors did not seem to have affected the total yield of nitrogen-containing compounds in the bio-oil. However, Fe 3 O 4 promoted the formation of nitrogen-containing aliphatics, thereby reducing the formation of nitrogen-containing aromatics. The use of AC promoted the dehydration reactions during amino acid decomposition, thereby enhancing the formation of nitrogen-containing aromatics during pyrolysis. From the gas chromatography-mass spectrometry (GC-MS) analysis results, the major high-value nitrogen-containing compounds in the pyrolysis bio-oil of Chlorella and Spirulina were identified as indole and dodecamide. The formation mechanisms of nitrogen-containing compounds were proposed and discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Maruhn-Greiner Maximum for Confirmation of Low Energy Nuclear Reactions (LENR) via a Compound Nucleus with Double Magic Numbers

    Science.gov (United States)

    Hora, Heinrich; Miley, George

    2007-03-01

    One of the most convincing facts about LENR due to deuterons (ds) or protons of very high concentration in host metals of palladium is the measurement of the large scale minimum in the reaction probability with product elements centered around the nucleon number A = 153. The local maximum was measured in this region is similar to fission of uranium at A = 119 where the local maximum follows the Maruhn-Greiner mechanism^1. We suggest this phenomenon can be explained by the strong screening of the Maxwellian ds on the degenerate rigid electron background within the swimming electrons at the metal surface or thin filem interfaces. The deuterons behave like neutrals at distances of above 2 picometers (pm) and form clusters due to soft attraction in the range of thermal energy; 10 pm diameter clusters can react over long time scales (10^6 s) with Pd leading to double magic number compound nuclei 306x126 decaying via fission to an A=153 element distribution. J. Maruhn et al, Phys. Rev. Letters 32, 548 (1974) H. Hora, G.H. Miley, CzechJ. Phys. 48, 1111 (1998)

  12. Diagrams of the variations in the free energy of formation of metallic compounds (1960)

    International Nuclear Information System (INIS)

    Darras, R.; Loriers, H.

    1960-01-01

    The variations in the standard free energy ΔG produced during the formation of the principal simple metallic compounds have been calculated as a function of the temperature from recently published data, and are presented in convenient diagram form. Their usefulness in metallurgy is illustrated by some possible applications. (author) [fr

  13. SGC method for predicting the standard enthalpy of formation of pure compounds from their molecular structures

    International Nuclear Information System (INIS)

    Albahri, Tareq A.; Aljasmi, Abdulla F.

    2013-01-01

    Highlights: • ΔH° f is predicted from the molecular structure of the compounds alone. • ANN-SGC model predicts ΔH° f with a correlation coefficient of 0.99. • ANN-MNLR model predicts ΔH° f with a correlation coefficient of 0.90. • Better definition of the atom-type molecular groups is presented. • The method is better than others in terms of combined simplicity, accuracy and generality. - Abstract: A theoretical method for predicting the standard enthalpy of formation of pure compounds from various chemical families is presented. Back propagation artificial neural networks were used to investigate several structural group contribution (SGC) methods available in literature. The networks were used to probe the structural groups that have significant contribution to the overall enthalpy of formation property of pure compounds and arrive at the set of groups that can best represent the enthalpy of formation for about 584 substances. The 51 atom-type structural groups listed provide better definitions of group contributions than others in the literature. The proposed method can predict the standard enthalpy of formation of pure compounds with an AAD of 11.38 kJ/mol and a correlation coefficient of 0.9934 from only their molecular structure. The results are further compared with those of the traditional SGC method based on MNLR as well as other methods in the literature

  14. Formation of genotoxic compounds by medium pressure ultra violet treatment of nitrate rich water

    NARCIS (Netherlands)

    Martijn, A.J.; Boersma, M.G.; Vervoort, Jacques; Rietjens, I.; Kruithof, J.C.

    2014-01-01

    Genotoxic compounds were produced by full-scale medium pressure (MP) ultraviolet hydrogen peroxide (UV/H2O2) treatment of nitrate-rich pretreated surface water. It was hypothesized that this formation was caused by the reaction of nitrate photolysis intermediates with natural organic matter (NOM).

  15. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds

    NARCIS (Netherlands)

    Dolfing, Jan; Janssen, Dick B.

    1994-01-01

    The Gibbs free energy of formation of chlorinated aliphatic compounds was estimated with Mavrovouniotis' group contribution method. The group contribution of chlorine was estimated from the scarce data available on chlorinated aliphatics in the literature, and found to vary somewhat according to the

  16. Atomic inner shell ionization: a new method of nuclear interaction lifetimes in the range 10-16-10-18 second. Lifetime measurement of the compound nucleus in the reaction 106Cd+p (Ep=10 and 12 MeV)

    International Nuclear Information System (INIS)

    Chemin, J.-F.

    1978-01-01

    A new method to measure the lifetime of the compound nucleus formed in the reaction 106 Cd+p at Ep=10 and 12 MeV is described. The nuclear lifetime is compared to the known lifetime of an atomic inner shell vacancy created in the entrance channel of the nuclear reaction. If the ionization probability in he way-in of the nuclear reaction is kown the compound nucleus lifetime is deduced by a simple relation from the number of compound X-rays measured in coincidence with one of the reaction products. A large number of ionization probability values measured in very small impact parameter collisions induced by H + , He + , D + on Al, Cu, S, Ti, Si, Ag, Cd are reported. The data are interpreted in terms of the corrected SCA theory of ionization. New effects such as angular dependence and trajectory effect (hair-pin-curve effect) are shown experimentally. The influence of a nuclear delay time on the ionization probability value is considered; the effect on a nuclear reaction of the energy losses by the projectile during the ionization process is analysed in detail. The yield curve of the resonant nuclear reaction 27 Al(p,γ) 28 Si is taken as an example. A detailed analysis of the compound nucleus 107 In lifetimes is given. Attention has been paid to competitive processes leading to X ray emission of same energy as the compound X rays. Extensions of the method to measure compound nucleus lifetimes in collision induced by heavy ions and to separate the shape elastic and compound elastic mechanisms are presented [fr

  17. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Sørensen, Hanne R.; Meyer, Anne S.

    2014-01-01

    , several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes......The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5......-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at elevated temperatures. Correspondingly, xylose can follow different reaction mechanisms resulting in the formation of furan-2-carbaldehyde (furfural) and/or various C-1 and C-4 compounds. At least four routes...

  18. On formation of neptunium(5) and (6) during thermal decomposition of neptunium(4) compounds

    International Nuclear Information System (INIS)

    Bessonov, A.A.; Afonas'eva, T.V.; Krot, N.N.

    1989-01-01

    A study was made on thermal behaviour of neptunium(4) peroxide (1), binary nitrate of neptunium(4) and ammonium (2), as well as neptunium(4) oxalate (3). It was established that 1 decomposed to NpO 2 in three stages with formation of neptunium(5) hydroxide at 80-100 deg C, transformed to Np 2 O 5 during further heating. The compound 2 is stable up to 150 deg C, and then decomposition, accompanied by intramolecular neptunium oxidation with formation of NH 4 NpO 2 (NO 3 ) 3 , takes place. This compound is transformed to Np 2 O 5 at 260-290 deg C. It was revealed that during 3 heating in the air at 270-330 deg C more than 70 % of metal could be transformed to pentavalent form, which was probably related with (NpO 2 ) 2 C 2 O 4 formation

  19. Maruhn-Greiner Maximum of Uranium Fission for Confirmation of Low Energy Nuclear Reactions LENR via a Compound Nucleus with Double Magic Numbers

    Science.gov (United States)

    Hora, H.; Miley, G. H.

    2007-12-01

    One of the most convincing facts about LENR due to deuterons of very high concentration in host metals as palladium is the measurement of the large scale minimum of the reaction probability depending on the nucleon number A of generated elements at A = 153 where a local maximum was measured. This is similar to the fission of uranium at A = 119 where the local maximum follows from the Maruhn-Greiner theory if the splitting nuclei are excited to about MeV energy. The LENR generated elements can be documented any time after the reaction by SIMS or K-shell X-ray excitation to show the very unique distribution with the local maximum. An explanation is based on the strong Debye screening of the Maxwellian deuterons within the degenerate rigid electron background especially within the swimming electron layer at the metal surface or at interfaces. The deuterons behave like neutrals at distances of about 2 picometers. They may form clusters due to soft attraction in the range above thermal energy. Clusters of 10 pm diameter may react over long time probabilities (megaseconds) with Pd nuclei leading to a double magic number compound nucleus which splits like in fission to the A = 153 element distribution.

  20. Applying the elastic model for various nucleus-nucleus fusion

    International Nuclear Information System (INIS)

    HASSAN, G.S.; RAGAB, H.S.; SEDDEEK, M.K.

    2000-01-01

    The Elastic Model of two free parameters m,d given by Scalia has been used for wider energy regions to fit the available experimental data for potential barriers and cross sections. In order to generalize Scalia's formula in both sub- and above-barrier regions, we calculated m, d for pairs rather than those given by Scalia and compared the calculated cross sections with the experimental data. This makes a generalization of the Elastic Model in describing fusion process. On the other hand, Scalia's range of interacting systems was 24 ≤ A ≤194 where A is the compound nucleus mass number. Our extension of that model includes an example of the pairs of A larger than his final limit aiming to make it as a general formula for any type of reactants: light, intermediate or heavy systems. A significant point is the comparison of Elastic Model calculations with the well known methods studying complete fusion and compound nucleus formation, namely with the resultants of using Proximity potential with either Sharp or Smooth cut-off approximations

  1. Radiolytic formation of organic iodides from organic compounds released from ripolin paint

    International Nuclear Information System (INIS)

    Attia, S.; Evans, G.J.

    2002-01-01

    The impact of a serious nuclear reactor accident is governed to a large extent by the possible release of airborne organic iodides to the environment. This research examines the identification and behavior of organic iodides formed in the containment due to the release of organic compounds from Ripolin paint, into the aqueous phase, following a nuclear reactor accident. A bench scale apparatus installed in the irradiation chamber of a Gammacell was used to analyze the formation of organic iodides. Iodo-organics, transferred to the gas phase above irradiated aqueous samples, were analyzed using a Thermal Desorption method coupled with gas chromatography and mass spectrometry. Detailed studies of the identity of the organic compounds released and the organic iodides formed were conducted. The effects of parameters such as irradiation dose were also examined. All the organic iodides formed, under radiolytic conditions, were identified as iodo-alkanes. The organic compounds that were released from the Ripolin paint, such as methyl isobutyl ketone, were found to decompose, by a series of reactions, to produce the organic iodides. The precursor organic compounds and the organic iodides formed were observed to consist of the same alkyl group. These results indicate that organic compounds released from surface paints directly influence the formation of radiolytic organic iodide. (author)

  2. Secondary organic aerosol formation from a large number of reactive man-made organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, Richard G., E-mail: r.derwent@btopenworld.com [rdscientific, Newbury, Berkshire (United Kingdom); Jenkin, Michael E. [Atmospheric Chemistry Services, Okehampton, Devon (United Kingdom); Utembe, Steven R.; Shallcross, Dudley E. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Murrells, Tim P.; Passant, Neil R. [AEA Environment and Energy, Harwell International Business Centre, Oxon (United Kingdom)

    2010-07-15

    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential.

  3. Kinetic and mechanism formation reaction of complex compound Cu with di-n-buthildithiocarbamate (dbdtc) ligand

    Science.gov (United States)

    Haryani, S.; Kurniawan, C.; Kasmui

    2018-04-01

    Synthesis of complex compound is one field of research which intensively studied. Metal-dithiocarbamate complexes find wide-ranging applications in nanomaterial and metal separation science, and have potential use as chemotherapeutic, pesticides, and as additives to lubricants. However, the information about is reaction kinetic and mechanism are very much lacking. The research and analyzes results show that reaction synthesis ligand DBDTC and complex compounds Cu-DBDTC. Optimum reaction condition of formation of complex compounds Cu with DBDTC at pH=3, [DBDTC] = 4.10-3 M, and the time of reaction 5 minutes. Based the analysis varian reaction of complex compounds at pH 3 and 4, diffrence significance at the other pH: 5; 5,5; 6; 6,5 ; 7; and 8. The various of mole with reactants comosition difference sigbificance, those the time reaction for 5 and 6 minutes diffrence by significance with the other time, it is 3,4,8, and 10 minutes. The great product to at condition pH 6, the time optimum at 5 minutes and molar ratio of logam: ligand = 1:2. The reaction kinetic equation of complex compound Cu with chelathing ligand DBDTC is V=0.917106 [Cu2+]0.87921 [DBDTC]2.03021. Based on the kinetic data, and formed complex compounds estimation, the mechanism explaining by 2 stages. In the first stage formation of [Cu(DBDTC)], and then [Cu(DBDTC)2] with the last structure geomethry planar rectangle. The result of this research will be more useful if an effort is being done in reaction mechanism by chemical computation method for obtain intermediate, and for constant “k” in same stage, k1.k2. and compound complex constanta (β).

  4. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization

    DEFF Research Database (Denmark)

    Feketeová, Linda; Albright, Abigail L; Sørensen, Brita Singers

    2014-01-01

    Radiosensitizers are used in radiotherapy to enhance tumour control of radioresistant hypoxic tumours. While the detailed mechanism of radiosensitization is still unknown, the formation of radical anions is believed to be a key step. Thus understanding the ionization reactions of radiosensitizers......, misonidazole and related compounds using a hybrid linear ion trap – Fourier Transform Ion Cyclotron Resonance mass spectrometer (Finnigan-LTQ-FT). A key finding is that negative electrospray ionization of these radiosensitizers leads to the formation of radical anions, allowing their fragmentation reactions...

  5. Study of Reaction of Curium Oxy-Compound Formation in Molten Chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, A.G.; Mayorshin, A.A.; Bychkov, A.V. [Dimitrovgrad-10, Ulyanovsk region, 433510 (Russian Federation)

    2008-07-01

    The method of potentiometric titration using oxygen sensors with solid electrolyte membrane was applied for the study of the interaction of curium cations with oxygen anions in the molten alkali metal chlorides in the temperature range of 450-850 C degrees depending on oxy-acidity of the environment. Assumptions were made concerning ion and phase composition of the obtained high-temperature compounds and chemical reactions taking place in the melts. This scheme assumes that as the basicity of the melt increases, initially the formation of soluble curium oxychlorides takes place in the melt (presumably CmO{sup -}) that is followed by formation of solid CmOCl and finally sesquioxide Cm{sub 2}O{sub 3}. Basic thermodynamic values were calculated for the resultant curium oxy-compounds.

  6. Standard enthalpies of formation of selected Rh2YZ Heusler compounds

    International Nuclear Information System (INIS)

    Yin, Ming; Nash, Philip

    2015-01-01

    The standard enthalpies of formation (Δ f H°) of selected ternary Rh-based Rh 2 YZ (Y = Cu, Fe, Mn, Ni, Ru, Ti, V; Z = Al, Ga, In, Si, Ge, Sn) compounds were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation (in kJ/mol of atoms) are, for the Heusler compound Rh 2 MnSn (−40.1 ± 3.6), for the B2-structured compounds: Rh 2 FeAl (−48.5 ± 2.9); Rh 2 MnAl (−72.4 ± 2.7); Rh 2 MnGa (−55.3 ± 2.0); Rh 2 MnIn (−35.3 ± 1.9), for the tetragonal compounds: Rh 2 FeSn (−28.9 ± 1.3); Rh 2 TiAl (−97.6 ± 2.2); Rh 2 TiGa (−79.0 ± 1.8); Rh 2 TiSn (−74.7 ± 3.1). Values are compared with those from first principles calculations in published papers and the Open Quantum Materials Database (OQMD). Lattice parameters of these compounds are determined using X-ray diffraction analysis (XRD). Microstructures were characterized using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). - Highlights: • Standard enthalpies of formation of Rh 2 YZ were measured using a drop calorimeter. • Measured enthalpies agree with first principles data in general. • Lattice parameters and related phase relationships were consistent with literature data. • Rh 2 TiSn of tI8 structure were reported for the first time.

  7. Standard enthalpies of formation of selected Rh{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip

    2015-11-25

    The standard enthalpies of formation (Δ{sub f}H°) of selected ternary Rh-based Rh{sub 2}YZ (Y = Cu, Fe, Mn, Ni, Ru, Ti, V; Z = Al, Ga, In, Si, Ge, Sn) compounds were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation (in kJ/mol of atoms) are, for the Heusler compound Rh{sub 2}MnSn (−40.1 ± 3.6), for the B2-structured compounds: Rh{sub 2}FeAl (−48.5 ± 2.9); Rh{sub 2}MnAl (−72.4 ± 2.7); Rh{sub 2}MnGa (−55.3 ± 2.0); Rh{sub 2}MnIn (−35.3 ± 1.9), for the tetragonal compounds: Rh{sub 2}FeSn (−28.9 ± 1.3); Rh{sub 2}TiAl (−97.6 ± 2.2); Rh{sub 2}TiGa (−79.0 ± 1.8); Rh{sub 2}TiSn (−74.7 ± 3.1). Values are compared with those from first principles calculations in published papers and the Open Quantum Materials Database (OQMD). Lattice parameters of these compounds are determined using X-ray diffraction analysis (XRD). Microstructures were characterized using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). - Highlights: • Standard enthalpies of formation of Rh{sub 2}YZ were measured using a drop calorimeter. • Measured enthalpies agree with first principles data in general. • Lattice parameters and related phase relationships were consistent with literature data. • Rh{sub 2}TiSn of tI8 structure were reported for the first time.

  8. Stereoselective Synthesis of Tetrahydroindolizines through the Catalytic Formation of Pyridinium Ylides from Diazo Compounds.

    Science.gov (United States)

    Day, Jonathan; McKeever-Abbas, Ben; Dowden, James

    2016-05-04

    Commercially available iron(III) and copper(I) complexes catalyzed multicomponent cycloaddition reactions between diazo compounds, pyridines, and electrophilic alkenes to give alkaloid-inspired tetrahydroindolizidines in high yield with high diastereoselectivity. Hitherto, the catalytic formation of versatile pyridinium ylides from metal carbenes has been poorly developed; the broad utility demonstrated herein sets the stage for the invention of further multicomponent reactions in future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Secondary organic aerosol formation from phenolic compounds in the absence of NOx

    Directory of Open Access Journals (Sweden)

    D. Cocker III

    2011-10-01

    Full Text Available SOA formation from benzene, toluene, m-xylene, and their corresponding phenolic compounds were investigated using the UCR/CE-CERT Environmental Chamber to evaluate the importance of phenolic compounds as intermediate species in aromatic SOA formation. SOA formation yield measurements coupled to gas-phase yield measurements indicate that approximately 20% of the SOA of benzene, toluene, and m-xylene could be ascribed to the phenolic route under low NOx conditions. The SOA densities tend to be initially as high as approximately 1.8 g cm−3 and eventually reach the range of 1.3–1.4 g cm−3. The final SOA density was found to be independent of elemental ratio (O/C indicating that applying constant density (e.g., 1.4 g cm−3 to SOA formed from different aromatic compounds tested in this study is a reasonable approximation. Results from a novel on-line PILS-TOFMS (Particle-into-Liquid Sampler coupled with Agilent Time-of-Flight Mass Spectrometer are reported. Major signals observed by the on-line/off-line Agilent TOFMS indicated that products had the same number of carbon atoms as their parent aromatics, suggesting importance of ring-retaining products or ring-opening products following ring-cleavage.

  10. Size effects on cation heats of formation. I. Methyl substitutions in nitrogenous compounds

    International Nuclear Information System (INIS)

    Leach, Sydney

    2012-01-01

    Graphical abstract: Heat of formation of cations as a function of ln(n) where n is the number of atoms in the ion: methyl substituted immonium cations. N = substitution at nitrogen sites, C = substitution at carbon sites. Highlights: ► Heats of formation of nitrogenous cations by graphical method relating to ion size. ► Methyl substitution in formamides, acetamides, immonium, amine, and imine cations. ► Methyl substitution in ammonium and amino cations. ► New studies ionization energies and heats of formation required in several cases. - Abstract: The heats of formation of molecular ions are often not known to better than 10 or 20 kJ/mol. The present study on nitrogenous compounds adopts the graphical approach of Holmes and Lossing which relates cation heats of formation to cation size. A study of methyl substitution in formamides and acetamides is followed by an examination of heat of formation data on carbon-site and nitrogen-site methyl substitution in immonium, amine, imine, ammonium and amino cations. The results provide tests of the validity of this graphical method and also suggest investigating or re-investigating the ionization energies and the heats of formation of several of the molecules studied.

  11. Formation of nitrogen-containing compounds during slow pyrolysis and oxidation of petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Ohtsuka, Y. [IMAF Group, Ottawa, ON (Canada)

    1997-09-01

    The petroleum coke from a fluid coking process was pyrolyzed in helium and oxidized in 1% and 4% O{sub 2} and in air, with the aim to determine N-containing compounds such as HCN, NH{sub 3}, NO, and N{sub 2}O. The experiments were performed with and without limestone. NO was the major product during all oxidation runs. N{sub 2}O was formed only in air. In this case, N{sub 2}O formation was delayed when compared with that of NO. The addition of limestone decreased formation of HCN and increased that of NH{sub 3}, whereas NO formation was least affected. 36 refs., 8 figs., 6 tabs.

  12. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  13. Global features of nucleus-nucleus collisions in ultrarelativistic domain

    International Nuclear Information System (INIS)

    Savina, M.V.; Shmatov, S.V.; Slavin, N.V.; Zarubin, P.I.

    1998-01-01

    HIJING generator simulation of nucleus-nucleus collisions at ultrarelativistic energies is presented. It is shown that the global characteristics of nucleus-nucleus collisions, such as distribution of a charged multiplicity, total and electromagnetic transverse energy over pseudorapidity are rather sensitive to some predictions of models of high-exited nuclear medium formation, namely parton energy losses in dense nuclear matter. These losses result in appearance of a broad maximum in global variable distributions over pseudorapidity. The most profound of this effect occurs at central heavy ion collisions at LHC energy

  14. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    Science.gov (United States)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  15. Enthalpies of formation of selected Co{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Chen, Song; Nash, Philip

    2013-11-15

    Highlights: •Enthalpies of formation of selected Co{sub 2}YZ were measured by drop calorimeters. •Enthalpy decreases as the Z element approaches the top right corner of the periodic table. •For the Y element, enthalpy increases on increasing the number of d electrons. •Result of L2{sub 1} structured compounds agrees with first principles data. •Lattice parameters and related phase relationships were consistent with literature data. -- Abstract: Standard enthalpies of formation at 298 K of selected ternary Co{sub 2}-based Heusler compounds Co{sub 2}YZ (Y = Fe, Hf, Mn, Ti, V, Zr; Z = Al, Ga, In, Si, Ge, Sn) were measured by high temperature direct synthesis calorimetry. The measured enthalpies of formation (in kJ/mole of atoms) of the L2{sub 1} compounds are: Co{sub 2}FeGa (−25.8 ± 2.6); Co{sub 2}FeSi (−38.4 ± 2.2); Co{sub 2}FeGe (−11.6 ± 2.1); Co{sub 2}MnGa (−30.1 ± 2.3); Co{sub 2}MnSi (−42.4 ± 1.2); Co{sub 2}MnGe (−31.6 ± 3.0); Co{sub 2}MnSn (−15.6 ± 2.8); Co{sub 2}TiAl (−55.0 ± 3.7); Co{sub 2}TiGa (−54.2 ± 2.6); Co{sub 2}TiSi (−61.4 ± 1.7); Co{sub 2}TiGe (−59.3 ± 3.8); Co{sub 2}TiSn (−38.4 ± 2.0); Co{sub 2}VGa (−28.4 ± 1.1) and for the B2 compounds: Co{sub 2}FeAl (−22.5 ± 2.5), Co{sub 2}MnAl (−27.6 ± 2.7). Values are compared with those from first principles calculation when available and the extended semi-empirical model of Miedema. Trends in enthalpy of formation with element atomic number are discussed. Lattice parameters of the compounds with L2{sub 1} structure are determined by X-ray diffraction analysis.

  16. Synthesis of PVA Hydrogel for Prosthetic Discus Nucleus Pulposus: Formation of Interpenetrating Polymer Network (IPN) PVA Hydrogel by Gamma Rays

    International Nuclear Information System (INIS)

    Darwis, Darmawan; Erizal; Lely Hardiningsih; Razzak, Mirzan T.

    2004-01-01

    Research on synthesis of IPN PVA hydrogel for using as prosthetic discus nucleus has been carried out. Base hydrogel network (network I) was made by reacting the solution of polyvinyl alcohol (PVA) 10 - 15 % w/w with formaldehyde at 80 o C for several hours. Hydrogel network II (as IPN network) was then made by immersion of base hydrogel into polymer solution (PVP or PVA) until hydrogel swell to equilibrium volume. The hydrogel then irradiated using gamma rays at various doses. The results show that IPN PVA-PVP and IPN PVA-PVP hydrogels have higher compression strength compared to base hydrogel. IPN PVA-PVA hydrogel made by irradiating base hydrogel (immersed into polymer solution) with 25, 50 and 100 kGy have compression strength at 5 mm displacement 2.72; 2.83; and 3.25 kg/cm 2 respectively, While base hydrogel has compression strength of 1.75 kg/cm 2 . IPN PVA-PVP and PVA-PVA hydrogels made by irradiating base hydrogel with 100 kGy still retain high water content i.e. 72 and 74 % respectively. Beside that they show good re-absorption property after compression treatment that is hydrogel can return to the original shape after compressed to 12 mm displacement (80% of initial height on hydrogel) at relatively short time, less than 15 minutes. (author)

  17. Ammoxidation of Lignocellulosic Materials: Formation of Nonheterocyclic Nitrogenous Compounds from Monosaccharides

    Science.gov (United States)

    2013-01-01

    Ammoxidized technical lignins are valuable soil-improving materials that share many similarities with native terrestrial humic substances. In contrast to lignins, the chemical fate of carbohydrates as typical minor constituents of technical lignins during the ammoxidation processes has not been thoroughly investigated. Recently, we reported the formation of N-heterocyclic, ecotoxic compounds (OECD test 201) from both monosaccharides (d-glucose, d-xylose) and polysaccharides (cellulose, xylan) under ammoxidation conditions and showed that monosaccharides are a source more critical than polysaccharides in this respect. GC/MS-derivatization analysis of the crude product mixtures revealed that ammoxidation of carbohydrates which resembles the conditions encountered in nonenzymatical browning of foodstuff affords also a multitude of nonheterocyclic nitrogenous compounds such as aminosugars, glycosylamines, ammonium salts of aldonic, deoxyaldonic, oxalic and carbaminic acids, urea, acetamide, α-hydroxyamides, and even minor amounts of α-amino acids. d-Glucose and d-xylose afforded largely similar product patterns which differed from each other only for those products that were formed under preservation of the chain integrity and stereoconfiguration of the respective monosaccharide. The kinetics and reaction pathways involved in the formation of the different classes of nitrogenous compounds under ammoxidation conditions are discussed. PMID:23967905

  18. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    Science.gov (United States)

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  19. A compilation of information on the {sup 31}P(p,{alpha}){sup 28}Si reaction and properties of excited levels in the compound nucleus {sup 32}S

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.E.; Smith, D.L. [Argonne National Lab., IL (United States). Technology Development Div.

    1997-11-01

    This report documents a survey of the literature, and provides a compilation of data contained therein, for the {sup 31}P(p,{alpha}){sup 28}Si reaction. Attention is paid here to resonance states in the compound-nuclear system {sup 32}S formed by {sup 31}P + p, with emphasis on the alpha-particle decay channels, {sup 28}Si + {alpha} which populate specific levels in {sup 28}Si. The energy region near the proton separation energy for {sup 32}S is especially important in this context for applications in nuclear astrophysics. Properties of the excited states in {sup 28}Si are also considered. Summaries of all the located references are provided and numerical data contained in them are compiled in EXFOR format where applicable.

  20. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat.

    Science.gov (United States)

    Domínguez, Rubén; Gómez, María; Fonseca, Sonia; Lorenzo, José M

    2014-06-01

    The influence of four different cooking methods (roasting, grilling, microwaving and frying) on cooking loss, lipid oxidation and volatile profile of foal meat was studied. Cooking loss were significantly (Pcooking methods increased TBARs content, since high temperature during cooking causes increased oxidation in foal steaks, this increase was significantly (Pcooking methods led to increased total volatile compounds (between 366.7 and 633.1AU×10(6)/g dry matter) compared to raw steaks (216.4AU×10(6)/g dry matter). The roasted steaks showed the highest volatile content, indicating that increased cooking temperature increases the formation of volatile compounds. Aldehydes were the most abundant compounds in cooked samples, with amounts of 217.2, 364.5, 283.5 and 409.1AU×10(6)/g dry matter in grilled, microwaved, fried and roasted samples, respectively, whereas esters were the most abundant compounds in raw samples, with mean amounts of 98.8AU×10(6)/g dry matter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  2. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC

  3. Standard enthalpies of formation of selected Ru{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip

    2015-06-15

    Highlights: • Standard enthalpies of formation of Ru{sub 2}YZ were measured using a drop calorimeter. • Result of L2{sub 1} structured compounds agrees with first principles data. • Lattice parameters and related phase relationships were consistent with literature data. • Ru{sub 2}HfSn, Ru{sub 2}TiSn, Ru{sub 2}VGa, Ru{sub 2}VSi, Ru{sub 2}VSn of L2{sub 1} structure were reported for the first time. - Abstract: The standard enthalpies of formation of selected ternary Ru-based Heusler compounds Ru{sub 2}YZ (Y = Fe, Hf, Mn, Ti, V; Z = Al, Ga, In, Si, Ge, Sn) were measured using high temperature direct reaction calorimetry. The measured enthalpies of formation (in kJ/mole of atoms) of the Heusler compounds are, Ru{sub 2}FeGe (−19.7 ± 3.3); Ru{sub 2}HfSn (−24.9 ± 3.6); Ru{sub 2}MnSi (−46.0 ± 2.6); Ru{sub 2}MnGe (−29.7 ± 1.0); Ru{sub 2}MnSn (−20.6 ± 2.4); Ru{sub 2}TiSi (−94.9 ± 4.0); Ru{sub 2}TiGe (−79.1 ± 3.2); Ru{sub 2}TiSn (−60.6 ± 1.8); Ru{sub 2}VSi (−55.9 ± 1.7);for the B2-structured compounds, Ru{sub 2}FeSi (−28.5 ± 0.8); Ru{sub 2}HfAl (−70.8 ± 1.9); Ru{sub 2}MnAl (−32.3 ± 1.9); Ru{sub 2}MnGa (−25.3 ± 3.0); Ru{sub 2}TiAl (−62.7 ± 3.5); Ru{sub 2}VAl (−30.9 ± 1.6); Ru{sub 2}ZrAl (−64.5 ± 1.5). Values were compared with those from published first principles calculations and the OQMD (Open Quantum Materials Database). Lattice parameters of these compounds were determined using X-ray diffraction analysis (XRD). Microstructures were identified using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)

  4. Formation of an intermolecular charge-transfer compound in UHV codeposited tetramethoxypyrene and tetracyanoquinodimethane

    DEFF Research Database (Denmark)

    Medjanik, K.; Perkert, S.; Naghavi, S.

    2010-01-01

    Ultrahigh vacuum (UHV)-deposited films of the mixed phase of tetramethoxypyrene and tetracyanoquinodimethane (TMP -TCNQ ) on gold have been studied using ultraviolet photoelectron spectroscopy (UPS), x-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning tunneling spectroscopy (STS......). The formation of an intermolecular charge-transfer (CT) compound is evident from the appearance of new reflexes in XRD (d =0.894nm and d =0.677nm). A softening of the CN stretching vibration (redshift by 7 cm⊃-1) of TCNQ is visible in the IR spectra, being indicative of a CT on the order of 0.3e from TMP...

  5. New degradation compounds from lignocellulosic biomass pretreatment: routes for formation of potent oligophenolic enzyme inhibitors

    DEFF Research Database (Denmark)

    Rasmussen, H.; Tanner, David Ackland; Sørensen, H. R.

    2017-01-01

    -condensation reactions involving aldol condensations, 1,4 additions to α,β unsaturated carbonyl compounds, 3-keto acid decarboxylations and oxidations. Furthermore, pentose reactions with phenolic lignin components are suggested. The identification of the central role of xylose in the reaction routes for oligophenolic...... inhibitor formation led to the solution to protect the reactive anomeric center in xylose. It is shown that protection of the anomeric center in in situ generated xylose with ethylene glycol monobutyl ether, during pretreatment of wheat straw, reduces the level of oligophenols by 73%. The results pave...

  6. Power characteristics of the metal compounds formation process during the friction stir welding

    Directory of Open Access Journals (Sweden)

    Rzaev Radmir

    2017-01-01

    Full Text Available An influence of the power characteristics on the formation process of the uniform metals compound during the welding with friction stirringis being examined in this article.A dependency between the machine-tool engine power input and the instrument tilt during the FSW for the aluminum alloy AD31, copper alloy M1, titanium alloy OT4-1 and steel St-3 low-alloyed has been explored. A question of the stabilization of power consumption process while the establishment of superplastic condition of welded metal during the FSW has also been reviewed. A dependency revealed between the power characteristics, the geometry of the formation, the rotation speeds, the longitudinal displacement of the tool and its dimensions for fixed values of the parameters during the FSW.

  7. The formation of intermetallic compounds during interdiffusion of Mg–Al/Mg–Ce diffusion couples

    International Nuclear Information System (INIS)

    Dai, Jiahong; Jiang, Bin; Li, Xin; Yang, Qingshan; Dong, Hanwu; Xia, Xiangsheng; Pan, Fusheng

    2015-01-01

    Graphical abstract: Al–Ce intermetallic compounds (IMCs) formed in Mg–Al/Mg–Ce diffusion couples. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg atoms of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce, and AlCe were formed via the reaction of Al and Ce. - Highlights: • Al–Ce IMCs formation in the Mg–Al/Mg–Ce diffusion couples was studied. • Formation of Al 4 Ce as the first phase was rationalized using the Gibbs free energy. • The activation energy for the growth of the diffusion reaction zones was 36.6 kJ/mol. - Abstract: The formation of Al–Ce intermetallic compounds (IMCs) during interdiffusion of Mg–Al/Mg–Ce diffusion couples prepared by solid–liquid contact method was investigated at 623 K, 648 K and 673 K for 24 h, 48 h and 72 h, respectively. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce and AlCe were formed via the reaction of Al and Ce. The formation of Al 4 Ce as the first kind of IMC was rationalized on the basis of an effective Gibbs free energy model. The activation energy for the growth of the total diffusion reaction layer was 36.6 kJ/mol

  8. Calculating Heat of Formation Values of Energetic Compounds: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Michael S. Elioff

    2016-01-01

    Full Text Available Heat of formation is one of several important parameters used to assess the performance of energetic compounds. We evaluated the ability of six different methods to accurately calculate gas-phase heat of formation (ΔfH298,go values for a test set of 45 nitrogen-containing energetic compounds. Density functional theory coupled with the use of isodesmic or other balanced equations yielded calculated results in which 82% (37 of 45 of the ΔfH298,go values were within ±2.0 kcal/mol of the most recently recommended experimental/reference values available. This was compared to a procedure using density functional theory (DFT coupled with an atom and group contribution method in which 51% (23 of 45 of the ΔfH298,go values were within ±2.0 kcal/mol of these values. The T1 procedure and Benson’s group additivity method yielded results in which 51% (23 of 45 and 64% (23 of 36 of the ΔfH298,go values, respectively, were within ±2.0 kcal/mol of these values. We also compared two relatively new semiempirical approaches (PM7 and RM1 with regard to their ability to accurately calculate ΔfH298,go. Although semiempirical methods continue to improve, they were found to be less accurate than the other approaches for the test set used in this investigation.

  9. Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation

    International Nuclear Information System (INIS)

    Ait-Helal, W.; Borbon, A.; Beekmann, M.; Doussin, J.F.; Durand-Jolibois, R.; Grand, N.; Michoud, V.; Miet, K.; Perrier, S.; Siour, G.; Zapf, P.; Sauvage, S.; Fronval, I.; Leonardis, T.; Locoge, N.; Gouw, J.A. de; Colomb, A.; Gros, V.; Lopez, M.

    2014-01-01

    Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January-February 2010, at the SIRTA observatory in suburban Paris. Measurements comprise primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including C12-C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scale, and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and suburban Paris were surprisingly low (2-963 ppt) compared to other mega-cities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and suburban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (≤ 5 ppt) compared to summer (13-27 ppt), which cannot be explained by the gas-particle partitioning theory. Higher concentrations of most oxygenated VOCs in winter (18-5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I/VOCs) measured at SIRTA. From an integrated approach based on emission ratios and SOA yields, 38% of the SOA measured at SIRTA is explained by the measured concentrations of I/VOCs, with a 2% contribution by C12-C16 n-alkane IVOCs. From the results of an alternative time-resolved approach, the average IVOC contribution to SOA formation is estimated to be 7 %, which is half of the average contribution of the traditional aromatic compounds (15 %). Both

  10. Nitrogen-oxy compounds formation in moist - N2 gaseous systems

    International Nuclear Information System (INIS)

    Dey, G.R.; Das, Tomi Nath

    2015-01-01

    In any high ionizing radiation zone continuous generation of nitrogen compounds such as NO 2 , NO 2 - and NO 3 - in aqueous and gas phase is a normal phenomena. Their formation mechanisms, and the control processes still pose a challenge with reference to the resulting corrosive environment generated, and it's effect on various structural materials used in nuclear industry. The source(s) of nitrogen for these products are mainly air which ingresses into the system, and/or nitrogen compounds such as ammonia, hydrazine, volatile amines used in different parts of the nuclear power plants to control pH and scavenge dissolved oxygen in coolant/moderator systems. Under high radiation environment their subsequent chemistry leads to the formation of various N-O compounds. With the objective to elucidate such reaction mechanisms, we studied and compared the chemistry of nitrogen in water and moist-nitrogen systems under the complimentary initiation techniques of cold plasma, wherein free electrons in eV energy range initiate the radical induced chemistry. In the gas phase, cold plasma produced NO and NO 2 which were confirmed on-line by respective absorbance measurement at 204, 214.5, 226 and 400 nm, while NO 2 - was analyzed as additional product after wet-chemical sampling in sulphanalic acid (0.5%) and N (1-naphthyl) ethylene diamine dihydrochloride (0.1%) mixed solution followed by absorbance measurement at 540 nm. This work was explored in three different systems: (i) N 2 from commercial high purity N 2 gas cylinder, (ii) N 2 from such source pretreated with activated silica gel (to reduce/minimize moisture concentration further) and (iii) N 2 bubbled through water (saturated moisture in N 2 system). The observed concentration of NO 2 - was found to be higher in moisture saturated N 2 system. In this presentation a brief summary of the results on various aspect of the formation of different N-O compounds during radiolysis of aqueous systems and gas phase cold

  11. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    International Nuclear Information System (INIS)

    Cheng Yan; Wang Haifang; Sun Hongfang; Li Hongli

    2004-01-01

    Nicotine[3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b 5 (CYb 5 ) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb 5 , whereas curcumin and resveratrol induced GST. The authors may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine. (authors)

  12. Energy gap formation mechanism through the interference phenomena of electrons in face-centered cubic elements and compounds with the emphasis on half-Heusler and Heusler compounds

    Science.gov (United States)

    Mizutani, U.; Sato, H.

    2018-05-01

    Many face-centred cubic elements and compounds with the number of atoms per unit cell N equal to 8, 12 and 16 are known to be stabilised by forming either a band gap or a pseudogap at the Fermi level. They are conveniently expressed as cF8, cF12 and cF16, respectively, in the Pearson symbol. From the cF8 family, we worked on three tetravalent elements C (diamond), Si and Ge, SZn-type AsGa compound and NaCl-type compounds like BiLu, AsSc, etc. From the cF12 family, more than 80 compounds were selected, with a particular emphasis on ABC- and half-Heusler-type ternary equiatomic compounds. Among cF16 compounds, both the Heusler compounds ABC2 and Zintl compounds were studied. We revealed that, regardless of whether or not the transition metal (TM) and/or rare-earth (RE) elements are involved as constituent elements, the energy gap formation mechanism for cF8, cF12 and cF16 compounds can be universally discussed in terms of interference phenomenon of itinerant electrons with set of reciprocal lattice planes with ? = 8, 11 and 12, where ? refers to square of the critical reciprocal of lattice vector of an fcc lattice. The number of itinerant electrons per unit cell, e/uc, for all these band gap/pseudogap-bearing compounds is found to fall on a universal line called "3/2-power law" when plotted against ? on a logarithmic scale. This proves the validity of the fulfilment of the interference condition ? in conformity with other pseudogap compounds with different crystal symmetries and different sizes of the unit cell reported in literature.

  13. The nucleus

    International Nuclear Information System (INIS)

    Marano, S.

    1998-01-01

    In 1911 E.Rutherford discovered the nucleus. Since then the nucleus has been investigated with more and more powerful tools but it remains the main field of study of nuclear physics. As it is impossible to take into account the interaction of all the nucleons, a theory based on the hypothesis that each nucleon undergoes an average interaction force has been set up. 2 representations have emerged: the Skyrme force and the Gogny force. Both representations match experimental results but are unable to describe fission yields or the multi-fragmentation of very hot nuclei. The mean-field theory can predict the shape of the nuclei according to its energy level. An experimental program involving the Vivitron accelerator and the Euroball detector is due to begin to validate it. By bombarding targets with exotic nuclei nuclear physicists detect new structures and test their collision models. About ten years ago nuclear halos were observed with lithium 11 nuclei. In this nucleus 2 neutrons move in a space larger than the nucleus itself. This discovery has triggered the elaboration of new theories based on nuclear clusters. At very high temperatures the mean-field theory predicts that nuclear matter acts as a fluid. Following the nuclei temperature different ways of decay appear: first evaporation then multi-fragmentation and vaporization. This ultimate stage occurs around 100 milliard celsius degree temperature when the nuclei decays in a multitude of light particles. Isomeric states are studied and could be seen as a way of storing energy. In a very pedagogical way this article gives information to understand the challenges that face nuclear physics today and highlights the contributions of Cea in this field. (A.C.)

  14. Chromium as a potential catalyst in the thermal formation of chlorinated aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, T. [T. Oeberg Konsult AB, Lyckeby (Sweden); Bergstroem, J. [Bergstroem und Oehrstroem, Nykoeping (Sweden)

    2004-09-15

    Chlorinated aromatic compounds were detected in fly ash from municipal solid waste incinerators in the late 1970s. It was later shown that this fly ash possess catalytic properties enhancing the formation of PCDD/PCDF also at moderate temperatures. Copper is a well-known active oxychlorination catalyst in the Deacon process and is postulated to be responsible for this the lowtemperature formation of chlorinated aromatics. The catalytic activity of copper has also been demonstrated in both laboratory experiments and full-scale trials. However, copper is not the only metal that is an active oxychlorination catalyst. A substantial number of other transition elements also possess similar activity and interactions are well known. It is therefore of interest to widen the scope to include the fly ash metal composition as a whole. The number of studies with other elements than copper is limited. The element composition of municipal waste is not constant, but changing both between sources and over time. These variations could provide the means to study the influence from fuel composition on the thermal formation of chlorinated aromatics, and such studies have been attempted. Unfortunately process related factors will hide correlations in the observation data, making this approach difficult. An experimental study can be more successful in providing information about the effect from fuel and fly ash composition. Previous investigations in Sweden of the influence from different separation schemes on waste fuel composition can provide data suitable for evaluating the link between element composition in the fly ash, catalytic activity and the formation of polychlorinated benzenes, phenols, dibenzo-pdioxins and dibensofurans. Here we will attempt to re-evaluate the analytical results from a series of 16 trials with different waste fuels in the same combustion plant.

  15. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    Science.gov (United States)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (NDMA with partitioning to droplet must be the source of aqueous

  16. Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study

    Science.gov (United States)

    Jiang, Xiankai; Song, Bo; Tománek, David

    2018-04-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.

  17. Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation

    Science.gov (United States)

    Suthawaree, Jeeranut; Tajima, Yosuke; Khunchornyakong, Alisa; Kato, Shungo; Sharp, Alice; Kajii, Yoshizumi

    2012-02-01

    Measurement of Volatile Organic Compound (VOC) was carried out in suburban Bangkok during July 2-8, 2008. Analysis was performed using GC-FID and GC-MS. High mixing ratios of VOCs detected during the morning and evening are most likely due to vehicular emissions. Averaged VOC mixing ratios revealed distinct difference between mixing ratios of weekdays and weekend, which the latter were found to be lower. The most abundance species were propane and toluene. Ratios of benzene over toluene suggested that additional toluene mixing ratios was owing to industrial emission, which was particularly larger during weekdays. Comparison between C2Cl4 and CH3Cl mixing ratios obtained for suburban Tokyo reveal a relatively lower influence of biomass burning than suburban Bangkok. Elucidating by Ozone Formation Potential, toluene was found to contribute the most to O3 production followed by ethylene, m-,p-xylene, and propylene.

  18. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    Science.gov (United States)

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Harnessing redox activity for the formation of uranium tris(imido) compounds

    Science.gov (United States)

    Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.

    2014-10-01

    Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

  20. Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia

    Science.gov (United States)

    Berezina, E. V.; Moiseenko, K. B.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2017-05-01

    This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1-1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30-50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.

  1. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    Science.gov (United States)

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  2. Nucleus-nucleus total reaction cross sections

    International Nuclear Information System (INIS)

    DeVries, R.M.; Peng, J.C.

    1980-01-01

    We compare sigma/sub R/(E) for nucleus-nucleus systems (obtained from existing direct measurements and derived from elastic scattering data) with nucleon-nucleon and nucleon-nucleus data. The energy dependence of sigma/sub R/(E) for nucleus-nucleus systems is found to be quite rapid; there appears to be no evidence for an energy independent, geometric sigma/sub R/. Simple parameter free microscopic calculations are able to quantitatively reproduce the data and thus, emphasize the dominance of nucleon-nucleon interactions in medium energy nucleus-nucleus collisions

  3. A method to estimate the enthalpy of formation of organic compounds with chemical accuracy

    DEFF Research Database (Denmark)

    Hukkerikar, Amol; Meier, Robert J.; Sin, Gürkan

    2013-01-01

    through better correlation of data. For parameter estimation, a data-set containing 861 experimentally measured values of a wide variety of organic compounds (hydrocarbons, oxygenated compounds, nitrogenated compounds, multi-functional compounds, etc.) is used. The developed property model for Δf...

  4. Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.

    Science.gov (United States)

    Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe

    2012-03-28

    This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.

  5. Voltammetric investigation of avidin-biotin complex formation using an electroactive bisbiotinyl compound

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shirotori, Tatsuya; Hirabayashi, George; Kamiya, Naoto; Kuramitz, Hideki; Tanaka, Shunitz

    2004-01-01

    Formation of avidin-biotin complex was investigated using bisbiotinyl thionine (BBT) by means of voltammetric techniques. Thionine is an electroactive compound and has two amino groups that are necessary for the reaction with a biotinylation reagent. The biotinylation of thionine produces a new reagent with two biotin moieties at each end of thionine. Three BBTs of different lengths of the spacer that connects the biotin moiety to the thionine moiety were prepared. The avidin-biotin binding assay was achieved by measuring the electrode response of the thionine moiety in BBT. The binding affinity and the conformation of complex, which depended on the length of spacer, are discussed. BBT in which the spacer is shortest (BBT-S, distance between carbonyl group of the two biotin moieties: 11 A) binds with only one avidin molecule. BBT with medium length of spacer (BBT-M, 28.8 A) forms the complex with two avidin molecules. BBT with the longest spacer (BBT-L, 46.6 A) allows binding with two avidin molecules as well as intramolecular binding within one avidin molecule. The affinity constants of BBT-S, BBT-M and BBT-L for avidin were estimated to be 7.0 x 10 12 M -1 , 3.2 x 10 12 M -1 and 4.0 x 10 12 M -1 , respectively

  6. Towards an understanding of the propensity for crystalline hydrate formation by molecular compounds

    Directory of Open Access Journals (Sweden)

    Alankriti Bajpai

    2016-11-01

    Full Text Available Hydrates are technologically important and ubiquitous yet they remain a poorly understood and understudied class of molecular crystals. In this work, we attempt to rationalize propensity towards hydrate formation through crystallization studies of molecules that lack strong hydrogen-bond donor groups. A Cambridge Structural Database (CSD survey indicates that the statistical occurrence of hydrates in 124 molecules that contain five- and six-membered N-heterocyclic aromatic moieties is 18.5%. However, hydrate screening experiments on a library of 11 N-heterocyclic aromatic compounds with at least two acceptor moieties and no competing hydrogen-bond donors or acceptors reveals that over 70% of this group form hydrates, suggesting that extrapolation from CSD statistics might, at least in some cases, be deceiving. Slurrying in water and exposure to humidity were found to be the most effective discovery methods. Electrostatic potential maps and/or analysis of the crystal packing in anhydrate structures was used to rationalize why certain molecules did not readily form hydrates.

  7. Pulsed electric field and combination processing of mango nectar: effect on volatile compounds and HMF formation

    Directory of Open Access Journals (Sweden)

    A. S. Bawa

    2015-01-01

    Full Text Available Mango nectar is a commercially familiar and preferred product. The traditional processing of mango nectar has been by thermal processing which resulted in the alteration of the flavour of the product due to the effect of high temperature. The thermal processing of the nectar also resulted in the production of byproducts of non-enzymatic browning such as 5- hydroxy methyl furfural (HMF. These process induced effects, affect both the nutritive and sensory attributes of the fruit product, making it less preferable. With the growing interest and awareness about the benefits of alternative non-thermal technologies, such as pulsed electric field (PEF, the present work was proposed to use PEF to minimize the loss of volatiles and formation of HMF. The study involves thermal (96 ºC for 300 s and 600 s, PEF (24 µs, 120 Hz and 38 kV/cm and combination processing (PEF + Thermal (96 ºC for 90 s of mango nectar. The effect of these treatments on the volatile composition of mango nectar has been analysed using GC-MS technique. The reduction in the volatile compounds was significant (p 0.05 different from unprocessed sample, proving the fresh-like character of the product.

  8. Si-O compound formation by oxygen ion implantation into silicon

    International Nuclear Information System (INIS)

    Hensel, E.; Wollschlaeger, K.; Kreissig, U.; Skorupa, W.; Schulze, D.; Finster, J.

    1985-01-01

    High dose oxygen ion implantation into silicon at 30 keV was performed to produce understoichiometric and stoichiometric surface oxide layers of approx. 160 nm thickness. The oxygen depth profile and oxide stoichiometry was determined by RBS and XPS. Si-O compound formation was found by IR spectroscopy and XPS in the unannealed samples as well as after target heating, furnace or flash lamp annealing. As implanted understoichiometric layers consist of random bonding like SiOsub(x) (O 2 after annealing. Unannealed stoichiometric layers are bond strained SiO 2 . The activation energies of demixing and of the annealing of bond strains are determined to 0.19 and 0.13 eV, respectively. The removing of bond strains occurs at temperatures >= 800 C in a time shorter than 1 s. The SiO 2 /Si transition region of unannealed stoichiometric layers consists of SiOsub(x) with an extent of about 10 nm. After annealing this extent diminishes to 0.8 to 1 nm in consequence of oxidation by excess oxygen from the overstoichiometric oxide region. This thickness is comparable with that of thermal oxide. (author)

  9. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    NARCIS (Netherlands)

    Besemer, A.C.

    1982-01-01

    The paper describes the analysis of products of the photochemical degradation of toluene and toluene-14C in smog chamber experiments. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation

  10. Self-propagating high temperature synthesis as a method of determination of formation heat of refractory compounds

    International Nuclear Information System (INIS)

    Maslov, V.M.; Neganov, A.S.; Borovinskaya, I.P.; Merzhanov, A.G.

    1978-01-01

    Determination possibility of formation heats of refractory compounds in the process of direct synthesis from elements in a special calorimeter in the combustion regime is studied. Determined are formation heats of carbides - ZrCsub(0.92), Hf Csub(0.93), TaCsub(0.86), borides - ZrB 2 , HfB 2 NbB, NbB 2 , TaB, TaB 2 , MoB and silicides - ZrSi, ZrSi 2 , MoSi 2 . The results of chemical and x-ray phase analyses of the synthesized compounds are also given. Total error of formation heat determination methods does not surpass 2.0%

  11. Prompt HO2 formation following the reaction of OH with aromatic compounds under atmospheric conditions.

    Science.gov (United States)

    Nehr, Sascha; Bohn, Birger; Wahner, Andreas

    2012-06-21

    The secondary formation of HO(2) radicals following OH + aromatic hydrocarbon reactions in synthetic air under normal pressure and temperature was investigated in the absence of NO after pulsed production of OH radicals. OH and HO(x) (=OH + HO(2)) decay curves were recorded using laser-induced fluorescence after gas-expansion. The prompt HO(2) yields (HO(2) formed without preceding NO reactions) were determined by comparison to results obtained with CO as a reference compound. This approach was recently introduced and applied to the OH + benzene reaction and was extended here for a number of monocyclic aromatic hydrocarbons. The measured HO(2) formation yields are as follows: toluene, 0.42 ± 0.11; ethylbenzene, 0.53 ± 0.10; o-xylene, 0.41 ± 0.08; m-xylene, 0.27 ± 0.06; p-xylene, 0.40 ± 0.09; 1,2,3-trimethylbenzene, 0.31 ± 0.06; 1,2,4-trimethylbenzene, 0.37 ± 0.09; 1,3,5-trimethylbenzene, 0.29 ± 0.08; hexamethylbenzene, 0.32 ± 0.08; phenol, 0.89 ± 0.29; o-cresol, 0.87 ± 0.29; 2,5-dimethylphenol, 0.72 ± 0.12; 2,4,6-trimethylphenol, 0.45 ± 0.13. For the alkylbenzenes HO(2) is the proposed coproduct of phenols, epoxides, and possibly oxepins formed in secondary reactions with O(2). In most product studies the only quantified coproducts were phenols whereas only a few studies reported yields of epoxides. Oxepins have not been observed so far. Together with the yields of phenols from other studies, the HO(2) yields determined in this work set an upper limit to the combined yields of epoxides and oxepins that was found to be significant (≤0.3) for all investigated alkylbenzenes except m-xylene. For the hydroxybenzenes the currently proposed HO(2) coproducts are dihydroxybenzenes. For phenol and o-cresol the determined HO(2) yields are matching the previously reported dihydroxybenzene yields, indicating that these are the only HO(2) forming reaction channels. For 2,5-dimethylphenol and 2,4,6-trimethylphenol no complementary product studies are available.

  12. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-05-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal organic matter and related model compounds. Simulated algal blooms directly growing in Red Sea, red tide samples collected during an algal bloom event and Hymenomonas sp. monoculture were studied as algal organic matter sources. Experiments were conducted in synthetic seawater containing bromide ion. A variety of DBPs was formed from the chlorination and chloramination of algal organic matter. Brominated DBPs (bromoform, DBAA, DBAN and DBAcAm) were the dominant species. Iodinated DBPs (CIAcAm and iodinated THMs) were detected, which are known to be highly toxic compared to their chlorinated or brominated analogues. Algal organic matter was found to incorporate important precursors of nitrogenous DBPs (N-DBPs), which have been reported to be more toxic than regulated THMs and HAAs. Isotopically-labeled monochloramine (15N- NH2Cl) was used in order to investigate the nitrogen source in N-DBPs. High formation of N-DBPs was found from Hymenomonas sp. sample in exponential growth phase, which was enriched in nitrogen-containing organic compounds. High inorganic nitrogen incorporation was found from the algal samples enriched in humic-like compounds. HAcAms formation was studied from chlorination and chloramination of amino acids. Asparagine, aspartic acid and other amino acids with an aromatic structure were found to be important precursors of HAcAms and DCAN. Factors affecting HAcAms formation (Cl2/ amino acid molar ratio and pH) were evaluated. Studies on the formation kinetics of DCAcAm and DCAN from asparagine suggested a rapid formation of DCAcAm from organic nitrogen (amide group) and a slower incorporation of inorganic nitrogen coming from monochloramine to form DCAN. High amounts of DCAN and DCAcAm were detected from the

  13. The effect of silicon addition to the interfilamentary copper on Jc, compound formation and interdiffusion

    International Nuclear Information System (INIS)

    Liu, H.; Gregory, E.; Zeitlin, B.A.; Faase, K.J.

    1994-01-01

    One of the reasons why high critical current density is difficult to achieve in fine filament Nb-Ti superconducting wire is that a reaction occurs between the copper matrix and Nb-Ti filaments. A diffusion barrier around each filament was introduced in the processing of fine filament wire in order to achieve J c values close to the intrinsic ones. One study of diffusional reaction rates through the Nb barrier has indicated that, for typical SSC composites, a barrier area of 4% and 9% is necessary for producing 6 μm and 2.5 μm diameter filaments respectively. Consequently, if diffusional interactions can be eliminated without adding a large volume of barrier material, it is possible to achieve higher J c 's at lower cost. Another limitation on the J c in fine filament Nb-Ti superconducting wire results from the mismatch in mechanical properties of Nb-Ti filaments and copper matrix at high wave strains. The hardness and ultimate tensile strength (UTS) of Nb-Ti filaments increase with increasing amount of the cold work and no UTS saturation has been seen, whereas the UTS of copper saturates. An improper filament array also adversely affects J c , but this can be resolved by changing the filament distribution geometry, i.e., by reducing the interfilamentary spacing. Improving mechanical strength of copper matrix is important for reducing the amount of fine filament sausaging. Recently, in work that was primarily directed towards the development of material for ac applications, it was reported that, when silicon is added to the copper matrix, the formation of intermetallic compounds can be greatly reduced. Cu-Si alloy also has mechanical properties more compatible with NbTi than copper. If the above results can be verified, the technique can probably be applied to the manufacture of high J c SSC type conductors and large filamentary NbTi superconductor materials for general use

  14. Volatile organic compounds in pesticide formulations: Methods to estimate ozone formation potential

    Science.gov (United States)

    Zeinali, Mazyar; McConnell, Laura L.; Hapeman, Cathleen J.; Nguyen, Anh; Schmidt, Walter F.; Howard, Cody J.

    2011-05-01

    The environmental fate and toxicity of active ingredients in pesticide formulations has been investigated for many decades, but relatively little research has been conducted on the fate of pesticide co-formulants or inerts. Some co-formulants are volatile organic compounds (VOCs) and can contribute to ground-level ozone pollution. Effective product assessment methods are required to reduce emissions of the most reactive VOCs. Six emulsifiable concentrate pesticide products were characterized for percent VOC by thermogravimetric analysis (TGA) and gas chromatography-mass spectrometry (GC-MS). TGA estimates exceeded GC-MS by 10-50% in all but one product, indicating that for some products a fraction of active ingredient is released during TGA or that VOC contribution was underestimated by GC-MS. VOC profiles were examined using TGA-Fourier transform infrared (FTIR) evolved gas analysis and were compared to GC-MS results. The TGA-FTIR method worked best for products with the simplest and most volatile formulations, but could be developed into an effective product screening tool. An ozone formation potential ( OFP) for each product was calculated using the chemical composition from GC-MS and published maximum incremental reactivity ( MIR) values. OFP values ranged from 0.1 to 3.1 g ozone g -1 product. A 24-h VOC emission simulation was developed for each product assuming a constant emission rate calculated from an equation relating maximum flux rate to vapor pressure. Results indicate 100% VOC loss for some products within a few hours, while other products containing less volatile components will remain in the field for several days after application. An alternate method to calculate a product OFP was investigated utilizing the fraction of the total mass of each chemical emitted at the end of the 24-h simulation. The ideal assessment approach will include: 1) unambiguous chemical composition information; 2) flexible simulation models to estimate emissions under

  15. Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.

  16. Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Changtao; Li, Shuyuan [China Univ. of Petroleum, Beijing (China); Song, He [Research Institute of Petroleum Engineering of CNPC, Tianjin (China)

    2014-07-15

    Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and MgSO{sub 4} at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, S{sub 1}, N{sub 1}S{sub 1}, O{sub 1}S{sub 1} and O{sub 2}S{sub 1}, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the S{sub 1} class species was dominant. The most abundant S{sub 1} class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without MgSO{sub 4}. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and MgSO{sub 4} are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.

  17. Effect of Different Flours on the Formation of Hydroxymethylfurfural, Furfural, and Dicarbonyl Compounds in Heated Glucose/Flour Systems

    Directory of Open Access Journals (Sweden)

    Marta Mesías

    2017-02-01

    Full Text Available Traditional cereal-based foods usually include wheat flour in their formulations; however, the search for new products with new ingredients providing different properties to foods is widely pursued by food companies. Replacement of wheat by other flours can modify both nutritional properties and organoleptic characteristics of the final baked food, but can also impact the formation of potentially harmful compounds. The effect of the type of flour on the formation of furfurals and dicarbonyl compounds was studied in a dough model system during baking that contains water or glucose in order to promote the Maillard reaction and caramelization. The formation of methylglyoxal and glyoxal was significantly reduced in spelt and teff formulations compared to wheat flour formulations, respectively. In contrast, samples formulated with oat, teff, and rye showed a significant increase in the levels of 3-deoxyglucosone. Similarly, spelt and teff formulations presented significantly higher concentrations of hydroxymethylfurfural, and spelt, teff, and rye presented higher concentrations of furfural. Therefore, the formation of process contaminants and undesirable compounds in new food products formulated with different flours replacing the traditional wheat flour should be considered carefully in terms of food safety.

  18. Effect of Different Flours on the Formation of Hydroxymethylfurfural, Furfural, and Dicarbonyl Compounds in Heated Glucose/Flour Systems.

    Science.gov (United States)

    Mesías, Marta; Morales, Francisco J

    2017-02-16

    Traditional cereal-based foods usually include wheat flour in their formulations; however, the search for new products with new ingredients providing different properties to foods is widely pursued by food companies. Replacement of wheat by other flours can modify both nutritional properties and organoleptic characteristics of the final baked food, but can also impact the formation of potentially harmful compounds. The effect of the type of flour on the formation of furfurals and dicarbonyl compounds was studied in a dough model system during baking that contains water or glucose in order to promote the Maillard reaction and caramelization. The formation of methylglyoxal and glyoxal was significantly reduced in spelt and teff formulations compared to wheat flour formulations, respectively. In contrast, samples formulated with oat, teff, and rye showed a significant increase in the levels of 3-deoxyglucosone. Similarly, spelt and teff formulations presented significantly higher concentrations of hydroxymethylfurfural, and spelt, teff, and rye presented higher concentrations of furfural. Therefore, the formation of process contaminants and undesirable compounds in new food products formulated with different flours replacing the traditional wheat flour should be considered carefully in terms of food safety.

  19. The formation of fat-derived flavour compounds during the ripening of Gouda-type cheese

    NARCIS (Netherlands)

    Alewijn, M.

    2006-01-01

    Cheese flavour is an important quality attribute, and is mainly formed during cheese ripening. Besides compounds that are formed from protein and carbohydrates, milk fat-derived compounds are essential for cheese flavour. Before, but mainly during ripening, free fatty acids, lactones, ketones,

  20. Magnetic structure and phase formation of magnetocaloric Mn-Fe-P-X compounds

    NARCIS (Netherlands)

    Ou, Z.Q.

    2013-01-01

    This thesis presents a study of the crystal and magnetic structure, the magnetocaloric effect and related physical properties in Mn-Fe-P-X compounds. The influences of boron addition in (Mn,Fe)2(P,As) compounds have been studied. It is found that boron atoms occupy interstitial sites within the

  1. Formation of chemical compounds from irradiated mixtures of aromatic hydrocarbons and nitrogen oxides

    International Nuclear Information System (INIS)

    Besemer, A.C.

    1982-01-01

    The analysis of products of the photochemical degradation of toluene and toluene- 14 C in smog chamber experiments is described. Compounds identified included methylglyoxal, possibly the recently postulated butenedial and other carbonyl compounds. The main product of photochemical degradation of methylglyoxal appeared to be acetaldehyde. (author)

  2. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395

    DEFF Research Database (Denmark)

    Prol García, María Jesús; D'Alvise, Paul; Rygaard, Anita Mac

    2014-01-01

    Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth as multice......Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth...... as multicellular aggregates or biofilms at the air–liquid interface and is induced on single cell level upon attachment. Methods and Results A mutant library was created by Tn5 transposon insertion and 22 TDA-positive (brown) mutants with decreased biofilm formation or adhesion, and eight TDA-negative (white...... that are likely involved in EPS/LPS production, motility and chemotaxis, and redox regulation play a role in biofilm formation and/or adhesion in P. inhibens DSM17395. Conclusions Cell aggregation and biofilm formation are not physiological prerequisites for TDA production. Significance and Impact of the Study...

  3. Phase formation and magnetic properties of YFe12-xNbx (x=0.70-0.90) compounds

    International Nuclear Information System (INIS)

    Fuquan, B.; Wang, J.L.; Tegus, O.; Dagula, W.; Tang, N.; Yang, F.M.; Wu, G.H.; Brueck, E.; Boer, F.R. de; Buschow, K.H.J.

    2005-01-01

    The phase formation and the magnetic properties of YFe 12-x Nb x (x=0.70-0.90) compounds have been investigated by means of X-ray diffraction and magnetization measurements. The powder X-ray diffraction patterns show that all compounds investigated crystallize single phase in the tetragonal ThMn 12 -type of structure. The lattice parameters and the unit-cell volume increase slightly with increasing Nb content, but the Curie temperature does not change. The X-ray-diffraction patterns of aligned powders of the samples show that all the compounds investigated have uniaxial anisotropy at room temperature. At 1.5K, the spontaneous magnetization, the anisotropy field and the anisotropy constant K 1 decrease with increasing Nb content

  4. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds.

    Directory of Open Access Journals (Sweden)

    Nathaniel C Cady

    Full Text Available Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO (1 mM. Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control, and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed.

  5. Vanadium Chloroperoxidases: The Missing Link in the Formation of Chlorinated Compounds and Chloroform in the Terrestrial Environment?

    Science.gov (United States)

    Wever, Ron; Barnett, Phil

    2017-08-17

    It is well established that the majority of chlorinated organic substances found in the terrestrial environment are produced naturally. The presence of these compounds in soils is not limited to a single ecosystem. Natural chlorination is also a widespread phenomenon in grasslands and agricultural soils typical for unforested areas. These chlorinated compounds are formed from chlorination of natural organic matter consisting of very complex chemical structures, such as lignin. Chlorination of several lignin model compounds results in the intermediate formation of trichloroacetyl-containing compounds, which are also found in soils. These decay, in general, through a haloform-type reaction mechanism to CHCl 3 . Upon release into the atmosphere, CHCl 3 will produce chlorine radicals through photolysis, which will, in turn, lead to natural depletion of ozone. There is evidence that fungal chloroperoxidases able to produce HOCl are involved in the chlorination of natural organic matter. The objective of this review is to clarify the role and source of the various chloroperoxidases involved in the natural formation of CHCl 3 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Formation of the low-resistivity compound Cu_3Ge by low-temperature treatment in an atomic hydrogen flux

    International Nuclear Information System (INIS)

    Erofeev, E. V.; Kazimirov, A. I.; Fedin, I. V.; Kagadei, V. A.

    2016-01-01

    The systematic features of the formation of the low-resistivity compound Cu_3Ge by low-temperature treatment of a Cu/Ge two-layer system in an atomic hydrogen flux are studied. The Cu/Ge two-layer system is deposited onto an i-GaAs substrate. Treatment of the Cu/Ge/i-GaAs system, in which the layer thicknesses are, correspondingly, 122 and 78 nm, in atomic hydrogen with a flux density of 10"1"5 at cm"2 s"–"1 for 2.5–10 min at room temperature induces the interdiffusion of Cu and Ge, with the formation of a polycrystalline film containing the stoichiometric Cu_3Ge phase. The film consists of vertically oriented grains 100–150 nm in size and exhibits a minimum resistivity of 4.5 µΩ cm. Variations in the time of treatment of the Cu/Ge/i-GaAs samples in atomic hydrogen affect the Cu and Ge depth distribution, the phase composition of the films, and their resistivity. Experimental observation of the synthesis of the Cu_3Ge compound at room temperature suggests that treatment in atomic hydrogen has a stimulating effect on both the diffusion of Cu and Ge and the chemical reaction of Cu_3Ge-compound formation. These processes can be activated by the energy released upon the recombination of hydrogen atoms adsorbed at the surface of the Cu/Ge/i-GaAs sample.

  7. Kinetic particularities of strained alicyclic compounds formation in catalytic methanol to hydrocarbon transformation process

    OpenAIRE

    Doluda V.; Brovko R.; Giniatullina N.; Sulman M.

    2017-01-01

    The catalytic transformation of methanol into hydrocarbons is a complex chemical process, accompanied by chain parallel chemical transformation reactions. The most valuable products of the methanol to hydrocarbons catalytic transformation reaction are the strained hydrocarbons — cyclopropane derivatives. These compounds can be used as a high-energy fuel, and also as a valuable chemical raw material. However, the yield of strained compounds in methanol to hydrocarbons catalytic transformation ...

  8. Contribution of DIAMANT and EUROGAM detectors association to the study of heavy ion-induced fusion-evaporation reactions. Application to the de-excitation study of 90Ru compound nucleus formed in the 32S + 58Ni reaction at 120 MeV

    International Nuclear Information System (INIS)

    Bourgine, Frederic

    1996-01-01

    For the first time, the sensitivity of statistical evaporation model has been established in detail from 1 H and 4 He energy distributions analysis for different exit channels. The association of the light charged particle multidetector DIAMANT and the γ-spectrometer EUROGAM II shows that precise study of the compound nucleus high spin states deexcitation can be done for small particle channels. These channels are fed by the biggest angular momentum values of the compound nucleus. The analysis of pα channel in 32 S + 58 Ni at 120 MeV reaction exhibits that a particles have an energy distribution which leads to an entry region of the residual nucleus 85 Nb parallel to the yrast line. (author) [fr

  9. Identification of Intermetallic Compounds and Its Formation Mechanism in Boron Steel Hot-Dipped in Al-7 wt.% Mn Alloy

    Directory of Open Access Journals (Sweden)

    Sung-Yun Kwak

    2017-12-01

    Full Text Available In laser welding and hot stamping Al-Si-coated boron steel, there is a problem that the strength of the joint is lowered due to ferrite formation in the fusion zone. The purpose of this study is to develop an Al-7 wt.% Mn hot-dip coating in which Mn, an austenite stabilizing element, replaces the ferrite stabilizing element Si. The nucleation and formation mechanism of the reaction layer was studied in detail by varying the dipping time between 0 and 120 s at 773 °C. The microstructure and phase constitution of the reaction layer were investigated by various observational methods. Phase formation is discussed using a phase diagram calculated by Thermo-CalcTM. Under a 30 s hot-dipping process, no reaction occurred due to the formation of a Fe3O4 layer on the steel surface. The Fe3O4 layer decomposed by a reduction reaction with Al-Mn molten alloy, constituent elements of steel dissolved into a liquid, and the reaction-layer nucleus was formed toward the liquid phase. A coated layer consists of a solidified layer of Al and Al6Mn and a reactive layer formed beneath it. The reaction layer is formed mainly by inter-diffusion of Al and Fe in the solid state, which is arranged on the steel in the order of Al11Mn4 → FeAl3 (θ → Fe2Al5 (η phases, and the Fe3AlC (κ in several nm bands formed at the interface between the η-phase and steel.

  10. Crystal chemical analysis of formation of solid solutions on the basis of compounds with garnet structure

    International Nuclear Information System (INIS)

    Kuz'micheva, G.M.; Kozlikin, S.N.

    1989-01-01

    Crystal chemical formulas permitting to evaluate the character of changes in interatomic distances during isomorphous substitution and, hence, the probability of formation of internal solid solutions and successive isomorphous substitution, are presented. The possibility of formation of introduction solid solutions is considered, using as an example Sc, Y oxides, rare earths with garnet structure

  11. Strangeness production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions in the dual parton model

    International Nuclear Information System (INIS)

    Moehring, H.; Ranft, J.; Capella, A.; Tran Thanh Van, J.

    1993-01-01

    Λ, bar Λ, and K S 0 production is studied in a Monte Carlo dual parton model for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions with an SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation process. Additionally, (qq)-(bar q bar q) production from the sea was introduced into the chain formation process with the same probability as for the q→qq branching within the chain decay process. With these assumptions, multiplicity ratios and Feynman-x distributions for strange particles in h-h and multiplicity ratios in heavy ion collisions are reasonably well reproduced

  12. Formation and properties of radicals in γ-irradiated molecular compounds of urea with dicarboxylic acids

    International Nuclear Information System (INIS)

    Kasparov, M.S.; Trofimov, V.I.

    1978-01-01

    Radiation chemical yields of paramagnetic centres and their nature have been studied as well as secondary reactions in channel inclusion compounds of urea with sebacic acid and in mixed crystals of urea with succinic acid. In inclusion compounds of urea with sebacic acid the yield exceeds additive at 77 K. In mixed crystals of urea with succinic acid the yield at 77 K is equal to additive. In mixed crystals at all temperatures quazistationary concentrations of radicals are lower than in pure succinic acid. In inclusion compounds quazistationary concentration of radicals are higher than in pure sebacic acid. It has been shown that in solid two-component systems, when the nature of the components is identical, the matrix structure exerts an essential influence on the radiolysis of the system

  13. Dendritic azo compounds as a new type amorphous molecular material with quick photoinduced surface-relief-grating formation ability

    Science.gov (United States)

    He, Yaning; Gu, Xinyu; Guo, Miaocai; Wang, Xiaogong

    2008-09-01

    A series of dendritic azobenzene-containing compounds have been synthesized as a new type amorphous molecular material, which can show quick surface-relief-grating (SRG) formation ability upon light irradiation. For the synthesis, the dendritic precursor tris(2-(ethyl(phenyl)amino)ethyl)benzene-1,3,5-tricarboxylate and tris(3,5-bis(2-(ethyl(phenyl)amino)ethoxy)benzyl)benzene-1,3,5-tricarboxylate were prepared by esterification reactions between 1,3,5-benzenetricarbonyl chloride and N-ethyl- N-hydroxyethyl-aniline and 3,5-bis[2-( N-ethylanilino)ethoxy] benzylalcohol. The precursors were, respectively reacted with the diazonium salts of 4-nitroaniline, 4-aminobenzoic acid, and 4-aminobenzonitrile to introduce different types of donor-acceptor azo chromophores at the peripheral positions. The structure and properties of the dendritic azo compounds were characterized by the spectroscopic methods and thermal analysis. The surface-relief-grating (SRG) formation behavior of the dendritic azo compounds was studied by exposing the spin-coated thin films to an interference pattern of laser beams (532 nm) at modest intensity (100 mW/cm 2). The results show that the azo compounds can form stable amorphous glasses in a broad temperature range. The glass transition temperatures ( Tgs) depend on the backbone structures and the type of the peripheral azo chromophors. The type of the electron withdrawing groups in the p-positions of the terminal azobenzene units shows a significant influence on the SRG inscription rate. For the compounds containing the same type azo chromophores, the SRG inscription rate is also affected by the backbone structure.

  14. The formation of light absorbing insoluble organic compounds from the reaction of biomass burning precursors and Fe(III)

    Science.gov (United States)

    Lavi, Avi; Lin, Peng; Bhaduri, Bhaskar; Laskin, Alexander; Rudich, Yinon

    2017-04-01

    Dust particles and volatile organic compounds from fuel or biomass burning are two major components that affect air quality in urban polluted areas. We characterized the products from the reaction of soluble Fe(III), a reactive transition metal originating from dust particles dissolution processes, with phenolic compounds , namely, guaiacol, syringol, catechol, o- and p- cresol that are known products of incomplete fuel and biomass combustion but also from other natural sources such as humic compounds degradation. We found that under acidic conditions comparable to those expected on a dust particle surface, phenolic compounds readily react with dissolved Fe(III), leading to the formation of insoluble polymeric compounds. We characterized the insoluble products by x-ray photoelectron microscopy, UV-Vis spectroscopy, mass spectrometry, elemental analysis and thermo-gravimetric analysis. We found that the major chromophores formed are oligomers (from dimers to pentamers) of the reaction precursors that efficiently absorb light between 300nm and 500nm. High variability of the mass absorption coefficient of the reaction products was observed with catechol and guaiacol showing high absorption at the 300-500nm range that is comparable to that of brown carbon (BrC) from biomass burning studies. The studied reaction is a potential source for the in-situ production of secondary BrC material under dark conditions. Our results suggest a reaction path for the formation of bio-available iron in coastal polluted areas where dust particles mix with biomass burning pollution plumes. Such mixing can occur, for instance in the coast of West Africa or North Africa during dust and biomass burning seasons

  15. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control.

    Science.gov (United States)

    Lim, Sungeun; Lee, Woongbae; Na, Soyoung; Shin, Jaedon; Lee, Yunho

    2016-11-15

    Compounds with N,N-dimethylhydrazine moieties ((CH 3 ) 2 N-N-) form N-nitrosodimethylamine (NDMA) during ozonation, but the relevant reaction chemistry is hitherto poorly understood. This study investigated the reaction kinetics and mechanisms of NDMA formation during ozonation of unsymmetrical dimethylhydrazine (UDMH) and daminozide (DMZ) as structural model N,N-dimethylhydrazine compounds. The reaction of ozone with these NDMA precursor compounds was fast, and k O3 at pH 7 was 2 × 10 6  M -1  s -1 for UDMH and 5 × 10 5  M -1  s -1 for DMZ. Molar NDMA yields (i.e., Δ[NDMA]/Δ[precursor] × 100) were 84% and 100% for UDMH and DMZ, respectively, determined at molar ozone dose ratio ([O 3 ] 0 /[precursor] 0 ) of ≥4 in the presence of tert-butanol as hydroxyl radical (OH) scavenger. The molar NDMA yields decreased significantly in the absence of tert-butanol, indicating OH formation and its subsequent reaction with the parent precursors forming negligible NDMA. The k OH at pH 7 was 4.9 × 10 9  M -1  s -1 and 3.4 × 10 9  M -1  s -1 for UDMH and DMZ, respectively. Reaction mechanisms are proposed in which an ozone adduct is formed at the nitrogen next to N,N-dimethylamine which decomposes via homolytic and heterolytic cleavages of the -N + -O-O-O - bond, forming NDMA as a final product. The heterolytic cleavage pathway explains the significant OH formation via radical intermediates. Overall, significant NDMA formation was found to be unavoidable during ozonation or even O 3 /H 2 O 2 treatment of waters containing N,N-dimethylhydrazine compounds due to their rapid reaction with ozone forming NDMA with high yield. Thus, source control or pre-treatment of N,N-dimethylhydrazine precursors and post-treatment of NDMA are proposed as the mitigation options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Formation mechanisms of trichloromethyl-containing compounds in the terrestrial environment

    DEFF Research Database (Denmark)

    Breider, Florian; Albers, Christian Nyrop

    2015-01-01

    Natural trichloromethyl compounds present in the terrestrial environment are important contributors to chlorine in the lower atmosphere and may be also a cause for concern when high concentrations are detected in soils and groundwater. During the last decade our knowledge of the mechanisms involved...... of trichloromethyl compounds and then to compare these mechanisms with the much more comprehensive literature on the reactions occurring during chemical chlorination of organic material. It turns out that the reaction mechanisms during chemical chlorination are likely to be similar to those occurring naturally...

  17. Formation of nickel-tantalum compounds in tantalum fluoride halide melts

    International Nuclear Information System (INIS)

    Matychenko, Eh.S.; Zalkind, O.A.; Kuznetsov, B.Ya.; Orlov, V.M.; Sukhorzhevskaya, S.L.

    2001-01-01

    Interaction of nickel with NaCl-K 2 TaF 7 melt (14 mol.%) at 750 deg C was studied, the composition of intermetallic compounds formed in Ni-Ta system being analyzed, using the methods of chemical and X-ray phase analyses, IR spectroscopy. It was ascertained that composition of intermetallic compounds (Ni 3 Ta, Ni 2 Ta) depends on K 2 TaF 7 concentration in the melt, metallic tantalum additions, nickel substrate thickness and experiment duration. The mechanism of currentless deposition of tantalum on nickel was considered and the assumption was made that disproportionation reaction lies in the basis of the process [ru

  18. Diagrams of the variations in the free energy of formation of metallic compounds (1960); Diagrammes de variations d'energie libre de formation des composes metalliques (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Darras, R; Loriers, H [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The variations in the standard free energy {delta}G produced during the formation of the principal simple metallic compounds have been calculated as a function of the temperature from recently published data, and are presented in convenient diagram form. Their usefulness in metallurgy is illustrated by some possible applications. (author) [French] Les variations d'energie libre standard {delta}G intervenant lors de la formation des principaux composes metalliques simples ont ete calculees, en fonction de la temperature, d'apres les donnees recentes de la litterature et rassemblees sous forme de diagrammes d'utilisation commode. Leur interet certain en metallurgie est concretise par quelques exemples d'applications possibles. (auteur)

  19. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  20. Effects of molecular weight of PVA on formation, stability and deformation of compound droplets for ICF polymer shells

    Science.gov (United States)

    Liu, Meifang; Zheng, Yueqing; Li, Jie; Chen, Sufen; Liu, Yiyang; Li, Jing; Li, Bo; Zhang, Zhanwen

    2017-01-01

    Sphericity and wall thickness uniformity are some of the hardest specifications to fulfill, as required by inertial confined fusion (ICF) research for polymer shells prepared by the microencapsulation technique. Driven by the need to control the deformation of compound droplets, the effects of the molecular weight of poly(vinyl alcohol) (PVA) on the formation and stability of the droplets, as well as the sphericity and wall thickness uniformity of the resulting shells, were investigated. On increasing the molecular weight of the PVA, the densities of the external water phases (W2) are almost the same, but the viscosity of the W2 phase increases more quickly than the interfacial tension. This makes the detaching force increase more quickly than the upward one, causing the formation of compound droplets and detachment from the oil tube. On the other hand, the increase in interfacial tension makes the maximum pressures ( P max) in the O phase (O) of the compound droplets increase, causing them to rupture easily and decreasing their stability. However, for PVA with the same molecular weight, the viscous shear force in the flowing field reduces the role of gravity and makes the inner water droplet move towards the center of the compound droplet, decreasing its P max in the flowing field and improving its stability. Moreover, during the solidifying process, the viscous shear force increases more quickly than the interfacial tension force due to the quicker increase in viscosity with an increase in the molecular weight of the PVA. The increase in the viscous shear force can make the droplets deform, resulting in a decrease in their sphericity. However, the appropriate viscous shear force can also center the compound droplet—although they become decentered when the viscous shear force is too large, leading to the wall thickness uniformity increasing at first before decreasing quickly. The results presented in this work provide a more in-depth understanding of the

  1. Direct C-H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis.

    Science.gov (United States)

    Mishra, Neeraj Kumar; Choi, Miji; Jo, Hyeim; Oh, Yongguk; Sharma, Satyasheel; Han, Sang Hoon; Jeong, Taejoo; Han, Sangil; Lee, Seok-Yong; Kim, In Su

    2015-12-18

    The rhodium(III)-catalyzed direct functionalization of aniline C-H bonds with α-diazo compounds is described. These transformations provide a facile construction of ortho-alkylated anilines with diazo malonates or highly substituted indoles with diazo acetoacetates.

  2. A steady-state study on the formation of Compounds II and III of myeloperoxidase

    NARCIS (Netherlands)

    Hoogland, H.; Dekker, H. L.; van Riel, C.; van Kuilenburg, A.; Muijsers, A. O.; Wever, R.

    1988-01-01

    The reaction between native myeloperoxidase and hydrogen peroxide, yielding Compound II, was investigated using the stopped-flow technique. The pH dependence of the apparent second-order rate constant showed the existence of a protonatable group on the enzyme with a pKa of 4.9. This group is

  3. Formation and ecotoxicity of N-heterocyclic compounds on ammoxidation of mono- and polysaccharides.

    Science.gov (United States)

    Klinger, Karl Michael; Liebner, Falk; Fritz, Ines; Potthast, Antje; Rosenau, Thomas

    2013-09-25

    Ammoxidation of technical lignins under mild conditions is a suitable approach to artificial humic substances. However, carbohydrates as common minor constituents of technical lignins have been demonstrated to be a potential source of N-heterocyclic ecotoxic compounds. Ethyl acetate extracts of ammoxidation mixtures of the monosaccharides glucose and xylose exhibited considerable growth inhibiting activity in the OECD 201 test, with 4-methyl-1H-imidazole, 4-(hydroxymethyl)-1H-imidazole, and 3-hydroxypyridine being the most active compounds. The amount of N-heterocyclic compounds formed at moderate ammoxidation conditions (70 °C, 0.2 MPa O2, 3 h) was significantly lower for the polysaccharides cellulose and xylan (16-30 μg/g of educt) compared to glucose (15.4 mg). Ammoxidation at higher temperature is not recommendable for carbohydrate-rich materials as much higher amounts of N-heterocyclic compounds were formed from both monosaccharides (100 °C: 122.4-160.5 mg/g of educt) and polysaccharides (140 °C: 5.52-16.03 mg/g of educt).

  4. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines.

    Science.gov (United States)

    Kemp, Belinda; Condé, Bruna; Jégou, Sandrine; Howell, Kate; Vasserot, Yann; Marchal, Richard

    2018-02-08

    The visual properties of sparkling wine including foam and bubbles are an indicator of sparkling wine quality. Foam properties, particularly foam height (FH) and foam stability (TS), are significantly influenced by the chemical composition of the wine. This review investigates our current knowledge of specific chemical compounds and, the mechanisms by which they influence the foam properties of sparkling wines. Grape and yeast proteins, amino acids, polysaccharides, phenolic compounds, organic acids, fatty acids, ethanol and sugar are examined with respect to their contribution to foam characteristics in sparkling wines made with the Traditional, Transfer, and Charmat and carbonation methods. Contradictory results have been identified that appear to be due to the analytical methods used to measure and quantify compounds and foam. Biopolymer complexes are discussed and absent knowledge with regards to thaumatin-like proteins (TLPs), polysaccharides, amino acids, oak-derived phenolic compounds and organic acids are identified. Future research is also likely to concentrate on visual analysis of sparkling wines by in-depth imaging analysis and specific sensory analysis techniques.

  5. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  6. Study of Relativistic Nucleus - Nucleus Collisions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to survey the reaction mechanisms involved in the collision of 60~GeV/nucleon and 200~GeV/nucleon light ions ($^{16}$0 and $^{32}$S provided by a new GSI-LBL injector) with different nuclei, to determine the stopping power of nuclear matter and to search for evidence of the formation of quark matter by comparison to hadron-nucleus reactions at the same incident energies. \\\\ The experimental set-up consists of a 2 m Streamer Chamber in the Vertex Magnet used to detect all the charged particles emerging from the interaction as well as the neutral strange particles that decay inside the chamber. The high energy of the forward-going particles are detected by four sets of calorimeters. A highly segmented Photon Position Detector (PPD) backed up by a 240 segment Ring Calorimeter will cover one unit of rapidity around mid-rapidity. An Intermediate Calorimeter will cover the rest of the forward phase space except for the region around beam rapidity, where a Veto Calorimeter will detect be...

  7. Determination of the enthalpy of formation of Ni-Al intermetallic compounds using differential scanning calorimetry technique

    International Nuclear Information System (INIS)

    Kubaski, Evaldo Toniolo; Capocchi, Jose Deodoro Trani; Cintho, Osvaldo Mitsuyuki

    2010-01-01

    The compositions Ni20Al80, Ni25Al75, Ni40Al60, Ni50Al50, Ni60Al40 and Ni75Al25 (at. %) were heated in a calibrated thermal analysis equipment. All runs were conducted at a heating rate of 10 deg C/min under a dynamic argon atmosphere. Each composition was heated until the completion of the corresponding exothermic reaction responsible for intermetallic compound formation, and, also heated to 1480 deg C. The products obtained were characterized using X ray diffraction in order to identify the intermetallic compounds that were synthesized. Moreover, the results were evaluated using variance analysis. As a result, enthalpies of formation of Ni 2 Al 3 and Ni 3 Al compounds were determined by means of this methodology. Experimental values were 167 kJ/mol and 93 kJ/mol for Ni 2 Al 3 and Ni 3 Al, respectively. The former is 18% lower than the value found on literature, while the latter is 6% greater. (author)

  8. Perspective of ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Specht, H.J.

    1985-01-01

    The paper concerns the lectures given at the International School of nuclear physics, Erice, 1985, which survey the expectations for the field of ultrarelativistic nucleus-nucleus collisions. The primary motivation for the field, the organization of the lectures, and a description of the NA 34 experiment, are all briefly given. (U.K.)

  9. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  10. Autographa californica multiple nucleopolyhedrovirus ac75 is required for egress of nucleocapsids from the nucleus and formation of de novo intranuclear membrane microvesicles.

    Directory of Open Access Journals (Sweden)

    Ya-Jun Guo

    Full Text Available In this study, Autographa californica multiple nucleopolyhedrovirus ac75 was functionally characterized. Ac75 has homologs in all sequenced genomes of alphabaculoviruses, betabaculoviruses, and gammabaculoviruses. It was determined to encode a protein that is associated with the nucleocapsid of budded virus and with both envelope and nucleocapsids of occlusion-derived virus. Sf9 cells transfected by an ac75-knockout bacmid resulted in the infection being restricted to single cells. No budded virus were detected although viral DNA replication and late gene expression were unaffected. Electron microscopy revealed that the virogenic stroma, nucleocapsids and occlusion bodies appeared normal in the cells transfected by an ac75-knockout bacmid. However, the nucleocapsids were unenveloped, the occlusion bodies did not contain any virions or nucleocapsids, and no nucleocapsids were found outside the nucleus or spanning the nuclear membrane. In addition, de novo intranuclear membrane microvesicles that are the precursor of occlusion-derived virus envelopes were absent in the nuclei of transfected cells. Confocal microscopy showed that AC75 protein appeared in the cytoplasm as early as 6 hours post infection. It localized to the ring zone at the periphery of the nucleus from 15 to 24 hours post infection and demonstrated light blocky cloud-like distribution in the center of the nucleus. AC75 was found to co-immunoprecipitate with BV and ODV associated envelope protein ODV-E25. The data from this study suggest that ac75 is essential for induction of the intranuclear membrane microvesicles, it appears to be required for the intranuclear envelopment of nucleocapsids, and is also essential for egress of nucleocapsids from the nuclei, in infected cells.

  11. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    Science.gov (United States)

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    Science.gov (United States)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  13. The Formation of Organic Compounds of Astrobiological Interest by the Irradiation Processing of Astrophysical Ices

    Science.gov (United States)

    Sandford, Scott A.

    2015-01-01

    Many environments in space contain very low temperature mixed molecular ices that are exposed to ionizing radiation in the form of cosmic rays and high-energy photons. While traditional chemistry would not be expected to occur at the temperatures typical of these ices (T compounds. Many of these new products are of direct interest to astrobiology. For example, the irradiation of mixed molecular ices has been shown to produce amino acids, amphiphiles, quinones, sugars, heterocyclic compounds, and nucleobases, all molecular building blocks used by terrestrial life. Insofar as the presence of these materials plays a role in the origin of life on planets, this has profound implications for the potential abundance of life in the universe since these experiments simulate universal conditions that are expected to be found wherever new stars and planets form.

  14. The Formation of Complex Organic Compounds in Astrophysical Ices and their Implications for Astrobiology

    Science.gov (United States)

    Sandford, Scott A.

    2015-01-01

    Ices in astrophysical environments are generally dominated by very simple molecules like H2O, CH3OH, CH4, NH3, CO, CO2, etc, although they likely contain PAHs as well. These molecules, particularly H2O, are of direct interest to astrobiology in-and-of themselves since they represent some of the main carriers of the biogenic elements C, H, O, and N. In addition, these compounds are present in the dense interstellar clouds in which new stars and planetary systems are formed and may play a large role in the delivery of volatiles and organics to the surfaces of new planets. However, these molecules are all far simpler than the more complex organic compounds found in living systems.

  15. Formation of low charge state ions of synthetic polymers using quaternary ammonium compounds.

    Science.gov (United States)

    Nasioudis, Andreas; Joyce, William F; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2010-07-01

    Factors such as high polymer dispersity and variation in elemental composition (of copolymers) often complicate the electrospray ionization mass spectrometry (ESI-MS) analysis of synthetic polymers with high molar mass. In the experiments described in this study, quaternary ammonium compounds were observed to facilitate the production of low charge state pseudomolecular ions when added to the spray solution for ESI-MS. This approach was then used for the ESI time-of-flight mass spectrometry (TOF-MS) analysis of synthetic polymers. Hexadecyltrimethylammonium chloride permitted the successful analysis of poly(ethylene glycol) of 2-40 kDa, poly(propylene glycol) and poly(tetramethylene glycol) oligomers. Increasing the quaternary ammonium compounds' concentration results in the production of low charge state pseudomolecular ions. A comparison of structurally different quaternary ammonium compounds showed that the best performance is expected from large molecules with specific charge localization, which leaves the charge available for interactions. The applicability of the method for the MS analysis of other polymeric systems was also studied. In the case of poly(tetramethylene glycol), the method not only shifted the distributions to higher m/z values but also allowed the detection of high molecular weight material that was not observed without addition of the modifier to the spray solution.

  16. Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation

    International Nuclear Information System (INIS)

    Ke Jianhao; Wang Jinwen; Deng Riqiang; Wang Xunzhang

    2008-01-01

    Although orf66 (ac66) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is conserved in all sequenced lepidopteran baculovirus genomes, its function is not known. This paper describes generation of an ac66 knockout AcMNPV bacmid mutant and analyses of the influence of ac66 deletion on the virus replication in Sf-9 cells so as to determine the role of ac66 in the viral life cycle. Results indicated that budded virus (BV) yields were reduced over 99% in ac66-null mutant infected cells in comparison to that in wild-type virus infected cells. Optical microscopy revealed that occlusion body synthesis was significantly reduced in the ac66 knockout bacmid-transfected cells. In addition, ac66 deletion interrupted preoccluded virion synthesis. The mutant phenotype was rescued by an ac66 repair bacmid. On the other hand, real-time PCR analysis indicated that ac66 deletion did not affect the levels of viral DNA replication. Electron microscopy revealed that ac66 is not essential for nucleocapsid assembly, but for the efficient transport of nucleocapsids from the nucleus to the cytoplasm. These results suggested that ac66 plays an important role for the efficient exit of nucleocapsids from the nucleus to the cytoplasm for BV synthesis as well as for preoccluded virion and occlusion synthesis

  17. Entrance channel dependent light-charged particle emission of the 156Er compound

    International Nuclear Information System (INIS)

    Liang, J.F.; Bierman, J.D.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.; van Schagen, J.P.S.

    1996-01-01

    Light-charged particle decay from the 156 Er compound nucleus, populated by 12 C+ 144 Sm and 60 Ni+ 96 Zr at the same excitation energy, were measured in coincidence with the evaporation residues. The high energy slope of charged particle spectra for the 60 Ni-induced reaction is steeper than for the 12 C-induced reaction. Model calculations including particle evaporation during compound nucleus formation result in good agreement with the data. This suggests that the difference in the charged particle spectra between the two entrance channels is due to a longer formation time in the 60 Ni-induced reaction. 14 refs., 3 figs

  18. Influence of composition of the raw materials on phase formation in solid compounds based on slag and clay minerals

    International Nuclear Information System (INIS)

    Galkin, A.V.; Tolebaev, T.; Omarova, V.I.; Burkitbaev, M.; Blynskiy, A.P.; Bachilova, N.V.; Matsynina, V.I.

    2003-01-01

    Full text: Activation of solidification processes in a compound formed on the basis of slag and clay minerals using sodium hydroxide - the output product from processing the BN-350 sodium coolant it is expedient to form the final product with a phase composition representing (in terms of long term storage) hydro-alumino-silicates incorporating Na-22 and Cs-137 radionuclides, which isomorphly replace other atoms in the crystal lattice sites. Combination of mineral phases, such as alkaline and alkaline-earth hydro-alumino-silicates with zeolite-like structure, providing sorptive properties, and the tobermorite like low-base hydro silicates of calcium defining the physico-mechanical properties of compound is the necessary condition for the compound stability. Investigations of phase formation in the mixtures of Kazakhstan clay, slag materials and alkali have been conducted targeted to control the physico-chemical properties of solid compound. The mixtures of alkali, thermal power plant ashes and clays of various mineralogical genesis (kaolinite, bentonite, Ca-Na-smectite montmorillonite) have been studied. The ashes and phosphorous slag while interacting with alkali are determined to form the non-alkaline hydro-silicates of stavrolite and indianite (anortite) type with free alkali being found in an unbound state. Both alkaline and alkaline-alkaline-earth hydro-silicates of Na 2 Ca 2 Si 2 O 7 H 2 O type are only formed in a compounds containing metallurgical slag. Formation of alkaline hydro-alumino-silicates of NaAlSiO 4 H 2 0 type as well as tomsonite (Na 4 Ca 8 [Al 20S i 20 O 80 ] 24H 2 O) - the zeolite like mineral have been detected in a two-component alkali-clay mixtures. Besides the quantity of tomsonite was determined to be not only dependent on Al 2 O 3 content in clay component but is also defined by stoichiometric composition of the mixture, because zeolite synthesis takes place under conditions of gels co-deposition and high pH value. Maximum quantity of

  19. Onuf's nucleus X

    DEFF Research Database (Denmark)

    Schrøder, H D

    1981-01-01

    in the length of the nucleus was observed. Based on the cytoarchitecture the nucleus could be divided in three parts, a cranial, a dorsomedial and a ventrolateral. All parts of the nucleus consisted of chromatin-rich medium-sized neurons, and apparent direct appositions between different cells bodies as well...

  20. Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging

    Science.gov (United States)

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...

  1. Pion production in nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1975-06-01

    Current work on pion production in high-energy nucleus-nucleus collisions is reviewed. The majority of existing data are of the inclusive variety in which a single final state pion is detected. Experimental data are compared and their possible contributions to obtaining new information on nuclear structure is discussed. Various models which attempt to explain the observed single-inclusive-pion spectra either on the basis of a nucleon-nucleus interaction in which Fermi motion is included or on some type of cooperative model are examined. Other areas of interest involving pion production include tests of charge symmetry and pion multiplicities. (9 figures, 1 table) (U.S.)

  2. The effect of a fourth element (Co, Cu, Fe, Pd) on the standard enthalpy of formation of the Heusler compound Ni{sub 2}MnSn

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip

    2016-05-15

    The standard enthalpies of formation of quaternary Heusler compounds (X, Ni){sub 2}MnSn (X = Co, Cu, Fe, Pd) were investigated experimentally using high temperature direct reaction calorimetry. Lattice parameters of these compounds were determined using X-ray diffraction analysis. Microstructures were identified using scanning electron microscopy and energy dispersive spectroscopy. The effect of an additional X element on the standard enthalpy of formation of the Heusler compound Ni{sub 2}MnSn is discussed. - Highlights: • Enthalpies of formation of (X,Ni){sub 2}YZ (X = Co, Cu, Fe, Pd) were measured by drop calorimeters. • Magnetic contribution to enthalpy of formation plays an important role. • Introducing a fourth element could stabilize an unstable Heusler structure. • Lattice parameters do not necessarily obey the Vegard's law. • It is possible to tailor properties of Heusler compounds with enough background information.

  3. Incidence of nitrogenous compounds of must on ethyl carbamate formation induced by lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    José Antonio Suárez Lepe

    2007-12-01

    Significance and impact of study: The composition of the nitrogen status of must has frequently been said to be a factor of concern on the final urethane concentration of wines. High contents of arginine coming from over fertilised vineyards are known to render significant levels of urea after alcoholic fermentation if conducted by arginase (+ yeast strains. This urea is always likely to undergo ethanolysis. No significant correlations were found between any of the nitrogenous compounds tested and final EC. High levels of arginine in the starting must did not lead to greater EC concentrations in the resulting wines.

  4. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    Science.gov (United States)

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Characterization of electron beam evaporated carbon films and compound formation on titanium and silicon

    International Nuclear Information System (INIS)

    Luthin, J.; Linsmeier, C.

    2001-01-01

    The formation of carbon-based mixed materials is unavoidable on the plasma-facing components (e.g. first wall and divertor) of fusion devices when carbon is used together with other materials. On the surfaces of these components very different conditions with respect to particle and energy impact occur. To predict the mixed material formation under these conditions the precise knowledge of the fundamental mechanisms governing these interactions is essential. In this paper we present the results of carbon interaction with titanium and silicon, as model substances for metallic and covalent carbides, during thermal treatment. To perform basic studies of the reactions of carbon with different elements, thin carbon films are produced by electron beam evaporation on the different substrates under UHV conditions. All measurements for chemical analysis are performed using X-ray photoelectron spectroscopy (XPS). We discuss first the properties of the deposited carbon films. The carbon films are characterized on inert gold surfaces and are compared to bulk graphite. Annealing of the carbon films up to 970 K leads to a transition from a disordered carbon network into a graphitic structure. Preparation of carbon films at room temperature on titanium or silicon leads to a limited carbide formation at the carbon/substrate interface. Carbon deposited in excess of several monolayers is present in elementary form. Annealing of the samples leads to complete carbidization consuming the available carbon in both cases. Titanium reacts to TiC and additional substoichiometric carbide, silicon forms SiC with exact stoichiometry. (orig.)

  6. Laser gas assisted texturing and formation of nitride and oxynitride compounds on alumina surface: Surface response to environmental dust

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.

    2018-03-01

    Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.

  7. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  8. Compositions, Formation Mechanism, and Neuroprotective Effect of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang

    Directory of Open Access Journals (Sweden)

    Chenze Zhang

    2016-08-01

    Full Text Available Compounds in the form of precipitation (CFP are universally formed during the decocting of Chinese prescriptions, such as Huang-Lian-Jie-Du-Tang (HLJDT. The formation rate of HLJDT CFP even reached 2.63% ± 0.20%. The identification by liquid chromatography mass spectrometry (LC-MSn proved that the main chemical substances of HLJDT CFP are baicalin and berberine, which is coincident with the theory that the CFP might derive from interaction between acidic and basic compounds. To investigate the formation mechanism of HLJDT CFP, baicalin and berberine were selected to synthesize a simulated precipitation and then the baicalin–berberine complex was obtained. Results indicated that the melting point of the complex interposed between baicalin and berberine, and the UV absorption, was different from the mother material. In addition, 1H-NMR integral and high-resolution mass spectroscopy (HR-MS can validate that the binding ratio was 1:1. Compared with baicalin, the chemical shifts of H and C on glucuronide had undergone significant changes by 1H-, 13C-NMR, which proved that electron transfer occurred between the carboxylic proton and the lone pair of electrons on the N atom. Both HLJDT CFP and the baicalin–berberine complex showed protective effects against cobalt chloride-induced neurotoxicity in differentiated PC12 cells. It is a novel idea, studying the material foundation of CFP in Chinese prescriptions.

  9. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  10. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    Science.gov (United States)

    Holm, Nils G; Neubeck, Anna

    2009-10-22

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  11. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    Directory of Open Access Journals (Sweden)

    Neubeck Anna

    2009-10-01

    Full Text Available Abstract Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  12. Formation by yeast of 2-furanmethanethiol and ethyl 2-mercaptopropionate aroma compounds in Japanese soy sauce.

    Science.gov (United States)

    Meng, Qi; Hatakeyama, Makoto; Sugawara, Etsuko

    2014-01-01

    Two aroma compounds of volatile thiols, 2-furanmethanethiol (2FM) and ethyl 2-mercaptopropionate (ET2MP), were formed in five types of Japanese soy sauce during fermentation by yeast. The concentrations of 2FM and ET2MP in the soy sauce samples increased during alcoholic fermentation. The concentrations of 2FM and ET2MP were higher in the soy sauce fermented by Zygosaccharomyces rouxii than in that fermented by Candida versatilis. The enantiomers of ET2MP were separated by gas chromatography in a capillary column. The average enantiomeric ratio of ET2MP in the soy sauce was approximately 1:1. 2FM was formed by yeast in a medium prepared from cysteine and furfural, and cysteine is considered the key precursor of 2FM by yeast in soy sauce.

  13. Formation of Ozonic Compound and Used as Therapeutic Agent in Medicine

    Science.gov (United States)

    Zhu, Lei; Ye, Chunyong; Min, Xinmin

    2018-03-01

    It has some encouraging results to use ozone in medicine. However, as ozone is usually in gas state, unstable and strong oxidability, it is difficult to be stored and used commonly. Ozone, ethylene, acrylic acid and the ozonic compounds were calculated to study the interaction between ozone and carrier material to form ozonide. The stability of the ozonide, or the bond strength between ozone and ions of carrier are controlled felicitously to release ozone from the ozonide with proper velocity. Ozone antimicrobial has been composed on the above principle. It can be used conveniently, especially for common families. There are some characteristics of ozone antimicrobial or ozone, such as universal applicability, efficiency and rapidity, security, strong penetrability, no drug resistance and sterilization and treatment simultaneity.

  14. Heats of formation of phosphorus compounds determined by current methods of computational quantum chemistry

    Science.gov (United States)

    Haworth, Naomi L.; Bacskay, George B.

    2002-12-01

    The heats of formation of a range of phosphorus containing molecules (P2, P4, PH, PH2, PH3, P2H2, P2H4, PO, PO2, PO3, P2O, P2O2, HPO, HPOH, H2POH, H3PO, HOPO, and HOPO2) have been determined by high level quantum chemical calculations. The equilibrium geometries and vibrational frequencies were computed via density functional theory, utilizing the B3LYP/6-31G(2df,p) functional and basis set. Atomization energies were obtained by the application of ab initio coupled cluster theory with single and double excitations from (spin)-restricted Hartree-Fock reference states with perturbative correction for triples [CCSD(T)], in conjunction with cc-pVnZ basis sets (n=T, Q, 5) which include an extra d function on the phosphorus atoms and diffuse functions on the oxygens, as recommended by Bauschlicher [J. Phys. Chem. A 103, 11126 (1999)]. The valence correlated atomization energies were extrapolated to the complete basis limit and corrected for core-valence (CV) correlation and scalar relativistic effects, as well as for basis set superposition errors (BSSE) in the CV terms. This methodology is effectively the same as the one adopted by Bauschlicher in his study of PO, PO2, PO3, HPO, HOPO, and HOPO2. Consequently, for these molecules the results of this work closely match Bauschlicher's computed values. The theoretical heats of formation, whose accuracy is estimated as ranging from ±1.0 to ±2.5 kcal mol-1, are consistent with the available experimental data. The current set of theoretical data represent a convenient benchmark, against which the results of other computational procedures, such as G3, G3X, and G3X2, can be compared. Despite the fact that G3X2 [which is an approximation to the quadratic CI procedure QCISD(T,Full)/G3Xlarge] is a formally higher level theory than G3X, the heats of formation obtained by these two methods are found to be of comparable accuracy. Both reproduce the benchmark heats of formation on the average to within ±2 kcal mol-1 and, for these

  15. Nucleus-nucleus potential with repulsive core and elastic scattering. Part 1. Nucleus-nucleus interaction potential

    International Nuclear Information System (INIS)

    Davidovs'ka, O.Yi.; Denisov, V.Yu.; Nesterov, V.O.

    2010-01-01

    Various approaches for nucleus-nucleus interaction potential evaluation are discussed in details. It is shown that the antisymmetrization of nucleons belonging to different nuclei and the Pauli principle give the essential contribution into the nucleus-nucleus potential at distances, when nuclei are strongly overlapping, and lead to appearance of the repulsive core of nucleus nucleus interaction at small distances between nuclei.

  16. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    Science.gov (United States)

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Formation of non-extractable pesticide residues: observations on compound differences, measurement and regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    Mordaunt, Catriona J.; Gevao, Bondi; Jones, Kevin C.; Semple, Kirk T

    2005-01-01

    Six major use pesticides (Atrazine, Dicamba, Isoproturon, Lindane, Paraquat and Trifluralin) with differing physico-chemical properties were evaluated for the significance of 'bound' or non extractable residue formation. Investigations were carried out in purpose-built microcosms where mineralization, volatilisation, 'soil water' extractable and organic solvent extractable residues could be quantified. Extractable residues were defined as those accessible by sequential extraction where the solvent used became increasingly non-polar. Dichloromethane was the 'harshest' solvent used at the end of the sequential extraction procedure. {sup 14}C-labelled volatilised and {sup 14}CO{sub 2} fractions were trapped on exit from the microcosm. The pesticides were categorised into 3 classes based on their behaviour. (i) Type A (Atrazine, Lindane and Trifluralin) in which ring degradation was limited as was the formation of non-extractable residues; the remainder of the {sup 14}C-activity was found in the extractable fraction. (ii) Type B (Dicamba and Isoproturon) in which approximately 25% of the {sup 14}C-activity was mineralised and a large portion was found in the non-extractable fraction after 91 days. Finally, Type C (Paraquat) in which almost all of the {sup 14}C-activity was quickly incorporated into the non-extractable fraction. The implications of the data are discussed, with respect to the variability and significance of regulatory aspects of non-extractable residues.

  18. Formation of non-extractable pesticide residues: observations on compound differences, measurement and regulatory issues

    International Nuclear Information System (INIS)

    Mordaunt, Catriona J.; Gevao, Bondi; Jones, Kevin C.; Semple, Kirk T.

    2005-01-01

    Six major use pesticides (Atrazine, Dicamba, Isoproturon, Lindane, Paraquat and Trifluralin) with differing physico-chemical properties were evaluated for the significance of 'bound' or non extractable residue formation. Investigations were carried out in purpose-built microcosms where mineralization, volatilisation, 'soil water' extractable and organic solvent extractable residues could be quantified. Extractable residues were defined as those accessible by sequential extraction where the solvent used became increasingly non-polar. Dichloromethane was the 'harshest' solvent used at the end of the sequential extraction procedure. 14 C-labelled volatilised and 14 CO 2 fractions were trapped on exit from the microcosm. The pesticides were categorised into 3 classes based on their behaviour. (i) Type A (Atrazine, Lindane and Trifluralin) in which ring degradation was limited as was the formation of non-extractable residues; the remainder of the 14 C-activity was found in the extractable fraction. (ii) Type B (Dicamba and Isoproturon) in which approximately 25% of the 14 C-activity was mineralised and a large portion was found in the non-extractable fraction after 91 days. Finally, Type C (Paraquat) in which almost all of the 14 C-activity was quickly incorporated into the non-extractable fraction. The implications of the data are discussed, with respect to the variability and significance of regulatory aspects of non-extractable residues

  19. Antiproton production in nucleon-nucleus and nucleus-nucleus collisions at the CERN-SPS

    International Nuclear Information System (INIS)

    Kadija, K.; Schmitz, N.; Seyboth, P.

    1996-01-01

    A model for antiproton production in nucleon-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon, based on the wounded nucleon model is developed. The predictions are compared to published nucleon-nucleus and sulphur-nucleus data. The results suggest the presence of similar antiproton production processes in nucleon-nucleus and nucleus-nucleus collisions near midrapidity. (orig.)

  20. Formation of harmful compounds in biotransformation of lilial by microorganisms isolated from human skin.

    Science.gov (United States)

    Esmaeili, Akbar; Afshari, Shima; Esmaeili, Davood

    2015-01-01

    The biotransformation of lilial results in an acid that is used in the dairy industry, in perfumery, as an intermediate in the manufacture of pharmaceuticals and cosmetics, and as a food additive for enhancing taste. This study investigates the biotransformation of lilial by Staphylococcus aureus and Staphylococcus epidermidis, two bacterial species isolated from human skin. Both species of Staphylococcus were isolated in samples taken from the skin of individuals living in a rural area of Iran. The pH of the culture medium was optimized, and after culturing the microorganisms, the bacteria were added to a flask containing a nutrient broth and incubated for several hours. The flasks of bacteria were combined with lilial, and various biochemical tests and diagnostics were performed, including Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectrophotometry (UV-Vis), and gas chromatography-mass spectroscopy (GC-MS). The S. aureus produced isobutyric acid (2-methylpropanoic acid) after 72 h (71% of the total products yielded during biotransformation), whereas the S. epidermidis produced terpenoid alcoholic media after 24 h (90% of total products obtained). The results obtained indicate that biotransformation of lilial by S. aureus is more desirable than by S. epidermidis due to the highly efficient production of a single product. Bourgeonal and liliol were two toxic compounds produced during biotransformation, which indicates that the use of lilial in cosmetics can be harmful to the skin.

  1. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    Science.gov (United States)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  2. Formation of carbonyl compounds in radiolysis of ethylene glycol in methanol

    International Nuclear Information System (INIS)

    Bezborodova, S.G.; Vetrov, V.S.; Kalyazin, E.P.; Korolev, V.M.; Salamatov, I.I.

    1977-01-01

    Radiolysis of diluted solutions of ethylene glycol has been investigated. It is shown that acetaldehyde, glycol aldehyde and formaldehyde are the main products of radiolysis of methanol solutions of ethylene glycol. Acetaldehyde and glycol aldehyde yields increase in radiolysis of methanol solutions of ethylene glycol with an increase of the original concentration of ethylene glycol and a temperature rise of radiolysis. Formaldehyde yields increase with the ethylene glycol concentration but decrease with a temperature rise (the formation of formaldehyde from methanol is taken into account). A mechanism of radiation-chemical transformations of ethylene glycol in methanol is explained. It is concluded that the main directions of ethylene glycol decomposition, detected in water solutions of ethylene glycol, are also realized in methanol solutions. However, a role of different directions of decomposition depends on the medium

  3. Distributions of chemical reactive compounds: Effects of different emissions on the formation of ozone

    International Nuclear Information System (INIS)

    Vogel, H.; Fiedler, F.; Vogel, B.

    1993-01-01

    By using the model system the concentration distributions are simulated in accordance to the conditions of the beginning of August 1990. For this situation the influence of the emissions outside of the modelling region and the influence of biogenic emissions of hydrocarbons on the ozone formation in the modeling region was investigated. Comparing the results of the different simulations one can find differences concerning the netto production of the oxidants. For the first simulation day the emissions outside of the modeling region show a strong influence on the ozone production. Integrated over the whole boundary layer the ozone mass increases by 24%. If additionally the biogenic emissions are taken into account one can find only an increase of 7% for the 1. day. In contrast at the 2. simulation day the ozone production increases by 81%. For this case the ozone concentration near the ground is up to 20 ppb higher than for the model rund without biogenic emissions. (orig./BBR) [de

  4. Understanding the Formation of Kinetically Stable Compounds and the Development of Thin Film Pair Distribution Function Analysis

    Science.gov (United States)

    Wood, Suzannah Rebecca

    Navigating the synthesis landscape poses many challenges when developing novel solid state materials. Advancements in both synthesis and characterization are necessary to facilitate the targeting of specific materials. This dissertation discusses the formation of chalcogenide heterostructures and their properties in the first part and the development of thin film pair distribution function analysis (tfPDF) in the second part. The heterostructures were formed by the self-assembly of designed precursors deposited by physical vapor deposition in a modulated elemental reactants approach, which provides the control and predictability to synthesis. Specifically, a series of (BiSe)1+delta(TiSe2) n, where n = 2,3,&4, were synthesized to explore the extent of charge transfer from the BiSe to TiSe2 layers. To further explore the role Bi plays in charge donation, a family of structurally similar compounds, (Bix Sn1-xSe)1+deltaTiSe2, where 0≥x≥1, were synthesized and characterized. Electrical measurements show doping efficiency decreases as x increases, correlated with the structural distortion and the formation of periodic antiphase boundaries containing Bi-Bi pairs. The first heterostructures composed of three unique structural types were synthesized and Bi2Se3 layer thickness was used to tune electrical properties and further explore charge transfer. To better understand the potential energy landscape on which these kinetically stable compounds exist, two investigations were undertaken. The first was a study of the formation and subsequent decomposition of [(BiSe)1+delta]n(TiSe2)n compounds, where n= 2&3, the second an investigation of precursor structure for thermodynamically stable FeSb2 and kinetically stable FeSb3. The second section describes the development of thin film pair distribution function analysis, a technique in which total scattering data for pair distribution function (PDF) analysis is obtained from thin films, suitable for local structure analysis

  5. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    International Nuclear Information System (INIS)

    Tsay, Fundow; Kim, S.S.; Liang, R.H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H 2 O, NH 3 , CH 4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed

  6. K+-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    The K + -nucleus system is reviewed and comparison with data is made. The principal conclusions are that the theoretical uncertainties in relating the K + -nucleus interaction to the K + -nucleon interaction are very small and hence the positive kaon makes an excellent probe of the nucleus. It is suggested that this particle may be more sensitive to non-nucleonic degrees of freedom (especially quarks) than classical probes

  7. Formation of nitrogen compounds from nitrogen-containing rings during oxidative regeneration of spent hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Nielsen, M.; Jurasek, P. [CANMET, Ottawa, ON (Canada). Energy Research Laboratories

    1995-05-01

    Commercial CoMo and NiMo catalysts in an oxidic and sulfided form and a {gamma}-alumina were deposited with pyrrole, pyridine, and quinoline. The deposited catalysts and two spent hydroprocessing catalysts were pyrolyzed and oxidized under conditions typical of regeneration of hydroprocessing catalysts. The formation of NH{sub 3} and HCN, as well as selected cases of N{sub 2}O and NO, was monitored during the experiments. NH{sub 3} and HCN were formed during pyrolysis of pyrrole-deposited catalysts whereas only NH{sub 3} was formed during that of pyridine-and quinoline-deposited catalysts. For all deposited catalysts, both NH{sub 3} and HCN were formed during temperature programmed oxidation in 2% O{sub 2}. For spent catalysts, a small amount of N{sub 2}O was formed in 2 and 4% O{sub 2}. For pyrrole-deposited catalysts, large yields of N{sub 2}O were formed in 4% O{sub 2}. Under the same conditions, N{sub 2}O yields for pyridine- and quinoline-deposited catalysts were very small. 13 refs., 12 figs., 6 tabs.

  8. Influence of tryptophan and related compounds on ergot alkaloid formation in Claviceps purpurea (FR.) Tul.

    Science.gov (United States)

    Erge, D; Schumann, B; Gröger, D

    1984-01-01

    L-Tryptophan did not exert any influence on peptide alkaloid formation in an ergotamine and in an ergosine-accumulating C. purpurea strain. A different picture was observed in a series of related C. purpurea strains. Tryptophan showed a slight stimulatory effect on the ergotoxine producer Pepty 695/S. A blocked mutant of it, designated as Pepty 695/ch which was able to accumulate secoclavines gave similar results. In a high-yielding elymoclavine strain Pepty 695/e, the progeny of the former one, tryptophan up to a concentration of 25 mM stimulated remarkably clavine biosynthesis. Furthermore, tryptophan could overcome the block of synthesis by inorganic phosphate. Increased specific activities of chanoclavine cyclase but not DMAT synthetase were observed in cultures of strain Pepty 695/e supplemented with tryptophan. 5-Methyltryptophan and bioisosteres of tryptophan were ineffective in alkaloid stimulation. These results are compared with those obtained with the grass ergot strain SD 58 and discussed with the relation to other induction phenomena.

  9. Formation of alpha-dicarbonyl compounds in beer during storage of Pilsner.

    Science.gov (United States)

    Bravo, Adriana; Herrera, Julio C; Scherer, Erika; Ju-Nam, Yon; Rübsam, Heinrich; Madrid, Jorge; Zufall, Carsten; Rangel-Aldao, Rafael

    2008-06-11

    With the aim of determining the formation of alpha-dicarbonyl intermediates during beer aging on the shelf, alpha-dicarbonyls were identified and quantified after derivatization with 1,2-diaminobenze to generate quinoxalines. The sensory effects of alpha-dicarbonyls were evaluated by the quantification of key Strecker aldehydes and by GC-olfactometry (GCO)analysis of beer headspace using solid phase microextraction. Four alpha-dicarbonyls, reported here for the first time, were detected in fresh and aged beers, three were derived from the 2,3-enolization pathway of mono- and disaccharides, and the fourth was derived from the epimerization of 3-deoxy-2-hexosulose. Ten alpha-dicarbonyls were quantified during beer processing and during different periods of beer aging at 28 degrees C. The aging periods were from 15 to 105 days. During beer aging, 1-deoxydiuloses were produced and degraded, while 1,4-dideoxydiuloses were produced at the highest rates. The GCO analysis indicated that forced beer aging increased the amounts of furaneol, trans-2-nonenal, and phenylacetaldehyde. The blockage of alpha-dicarbonyls inhibited the accumulation of sensory-active aldehydes in the beer headspace.

  10. Airshed calculation of the sensitivity of pollutant formation to organic compound classes and oxygenates associated with alternative fuels

    International Nuclear Information System (INIS)

    McNair, L.; Russell, A.; Odman, M.T.

    1992-01-01

    This study uses a 3-D Eulerian photochemical model and an advanced chemical reaction mechanism to evaluate the sensitivity of pollutant levels to changes in emissions. In particular, the ozone forming potentials of classes of organic compounds are calculated, with particular emphasis on oxygenated organics associated with alternative fuels. Methanol, ethanol, MTBE, alkane and toluene emissions were found to add about one-fifth the ozone (on a carbon mass basis) as alkenes, aldehydes, non-toluene aromatics and ethene. On a per-carbon basis, formaldehyde added about ten times as much ozone as the least reactive organics tested. The results of the trajectory model-based study usually compare well with those found here. The pollution formation potentials can now be used in assessing the relative impact of various exhaust gas compositions

  11. Dependence of intermetallic compound formation on the sublayer stacking sequence in Ag–Sn bilayer thin films

    International Nuclear Information System (INIS)

    Rossi, P.J.; Zotov, N.; Bischoff, E.; Mittemeijer, E.J.

    2016-01-01

    Intermetallic compound (IMC) formation in thermally-evaporated Ag–Sn bilayer thin films has been investigated employing especially X-ray diffraction (XRD) and (S)TEM methods. The specific IMCs that are present in the as-deposited state depend sensitively on the stacking sequence of the sublayers. In case of Sn on top of Ag, predominantly Ag 3 Sn is formed, whereas Ag 4 Sn is predominantly present in the as-deposited state for Ag on top of Sn. In the latter case this is accompanied by an extremely fast uptake of a large amount of Sn by the Ag sublayer, leaving behind macroscopic voids in the Sn sublayer. The results are discussed on the basis of the thermodynamics and kinetics of (IMC) product-layer growth in thin films. It is shown that both thermodynamic and kinetic arguments explain the contrasting phenomena observed.

  12. Defect formation energies and homogeneity ranges of rock salt-, pyrite-, chalcopyrite- and molybdenite-type compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, S. [Hahn-Meitner-Institut, Glienicker Strasse 100, Berlin D-14109 (Germany)

    2004-07-01

    Employing the generalisation of Van Vechten's cavity model, formation energies of neutral point defects in pyrites (FeS{sub 2}, RuS{sub 2}), chalcopyrites (II-IV-V{sub 2} and I-III-VI{sub 2}) as well as molybdenites (MoS{sub 2}, WS{sub 2}) have been estimated. As input parameters the fundamental band gaps, work functions, electron affinities, surface energies, coordination numbers, covalent or ionic radii and unit cell parameters were used. The values calculated for tetrahedrally and octahedrally coordinated compounds agreed well with measured values. The data obtained can be used to calculate point defect concentrations and homogeneity ranges as a function of partial pressure and temperature. Introducing charged vacancies, the conductivity type can be predicted.

  13. Intramolecular excimer formation of diastereoisomeric model compounds of polystyrene in fluid solution: their local molecular motion and photophysical properties

    International Nuclear Information System (INIS)

    Itagaki, Hideyuki; Horie, Kazuyuki; Mita, Itaru; Washio, Masakazu; Tagawa, Seiichi; Tabata, Yoneho

    1989-01-01

    The dynamic process of intramolecular excimer formation in diasteroisomeric oligomers model compounds of polystyrene, was investigated by using a picosecond pulse radiolysis technique. Monomer fluorescence of all-racemic isomers decays single-exponentially, while that of other isomers decays dual-exponentially. Multicomponent fluorescence decay curves are supposed to be mainly induced by conformational changes. The results suggest that the excimer in oligostyrenes (or polystyrene) is formed mainly in meso diad. It is definitely proved that there exists singlet energy migration in styrene trimer and tetramer systems. The conformational change in PS3 and PS4 is concluded to occur by way of cooperative motions in backbone chains bond such as a crankshaft transition, not by way of independent rotation around each carbon-carbon bond of the backbone chain. (author)

  14. Heats of Formation of Medium-Size Organic Compounds from Contemporary Electronic Structure Methods

    KAUST Repository

    Minenkov, Yury; Wang, Heng; Wang, Zhandong; Sarathy, Mani; Cavallo, Luigi

    2017-01-01

    Computational electronic structure calculations are routinely undertaken to predict thermodynamic properties of the various species. However, the application of highly accurate wave function theory methods, such as the “gold standard” coupled cluster approach including single, double and partly triple excitations in perturbative fashion, CCSD(T), to large molecules is limited due to high computational cost. In this work, the promising domain based local pair natural orbital coupled cluster approach, DLPNO-CCSD(T), has been tested to reproduce 113 accurate formation enthalpies of medium-size molecules (few dozens heavy atoms) important for bio- and combustion chemistry via the reaction based Feller-Peterson-Dixon approach. As for comparison, 8 density functional theory (B3LYP, B3LYP-D3, PBE0, PBE0-D3, M06, M06-2X, ωB97X-D3, and ωB97M-V) and MP2-based (B2PLYP-D3, PWPB95-D3, B2T-PLYP, B2T-PLYP-D, B2GP-PLYP, DSD-PBEP86-D3, SCS-MP2, and OO-SCS-MP2) methods have been tested. The worst performance has been obtained for the standard hybrid DFT functionals, PBE0 (Mean unsigned error (MUE)/ Mean Signed Error (MSE)=9.1/6.0 kcal/mol) and B3LYP (MUE/MSE=13.5/-13.3 kcal/mol). An influence of an empirical dispersion correction term on these functionals performance is not homogenous: B3LYP performance is improved (B3LYP-D3 (MUE/MSE=6.0/0.8 kcal/mol)) meanwhile PBE0 performance is worse (PBE0-D3 (MUE/MSE=14.1/13.6 kcal/mol)). The Minnesota functionals, M06 (MUE/MSE=3.8/-2.0 kcal/mol) and M06-2X (MUE/MSE=3.5/3.0 kcal/mol), and recently developed ωB97X-D3 (MUE/MSE=3.2/0.2 kcal/mol) and ωB97M-V (MUE/MSE=2.2/1.3 kcal/mol) methods provided significantly better formation enthalpies. Enthalpies of similar quality can also be obtained from some double hybrid methods (B2PLYP-D3 (MUE/MSE=4.7/2.0 kcal/mol), PWPB95-D3 (MUE/MSE=4.3/3.2 kcal/mol), B2T-PLYP (MUE/MSE=4.1/-3.0 kcal/mol) and B2T-PLYP-D (MUE/MSE=3.3/1.7 kcal/mol)). The two spin component scaled (SCS) MP2 methods resulted in

  15. Heats of Formation of Medium-Size Organic Compounds from Contemporary Electronic Structure Methods

    KAUST Repository

    Minenkov, Yury

    2017-06-21

    Computational electronic structure calculations are routinely undertaken to predict thermodynamic properties of the various species. However, the application of highly accurate wave function theory methods, such as the “gold standard” coupled cluster approach including single, double and partly triple excitations in perturbative fashion, CCSD(T), to large molecules is limited due to high computational cost. In this work, the promising domain based local pair natural orbital coupled cluster approach, DLPNO-CCSD(T), has been tested to reproduce 113 accurate formation enthalpies of medium-size molecules (few dozens heavy atoms) important for bio- and combustion chemistry via the reaction based Feller-Peterson-Dixon approach. As for comparison, 8 density functional theory (B3LYP, B3LYP-D3, PBE0, PBE0-D3, M06, M06-2X, ωB97X-D3, and ωB97M-V) and MP2-based (B2PLYP-D3, PWPB95-D3, B2T-PLYP, B2T-PLYP-D, B2GP-PLYP, DSD-PBEP86-D3, SCS-MP2, and OO-SCS-MP2) methods have been tested. The worst performance has been obtained for the standard hybrid DFT functionals, PBE0 (Mean unsigned error (MUE)/ Mean Signed Error (MSE)=9.1/6.0 kcal/mol) and B3LYP (MUE/MSE=13.5/-13.3 kcal/mol). An influence of an empirical dispersion correction term on these functionals performance is not homogenous: B3LYP performance is improved (B3LYP-D3 (MUE/MSE=6.0/0.8 kcal/mol)) meanwhile PBE0 performance is worse (PBE0-D3 (MUE/MSE=14.1/13.6 kcal/mol)). The Minnesota functionals, M06 (MUE/MSE=3.8/-2.0 kcal/mol) and M06-2X (MUE/MSE=3.5/3.0 kcal/mol), and recently developed ωB97X-D3 (MUE/MSE=3.2/0.2 kcal/mol) and ωB97M-V (MUE/MSE=2.2/1.3 kcal/mol) methods provided significantly better formation enthalpies. Enthalpies of similar quality can also be obtained from some double hybrid methods (B2PLYP-D3 (MUE/MSE=4.7/2.0 kcal/mol), PWPB95-D3 (MUE/MSE=4.3/3.2 kcal/mol), B2T-PLYP (MUE/MSE=4.1/-3.0 kcal/mol) and B2T-PLYP-D (MUE/MSE=3.3/1.7 kcal/mol)). The two spin component scaled (SCS) MP2 methods resulted in

  16. Evidence of formation of lithium compounds on FTU tiles and dust

    Science.gov (United States)

    Ghezzi, F.; Laguardia, L.; Apicella, M. L.; Bressan, C.; Caniello, R.; Cippo, E. Perelli; Conti, C.; De Angeli, M.; Maddaluno, G.; Mazzitelli, G.

    2018-01-01

    Since 2006 lithium as an advanced plasma facing material has been tested on the Frascati Tokamak Upgrade (FTU). Lithium in the liquid phase acts both as plasma facing component, i.e. limiter, and plays also a role in plasma operation because by depositing a lithium film on the walls (lithization) oxygen is gettered. As in all deposition processes, even for the lithization, the presence of impurities in plasma phase strongly affects the properties of the deposited film. During the 2008 campaigns of FTU it was observed a strong release of carbon dioxide (during disruptions), resulting in successive serious difficulty of operation. In order to find the possible reactions occurred, we have analyzed the surface of two tiles of the toroidal limiter close to the Liquid Lithium Limiter (LLL). The presence of molybdenum oxides and carbides suggested that the surface temperatures could have exceeded 1000 K, likely during disruptions. lithium oxides and hydroxides have been found on the tiles and in the dust collected in the vessel, confirming the presence of LiO and LiOH and a not negligible concentration of Li2CO3 especially at the LLL location. On the basis of the above results, we propose here a simple rationale, based on a two reactions mechanism, which can explain the formation of Li2CO3 and its subsequent decomposition during disruption with release of CO2 in the vessel. Admitting surface temperatures above 1000 K during a disruption, relatively high partial pressures of CO2 are also predicted by the equilibrium constant for Li2CO3 decomposition.

  17. Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content.

    Science.gov (United States)

    Cais-Sokolińska, D; Wójtowski, J; Pikul, J; Danków, R; Majcher, M; Teichert, J; Bagnicka, E

    2015-10-01

    This article explored the formation of volatile compounds during the production of kefir from goat and sheep milks with high polyunsaturated fatty acids (PUFA) as a result of feeding animals forage supplemented with maize dried distillers grains with solubles (DDGS). The increased PUFA content of the goat and sheep milks resulted in significant changes to the fermentation process. In particular, apart from an increase in the time taken to ferment sheep milk, fermentation yielded less 2,3-butanedione. The highest quantities of this compound were assayed in kefir produced from goat milk with an increased content of PUFA. An increase of PUFA significantly elevated ethanal synthesis during lactose-alcohol fermentation of sheep milk. Neither the origin of milk (sheep or goat) nor the level of PUFA had any statistical effect on the amount of ethanal assayed during the fermentation of milk and within the finished product. The proportion of l(+)-lactic acid was higher in kefirs produced using goat milk compared with sheep milk and did not depend on the content of PUFA in milk fat. The content of PUFA had a significant effect on the aroma profile of the resulting kefirs. An increase in PUFA content resulted in the loss of whey aroma in goat milk kefirs and the animal odor in sheep milk kefirs, and a creamy aroma became more prevalent in kefirs made from sheep milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Photo-oxidation of 6-thioguanine by UVA: the formation of addition products with low molecular weight thiol compounds.

    Science.gov (United States)

    Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter

    2010-01-01

    The thiopurine, 6-thioguanine (6-TG) is present in the DNA of patients treated with the immunosuppressant and anticancer drugs azathioprine or mercaptopurine. The skin of these patients is selectively sensitive to UVA radiation-which comprises >90% of the UV light in incident sunlight-and they suffer high rates of skin cancer. UVA irradiation of DNA 6-TG produces DNA lesions that may contribute to the development of cancer. Antioxidants can protect 6-TG against UVA but 6-TG oxidation products may undergo further reactions. We characterize some of these reactions and show that addition products are formed between UVA-irradiated 6-TG and N-acetylcysteine and other low molecular weight thiol compounds including β-mercaptoethanol, cysteine and the cysteine-containing tripeptide glutathione (GSH). GSH is also adducted to 6-TG-containing oligodeoxynucleotides in an oxygen- and UVA-dependent nucleophilic displacement reaction that involves an intermediate oxidized 6-TG, guanine sulfonate (G(SO3) ). These photochemical reactions of 6-TG, particularly the formation of a covalent oligodeoxynucleotide-GSH complex, suggest that crosslinking of proteins or low molecular weight thiol compounds to DNA may be a previously unrecognized hazard in sunlight-exposed cells of thiopurine-treated patients. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  19. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions.

    Science.gov (United States)

    Mozia, Sylwia; Kułagowska, Aleksandra; Morawski, Antoni W

    2014-11-26

    A possibility of photocatalytic production of useful aliphatic hydrocarbons and H2 from various organic compounds, including acetic acid, methanol, ethanol and glucose, over Fe-modified TiO2 is discussed. In particular, the influence of the reaction atmosphere (N2, air) was investigated. Different gases were identified in the headspace volume of the reactor depending on the substrate. In general, the evolution of the gases was more effective in air compared to a N2 atmosphere. In the presence of air, the gaseous phase contained CO2, CH4 and H2, regardless of the substrate used. Moreover, formation of C2H6 and C3H8 in the case of acetic acid and C2H6 in the case of ethanol was observed. In case of acetic acid and methanol an increase in H2 evolution under aerated conditions was observed. It was concluded that the photocatalytic decomposition of organic compounds with simultaneous generation of combustible hydrocarbons and hydrogen could be a promising method of "green energy" production.

  20. Volatile organic compounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil.

    Science.gov (United States)

    Galvão, Elson Silva; Santos, Jane Meri; Reis Junior, Neyval Costa; Stuetz, Richard Michael

    2016-09-01

    Speciation and the influence on the ozone formation potential (OFP) from volatile organic compounds (VOCs) have been studied between February June 2013 in Vitória, ES, Brazil. Passive samplers were installed at three air-quality monitoring stations and a total of 96 samplings were collected. A total of 78 VOCs were characterized by gas chromatograph-mass spectrometer. The predominant group was organic acids, followed by alcohols and substituted aromatics and 14 precursor species were quantified. An analysis correlating concentrations with wind direction was conducted to identify possible sources. The OFP was calculated applying the scale of maximum incremental reactivity proposed by Carter.[ 23 ] Ozone precursors with the greatest OFP such as undecane, toluene, ethylbenzene and m, p-xylene compounds were the most abundant with means of 0.855, 0.365, 0.259 and 0.289 µg m(-3), respectively. The benzene, toluene, ethylbenzene and xylene (BTEX) group was found below the limits considered harmful to the health of the population living in Vitória. The OFP calculated for the precursors group was 22.55 µg m(-3) for the rainy season and 32.11 µg m(-3) for the dry season. The VOC/NOx ratio in Vitória is approximately 1.71, indicating that the region has a VOC-limiting condition for the production of ozone.

  1. Anti-inflammatory compound resveratrol suppresses homocysteine formation in stimulated human peripheral blood mononuclear cells in vitro.

    Science.gov (United States)

    Schroecksnadel, Katharina; Winkler, Christiana; Wirleitner, Barbara; Schennach, Harald; Weiss, Günter; Fuchs, Dietmar

    2005-01-01

    Inflammation, immune activation and oxidative stress play a major role in the pathogenesis of cardiovascular disorders. In addition to markers of inflammation, moderate hyperhomocysteinemia is an independent risk factor for cardiovascular disease, and there is a link between the activation of immunocompetent cells and the enhanced formation of homocysteine in vitro. Likewise, anti-inflammatory drugs and nutrients rich in antioxidant vitamins are able to reduce cardiovascular risk and to slow down the atherogenic process. Resveratrol, a phenolic antioxidant synthesized in grapes and vegetables and present in wine, has also been supposed to be beneficial for the prevention of cardiovascular events. Apart from its strong antioxidant properties, resveratrol has also been demonstrated to act as an anti-inflammatory agent. In this study the influence of resveratrol on the production of homocysteine by stimulated human peripheral blood mononuclear cells (PBMCs) was investigated. Results were compared to earlier described effects of the anti-inflammatory compounds aspirin and salicylic acid and of the lipid-lowering drug atorvastatin. Stimulation of PBMCs with the mitogens concanavalin A and phytohemagglutinin induced significantly higher homocysteine accumulation in supernatants compared with unstimulated cells. Treatment with 10-100 muM resveratrol suppressed homocysteine formation in a dose-dependent manner. Resveratrol did not influence the release of homocysteine from resting PBMCs. The data suggest that resveratrol may prevent homocysteine accumulation in the blood by suppressing immune activation cascades and the proliferation of mitogen-driven T-cells. The effect of resveratrol to down-regulate the release of homo-cysteine was comparable to the decline of neopterin concentrations in the same experiments. The suppressive effect of resveratrol was very similar to results obtained earlier with aspirin, salicylic acid and atorvastatin; however, it appeared that doses

  2. Phenolic compounds reduce formation of Nε-(carboxymethyl)lysine and pyrazines formed by Maillard reactions in a model bread system.

    Science.gov (United States)

    Mildner-Szkudlarz, Sylwia; Siger, Aleksander; Szwengiel, Artur; Przygoński, Krzysztof; Wojtowicz, Elżbieta; Zawirska-Wojtasiak, Renata

    2017-09-15

    This study had the objective of determining the antiglycation activity of phenolic compounds (PCs) ((+)-catechin, quercetin, gallic, ferulic, and caffeic acids) added to a model bread with regards to the inhibition of N ε -(carboxymethyl)lysine (CML) formation. PCs were found to significantly reduce CML (31.77%-87.56%), even at the lowest concentration, with the exception of ferulic acid (FA). The strongest inhibitory effect of FA (∼62%) appeared when concentration was increased to 1.0g/100g of flour. The available lysine losses (0.00%-90.51%) showed a significant correlation (0.853-0.990) with effectiveness of CML inhibition, except in the case of samples with FA. (+)-Catechin reduced CML levels the most, probably due to its structure-antioxidant activity relationship, its thermal stability (∼51% loss), and its reactivity with ε-lysine side chains (∼40.77% loss). Although the bread supplemented with PCs contained low levels of CML, this process may adversely affect bread flavor, reducing the formation of pyrazines (1.10%-80.77%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Science.gov (United States)

    Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.

    2018-04-01

    Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.

  4. Microscopic model of nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Harvey, B.G.

    1986-04-01

    The collision of two nuclei is treated as a collection of collisions between the nucleons of the projectile and those of the target nucleus. The primary projectile fragments contain only those nucleons that did not undergo a collision. The inclusive and coincidence cross sections result from the decay of the excited primary fragments. 15 refs., 5 figs

  5. Microtubules move the nucleus to quiescence.

    Science.gov (United States)

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  6. Study by mass spectrometry of the formation of cluster ions generated by laser ablation/ionization of inorganic compounds: application to the differentiation of trivalent and hexavalent chromium compounds

    International Nuclear Information System (INIS)

    Aubriet, Frederic

    1999-01-01

    The introduction of new ionization techniques allows a fast growth of mass spectrometry applications in an increasing number of fields. More particularly, the introduction of laser ablation/ionization process and the design of new instruments (laser microprobes), has been very important for a better knowledge of inorganic compound mass spectrometry. The purposes of this work were mainly focussed firstly in the understanding of cluster ions formation process by laser ablation/ionization and secondly in the development of a new mass spectrometry technique for the speciation between trivalent and hexavalent chromium compounds. We show that cluster ion formation are multiple. The difficulty to identify clearly the processes involved is due to the superposition of many mechanisms. Mostly, these processes are representative of the complexity of the gas-phase chemistry between the various species generated by laser ablation/ionization. Thus, four mechanisms for the cluster ion formation have been highlighted. The most frequently met correspond to aggregative processes of neutral molecules on precursor ions. The knowledge of the processes of cluster ion formation allows us to explain why it is possible to distinguish the oxidation number of chromium. The organigram of chromium valence speciation proposed is based on the calculation of the ratio of negative cluster ion intensities after systematic analysis of nearly twenty chromium reference compounds using the same instrumental conditions. The examination of mixtures between 1) calcium. silicon, trivalent iron or zinc oxides and 2) the standard chromium compound allows us to observe the influence of these oxides on the fingerprints of the pure chromium compounds and to determine up to which point and with which limitations, the methodology suggested, could be applied to the analysis of trivalent and hexavalent chromium compounds in complex and polyphasic matrices

  7. Nucleus Ruber of Actinopterygians.

    Science.gov (United States)

    Nakayama, Tomoya; Miyajima, Satoshi; Nishino, Hirotaka; Narita, Junya; Abe, Hideki; Yamamoto, Naoyuki

    2016-01-01

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinopterygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. © 2016 S. Karger AG, Basel.

  8. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    Science.gov (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  9. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.

    2015-12-01

    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  10. ENZYME MARKERS ACTIVITY AND BILE FORMATION FUNCTION OF LIVER IN CASES OF TUBERCULOSTATICS AND HEXAVALENT CHROMIUM COMPOUNDS AFFECTION IN RATS

    Directory of Open Access Journals (Sweden)

    N. I. Burmas

    2016-05-01

    Full Text Available Background. Currently, the growing incidence of toxic lesions of the liver is associated with industrial chemicalization and uncontrolled use of hepatotoxic drugs in everyday life. There are about one thousand drugs with high or low hepatotoxicity, such as anti-TB drugs. Objective. In this research we studied the intracellular enzymes activity and bile formation function of the liver in rats of different ages in cases of tuberculostatic (isoniazid and rifampicin affection and chromium (potassium dichromate intoxication. Methods. The experimental affection of rats of different ages was performed by combined injection of hexavalent chromium compounds (a solution of potassium dichromate, 3 mg/kg, isoniazid (0.05 g/kg and rifampicin (0.25 g/kg. On the 7th and 14th days the rats were injected with enterosorbent Sorbex (150 mg/kg. Enzyme markers activity of the liver was evaluated due to alanine and aspartate aminotransferases (ALT and AST and alkaline phosphatase (ALP rates. Bile formation function of the liver was evaluated by total bilirubin and bile acids content in blood. Results. The disorders in hepatocytes plasma membranes permeability were defined by the increased rates of ALT, AST and alkaline phosphatase in blood serum which were decreased in the liver. It was determined that total bilirubin and bile acids content in blood serum of the affected animals increased. It influenced hepatocytes excretion in bile capillaries and caused cholestasis and revenues decrease in bile. Conclusions. The most significant metabolic disorders in cases of chrome-isoniazid-rifampicin affection were defined in immature and senior animals in comparison with mature animals.

  11. Effect of Cu4Ti compound formation on the characteristics of NbTi accelerator magnet wire

    International Nuclear Information System (INIS)

    Garber, M.; Suenaga, M.; Sampson, W.B.; Sabatini, R.L.

    1985-01-01

    High critical current density, J/sub c/ > 2500 A/mm 2 , and small filament diameter, d approx. 3 μm, are required in multifilamentary NbTi wire used for superconducting accelerator magnets. Wires obtained from various commercial sources had J/sub c/'s in the range 1000 to 2800 A/mm 2 amd d's in the range 1 to 23 μm. The filaments were examined by means of scanning electron microscopy in order to determine the reason for the variation in J/sub c/. It was found that the filaments in high J/sub c/ wires had clean smooth surfaces and uniform cross section along their lengths. Filaments in low J/sub c/ wires show formation of Cu 4 Ti compound particles on their surfaces and large variations in cross section. The lower critical current measured in these wires is believed to be largely due to this effect. The superconducting-normal state transition is relatively wide in these wires

  12. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds.

    Science.gov (United States)

    Gómez-Mascaraque, Laura G; Sanchez, Gloria; López-Rubio, Amparo

    2016-10-05

    The molecular weight of chitosan is one of its most determinant characteristics, which affects its processability and its performance as a biomaterial. However, information about the effect of this parameter on the formation of electrosprayed chitosan microcapsules is scarce. In this work, the impact of chitosan molecular weight on its electrosprayability was studied and correlated with its effect on the viscosity, surface tension and electrical conductivity of solutions. A Discriminant Function Analysis revealed that the morphology of the electrosprayed chitosan materials could be correctly predicted using these three parameters for almost 85% of the samples. The suitability of using electrosprayed chitosan capsules as carriers for bioactive agents was also assessed by loading them with a model active compound, (-)-epigallocatechin gallate (EGCG). This encapsulation, with an estimated efficiency of around 80% in terms of preserved antioxidant activity, showed the potential to prolong the antiviral activity of EGCG against murine norovirus via gradual bioactive release combined with its protection against degradation in simulated physiological conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Steam reforming of cyclic model compounds of bio-oil over Ni-based catalysts: Product distribution and carbon formation

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Jensen, Anker Degn

    2015-01-01

    Steam reforming (SR) and oxidative steam reforming (OSR) of furfural, 2-methylfuran, and guaiacol have been investigated in the temperature range 400-800°C at a steam to carbon (S/C)-ratio of 5 and oxygen to carbon (O/C)-ratio of 0.2-1.4 over Ni/CeO2-K/MgAl2O4. Carbon oxides and H2 were the major...... products in the SR of 2-methylfuran and furfural, while the by-products were methane, ethanol, 2-propanol, and acetone. Temperatures of 500°C or above were needed to minimize the formation of by-products in the SR of 2-methylfuran and furfural. Phenolics, like benzenediols and phenol, were produced in high...... yields in the SR of guaiacol and temperatures of 780°C were needed to totally convert guaiacol to carbon oxides and H2.Carbon deposition was observed in the SR of all three model compounds and was most severe for guaiacol followed by furfural and 2-methylfuran. The carbon deposition could be reduced...

  14. Calcium carbonate interaction analysis in polypropylene compounds and their impact on the formation of beta crystalline phase of this polymer

    International Nuclear Information System (INIS)

    Sakahara, Rogerio M.; Hui, Wang S.

    2011-01-01

    The insertion of calcium carbonate (CaCO 3 ) in polypropylene compound is a thoroughly known technique widely studied in the academic area and in the industry. Its wide application is due, mainly, to increase mechanical properties with low manufacturing cost. These improvements in this polymer make it more versatile and competitive compared to other expensive polymers. In this study, the incorporation of four types of CaCO3 from the same manufacturer were compared and the focus was on the size of this mineral filler. Furthermore, it was analyzed the interaction of graphitized polypropylene with maleic anhydride (PP-g-MA) in the same samples. All these samples were analyzed by WAXS and SEM. The physical properties of tensile strength and impact were also analyzed. It was observed from this study that the smallest CaCO3 produced with PP-g-MA resulted in better physical properties with the formation of a crystalline phase beta, as originally studied by other authors using other raw materials. (author)

  15. Strangeness production in nucleus-nucleus collisions: An experimental review

    International Nuclear Information System (INIS)

    Odyniec, G.

    1990-12-01

    In experiments with oxygen (60 and 200 GeV/N) and sulphur (200 GeV/N) ions at CERNSPS, large energy densities of the order of 2--3 GeV/fm 3 have been observed, which according to QCD calculations, satisfy necessary conditions for the formation of a quark gluon plasma (QGP) phase. Under such conditions, colour would no longer be confined to hadronic dimensions, and quarks and gluons will propagate freely throughout an extended volume. Somehow lower energy densities, of the order of 0.7--1 GeV/fm 3 , were observed in AGS experiments with 15 GeV/N silicon beams and heavy targets. These energy densities might be adequate for investigations of the pre-equilibrium stage, during which the momentum space distribution has been degradated from its initial value but is not yet thermal. First experimental results, available now, show promise of seeing signs of a new phase of matter. In this review the current status of the selective experimental results on strange-particle production, which are relevant to equilibration and QGP formation in nucleus-nucleus collisions, is presented

  16. Deconfinement of quarks and gluons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    2011-01-01

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals the anomalies. They were predicted as the signals of the deconfinement phase transition and observed by NA49 collaboration in Pb+Pb collisions at the CERN SPS. This indicates the onset of the deconfinement in central nucleus-nucleus collisions at about 30 AGeV.

  17. Diffractive ''semioptical'' model for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Musulmanbekov, Zh.Zh.

    1979-01-01

    Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)

  18. Basic features of compound and deep inelastic reactions

    International Nuclear Information System (INIS)

    Gregoire, C.

    1984-03-01

    After a general introduction and a lecture devoted to the dissipation mechanisms, we will study successively the charge equilibration, the angular momentum transfer, the mass exchanges and the compound nucleus formation with its de-excitation. The deformation degrees of freedom are considered when necessary. The self consistent treatments are not presented here and we refer for this purpose to the other lectures on this topic given during the School

  19. Dissipation in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Santanu Pal

    1984-01-01

    This paper deals with the mechanism of one- and two-body dissipations in nucleus-nucleus collisions. The average energy transferred to nuclear excitations is calculated using a time-dependent density matrix approach with lowest-order approximations. Considering the nuclei as Fermi gases, and using a gaussian-type NN interaction as the basic perturbation, simplified expressions are obtained for energy dissipations. These expressions are quite instructive to follow a number of interesting aspects of one- and two-body dissipations. It is theoretically observed that the memory time for the two-body dissipation is significantly smaller than that of one-body dissipation. A threshold-type dependence of the transferred energy on the relative velocity between the two nuclei is also observed. This threshold velocity is found to be related with the intrinsic nucleon kinetic energy for two-body dissipation and with the nuclear size for the one-body case. This observation further suggests that the total dissipated energy is shared between the two nuclei approximately in the ratio of their masses. The physical origin of these observations is also explained. Numerical calculations further illustrate some characteristic features of one- and two-body dissipations. (orig.)

  20. High energy nucleus-nucleus scattering and matter radius of unstable nucleus

    International Nuclear Information System (INIS)

    Sato, H.; Okuhara, Y.

    1985-07-01

    The interaction cross sections of high energy nucleus-nucleus scattering have been studied with the Glauber Model and Hartree-Fock like variational calculation for the nuclear structure. It is found that the experimental interaction cross sections of the light unstable nucleus-stable nucleus scatterings measured by INS-LBL collaboration are well reproduceable. (author)

  1. Particle correlations in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Nagamiya, Sh.

    1981-01-01

    Particle correlations in proton-nucleus and nucleus-nucleus collisions at energies of 1-2 GeV/nucleon are investigated. The problems of measurement of the mean free path lambda of protons inside the nucleus and the interaction radius of nucleus-nucleus collisions is considered. The value of lambda has been determined in two-proton coincidence experiment in proton-nucleus interaction at 800 MeV. The observed value of lambda is slightly longer than the expected from free nucleon-nucleon collisions. Some preliminary results on proton emission beyond free nucleon-nucleon kinemaics are given

  2. Some experimental results of the investigation of hadron-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Azimov, S.A.; Gulamov, K.G.; Chernov, G.M.

    1978-01-01

    Recent experimental data on the hadron-nucleus and nucleus-nucleus inelastic interactions are analyzed. A particular attention is paid to the description of the leading hadron spectra and of the spectra of nucleon recoils in hadron-nucleus interactions. Some of the results of the experimental studies of correlations between secondary particles are discussed. This discussion demonstrates that an analysis of the multiparticle phenomena is very promising regarding the discrimination between the different models for the hadron-nucleus and nucleus-nucleus interactions. It is pointed out that the actual mechanism of the hadron-nucleus and nucleus-nucleus interactions is a rather complex one and can be described comprehensively by none of the existing models

  3. Effect of Sodium Chloride on α-Dicarbonyl Compound and 5-Hydroxymethyl-2-furfural Formations from Glucose under Caramelization Conditions: A Multiresponse Kinetic Modeling Approach.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-08-17

    This study aimed to investigate the kinetics of α-dicarbonyl compound formation in glucose and glucose-sodium chloride mixture during heating under caramelization conditions. Changes in the concentrations of glucose, fructose, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural (HMF), glyoxal, methylglyoxal, and diacetyl were determined. A comprehensive reaction network was built, and the multiresponse model was compared to the experimentally observed data. Interconversion between glucose and fructose became 2.5 times faster in the presence of NaCl at 180 and 200 °C. The effect of NaCl on the rate constants of α-dicarbonyl compound formation varied across the precursor and the compound itself and temperature. A decrease in rate constants of 3-deoxyglucosone and 1-deoxyglucosone formations by the presence of NaCl was observed. HMF formation was revealed to be mainly via isomerization to fructose and dehydration over cyclic intermediates, and the rate constants increase 4-fold in the presence of NaCl.

  4. Defect formation and carrier doping in epitaxial films of the ''parent'' compound SrCuO2: Synthesis of two superconductors descendants

    International Nuclear Information System (INIS)

    Feenstra, R.; Norton, D.P.; Budai, J.D.; Jones, E.C.; Christen, D.K.; Kawai, T.

    1995-04-01

    The infinite layer or parent compounds ACuO 2 (A: Ca-Sr-Ba) constitute the simplest copper oxygen perovskites that contain the CuO 2 sheets essential for superconductivity. The stabilization of these basic ''building blocks'' as epitaxial films, therefore, provides alluring opportunities towards the search for new superconducting compounds and elucidation of the underlying mechanisms. In this work, general trends of the defect formation and carrier doping for epitaxial films of the intermediate endmember SrCuO 2 are reviewed. First results are presented from successful attempts to induce hole-doped superconductivity via the processing-controlled incorporation of charge reservoir layers

  5. Multifragmentation in peripheral nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Trautmann, W.; Adloff, J.C.; Bouissou, P.; Hubele, J.; Imme, G.; Iori, I.; Kreutz, P.; Leray, S.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Moroni, A.; Mueller, W.F.J.; Ngo, C.; Ogilvie, C.A.; Pochodzalla, J.; Raciti, G.; Rudolf, G.; Schuettauf, A.; Stuttge, L.

    1993-10-01

    The complete fragmentation of highly excited nuclear systems into fragments of intermediate mass is observed in heavy-ion reactions at relativistic bombarding energies in the range of several hundreds of MeV per nucleon. Similar features are found for peripheral collisions between heavy nuclei and for more central collisions between a heavy and a light nucleus. The partition space explored in multifragment decays is well described by the statistical multifragmentation models. The expansion before breakup is confirmed by the analysis of the measured fragment energies of ternary events in their own rest frame. Collective radial flow is confined to rather small values in these peripheral-type reactions. Many conceptually different models seem to be capable of reproducing the charge correlations measured for the multifragment decays. (orig.)

  6. Formation of polymerization compounds during thermal oxidation of cottonseed oil, partially hydrogenated cottonseed oil and their blends

    Directory of Open Access Journals (Sweden)

    Barrera-Arellano, D. Laboratório de Óleos e Gorduras, Departa

    2006-09-01

    Full Text Available Samples of cottonseed oil, partially hydrogenated cottonseed oil and their blends, with iodine values between 60 and 110, tocopherol-stripped or not by aluminium oxide treatment, were submitted to thermal oxidation, at 180 °C, for 10 hours. Samples were collected at 0, 2, 5, 8 and 10 hours, for the determination of dimers and polymers (degradation compounds and of tocopherols. The influence of the degree of hydrogenation on the formation of dimers and polymers and the role of originally present tocopherols in the protection of fats and oils against thermal degradation was verified. The degradation curves for tocopherols showed a fast destruction rate for the tocopherols present in cottonseed fats and oil (α and γ-tocopherols, with residual levels close to zero after 10 hours under thermal oxidation conditions. Nevertheless, samples with their natural tocopherols presented a slower rate of thermal degradation. The unsaturation degree was apparently more important in the protection against thermal degradation than the content of tocopherolsMuestras de aceite de algodón, aceite de algodón parcialmente hidrogenado y sus mezclas, con índices de yodo de 60 a 110, tratadas o no con óxido de aluminio, fueron sometidas a termoxidación, a 180 °C, durante 10 horas. Se retiraron muestras en los tiempos 0, 2, 5, 8 y 10 horas, para determinación de dímeros y polímeros (compuestos de degradación y de tocoferoles. Se verificó la influencia del grado de hidrogenación sobre la formación de dímeros y polímeros, y también el papel de los tocoferoles originalmente presentes en el aceite y en las grasas, en la protección contra la degradación térmica. Las curvas de degradación de los tocoferoles mostraron una destrucción bastante rápida de los tocoferoles presentes en el aceite y en las grasas de algodón (α y γ-tocoferoles, con niveles residuales próximos a cero después de 10 horas de termoxidación. Aún así, muestras con sus

  7. Antiproton-nucleus interaction

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1984-01-01

    Several facets of antinucleon-nucleus interactions are explored. The topics treated are: coherent interactions, production of unusual states and particles in the nuclear medium, and the creation of extreme states of matter by antimatter annihilation. It is found that temperatures of the magnitude necessary to achieve the predicted quark-gluon phase transition are obtained. 20 references

  8. Nucleus accumbens and impulsivity

    NARCIS (Netherlands)

    Basar, K.; Sesia, T.; Groenewegen, H.J.; Steinbusch, H.W.; Visser-vandewalle, V.; Temel, Y.

    2010-01-01

    The multifaceted concept of impulsivity implies that different impulsivity aspects, mediated by different neural processes, influence behavior at different levels. The nucleus accumbens (NAc) is a key component of the neural processes regulating impulsivity. In this review, we discuss the findings

  9. Quasi-elastic shadowing in nucleus-nucleus elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dymarz, R; Malecki, A [Institute of Nuclear Physics, Krakow (Poland); Gluski, K [Institute of Nuclear Research, Warsaw (Poland); Picchi, P [Turin Univ. (Italy). Ist. di Fisica; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1979-01-06

    The complete evaluation of the Glauber multiple-scattering series for nucleus-nucleus collisions is a very difficult task and that is why various approximate formulae were proposed. In this work some of these approximations are discussed.

  10. Study of fragmentation reactions of light nucleus

    International Nuclear Information System (INIS)

    Toneli, David Arruda; Carlson, Brett Vern

    2011-01-01

    Full text: The decay of the compound nucleus is traditionally calculated using a sequential emission model, such as the Weisskopf-Ewing or Hauser-Feshbach ones, in which the compound nucleus decays through a series of residual nuclei by emitting one particle at a time until there is no longer sufficient energy for further emission. In light compound nucleus, however, the excitation energy necessary to fully disintegrate the system is relatively easy to attain. In such cases, decay by simultaneous emission of two or more particles becomes important. A model which takes into account all these decay is the Fermi fragmentation model. Recently, the equivalence between the Fermi fragmentation model and statistical multifragmentation model used to describe the decay for highly excited fragments for reactions of heavy ions was demonstrated. Due the simplicity of the thermodynamic treatment used in the multifragmentation model, we have adapted it to the calculation of Fermi breakup of light nuclei. The ultimate goal of this study is to calculate the distribution of isotopes produced in proton-induced reactions on light nuclei of biological interest, such as C, O e Ca. Although most of these residual nuclei possess extremely short half-lives and thus represent little long-term danger, they tend to be deficient in neutrons and to decay by positron emission, which allows the monitoring of proton radiotherapy by PET (Positron Emission Tomography). (author)

  11. Mechanisms of High Energy Hadron-Nucleus and Nucleus-Nucleus Collision Processes

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1994-01-01

    Mechanisms of high energy hadron-nucleus and nucleus-nucleus collision processes are depicted qualitatively, as prompted experimentally. In hadron-nucleus collisions the interaction of the incident hadron in intranuclear matter is localized in small cylindrical volume, with the radius as large as the strong interaction range is, centered on the hadron course in the nucleus. The nucleon emission is induced by the hadron in its passing through the nucleus; particles are produced via intermediate objects produced in 2 → 2 endoergic reactions of the hadron and its successors with downstream nucleons. In nucleus-nucleus collisions, the outcome of the reaction appears as the composition of statistically independent hadron-nucleus collision outcomes at various impact parameters. Observable effects supporting such mechanisms are discussed. 51 refs

  12. Effects of rehydration nutrients on H2S metabolism and formation of volatile sulfur compounds by the wine yeast VL3.

    Science.gov (United States)

    Winter, Gal; Henschke, Paul A; Higgins, Vincent J; Ugliano, Maurizio; Curtin, Chris D

    2011-11-02

    In winemaking, nutrient supplementation is a common practice for optimising fermentation and producing quality wine. Nutritionally suboptimal grape juices are often enriched with nutrients in order to manipulate the production of yeast aroma compounds. Nutrients are also added to active dry yeast (ADY) rehydration media to enhance subsequent fermentation performance. In this study we demonstrate that nutrient supplementation at rehydration also has a significant effect on the formation of volatile sulfur compounds during wine fermentations. The concentration of the 'fruity' aroma compounds, the polyfunctional thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), was increased while the concentration of the 'rotten egg' aroma compound, hydrogen sulfide (H2S), was decreased. Nutrient supplementation of the rehydration media also changed the kinetics of H2S production during fermentation by advancing onset of H2S production. Microarray analysis revealed that this was not due to expression changes within the sulfate assimilation pathway, which is known to be a major contributor to H2S production. To gain insight into possible mechanisms responsible for this effect, a component of the rehydration nutrient mix, the tri-peptide glutathione (GSH) was added at rehydration and studied for its subsequent effects on H2S formation. GSH was found to be taken up during rehydration and to act as a source for H2S during the following fermentation. These findings represent a potential approach for managing sulfur aroma production through the use of rehydration nutrients.

  13. Characterization of Halyomorpha halys (brown marmorated stink bug) biogenic volatile organic compound emissions and their role in secondary organic aerosol formation.

    Science.gov (United States)

    Solomon, Danielle; Dutcher, Dabrina; Raymond, Timothy

    2013-11-01

    The formation of aerosols is a key component in understanding cloud formation in the context of radiative forcings and global climate modeling. Biogenic volatile organic compounds (BVOCs) are a significant source of aerosols, yet there is still much to be learned about their structures, sources, and interactions. The aims of this project were to identify the BVOCs found in the defense chemicals of the brown marmorated stink bug Halymorpha halys and quantify them using gas chromatography-mass spectrometry (GC/MS) and test whether oxidation of these compounds by ozone-promoted aerosol and cloud seed formation. The bugs were tested under two conditions: agitation by asphyxiation and direct glandular exposure. Tridecane, 2(5H)-furanone 5-ethyl, and (E)-2-decenal were identified as the three most abundant compounds. H. halys were also tested in the agitated condition in a smog chamber. It was found that in the presence of 100-180 ppm ozone, secondary aerosols do form. A scanning mobility particle sizer (SMPS) and a cloud condensation nuclei counter (CCNC) were used to characterize the secondary aerosols that formed. This reaction resulted in 0.23 microg/ bug of particulate mass. It was also found that these secondary organic aerosol particles could act as cloud condensation nuclei. At a supersaturation of 1%, we found a kappa value of 0.09. Once regional populations of these stink bugs stablilize and the populations estimates can be made, the additional impacts of their contribution to regional air quality can be calculated.

  14. Co-binding of pharmaceutical compounds at mineral surfaces: Molecular investigations of dimer formation at goethite/water interfaces

    OpenAIRE

    Xu , Jing; Marsac , Rémi; Costa , Dominique; Cheng , Wei; Wu , Feng; Boily , Jean-François; Hanna , Khalil

    2017-01-01

    International audience; The emergence of antibiotic and anti-inflammatory agents in aquatic and terrestrial systems is becoming a serious threat to human and animal health worldwide. Because pharmaceutical compounds rarely exist individually in nature, interactions between various compounds can have unforeseen effects on their binding to mineral surfaces. This work demonstrates this important possibility for the case of two typical antibiotic and anti-inflammatory agents (nalidixic acid (NA) ...

  15. Patterns and Meanings of English Words through Word Formation Processes of Acronyms, Clipping, Compound and Blending Found in Internet-Based Media

    Directory of Open Access Journals (Sweden)

    Rio Rini Diah Moehkardi

    2017-02-01

    Full Text Available This research aims to explore the word-formation process in English new words found in the internet-based media through acronym, compound,  clipping and blending and their meanings. This study applies Plag’s (2002 framework of acronym and compound; Jamet’s (2009 framework of clipping, and Algeo’s framework (1977 in Hosseinzadeh  (2014 for blending. Despite the  formula established in each respective framework,  there could be occurrences  of novelty and modification on how words are formed and  how meaning developed in  the newly formed words. The research shows that well accepted acronyms can become real words by taking lower case and affixation. Some acronyms initialized non-lexical words, used non initial letters, and used letters and numbers that pronounced the same with the words they represent. Compounding also includes numbers as the element member of the compound. The nominal nouns are likely to have metaphorical and idiomatic meanings. Some compounds evolve to new and more specific meaning. The study also finds that back-clipping is the most dominant clipping. In blending, the sub-category clipping of blending, the study finds out that when clipping takes place, the non-head element is back-clipped and the head is fore-clipped.

  16. Extraction and formation dynamic of oak-related volatile compounds from different volume barrels to wine and their behavior during bottle storage.

    Science.gov (United States)

    Pérez-Prieto, Luis J; López-Roca, Jose M; Martínez-Cutillas, Adrián; Pardo-Mínguez, Francisco; Gómez-Plaza, Encarna

    2003-08-27

    The extraction rate of furfuryl aldehydes, guaiacol, and 4-methylguaiacol, cis- and trans-oak lactone, and vanillin and the formation rate of furfuryl alcohol and the volatile phenols 4-ethylguaiacol and 4-ethylphenol have been studied in wines matured in different capacity oak barrels (220, 500, and 1000 L). Also, the behavior of these compounds during 1 year of wine bottle storage was followed. The lactones were extracted at a linear rate with large differences that depended on barrel volume. Those compounds related to oak toasting (guaiacol, 4-methylguaiacol, furfuryl aldehydes, and vanillin) seemed to be extracted faster during the first days of oak maturation except for vanillin, which required at least 3 months to accumulate in the wine. The volatile phenols, 4-ethylphenol and 4-ethylguaiacol, were formed in large quantities after the first 90 days of oak maturation, coinciding with the end of spring and beginning of summer. Wines matured in 1000-L oak barrels resulted in the lowest levels of volatile compound accumulation. During bottle storage, some compounds decreased in their concentration (5-methylfurfural, vanillin), others experienced increases in their levels (lactones, furfural, 4-ethylguaiacol, 4-ethylphenol), and the concentration of other compounds hardly changed (guaiacol, furfuryl alcohol).

  17. Role of 3d electrons in formation of ionic-covalent bonds in II-VI based ternary compounds

    International Nuclear Information System (INIS)

    Lawniczak-Jablonska, K.; Iwanowski, R.J.; Perera, R.C.C.

    1997-01-01

    In the II-VI compounds doped with transition metals (diluted magnetic semiconductors) a substitution of cation by the introduced magnetic ion leads to hybridization of its 3d states with the sp states of the host semiconductor. The degree of hybridization of the 3d states and its interaction with the host material band states has been a subject of numerous discussions. Inner shell absorption spectroscopy provides very useful means of electronic structure analysis in a wide variety of systems. Due to its selectivity for atomic species and the selection rules for electron transitions, the soft X-ray absorption technique offers quite unique opportunity to measure directly the site-selective local density of the unoccupied d states in the compounds studied. Results are reported for ZnS compounds with Mn, Fe, Co or Ni substitutions for Zn

  18. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  19. Study of alkylphenols, indol and pyridinic nucleus of HPAN compounds by SPE/SI and SPE/C{sub 18}/NEC: application of SPE/Si phase to oils from the Alagoas sub-basin

    Energy Technology Data Exchange (ETDEWEB)

    Reboucas, L.M.C.; Nogueira, F.A.R.; Sabino, A.R.; Araujo, O.R.P.; Sant' Ana, A.E.G. [Universidade Federal de Alagoas (LABIS/UFAL), Maceio, AL (Brazil). Inst. de Quimica e Biotecnologia. Lab. de Analise de Biomarcadores e Semioquimicos], E-mail: lmcr@qui.ufal.br

    2008-10-15

    Alkylphenols (AP) and hydrocarbon polycyclic aromatic nitrogen (HPAN) compounds are important to study secondary migrations of petroleum. The behavior of AP and HPAN standards was investigated by solid phase extraction (SPE) on silica gel (SPE/Si) and C{sub 18}/NEC (SPE/C{sub 18}) stationary phases. The AP standards were eluted with dichloromethane (DCM) in the F2 fraction, on both SPE/Si and SPE/C{sub 18} phases. The basic and neutral HPAN compounds were eluted together with DCM, in F2 fraction, when a SPE/C18 column was used. However in the SPE/Si column the HPAN compounds were separated by their basic and neutral character in two different fractions. The neutral HPAN compounds were eluted with DCM, F2 fraction, and the HPAN basic compounds were eluted with the mixture DCM:isopropanol 5%, F3 fraction. In general, the quantity of recovered AP and HPAN compounds was higher with SPE/Si than SPE/C{sub 18}. The nine oil samples were analyzed by SPE/Si and the saturated and aromatic hydrocarbon were separated from the polar AP and HPAN. (author)

  20. Formation of high-molecular-weight compounds via the heterogeneous reactions of gaseous C8-C10 n-aldehydes in the presence of atmospheric aerosol components

    Science.gov (United States)

    Han, Yuemei; Kawamura, Kimitaka; Chen, Qingcai; Mochida, Michihiro

    2016-02-01

    A laboratory study on the heterogeneous reactions of straight-chain aldehydes was performed by exposing n-octanal, nonanal, and decanal vapors to ambient aerosol particles. The aerosol and blank filters were extracted using methanol. The extracts were nebulized and the resulting compositions were examined using a high-resolution time-of-flight aerosol mass spectrometer. The mass spectral analysis showed that the exposures of the aldehydes to aerosol samples increased the peak intensities in the high mass range. The peaks in the mass spectra of the aerosol samples after exposure to different aldehydes were characterized by a homologous series of peak shifts due to the addition of multiple CH2 units. This result is explained by the formation of high-molecular-weight (HMW) compounds that contain single or multiple aldehyde moieties. The HMW fragment peaks for the blank filters exposed to n-aldehydes were relatively weak, indicating an important contribution from the ambient aerosol components to the formation of the HMW compounds. Among the factors affecting the overall interaction of aldehydes with atmospheric aerosol components, gas phase diffusion possibly limited the reactions under the studied conditions; therefore, their occurrence to a similar degree in the atmosphere is not ruled out, at least for the reactions involving n-nonanal and decanal. The major formation pathways for the observed HMW products may be the self-reactions of n-aldehydes mediated by atmospheric aerosol components and the reactions of n-aldehydes with organic aerosol components. The observed formation of HMW compounds encourages further investigations into their effects on the aerosol properties as well as the organic aerosol mass in the atmosphere.

  1. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs

    Czech Academy of Sciences Publication Activity Database

    Forczek, Sándor; Pavlík, Milan; Holík, Josef; Rederer, L.; Ferenčík, M.

    2016-01-01

    Roč. 157, AUG (2016), s. 190-199 ISSN 0045-6535 R&D Projects: GA ČR GA13-11101S Institutional support: RVO:61389030 Keywords : Climate relevant compounds * Trichloromethane * Adsorbable organohalogens Subject RIV: EF - Botanics Impact factor: 4.208, year: 2016

  2. Gold Nanoparticle-Catalyzed Formation of Nitrogen-containing Compounds-From Mechanistic Understanding to Synthetic Exploitation

    DEFF Research Database (Denmark)

    Mielby, Jerrik; Kegnaes, Soren; Fristrup, Peter

    2012-01-01

    During the last decade, heterogeneous catalysis using gold nanoparticles has gained importance as an efficient method for the oxidation of alcohols and aldehydes. The scope of these reactions has recently been extended to nitrogen-containing compounds, which is a particularly promising substrate...

  3. Molecular orbitals of nucleons in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1986-05-01

    A formalism for the dynamical treatment of the molecular orbitals of valence nucleons in nucleus-nucleus collisions at low bombarding energy is developed with the use of the coupled-reaction-channel (CRC) method. The Coriolis coupling effects as well as the finite mass effects of the nucleon are taken into account in this model, of rotating molecular orbitals, RMO. First, the validity of the concept is examined from the view point of the multi-step processes in a standard CRC calculation for systems containing two identical [core] nuclei. The calculations show strong CRC effects particularly in the case where the mixing of different l-parity orbitals - called hybridization in atomic physics - occurs. Then, the RMO representation for active nucleons is applied to the same systems and compared to the CRC results. Its validity is investigated with respect to the radial motion (adiabaticity) and the rotation of the molecular axis (radial and rotational coupling). Characteristic molecular orbitals of covalent molecules appear as rotationally stable states (K = 1/2) with good adiabaticity. Using the RMO's we obtain a new interpretation of various scattering phenomena. Dynamically induced changes in the effective Q-values (or scaling of energies), dynamically induced moments of inertia and an dynamically induced effective (L · S) interaction are obtained as a result of the molecular orbital formation. Various experimental data on transfer and subbarrier fusion reactions are understood in terms of the RMO's and their adiabatic potentials. Landau-Zener transitions, which strongly depend on the total angular momentum of the system, definitely predict the observation of characteristic changes in the cross sections for the inelastic scattering 13 C( 12 C, 12 C) 13 C* (3.086 MeV, 1/2 + ) with the change of the bombarding energy. (author)

  4. Interacting gluon model for hadron-nucleus and nucleus-nucleus collisions in the central rapidity region

    International Nuclear Information System (INIS)

    Fowler, G.N.; Navarra, F.S.; Plumer, M.; Lawrence Berkeley Laboratory, Nuclear Science Division, Berkeley, California 94720); Vourdas, A.; Weiner, R.M.

    1989-01-01

    The interacting gluon model developed to describe the inelasticity distribution in hadron-nucleon collisions has been generalized and applied to hadron-nucleus and nucleus-nucleus interactions. Leading particle spectra and energy distributions in hadron-nucleus and nucleus-nucleus collisions are calculated

  5. Formation of emerging DBPs from the chlorination and chloramination of seawater algal organic matter and related model compounds

    KAUST Repository

    Nihemaiti, Maolida

    2014-01-01

    Limited studies focused on reactions occurring during disinfection and oxidation processes of seawater. The aim of this work was to investigate disinfection by-products (DBPs) formation from the chlorination and chloramination of seawater algal

  6. Low-temperature heat capacity and the standard molar enthalpy of formation of compound chromium(III) tri(pyrazine-2-carboxylate)

    International Nuclear Information System (INIS)

    Gao, Shengli; Zhang, Sheng; Chen, Sanping; Yang, Desuo

    2012-01-01

    Highlights: ► Low-temperature heat capacities of chromium(III) tri(pyrazine-2-carboxylate) were measured from 78 to 400 K. ► Thermodynamic functions of the compound at 298.15 K were calculated based on low-temperature heat capacity. ► The standard molar enthalpy of formation of the target was determined to be −1207.86 ± 3.39 kJ mol −1 through a designed thermochemical cycle. - Abstract: Low-temperature heat capacities of the coordination compound, chromium(III) tri(pyrazine-2-carboxylate), formulated as Cr(pyza) 3 (pyza = pyrazine-2-carboxylate), were measured by a precision automated adiabatic calorimeter over the temperature range of 78–400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial equation, the fitted heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated at the interval of 5 K. In accordance with a reasonable thermochemical cycle designed, the standard molar enthalpy of formation of the title complex was determined to be −1207.86 ± 3.39 kJ mol −1 by an isoperibol solution–reaction calorimeter.

  7. Effect of the partial replacement of sodium chloride by other salts on the formation of volatile compounds during ripening of dry-cured ham.

    Science.gov (United States)

    Armenteros, Mónica; Toldrá, Fidel; Aristoy, M-Concepción; Ventanas, Jesús; Estévez, Mario

    2012-08-08

    The effect of the partial NaCl replacement by other salts (potassium, calcium, and magnesium chloride) on the formation of volatile compounds through the processing of dry-cured ham was studied using solid-phase microextraction (SPME). Three salt formulations were considered, namely, I (100% NaCl), II (50% NaCl and 50% KCl), and III (55% NaCl, 25% KCl, 15% CaCl(2), and 5% MgCl(2)). There was an intense formation of volatile compounds throughout the processing of dry-cured hams, particularly during the "hot-cellar" stage. The differences between treatments were found to be more remarkable at the end of the curing process. Hams from formulations I and II had significantly higher amounts of lipid-derived volatiles such as hexanal than hams from formulation III, whereas the latter had significantly higher amounts of Strecker aldehydes and alcohols. Plausible mechanisms by which salt replacement may affect the generation of volatile compounds include the influence of such replacement on lipid oxidation and proteolysis phenomena. The potential influence of the volatiles profile on the aroma of the products is also addressed in the present paper.

  8. INVESTIGATING THE fFORMATION OF INTERMETALLIC COMPOUNDS AND THE VARIATION OF BOND STRENGTH BETWEEN Al-Cu LAYERS AFTER ANNEALING IN PRESENCE OF NICKEL BETWEEN LAYERS

    Directory of Open Access Journals (Sweden)

    A. Shabani

    2016-06-01

    Full Text Available In the present study, the effect of post-rolling annealing heat treatment on the formation of intermetallic compounds between Al-Cu strips, in the presence of nickel coating on the Cu strips, was investigated. In addition, the effect of post-rolling annealing and intermetallic compounds on the bond strength of Al-Cu strips was evaluated. In order to prepare samples, Cu strips were coated with nickel by electroplating process. After surface preparing, Cu strips were placed between two Al strips and roll bonded. This method is used for producing Al-Ni-Cu composites. Then the samples were annealed at 773K for 2 h. The formation of intermetallic compounds was studied using energy dispersive spectroscopy (EDS and X-ray diffraction (XRD. Also, in order to investigate bond strength of Al-Cu after post-rolling annealing heat treatment, samples were produced using nickel powder and nickel coating. Then bond strength of strips was investigated using peeling test. The results revealed that by post-rolling annealing of layers, the bond strength between Al-Cu strips decreases dramatically.

  9. High energy nucleus-nucleus collisions at CERN: Signatures, physical observables and experimental results

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-02-01

    Experimental results on high energy nucleus-nucleus collisions have become available with the recent experiments at CERN utilizing 200 GeV/n oxygen and sulfur beams. Physics motivations for these experiments are presented: a description of predicted signatures for possible formation of a quark-gluon plasma and physical observables that are expected to provide important information for understanding the dynamics of these collisions. A presentation will be made of some of the first experimental results to emerge from this new field. 28 refs., 9 figs

  10. Effects of Sodium Chloride, Potassium Chloride and Calcium Chloride on the Formation of α-Dicarbonyl Compounds, Furfurals and Development of Browning in Cookies during Baking.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-10-02

    Effect of NaCl, KCl, CaCl2, NaHCO3, and NH4HCO3 on the formation of glucosone, 1-deoxyglucosone, 3-deoxyglucosone, glyoxal, methylglyoxal, diacetyl, 5-hydroxymethyl-2-furfural, 2-furfural and browning were investigated in cookies. Presence of 1.5% NaCl, 1% KCl, and 1% CaCl2 on flour basis had no effect on α-dicarbonyl compounds, except 1-deoxyglucosone increased in the presence of KCl and CaCl2. The increase in 5-hydroxymethyl-2-furfural formation in the presence of NaCl, KCl, and CaCl2 did not relate to 3-deoxyglucosone formation and pH changes. NaCl, KCl, and CaCl2 increased browning in cookies. Model reaction systems indicated that NaCl, KCl, and CaCl2 enhance browning by increasing furfurals in caramelization. NaCl, KCl, and CaCl2 decreased browning intensity in heated glucose-glycine system. Usage of CaCl2 in cookies may considerably increase furfurals but not α-dicarbonyl compounds. Sodium reduction can be obtained by replacement with potassium without sacrificing the desired consequences of caramelization in sugar rich bakeries.

  11. Tentative characterization of precursor compounds and co-factors of pigment formation in production of 'wu mi' from Vaccinium bracteatum Thunb. Leaves.

    Science.gov (United States)

    Fan, Mingcong; Fan, Yihui; Huang, Weiping; Wang, Li; Li, Yan; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2018-10-01

    Vaccinium bracteatum leaves (VBTL) are traditionally used in China to dye rice grains, which assume a deep blue color, named 'Wu mi'. Information on the mechanism of pigment formation is limited. In this study, CIELAB color space parameters were used to represent the color of 'Wu mi'. Precursor compounds of pigments formed during the dyeing process were identified by UPLC Q-TOF MS analysis. The changes in co-factors for pigment formation in VBTL were measured at different growth stages. The L ∗ and b ∗ values of dyed rice increased as the leaves aged, whereas a ∗ values showed irregular changes. Six compounds were tentatively identified as pigment precursors by UPLC Q-TOF MS analysis. The pH and β-glucosidase activity at different growth stages of VBTL were indicated to be crucial co-factors for pigment formation. A tentative hypothesis is presented that iridoid glycosides are hydrolyzed by acids and β-glucosidases to form a dialdehyde structure that binds covalently with amino residues of lysine side chains in rice protein molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Morphological modulation of human fibrosarcoma HT-1080 cells by hydroxybenzoate compounds during apoptosis

    Directory of Open Access Journals (Sweden)

    Jassem G Mahdi

    2015-10-01

    Full Text Available Hydroxybenzoate (HB compounds have shown to modulate the morphology in human fibrosarcoma HT-1080 cells. The changes in HT-1080 cells showed marker signs of apoptosis, which included the condensation of nucleus, cell round, blebbing and the formation of apoptotic bodies. The different stages of apoptosis were assessed microscopically using different staining and immunohistochemical techniques, as well as scanning electron microscopy. In addition, HB compounds increased the expression of caspase-3, which is closely associated with the development of the modulation in HT-1080 cells that are undergoing the programmed cell death. Both acetyl salicylic acid (ASA and HBZn compounds were dose and treatment duration dependent.

  13. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  14. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  15. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  16. Regularity in the formation of compounds in ternary R-Me-Sn systems, R - REM, Me - Fe, Co, Ni, Cu

    International Nuclear Information System (INIS)

    Skolozdra, R.V.; Komarovskaya, L.P.; Koretskaya, O.Eh.

    1992-01-01

    For the ternary alloy systems of (La, Y, Gd, Lu)-Fe-Sn, (Ce, Y, Gd)-Co-Sn, (Ce, Y, Gd, Lu)-Ni-Sn and (Pr, Gd, Lu)-Cu-Sn isothermal sections of phase diagrams were plotted within the range of 670 to 870 K. It was revealed that substitution of transition metal in the kFe-Co-Ni-Cu series led to changes both in a number of ternary stannides and their structural types. A tendency was observed in change of stannide numbers depending on quantity ratio of R and Me components. Crystallochemical analysis of compounds obtained showed that they could be treated as interstitial structures or lsuperstructures with respect to them. The results of magnetic properties measurements were used for explanation of structural features of ternary compounds considered

  17. Reactivities of polystyrenic polymers with supercritical water under nitrogen or air. Identification and formation of degradation compounds

    International Nuclear Information System (INIS)

    Dubois, M.A.; Dozol, J.F.; Massiani, C.; Ambrosio, M.

    1996-01-01

    Supercritical water oxidation (SCWO) could offer a viable treatment alternative to destroy the organic structure of ion-exchange resins (IER) that are radioactive process wastes and which contain radioactivity. The GC/MS technique was used successfully to identify the low-concentration degradation compounds that are present in the cold liquid effluent after SCWO of polystyrenic IER at 380 C (25.5 MPa). The study of the behavior of these IER in supercritical water enhances the role of temperature and the role of supercritical water in the degradation process. With the exception of acetic acid, the identified compounds are aromatic. The functional groups are released during the heating time, and they do not interfere in the degradation process. The oxidation involves a complex set of reaction pathways. A mechanism including parallel and competitive reactions is proposed

  18. Ru(II)-Catalyzed Cross-Coupling of Cyclopropenes with Diazo Compounds: Formation of Olefins from Two Different Carbene Precursors.

    Science.gov (United States)

    Wang, Bo; Yi, Heng; Zhang, Hang; Sun, Tong; Zhang, Yan; Wang, Jianbo

    2018-01-19

    Formal carbene dimerization is a convergent method for the synthesis of alkenes. Herein, we report a Ru(II)-catalyzed carbene dimerization of cyclopropenes and diazo compounds. The yields are up to 97% and the stereoselectivity are up to >20:1. Mechanistically, it has been experimentally demonstrated that the catalyst reacts with cyclopropene first to generate a Ru(II)-carbene species, which is attacked by nucleophilic diazo substrate, followed by dinitrogen extrusion to form the double bond.

  19. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    Science.gov (United States)

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-02-23

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current.

  20. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  1. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    Science.gov (United States)

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  2. Rotational Spectrum, Conformational Composition, and Quantum Chemical Calculations of Cyanomethyl Formate (HC(O)OCH2C≡N), a Compound of Potential Astrochemical Interest.

    Science.gov (United States)

    Samdal, Svein; Møllendal, Harald; Carles, Sophie

    2015-08-27

    The rotational spectrum of cyanomethyl formate (HC(O)OCH2C≡N) has been recorded in the 12–123 GHz spectral range. The spectra of two conformers were assigned. The rotamer denoted I has a symmetry plane and two out-of plane hydrogen atoms belonging to the cyanomethyl (CH2CN) moiety. In the conformer called II, the cyanomethyl group is rotated 80.3° out of this plane. Conformer I has an energy that is 1.4(6) kJ/mol lower than the energy of II according to relative intensity measurements. A large number of rotational transitions have been assigned for the ground and vibrationally excited states of the two conformers and accurate spectroscopic constants have been obtained. These constants should predict frequencies of transitions outside the investigated spectral range with a very high degree of precision. It is suggested that cyanomethyl formate is a potential interstellar compound. This suggestion is based on the fact that its congener methyl formate (HC(O)OCH3) exists across a large variety of interstellar environments and the fact that cyanides are very prevalent in the Universe. The experimental work has been augmented by high-level quantum chemical calculations. The CCSD/cc-pVQZ calculations are found to predict structures of the two forms that are very close to the Born–Oppenheimer equilibrium structures. MP2/cc-pVTZ predictions of several vibration–rotation interaction constants were generally found to be rather inaccurate. A gas-phase reaction between methyl formate and the cyanomethyl radical CH2CN to produce a hydrogen atom and cyanomethyl formate was mimicked using MP2/cc-pVTZ calculations. It was found that this reaction is not favored thermodynamically. It is also conjectured that the possible formation of cyanomethyl formate might be catalyzed and take place on interstellar particles.

  3. The imaginary part of the nucleus - nucleus optical potential

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1978-01-01

    The contribution to the imaginary nucleus - nucleus optical potential has been estimated by evaluating the energy - conserving seocond-order term in the perturbation series. The incoming nuclear field is supposed to excite nucleons in a nucleus in this calculation and the nuclear excitations are approximated by particle-hole excitations in a Fermi gas. The resulting imaginary potential compares favourably with phenomenological potentials. (author)

  4. On angular distribution of nucleus fission fragments by fast neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Evaluation of amplitudes of quadrupole and hexadecapole components of angular distribution of nucleus fission fragments by neutrons with the energies E n < or approx. 6 MeV is conducted. Stability of this amplitude to permeability optical coefficient variations for neutrons is revealed. It is shown, that the ratio of these amplitudes as well as the character of their dependence on the target nucleus orientation degree are sensitive to the type of fission probability distribution along K projection if fissile nucleus J spin to the fragment scattering axis. This sensitivity may be used for fragment angular distribution anisotropy formation statistical model verification

  5. Higgs-boson production in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider

  6. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  7. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    Science.gov (United States)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. PMID:27877786

  8. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    International Nuclear Information System (INIS)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. (review)

  9. Ultrarelativistic nucleus-nucleus collisions at CERN

    International Nuclear Information System (INIS)

    Odyniec, G.

    1989-10-01

    The aim of the NA-35 experiment is to study nuclear matter under extreme conditions. Evidence that conditions reached in 60 GeV/N and 200 GeV/N relativistic heavy ion collisions are adequate for the formation of a quark-gluon plasma where color would no longer be confined to hadronic dimensions is presented. Future plans for experiments in 1990--1991 with 32 S beams and 1993 and up with Pb beams at the SPS are discussed. 26 refs., 23 figs., 3 tabs

  10. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds

    International Nuclear Information System (INIS)

    Maeda, Tsuyoshi; Wada, Takahiro

    2009-01-01

    We studied characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe 2 (CIS) by first principles calculations. The chalcopyrite-type CIS has two kinds of chemical bonds, Cu-Se and In-Se. The Cu-Se bond is a weak covalent bonding because electrons occupy both bonding and antibonding orbitals of Cu 3d and Se 4p and occupy only the bonding orbital (a 1 ) of Cu 4s and Se 4p and do not occupy the antibonding orbital (a 1 * ) of Cu 4s and Se 4p. On the other hand, the In-Se bond has a partially covalent and partially ionic character because the In 5s orbital covalently interacts with Se 4p; the In 5p orbital is higher than Se 4p and so the electron in the In 5p orbital moves to the Se 4p orbital. The average bond order of the Cu-Se and In-Se bonds can be calculated to be 1/4 and 1, respectively. The bond order of Cu-Se is smaller than that of In-Se. The characteristics of these two chemical bonds are related to the formation of Cu and In vacancies in CIS. The formation energy of the Cu vacancy is smaller than that of the In vacancy under both Cu-poor and In-poor conditions. The displacement (Δl) of the surrounding Se atoms after the formation of the Cu vacancy is smaller than the Δl after the formation of the In vacancy. The interesting and unique characteristics of CIS are discussed on the basis of the characteristics of the chemical bond. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Formation of chemical compounds under vacuum plasma-arc deposition of nickel and its alloy onto piezoceramics

    International Nuclear Information System (INIS)

    Grinchenko, V.T.; Lyakhovich, T.K.; Prosina, N.I.; Khromov, S.M.

    1988-01-01

    The phase composition of the transition layer appearing during vacuum-arc coating of nickel and nickel alloy with copper on barium titanate and lead zirconate-titanate is identified. During vacuum plasma-arc coating of nickel and its alloy at the boundary with barium titanate and lead zirconate-titanate the Ni 2 Ti 4 O compound appears which has the crystal lattice type identical with substrate with the parity of lattice parameters. The transition layer contains nickel oxides and NiTiO 3 in the case of barium titanate. When titanate content in substrate increases the zone of reaction diffusion increases in value and becomes more complicate in composition

  12. Formation of inorganic nanofibers by heat-treatment of poly(vinyl alcohol-zirconium compound hybrid nanofibers

    Directory of Open Access Journals (Sweden)

    Nakane K.

    2013-01-01

    Full Text Available Poly(vinyl alcohol-zirconium compound hybrid nanofibers (precursors were formed by electrospinning employing water as a solvent for the spinning solution. The precursors were converted into oxide (ZrO2, carbide (ZrC or nitride (ZrN nanofibers by heating them in air, Ar or N2 atmospheres. Monoclinic ZrO2 nanofibers with high-specific surface area were obtained by heat-treatment of the precursors in air. ZrC and ZrN nanofibers could be obtained below theoretical temperatures calculated from thermodynamics data.

  13. Complex fragment emission from hot compound nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs

  14. Structures and heats of formation of simple alkaline earth metal compounds: fluorides, chlorides, oxides, and hydroxides for Be, Mg, and Ca.

    Science.gov (United States)

    Vasiliu, Monica; Feller, David; Gole, James L; Dixon, David A

    2010-09-02

    Geometry parameters, frequencies, heats of formation, and bond dissociation energies are predicted for the simple alkaline earth (Be, Mg and Ca) fluorides, chlorides, oxides, and hydroxides at the coupled cluster theory [CCSD(T)] level including core-valence correlation with the aug-cc-pwCVnZ basis sets up to n = 5 in some cases. Additional corrections (scalar relativistic effects, vibrational zero-point energies, and atomic spin-orbit effects) were necessary to accurately calculate the total atomization energies and heats of formation. The calculated geometry parameters, frequencies, heats of formation, and bond dissociation energies are compared with the available experimental data. For a number of these alkaline earth compounds, the experimental geometries and energies are not reliable. MgF(2) and BeF(2) are predicted to be linear and CaF(2) is predicted to be bent. BeOH is predicted to be bent, whereas MgOH and CaOH are linear. The OBeO angle in Be(OH)(2) is not linear, and the molecule has C(2) symmetry. The heat of formation at 298 K for MgO is calculated to be 32.3 kcal/mol, and the bond dissociation energy at 0 K is predicted to be 61.5 kcal/mol.

  15. Excimer-mediated photoionization of covalently-linked diaryl compounds: Energy thresholds for excimer formation and excimer-assisted photoionization of jet-cooled bis (9-Fluorenyl) methane

    International Nuclear Information System (INIS)

    Lee, Jae Kwang; Kang, Heun Kag; Cho, Han Joung; Boo, Bong Hyun; Lim, Edward C.

    2001-01-01

    Diarylakanes capable of adopting a face-to face arrangement of the two aromatic rings are ideal systems in which to probe the excited-state dynamics leading to excimer formation and the role of the singlet excimer in the photoionization of covalently linked bichromophoric molecules. Bis (9-eluorenyl) methane, BFM, is a good example of such diaryl compounds. Boo and co-workers have shown that BFM exhibits excrimer fluorescence in solution at ambient temperatures. An Arrhenius plot of the temperature-dependent excimer formation rate yielded activation energy of about 15 kJ·mol -1 . It has been proposed that the activation energy is related to the barrier for transforming the initial S 1 geometry to the face-to face (sandwich-pair) geometry of the intramolecular singlet excimer. This is accord with the study of an intramolecular excimer formation in jet-cooled 1, 3-diphenylpropane (DPP), and that of an intramolecular exciplex formation in 1-(9-anthryl)-3-(4-N, N-dimethylaniline) propane, which indicate that the energy threshold for such conformational changes is about 11 kJ·mol -1 .

  16. On the synthesis of a compound with positive enthalpy of formation: Zinc-blende-like RuN thin films obtained by rf-magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cattaruzza, E., E-mail: cattaruz@unive.it [Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155/B, 30172 Mestre-VE (Italy); Battaglin, G.; Riello, P. [Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155/B, 30172 Mestre-VE (Italy); Cristofori, D. [Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice and Centre for Electron Microscopy “Giovanni Stevanato”, Via Torino 155/B, 30172 Mestre-VE (Italy); Tamisari, M. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44121 Ferrara (Italy)

    2014-11-30

    Highlights: • RuN thin films in the zinc-blende structure have been synthesized by rf-magnetron sputtering. • Contribute is given to the understanding of phase-formation mechanisms in systems that under ambient conditions present positive enthalpies of formation. • Contribute is given to the understanding of phenomena occurring during reactive sputtering processes. • Nanopillar structure: suitable for application requiring a high effective area, like sensing, catalysis, and electrode material for energy-storage devices. - Abstract: 4d- and 5d-transition metal nitrides are of interest both because of their importance for the understanding of mechanisms of phase formation in systems that under ambient conditions present positive enthalpies of formation and because of their appealing structural and electronic properties. In this study, we report the synthesis of thin films of ruthenium mononitride (RuN) in the zinc-blende structure by radio-frequency-magnetron sputtering. Films present a characteristic structure of packed columns ending with tetrahedral tips. The effect of changing the synthesis parameters was investigated in detail. It was found that RuN can be formed if the nitrogen partial pressure exceeds a minimum value and that the addition of argon has the major effect of increasing the deposition rate because of its higher sputter ability. Temperature plays an important role: if it is too high, decomposition/desorption effects overcome those leading to the formation of the compound. Phenomena resulting in the formation of RuN occur at the surface of the growing films and are related to the interactions of ruthenium with energetic nitrogen ions, or atoms, which can penetrate the first atomic layers by low energy implantation. Because of its properties and structure, this material is a promising candidate for applications like sensing, catalysis, and electrode material for energy-storage devices.

  17. ENZYME MARKERS ACTIVITY AND BILE FORMATION FUNCTION OF LIVER IN CASES OF TUBERCULOSTATICS AND HEXAVALENT CHROMIUM COMPOUNDS AFFECTION IN RATS

    OpenAIRE

    N. I. Burmas; L. S. Fira; P. H. Lyhackyy

    2016-01-01

    Background. Currently, the growing incidence of toxic lesions of the liver is associated with industrial chemicalization and uncontrolled use of hepatotoxic drugs in everyday life. There are about one thousand drugs with high or low hepatotoxicity, such as anti-TB drugs. Objective. In this research we studied the intracellular enzymes activity and bile formation function of the liver in rats of different ages in cases of tuberculostatic (isoniazid and rifampicin) affection and chromium (p...

  18. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2016-09-01

    Full Text Available Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE against damage to retinal vascular cells were investigated in streptozotocin (STZ-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells.

  19. Effect of biofilm formation by Oenococcus oeni on malolactic fermentation and the release of aromatic compounds in wine

    Directory of Open Access Journals (Sweden)

    Alexandre eBastard

    2016-04-01

    Full Text Available The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation. The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine’s organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol The results indicated that the biofilm culture of O. oeni conferred (i increased tolerance to wine stress, and (ii functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance.As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during malolactic fermentation and aging by decreasing furfural, gaiacol and eugenol in

  20. New evidence on the formation of oxidizing species in corona discharge in contact with liquid and their reactions with organic compounds.

    Science.gov (United States)

    Magureanu, M; Dobrin, D; Bradu, C; Gherendi, F; Mandache, N B; Parvulescu, V I

    2016-12-01

    The objective of these investigations is to understand in more detail how organic compounds in water are degraded during plasma treatment. The formation of oxidizing species (ozone (O 3 ), hydrogen peroxide (H 2 O 2 ) and hydroxyl radicals (OH)) in a pulsed corona discharge in contact with liquid is investigated. The degradation of a target organic compound (methylparaben) in aqueous solution was increased when combining plasma treatment with ozonation, using the O 3 generated in the discharge. Enhanced mass transfer of O 3 obtained in this plasma+O 3 configuration leads to a six fold increase of MeP oxidation rate. The evolution of oxidants concentration during treatment of MeP solutions provides information on their consumption in reactions with MeP and its oxidation products. The correlation of MeP degradation results (MeP removal and mineralization) with O 3 consumption and the identified reaction products confirms that although O 3 plays an important role in the degradation, for the mineralization OH radicals have an essential contribution. The concentration of OH radicals is diminished in the solutions containing MeP as compared to plasma-treated water, indicating OH consumption in reactions with the target compound and its degradation products. The concentration of H 2 O 2 in the liquid can be either increased or reduced in the presence of MeP, depending on its initial concentration. On the one hand, decomposition of H 2 O 2 by OH or O 3 is suppressed in the presence of MeP, but on the other hand less OH radicals are available for its formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Scaling phenomenon in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures

  2. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  3. Substrate effects on the formation of flat Ag films on (110) surfaces of III-V compound semiconductors

    International Nuclear Information System (INIS)

    Chao, K.; Zhang, Z.; Ebert, P.; Shih, C.K.

    1999-01-01

    Ag films grown at 135 K on (110) surfaces of III-V compound semiconductors and annealed at room temperature are investigated by scanning tunneling microscopy and low-energy electron diffraction. Ag films on Ga-V semiconductors are well ordered, atomically flat, and exhibit a specific critical thickness, which is a function of the substrate material. Films grown on In-V semiconductors are still rather flat, but significantly more disordered. The (111) oriented Ag films on III-arsenides and III-phosphides exhibit a clear twofold superstructure. Films on III-antimonides exhibit threefold low-energy electron diffraction images. The morphology of the Ag films can be explained on the basis of the electronic growth mechanism. copyright 1999 The American Physical Society

  4. The formation of nitrogeneous compounds in the γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane

    International Nuclear Information System (INIS)

    Horigome, Keiichi; Hirokami, Shun-ichi; Sato, Shin

    1978-01-01

    The γ-radiolyses of liquid nitrogen solutions of hydrogen, methane, and ethane have been reinvestigated. A complete survey of nitrogen-containing products has been attempted. The nitrogeneous compounds observed were ammonia (0.7) and hydrogen azide (0.02) in the case of hydrogen, ammonia (0.3), hydrogen cyanide (0.1), methyl azide (0.01), and a polymer in the case of methane, and ammonia (0.3), hydrogen cyanide (0.05), acetonitrile (0.04), ethyl azide (0.01), and a polymer in the case of ethane. The values in parentheses are the G-values obtained at optimum conditions. The hydrolysis of the polymer obtained with methane gave formaldehyde in amounts which correspond to the fact that the G-value of the nitrogen atoms which were converted into the polymer is about 1.0. In order to explain these results, possible reaction mechanisms are discussed. (auth.)

  5. Afferent projections to the deep mesencephalic nucleus in the rat

    International Nuclear Information System (INIS)

    Veazey, R.B.; Severin, C.M.

    1982-01-01

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist

  6. From the nucleus discovery to DWBA

    International Nuclear Information System (INIS)

    Fernandez, B.

    2007-01-01

    The author presents a brief review of the main events in the field of nuclear reactions that are acknowledged as milestones because of their importance due to either experimental setting or physical interpretation. It is shown that the pace of discoveries has been strongly dependent on the technical progress in detection means at the beginning of nuclear physics and now is linked to the development of simulation means. The discovery of the neutron, the development of the Geiger counter, the theory of the compound nucleus or the first direct reactions are among these milestones

  7. Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.; Tuli, S.K.

    1986-07-01

    A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)

  8. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn-Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    Science.gov (United States)

    Prelas, M. A.; Hora, H.; Miley, G. H.

    2014-07-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.

  9. Secondary organic aerosol formation from semi- and intermediate-volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry

    Science.gov (United States)

    Waxman, Eleanor M.; Dzepina, Katja; Ervens, Barbara; Lee-Taylor, Julia; Aumont, Bernard; Jimenez, Jose L.; Madronich, Sasha; Volkamer, Rainer

    2013-03-01

    The role of aqueous multiphase chemistry in the formation of secondary organic aerosol (SOA) remains difficult to quantify. We investigate it here by testing the rapid formation of moderate oxygen-to-carbon (O/C) SOA during a case study in Mexico City. A novel laboratory-based glyoxal-SOA mechanism is applied to the field data, and explains why less gas-phase glyoxal mass is observed than predicted. Furthermore, we compare an explicit gas-phase chemical mechanism for SOA formation from semi- and intermediate-volatility organic compounds (S/IVOCs) with empirical parameterizations of S/IVOC aging. The mechanism representing our current understanding of chemical kinetics of S/IVOC oxidation combined with traditional SOA sources and mixing of background SOA underestimates the observed O/C by a factor of two at noon. Inclusion of glyoxal-SOA with O/C of 1.5 brings O/C predictions within measurement uncertainty, suggesting that field observations can be reconciled on reasonable time scales using laboratory-based empirical relationships for aqueous chemistry.

  10. Hypoxia compounds exercise-induced free radical formation in humans; partitioning contributions from the cerebral and femoral circulation

    DEFF Research Database (Denmark)

    Bailey, Damian M; Rasmussen, Peter; Evans, Kevin A

    2018-01-01

    This study examined to what extent the human cerebral and femoral circulation contribute to free radical formation during basal and exercise-induced responses to hypoxia. Healthy participants (5♂, 5♀) were randomly assigned single-blinded to normoxic (21% O2) and hypoxic (10% O2) trials...... hypoxia (P free radical-mediated lipid peroxidation subsequent to inadequate antioxidant defense. This was pronounced during exercise across the femoral circulation in proportion to the increase in local O2 uptake (r = -0.397 to -0.459, P = 0.037 to 0...... with measurements taken at rest and 30min after cycling at 70% of maximal power output in hypoxia and equivalent relative and absolute intensities in normoxia. Blood was sampled from the brachial artery (a), internal jugular and femoral veins (v) for non-enzymatic antioxidants (HPLC), ascorbate radical (A...

  11. The intercalatus nucleus of Staderini.

    Science.gov (United States)

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  12. Hoechst tagging: a modular strategy to design synthetic fluorescent probes for live-cell nucleus imaging.

    Science.gov (United States)

    Nakamura, Akinobu; Takigawa, Kazumasa; Kurishita, Yasutaka; Kuwata, Keiko; Ishida, Manabu; Shimoda, Yasushi; Hamachi, Itaru; Tsukiji, Shinya

    2014-06-11

    We report a general strategy to create small-molecule fluorescent probes for the nucleus in living cells. Our strategy is based on the attachment of the DNA-binding Hoechst compound to a fluorophore of interest. Using this approach, simple fluorescein, BODIPY, and rhodamine dyes were readily converted to novel turn-on fluorescent nucleus-imaging probes.

  13. The Effect of Forchlorfenuron on Bulblet Formation, Antioxidant Characteristics and Phytochemicals Compounds of Persian Shallot (Allium hirtifolium

    Directory of Open Access Journals (Sweden)

    Nasrin Farhadi

    2018-02-01

    Full Text Available Introduction: Allium hirtifolium commonly known as Persian shallot is an important wild medicinal plant from Alliaceae family. Persian shallot commonly known as mooseer in Iran is a perennial diploid plant that is native to Iran and grows as a wild plant throughout in the Zagross Mountains range, western and southwestern Iran. It is a bulbous herb and usually consists of a single main bulb or rarely two bulbs. Each bulb has a weight of about 8-15 times of a garlic clove. The bulbs of mooseer has been widely used as a traditional herb and spice plant, added to a variety of foods such as salads, pickles, yogurt and different sauces. Conventionally, Persian shallot propagates through bulbs and seeds but these two methods are not commercially efficient due to low growth rate of bulbs and deep dormancy, low viability and germination rate of seeds. In addition, the natural habitat of this plant is under increasing pressure as a result of excessive incorrect harvest that caused to damage the plant density in Iran rangelands. So, improving the efficiency of A. hirtifolium propagation is necessary. A number of positive effects on the growth and productivity of some plants through cytokinin application have been registered by earlier research. The current study aimed to evaluate the effects of pretreatment and foliar application of forchlorfenuron as a safe cytokinin on improving the bulb production, phytochemical compounds and antioxidant attributes of Persian shallot. Materials and Methods: This experiment was done at research green house of Tabriz University in 2015-2016. For pretreated of Persian shallot bulbs, they were soaked in 0, 50 and 10 mg l-1 forchlorfenuron solutions for 24 h. Then they were cultured in pots contained perlite and vermicompost with 3:1 ratio. Foliar application was applied 2, 4 and 6 weeks after culture with 0, 50, 100 and 150 mg l-1 concentrations of forchlorfenuron. At the end of growth season the number of leaves, number of

  14. Sanskrit Compound Processor

    Science.gov (United States)

    Kumar, Anil; Mittal, Vipul; Kulkarni, Amba

    Sanskrit is very rich in compound formation. Typically a compound does not code the relation between its components explicitly. To understand the meaning of a compound, it is necessary to identify its components, discover the relations between them and finally generate a paraphrase of the compound. In this paper, we discuss the automatic segmentation and type identification of a compound using simple statistics that results from the manually annotated data.

  15. Emission sources of non-methane volatile organic compounds (NMVOCs) and their contribution to photochemical ozone (O3) formation at an urban atmosphere in western India.

    Science.gov (United States)

    Yadav, R.; Sahu, L. K.; Tripathi, N.; Pal, D.

    2017-12-01

    Atmospheric non-methane volatile organic compounds (NMVOCs) were measured at a sampling site in Udaipur city of western India during 2015 to recognize their pollution levels, variation characteristics, sources and photochemical reactivity. The samples were analyzed for NMVOCs using a Gas Chromatograph equipped with Flame Ionization Detector (GC/FID) and Thermal Desorption (TD) system. The main focus on understand the sources responsible for NMVOC emissions, and evaluating the role of the identified sources towards ozone formation. Hourly variations of various NMVOC species indicate that VOCs mixing ratios were influenced by photochemical removal with OH radicals for reactive species, secondary formation for oxygenated VOCs. In general, higher mixing ratios were observed during winter/pre-monsoon and lower levels during the monsoon season due to the seasonal change in meteorological, transport path of air parcel and boundary layer conditions. The high levels of propane (C3H8) and butane (C4H10) show the dominance of LPG over the study location. The correlation coefficients of typical NMVOC pairs (ethylene/propylene, propylene/isoprene, and ethane/propane) depicted that vehicular emission and natural gas leakages were important sources for atmospheric hydrocarbons in Udaipur. Based on the annual data, PMF analysis suggest the source factors namely biomass burning/ bio-fuel, automobile exhaust, Industrial/ natural gas/power plant emissions, petrol/Diesel, gasoline evaporation, and use of liquid petroleum gas (LPG) contribute to NMVOCs loading. The propylene-equivalent and ozone formation potential of NMVOCs have also been calculated in order to find out their OH reactivity and contribution to the photochemical ozone formation.

  16. The formation of potentially harmful compounds in churros, a Spanish fried-dough pastry, as influenced by deep frying conditions.

    Science.gov (United States)

    Morales, F J; Arribas-Lorenzo, G

    2008-07-15

    Colour, moisture, hydroxymethylfurfural (HMF) and acrylamide (AA) were investigated in traditional Spanish churros. Samples were deep-fried in sunflower oil at lab-scale temperatures of 180, 190 and 200°C and for frying times of 2, 3, 5 and 7min. Fresh made churros were also obtained from local producers. HMF ranged from 1.2±0.02 to 221.4±2.02mg/kg for lab-scale experiments and an average of 74.3±47.5mg/kg was recorded in commercial samples. AA ranged from below the limit of quantitation to 90±0.6μg/kg for lab-scale experiments and an average of 46±24.5μg/kg was measured in commercial samples. Temperatures between 185 and 200°C are commonly used to obtain churros with an acceptable palatability and a crispy surface. However, HMF and AA levels increased nearly two-fold from 190 to 200°C at the same frying times, indicating that a more precise control of frying temperatures is required to minimize their formation. Copyright © 2007 Elsevier Ltd. All rights reserved.

  17. Effect of immersion chilling of broiler chicken carcasses in monochloramine on lipid oxidation and halogenated residual compound formation.

    Science.gov (United States)

    Axtell, Stephen P; Russell, Scott M; Berman, Elliot

    2006-04-01

    This study was conducted to evaluate the effect of immersion chilling of broiler chicken carcasses in tap water (TAP) or TAP containing 50 ppm of monochloramine (MON) with respect to chloroform formation, total chlorine content, 2-thiobarbituric acid (TBA) values, and fatty acid profiles. Ten broiler chicken carcasses were chilled in TAP or MON for 6 h. After exposure, the carcasses were removed and cut in half along the median plane into right and left halves. After roasting the left halves, samples of the breast, thigh, and skin (with fat) were collected, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. The uncooked right halves of each carcass were stored at 4 degrees C for 10 days and then roasted. After roasting these right halves, samples of breast, thigh, and skin (with fat) were collected from each carcass half, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. There were no statistical differences between TAP- and MON-treated fresh or stored products with regard to chloroform levels, total chlorine content, TBA values, or fatty acid profiles.

  18. Methods for estimating the enthalpy of formation of inorganic compounds; thermochemical and crystallographic investigations of uranyl salts of group VI elements

    International Nuclear Information System (INIS)

    Brandenburg, N.P.

    1978-01-01

    The first part of this thesis is concerned with parameter methods for estimating the standard enthalpy of formation, ΔH 0 sub(f), of inorganic compounds. In this type of method the estimate is a function of parameters, assigned to cation and anion, respectively. The usefulness of a new estimation method is illustrated in the case of uranyl sulphide. In the second part of this thesis crystallographic and thermochemical properties of uranyl salts of group VI elements are described. Crystal structures are given for β-UO 2 SO 4 , UO 2 SeO 3 , and α-UO 2 SeO 4 . Thermochemical measurements have been restricted to the determination of ΔH 0 sub(f)(UO 2 SO 3 ) and ΔH 0 sub(f)(UO 2 TeO 3 ) by means of isoperibol solution calorimetry. (Auth.)

  19. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation.

    Science.gov (United States)

    Costagliola, M Antonietta; Murena, Fabio; Prati, M Vittoria

    2014-01-15

    Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1-C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ≤ 50 cm(3)) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm(3)). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of PTWs in urban areas, was significant: 30-51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30-40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic VOCs show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50-80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted. © 2013.

  20. Seasonal changes in contents of phenolic compounds and sugar in Rhus, Euonymus and Acer leaves with special reference to anthocyanin formation in autumn

    International Nuclear Information System (INIS)

    Ishikura, Nariyuki

    1976-01-01

    The seasonal changes in the contents of sugar and phenolic compounds in the leaves of Rhus, Euonymus and two Acer species were examined in order to obtain information on the metabolic process inducing the autumn reddening. The incorporation of radioactivity of glucose-(U-14C) into anthocyanin was also examined. As a result of a preliminary test, the compositions of sugar and phenolic compounds were not altered by the drying treatment, therefore dried material was used. Dried leaves (ca. 2 g) were subject to the extraction with 80% methanol (3 ml, 3 hr) under refluxing. The extraction was repeated twice. Combined extracts (ca. 90 ml) were concentrated to ca. 20 ml at 35 deg C under reduced pressure. The concentrate was repeatedly washed with n-hexane and evaporated to remove the n-hexane. The resulting solution was made up to 30 ml with water, and used for the quantitative analysis. The solutions were fractionated in order to estimate total phenol and flavanol contents. Sugars were extracted from dry leaves (ca. 2 g) by boiling 70% ethanol (20 ml) for 3 hours. D-glucose-(U- 14 C)(280 mCi/mM) and phenylalanine-(U- 14 C)(422 mCi/mM) were fed to the leaves. It was found that antho-cyanin (mainly cyanidin 3-monoglucoside) was produced in the autumnal leaves of all plants examined, and that the red pigment was steadily accumulated in their leaves during the autumn. The sugar accumulated in autumnal Rhus leaves may be rapidly consumed by the formation of phenolic compounds. (Iwakiri, K.)

  1. FP plate-out and compound formation analysis in hot helium coolant of 600 MWt GTHTR300 system by FP concentration difference diffusion and aerosol-condensation mechanism

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro

    2004-01-01

    To estimate FP deposition rate on the typical turbomachinary, including gas turbine of GTHTR300 and exposure dose limit at its maintenance, FP plate-out analysis was been carried out using FP compound formation theory and FP concentration controlled diffusion mechanism. As the results, following conclusions were derived; (1) It is found that the analysis data computed by the VICTORIA code with assumption of the correct thickness of reactive zone exhibits very good correlation with the experimental data obtained by simulated FP plate-out experiment. (2) 137 Cs, 110m Ag and 137 Cs (131+133) I compound are major fission products deposited on the surface of turbomachinery. (3) Deposition rates of major FPs on the surface of gas turbine blade and disk are (131+133) I> 137 Cs> 110m Ag. (4) Total dose rate and allowable work time at turbine of GTHTR300 are given as 19.2 mSv/h and 2.6 h by VICTORIA code analysis and these values are conservative than that given by simple code analysis. (author)

  2. A comparative analysis of mechanisms of fast light particles production in nucleus-nucleus collisions at low and intermediate energies

    CERN Document Server

    Denikin, A S

    2002-01-01

    The dynamics and the mechanisms of formation of pre-equilibrium light particles in nucleus-nucleus collisions at low and intermediate energies are discussed in terms of a classical four-body model. The energy and angular distributions of light particles have been calculated. It has been found that at energies lower than 50A MeV the formation of the most high-energy part of the nuclear spectrum occurs at the expense of the acceleration of light target particles with the mean field of the projectile. The obtained data are in good agreement with available experimental data

  3. Nucleus-nucleus interactions in the transition energy regime

    International Nuclear Information System (INIS)

    Volant, C.

    1985-02-01

    There are at least two ways for studying large interactions in nucleus-nucleus collisions. One way is to use the method of angular correlations between fission fragments. The aim of the experiments presented here was to make a survey on the role of the various experimental parameters. In that respect three targets have been studied and different projectiles and bombarding energies have been used. Results are presented and discussed

  4. Diabatic interaction potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Noerenberg, W.; Lukasiak, A.

    1984-01-01

    Within a refined method for the construction of diabatic states allowing for the treatment of the full spin-orbit coupling, characteristic features of the diabatic potential for nucleus-nucleus collisions are investigated. Approximately 90% of the strong repulsion results from diabatic particle-hole excitations, while only 10% is due to compression. The diabatic interaction potential describes a physical situation intermediate between adiabatic and sudden approximations. (orig.)

  5. Concurrent nucleation, formation and growth of two intermetallic compounds (Cu6Sn5 and Cu3Sn) during the early stages of lead-free soldering

    International Nuclear Information System (INIS)

    Park, M.S.; Arróyave, R.

    2012-01-01

    This study investigates the concurrent nucleation, formation and growth of two intermetallic compounds (IMCs), Cu 6 Sn 5 (η) and Cu 3 Sn (ε), during the early stages of soldering in the Cu–Sn system. The nucleation, formation and growth of the IMC layers is simulated through a multiphase-field model in which the concurrent nucleation of both IMC phases is considered to be a stochastic Poisson process with nucleation rates calculated from classical nucleation theory. CALPHAD thermodynamic models are used to calculate the local contributions to the free energy of the system and the driving forces for precipitation of the IMC phases. The nucleation parameters of the η phase are estimated from experimental results and those of the ε phase are assumed to be similar. A parametric investigation of the effects of model parameters (e.g. grain boundary (GB) diffusion rates, interfacial and GB energies) on morphological evolution and IMC layer growth rate is presented and compared with previous works in which nucleation was ignored . In addition, the resulting growth rates are compared with the available literature and it is found that, for a certain range in the model parameters, the agreement is quite satisfactory. This work provides valuable insight into the dominant mechanisms for mass transport as well as morphological evolution and growth of IMC layers during early stages of Pb-free soldering.

  6. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru; Le Roux, Julien; Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  7. Structures and Heats of Formation of Simple Alkaline Earth Metal Compounds II: Fluorides, Chlorides, Oxides, and Hydroxides for Ba, Sr, and Ra.

    Science.gov (United States)

    Vasiliu, Monica; Hill, J Grant; Peterson, Kirk A; Dixon, David A

    2018-01-11

    Geometry parameters, vibrational frequencies, heats of formation, bond dissociation energies, cohesive energies, and selected fluoride affinities (difluorides) are predicted for the late alkaline earth (Sr, Ba, and Ra) oxides, fluorides, chlorides, and hydroxides at the coupled cluster theory CCSD(T) level. Additional corrections (scalar relativistic and pseudopotential corrections, vibrational zero-point energies, and atomic spin-orbit effects) were included to accurately calculate the total atomization energies and heats of formation following the Feller-Peterson-Dixon methodology. The calculated values are compared to the experimental data where available. In some cases, especially for Ra compounds, there are no experimental results, or the experimental energetics and geometries are not reliable or have very large error bars. All of the Sr, Ba, and Ra difluorides, dichlorides, and dihydroxides are bent structures with the OMO bond angles decreasing going down the group. The cohesive energies of bulk Be dihalides are predicted to be quite low, while those of Ra are relatively large. The fluoride affinities show that the difluorides are moderately strong Lewis acids and that such trifluorides may form under the appropriate experimental conditions.

  8. Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process

    KAUST Repository

    Wang, Yuru

    2014-12-16

    A sulfate radical-based advanced oxidation process (SR-AOP) has received increasing application interest for the removal of water/wastewater contaminants. However, limited knowledge is available on its side effects. This study investigated the side effects in terms of the production of total organic bromine (TOBr) and brominated disinfection byproducts (Br-DBPs) in the presence of bromide ion and organic matter in water. Sulfate radical was generated by heterogeneous catalytic activation of peroxymonosulfate. Isolated natural organic matter (NOM) fractions as well as low molecular weight (LMW) compounds were used as model organic matter. Considerable amounts of TOBr were produced by SR-AOP, where bromoform (TBM) and dibromoacetic acid (DBAA) were identified as dominant Br-DBPs. In general, SR-AOP favored the formation of DBAA, which is quite distinct from bromination with HOBr/OBr- (more TBM production). SR-AOP experimental results indicate that bromine incorporation is distributed among both hydrophobic and hydrophilic NOM fractions. Studies on model precursors reveal that LMW acids are reactive TBM precursors (citric acid > succinic acid > pyruvic acid > maleic acid). High DBAA formation from citric acid, aspartic acid, and asparagine was observed; meanwhile aspartic acid and asparagine were the major precursors of dibromoacetonitrile and dibromoacetamide, respectively.

  9. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  10. Prooxidant action of furanone compounds: implication of reactive oxygen species in the metal-dependent strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine in DNA.

    Science.gov (United States)

    Murakami, K; Haneda, M; Makino, T; Yoshino, M

    2007-07-01

    Prooxidant properties of furanone compounds including 2,5-furanone (furaneol, 4-hydroxy-2,5-dimethyl-furan-3-one), 4,5-furanone (4,5-dimethyl-3-hydroxy-2(5H)-furanone) (sotolone) and cyclotene (2-hydroxy-3-methyl-2-cyclopenten-1-one) were analyzed in relation to the metal-reducing activity. Only 2.5-furanone known as a "strawberry or pineapple furanone" inactivated aconitase the most sensitive enzyme to active oxygen in the presence of ferrous sulfate, suggesting the furaneol/iron-mediated generation of reactive oxygen species. 2,5-Furanone caused strand scission of pBR322 DNA in the presence of copper. Treatment of calf thymus DNA with 2,5-furanone plus copper produced 8-hydroxy-2'-deoxyguanosine in DNA. 2,5-Furanone showed a potent copper-reducing activity, and thus, DNA strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine by 2,5-furanone can be initiated by the production of superoxide radical through the reduction of cupric ion to cuprous ion, resulting in the conversion to hydrogen peroxide and hydroxyl radical. However, an isomer and analog of 2,5-furanone, 4,5-furanone and cyclotene, respectively, did not show an inactivation of aconitase, DNA injuries including strand breakage and the formation of 8-hydroxy-2'-deoxyguanosine, and copper-reducing activity. Cytotoxic effect of 2,5-furanone with hydroxyketone structure can be explained by its prooxidant properties: furaneol/transition metal complex generates reactive oxygen species causing the inactivation of aconitase and the formation of DNA base damage by hydroxyl radical.

  11. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  12. α and p emission before, during, and after fission of the fusion nucleus 169Ta: Nuclear deformation, field emission, and nuclear shadow

    International Nuclear Information System (INIS)

    Brucker, A.

    1986-01-01

    In the asymmetric system 318 MeV 28 Si + 141 Pr the angular and energy distributions of α particles and protons were measured in coincidence with fission fragments. Identification and separation of the sources of sequential emission before (CN) and after (F) fission of the compound-nucleus 169 Ta yields following multiplicities: M CN α =0.38±0.04, M CN p =0.6±0.15; M F α =0.16±0.03, M F p =0.54±0.15. Measurement of the cross sections δ ER =(608±81) mb and δ F =(679±159) mb for residual nucleus formation respectively fission fixes the mean angular momentum for fission l F =(94±7)ℎ and the maximal angular momentum l F,max =(110±10)ℎ (sharp cut-off model). From the angular correlation relative to the spin direction of the compound-nucleus an anisotropy parameter of A α =6.7±0.8 and A p =1.3±0.2 for α respectively proton emission from the compound-nucleus is measured, and by means of the semiclassical model of Dossing a quadrupole deformation parameter of the compound-nucleus of vertical strokeδvertical stroke=0.43±0.05 consistent within the uncertainties of the analysis determined. Apart from pre-equilibrium emission under small angles to the beam significant deviations from sequential emission are observed only in the α emission and detailedly studied by means of angular correlation and energy spectra: (I) an strong nuclear shadowing of the fragment emission of 1/7 of its sequential value in a narrow angular range (≅40 0 (FWHM)) in the direction of the detected fission fragment. From this a mean lifetime of the compound nucleus τ CN =(140-240).10 -22 s is obtained. (II) A perpendicularly to the scission axis strongly pronounced surplus M SC α =(1.7±0.4).10 -2 and an observed deficit of equal magnitude in direction of the scission axis. (orig./HSI) [de

  13. Nanoparticle Nucleation Is Termolecular in Metal and Involves Hydrogen: Evidence for a Kinetically Effective Nucleus of Three {Ir3H2x·P2W15Nb3O62}6- in Ir(0)n Nanoparticle Formation From [(1,5-COD)IrI·P2W15Nb3O62]8- Plus Dihydrogen.

    Science.gov (United States)

    Özkar, Saim; Finke, Richard G

    2017-04-19

    The nucleation process yielding Ir(0) ∼300 nanoparticles from (Bu 4 N) 5 Na 3 [(1,5-COD)Ir·P 2 W 15 Nb 3 O 62 ] (abbreviated hereafter as (COD)Ir·POM 8- , where POM 9- = the polyoxometalate, P 2 W 15 Nb 3 O 62 9- ) under H 2 is investigated to learn the true molecularity, and hence the associated kinetically effective nucleus (KEN), for nanoparticle formation for the first time. Recent work with this prototype transition-metal nanoparticle formation system ( J. Am. Chem. Soc. 2014 , 136 , 17601 - 17615 ) revealed that nucleation in this system is an apparent second-order in the precatalyst, A = (COD)Ir·POM 8- , not the higher order implied by classic nucleation theory and its nA ⇌ A n , "critical nucleus", A n concept. Herein, the three most reasonable more intimate mechanisms of nucleation are tested: bimolecular nucleation, termolecular nucleation, and a mechanism termed "alternative termolecular nucleation" in which 2(COD)Ir + and 1(COD)Ir·POM 8- yield the transition state of the rate-determining step of nucleation. The results obtained definitively rule out a simple bimolecular nucleation mechanism and provide evidence for the alternative termolecular mechanism with a KEN of 3, Ir 3 . All higher molecularity nucleation mechanisms were also ruled out. Further insights into the KEN and its more detailed composition involving hydrogen, {Ir 3 H 2x POM} 6- , are also obtained from the established role of H 2 in the Ir(0) ∼300 formation balanced reaction stoichiometry, from the p(H 2 ) dependence of the kinetics, and from a D 2 /H 2 kinetic isotope effect of 1.2(±0.3). Eight insights and conclusions are presented. A section covering caveats in the current work, and thus needed future studies, is also included.

  14. Analysis of factors affecting volatile compound formation in roasted pumpkin seeds with selected ion flow tube-mass spectrometry (SIFT-MS) and sensory analysis.

    Science.gov (United States)

    Bowman, T; Barringer, S

    2012-01-01

    Pumpkin (Cucurbita pepo and maxima) seeds are uniquely flavored and commonly consumed as a healthy roasted snack. The objective was to determine dominant volatiles in raw and roasted pumpkin seeds, and the effect of seed coat, moisture content, fatty acid ratio, total lipids, reducing sugars, and harvest year on volatile formation. Sensory was conducted to evaluate overall liking of seed variety and texture. Seed processing included extraction from the fruit, dehydration, and roasting (150 °C). Oil extraction was done using soxhlet, fatty acid profile using Gas Chromatography Flame Ionization Detector, and reducing sugars using 3,5-dinitrosalicylic acid and UV-spectroscopy. Headspace analysis of seeds was performed by selected ion flow tube-mass spectrometry (SIFT-MS). Volatiles dominating in raw pumpkin seeds were lipid aldehydes, ethyl acetate, 2,3-butandione, and dimethylsulfide. Compounds contributing to roasted aroma include alkylpyrazines and Strecker and lipid aldehydes. Overall, hull-less seeds had higher volatile lipid aldehydes and Strecker aldehydes. Seeds dehydrated to a moisture content of 6.5% before roasting had higher initial and final volatile concentrations than seeds starting at 50% moisture. Higher oil content resulted in higher lipid aldehyde formation during roasting with a moderate correlation between free fatty acid ratio and corresponding lipid aldehyde. Harvest year (2009 compared with 2010) had a significant impact on volatile formation in hull-less seeds, but not as much as variety differences. No significant correlation was found between reducing sugars and volatile formation. Sensory showed that hull-less seeds were liked significantly more than hulled seeds. Elucidation of aromatic flavor development during roasting with SIFT-MS provides information on flavor release and offers better control during processing. Knowledge of volatiles in raw and roasted pumpkin seeds and effects of seed coat, moisture content, seed composition, and

  15. Compound I formation in artichoke (Cynara scolymus L.) peroxidase is modulated by the equilibrium between pentacoordinated and 6-aquo hexacoordinated forms of the heme and by calcium ions.

    Science.gov (United States)

    Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2003-07-29

    Basic artichoke (Cynara scolymus L.) peroxidase (AKP-C), when purified from the plant, has an unusually intense and sharp Soret absorption peak. The resonance Raman spectrum [López-Molina, D., et al. (2003) J. Inorg. Biochem. 94, 243-254] suggested a mixture of pentacoordinate high-spin (5cHS) and 6-aquo hexacoordinate high-spin (6cHS) ferric heme species. The rate constant (k(1)) of compound I formation with hydrogen peroxide (H(2)O(2)) was also lower than expected. Further stopped-flow studies have shown this reaction to be biphasic: a nonsaturating fast phase and a slow phase with complex H(2)O(2) concentration dependence. Addition of calcium ions (Ca(2+)) changed the absorption spectrum, suggesting the formation of a fully 5cHS species with a k(1) more than 5 orders of magnitude greater than that in the absence of Ca(2+) using the chelator ethylenediaminetetraacetic acid. Ca(2+) titrations gave a dissociation constant for a single Ca(2+) of approximately 20 microM. The circular dichroism spectrum of AKP-C was not significantly altered by Ca(2+), indicating that any structural changes will be minor, but removal of Ca(2+) did suppress the alkaline transition between pH 10 and 11. A kinetic analysis of the reaction of Ca(2+)-free AKP-C with H(2)O(2) supports an equilibrium between a slow-reacting 6cHS form and a more rapidly reacting 5cHS species, the presence of which was confirmed in nonaqueous solution. AKP-C, as purified, is a mixture of Ca(2+)-bound 5cHS, 6-aquo 6cHS, and Ca(2+)-free 5cHS species. The possibility that Ca(2+) concentration could control peroxidase activity in the plant is discussed.

  16. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds.

    Science.gov (United States)

    Poimenidou, Sofia V; Chrysadakou, Marilena; Tzakoniati, Aikaterini; Bikouli, Vasiliki C; Nychas, George-John; Skandamis, Panagiotis N

    2016-11-21

    Listeria monocytogenes is a foodborne pathogen able to tolerate adverse conditions by forming biofilms or by deploying stress resistant mechanisms, and thus manages to survive for long periods in food processing plants. This study sought to investigate the correlation between biofilm forming ability, tolerance to disinfectants and cell surface characteristics of twelve L. monocytogenes strains. The following attributes were evaluated: (i) biofilm formation by crystal violet staining method on polystyrene, and by standard cell enumeration on stainless steel and polystyrene; (ii) hydrophobicity assay using solvents; (iii) minimum inhibitory concentration (MIC) and biofilm eradication concentration (BEC) of peracetic acid (PAA) and quaternary ammonium compounds (QACs), and (iv) resistance to sanitizers (PAA 2000ppm; QACs 500ppm) of biofilms on polystyrene and stainless steel. After 72h of incubation, higher biofilm levels were formed in TSB at 20°C, followed by TSB at 37°C (P=0.087) and diluted TSB 1/10 at both 20 (P=0.005) and 37°C (P=0.004). Cells grown at 30°C to the stationary phase had significant electron donating nature and a low hydrophobicity, while no significant correlation of cell surface properties to biofilm formation was observed. Strains differed in MIC PAA and BEC PAA by 24- and 15-fold, respectively, while a positive correlation between MIC PAA and BEC PAA was observed (P=0.02). The MIC QACs was positively correlated with the biofilm-forming ability on stainless steel (P=0.03). Regarding the impact of surface type, higher biofilm populations were enumerated on polystyrene than on stainless steel, which were also more tolerant to disinfectants. Among all strains, the greatest biofilm producer was a persistent strain with significant tolerance to QACs. These results may contribute to better understanding of L. monocytogenes behavior and survival on food processing surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dimuon enhancement in nucleus-nucleus ultrarelativistic interactions

    International Nuclear Information System (INIS)

    Bordalo, Paula; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Bohrani, A.; Boldea, V.; Bussiere, A.; Capelli, L.; Caponi, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constans, N.; Constantinescu, S.; Contardo, D.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Ducroux, L.; Espagnon, B.; Fargeix, J.; Ferreira, R.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Gorodetzky, P.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkanyan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kossakowski, R.; Kurepin, A.B.; Landau, G.; Le Bornec, Y.; Lourenco, C.; Luquin, L.; Macciotta, P.; Mac Cormick, M.; Mandry, R.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Monteno, M.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Ropotar, I.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Sitta, M.; Soave, C.; Sonderegger, P.; Tarrago, X.; Topilskaya, N.S.; Usai, G.L.; Varela, J.; Vercellin, E.; Villatte, L.

    1999-01-01

    The study of muon pairs in the mass region 1.5 μμ 2 in 450 GeV/c p-A, 200 GeV/nucleon S-U and 158 GeV/nucleon Pb-Pb collisions is presented. In p-A interactions, the dimuon signal mass spectra are well described by a superposition of Drell-Yan and charmed meson semi-leptonic decay contributions, in agreement with previous experiments when considering a linear A dependence. In nucleus-nucleus reactions, taking only into account these two physical ingredients, a dimuon enhancement both with increasing A·B and centrality is observed

  18. High-performance size-exclusion chromatography studies on the formation and distribution of polar compounds in camellia seed oil during heating*

    Science.gov (United States)

    Feng, Hong-xia; Sam, Rokayya; Jiang, Lian-zhou; Li, Yang; Cao, Wen-ming

    2016-01-01

    Camellia seed oil (CSO) is rich in oleic acid and has a high number of active components, which give the oil high nutritional value and a variety of biological activity. The aim of the present study was to determine the changes in the content and distribution of total polar compounds (TPC) in CSO during heating. TPC were isolated by means of preparative flash chromatography and further analyzed by high-performance size-exclusion chromatography (HPSEC). The TPC content of CSO increased from 4.74% to 25.29%, showing a significantly lower formation rate as compared to that of extra virgin olive oil (EVOO) and soybean oil (SBO) during heating. Furthermore, heating also resulted in significant differences (P<0.05) in the distribution of TPC among these oils. Though the content of oxidized triacylglycerol dimers, oxidized triacylglycerol oligomers, and oxidized triacylglycerol monomers significantly increased in all these oils, their increased percentages were much less in CSO than those in EVOO, indicating that CSO has a greater ability to resist oxidation. This work may be useful for the food oil industry and consumers in helping to choose the correct oil and to decide on the useful lifetime of the oil. PMID:27819135

  19. The Impact of Post Harvest Agricultural Crop Residue Fires on Volatile Organic Compounds and Formation of Secondary Air Pollutants in the N.W. Indo-Gangetic Plain

    Science.gov (United States)

    Sinha, V.; Chandra, P.; Kumar, V.; Sarkar, C.

    2015-12-01

    The N.W. Indo-Gangetic Plain (IGP) is an agriculturally and demographically important region of the world. Every year during the post harvest months of April-May and October-November, large scale open burning of wheat straw and paddy straw occurs in the region impairing the regional air quality and resulting in air pollution episodes. Here, using online in-situ measurements from the IISER Mohali Atmospheric Chemistry Facility (Sinha et al., Atmos Chem Phys, 2014), which is located at a regionally representative suburban site in the agricultural state of Punjab, India, we investigated the effects of this activity on gas phase chemistry. The online data pertaining to the pre harvest and post harvest paddy residue fires in 2012, 2013 and 2014 were analyzed to understand the effect of this anthropogenic activity on atmospheric chemistry and regional air quality with respect to health relevant VOCs such as benzenoids and isocyanic acid and trace gases such as ozone and carbon monoxide. These compounds showed marked increases (factor of 2-3 times higher) in their concentrations which correlated with the biomass combustion tracers such as acetonitrile. Emissions from the paddy residue fires did not result in significant enhancement of ambient ozone in 2012 but instead sustained hourly daytime ozone concentrations at ~ 50 ppb during the late post monsoon season, despite decreases in solar radiation and temperature. Results of such massive perturbations to ambient chemical composition, reactivity and formation of secondary pollutants and its implications for human health will be presented in this paper.

  20. Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters

    Science.gov (United States)

    Jarrige, Julien; Vervisch, Pierre

    2006-06-01

    Increasing concerns over atmospheric pollution has motivated research into technologies able to remove volatile organic compounds (VOC's) from gas streams. The aim of this paper is to understand the chemical and physical mechanisms implied in the decomposition of VOC's in a filamentary nonthermal plasma discharge. Experiments have been carried out on three pollutants (propane, propene, and isopropyl alcohol) in dry air at atmospheric pressure using a wire to cylinder corona discharge generated by a homemade nanosecond rise time high voltage pulse generator. The resulting plasma efficiently destructs propane, propene, or isopropyl alcohol at a concentration of 500 ppm with low specific input energies (less than 500 J/L), but the poor oxidation rate leads to the formation of numerous by-products (acetone, formaldehyde, formic acid, and methyl nitrate) whose concentration can reach some hundreds of ppm. We also investigated the effect of pulse parameters on VOC removal efficiency. Neither pulse peak value nor rise time (in the range of 4-12 ns) appears to have a significant influence on the VOC decomposition rates. Therefore, we believe that the way the energy is deposited in the plasma does not modify the density of active species (radicals, ions) in the streamers. The production of energetic electrons is not enhanced by the external applied field, and the only effective parameter may be the local field in the streamer head, which is almost the same (around 500 Td) whatever the voltage (above the inception value).

  1. Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters

    International Nuclear Information System (INIS)

    Jarrige, Julien; Vervisch, Pierre

    2006-01-01

    Increasing concerns over atmospheric pollution has motivated research into technologies able to remove volatile organic compounds (VOC's) from gas streams. The aim of this paper is to understand the chemical and physical mechanisms implied in the decomposition of VOC's in a filamentary nonthermal plasma discharge. Experiments have been carried out on three pollutants (propane, propene, and isopropyl alcohol) in dry air at atmospheric pressure using a wire to cylinder corona discharge generated by a homemade nanosecond rise time high voltage pulse generator. The resulting plasma efficiently destructs propane, propene, or isopropyl alcohol at a concentration of 500 ppm with low specific input energies (less than 500 J/L), but the poor oxidation rate leads to the formation of numerous by-products (acetone, formaldehyde, formic acid, and methyl nitrate) whose concentration can reach some hundreds of ppm. We also investigated the effect of pulse parameters on VOC removal efficiency. Neither pulse peak value nor rise time (in the range of 4-12 ns) appears to have a significant influence on the VOC decomposition rates. Therefore, we believe that the way the energy is deposited in the plasma does not modify the density of active species (radicals, ions) in the streamers. The production of energetic electrons is not enhanced by the external applied field, and the only effective parameter may be the local field in the streamer head, which is almost the same (around 500 Td) whatever the voltage (above the inception value)

  2. Final State Interactions Effects in Neutrino-Nucleus Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Tomasz [Univ. of Wroctaw (Poland); Juszczak, Cezary [Univ. of Wroctaw (Poland); Sobczyk, Jan T. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2012-07-01

    Final State Interactions effects are discussed in the context of Monte Carlo simulations of neutrino-nucleus interactions. A role of Formation Time is explained and several models describing this effect are compared. Various observables which are sensitive to FSI effects are reviewed including pion-nucleus interaction and hadron yields in backward hemisphere. NuWro Monte Carlo neutrino event generator is described and its ability to understand neutral current $\\pi^0$ production data in $\\sim 1$ GeV neutrino flux experiments is demonstrated.

  3. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  4. Nucleus management with irrigating vectis

    Directory of Open Access Journals (Sweden)

    Srinivasan Aravind

    2009-01-01

    Full Text Available The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS, incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost.

  5. Improved Cloud Condensation Nucleus Spectrometer

    Science.gov (United States)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  6. Formin' actin in the nucleus.

    Science.gov (United States)

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  7. Anti p-nucleus interaction

    International Nuclear Information System (INIS)

    Peng, J.C.

    1986-05-01

    Status and future prospects of antiproton-nucleus scattering experiments are presented. These scattering experiments were conducted at antiproton beam momentums of 300 and 600 MeV/c on target nuclei of 6 Li, 12 C, 16 O, 18 O, 40 Ca, 48 Ca, and 208 Pb. Antiproton-proton reactions investigated antiproton-nucleus bound or resonant states in antiproton reactions with d, 6 Li, 12 C, 63 Cu, and 209 Bi. Inelastic scattering experiments investigated the spin-isospin dependence of the NN interactions. 19 refs., 1 fig., 1 tab

  8. GABAergic projections to the oculomotor nucleus in the goldfish (Carassius auratus

    Directory of Open Access Journals (Sweden)

    M. Angeles eLuque

    2011-02-01

    Full Text Available The mammalian oculomotor nucleus receives a strong -aminobutyric acid (GABAergic synaptic input, whereas such projections have rarely been reported in fish. In order to determine whether this synaptic organization is preserved across vertebrates, we investigated the GABAergic projections to the oculomotor nucleus in the goldfish by combining retrograde transport of biotin dextran amine, injected into the antidromically identified oculomotor nucleus, and GABA immunohistochemistry. The main source of GABAergic afferents to the oculomotor nucleus was the ipsilateral anterior octaval nucleus, with only a few, if any, GABAergic neurons being located in the contralateral tangential and descending nuclei of the octaval column. In mammals there is a nearly exclusive ipsilateral projection from vestibular neurons to the oculomotor nucleus via GABAergic inhibitory inputs; thus, the vestibulooculomotor GABAergic circuitry follows a plan that appears to be shared throughout the vertebrate phylogeny. The second major source of GABAergic projections was the rhombencephalic reticular formation, primarily from the medial area but, to a lesser extent, from the inferior area. A few GABAergic oculomotor projecting neurons were also observed in the ipsilateral nucleus of the medial longitudinal fasciculus. The GABAergic projections from neurons located in both the reticular formation surrounding the abducens nucleus and the nucleus of the medial reticular formation have primarily been related to the control of saccadic eye movements. Finally, all retrogradely labeled internuclear neurons of the abducens nucleus, and neurons in the cerebellum (close to the caudal lobe, were negative for GABA. These data suggest that the vestibuloocular and saccadic inhibitory GABAergic systems appear early in vertebrate phylogeny to modulate the firing properties of the oculomotor nucleus motoneurons.

  9. Functionalized active-nucleus complex sensor

    Science.gov (United States)

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  10. Basic features of compound and deep inelastic reactions

    International Nuclear Information System (INIS)

    Gregoire, G.

    1985-01-01

    The aim of the lectures is to give, within a phenomenological standpoint of view, an idea of a few theoretical approaches which are currently used for the studies of the low-energy heavy ion collisions. In this aspect, these lectures are by no means a review of our existing knowledge of the phenomena involved during the collisions. The authors hope that they will be able to provide the students with some tools which permit to analyze the experimental results. Indeed, they believe that a good comprehension of the basic mechanisms requires an appropriate definition of collective variables. The dynamical behaviour of these collective variables gives some scenario explaining the behaviour of the corresponding observables. The coupling to the intrinsic system can be considered as responsible for the dissipative nature of the processes: deep inelastic collisions, fast fission and compound nucleus formation. After a general introduction and a lecture devoted to the dissipation mechanisms, they discuss charge equilibration, angular momentum transfer, mass exchange and compound nucleus formation with its de-excitation. The deformation degrees of freedom are considered when necessary. The self consistent treatments are not presented here

  11. Transverse-momentum distribution of produced particles in ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ban-Hao, S.; Wong, C.

    1985-01-01

    In order to discern coherent or collective processes from incoherent processes in nucleus-nucleus reactions at high energies, we study the transverse-momentum distribution of the produced particles with an incoherent-multiple-collision model. In this model, the projectile nucleon makes successive inelastic collisions with nucleons in the target nucleus, the probability of such collisions being given by the thickness function and the nucleon-nucleon inelastic cross section. It is assumed that each baryon-baryon collision produces particles and degrades momenta just as a baryon-baryon collision in free space, and that there are no secondary collisions between the produced particles and the nucleons. We found that the average transverse momentum and the charged-multiplicity data at Fermilab and CERN ISR energies can be well explained by such a model. However, the average transverse momentum for some events observed by the Japanese-American cooperative emulsion experiment (JACEE) associated with large energy density in the central rapidity region differ markedly from the model results. Such a deviation indicates the presence of coherent or collective effects for these collisions and may indicate the possibility of a formation of quark-gluon plasma

  12. Analysis of a deep nucleus of Tehuantepec Gulf

    International Nuclear Information System (INIS)

    Ordonez R, E.; Lopez M, J.; Ramirez T, J. J.; Machain C, M. L.

    2009-10-01

    A nucleus of sediments obtained in the deep of Tehuantepec Gulf is analyzed; this nucleus has the particularity of to be a sampling of longitude of 18.3 m that include the total of last period glacial, few times obtained in our country. The physical chemistry composition of 10 selected fractions are analyzed with the purpose of to understand the formation processes of deep ocean along the period of 120 000 years, that includes the extracted fraction. Crystallography analysis, morphology, physical chemistry characterization and activity gamma were made. Finding that the content of organic matter falls as the superficial area increases, also was found the presence of natural uranium in similar concentration and balance with its radiogenic descendants along the nucleus profile what suggests the uranium migration to interior of mineral grains. (Author)

  13. Enthalpies of formation of Cd0.917Sr0.083, Cd0.857Sr0.143 and Cd0.667Sr0.333 intermetallic compounds

    International Nuclear Information System (INIS)

    Agarwal, Renu; Singh, Ziley

    2008-01-01

    Cadmium is expected to be the solvent for pyrochemical processing of the metallic nuclear fuel. Therefore, thermodynamic properties of cadmium with various fuel and clad elements are of interest. Enthalpies of formation of the intermetallic compounds of Cd-Sr system, Cd 0.917 Sr 0.083 , Cd 0.857 Sr 0.143 and Cd 0.667 Sr 0.333 were determined by precipitation using Calvet calorimeter. Enthalpies of formation of the compounds were found to be -3.05 ± 0.5 kJ mol -1 at 723 K, -14.2 ± 0.7 kJ mol -1 at 843 K and -28.4 ± 0.8 kJ mol -1 at 863 K, respectively. Enthalpies of formation of Cd 0.917 Sr 0.083 and Cd 0.857 Sr 0.143 were also determined by partial enthalpy of formation measurements and the values were found to be -3.9 ± 1.1 kJ mol -1 at 723 K and -13.42 ± 1.2 kJ mol -1 at 843 K, respectively. Miedema model was used to estimate the enthalpies of formation of these compounds and the estimated values were compared with the experimentally determined values

  14. The nucleus as a laboratory

    International Nuclear Information System (INIS)

    Blin-Stoyle, R.J.

    1979-01-01

    The nucleus is a complicated many-body structure whose properties when carefully studied can frequently give important information about the underlying elementary particle interactions. This article reviews progress in research of this kind over the last twenty-five years. (author)

  15. The pion-nucleus interaction

    International Nuclear Information System (INIS)

    Afnan, I.R.

    1977-04-01

    The latest developments in the construction of pion-nucleus optical potential are presented and a comparison with the latest data on π+ 12 C is made. The suggested mechanisms for the (p,π) reaction are discussed with a comparison of the theoretical results with experiment. (Author)

  16. The nucleus accumbens and learning and memory.

    Science.gov (United States)

    Setlow, B

    1997-09-01

    Recent research on the nucleus accumbens (NA) indicates that this brain region is involved in learning and memory processes in a way that is separable from its other well-known roles in behavior, such as motivation, reward, and locomotor activity. These findings have suggested that 1) the NA may be involved in declarative, or hippocampal formation-dependent learning and memory, and not in several other non-declarative forms of learning and memory, and 2) the NA may be selectively involved in certain stages of learning and memory. These characteristics suggest that the NA may be part of a larger striatal system which subserves acquisition and consolidation, but is not a site of long-term storage, of different forms of learning and memory.

  17. Single nucleon emission in relativistic nucleus-nucleus reactions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors

  18. Transverse Energy in nucleus-nucleus collisions: A review

    International Nuclear Information System (INIS)

    Tincknell, M.

    1988-01-01

    The status of Transverse Energy (E/sub T/) in relativistic nucleus-nucleus collisions at the Brookhaven AGS and the CERN SPS is reviewed. The definition of E/sub T/ and its physical significance are discussed. The basic techniques and limitations of the experimental measurements are presented. The acceptances of the major experiments to be discussed are shown, along with remarks about their idiosyncrasies. The data demonstrate that the nuclear geometry of colliding spheres primarily determines the shapes of the observed spectra. Careful account of the acceptances is crucial to comparing and interpreting results. It is concluded that nuclear stopping power is high, and that the amount of energy deposited into the interaction volume is increasing with beam energy even at SPS energies. The energy densities believed to be obtained at the SPS are close to the critical values predicted for the onset of a quark-gluon plasma. 25 refs., 8 figs

  19. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    International Nuclear Information System (INIS)

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-01-01

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus

  20. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  1. Kaonic nuclei and kaon-nucleus interactions

    CERN Document Server

    Ikuta, K; Masutani, K

    2002-01-01

    Although kaonic atoms provide valuable information concerning the K sup - -nucleus interaction at low energies, they cannot fully determine the K sup - - nucleus optical potential. We demonstrate that K sup - nuclear bound states, if they exist, can be useful in investigating the K sup - -nucleus interaction, especially in the interior of the nucleus. In order to show this possibility, we calculate the double differential cross sections for (K sup - , P) using the Green function method. (author)

  2. Color oscillations of nucleons in a nucleus

    International Nuclear Information System (INIS)

    Petrov, V.A.; Smirnov, A.Yu.

    1987-01-01

    Possibility of nucleus description as an object consisting of quarks and gluons is considered. A model of two-nucleon interaction in a nucleus is presented and analytical expressions for the nucleus nucleon ground state wave functions and also for nuclear nucleon structure functions are obtained. The carried out analysis shows that the suggested model permits to express the nucleus structure functions at quark level only by means of nucleon and Δ-isobaric degrees of freedom

  3. CRF1 receptor activation increases the response of neurons in the basolateral nucleus of the amygdala to afferent stimulation

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available The basolateral nucleus (BLA of the amygdala contributes to the consolidation of memories for emotional or stressful events. The nucleus contains a high density of CRF1 receptors that are activated by corticotropin-releasing factor (CRF. Modulation of the excitability of neurons in the BLA by CRF may regulate the immediate response to stressful events and the formation of associated memories. In the present study, CRF was found to increase the amplitude of field potentials recorded in the BLA following excitatory afferent stimulation, in vitro. The increase was mediated by CRF1 receptors, since it could be blocked by the selective, non-peptide antagonists, NBI30775 and NBI35583, but not by the CRF2-selective antagonist, astressin 2B. Furthermore, the CRF2-selective agonist, urocortin II had no effect on field potential amplitude. The increase induced by CRF was long-lasting, could not be reversed by subsequent administration of NBI35583, and required the activation of protein kinase C. This effect of CRF in the BLA may be important for increasing the salience of aversive stimuli under stressful conditions, and for enhancing the consolidation of associated memories. The results provide further justification for studying the efficacy of selective antagonists of the CRF1 receptor to reduce memory formation linked to emotional or traumatic events, and suggest that these compounds might be useful as prophylactic treatment for stress-related illness such as post-traumatic stress disorder.

  4. Hummingbird Comet Nucleus Analysis Mission

    Science.gov (United States)

    Kojiro, Daniel; Carle, Glenn C.; Lasher, Larry E.

    2000-01-01

    Hummingbird is a highly focused scientific mission, proposed to NASA s Discovery Program, designed to address the highest priority questions in cometary science-that of the chemical composition of the cometary nucleus. After rendezvous with the comet, Hummingbird would first methodically image and map the comet, then collect and analyze dust, ice and gases from the cometary atmosphere to enrich characterization of the comet and support landing site selection. Then, like its namesake, Hummingbird would carefully descend to a pre-selected surface site obtaining a high-resolution image, gather a surface material sample, acquire surface temperature and then immediately return to orbit for detailed chemical and elemental analyses followed by a high resolution post-sampling image of the site. Hummingbird s analytical laboratory contains instrumentation for a comprehensive molecular and elemental analysis of the cometary nucleus as well as an innovative surface sample acquisition device.

  5. Comet Halley: nucleus and jets

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Avanesov, G.A.; Barinov, I.V.

    1986-06-01

    The VEGA-1 and VEGA-2 spacecrafts made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper results of the onboard imaging experiment are discussed. The nucleus of the comet was clearly identifyable as an irregularly shaped object with overall dimensions of (16+-1)x(8+-1)x(8+-1) km. The nucleus rotates around its axis which is nearly perpendicular to the orbital plane, with a period of 53+-2 hours. Its albedo is only 0.04+-002. Most of the jet features observed during the second fly-by were spatially reconstructed. These sources form a quasi-linear structure on the surface. The dust above the surface is shown to be optically thin except certain specific dust jets. Brightness features on the surface are clearly seen. Correlating the data with other measurements it is concluded that the dirty snow-ball model probably has to be revised. (author)

  6. Lasers probe the atomic nucleus

    International Nuclear Information System (INIS)

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  7. What is a cometary nucleus

    International Nuclear Information System (INIS)

    Lyttleton, R.A.

    1977-01-01

    Descriptions of actual observed comets associate a range of ill-defined meanings with the term nucleus. In recent years use of the word has been even further extended (or contracted) to mean a postulated solid core constituting the permanent element of a comet and necessarily of size far below resolution and measurability. It is maintained by the postulants that this core, acted upon by solar radiation and the solar wind, is the fount and origin of practically the whole great variety of observed cometary physical phenomena. In order that this micro-nucleus shall 'explain' observed properties, it is endowed with a large number of entirely ad-hoc qualities specially devised to produce the very effects it is wished to explain, but the processes so proffered rely almost entirely on purely verbal asseverations that they will work in the way required. No source or mechanism of origin for the imaginary micro-nucleus, of which there would need to be myriads, is in sight, nor can the assumption explain the dynamical properties of long-period comets and their association with the galactic plane and the solar apex. The postulate is in any event ruled out by Occam's principle as having no basis in fact or theory and is not required to explain the observed properties of comets. The large number of additional special assumptions introduced mean that the structure as a whole does not constitute a proper scientific theory. (author)

  8. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China.

    Science.gov (United States)

    Yan, Yulong; Peng, Lin; Li, Rumei; Li, Yinghui; Li, Lijuan; Bai, Huiling

    2017-04-01

    Volatile organic compounds (VOCs) from two sampling sites (HB and XB) in a power station centralized area, in Shuozhou city, China, were sampled by stainless steel canisters and measured by gas chromatography-mass selective detection/flame ionization detection (GC-MSD/FID) in the spring and autumn of 2014. The concentration of VOCs was higher in the autumn (HB, 96.87 μg/m 3 ; XB, 58.94 μg/m 3 ) than in the spring (HB, 41.49 μg/m 3 ; XB, 43.46 μg/m 3 ), as lower wind speed in the autumn could lead to pollutant accumulation, especially at HB, which is a new urban area surrounded by residential areas and a transportation hub. Alkanes were the dominant group at both HB and XB in both sampling periods, but the contribution of aromatic pollutants at HB in the autumn was much higher than that of the other alkanes (11.16-19.55%). Compared to other cities, BTEX pollution in Shuozhou was among the lowest levels in the world. Because of the high levels of aromatic pollutants, the ozone formation potential increased significantly at HB in the autumn. Using the ratio analyses to identify the age of the air masses and analyze the sources, the results showed that the atmospheric VOCs at XB were strongly influenced by the remote sources of coal combustion, while at HB in the spring and autumn were affected by the remote sources of coal combustion and local sources of vehicle emission, respectively. Source analysis conducted using the Positive Matrix Factorization (PMF) model at Shuozhou showed that coal combustion and vehicle emissions made the two largest contributions (29.98% and 21.25%, respectively) to atmospheric VOCs. With further economic restructuring, the influence of vehicle emissions on the air quality should become more significant, indicating that controlling vehicle emissions is key to reducing the air pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  10. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.

    2015-07-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  11. Low-energy particle production and residual nuclei production from high-energy hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Alsmiller, F.S.; Alsmiller, R.G. Jr.; Hermann, O.W.

    1987-01-01

    The high-energy hadron-nucleus collision model, EVENTQ, has been modified to include a calculation of the excitation and kinetic energy of the residual compound nucleus. The specific purpose of the modification is to make it possible to use the model in the high-energy radiation transport code, HETC, which, in conjunction with MORSE, is used to transport the low energy particles. It is assumed that the nucleons in the nucleus move in a one-dimensional potential well and have the momentum distribution of a degenerate Fermi gas. The low energy particles produced by the deexcitation of the residual compound nucleus, and the final residual nucleus, are determined from an evaporation model. Comparisons of multiplicities and residual nuclei distributions with experimental data are given. The ''grey'' particles, i.e., charged particles with 0.25 < β < 0.7, are in good agreement with experimental data but the residual nuclei distributions are not. 12 refs., 3 figs

  12. Density functional theory calculations for the band gap and formation energy of Pr4-xCaxSi12O3+xN18-x; a highly disordered compound with low symmetry and a large cell size.

    Science.gov (United States)

    Hong, Sung Un; Singh, Satendra Pal; Pyo, Myoungho; Park, Woon Bae; Sohn, Kee-Sun

    2017-06-28

    A novel oxynitride compound, Pr 4-x Ca x Si 12 O 3+x N 18-x , synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).

  13. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Altsybeev Igor

    2017-01-01

    Full Text Available Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range. In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target experiment NA61/SHINE on SPS.

  14. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica (Brazil)

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  15. Quarkonia Photoproduction at Nucleus Colliders

    International Nuclear Information System (INIS)

    D'Enterria, David

    2008-01-01

    Exclusive photoproduction of heavy quarkonia in high-energy ultraperipheral ion-ion interactions (γ A →V A, where V = J/ψ, Y and the nucleus A remains intact) offers a useful means to constrain the small-x nuclear gluon density. We discuss preliminary results on J/ψ photoproduction in Au-Au collisions at RHIC [D. d'Enterria [PHENIX Collaboration], Proceeds. Quark Matter'05, (arXiv:nucl-ex/0601001)], as well as full simulation-reconstruction studies of photo-produced Y in Pb-Pb interactions at the LHC [D. d'Enterria (ed.) et al. [CMS Collaboration], J. Phys. G. 34 2307 (2007)

  16. Multiple Coulomb excitation effects in heavy ion compound and fusion cross sections

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hussein, M.S.

    1981-11-01

    A simple model for the average S-matrix that describes heavy ion direct processes in the presence of absorption due to compound nucleus formation is developed. The fluctuation cross section and the fusion cross section are then calculated for deformed heavy ion systems where multiple Coulomb excitation is important. A simple expression for the fusion cross section valid for above-barrier energies is then obtained. The formula clearly displays the modification, due to Coulomb excitation, in the usual geometrical expression. (Author) [pt

  17. Role of atomic bonding for compound and glass formation in Ni-Si, Pd-Si, and Ni-B systems

    Science.gov (United States)

    Tanaka, K.; Saito, T.; Suzuki, K.; Hasegawa, R.

    1985-11-01

    Valence electronic structures of crystalline compounds and glassy alloys of Ni silicides, Pd silicides, and Ni borides are studied by soft-x-ray spectroscopy over wide ranges of Si and B concentrations. The samples prepared include bulk compounds, glassy ribbons, and amorphous sputtered films. Silicon Kβ emissions of Ni and Pd silicides generally consist of a prominent peak fixed at ~=4.5 and ~=5.8 eV below the Fermi level EF, respectively, with a shoulder near EF which grows and shifts toward lower energy with increasing Si concentration. The former is identified as due to Si p-like states forming Si 3p-Ni 3d or Si 3p-Pd 4d bonding states while the latter as due to the corresponding antibonding states. Ni L3 and Pd L3 emissions of these silicides indicate that Ni 3d and Pd 4d states lie between the above two states. These local electronic configurations are consistent with partial-density-of-states (PDOS) calculations performed by Bisi and Calandra. Similar electronic configurations are suggested for Ni borides from B Kα and Ni L3 emissions. Differences of emission spectra between compounds and glasses of similar compositions are rather small, but some enhancement of the contribution of antibonding states to the PDOS near EF is suggested for certain glasses over that of the corresponding compounds. These features are discussed in connection with the compound stability and glass formability.

  18. Critical exponents in nucleus breakup

    International Nuclear Information System (INIS)

    Campi, X.

    1987-01-01

    In recent years the study of cluster formation has become a new field in statistical physics. Nuclear reactions with particle number change can be viewed as a cluster formation processes. Multifragmentation decay produces a power law distribution of medium size clusters. These two cluster size distributions resemble that of many others statistical cluster formation processes. We discuss now these analogies in some details

  19. New results on nuclear multifragmentation in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Iliescu, Bogdan; Felea, Daniel

    2002-01-01

    Some new aspects on the multifragmentation processes in nucleus-nucleus and nucleon-nucleus collisions at high energies are discussed in this work. Experimental data obtained in international collaborations (for example, MULTI Collaboration with KEK Tsukuba (Japan) and SKM 200 Collaboration with JINR Dubna (Russia)) are used to discuss new mechanisms in the target nucleus fragmentation. Correlations with stopping power, participant region size and energy density are included. Comparisons of the experimental results with the predictions of a phenomenological geometric model of intermediate mass fragment multiplicity, caloric curves and angular distributions are also presented. These results are used for global description of the multifragmentation processes in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies. The size of the participant region and the average intermediate mass fragments multiplicity are taken into consideration using the free space probability. A few correlations between the deposited energy in the participant region and stability state of the intermediate mass fragments are presented in this work. The importance of the collision geometry in the multifragmentation processes is stressed. The results suggest different time moments for the incident nucleus fragmentation and for the target nucleus fragmentation. The associated entropies are distinct. (authors)

  20. Formation and magnetic properties of compounds Er(Fe1-xCox)11.35Nb0.65 (0≤x≤0.4)

    International Nuclear Information System (INIS)

    Wang, K.-Y.; Chen, D.-X.; Arcas, J.; Multigner, M.; Crespo, P.; Vazquez, M.; Hernando, A.

    1997-01-01

    A new series of compounds Er(Fe 1-x Co x ) 11.35 Nb 0.65 were synthesized. For x≤0.4, the element Nb can stabilize the ThMn 12 -type compounds. X-ray diffraction results show that the lattice parameters a and c decrease with the substitution of Co for Fe atoms. With increasing Co content, the Curie temperature increases from T c =507 K for x=0 to T c =904 K for x=0.4. Values of the saturation magnetization at 5 K and 300 K are reported. (orig.)

  1. The effect of high-temperature treatment on the formation of nanoscale intermetallic compounds of transition metals in Al-Cu-Mn-Zr alloy

    Science.gov (United States)

    Monastyrska, Tetiana O.; Berezina, Alla L.; Labur, Tetiana M.; Molebny, Oleh A.; Kotko, Andrii V.

    2018-02-01

    The precipitation of intermetallic compounds of transition metals during aging of the Al-5.8%Cu-0.3%Mn-0.1%Zr alloy has been studied using DSC, resistometry, X-ray and transmission electron microscopy. In these age hardenable alloys, the nanoscale metastable Θ″ and Θ' phases of the Al2Cu compound are the main strengthening phases, which are formed at low temperature aging of T stresses, etc.) on the aging with the precipitation of strengthening phases has been investigated.

  2. Notochord to Nucleus Pulposus Transition.

    Science.gov (United States)

    Lawson, Lisa; Harfe, Brian D

    2015-10-01

    A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50-100 billion dollars per year in the USA. The normal intervertebral disc is composed of three distinct regions: a thick outer ring of fibrous cartilage called the annulus fibrosus, a gel-like material that is surrounded by the annulus fibrosus called the nucleus pulposus, and superior and inferior cartilaginous end plates. The nucleus pulposus has been shown to be critical for disc health and function. Damage to this structure often leads to disc disease. Recent reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi. The mechanism responsible for the transformation of the notochord into nuclei pulposi is unknown. In this review, we discuss potential molecular and physical mechanisms that may be responsible for the notochord to nuclei pulposi transition.

  3. Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance.

    Science.gov (United States)

    Biache, Coralie; Ouali, Salma; Cébron, Aurélie; Lorgeoux, Catherine; Colombano, Stéfan; Faure, Pierre

    2017-05-05

    A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Unusual analyte-matrix adduct ions and mechanism of their formation in MALDI TOF MS of benzene-1,3,5-tricarboxamide and urea compounds

    NARCIS (Netherlands)

    Lou, X.; Fransen, M.; Stals, P.J.M.; Mes, T.; Bovee, R.; Dongen, van J.L.J.; Meijer, E.W.

    2013-01-01

    Analyte-matrix adducts are normally absent under typical matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) conditions. Interestingly, though, in the analysis of several types of organic compounds synthesized in our laboratory, analyte-matrix adduct ion peaks

  5. Do Iodine Contrast Media Compounds Used for Medical Imaging Contribute to the Formation of Iodinated Disinfection By-Products in Drinking Water?

    Science.gov (United States)

    Iodinated disinfection byproducts (DBPs) have recently gained attention due to their cyto- and genotoxicity and increased formation in drinking water treated with chloramine, which has become an increasingly popular disinfectant in the United States. One of these—iodoacetic acid...

  6. Double folding model of nucleus-nucleus potential: formulae, iteration method and computer code

    International Nuclear Information System (INIS)

    Luk'yanov, K.V.

    2008-01-01

    Method of construction of the nucleus-nucleus double folding potential is described. Iteration procedure for the corresponding integral equation is presented. Computer code and numerical results are presented

  7. Study of various models of nuclear interaction potentials: nucleon-nucleus and nucleus-nucleus systems

    International Nuclear Information System (INIS)

    Ngo, H.

    1984-01-01

    Several models, performed within a mean field theory, are developed for the calculation of nucleon-nucleus interaction potentials. The first part of the thesis deals with the nucleon-nucleus average interaction. It is mainly devoted to the calculation of dynamical corrections to the Hartree-Fock approximation. Two approaches are used: a microscopic model performed in the framework of the nuclear structure approach and a semi-phenomenological one, based on the application of the dispersion relations to the empirical imaginary potential. Both models take into account finite size effects like collectivity or threshold effects which are important at low energy. The Green's function properties are used for both models. The second part of this work is devoted to the interaction potential between two heavy ions. This calculation, which is performed in the framework of the sudden approximation, uses the energy density formalism (Thomas-Fermi approximation). It has been extended to finite temperature. At T=0 the experimental fusion barriers of heavy systems are reproduced within 4%. Their temperature dependence is studied. The proximity scaling is checked and a universal function is obtained at T=0 and at finite temperature. It is found that the proximity theorem is well satisfied on the average. The dispersion around the mean behaviour increases with increasing temperature. At last, P+A* and α+A* interaction potentials are calculated within a double folding model using a schematic effective interaction [fr

  8. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    Science.gov (United States)

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  9. Physical meaning of the yields from hadron-nucleon, hadron-nucleus, and nucleus-nucleus collisions observed in experiments

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    A physical meaning of the outcomes from hadronic and nuclear collision processes at high energies is presented, as prompted experimentally. The fast and slow stages in hadron-nucleus collisions are distinguished. Hadrons are produced via intermediate objects observed in hadron-nucleus collisions. The intermediate objects may be treated as the groups of quarks or the quark bags. 37 refs

  10. Triple F - A Comet Nucleus Sample Return Mission

    Science.gov (United States)

    Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi

    2008-01-01

    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.

  11. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  12. The 1,4-diazabutadiene/1,2-enediamido non-innocent ligand system in the formation of iridaheteroaromatic compounds: Spectroelectrochemistry and electronic structure

    Czech Academy of Sciences Publication Activity Database

    Kaim, A.; Sieger, M.; Greulich, S.; Sarkar, B.; Fiedler, Jan; Záliš, Stanislav

    2010-01-01

    Roč. 695, č. 7 (2010), s. 1052-1058 ISSN 0022-328X R&D Projects: GA AV ČR KAN100400702; GA MŠk OC 139; GA MŠk OC09043 Institutional research plan: CEZ:AV0Z40400503 Keywords : 1,4-diazabutadiene * electronic structure * iridium compounds Subject RIV: CG - Electrochemistry Impact factor: 2.205, year: 2010

  13. Analysis of the isobaric compounds propanol, acetic acid and methyl formate in humid air and breath by selected ion flow tube mass spectrometry, SIFT-MS

    Czech Academy of Sciences Publication Activity Database

    Pysanenko, A.; Španěl, Patrik; Smith, D.

    2009-01-01

    Roč. 285, 1-2 (2009), s. 42-48 ISSN 1387-3806 R&D Projects: GA ČR GA203/09/0256; GA ČR GA202/09/0800 Institutional research plan: CEZ:AV0Z40400503 Keywords : SIFT-MS * isobaric compound * propanol * acetic acid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.117, year: 2009

  14. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    Science.gov (United States)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  15. Formation of perovskite-type compounds La0.5Ca0.5Mn1-xTixO3 (0≤x≤0.5)

    International Nuclear Information System (INIS)

    Wang, K.-Y.; Arcas, J.; Chen, D.-X.; Hernando, A.

    1997-01-01

    A series of perovskite-type compounds La 0.5 Ca 0.5 Mn 1-x Ti x O 3 is prepared by solid-state reaction. It is found that a single-phase tetragonal structure can be obtained for x≤0.5; the lattice parameters increase and magnetization at μ 0 H=0.2. T decreases with increasing x. (orig.)

  16. Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst

    Science.gov (United States)

    Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.

    2017-05-01

    The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.

  17. Relationship between THMs/NDMA formation potential and molecular weight of organic compounds for source and treated water in Shanghai, China.

    Science.gov (United States)

    An, Dong; Gu, Bin; Sun, Sainan; Zhang, Han; Chen, Yanan; Zhu, Huifeng; Shi, Jian; Tong, Jun

    2017-12-15

    Molecular weight (MW) distributions in source and treated water in Shanghai, China were investigated to understand the relationship between trihalomethanes formation potential/N-nitrosodimethylamine formation potential (THMFP/NDMAFP) and dissolved organic carbon (DOC) for different MW ranges (30KDa). The result of MW distributions in source water indicated a relationship between THMFP/NDMAFP and DOC such that DOC for 30KDa THMFP was totally removed whereas NDMA according to the results for treated water between DOC and NDMAFP (R 2 =0.94 and 0.93 for sand and GAC filtration, respectively). The results may provide researchers with targeted treatment strategies to destroy, remove, or reduce the occurrence of THMs and NDMA precursors. The findings presented in this study will be of great value in future work for selecting suitable drinking water treatment processes to minimize the formation of disinfection by-products using chlorine or chloramine disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Formation of organobromine and organoiodine compounds by engineered TiO2 nanoparticle-induced photohalogenation of dissolved organic matter in environmental waters.

    Science.gov (United States)

    Hao, Zhineng; Yin, Yongguang; Wang, Juan; Cao, Dong; Liu, Jingfu

    2018-08-01

    There are increasing concerns about the adverse effects of released engineered nanoparticles and photochemically formed organohalogen compounds (OHCs) on human health and the environment. Herein, we report that titanium dioxide nanoparticles (TiO 2 NPs) can photocatalytically halogenate dissolved organic matter (DOM) to form a large number of organobromine compounds (OBCs) and organoiodine compounds (OICs), as characterized by negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. Compared with no OHCs produced in control samples in darkness and/or without TiO 2 NPs under sunlight irradiation, various OBCs and OICs were detected in freshwater and seawater under sunlight irradiation for 12h and 24h even in the presence of 1mgL -1 TiO 2 NPs, indicating the photocatalytic roles TiO 2 NPs played in DOM halogenation. Furthermore, TiO 2 NPs could result in the photodegradation of newly formed OHCs, as evidenced by the intensity and the number of some OHCs decreased with reaction time. In addition, many TiO 2 NP-induced OBCs contained two or three bromine atoms, and/or nitrogen and sulfur elements, belonging to lignin-like, tannin-like, unsaturated hydrocarbon and aliphatic compounds. While the OICs were primarily contained one iodine, and very few consisted of nitrogen and sulfur elements, most were lignin-like and tannin-like compounds. Finally, the OBCs in freshwater were found to be formed mainly via a substitution reaction or addition reaction and were accompanied by other reactions such as photooxidation, while the OBCs in seawater and OICs were formed primarily via substitution reactions. Given the abundance of produced OHCs and their toxicity, our findings call for further studies on the exact structure and toxicity of the formed OHCs, taking account the TiO 2 NP-induced DOM photohalogenation in aquatic environments during the evaluation of the environmental effects of engineered TiO 2 NPs. Copyright © 2018

  19. CASTOR A Forward Detector for the Identification of Centauro and Strangelets in Nucleus-Nucleus Collisions at the LHC

    CERN Document Server

    Angelis, Aris L S; Bogolyubsky, M Yu; Filippov, S N; Gladysz-Dziadus, E; Kharlov, Yu V; Kurepin, A B; Maevskaya, A I; Mavromanolakis, G; Panagiotou, A D; Sadovsky, S A; Stefanski, P; Wlodarczyk, Z

    2000-01-01

    Presentation made at the XXVIIIth Symposium on Multiparticle Dynamics, 6-11 September 1998, Delphi and published in World ScientificThe physics motivation for a very forward detector to be employed in heavy ion collisions at the CERN LHC is discussed. A phenomenological model describing the formation and decay of a Centauro fireball in nucleus-nucleus collisions is presented. The CASTOR detector which is aimed to measure the hadronic and photonic content of an interaction and to identify deeply penetrating objects in the very forward, baryon-rich phase space 5.6eta7.2 in an event-by-event mode is described. Results of simulations of the expected response of the calorimeter and, in particular, to the passage of strangelets, are presented.

  20. Do migrating cells need a nucleus?

    Science.gov (United States)

    Hawkins, Rhoda J

    2018-03-05

    How the nucleus affects cell polarity and migration is unclear. In this issue, Graham et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706097) show that enucleated cells polarize and migrate in two but not three dimensions and propose that the nucleus is a necessary component of the molecular clutch regulating normal mechanical responses. © 2018 Hawkins.

  1. Serotonin projection patterns to the cochlear nucleus.

    Science.gov (United States)

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  2. On-line monitoring of trace compounds in the flue gas of an incineration pilot plant: Formation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Heger, H. J.; Zimmermann, R.; Dorfner, R.; Kettrup, A.; Boesl, U.

    1998-01-01

    Laser mass spectrometry is applied for on-line analysis of PAHs from a complex flue gas matrix in the combustion chamber of an incineration plant. Process monitoring of industrial processes can be performed. New insights into the formation of toxic combustion byproducts are possible

  3. The inflation of ion strength in the formation of co-ordination compounds in system of the Fe(III)-Fe(II)-benzimidazole-water in the 298 K

    International Nuclear Information System (INIS)

    Nazarova, Kh.D.; Rajabov, U.R.; Yusupov, Z.N.

    2005-01-01

    With the Method of Oxredmatrion with application of the Oxidation Function in the Temperature 298 K and ion strength 0.1; 0.25; 0.50 and 1.00 in the Water solution of Benzimidazole been obtained the Formation Constants of the Coordination and their dependence with ion strength

  4. Actomyosin contractility rotates the cell nucleus.

    Science.gov (United States)

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  5. Classical gluon production amplitude for nucleus-nucleus collisions:First saturation correction in the projectile

    International Nuclear Information System (INIS)

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-01-01

    We calculate the classical single-gluon production amplitude in nucleus-nucleus collisions including the first saturation correction in one of the nuclei (the projectile) while keeping multiple-rescattering (saturation) corrections to all orders in the other nucleus (the target). In our approximation only two nucleons interact in the projectile nucleus: the single-gluon production amplitude we calculate is order-g"3 and is leading-order in the atomic number of the projectile, while resumming all order-one saturation corrections in the target nucleus. Our result is the first step towards obtaining an analytic expression for the first projectile saturation correction to the gluon production cross section in nucleus-nucleus collisions.

  6. Nanoscale formation of new solid-state compounds by topochemical effects: The interfacial reactions ZnO with Al2O3 as a model system

    International Nuclear Information System (INIS)

    Pin, Sonia; Ghigna, Paolo; Spinolo, Giorgio; Quartarone, Eliana; Mustarelli, Piercarlo; D'Acapito, Francesco; Migliori, Andrea; Calestani, Gianluca

    2009-01-01

    The chemical reactivity of thin layers (ca. 10 nm thick) of ZnO deposited onto differently oriented Al 2 O 3 single crystals has been investigated by means of atomic force microscopy inspections and X-ray absorption spectroscopy at the Zn-K edge. The (0001) ZnO -parallel (112-bar0) sapphire interface yields the ZnAl 2 O 4 spinel and a quite stable film morphology. Instead, the (112-bar0) ZnO -parallel (11-bar02) sapphire and (0001) ZnO -parallel (0001) sapphire interfaces give origin to a new compound (or, possibly, even two new compounds), whose chemical nature is most likely that of a ZnO/Al 2 O 3 phase, with still unknown composition and crystal structure. In addition, in the last two cases, films collapse into prismatic twins of ca. 1 μm in dimension. These experimental findings demonstrate that in a solid-state reaction, the topotactical relationships between the reacting solids are of crucial importance not only in determining the kinetic and mechanisms of the process in its early stages, but even the chemical nature of the product. - Graphical abstract: EXAFS Fourier transforms and morphology of different reactive interfaces between ZnO and Al 2 O 3 .

  7. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  8. The thermodynamic of complex formation in system of the Fe(III)-Fe(II)-benzimidazole-water in the inflation of ion strength in the formation of co-ordination compounds in the 288 K

    International Nuclear Information System (INIS)

    Nazarova, Kh.D.; Rajabov, U.R.; Yusupov, Z.N.

    2005-01-01

    With the Method of Oxredmatrion with application of the Oxidation Function in the Temperature 288 K and ion strength 0.1; 0.25; 0.50 and 1.00 in the Water solution of Benzimidazole been obtained the Formation Constants of the Coordination and their dependence with ion strength

  9. Oligosilanylated Antimony Compounds

    OpenAIRE

    Zitz, Rainer; Gatterer, Karl; Reinhold, Crispin R. W.; M?ller, Thomas; Baumgartner, Judith; Marschner, Christoph

    2015-01-01

    By reactions of magnesium oligosilanides with SbCl3, a number of oligosilanylated antimony compounds were obtained. When oligosilanyl dianions were used, either the expected cyclic disilylated halostibine was obtained or alternatively the formation of a distibine was observed. Deliberate formation of the distibine from the disilylated halostibine was achieved by reductive coupling with C8K. Computational studies of Sb?Sb bond energies, barriers of pyramidal inversion at Sb, and the conformati...

  10. Laser spectroscopy probes the nucleus

    International Nuclear Information System (INIS)

    Griffith, J.; Billowes, J.

    1998-01-01

    Extremely sensitive optical measurements are shedding new light on the shape and size of nuclei, and the properties of nuclear matter far from stability. Of the 7000 or so isotopes known to nuclear physicists, less than 270 are stable. In general isotopes become more and more unstable as we move away from the so-called valley of stability, and therefore become more difficult to study in experiments. The tests of the theory also become more demanding. Laser spectroscopy is one of the techniques that is helping to explore the properties of these isotopes and improve our understanding of the forces inside the nucleus. High-resolution laser spectroscopy of short-lived radioactive atoms now makes it possible to measure the nuclear charge radius of many elements, including many isotopes far from stability. The method can reveal fine details of the sizes, shapes and structures of nuclei. In addition, laser spectroscopy is making significant contributions to our understanding of the nuclear force in unstable nuclei with unusual, or extreme, proton-neutron ratios. In this article the authors discuss the latest advances in studying heavy nuclei. (author)

  11. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  12. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression.

    Science.gov (United States)

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2018-01-01

    Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed. Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator

  13. Oxidative treatment of bromide-containing waters: formation of bromine and its reactions with inorganic and organic compounds--a critical review.

    Science.gov (United States)

    Heeb, Michèle B; Criquet, Justine; Zimmermann-Steffens, Saskia G; von Gunten, Urs

    2014-01-01

    Bromide (Br(-)) is present in all water sources at concentrations ranging from ≈ 10 to >1000 μg L(-1) in fresh waters and about 67 mg L(-1) in seawater. During oxidative water treatment bromide is oxidized to hypobromous acid/hypobromite (HOBr/OBr(-)) and other bromine species. A systematic and critical literature review has been conducted on the reactivity of HOBr/OBr(-) and other bromine species with inorganic and organic compounds, including micropollutants. The speciation of bromine in the absence and presence of chloride and chlorine has been calculated and it could be shown that HOBr/OBr(-) are the dominant species in fresh waters. In ocean waters, other bromine species such as Br2, BrCl, and Br2O gain importance and may have to be considered under certain conditions. HOBr reacts fast with many inorganic compounds such as ammonia, iodide, sulfite, nitrite, cyanide and thiocyanide with apparent second-order rate constants in the order of 10(4)-10(9)M(-1)s(-1) at pH 7. No rate constants for the reactions with Fe(II) and As(III) are available. Mn(II) oxidation by bromine is controlled by a Mn(III,IV) oxide-catalyzed process involving Br2O and BrCl. Bromine shows a very high reactivity toward phenolic groups (apparent second-order rate constants kapp ≈ 10(3)-10(5)M(-1)s(-1) at pH 7), amines and sulfamides (kapp ≈ 10(5)-10(6)M(-1)s(-1) at pH 7) and S-containing compounds (kapp ≈ 10(5)-10(7)M(-1)s(-1) at pH 7). For phenolic moieties, it is possible to derive second-order rate constants with a Hammett-σ-based QSAR approach with [Formula in text]. A negative slope is typical for electrophilic substitution reactions. In general, kapp of bromine reactions at pH 7 are up to three orders of magnitude greater than for chlorine. In the case of amines, these rate constants are even higher than for ozone. Model calculations show that depending on the bromide concentration and the pH, the high reactivity of bromine may outweigh the reactions of chlorine during

  14. Ising-type magnetic anisotropy in a cobalt(II) nitronyl nitroxide compound: a key to understanding the formation of molecular magnetic nanowires.

    Science.gov (United States)

    Caneschi, A; Gatteschi, Dante; Lalioti, N; Sessoli, R; Sorace, L; Tangoulis, V; Vindigni, A

    2002-01-04

    The compound [Co(hfac)2-(NITPhOMe)2] (2) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) crystallizes in the triclinic P1 space group, a= 10.870(5), b = 11.520(5), c = 19.749(5) A, alpha = 78.05(5), beta = 84.20(5), gamma = 64.51(5) degrees, Z = 2. It can be considered a model system for studying the nature of the magnetic anisotropy of [Co(hfac)2(NITPhOMe)] (1), which was recently reported to behave as a molecular magnetic wire. The magnetic anisotropy of 2 was investigated by EPR spectroscopy and SQUID magnetometry both in the polycrystalline powder and in a single crystal. The experimental magnetic anisotropy was related to the anisotropy of the central ion and to the exchange interaction between the cobalt(II) ion and the radicals.

  15. HAUFES : a FORTRAN code for the calculation of compound nuclear cross-sections by Hauser-Feshbach theory

    International Nuclear Information System (INIS)

    Viyogi, Y.P.; Ganguly, N.K.

    1975-01-01

    The FORTRAN code described in the report has been developed for the BESM-6 computer with a view to calculate the cross-section of reactions proceeding via the formation of compound nucleus for all open two-body reaction channels using Hauser-Feshbach theory with Moldauer's correction for the fluctuation of level widths. The code can also be used to analyse data from 'crystal blocking' experiments to obtain nuclear level densities. The report describes the input-output specifications along with a short account of the algorithm of the program. (author)

  16. Covalent bonding and band-gap formation in ternary transition-metal di-aluminides: Al4MnCo and related compounds

    International Nuclear Information System (INIS)

    Krajci, M.; Hafner, J.

    2002-01-01

    In this paper we extend our previous study of the electronic structure of and bonding mechanism in transition-metal (TM) di-aluminides to ternary systems. We have studied the character of the bonding in Al 4 MnCo and related TM di-aluminides in the C11 b (MoSi 2 ) and C54 (TiSi 2 ) crystal structures. A peculiar feature of the electronic structure of these TM di-aluminides is the existence of a semiconducting gap at the Fermi level. In our previous work we predicted a gap in Al 2 TM compounds where the TM atoms have eight valence electrons. Here we demonstrate that the semiconducting gap does not disappear if the TM sites are occupied by two different TMs, provided that the electron-per-atom ratio is conserved. Such a replacement substantially increases the class of possibly semiconducting TM di-aluminides. Substitution for 3d TMs of 4d or 5d TMs enhances the width of the gap. From the analysis of the charge density distribution and the crystal orbital overlap population, we conclude that the bonding between atoms has dominantly covalent character. This is confirmed not only by the enhanced charge density halfway between atoms, but also by the clear bonding-antibonding splitting of the electronic states. If the gaps between split states that correspond to all bonding configurations in the crystal have a common overlap at the Fermi level, the intermetallic compound becomes a semiconductor. However, the results of the total-energy calculations suggest that the existence of a band gap does not necessarily imply a stable structure. Strong covalent bonds can exist also in Al-TM structures where no band gap is observed. (author)

  17. Partial inelasticity coefficients of negative pions produced in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    OLIMOV, K.; LUTPULLAEV, S.L.; PETROV, V.I.; OLIMOV, A.K.

    2015-01-01

    New experimental data on the partial inelasticity coefficients of negative pions produced in "1"6Op-collisions at 3.25 A GeV/s, pC-interactions at 4.2 and 9.9 GeV/s, and d,α,C(C)-collisions at 4.2 A GeV/s are presented. It is established that the behavior of partial inelasticity coefficients of pions at intermediate energies (<10 GeV) in hadron-nucleus collisions has a transitional character, reaching the limiting value at ultrahigh energies. It is shown that the mean values of partial inelasticity coefficients of pions produced in nucleus-nucleus collisions decrease with an increase in mass number of the projectile nucleus. (authors)

  18. Neutrino-nucleus collision at intermediate energy

    International Nuclear Information System (INIS)

    Kosmas, T.S.; Oset, E.

    1999-01-01

    Neutrino-nucleus reactions at low and intermediate energy up to E ν = 500 MeV are studied for the most interesting nuclei from an experimental point of view. We focus on neutrino-nucleus cross-sections of semi-inclusive processes, for which recent measurements from radiochemical experiments at LAMPF and KARMEN laboratories are available. The method employed uses the modified Lindhard function for the description of the particle-hole excitations of the final nucleus via a local density approximation. (authors)

  19. Comet formation

    Science.gov (United States)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  20. The application of a phenomenological model to inelastic nucleus-nucleus interactions for laboratory momenta below 5 GeV/c per nucleon of the incident nucleus

    International Nuclear Information System (INIS)

    Grishin, V.G.; Kladnitskaya, E.N.

    1985-01-01

    A phenomenological model for inelastic nucleus-nucleus interactions at momenta below 5 GeV/c per nucleon is described. Particle interactions inside the interacting nuclei are described by phenomenological models of hadron-nucleus and hadron-nucleon interactions. The Monte-Carlo model provides the kinematic variables for a set of events under study. The comparison of the model inclusive distri-- butions for different particles and nucleus-nucleus interactions agrees well with the experimental data

  1. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Klochkov, V; Herve, A E; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Matulewicz, T N; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Mathes, H; Roehrich, D; Marcinek, A J; Marino, A D; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Koziel, M E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Strikhanov, M; Taranenko, A; Cirkovic, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Blondel, A P P; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Morgala, S J; Paolone, V; Damyanova, A; Gazdzicki, M; Unger, M T; Wilczek, A G; Stepaniak, J M; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  2. K sup + nucleus total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sawafta, R.

    1990-01-01

    The scattering of K{sup +} mesons from nuclei has attracted considerable interest in the last few years. The K{sup +} holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K{sup +} is capable of probing the entire volume of the nucleus. Single scattering of the K{sup +} with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K{sup +} is used to compare the nucleon in the nucleus with a free nucleon.

  3. The nucleus in Finland - The second report

    International Nuclear Information System (INIS)

    Aurela, Jorma; Korteniemi, Virpi; Halme-Tapanainen, Kristina

    1993-01-01

    The Finnish Nuclear Society (FNS) started the distribution of the Nucleus bulletin at the beginning of 1988. The volume of distribution has been extended since, including today nearly 1,000 persons. Both the English and the Finnish version of the bulletin is sent to various opinion leaders of society, i.e. the members of the parliament, ministries, the media, representatives of industry and other decision-makers of the energy field. After the five-year history of the Nucleus in Finland, it is time to look back and sum up the present status of the Nucleus. This report gives a short summary concerning the present distribution and its efficiency, the experiences gained and the influence of the bulletin in Finland. The first questionnaire was sent in November 1988, and the survey was repeated among the Finnish readers of the Nucleus in autumn 1992. The results of the latter survey are given in this report

  4. Transport of glutathione into the nucleus.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine

    2014-10-01

    The tripeptide thiol glutathione (GSH) is present in the nucleus of plant and animal cells. However, the functions of GSH in the nucleus remain poorly characterised. GSH appears to become sequestered in the nucleus at the early stages of the cell cycle. As part of our search for proteins that may be involved in GSH transport into the nucleus, we studied the functions of the nucleoporin called Alacrima Achalasia aDrenal Insufficiency Neurologic disorder (ALADIN). ALADIN is encoded by the Achalasia-Addisonianism-Alacrimia (AAAS) gene in mammalian cells. Defects in ALADIN promote adrenal disorders and lead to the triple A syndrome in humans. The ALADIN protein localizes to the nuclear envelope in Arabidopsis thaliana and interacts with other components of the nuclear pore complex (NPC). We characterised the functions of the ALADIN protein in an Arabidopsis thaliana T-DNA insertion knockout mutant, which shows slow growth compared to the wild type. Copyright © 2014. Published by Elsevier Inc.

  5. Nuclear physics: Unexpected doubly-magic nucleus

    International Nuclear Information System (INIS)

    Janssens, R.V.F.

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope 24 O has been found to be one such nucleus - yet it lies just at the limit of stability

  6. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  7. Kaon-nucleus reactions and hypernuclei

    International Nuclear Information System (INIS)

    Dover, C.B.

    1987-01-01

    Recent advances in hypernuclear physics and kaon-nucleus scattering are discussed, with emphasis on the spectroscopy of Λ single particle states in heavy systems, as revealed by the (π + ,K + ) reaction. 26 refs., 8 figs

  8. Peroxide organometallic compounds and their transformations

    International Nuclear Information System (INIS)

    Razuvaev, G.A.; Brilkina, T.G.

    1976-01-01

    A survey is given experimental works on synthesis and reactions of peroxide organometallic compounds. Reactions have been considered of organometallic compounds with oxygen and organic peroxides which result in formation of both peroxide and non-peroxide products. Possible routes and mechanisms of chemical transformations of peroxide organometallic compounds have been discussed. Reactions of organometallic compounds with oxygen and peroxides have been considered

  9. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  10. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  11. Polarization and alignment of nucleus fission fragments

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Correlation of fragment orientation with orientation axis of fissile nucleus and with n-vector f vector of fragment divergence is considered. Estimations of polarization and alignment of fission fragments of preliminarily oriented nuclei in correlation (with n-vector f recording) and integral (with n-vector f averaging) experiments were conducted. It is shown that high sensitivity of polarization and fragment alignment to the character of nucleus movement at the stage of descent from barrier to rupture point exists

  12. New aspects of the atomic nucleus

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1987-01-01

    We are at last just beginning to identify convincing evidence for what we have long believed, namely that the nucleus is more than the sum of its neutron-proton parts taken pairwise because, for example, a cluster of three nucleons interacts differently from the sum of the interactions of its three pairs; there is an important collectivism in the life of a nucleus even before we ask what its nucleons are doing. (orig./WL)

  13. Testing string dynamics in lepton nucleus reactions

    International Nuclear Information System (INIS)

    Gyulassy, M.; Pluemer, M.

    1989-10-01

    The sensitivity of nuclear attenuation of 10-100 GeV lepton nucleus (ell A) reactions to space-time aspects of hadronization is investigated within the context of the Lund string model. We consider two mechanisms for attenuation in a nucleus: final state cascading and string flip excitations. Implications for the evolution of the energy density in nuclear collisions are discussed. 16 refs., 10 figs

  14. Numerical Simulation of the Kinetic Critical Nucleus

    OpenAIRE

    Sanada, Masaaki; Nishioka, Kazumi; Okada, Masahumi; Maksimov, Igor, L.

    1997-01-01

    Our main interest is to see whether the number density indicates a peak at the kinetically stable critical nucleus due to its kinetical stability. We have numerically calculated the time evolution of the number densities of clusters in the case of water vapor nucleation. We employ the condition in which the difference between the size of the thermodynamic crtitical nucleus and that of the kinetic one is appreciable. The results show that the peak does not appear in the number densities of clu...

  15. Advances in hard nucleus cataract surgery

    Directory of Open Access Journals (Sweden)

    Wei Cui

    2013-11-01

    Full Text Available Security and perfect vision and fewer complications are our goals in cataract surgery, and hard-nucleus cataract surgery is always a difficulty one. Many new studies indicate that micro-incision phacoemulsification in treating hard nucleus cataract is obviously effective. This article reviews the evolution process of hard nuclear cataract surgery, the new progress in the research of artificial intraocular lens for microincision, and analyse advantages and disadvantages of various surgical methods.

  16. Discovery and characterization of a novel lachrymatory factor synthase in Petiveria alliacea and its influence on alliinase-mediated formation of biologically active organosulfur compounds.

    Science.gov (United States)

    Musah, Rabi A; He, Quan; Kubec, Roman

    2009-11-01

    A novel lachrymatory factor synthase (LFS) was isolated and purified from the roots of the Amazonian medicinal plant Petiveria alliacea. The enzyme is a heterotetrameric glycoprotein comprised of two alpha-subunits (68.8 kD each), one gamma-subunit (22.5 kD), and one delta-subunit (11.9 kD). The two alpha-subunits are glycosylated and connected by a disulfide bridge. The LFS has an isoelectric point of 5.2. It catalyzes the formation of a sulfine lachrymator, (Z)-phenylmethanethial S-oxide, only in the presence of P. alliacea alliinase and its natural substrate, S-benzyl-l-cysteine sulfoxide (petiveriin). Depending on its concentration relative to that of P. alliacea alliinase, the LFS sequesters, to varying degrees, the sulfenic acid intermediate formed by alliinase-mediated breakdown of petiveriin. At LFS:alliinase of 5:1, LFS sequesters all of the sulfenic acid formed by alliinase action on petiveriin, and converts it entirely to (Z)-phenylmethanethial S-oxide. However, starting at LFS:alliinase of 5:2, the LFS is unable to sequester all of the sulfenic acid produced by the alliinase, with the result that sulfenic acid that escapes the action of the LFS condenses with loss of water to form S-benzyl phenylmethanethiosulfinate (petivericin). The results show that the LFS and alliinase function in tandem, with the alliinase furnishing the sulfenic acid substrate on which the LFS acts. The results also show that the LFS modulates the formation of biologically active thiosulfinates that are downstream of the alliinase in a manner dependent upon the relative concentrations of the LFS and the alliinase. These observations suggest that manipulation of LFS-to-alliinase ratios in plants displaying this system may provide a means by which to rationally modify organosulfur small molecule profiles to obtain desired flavor and/or odor signatures, or increase the presence of desirable biologically active small molecules.

  17. Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone.

    Science.gov (United States)

    Schiefner, André; Sinz, Quirin; Neumaier, Irmgard; Schwab, Wilfried; Skerra, Arne

    2013-06-07

    The last step in the biosynthetic route to the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is catalyzed by Fragaria x ananassa enone oxidoreductase (FaEO), earlier putatively assigned as quinone oxidoreductase (FaQR). The ripening-induced enzyme catalyzes the reduction of the exocyclic double bond of the highly reactive precursor 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone (HMMF) in a NAD(P)H-dependent manner. To elucidate the molecular mechanism of this peculiar reaction, we determined the crystal structure of FaEO in six different states or complexes at resolutions of ≤1.6 Å, including those with HDMF as well as three distinct substrate analogs. Our crystallographic analysis revealed a monomeric enzyme whose active site is largely determined by the bound NAD(P)H cofactor, which is embedded in a Rossmann-fold. Considering that the quasi-symmetric enolic reaction product HDMF is prone to extensive tautomerization, whereas its precursor HMMF is chemically labile in aqueous solution, we used the asymmetric and more stable surrogate product 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (EHMF) and the corresponding substrate (2E)-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone (EDHMF) to study their enzyme complexes as well. Together with deuterium-labeling experiments of EDHMF reduction by [4R-(2)H]NADH and chiral-phase analysis of the reaction product EHMF, our data show that the 4R-hydride of NAD(P)H is transferred to the unsaturated exocyclic C6 carbon of HMMF, resulting in a cyclic achiral enolate intermediate that subsequently becomes protonated, eventually leading to HDMF. Apart from elucidating this important reaction of the plant secondary metabolism our study provides a foundation for protein engineering of enone oxidoreductases and their application in biocatalytic processes.

  18. Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy

    Directory of Open Access Journals (Sweden)

    Martínez-Perales, Laura G.

    2016-03-01

    Full Text Available The α-Al9FeMnSi and β-Al9FeMn2Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 °C, pressure (5, 10 y 20 MPa and holding time (3600, 5400 y 7200 seconds. Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 °C, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of α-Al9FeMnSi and β-Al9FeMn2Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface.Los intermetálicos α-Al9FeMnSi y β-Al9FeMn2Si formados por sinterización reactiva de polvos Al, Si, Mn, Fe, Cr, Ni se han utilizado en aceros AISI 304L para mejorar la microdureza. Las variables de procesamiento de sinterización reactiva fueron temperatura (600, 650, 700, 750, y 800 °C, presión (5, 10 y 20 MPa y el tiempo de retención (3600, 5400 7200 segundos. Los resultados experimentales muestran que la temperatura es la variable más importante que afecta a la formación del sustrato/recubrimiento, mientras que la presión no parece tener un efecto significativo una influencia significativa. Los resultados muestran las condiciones óptimas de la sinterización reactiva que favorecen la formación del sustrato/recubrimiento a 800 °C, 20 MPa y 7200 segundos. En estas condiciones, la zona de reacción entre el sustrato y el recubrimiento es más compacta y bien

  19. Phase formation of V2O5.xNb2O5 compounds via gels and freeze-dried precursors

    International Nuclear Information System (INIS)

    Langbein, Hubert; Mayer-Uhma, Tobias

    2009-01-01

    An X-ray powder diffraction study of the phase formation in the system V 2 O 5 /Nb 2 O 5 is performed. Freeze-dried ammonium vanadate and ammonium oxalato niobate, alkoxide-derived xerogels and a mixture of active oxides are used as precursors to compare the resulting phase composition. Thermal decomposition of the freeze-dried precursor is monitored with DTA/TG and mass spectrometry. In the quasi-binary system V 2 O 5 -Nb 2 O 5 metastable VNbO 5 , V 4 Nb 18 O 55 , VNb 9 O 25 and solid solutions of V 2 O 5 in TT-Nb 2 O 5 as also thermodynamically stable VNb 9 O 25 exist. The thermal decomposition of freeze-dried vanadate-oxalatoniobate solution allows the synthesis of all these phases in a relative simple manner. Structural relationships between an intermediate phase and the product, or, in the case of solid-state reactions, between one of the starting oxide and the product, favour the desired reaction. Therefore, the structure of a former phase influences or directs the structure of the product similar to a topotactic reaction

  20. Space-time aspects of hadronic cascading in lepton nucleus scattering

    International Nuclear Information System (INIS)

    Gyulassy, M.; Pluemer, M.

    1989-05-01

    A Monte Carlo model of hadronic cascading in inelastic lepton nucleus scattering is constructed to investigate space-time scenarios consistent with the momentum space description of string models of multiparticle production. The prospects for resolving the ambiguity inherent in the definition of a formation length for composite hadrons are emphasized. 15 refs., 13 figs

  1. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.

    Science.gov (United States)

    Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin

    2016-04-21

    The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.

  2. Heterogeneities of 67P nucleus seen by CONSERT in the vicinity of Abydos

    Science.gov (United States)

    Ciarletti, Valerie; Lasue, Jéremie; Hérique, Alain; Kofman, Wlodek; Levasseur-Regourd, Anny-Chantal; Lemmonier, Florentin; Guiffaut, Christophe; Plettemeier, Dirk

    2016-04-01

    Since their arrival at comet 67P in August 2014, a number of instruments onboard Rosetta's main spacecraft and Philae lander have been observing the surface of the nucleus and have revealed details of amazing structures. This information was complemented by information about the nucleus internal structure collected by the CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) experiment in order to constrain the nucleus formation and evolution. The CONSERT experiment is a bistatic radar with receivers and transmitters on-board both Rosetta's main spacecraft and Philae lander. The instrument makes use of electromagnetic waves at 90 MHz that propagated, during the First Science Sequence, between Philae and Rosetta through the small lobe of 67P over distances ranging from approximately 200 to 800 m depending on the spacecraft location. The data used here have been collected at depths that reach a maximum of about one hundred of meters nucleus in the vicinity of Abydos. The data collected by CONSERT provide an estimate of the permittivity mean value and information about its spatial variability inside the sounded volume. Thanks to the 10 MHz frequency bandwidth of the signal used by the instrument a spatial resolution around 10m is obtained inside the sounded volume of the nucleus. In this paper, we specifically focus on local variations in the nucleus subsurface permittivity. A number of electromagnetic simulations corresponding to the CONSERT operations have been performed for a variety of subsurface permittivity models. The effect of local vertical and horizontal large scale variations as well as smaller scale random fractal structure of the permittivity values around the landing site will be presented and discussed in comparison with CONSERT's experimental data collected in the same configurations. Possible interpretations of the results will be presented as well as potential consequences for the nucleus structure in connection with observations made

  3. Substitution reactions on cyclometallated iridium(I) triaryl-phosphite complexes and the formation of bis-monometallated triaryl-phosphite hydrido iridium(III) compounds

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, D.J.A.; Singleton, E.; Van der Stok, E. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Chemical Research Lab.)

    1981-01-01

    The compounds (Ir(P-C)(cod)L) (1) (P-C=P(OC/sub 6/H/sub 3/R-o)-(OC/sub 6/H/sub 4/R-o)/sub 2/; cod=1,5-cyclo-octadiene; L=P(OC/sub 6/H/sub 4/R-o)/sub 3/; R=H or Me) react with a range of tertiary phosphorus ligands in refluxing benzene to give (Ir(P-C)(cod)L') (2) (R=H;L'=PMe/sub 2/Ph,PMePh/sub 2/ or P(OMe)Ph/sub 2/ and R=Me;L'=PMe/sub 3/,PMe/sub 2/Ph,PMePh/sub 2/,PPh/sub 3/,Ph/sub 2/PCH/sub 2/CH/sub 2/AsPh/sub 2/,Ph/sub 2/PCH/sub 2/CH/sub 2/PPh/sub 2/,P(OMe)Ph/sub 2/,P(OC/sub 6/H/sub 4/Me-p)/sub 3/, or P(OCH/sub 2/)/sub 3/CMe). With carbon monoxide, diene replacement is effected in refluxing benzene to give cis-(Ir(P-C)(CO)/sub 2/L) (3a) (R=Me;L=P(OC/sub 6/H/sub 4/Me-o)/sub 3/) which readily converts to the transisomer (3b) in hot ethanol. With refluxing toluene as solvent, (1) and L'produce (IrH(P-C)/sub 2/L') (4) (R=H;L'=P(OPh)/sub 3/,P(OMe)Ph/sub 2/,PMePh/sub 2/, PPh/sub 3/, or P(C/sub 6/H/sub 4/Me-o)/sub 3/, and R=Me;L'=P(OMe)Ph/sub 2/,PMePh/sub 2/,P(OC/sub 6/H/sub 4/Me-o)/sub 3/,PPh/sub 3/,PCy/sub 3/ (Cy=cyclohexyl), or P(C/sub 6/H/sub 4/Me-o)/sub 3/), in which diene replacement is shown to be a function fo the size of L'. Proton n.m.r. and i.r. data are discussed in terms of possible structures.

  4. Kinds of nucleus for effective pearl cultivation of the pearl oysters, Pinctada fucata

    Directory of Open Access Journals (Sweden)

    Kanjanachatree, K.

    2007-07-01

    Full Text Available Seeding is the most important aspect of pearl cultivation, and appropriate nucleus can determine the quality of a pearl : nacre secretion and accumulation around the nucleus. This affects harvest time, nucleus extrusion, survival rate of the pearl oysters and the production cost. In order to provide nuclei to substitute for those imported from China which are made from freshwater pearl oyster-shells, 3 kinds of the local shells of Pinctada fucata, Pteria penguin and Pinctada maxima were selected for seed production. The obtained nuclei have various diameters depend on the shell width at the hinge region. The average diameters are 5.44, 6.78, 7.54 and 6.10 mm, while their production costs are 5, 7.7, 18.5 and 7.5 baht per 1 nucleus, respectively, for Pinctada fucata, Pteria penguin, Pinctada maxima and freshwater pearl oysters (control group. After nucleus implantation into the gonad of culture pearl oysters, Pinctada fucata, and rearing in the sea, the obtained pearls using nuclei made from the shells of Pinctada fucata and Pinctada maxima (both belong to the same genus as the implanted culture pearl oysters have as good nacre formation as that from freshwater pearl oysters. In contrast, the pearl production using nuclei made from Pteria penguin-shells have significantly worse nacre formation. Survival rate of the culture oysters seeded with nuclei made from Pinctada fucata-shells is highest at 47%, nucleus extrusion 8% only, and harvest rate 31%; while with Pinctada maxima-shells, these values are 38%, 17.5% and 14%, respectively. So the nuclei made from local Pinctada fucata-shells are appropriate for pearl cultivation and are comparable to imported nuclei. Although the obtained pearls are small, the nuclei made from Pinctada fucata-shells have low cost, low nucleus extrusion and high productivity.

  5. η-nucleus interaction from the d + d reaction around the η production threshold

    Energy Technology Data Exchange (ETDEWEB)

    Ikeno, N. [Tottori University, Department of Life and Environmental Agricultural Sciences, Tottori (Japan); Nagahiro, H. [Nara Women' s University, Department of Physics, Nara (Japan); Osaka University, Research Center for Nuclear Physics (RCNP), Ibaraki (Japan); Jido, D. [Tokyo Metropolitan University, Department of Physics, Hachioji (Japan); Hirenzaki, S. [Nara Women' s University, Department of Physics, Nara (Japan)

    2017-10-15

    The η mesic nucleus is considered to be one of the interesting exotic many-body systems and has been studied since the 1980s theoretically and experimentally. Recently, the formation of the η mesic nucleus in the fusion reactions of the light nuclei such as d + d → (η + α) → X has been proposed and the experiments have been performed by WASA-at-COSY. We develop a theoretical model to evaluate the formation rate of the η mesic nucleus in the fusion reactions and show the calculated results. We find that the η bound states could be observed in the reactions in cases with the strong attractive and small absorptive η-nucleus interactions. We compare our results with existing data of the d + d → η + α and the d + d → {sup 3}He + N + π reactions. We find that the analyses by our theoretical model with the existing data can provide new information on the η-nucleus interaction. (orig.)

  6. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively

  7. Restoring formation after leaching process

    International Nuclear Information System (INIS)

    Barrett, R.B.

    1983-01-01

    A method of restoring a formation which had uranium and other mineral values extracted by an alkaline lixiviant comprises introducing a source of phosphate in an amount sufficient to lower the level of soluble uranium compounds below that previously existing in the formation by the formation of insoluble uranium phosphate compounds

  8. Investigation of the influence of nuclear matter on hard neutrino nucleus interaction using the HARDPING Monte Carlo Event Generator

    International Nuclear Information System (INIS)

    Berdnikov, Ya.A.; Berdnikov, A.Ya.; Kim, V.T.; Ivanov, A.E.; Suetin, D.P.; Tiangov, K.D.

    2016-01-01

    Hadron production in neutrino-nucleus interactions is implemented in Monte Carlo event generator HARDPING (HARD Probe INteraction Generator). Such effects as formation length, energy loss and multiple rescattering for produced hadrons and their constituents are taken into account in HARDPING. Available data from WA/59 and SCAT collaborations on hadron production in neutrino-nucleus collisions is described by HARDPING with a reasonable agreement

  9. Effective number of inelastically interacting nucleons in rare nucleus-nucleus production processes

    International Nuclear Information System (INIS)

    Korotkikh, V.L.; Lokhtin, I.P.

    1992-01-01

    A model of nucleus-nucleus interaction using one inelastic NN-interaction is suggested for the exclusive production processes with small cross-section. A-dependence nuclear coherent and incoherent production cross-section are predicted. 20 refs.; 4 figs

  10. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    International Nuclear Information System (INIS)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-01-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely (1-Ω→exp(-Const√(Y))) than the opacity that stems from the Balitsky-Kovchegov equation, which is (1-Ω→exp(-ConstY 2 )). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  11. Production of strange and multistrange hadrons in nucleus-nucleus collisions at the SPS

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bakke, H.; Beusch, W.; Staroba, Pavel; Závada, Petr

    1999-01-01

    Roč. 661, - (1999), 130c-139c ISSN 0375-9474 Institutional research plan: CEZ:AV0Z1010920 Keywords : production * nucleus-nucleus collisions * hadrons * strangeness * model predictions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 2.088, year: 1999

  12. The mechanism of nuclear energy release in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    The mechanism of intranuclear energy release in reactions induced by nucleus-nucleus collisions at energies higher than ∼ 0.5 GeV/nucl. is presented - as prompted experimentally. The intranuclear energy release goes through local damages of the colliding nuclei

  13. Structural dynamics of the cell nucleus

    Science.gov (United States)

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  14. Enthalpies of formation of layered LiNixMnxCo1-2xO2 (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials

    International Nuclear Information System (INIS)

    Masoumi, Maryam; Cupid, Damian M.; Reichmann, Thomas L.; Seifert, Hans J.; Chang, Keke; Music, Denis; Schneider, Jochen M.

    2017-01-01

    Layer-structured mixed transition metal oxides with the formula LiNi x Mn x Co 1-2x O 2 (0 ≤ x ≤ 0.5) are considered as important cathode materials for lithium-ion batteries. In an effort to evaluate the relative thermodynamic stabilities of individual compositions in this series, the enthalpies of formation of selected stoichiometries are determined by high temperature oxide melt drop solution calorimetry and verified by ab-initio calculations. The measured and calculated data are in good agreement with each other, and the results show that LiCoO 2 -LiNi 0.5 Mn 0.5 O 2 solid solution approaches ideal behavior. By increasing x, i.e. by equimolar substitution of Mn 4+ and Ni 2+ for Co 3+ , the enthalpy of formation of LiNi x Mn x Co 1-2x O 2 from the elements becomes more exothermic, implying increased energetic stability. This conclusion is in agreement with the literature results showing improved structural stability and cycling performance of Ni/Mn-rich LiNi x Mn x Co 1-2x O 2 compounds cycled to higher cut-off voltages.

  15. Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects

    Science.gov (United States)

    Mencos, Alejandro; Krim, Lahouari

    2018-06-01

    We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  16. Role of α-Dicarbonyl Compounds in the Inhibition Effect of Reducing Sugars on the Formation of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.

    Science.gov (United States)

    Han, Zhonghui; Liu, Bing; Niu, Zhiyan; Zhang, Yan; Gao, Jianxin; Shi, Lei; Wang, Shujun; Wang, Shuo

    2017-11-22

    The effect of reducing sugars on formation of PhIP in fried pork was investigated, and the underlying mechanisms were revealed by studying the reaction pathways between α-dicarbonyl compounds (α-DCs) and PhIP. The addition of reducing sugars (such as glucose) greatly reduced the amount of PhIP in fried pork from 15.5 ng/g to less than 1.0 ng/g. The amount of PhIP decreased significantly with an increasing level of added α-DCs in model systems. Similarly, the addition of methylglyoxal (MGO) decreased significantly the levels of phenylalanine (Phe) and creatinine (Crn) but increased significantly the level of phenylacetaldehyde (PEA). 2-Amino-1-methyl-5-(2-oxopropylidene)-imidazol-4-one and N-(1-methyl-4-oxoimidazolidin-2-ylidene) amino propionic acids were identified in MGO/Crn and MGO/Crn/Phe model systems and fried pork with glucose. These results revealed that the degradation products of reducing sugars-α-DCs-play an important role in inhibiting formation of PhIP by reacting with key precursors of PhIP and itself.

  17. Enthalpies of formation of layered LiNi{sub x}Mn{sub x}Co{sub 1-2x}O{sub 2} (0 ≤ x ≤ 0.5) compounds as lithium ion battery cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Masoumi, Maryam; Cupid, Damian M.; Reichmann, Thomas L.; Seifert, Hans J. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics; Chang, Keke; Music, Denis; Schneider, Jochen M. [RWTH Aachen Univ. (Germany). Materials Chemistry

    2017-11-15

    Layer-structured mixed transition metal oxides with the formula LiNi{sub x}Mn{sub x}Co{sub 1-2x}O{sub 2} (0 ≤ x ≤ 0.5) are considered as important cathode materials for lithium-ion batteries. In an effort to evaluate the relative thermodynamic stabilities of individual compositions in this series, the enthalpies of formation of selected stoichiometries are determined by high temperature oxide melt drop solution calorimetry and verified by ab-initio calculations. The measured and calculated data are in good agreement with each other, and the results show that LiCoO{sub 2}-LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} solid solution approaches ideal behavior. By increasing x, i.e. by equimolar substitution of Mn{sup 4+} and Ni{sup 2+} for Co{sup 3+}, the enthalpy of formation of LiNi{sub x}Mn{sub x}Co{sub 1-2x}O{sub 2} from the elements becomes more exothermic, implying increased energetic stability. This conclusion is in agreement with the literature results showing improved structural stability and cycling performance of Ni/Mn-rich LiNi{sub x}Mn{sub x}Co{sub 1-2x}O{sub 2} compounds cycled to higher cut-off voltages.

  18. The nuclear response and the imaginary potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1983-01-01

    The Fermi-gas model is used in this paper to study the nucleus-nucleus collision. The field produced by one of the nuclei is considered to act on nucleons in the other nucleus, which is treated as a Fermi gas of radius R. The imaginary part of the (non-local) nucleus-nucleus potential is then computed by evaluating the energy-conserving second-order term in which the intermediate states are particle-hole excitations produced in the Fermi gas. The equivalent local potential, obtained by using the Perey-Saxon method, is compared with phenomenological imaginary potentials. Later it is shown that, in the limit of small range of non-locality, the imaginary potential can be related to the nuclear response function. With this, one can write the nuclear friction coefficient that is used in phenomenological analyses of heavy-ion collisions in terms of the imaginary potential. (orig.)

  19. Organolanthanoid compounds

    International Nuclear Information System (INIS)

    Schumann, H.

    1984-01-01

    Up to little more than a decade ago organolanthanoid compounds were still a curiosity. Apart from the description of an isolated number of cyclopentadienyl and indenyl derivatives, very few significant contributions had been made to this interesting sector of organometallic chemistry. However, subsequent systematic studies using modern preparative and analytical techniques, together with X-ray single crystal structure determinations, enabled the isolation and characterization of a large number of very interesting homoleptic and heteroleptic compounds in which the lanthanoid is bound to hydrogen, to substituted or unsubstituted cyclopentadienyl groups, to allyl or alkynyl groups, or even to phosphorus ylides, trimethylsilyl, and carbonylmetal groups. These compounds, which are all extremely sensitive to oxygen and water, open up new possibilities in the field of catalysis and have great potential in organic synthesis - as recent studies with pentamethylcyclopentadienyl derivatives, organolanthanoid(II) compounds, and hexamethyllanthanoid complexes have already shown. (orig.) [de

  20. [Construction of injectable tissue engineered nucleus pulposus in vitro].

    Science.gov (United States)

    Tian, Huake; Wang, Jian; Chen, Chao; Liu, Jie; Zhou, Yue

    2009-02-01

    To investigate the feasibility of using thermo-sensitive chitosan hydrogen as a scaffold to construct tissue engineered injectable nucleus pulposus (NP). Three-month-old neonatal New Zealand rabbits (male or female) weighing 150-200 g were selected to isolate and culture NP cells. The thermo-sensitive chitosan hydrogel scaffold was made of chitosan, disodium beta-glycerophosphate and hydroxyethyl cellulose. Its physical properties and gross condition were observed. The tissue engineered NP was constructed by compounding the scaffold and rabbit NP cells. Then, the viability of NP cells in the chitosan hydrogel was observed 2 days after compound culture and the growth condition of NP cells on the scaffold was observed by SEM 7 days after compound culture. NP cells went through histology and immunohistochemistry detection and their secretion of aggrecan and expression of Col II mRNA were analyzed by RT-PCR 21 days after compound culture. The thermo-sensitive chitosan hydrogel was liquid at room temperature and solidified into gel at 37 degrees C (15 minutes) due to crosslinking reaction. Acridine orange-propidium iodide staining showed that the viability rate of NP cells in chitosan hydrogel was above 90%. Scanning electron microscope observation demonstrated that the NP cells were distributed in the reticulate scaffold, with ECM on their surfaces. The results of HE, toluidine blue, safranin O and histology and immunohistochemistry staining confirmed that the NP cells in chitosan hydrogel were capable of producing ECM. RT-PCR results showed that the secretion of Col II and aggrecan mRNA in NP cells cultured three-dimensionally by chitosan hydrogen scaffold were 0.631 +/- 0.064 and 0.832 +/- 0.052, respectively, showing more strengths of producing matrix than that of monolayer culture (0.528 +/- 0.039, 0.773 +/- 0.046) with a significant difference (P compound culture, and may be a potential NP cells carrier for tissue engineered NP.