WorldWideScience

Sample records for compound atraric acid

  1. Separation of Acids, Bases, and Neutral Compounds

    Science.gov (United States)

    Fujita, Megumi; Mah, Helen M.; Sgarbi, Paulo W. M.; Lall, Manjinder S.; Ly, Tai Wei; Browne, Lois M.

    2003-01-01

    Separation of Acids, Bases, and Neutral Compounds requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime plug-in, version compatible with your OS and browser (available from MDL); and Flash player, version 5 or higher (available from Macromedia).

  2. Amino acid modifiers in guayule rubber compounds

    Science.gov (United States)

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  3. Screening Lactic Acid Bacteria for Antimicrobial Compound Production

    OpenAIRE

    Khalisanni Khalid; Lee Hung Kiong

    2009-01-01

    Lactic Acid Bacteria was known as potential probiotic used in food industries and dairy products and probable to produce antimicrobial compound that inhibit variety of microorganisms. The objectives of the research are to determine the optimum condition and glucose utilization in relation to antimicrobial compound production. Two species of Lactic Acid Bacteria namely Lactococcus and Lactobacillus were used as probiotic. The Lactic Acid Bacteria were fermentated in different medium, initial s...

  4. Betulinic acid, a natural compound with potent anticancer effects

    NARCIS (Netherlands)

    Mullauer, Franziska B.; Kessler, Jan H.; Medema, Jan Paul

    2010-01-01

    New therapies using novel mechanisms to induce tumor cell death are needed with plants playing a crucial role as a source for potential anticancer compounds. One highly promising class of natural compounds are the triterpenoids with betulinic acid (BetA) as the most prominent representative.

  5. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Meda Anderson R.

    2001-01-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.

  6. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review

    OpenAIRE

    Heleno, Sandrina A.; Martins, Anabela; Queiroz, Maria João R. P.; Isabel C.F.R. Ferreira

    2015-01-01

    Phenolic acids are present in our diet in different foods. In particular, mushrooms are a good source of these molecules. Due to their bioactive properties, phenolic acids are extensively studied and there is evidence of their role in disease prevention. Nevertheless, in vivo, these compounds are metabolized and circulate in the organism as glucuronated, sulfated and methylated metabolites, displaying higher or lower bioactivity. To clarify the importance of the metabolism of phenolic acids, ...

  7. Compound

    Indian Academy of Sciences (India)

    UV-vis spectra showing solvent effects on compounds (6). Figure S4. UV-vis spectra showing solvent effects on compounds (9). Figure S5. UV-vis spectra showing solvent ___, acidic--- and basic -□- effects on compound (8) in CH2Cl2 solution. Table S1. 1H and 13C NMR spectral data of salicylaldimine Schiff bases (5-8).

  8. Capture and release of acid-gasses with acid-gas binding organic compounds

    Science.gov (United States)

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  9. Intracomplex compounds of vanadyl with carboxylic acid hydrazides

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Z.M.; Usmankhodzhaeva, Ya.S.; Khodzhaev, O.F. (AN Uzbekskoj SSR, Tashkent. Inst. Khimii)

    1984-07-01

    Intracomplex vanadyl (2) compounds with some carboxylic acid hydrazides (HL) of the VOL/sub 2/xnH/sub 2/O composition, are prepared. Using IR absorption spectra of complexes, it is established that hydrazides are connected with a vanadyl ion in the deprotonated inidoalcohol form through an oxygen atom a nitrogen atom of aminogroup.

  10. Formation of Amino Acid Derived Cheese Flavour Compounds

    NARCIS (Netherlands)

    Smit, B.A.

    2004-01-01

    Lactic acid bacteria (LAB), among them Lactococcus lactis, are often used for the fermentation of milk into various products, such as cheeses. For their growth and maintenance LAB metabolise milk sugar, protein and fat into various low molecular compounds, which sometimes have strong flavour

  11. Complex compound polyvinyl alcohol-titanic acid/titanium dioxide

    Science.gov (United States)

    Prosanov, I. Yu.

    2013-02-01

    A complex compound polyvinyl alcohol-titanic acid has been produced and investigated by means of IR and Raman spectroscopy, X-ray diffraction, and synchronous thermal analysis. It is claimed that it represents an interpolymeric complex of polyvinyl alcohol and hydrated titanium oxide.

  12. Microbiological transformations of phosphorus and sulphur compounds in acid soils

    Directory of Open Access Journals (Sweden)

    Stamenov Dragana

    2012-01-01

    Full Text Available The dynamics of phosphorus and sulphur in soil is closely related to the dynamics of the biological cycle in which microorganisms play a central role. There is not much microbiological activity in acid soils because aerobes are scarce, rhizosphere is restricted to the shallow surface layer, and the biomass of microorganisms decreases with higher acidity. The aim of the research was to investigate the number of microorganisms, which decompose organic and inorganic phosphorus compounds and organic sulphur compounds in calcocambisol, luvisol, and pseudogley. The following parameters were determined in the soil samples: pH in H2O and in 1MKCl; the content of CaCO3 (%; humus content (%, nitrogen content (%; the content of physiologically active phosphorus and potassium (mg P2O5/100g of soil; mg K2O/100g of soil. The number of microorganisms was determined by the method of agar plates on appropriate nutrient media: the number of microorganisms solubilizing phosphates on a medium by Muramcov; the number of microorganisms that decompose organic phosphorus compounds on a medium with lecithin; and the number of microorganisms that transform organic sulphur compounds on a medium by Baar. All three types of soil are acid non-carbonate soils with a low level of available phosphorus and a more favorable amount of potassium, nitrogen, and humus. The largest number of bacteria, which transform organic phosphorus compounds, was found in calcocambisol. The largest number of phosphate solubilizing bacteria was recorded in pseudogley, whereas the largest number of phosphate solubilizing fungi was recorded in calcocambisol. The largest number of bacteria, which transform organic sulphur compounds, was recorded in pseudogley.

  13. Caldensinic acid, a benzoic acid derivative and others compounds from Piper carniconnectivum

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Harley da Silva; Souza, Maria de Fatima Vanderlei de; Chaves, Maria Celia de Oliveira, E-mail: cchaves@ltf.ufpb.b [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica

    2010-07-01

    A benzoic acid derivative - caldensinic acid, E-phythyl hexadecanoate, {beta}-sitosterol and stigmasterol mixture and phaeophytin a were isolated from the aerial parts of Piper carniconnectivum. The structures of these compounds were established unambiguously by IR, MS, 1D and 2D NMR analysis. (author)

  14. Determination of acidity constants of enolisable compounds by capillary electrophoresis.

    Science.gov (United States)

    Mofaddel, N; Bar, N; Villemin, D; Desbène, P L

    2004-10-01

    Research on the structure-activity relationships of molecules with acidic carbon atoms led us to undertake a feasibility study on the determination of their acidity constants by capillary electrophoresis (CE). The studied molecules had diverse structures and were tetronic acid, acetylacetone, diethylmalonate, Meldrum's acid, 3-methylrhodanine, nitroacetic acid ethyl ester, pyrimidine-2,4,6-trione, 3-oxo-3-phenylpropionic acid ethyl ester, 1-phenylbutan-1,3-dione, 5,5-dimethylcyclohexan-1,3-dione and homophthalic anhydride. The p Ka range explored by CE was therefore very large (from 3 to 12) and p Ka values near 12 were evaluated by mathematical extrapolations. The analyses were carried out in CZE mode using a fused silica capillary grafted (or not) with hexadimethrine. Owing to the electrophoretic behaviour of these compounds according to the pH, their acidity constants could be evaluated and appeared in perfect agreement with the literature data obtained, a few decades ago, by means of potentiometry, spectrometry or conductimetry. The p Ka of homophthalic anhydride and 3-methylrhodanine were evaluated for the first time.

  15. Bioactive compounds from brewer’s spent grain: phenolic compounds, fatty acids and in vitro antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Aline da Rosa Almeida

    2017-07-01

    Full Text Available Brewer's spent grain (BSG was characterized by physicochemical, total phenolic compound and flavonoids contents. Antioxidant activity was evaluated by four different assays. The chromatographic analyses were used to quantify the phenolic compounds and the fatty acids in BSG. Ethanolic extracts were tested to evaluate antibacterial activity. The higher concentration of total phenolic compounds for BSG was obtained in the extraction with ethanol 20%. BSG showed an antioxidant potential for all tests evaluated. In the case of chromatographic analysis, phenolic acids and flavonoids, such as syringic acid and catechin, respectively, were detected in high quantities. Regarding to the fatty acids profile, polyunsaturated fatty acids, such as linoleic and oleic acids, were found in significant amounts. No antibacterial activity was reported for bacterial cultures and concentrations tested. BSG may be considered a protein source, rich in fiber, polyunsaturated fatty acids and bioactive compounds with antioxidant potential.

  16. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  17. Spectroscopic and photochemical properties of the lichen compound lobaric acid.

    Science.gov (United States)

    Hidalgo, María Eliana; Bascuñan, Luis; Quilhot, Wanda; Fernández, Ernesto; Rubio, Cecilia

    2005-01-01

    Lichens synthesize and accumulate photoprotective compounds against possible damage induced by UV radiation in the photobiont. A biological model has been recently formulated that allows the use of lichens to evaluate changes at different UV radiation levels. The thermodynamics, photophysical and photochemical properties of lobaric acid were studied in acetonitrile, ethanol and Brij 35(3%) micelles at different pH values. Also the sun protector factor (SPF) was determined by in vitro methods. Lobaric acid was extracted from Stereoculon alpinum Laur. and characterized by means of standard procedures. Solutions were irradiated in oxygen and under nitrogen conditions with a UV medium pressure lamp. Lobaric acid absorbs at 287, 303 nm, and no fluorescence emission was observed. The maximum value of the molar extinction coefficient (5479.6 M(-1) cm(-1)) was obtained in Brij 35 at pH 12. Solubility is pH dependant and is highest in Brij 35 at pH 12 (4.45 x 10(-4) M). Photoconsumption quantum yields ranged between 10(-4) and 10(-5) in aerobic and anaerobic experimental conditions. Lobaric acid SPF was very low (0.5) compared with homosalate (4.0), (reference solar filter). Two pKa values, 5.05 (carboxylic acid group deprotonation) and 9.75 (phenolic OH deprotonation), were determined.

  18. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    Science.gov (United States)

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  20. Method of removing sulphur and acid compounds from gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Bilokur, V.F.; Selezhev, N.I.; Starkov, N.M.; Zhordochkin, N.A.

    1980-02-12

    A method of removing sulphur and acid compounds from gasoline is proposed. In order to increase the degree of purification, maintain continuity of the process and eliminate production waste, the gasoline is washed with water with subsequent treatment with 25 percent aqueous solution of monoethanol amine (I). With rewashing using water, the relative ratios are for gasoline (solution I 0.5:1-1:1 and gasoline) and water 1:0.8-1:1. After purification I is regenerated and circulated, and gasoline impurities not removed in the regeneration process are adsorbed by activated charcoal from a flow of regenerated I. The base gasoline is sent to a washing column where continuous removal of hydrogen soluble impurities takes place. It is settled in a settling tank and sent to the pump absorber intake line. Solution I is sent there. The mixture is sent to the absorber (temperature 35-45 degrees C, pressure 4-6 atm) where a process of absorption of sulphur and acid compounds takes place and is then sent to the settling tank in which rapid separation of phases occurs to the bottom the saturated absorbent, to the top the purified gasoline. The latter is sent to be washed by water, and the absorbent is sent for desorption to the desorber (temperature towards the top 102-105 degrees C, bottom 112-115 degrees C, pressure 0.7 atm). The temperature of water washing is 30-50 degrees C. After purification this method the gasoline contains 0.2-0.25 percent total S, does not contain H/sub 2/S and features a K. Ch. (mg KON/100 ml gasoline) of approximately 0.04-0.05.

  1. Compound list: tannic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available tannic acid TAN 00093 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/tannic_acid....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/tannic_acid....Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/tannic_acid...archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/tannic_acid.Rat.in_vivo.Liver.Repeat.zip ...

  2. Acidic organic compounds in beverage, food, and feed production.

    Science.gov (United States)

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  3. Compound list: valproic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available valproic acid VPA 00005 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/valproic_acid....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/valproic_acid..._vivo/Liver/Single/valproic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.bioscienc...edbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/valproic_acid.Rat.in_vivo.Liver.Repeat.zip ftp:...//ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/valproic_acid.Rat.in_vivo.Kidne

  4. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    Science.gov (United States)

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  5. Compound list: nicotinic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available nicotinic acid NIC 00081 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/nicotinic_aci...d.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/nicotinic_aci.../in_vivo/Liver/Single/nicotinic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosc...iencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/nicotinic_acid.Rat.in_vivo.Liver.Repeat.zip ...

  6. Compound list: mefenamic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available mefenamic acid MEF 00084 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/mefenamic_aci...d.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/mefenamic_aci.../in_vivo/Liver/Single/mefenamic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosc...iencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/mefenamic_acid.Rat.in_vivo.Liver.Repeat.zip ...

  7. A review on usnic acid, an interesting natural compound

    Science.gov (United States)

    Cocchietto, Moreno; Skert, Nicola; Nimis, Pier Luigi; Sava, Gianni

    2002-03-01

    Lichens are a world-widespread consortium of fungal and photosynthetic partners. Usnic acid is one of the most common and abundant lichen metabolites, well known as an antibiotic, but also endowed with several other interesting properties. This review summarises the most relevant studies on usnic acid, focusing on a number of biological activities in different fields. On the basis of the existing literature, usnic acid seems to be an exclusive lichen product. No synthetic derivatives more effective than the natural form are known. Both the (+) and (-) enantiomers of usnic acid are effective against a large variety of Gram-positive (G+) bacterial strains, including strains from clinical isolates, irrespective of their resistant phenotype. Of particular relevance is the inhibition of growth of multi-resistant strains of Streptococcus aureus, enterococci and mycobacteria. The (+)-usnic acid enantiomer appears to be selective against Streptococcus mutans without inducing perturbing side effects on the oral saprophyte flora. On the other hand, the (-)-usnic acid enantiomer is a selective natural herbicide because of its blocking action against a specific key plant enzyme. Other recognised characteristics of usnic acid are ultraviolet absorption and preserving properties. The toxicology, the in vitro anti-inflammatory effects and the mechanism of action of usnic acid need to be investigated in greater detail in order to reach clinical trials and to allow further applications. Furthermore, more research is needed to make possible intensive lichen culture, in order to produce large quantities of lichen substances for pharmaceutical, cosmetic and agricultural purposes. Some biological aspects, i.e. the possible biological roles of usnic acid, are discussed.

  8. Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds.

    Science.gov (United States)

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2017-05-28

    Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, β-glucosidase, and β-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, γ-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.

  9. Adsorptive Separation and Recovery of Organic Compounds from Purified Terephthalic Acid Plant Effluent

    NARCIS (Netherlands)

    Khachane, P.K.; Heesink, A. Bert M.; Versteeg, G.F.; Pangarkar, V.G.

    2003-01-01

    Several organic impurities formed in the p-xylene oxidation process for manufacture of terephthalic acid are carried into the aqueous effluent from the crystallization section of PTA plant of crystallizers for purified terephthalic acid (PTA). These compounds impose a burden on the effluent

  10. Formation of N-Arylacylhydroxamic Acids from Nitroso Aromatic Compounds in Isolated Spinach Leaf Cells.

    Science.gov (United States)

    Yoshioka; Uematsu

    1998-02-16

    The formation of N-arylacetohydroxamic acids from nitroso aromatic compounds in the presence of pyruvate was investigated using isolated spinach leaf cells. The activity was enhanced by the addition of TPP, MgSO(4), and pyruvate, requirements for pyruvate dehydrogenase complex (PDHC). Measurement of the kinetic parameters revealed that the K(m) values of nitroso aromatic compounds tested were identical and that electron-donating ring substituents decreased the catalytic efficiency. The activation energy of the formation of N-phenylacetohydroxamic acid was lower than that reported for porcine heart PDHC. With alpha-oxo acids tested, alpha-oxobutyrate served as a substrate to give the corresponding N-phenylpropionylhydroxamic acid. The activity of spinach leaf cells in N-phenylacetohydroxamic acid formation was found in both mitochondria and chloroplasts. The contribution of chloroplast PDHC to total activity in the formation of N-phenylacetohydroxamic acid was estimated to be 50% under the conditions used.

  11. Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids.

    Science.gov (United States)

    Wang, Hui; Yuan, Haijian; Li, Shujun; Li, Zhuo; Jiang, Mingyue

    2016-02-01

    The purpose of this study was to synthesize hydrophilic cinnamaldehyde Schiff base compounds and investigate those bioactivity. A total of 24 Schiff base compounds were synthesized using a simple approach with 3 cinnamaldehyde derivates and 8 amino acids as raw materials. The structures of synthesized compounds were confirmed using FTIR, (1)HNMR, HRMS purity and melting point. The antimicrobial activities of new compounds were evaluated with fluconazole and ciprofloxacin as the control against Aspergillus niger, Penicillium citrinum, Escherichia coli and Staphylococcus aureus. Findings show that major compounds exhibited significant bioactivity. Results from the structure-activity relationship suggest that both -p-Cl on benzene ring of cinnamaldehyde and the number of -COOK of amino acid salts significantly contributed to antimicrobial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method

    Science.gov (United States)

    Turki, Thouraya; Othmani, Masseoud; Bantignies, Jean-Louis; Bouzouita, Khaled

    2014-01-01

    Hydroxyapatites were prepared in the presence of different amounts of phosphonoformic acid (PFA) via the hydrothermal method. The obtained powders were characterized through chemical analysis, XRD, IR, 31P MAS-NMR, TEM, and TG-TDA. The XRD showed that the PFA did not affect the apatite composition. Indeed, only a reduction of the crystallite size was noted. After grafting of PFA, the IR spectroscopy revealed the appearance of new bands belonging to HPO42- and carboxylate groups of the apatite and organic moiety, respectively. Moreover, the 31P MAS-NMR spectra exhibited a peak with a low intensity assigned to the terminal phosphonate group of the organic moiety in addition to that of the apatite. Based on these results, a reaction mechanism involving the surface hydroxyl groups (tbnd Casbnd OH) of the apatite and the carboxyl group of the acid was proposed.

  13. Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids.

    Science.gov (United States)

    Alakomi, Hanna-Leena; Puupponen-Pimiä, Riitta; Aura, Anna-Marja; Helander, Ilkka M; Nohynek, Liisa; Oksman-Caldentey, Kirsi-Marja; Saarela, Maria

    2007-05-16

    Gram-negative bacteria are important food spoilage and pathogenic bacteria. Their unique outer membrane (OM) provides them with a hydrophilic surface structure, which makes them inherently resistant to many antimicrobial agents, thus hindering their control. However, with permeabilizers, compounds that disintegrate and weaken the OM, Gram-negative cells can be sensitized to several external agents. Although antimicrobial activity of plant-derived phenolic compounds has been widely reported, their mechanisms of action have not yet been well demonstrated. The aim of our study was to elucidate the role of selected colonic microbial metabolites of berry-derived phenolic compounds in the weakening of the Gram-negative OM. The effect of the agents on the OM permeability of Salmonella was studied utilizing a fluorescence probe uptake assay, sensitization to hydrophobic antibiotics, and lipopolysaccharide (LPS) release. Our results show that 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3-(3,4-dihydroxyphenyl)propionic acid (3,4-diHPP), 3-(4-hydroxyphenyl)propionic acid, 3-phenylpropionic acid, and 3-(3-hydroxyphenyl)propionic acid efficiently destabilized the OM of Salmonella enterica subsp. enterica serovar Typhimurium and S. enterica subsp. enterica serovar Infantis as indicated by an increase in the uptake of the fluorescent probe 1-N-phenylnaphthylamine (NPN). The OM-destabilizing activity of the compounds was partially abolished by MgCl2 addition, indicating that part of their activity is based on removal of OM-stabilizing divalent cations. Furthermore, 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3,4-diHPP increased the susceptibility of S. enterica subsp. enterica serovar Typhimurium strains for novobiocin. In addition, organic acids present in berries, such as malic acid, sorbic acid, and benzoic acid, were shown to be efficient permeabilizers of Salmonella as shown by an increase in the NPN uptake assay and by LPS release.

  14. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    Science.gov (United States)

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Structure of six organic acid-base adducts from 6-bromobenzo[d]thiazol-2-amine and acidic compounds

    Science.gov (United States)

    Jin, Shouwen; Zhang, Jing; Wang, Daqi; Tao, Lin; Zhou, Mengjian; Shen, Yinyan; Chen, Quan; Lin, Zhanghui; Gao, Xingjun

    2014-05-01

    Six anhydrous organic acid-base adducts of 6-bromobenzo[d]thiazol-2-amine were prepared with organic acids as 2,4,6-trinitrophenol, salicylic acid, 3,5-dinitrobenzoic acid, 3,5-dinitrosalicylic acid, malonic acid and sebacic acid. The compounds 1-6 were characterized by X-ray diffraction analysis, IR, and elemental analysis. The melting points of all the adducts were given. Of the six adducts, 1, 3, 4, and 5 are organic salts, while 2, and 6 are cocrystals. The supramolecular arrangement in the crystals 2-6 is based on the R22(8) synthon. Analysis of the crystal packing of 1-6 suggests that there are strong NH⋯O, OH⋯N, and OH⋯O hydrogen bonds (charge assisted or neutral) between acid and base components in the supramolecular assemblies. When the hydroxyl group is present in the ortho position of the carboxy, the intramolecular S6 synthon is present, as expected. Besides the classical hydrogen bonding interactions, other noncovalent interactions also play important roles in structure extension. Due to the synergetic effect of these weak interactions, compounds 1-6 display 1D-3D framework structure.

  16. Model compounds of humic acid and oxovanadium cations. Potentiometric titration and EPR spectroscopy studies

    Directory of Open Access Journals (Sweden)

    Mercê Ana Lucia Ramalho

    1999-01-01

    Full Text Available The stability constants and the isotropic EPR parameters Ao (hyperfine splitting constant and g o (g value were obtained by potentiometric titrations and EPR spectroscopy, respectively, of 85%v/v aqueous solutions of model compounds of humic acids - salicylic acid (SALA - and both nitrohumic acids, a laboratory artifact - nitrosalicylic acids, 3-nitrosalicylic acid (3-NSA, 5-nitrosalicylic acid (5-NSA and 3,5-dinitrosalicylic acid (3,5-DNSA and oxovanadium cations. It was possible to record EPR spectra of those model compounds and the ion VO2+ (V(IV, and the stability constants were obtained from a solution of VO3+ (V(V, the values for the logarithms of the stability constants ranging from 12.77 ± 0.04 to 7.06 ± 0.05 for the species ML, and from 9.90 ±0.04 to 4.06 ± 0.05 for the species ML2 according to the decrease in the acidity of the carboxylic and the hydroxyl groups in the aromatic ring of the model compounds studied as the -NO2 substituents were added. Species distribution diagrams were also obtained for the equilibria studied. The EPR parameters showed that as the logarithm of the overall stability constants increase, g o values also increase, while Ao values show a tendency to decrease.

  17. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    Science.gov (United States)

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  18. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758

  19. Hybrid Compounds Strategy in the Synthesis of Oleanolic Acid Skeleton-NSAID Derivatives

    Directory of Open Access Journals (Sweden)

    Anna Pawełczyk

    2016-04-01

    Full Text Available The current study focuses on the synthesis of several hybrid individuals combining a natural oleanolic acid skeleton and synthetic nonsteroidal anti-inflammatory drug moieties (NSAIDs. It studied structural modifications of the oleanolic acid structure by use of the direct reactivity of hydroxyl or hydroxyimino groups at position C-3 of the triterpenoid skeleton with the carboxylic function of anti-inflammatory drugs leading to new perspective compounds with high potential pharmacological activities. Novel ester- and iminoester-type derivatives of oleanolic unit with the different NSAIDs, such as ibuprofen, aspirin, naproxen, and ketoprofen, were obtained and characterized. Moreover, preliminary research of compounds obtaining structure stability under acidic conditions was examined and the PASS method of prediction of activity spectra for substances was used to estimate the potential biological activity of these compounds.

  20. The impact of amino acid availability and gene transcription on aroma compound profiling in Saccharomyces yeast

    OpenAIRE

    Procopio, Susanne

    2017-01-01

    Aroma is an important quality character of beer. Amino acid (AA) assimilation by yeast during fermentation is linked to the aroma profile. Thus, significant AA on the detected aroma compound spectra were evaluated and DNA microarray analyses were performed to evaluate key genes associated with AA assimilation and its derived aroma active compounds. Further, the single addition of the significant AA on the transcription level of key genes was tested and could be correlated with the final conce...

  1. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Natalia V. Zhukova

    2014-08-01

    Full Text Available The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed.

  2. Lipids and fatty acids of nudibranch mollusks: potential sources of bioactive compounds.

    Science.gov (United States)

    Zhukova, Natalia V

    2014-08-19

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed.

  3. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  4. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  5. Metabolic Effects of Dietary Proteins, Amino Acids and The Other Amine Consisting Compounds on Cardiovascular System.

    Directory of Open Access Journals (Sweden)

    Elif Uğur

    2017-01-01

    Full Text Available During the prevention and treatment of cardiovascular diseases, first cause of deaths in the world, diet has a vital role. While nutrition programs for the cardiovascular health generally focus on lipids and carbohydrates, effects of proteins are not well concerned. Thus this review is written in order to examine effect of proteins, amino acids, and the other amine consisting compounds on cardiovascular system. Because of that animal or plant derived proteins have different protein composition in different foods such as dairy products, egg, meat, chicken, fish, pulse and grains, their effects on blood pressure and regulation of lipid profile are unlike. In parallel amino acids made up proteins have different effect on cardiovascular system. From this point, sulfur containing amino acids, branched chain amino acids, aromatic amino acids, arginine, ornithine, citrulline, glycine, and glutamine may affect cardiovascular system in different metabolic pathways. In this context, one carbon metabolism, synthesis of hormone, stimulation of signaling pathways and effects of intermediate and final products that formed as a result of amino acids metabolism is determined. Despite the protein and amino acids, some other amine consisting compounds in diet include trimethylamine N-oxide, heterocyclic aromatic amines, polycyclic aromatic hydrocarbons and products of Maillard reaction. These amine consisting compounds generally increase the risk for cardiovascular diseases by stimulating oxidative stress, inflammation, and formation of atherosclerotic plaque.

  6. Difluoroacetic Acid as a New Reagent for Direct C-H Difluoromethylation of Heteroaromatic Compounds

    DEFF Research Database (Denmark)

    Thanh Tung, Truong; Christensen, Søren Brøgger; Nielsen, John

    2017-01-01

    A technically simple procedure for direct C-H difluoromethylation of heteroaromatic compounds using off-the-shelf difluoroacetic acid as the difluoromethylating reagent has been developed. Mono-difluoromethylation versus bis-difluoromethylation is controlled as the result of the reaction temperat......A technically simple procedure for direct C-H difluoromethylation of heteroaromatic compounds using off-the-shelf difluoroacetic acid as the difluoromethylating reagent has been developed. Mono-difluoromethylation versus bis-difluoromethylation is controlled as the result of the reaction...

  7. Kinetics of browning and correlations between browning degree and pyrazine compounds in l-ascorbic acid/acidic amino acid model systems.

    Science.gov (United States)

    Yu, Ai-Nong; Zhou, Yong-Yan; Yang, Yi-Ni

    2017-04-15

    The kinetics of browning and the correlation between browning products (BPs) and pyrazine compounds were investigated by heating equimolar l-ascorbic acid (ASA)/acidic amino acids under weak alkaline conditions at 120-150°C for 10-120min. The formations of BPs and pyrazine compounds from the reaction were monitored by UV-vis and SPME-GC-FID, respectively. The formation of BPs in both ASA/l-glutamic acid and ASA/l-aspartic acid model reaction systems followed zero order reaction kinetics with activation energies (E a ) of 90.13 and 93.38kJ/mol, respectively. ASA/l-aspartic acid browned at a slightly higher rate than ASA/l-glutamic acid. The total concentration of pyrazine compounds was highly and positively correlated with that of BPs. Based on the observed kinetic data, the formation mechanisms of BPs and pyrazine compounds were proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Impact of Roasting on Fatty Acids, Tocopherols, Phytosterols, and Phenolic Compounds Present in Plukenetia huayllabambana Seed

    OpenAIRE

    Chirinos, Rosana; Zorrilla, Daniela; Aguilar-Galvez, Ana; Pedreschi, Romina; Campos, David

    2016-01-01

    The effect of roasting of Plukenetia huayllabambana seeds on the fatty acids, tocopherols, phytosterols, and phenolic compounds was evaluated. Additionally, the oxidative stability of the seed during roasting was evaluated through free fatty acids, peroxide, and p-anisidine values in the seed oil. Roasting conditions corresponded to 100, 120, 140, and 160°C for 10, 20, and 30 min, respectively. Results indicate that roasting temperatures higher than 120°C significantly affect the content of t...

  9. Phenolic Compounds, Phytate, Citric Acid and the In-vitro Iron ...

    African Journals Online (AJOL)

    ... cowpeas (Vigna unguiculata) and mung beans (Vigna radiata L.) and kidney beans (Phaseolus vulgaris L.) were analyzed for the polyphenolics and phytates. The total and in vitro accessible iron, and the citric acid were also quantified and their nutritional consequences discussed. Phenolic compounds varied widely in ...

  10. Inhibition of Enzymatic Browning of Chlorogenic Acid by Sulfur-Containing Compounds

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Narvaez Cuenca, C.E.; Vincken, J.P.; Verloop, J.W.; Berkel, van W.J.H.; Gruppen, H.

    2012-01-01

    The antibrowning activity of sodium hydrogen sulfite (NaHSO3) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color

  11. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  12. Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids.

    Science.gov (United States)

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2014-10-01

    Conidial germination is fundamentally important to the growth and dissemination of most fungi. It has been previously shown (K. Hayer, M. Stratford, and D. B. Archer, Appl. Environ. Microbiol. 79:6924-6931, 2013, http://dx.doi.org/10.1128/AEM.02061-13), using sugar analogs, that germination is a 2-stage process involving triggering of germination and then nutrient uptake for hyphal outgrowth. In the present study, we tested this 2-stage germination process using a series of nitrogen-containing compounds for the ability to trigger the breaking of dormancy of Aspergillus niger conidia and then to support the formation of hyphae by acting as nitrogen sources. Triggering and germination were also compared between A. niger and Aspergillus nidulans using 2-deoxy-D-glucose (trigger), D-galactose (nontrigger in A. niger but trigger in A. nidulans), and an N source (required in A. niger but not in A. nidulans). Although most of the nitrogen compounds studied served as nitrogen sources for growth, only some nitrogen compounds could trigger germination of A. niger conidia, and all were related to L-amino acids. Using L-amino acid analogs without either the amine or the carboxylic acid group revealed that both the amine and carboxylic acid groups were essential for an L-amino acid to serve as a trigger molecule. Generally, conidia were able to sense and recognize nitrogen compounds that fitted into a specific size range. There was no evidence of uptake of either triggering or nontriggering compounds over the first 90 min of A. niger conidial germination, suggesting that the germination trigger sensors are not located within the spore. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  14. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants.

    Science.gov (United States)

    Tian, Ye; Liimatainen, Jaana; Alanne, Aino-Liisa; Lindstedt, Anni; Liu, Pengzhan; Sinkkonen, Jari; Kallio, Heikki; Yang, Baoru

    2017-04-01

    Phenolic compounds of berries and leaves of thirteen various plant species were extracted with aqueous ethanol and analyzed with UPLC-DAD-ESI-MS, HPLC-DAD, and NMR. The total content of phenolics was consistently higher in leaves than in berries (25-7856 vs. 28-711mg/100g fresh weight). Sea buckthorn leaves were richest in phenolic compounds (7856mg/100g f.w.) with ellagitannins as the dominant compound class. Sea buckthorn berries contained mostly isorhamnetin glycosides, whereas quercetin glycosides were typically abundant in most samples investigated. Anthocyanins formed the dominating group of phenolics in most dark-colored berries but phenolic acid derivatives were equally abundant in saskatoon and chokeberry berries. Caffeoylquinic acids constituted 80% of the total phenolic content (1664mg/100g f.w.) in bilberry leaves. B-type procyanidins and caffeoylquinic acids were the major phenolic compounds in hawthorn and rowanberry, respectively. Use of leaves of some species with prunasin, tyramine and β-p-arbutin, may be limited in food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Bioactive Compounds, Antioxidant Capacity, and Fatty Acids in Different Parts of Four Unexplored Fruits

    Directory of Open Access Journals (Sweden)

    Adriela Albino Rydlewski

    2017-01-01

    Full Text Available Total phenolic content (TPC, total flavonoids (TF, total anthocyanins (TA, and antioxidant capacity of different parts of four unexplored fruits from Brazil (Syzygium cumini Lam, Solanum nigrum Linn, Inga edulis Mart, and Hovenia dulcis Thunb were determined; the bioactive compounds and fatty acids were quantified and identified by high-performance liquid chromatography and gas chromatography, respectively. S. cumini peels contained the most TA (63.31 mg/100 g, whilst H. dulcis pulp and peels had the highest TPC (518.18 mg GAE/100 g and TF (76.54 mg EQ/g. Phenolic compounds responsible for antioxidant capacity of fruits were gallic acid, ellagic acid, kaempferol, and epicatechin. H. dulcis seed showed the highest level of the essential fatty acid omega-3 (3985.95 mg/100 g. PCA showed that PC1 and PC2 explained 90.43% of the total variability of the antioxidant data. Most of the seeds showed omega-3, omega-6, and omega-9 fatty acids at significant concentrations, with two PCs explaining 93.80% of the total variance of the fatty acid contents.

  16. Inactivation of oenological lactic acid bacteria (Lactobacillus hilgardii and Pediococcus pentosaceus) by wine phenolic compounds.

    Science.gov (United States)

    García-Ruiz, A; Bartolomé, B; Cueva, C; Martín-Alvarez, P J; Moreno-Arribas, M V

    2009-09-01

    To investigate the inactivation properties of different classes of phenolic compounds present in wine against two wine isolates of Lactobacillus hilgardii and Pediococcus pentosaceus, and to explore their inactivation mechanism. After a first screening of the inactivation potency of 21 phenolic compounds (hydroxybenzoic and hydroxycinnamic acids, phenolic alcohols, stilbenes, flavan-3-ols and flavonols) at specific concentrations, the survival parameters (MIC and MBC) of the most active compounds were determined. For the L. hilgardii strain, the flavonols morin and kaempferol showed the strongest inactivation (MIC values of one and 5 mg l(-1), and MBC values of 7.5 and 50 mg l(-1), respectively). For the P. pentosaceus strain, flavonols also showed the strongest inactivation effects, with MIC values between one and 10 mg l(-1) and MBC values between 7.5 and 300 mg l(-1). Observations by epifluorescence and scanning electron microscopy revealed that the phenolics damaged the cell membrane and promoted the subsequent release of the cytoplasm material into the medium. The antibacterial activity of wine phenolics against L. hilgardii and P. pentosaceus was dependent on the phenolic compound tested, and led not only to bacteria inactivation, but also to the cell death. New information about the inactivation properties of wine lactic acid bacteria by phenolic compounds is presented. It opens up a new area of study for selecting/obtaining wine phenolic preparations with potential applications as a natural alternative to SO(2) in winemaking.

  17. Influence of organic compound functionality on aerosol hygroscopicity: dicarboxylic acids, alkyl-substituents, sugars and amino acids

    Science.gov (United States)

    Marsh, Aleksandra; Miles, Rachael E. H.; Rovelli, Grazia; Cowling, Alexander G.; Nandy, Lucy; Dutcher, Cari S.; Reid, Jonathan P.

    2017-05-01

    Hygroscopicity data for 36 organic compounds, including amino acids, organic acids, alcohols and sugars, are determined using a comparative kinetics electrodynamic balance (CK-EDB). The CK-EDB applies an electric field to trap-charged aqueous droplets in a chamber with controlled temperature and relative humidity (RH). The dual micro dispenser set-up allows for sequential trapping of probe and sample droplets for accurate determination of droplet water activities from 0.45 to > 0.99. Here, we validate and benchmark the CK-EDB for the homologous series of straight-chain dicarboxylic acids (oxalic-pimelic) with measurements in better agreement with Universal Quasichemical Functional Group Activity Coefficients (UNIFAC) predictions than the original data used to parametrise UNIFAC. Furthermore, a series of increasingly complex organic compounds, with subtle changes to molecular structure and branching, are used to rigorously assess the accuracy of predictions by UNIFAC, which does not explicitly account for molecular structure. We show that the changes in hygroscopicity that result from increased branching and chain length are poorly represented by UNIFAC, with UNIFAC under-predicting hygroscopicity. Similarly, amino acid hygroscopicity is under-predicted by UNIFAC predictions, a consequence of the original data used in the parametrisation of the molecular subgroups. New hygroscopicity data are also reported for a selection of alcohols and sugars and they show variable levels of agreement with predictions.

  18. Isolation, structure, and properties of quinone-aci tautomer of a phenol-nitro compound related to eugenoxyacetic acid

    Science.gov (United States)

    Dinh, Nguyen Huu; Huan, Trinh Thi; Toan, Duong Ngoc; Kimpende, Peter Mangwala; Meervelt, Luc Van

    2010-09-01

    Treatment with excess nitric acid in acetic acid revealed that eugenoxyacetic acid underwent an unexpected ether cleavage, a normal nitration, and then an unexpected electrophilic addition to the double bond of the side chain that led to the formation of a dinitro compound which subsequently converted to a sensitive, reactive quinone-aci compound. The structure of the quinone-aci compound ( 1) and its derivatives ( 2- 6) was established by 1D- , 2D NMR, MS spectra, and chemical methods. In addition, the XRD structure of compound 2 derived from 1 was established. A double tautomerization of 1 in solution was studied by the LC-UV-MS method.

  19. A uranyl hybrid compound designed from urea-bearing dipropionic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Yu-Bo; Xu, Cong; Liu, Wei-Sheng [Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University (China)

    2013-07-15

    A uranyl-urea-bearing dipropionate hybrid compound, in which the two acid groups are coordinated in different modes and the urea group serves as both a coordination functionality and a supramolecular synthon, is prepared. The effect of hydrogen-bonding interactions on the luminescence properties of the compound was explored by lifetime measurements. Thermogravimetric analyses were performed under a nitrogen atmosphere and in air. The ''uranophilicity'' of this urea-bearing ligand was examined by competition experiments in alkaline spring water. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    Science.gov (United States)

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    Science.gov (United States)

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.

  2. Influence of combined use of selenious acid and SH compounds in parenteral preparations

    Energy Technology Data Exchange (ETDEWEB)

    Terada, A. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Public Health]|[St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Pharmacy; Yoshida, M. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Chemistry; Nakada, M.; Nakada, K.; Yamate, N. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Surgery; Kobayashi, T. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Pharmacy; Yoshida, K. [St. Marianna University School of Medicine, Kawasaki (Japan). Dept. of Public Health

    1997-12-31

    The influence of the combined use of selenious acid and SH compounds (glutathione (GSH) and cysteine (Cys), or ascorbic acid (Asc)) on cultured venous vascular endothelial cells was investigated experimentally. When cultured human umbilical venous vascular endothelial cells were exposed to 10 {mu}M of selenious acid combined with 0.5 mM-GSH or 0.5 mM-Cys, the release rates of [{sup 3}H]-adenine and lactate dehydrogenase (LDH) from cells into the medium increased significantly as compared with after exposure to selenious acid alone, and damage to the vascular endothelial cells was found to be intensified. Addition of 1 {mu}M of selenious acid simultaneously with 0.5 mM-GSH or 0.5 mM-Cys showed no differences in toxicity for the vascular endothelial cells as compared with the addition of selenious acid alone. On the other hand, simultaneous exposure to 10 {mu}M of selenious acid and 1 mM-Asc induced no significant differences in the release rates of [{sup 3}H]-adenine and LDH, and no damage was observed to the vascular endothelial cells. These results suggest that simultaneous addition of selenious acid together with GSH or Cys, which have the SH-group, may cause damage to the vascular endothelial cells. Therefore careful attention is warranted in total parenteral nutrition. (orig.)

  3. Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.

    Directory of Open Access Journals (Sweden)

    Ana Maria Athayde Uchôa-thomaz

    2014-09-01

    Full Text Available This study aimed to characterize the chemical composition, determine the fatty acid profile, and quantify the bioactive compounds present in guava seed powder (Psidium guajava L.. The powder resulted from seeds obtained from guava pulp processing. The agro-industrial seeds from red guava cv. paluma were used, and they were donated by a frozen pulp fruit manufacturer. They contain varying amounts of macronutrients and micronutrients, with a high content of total dietary fiber (63.94 g/100g, protein (11.19 g/100g, iron (13.8 mg/100g, zinc (3.31 mg/100g, and reduced calorie content (182 kcal/100g. Their lipid profile showed a predominance of unsaturated fatty acids (87.06%, especially linoleic acid (n6 and oleic acid (n9. The powder obtained contained significant amounts of bioactive compounds such as ascorbic acid (87.44 mg/100g, total carotenoids (1.25 mg/100 g and insoluble dietary fiber (63.55 g/100g. With regard to their microbiological quality, the samples were found suitable for consumption. Based on these results, it can be concluded that the powder produced has favorable attributes for industrial use, and that use of these seeds would be a viable alternative to prevent various diseases and malnutrition in our country and to reduce the environmental impact of agricultural waste.

  4. Effects of compound amino acids capsule on the immunological function of naval servicemen

    Directory of Open Access Journals (Sweden)

    Hai-zhong ZHONG

    2012-01-01

    Full Text Available Objective  To investigate the effects of the compound amino acids capsule on the immunological function of the naval servicemen during military activity. Methods  The subjects included 100 officers and soldiers, whose Modified Fatigue Rating Scale (MFIS scores were >21 points. The participants were randomly divided into two groups, namely, the amino acids capsule group and placebo group (n=50. Under the condition of military operations, either amino acids capsule (8 kinds of essential amino acids and 11 kinds of vitamins were contained or placebo capsule was given for 14 days continuously. The humoral immune indices, i.e., IgG, IgA, IgM, and complements C3 and C4, were measured with immunoturbidimetry. The percentage of peripheral blood CD subsets was measured using flow cytometry on the first day and 14th day. Results  The levels of IgG, IgM, and complement C3 in the capsule group were significantly higher on the 14th day than on the first day (P+CD4+ T lymphocytes and CD3-CD19+ B lymphocytes in the capsule group on the 14th day were higher than those on the first day, whereas the CD3-CD56+ NK lymphocytes decreased significantly (PConclusion  Compound amino acids capsule can improve the humoral and cellular immunological function of naval servicemen.

  5. Effect of Pharmaceutically Active Compound Nitroxoline on the Corrosion of Mild Steel in an Acidic Environment

    Directory of Open Access Journals (Sweden)

    R. Ganapathi Sundaram

    2016-01-01

    Full Text Available The effect of Nitroxoline, antibiotic drug, was tested as a corrosion inhibitor for mild steel (MS in an acidic environment by chemical method (mass loss measurement and electrochemical methods such as electrochemical impedance spectroscopy and potentiodynamic polarization. The surface morphology of mild steel was investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and atomic force microscopy techniques. From the chemical and electrochemical methods, the resistance of corrosion was increased with the addition of Nitroxoline concentration. Tafel curves indicate that the pharmaceutically active compound is a cathodic type inhibitor. An adsorption of Nitroxoline on the surface of mild steel was obeyed by Langmuir isotherm. SEM, EDX, and AFM techniques prove the adsorption process. All the obtained results confirmed that the investigated compound Nitroxoline acts as a good inhibitor for the corrosion of mild steel in an acidic environment.

  6. Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation.

    Science.gov (United States)

    Mas, Albert; Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Cerezo, Ana B; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  7. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Directory of Open Access Journals (Sweden)

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  8. Effects of Beef Finishing Diets and Muscle Type on Meat Quality, Fatty Acids and Volatile Compounds

    OpenAIRE

    Chail, Arkopriya

    2015-01-01

    Consumer evaluation, proximate data, Warner-Bratzler shear force (WBSF), fatty acid (FA) composition and volatile compounds were analyzed from the Longissimus thoracis (LT), Tricep brachii (TB) and Gluteus medius (GM) muscles finished on conventional feedlot (FL) and forages, including a perennial legume, birdsfoot trefoil (BFT; Lotus corniculatus), and a grass, meadow brome (Bromus riparius Rehmann, Grass). Representative retail forage (USDA Certified Organic Grass-fed, COGF) and conventiona...

  9. Impact of Roasting on Fatty Acids, Tocopherols, Phytosterols, and Phenolic Compounds Present in Plukenetia huayllabambana Seed

    Directory of Open Access Journals (Sweden)

    Rosana Chirinos

    2016-01-01

    Full Text Available The effect of roasting of Plukenetia huayllabambana seeds on the fatty acids, tocopherols, phytosterols, and phenolic compounds was evaluated. Additionally, the oxidative stability of the seed during roasting was evaluated through free fatty acids, peroxide, and p-anisidine values in the seed oil. Roasting conditions corresponded to 100, 120, 140, and 160°C for 10, 20, and 30 min, respectively. Results indicate that roasting temperatures higher than 120°C significantly affect the content of the studied components. The values of acidity, peroxide, and p-anisidine in the sacha inchi oil from roasted seeds increased during roasting. The treatment of 100°C for 10 min successfully maintained the evaluated bioactive compounds in the seed and quality of the oil, while guaranteeing a higher extraction yield. Our results indicate that P. huayllabambana seed should be roasted at temperatures not higher than 100°C for 10 min to obtain snacks with high levels of bioactive compounds and with high oxidative stability.

  10. Inhibition of enzymatic browning of chlorogenic acid by sulfur-containing compounds.

    Science.gov (United States)

    Kuijpers, Tomas F M; Narváez-Cuenca, Carlos-Eduardo; Vincken, Jean-Paul; Verloop, Annewieke J W; van Berkel, Willem J H; Gruppen, Harry

    2012-04-04

    The antibrowning activity of sodium hydrogen sulfite (NaHSO(3)) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectral analysis), oxygen consumption, and reaction product formation (RP-UHPLC-PDA-MS) were monitored in time. It was found that the compounds showing antibrowning activity either prevented browning by forming colorless addition products with o-quinones of 5-CQA (NaHSO(3), cysteine, and glutathione) or inhibiting the enzymatic activity of tyrosinase (NaHSO(3) and dithiothreitol). NaHSO(3) was different from the other sulfur-containing compounds investigated, because it showed a dual inhibitory effect on browning. Initial browning was prevented by trapping the o-quinones formed in colorless addition products (sulfochlorogenic acid), while at the same time, tyrosinase activity was inhibited in a time-dependent way, as shown by pre-incubation experiments of tyrosinase with NaHSO(3). Furthermore, it was demonstrated that sulfochlorogenic and cysteinylchlorogenic acids were not inhibitors of mushroom tyrosinase.

  11. Desalination of fish sauce by electrodialysis: effect on selected aroma compounds and amino acid compositions.

    Science.gov (United States)

    Chindapan, Nathamol; Devahastin, Sakamon; Chiewchan, Naphaporn; Sablani, Shyam S

    2011-09-01

    Fish sauce is an ingredient that exhibits unique flavor and is widely used by people in Southeast Asia. Fish sauce, however, contains a significant amount of salt (sodium chloride). Recently, electrodialysis (ED) has been successfully applied to reduce salt in fish sauce; however, no information is available on the effect of ED on changes in compounds providing aroma and taste of ED-treated fish sauce. The selected aroma compounds, amino acids, and sensory quality of the ED-treated fish sauce with various salt concentrations were then analyzed. The amounts of trimethylamine, 2,6-dimethylpyrazine, phenols, and all carboxylic acids except for hexanoic acid significantly decreased, whereas benzaldehyde increased significantly when the salt removal level was higher. The amounts of all amino acids decreased with the increased salt removal level. Significant difference in flavor and saltiness intensity among ED-treated fish sauce with various salt concentrations, as assessed by a discriminative test, were observed. Information obtained in this work can serve as a guideline for optimization of a process to produce low-sodium fish sauce by ED. It also forms a basis for further in-depth sensory analysis of low-sodium fish sauce. © 2011 Institute of Food Technologists®

  12. Separation and purification of the antioxidant compounds, caffeic acid phenethyl ester and caffeic acid from mushrooms by molecularly imprinted polymer.

    Science.gov (United States)

    Li, Ning; Ng, Tzi Bun; Wong, Jack Ho; Qiao, Ji Xuan; Zhang, Ye Ni; Zhou, Rong; Chen, Rong Rong; Liu, Fang

    2013-08-15

    Caffeic acid phenethyl ester (CAPE) and caffeic acid (CA), two naturally occurring phenolic antioxidants, have been reported to have a diversity of biological activities. In this investigation, a novel approach to separate and enrich CAPE and CA from 25 species of mushrooms using molecularly imprinted polymers (MIPs) as the sorbent material is reported. The MIPs were synthesized using CAPE as the template, and its adsorption behavior was investigated in detail. In comparison with C18-solid phase extraction (SPE), MIP-SPE displayed high selectivity and good affinity for CAPE and CA. The antioxidant potential of the mushroom extracts, before and after preconcentration using MIPs, was assayed by inhibition of erythrocyte hemolysis and lipid peroxidation. Application of MIPs with a high affinity toward CAPE and CA provides a novel method for obtaining active compounds from natural products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Isomerizing olefin metathesis as a strategy to access defined distributions of unsaturated compounds from fatty acids.

    Science.gov (United States)

    Ohlmann, Dominik M; Tschauder, Nicole; Stockis, Jean-Pierre; Goossen, Käthe; Dierker, Markus; Goossen, Lukas J

    2012-08-22

    The dimeric palladium(I) complex [Pd(μ-Br)(t)Bu(3)P](2) was found to possess unique activity for the catalytic double-bond migration within unsaturated compounds. This isomerization catalyst is fully compatible with state-of-the-art olefin metathesis catalysts. In the presence of bifunctional catalyst systems consisting of [Pd(μ-Br)(t)Bu(3)P](2) and NHC-indylidene ruthenium complexes, unsaturated compounds are continuously converted into equilibrium mixtures of double-bond isomers, which concurrently undergo catalytic olefin metathesis. Using such highly active catalyst systems, the isomerizing olefin metathesis becomes an efficient way to access defined distributions of unsaturated compounds from olefinic substrates. Computational models were designed to predict the outcome of such reactions. The synthetic utility of isomerizing metatheses is demonstrated by various new applications. Thus, the isomerizing self-metathesis of oleic and other fatty acids and esters provides olefins along with unsaturated mono- and dicarboxylates in distributions with adjustable widths. The cross-metathesis of two olefins with different chain lengths leads to regular distributions with a mean chain length that depends on the chain length of both starting materials and their ratio. The cross-metathesis of oleic acid with ethylene serves to access olefin blends with mean chain lengths below 18 carbons, while its analogous reaction with hex-3-enedioic acid gives unsaturated dicarboxylic acids with adjustable mean chain lengths as major products. Overall, the concept of isomerizing metatheses promises to open up new synthetic opportunities for the incorporation of oleochemicals as renewable feedstocks into the chemical value chain.

  14. Utilization of Volatile Fatty Acids from Microalgae for the Production of High Added Value Compounds

    Directory of Open Access Journals (Sweden)

    Angelina Chalima

    2017-10-01

    Full Text Available Volatile Fatty Acids (VFA are small organic compounds that have attracted much attention lately, due to their use as a carbon source for microorganisms involved in the production of bioactive compounds, biodegradable materials and energy. Low cost production of VFA from different types of waste streams can occur via dark fermentation, offering a promising approach for the production of biofuels and biochemicals with simultaneous reduction of waste volume. VFA can be subsequently utilized in fermentation processes and efficiently transformed into bioactive compounds that can be used in the food and nutraceutical industry for the development of functional foods with scientifically sustained claims. Microalgae are oleaginous microorganisms that are able to grow in heterotrophic cultures supported by VFA as a carbon source and accumulate high amounts of valuable products, such as omega-3 fatty acids and exopolysaccharides. This article reviews the different types of waste streams in concert with their potential to produce VFA, the possible factors that affect the VFA production process and the utilization of the resulting VFA in microalgae fermentation processes. The biology of VFA utilization, the potential products and the downstream processes are discussed in detail.

  15. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    Directory of Open Access Journals (Sweden)

    Paz eAranega Bou

    2014-10-01

    Full Text Available Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx, proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the SA and JA pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-induced resistance (Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound.

  16. Immobilization of kojic acid in ZnAl-hydrotalcite like compounds

    Science.gov (United States)

    Ambrogi, Valeria; Perioli, Luana; Nocchetti, Morena; Latterini, Loredana; Pagano, Cinzia; Massetti, Elena; Rossi, Carlo

    2012-01-01

    Kojic acid (KOJ) is a melanin synthesis inhibitor widely used as skin lightening agent in topical preparations. Unfortunately it is easily susceptible to photo-oxidation, phenomenon responsible for chemical and organoleptic modifications. The aim of this work was the intercalation of KOJ in hydrotalcite-like compounds (HTlc) in order to stabilize KOJ and to reduce its photolability. Hydrotalcite containing Zn and Al (ZnAl-HTlc) was used as host to obtain the final compound ZnAl-HTlc-KOJ. The intercalation was carried out, after many attempts, by ionic exchange mechanism by means of the strong base EtO- in anhydrous ethanol/dimethylsulfoxide (DMSO) mixture as solvent in order to generate KOJ- anions. The final product was characterized by the X-ray powder diffraction (XRPD), FT-IR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elemental analysis. The intercalated compound was formulated in a siliconic water free self-emulsifying ointment and the in vitro release profile was evaluated. All samples (intercalation compound and its formulation) were submitted also to spectrophotometric assays in order to evaluate the matrix protective effect towards ultraviolet rays.

  17. Influence of dentin and enamel pretreatment with acidic sulfur compounds on adhesive performance.

    Science.gov (United States)

    Ioannidis, Alexis; Stawarczyk, Bogna; Sener, Beatrice; Attin, Thomas; Schmidlin, Patrick R

    2013-11-01

    This study tested the potential hampering effects of acidic sulfur compounds (ASC) containing hydroxybenzene sulfonic acid, hydroxymethoxybenzene sulfonic acid, and sulfuric acid, prior to self-etch and etch-and-rinse bonding procedures on enamel and dentin. According to the manufacturer, ASC should be applied after cavity preparation and prior to application of a primer in order to reduce the remaining biofilm in the preparation cavity. Despite promoted marketing, data on the investigated liquid are almost completely lacking. One hundred and fifty-two extracted mandibular bovine incisors were embedded and polished to expose either enamel (E) or dentin (D). Then, specimens were randomly divided and conditioned as follows (n = 12/group): ASC and consecutive phosphoric acid application (E1/D1), ASC (E2/D2; E5/D5), phosphoric acid (E3/D3), and no conditioning (E4/D4; E6/D6). Groups were then treated with either Optibond FL(®) (etch-and-rinse; 1-4) or Clearfil SE Bond(®) (self-etch; 5-6). Hollow acrylic cylinders were bonded with a hybrid composite resin (Filtek Supreme XTE®) to the specimens, and the shear bond strength was measured (1 mm/min). In addition, failure types were assessed. Descriptive statistics and statistical analyses were performed with one-way ANOVA followed by the Scheffé post hoc test. For enamel, the highest shear bond strength values were obtained applying routine bonding procedures (23.5 ± 5.6 MPa for etch-and-rinse and 26.0 ± 6.0 MPa for self-etch, respectively). In contrast, dentin pretreatment with a combination of ASC and phosphoric acid led to the highest shear bond values (22.8 ± 4.1 MPa). This study shows that ASC prior to dental restoration placement cannot be recommended for etch-and-rinse procedures on enamel but is appropriate for dentin without interfering with routine bonding procedures. The application of acidic sulfur compounds prior to adhesive restoration placement should be restricted to dentin only as it may negatively

  18. Effect of phenolic compounds on the co‐metabolism of citric acid and sugars by Oenococcus oeni from wine

    National Research Council Canada - National Science Library

    Rozès, N; Arola, L; Bordons, A

    2003-01-01

    .... Fifty milligrams per litre or more of phenolic compounds stimulated bacterial growth. Oenococcus oeni seemed to use citric acid and trehalose, if they were present, before glucose and fructose...

  19. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment.

    Science.gov (United States)

    Jiménez-Arellanes, Adelina; Luna-Herrera, Julieta; Cornejo-Garrido, Jorge; López-García, Sonia; Castro-Mussot, María Eugenia; Meckes-Fischer, Mariana; Mata-Espinosa, Dulce; Marquina, Brenda; Torres, Javier; Hernández-Pando, Rogelio

    2013-10-07

    New alternatives for the treatment of Tuberculosis (TB) are urgently needed and medicinal plants represent a potential option. Chamaedora tepejilote and Lantana hispida are medicinal plants from Mexico and their hexanic extracts have shown antimycobacterial activity. Bioguided investigation of these extracts showed that the active compounds were ursolic acid (UA) and oleanolic acid (OA). The activity of UA and OA against Mycobacterium tuberculosis H37Rv, four monoresistant strains, and two drug-resistant clinical isolates were determined by MABA test. The intracellular activity of UA and OA against M. tuberculosis H37Rv and a MDR clinical isolate were evaluated in a macrophage cell line. Finally, the antitubercular activity of UA and OA was tested in BALB/c mice infected with M. tuberculosis H37Rv or a MDR strain, by determining pulmonary bacilli loads, tissue damage by automated histomorphometry, and expression of IFN-γ, TNF-α, and iNOS by quantitative RT-PCR. The in vitro assay showed that the UA/OA mixture has synergistic activity. The intracellular activity of these compounds against M. tuberculosis H37Rv and a MDR clinical isolate in a macrophage cell line showed that both compounds, alone and in combination, were active against intracellular mycobacteria even at low doses. Moreover, when both compounds were used to treat BALB/c mice with TB induced by H37Rv or MDR bacilli, a significant reduction of bacterial loads and pneumonia were observed compared to the control. Interestingly, animals treated with UA and OA showed a higher expression of IFN-γ and TNF-α in their lungs, than control animals. UA and OA showed antimicrobial activity plus an immune-stimulatory effect that permitted the control of experimental pulmonary TB.

  20. Infusion and decoction of wild German chamomile: bioactivity and characterization of organic acids and phenolic compounds.

    Science.gov (United States)

    Guimarães, Rafaela; Barros, Lillian; Dueñas, Montserrat; Calhelha, Ricardo C; Carvalho, Ana Maria; Santos-Buelga, Celestino; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2013-01-15

    Natural products represent a rich source of biologically active compounds and are an example of molecular diversity, with recognised potential in drug discovery. Herein, the methanol extract of Matricaria recutita L. (German chamomile) and its decoction and infusion (the most consumed preparations of this herb) were submitted to an analysis of phytochemicals and bioactivity evaluation. The antioxidant activity was determined by free radicals scavenging activity, reducing power and inhibition of lipid peroxidation; the antitumour potential was tested in human tumour cell lines (breast, lung, colon, cervical and hepatocellular carcinomas), and the hepatotoxicity was evaluated using a porcine liver primary cell culture (non-tumour cells). All the samples revealed antioxidant properties. The decoction exhibited no antitumour activity (GI(50)>400 μg/mL) which could indicate that this bioactivity might be related to compounds (including phenolic compounds) that were not extracted or that were affected by the decoction procedure. Both plant methanol extract and infusion showed inhibitory activity to the growth of HCT-15 (GI(50) 250.24 and 298.23 μg/mL, respectively) and HeLa (GI(50) 259.36 and 277.67 μg/mL, respectively) cell lines, without hepatotoxicity (GI(50)>400 μg/mL). Infusion and decoction gave higher contents of organic acids (24.42 and 23.35 g/100g dw). Otherwise, the plant methanol extract contained the highest amounts of both phenolic acids (3.99 g/100g dw) and flavonoids (2.59 g/100g dw). The major compound found in all the preparations was luteolin O-acylhexoside. Overall, German chamomile contains important phytochemicals with bioactive properties (mainly antitumour potential selective to colon and cervical carcinoma cell lines) to be explored in the pharmaceutical, food and cosmetics industries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Modulation of Fatty Acids and Interleukin-6 in Glioma Cells by South American Tea Extracts and their Phenolic Compounds.

    Science.gov (United States)

    Cittadini, María C; García-Estévez, Ignacio; Escribano-Bailón, M Teresa; Rivas-Gonzalo, Julián C; Valentich, Mirta A; Repossi, Gastón; Soria, Elio A

    2017-12-21

    Dietary phenolic compounds are plant metabolites with beneficial effects on the central nervous system. Thus, our aim was to identify anti-inflammatory compounds from South American plants on glia, which regulates neuro-immune response. The compounds were extracted from Lantana grisebachii (LG), Aspidosperma quebracho-blanco (AQB), and Ilex paraguariensis (IP) teas and identified by HPLC-DAD-MS. Extracts (0-200 µg/ml) were tested on human T98-G and rat C6 glioma lines. Cellular viability (by the resazurin assay), fatty acid profile (by gas chromatography) and pro-inflammatory interleukin-6 release (IL-6 by ELISA) were determined. Data were analyzed by partial least-square regression to discriminate bioactive compounds. Twenty-one compounds were determined in LG, mainly iridoids, which were linked to ω-3 and ω-6 polyunsaturated fatty acids, but not to IL-6 release. Thirty-one compounds were found in AQB, mostly hydroxybenzoic derivatives, which were positively related to IL-6 release. Twenty-three compounds were identified in IP, including caffeoylquinic derivatives and mainly chlorogenic acid. They increased the ω-7 palmitoleic fatty acid, which was related to IL-6 decrease. These results enhances phytochemical knowledge of widely available plants, and suggest the lipid-related anti-inflammatory activity of IP phenolic compounds, which give nutritional relevance to the tea.

  2. Reusable and Efficient Polystryrene-supported Acidic Ionic Liquid Catalyst for Mononitration of Aromatic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li Xia; Ling, Qi Long; Liu, Zu Liang; Xing, Xiao Dong; Zhu, Xiao Qin; Meng, Xiao [Nanjing Univ. of Science and Technology, Nanjing (China)

    2012-10-15

    A series of polystyrene-supported 1-(propyl-3-sulfonate)-3-methyl-imidazolium hydrosulfate acidic ionic liquid (PS-[SO{sub 3}H-PMIM][HSO{sub 4}]) catalysts were prepared and tested for mononitration of simple aromatics compounds with nitric acid. It was found that the reactivity of the catalysts increased with increasing [SO{sub 3}HPMIM][HSO{sub 4}] content. The para-selectivity was not only related to the [SO{sub 3}H-PMIM][HSO{sub 4}] content but also the substituent groups in aromatics. A reaction mechanism of nitration over this new catalyst was proposed. The catalytic activity of this catalyst decreased slightly after fifth runs in the synthesis of nitrotoluene.

  3. Lipoic Acid Gold Nanoparticles Functionalized with Organic Compounds as Bioactive Materials.

    Science.gov (United States)

    Turcu, Ioana; Zarafu, Irina; Popa, Marcela; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Culita, Daniela; Ghica, Corneliu; Ionita, Petre

    2017-02-16

    Water soluble gold nanoparticles protected by lipoic acid were obtained and further functionalized by standard coupling reaction with 1-naphtylamine, 4-aminoantipyrine, and 4'-aminobenzo-15-crown-5 ether. Derivatives of lipoic acid with 1-naphtylamine, 4-aminoantipyrine, and 4'-aminobenzo-15-crown-5 ether were also obtained and characterized. All these were tested for their antimicrobial activity, as well as for their influence on mammalian cell viability and cellular cycle. In all cases a decreased antimicrobial activity of the obtained bioactive nanoparticles was observed as compared with the organic compounds, proving that a possible inactivation of the bioactive groups could occur during functionalization. However, both the gold nanoparticles as well as the functionalized bioactive nanosystems proved to be biocompatible at concentrations lower than 50 µg/mL, as revealed by the cellular viability and cell cycle assay, demonstrating their potential for the development of novel antimicrobial agents.

  4. Structure elucidation of new compounds from acidic treatment of the progestins gestodene and drospirenone.

    Science.gov (United States)

    Colombo, Diego; Bombieri, Gabriella; Lenna, Roberto; Marchini, Nicoletta; Modica, Emilia; Scala, Antonio

    2006-08-01

    Gestodene acidic treatment afforded a single rearrangement product, namely 13-beta-ethyl-18,19-dinorpregna-4,14,16-trien-3,20-dione 3, which was originated through HCl-catalyzed Rupe rearrangement. Drospirenone acidic treatment yielded two epimeric lactones by addition of HCl to the 6beta,7beta-cyclopropane ring, namely 7beta-(chloromethyl)-15beta,16beta-methylene-3-oxo-17beta-pregn-4-ene-21,17-carbolactone 4 and 7beta-(chloromethyl)-15beta,16beta-methylene-3-oxo-17alpha-pregn-4-ene-21,17-carbolactone 5. The structure of the compounds was assessed by spectroscopic and crystallographic methods.

  5. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DEFF Research Database (Denmark)

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N.M.

    2016-01-01

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus...... denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO2. A modified thioesterase gene from E. coli (‘tesA) was integrated into the T. denitrificans chromosome under the control of Pkan or one of two native T. denitrificans promoters. The relative...... strength of the two native promoters as assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria...

  6. Lipoic Acid Gold Nanoparticles Functionalized with Organic Compounds as Bioactive Materials

    Directory of Open Access Journals (Sweden)

    Ioana Turcu

    2017-02-01

    Full Text Available Water soluble gold nanoparticles protected by lipoic acid were obtained and further functionalized by standard coupling reaction with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether. Derivatives of lipoic acid with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether were also obtained and characterized. All these were tested for their antimicrobial activity, as well as for their influence on mammalian cell viability and cellular cycle. In all cases a decreased antimicrobial activity of the obtained bioactive nanoparticles was observed as compared with the organic compounds, proving that a possible inactivation of the bioactive groups could occur during functionalization. However, both the gold nanoparticles as well as the functionalized bioactive nanosystems proved to be biocompatible at concentrations lower than 50 µg/mL, as revealed by the cellular viability and cell cycle assay, demonstrating their potential for the development of novel antimicrobial agents.

  7. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    María R. Alberto

    2012-03-01

    Full Text Available The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC, found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively. ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  8. Effects of inhalation of acidic compounds on pulmonary function in allergic adolescent subjects

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, J.Q.; Covert, D.S.; Pierson, W.E.

    1989-02-01

    There is concern about the human health effects of inhalation of acid compounds found in urban air pollution. It was the purpose of this study to investigate three of these acid compounds, sulfur dioxide (SO/sub 2/), sulfuric acid (H/sub 2/SO/sub 4/), and nitric acid (HNO/sub 3/) in a group of allergic adolescent subjects. Subjects were exposed during rest and moderate exercise to 0.7 mumole/m/sup 3/ (68 micrograms/m/sup 3/) H/sub 2/SO/sub 4/, 4.0 mumole/m/sup 3/ (0.1 ppm) SO/sub 2/, or 2.0 mumole/m/sup 3/ (0.05 ppm) HNO/sub 3/. Pulmonary functions (FEV1, total respiratory resistance, and maximal flow) were measured before and after exposure. Preliminary analysis based on nine subjects indicates that exposure to 0.7 mumole/m/sup 3/ H/sub 2/SO/sub 4/ alone and in combination with SO/sub 2/ caused significant changes in pulmonary function, whereas exposure to air or SO/sub 2/ alone did not. FEV1 decreased an average of 6% after exposure to H/sub 2/SO/sub 4/ alone and 4% when the aerosol was combined with SO/sub 2/. The FEV1 decrease was 2% after both air and SO/sub 2/ exposures. Total respiratory resistance (RT) increased 15% after the combined H/sub 2/SO/sub 4/ exposures, 12% after H/sub 2/SO/sub 4/ alone, and 7% after exposure to air. After exposures to HNO3 alone, FEV1 decreased by 4%, and RT increased by 23%. These results are preliminary; final conclusions must wait for completion of the study.

  9. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid.

    Science.gov (United States)

    Adnan, Mohd; Patel, Mitesh; Reddy, Mandadi Narsimha; Alshammari, Eyad

    2018-01-29

    In recent years, fungi have been shown to produce a plethora of new bioactive secondary metabolites of interest, as new lead structures for medicinal and other pharmacological applications. The present investigation was carried out to study the pharmacological properties of a potent and major bioactive compound: xylaranic acid, which was obtained from Xylaria primorskensis (X. primorskensis) terpenoids in terms of antibacterial activity, antioxidant potential against DPPH & H 2 O 2 radicals and anticancer activity against human lung cancer cells. Due to terpenoid nature, low water solubility and wretched bioavailability, its pharmacological use is limited. To overcome these drawbacks, a novel xylaranic acid silver nanoparticle system (AgNPs) is developed. In addition to improving its solubility and bioavailability, other advantageous pharmacological properties has been evaluated. Furthermore, enhanced anticancer activity of xylaranic acid and its AgNPs due to induced apoptosis were also confirmed by determining the expression levels of apoptosis regulatory genes p53, bcl-2 and caspase-3 via qRT PCR method. This is the first study developing the novel xylaranic acid silver nanoparticle system and enlightening its therapeutic significance with its improved physico-chemical properties and augmented bioactive potential.

  10. Fermentation of liquid coproducts and liquid compound diets: Part 2. Effects on pH, acid-binding capacity, organic acids and ethanol during a 6-day period

    NARCIS (Netherlands)

    Scholten, R.H.J.; Rijnen, M.M.J.A.; Schrama, J.W.; Boer, H.; Peet-Schwering, van der C.M.C.; Hartog, den L.A.; Vesseur, P.C.

    2001-01-01

    The effects of a 6-day storage period on changes in pH, acid-binding capacity, level of organic acids and ethanol of three liquid coproducts [liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW)] and two liquid compound diets [liquid grower diet (LGD) and liquid finisher

  11. The Infrared Spectrum Analysis on Compound Urea with Humic Acid Extracted from Weathered Coal

    Directory of Open Access Journals (Sweden)

    LIU Zeng-bing

    2014-10-01

    Full Text Available After treated with alkaline solution and then centrifuged, weathered coal was divided into water-soluble humic acid and deposi- tion. Then as the urea synergist materials, weathering coal, humic acid and deposition were respectively mixed with melted urea according to different proportion to produce three kinds of compound urea. The infrared spectrum analysis(IRof above synergist materials and products found that after being treated with alkaline, weathered coal was reduced carbon-carbon bond amount and its carbon chain became shorten,more active functional group happened to the HA extracts. While the FR deposition showed carbon-carbon bond reduced and parts of amine or amide structure were formed. Additionally, the IR also found that during the compound of urea with the synergists, the formation of carbon-carbon triple bond, the broken of accumulated double bonds, the shorten of carbon chain, and the formation of more double bond and stablestructure were observed. However, the different synergists mixed with urea brought out different IR characters.

  12. Adsorption of phenolic compounds from aqueous solution using salicylic acid type adsorbent.

    Science.gov (United States)

    An, Fuqiang; Du, Ruikui; Wang, Xiaohua; Wan, Min; Dai, Xin; Gao, Jianfeng

    2012-01-30

    In this study, 5-aminosalicylic acid (5-ASA) was successfully grafted onto the poly(glycidyl methacrylate) (PGMA) macromolecular chains of PGMA/SiO(2) to obtain adsorbent ASA-PGMA/SiO(2). The adsorption properties of ASA-PGMA/SiO(2) for phenolic compounds were studied through batch and column methods. The experimental results showed that ASA-PGMA/SiO(2) possesses strong adsorption ability for phenolic compounds, and its adsorption capacity for phenol, 4-chlorophenol, and p-nitrophenol reaches 1.0, 1.1, and 1.32 mmolg(-1), respectively. In addition, pH has a great influence on the adsorption capacity. The adsorption isotherm data obeyed the Langmuir model well than Freundlich model. The desorption of phenolic compounds from the ASA-PGMA/SiO(2) adsorbent was most effectively achieved in a 0.1 molL(-1) sodium hydroxide solution. Consecutive adsorption-desorption experiments showed that the ASA-PGMA/SiO(2) adsorbent could be reused almost without any loss in the adsorption capacity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Cross-reactivity of amino acids and other compounds in the biuret reaction: interference with urinary peptide measurements.

    Science.gov (United States)

    Hortin, Glen L; Meilinger, Bonnie

    2005-08-01

    Biuret assays for total protein measurement are considered to react with all peptides longer than 2 residues. Some studies using biuret assays of urine suggest that small peptides generally are more abundant than proteins in urine, but it is not clear whether this is a problem of assay specificity. We analyzed the specificity and kinetics of a biuret reaction for solutions of amino acids, organic compounds, peptides, proteins, and ultrafiltered urine specimens and compared the results with standard clinical assays for protein measurement. The biuret assay cross-reacted with several amino acids, dipeptides, and other organic compounds able to form 5- or 6-member ring chelation complexes with copper. Reactions with amino acids and dipeptides had higher absorbance maxima (blue color) than with larger peptides and proteins (purple). Compounds forming potential 4-, 7-, 8-, or 9-member ring complexes with copper had low reactivity. Amino acid amides, dipeptides, and longer peptides had substantial reactivity, except those containing proline. Proteins and polypeptides had similar biuret reactivities per peptide bond, but reaction kinetics were slower for proteins than peptides. Urine specimens ultrafiltered through 3-kDa-cutoff membranes had substantial biuret reactivity, but absorbance maxima were consistent with cross-reactive amino acids rather than peptides. Many compounds, including amino acids, amino acid derivatives, and dipeptides, cross-react in biuret assays. Our studies improve understanding of the specificity of endpoint and kinetic biuret assays widely used in clinical laboratories. Amino acids, urea, and creatinine contribute to overestimation of urinary peptide content by biuret assays.

  14. The reduction of plutonium: comparison between hydroquinone and fulvic acid as reducing compound

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, C.M. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Kar lsruhe, 76021 Karlsruhe (Germany)]. e-mail: Marquardt@ine.fzk.de; Seibert, A. [Europe an Commission, Joint Research Centre, Inst. for Transuranium Elements, D-76125 K arlsruhe (Germany)

    2007-06-15

    In first experiments the reduction sequence of Pu starting with Pu(VI) was studied in presence of hydroquinone (HQ) and fulvic acid (FA) as reducing compounds at various pH values between pH 1 and 7. The Pu species were monitored by UV-Vis spectroscopy and liquid-liquid extraction. Pu(V) and (VI) are not stable in aqueous solutions containing hydroquinone and fulvic acid (FA) at pH 1 to 7. With 200 mg/L FA the reduction of Pu(VI) to Pu(V) is fast and complete after 30 minutes at pH 3. Compared to the reduction reaction at similar concentration of HQ, the FA reduction is slower. We also observed that Pu(VI) is unstable in solutions devoid of FA at pH values > 3, but that the rate is much slower than in presence of FA and HQ. Pu(V) in same solutions is converted to Pu(IV), the most stable oxidation state in aqueous solutions containing FA at pH 3 - 7 (relevant for natural aquifers). Reduction of Pu(IV) to Pu(III) was found only at pH values < 5 for HQ and < 3 for FA. The reactions were also monitored by Eh measurements. The present studies showed that a correlation between Eh values and thermodynamic calculations might be a capable tool for modelling redox reactions between Pu ions and hydroquinone or hydroquinone-like compounds like FA. It cannot be excluded that Pu(III) is more stable in solutions containing organic compounds with lower redox potential than the GoHy-573-FA batch used in the present studies.

  15. Fatty acid profiles, antioxidant compounds and antiradical properties of Pinus halepensis Mill. cones and seeds.

    Science.gov (United States)

    Dhibi, Madiha; Mechri, Beligh; Brahmi, Faten; Skhiri, Fathia; Alsaif, Mohammed A; Hammami, Mohamed

    2012-06-01

    Pinus halepensis (Aleppo pine) is a widespread tree that can be found in both natural and urban environments. A discrimination study based on the antioxidant compounds, antioxidant capacity and fatty acid (FA) profile of P. halepensis cones (PHC) and seeds (PHS) was performed. The total amount of phenols was about 72-fold higher in PHC extract than in PHS extract (P < 0.001). Anthocyanin and carotenoid contents were 10- and 12-fold higher respectively in PHC extract. PHC and PHS extracts at a concentration of 1 mg mL(-1) differed significantly in free radical-scavenging activity on 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)) (86.65 vs 16.97%). PHC had higher antioxidant ability on 2,2'-azino-bis(3-ethylbenzothialozine-6-sulfonic acid) radical cation (ABTS(•+)) than PHS (EC(50) 0.368 vs 2.345 mg mL(-1)). The FA profile of PHC oil revealed its richness in saturated FAs (41.5%) and high levels of trans FA isomers, with a predominance of trans,trans-linoleic acid (4.74%). However, polyunsaturated FAs in PHS oil represented more than 64% of total FAs. PHC showed important antioxidant activities as well as high levels of bioactive compounds. Thus PHC is a potential source of natural antioxidants that may afford several health benefits. However, the lipid extract of PHS seems to have more nutritional value as a polyunsaturated oil than that of PHC, which is high in saturated and trans FAs. Copyright © 2011 Society of Chemical Industry.

  16. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, P., E-mail: paola.calza@unito.it; Vione, D.; Minero, C.

    2014-09-15

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH 8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2′-bisphenol, 4,4′-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. - Highlights: • Phenol transformation in seawater can be photosensitized by humic substances. • Dimeric species are peculiar intermediates formed in the process. • Phenol degradation occurred faster with

  17. Separation and concentration of lanthanoids using microcapsules containing acidic organophosphorus compounds as an extractant

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, Eiji; Kondo, Kazuo [Doshisha Univ., Department of Chemical Engineering and Materials Science, Kyoto (Japan)

    2002-06-01

    In this study, we measured the extraction equilibria of lanthanoids with microcapsules containing acidic organophosphorus compound as an extractant and discuss their mutual separation by using a column packed with the microcapsules. The extraction equilibria of lanthanoids into the microcapsules containing 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (EHPNA) were elucidated and the extraction equilibrium constants were calculated by slope-analysis method. It was suggested that the lanthanoid ions are extracted in the microcapsules in a high loading state. Furthermore, the adsorption behavior of lanthanoids into the column packed with the microcapsules containing EHPNA was observed. It was found that adsorption and elution of lanthanoids are briefly achieved by selecting pH of the feed aqueous solution. However, it was impossible to separate them only in adsorption or elution operation. So, the mutual separation of lanthanoids was investigated using the adsorption column connected to the development column containing microcapsules. By selecting pH of the eluent, each metal was separated mutually in more than 95% of purity. The metal ions in the eluent from the development column could be concentrated by treating it with a column packed with the microcapsules containing di(2-ethylhexyl) phosphoric acid (D2EHPA). Considering these information, it will be possible to design a continuous extracting, separating and concentrating reactor of lanthanoids using a column packed with the microcapsules. (author)

  18. Citric acid compounds of tangerines peel extract (Citrus reticulata) as potential materials teeth whitening

    Science.gov (United States)

    Pratiwi, F.; Tinata, J. K.; Prakasa, A. W.; Istiqomah; Hartini, E.; Isworo, S.

    2017-04-01

    Peel of citrus fruit (Citrus reticulata) has a variety of possible chemical compounds that may serve as a potential whitening teeth. This research is conducted on a laboratory scale; therefore, it needs to be developed on an application scale. A quasi-experimental was employed in this study. Citric acid extraction was carried out on the type of Sweet Orange (Citrus Aurantium L), Tangerine (Citrus Reticulata Blanco or Citrus Nobilis), Pomelo (Citrus Maxima Merr, Citrus grandis Osbeck), and Lemon (Citrus Limon Linn). Citric acid’s ability test as teeth whitener was performed on premolar teeth with concentrations of 2.5%, 5%, and 10%. The experiments were replicated in 3 times, and teeth whiteness level was measured using Shade Guide VITA Classical. The result of this research showed that citric acid in every kind of orange peel with various concentration has different abilities on whitening teeth. The highest colour level obtained from Tangerine peel’s citric acid concentration of 5%. Orange peel extract has the best teeth whitening abilities tested by the method of Gass Chromatography to know the active ingredients.

  19. Effect of ripening time and rearing system on amino acid-related flavour compounds of Iberian ham.

    Science.gov (United States)

    Jurado, Angela; García, Carmen; Timón, María L; Carrapiso, Ana I

    2007-04-01

    The evolution of free amino acids and amino acid-derived volatile compounds during the ripening of Iberian ham from pigs reared in a Montanera system (outdoor-based, with acorn and pasture available) and a Pienso system (indoor-based, with a high oleic acid concentrate) was studied. Ripening time influenced significantly all the free amino acids detected (pPienso ones. With regard to the amino acid derived volatile compounds, only a significant influence of rearing system on acetaldehyde and on the coelution of 2,6-dimethylpyrazine+dihidro-2(3H)furanone was found. The small differences caused by rearing system confirm the great importance of concentrate formulation.

  20. Synthesis and evaluation of ?-hydroxy fatty acid-derived heterocyclic compounds with potential industrial interest

    Directory of Open Access Journals (Sweden)

    El-Sayed, R.

    2006-12-01

    Full Text Available T2-Hydroxyheptadecanoic acid chloride (2 reacted with anthranilic acid to produce 2-substituted-3,1-benzoxazin-4-one (3 which was used as starting material to synthesize some condensed and non-condensed heterocyclic compounds by reaction with nitrogen nucleophiles e.g., hydrazine hydrate, and formamide. The products were subjected to reaction with different moles of propylene oxide (n = 5, 10, 15 to produce a novel group of nonionic compounds having a double function as antibacterial and surface active agents which can be used in the manufacturing of drugs, cosmetics, pesticides or can be used as antibacterial and/or antifungal additives. The surface active properties as surface and interfacial tension, cloud point, foaming height, wetting time, and emulsification power were determined, the antimicrobial and biodegradability were also screened.El cloruro del ácido 2-hidroxiheptadecanoico (2 reaccionó con el ácido antranílico para producir 3,1-benzoxazin-4-onas 2-sustituidas que fueron usadas como material de partida en la síntesis de compuestos heterocíclicos condensados y no condensados por reacción con nucleófilos nitrogenados, como la hidracina o la formamida. Los productos fueron hechos reaccionar con diferentes moles de óxido de propileno (n = 5, 10, 15 para producir un grupo nuevo de compuestos no-iónicos teniendo una doble función como antibacterianos y tensoactivos que pueden ser usados en la manufactura de medicamentos, cosméticos, pesticidas, o pueden ser usados como aditivos antibacterianos y/o antifúngicos. Se determinaron diversas propiedades físicas de los compuestos preparados así como sus efectos antimicrobianos y sus biodegrabilidad.

  1. Characterization of dicarboxylic naphthenic acid fraction compounds utilizing amide derivatization: Proof of concept.

    Science.gov (United States)

    Kovalchik, Kevin A; MacLennan, Matthew S; Peru, Kerry M; Ajaero, Chukwuemeka; McMartin, Dena W; Headley, John V; Chen, David D Y

    2017-12-30

    The characterization of naphthenic acid fraction compounds (NAFCs) in oil sands process affected water (OSPW) is of interest for both toxicology studies and regulatory reasons. Previous studies utilizing authentic standards have identified dicarboxylic naphthenic acids using two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC × GC/TOFMS). The selective derivatization of hydroxyl groups has also recently aided in the characterization of oxy-NAFCs, and indirectly the characterization of dicarboxylic NAFCs. However, there has been no previous report of derivatization being used to directly aid in the standard-free characterization of NAFCs with multiple carboxylic acid functional groups. Herein we present proof-of-concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization. Carboxylic acid groups in OSPW extract and in a dicarboxylic acidstandard were derivatized to amides using a previously described method. The derivatized extract and derivatized standard were analyzed by direct-injection positive-mode electrospray ionization ((+)ESI) high-resolution mass spectrometry (HRMS), and the underivatized extract was analyzed by (-)ESI MS. Tandem mass spectrometry (MS/MS) was carried out on selected ions of the derivatized standard and derivatized OSPW. Data analysis was carried out using the Python programming language. The distribution of monocarboxylic NAFCs observed in the amide-derivatized OSPW sample by (+)ESI-MS was generally similar to that seen in underivatized OSPW by (-)ESI-MS. The dicarboxylic acid standard shows evidence of being doubly derivatized, although the second derivatization appears to be inefficient. Furthermore, a spectrum of potential diacid NAFCs is presented, identified by both charge state and derivatization mass. Interference due to the presence of multiple derivatization products is noted, but can be eliminated using on-line separation or an isotopically labelled derivatization

  2. Adsorption of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and related compounds onto montmorillonite clay.

    Science.gov (United States)

    Greesh, Nagi; Hartmann, Patrice C; Cloete, Valeska; Sanderson, Ronald D

    2008-03-01

    Sodium montmorillonite clay (Na-MMT) was modified using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). The objective of this study was to determine which chemical group is the 'driving force' leading to the adsorption of AMPS inside the clay galleries. AMPS has been reported to be a good candidate as a clay modifier for the preparation of polymer-clay nanocomposites by in situ free radical polymerization in emulsion. However, the way in which AMPS interacts with the surface of MMT has not yet been studied. The type of interaction between organic modifiers and clay plays a determining role in the successful preparation of polymer-clay nanocomposite materials. The adsorption ability of three other organic compounds similar to AMPS, namely sodium 1-allyloxy-2-hydroxypropyl sulfonate (Cops), N-isopropylacrylamide (NIPA) and methacryloyloxyundecan-1-yl sulfate (MET), was also evaluated. These selected compounds also have functional groups potentially able to interact with the clay surface (i.e., a sulfonate group, an amido group, or a sulfate group, respectively). Results of FT-IR, TGA and SAXS analyses showed that AMPS, NIPA, Cops and MET all interacted with clay, but to various extents.

  3. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    Science.gov (United States)

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-01-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene. PMID:28322320

  4. Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds

    Science.gov (United States)

    Aprea, Eugenio; Charles, Mathilde; Endrizzi, Isabella; Laura Corollaro, Maria; Betta, Emanuela; Biasioli, Franco; Gasperi, Flavia

    2017-03-01

    Sweetness is one of the main drivers of consumer preference, and thus is given high priority in apple breeding programmes. Due to the complexity of sweetness evaluation, soluble solid content (SSC) is commonly used as an estimation of this trait. Nevertheless, it has been demonstrated that SSC and sweet taste are poorly correlated. Though individual sugar content may vary greatly between and within apple cultivars, no previous study has tried to investigate the relationship between the amount of individual sugars, or ratios of these, and apple sweetness. In this work, we quantified the major sugars (sucrose, glucose, fructose, xylose) and sorbitol and explored their influence on perceived sweetness in apple; we also related this to malic acid content, SSC and volatile compounds. Our data confirmed that the correlation between sweetness and SSC is weak. We found that sorbitol content correlates (similarly to SSC) with perceived sweetness better than any other single sugar or total sugar content. The single sugars show no differentiable importance in determining apple sweetness. Our predictive model based on partial least squares regression shows that after sorbitol and SSC, the most important contribution to apple sweetness is provided by several volatile compounds, mainly esters and farnesene.

  5. Microemulsion electrokinetic chromatography as a suitable tool for lipophilicity determination of acidic, neutral, and basic compounds.

    Science.gov (United States)

    Subirats, Xavier; Yuan, Hui-Ping; Chaves, Verónica; Marzal, Núria; Rosés, Martí

    2016-07-01

    In the present work, several MEEKC systems are studied to assess their suitability for lipophilicity determination of acidic, neutral, and basic compounds. Thus, several microemulsion compositions over a wide range of pH values (from 2.0 to 12.0), containing heptane, 1-butanol and different types and amounts of surfactant (SDS or sodium cholate: from 1.3 to 3.3%) are characterized using Abraham's solvation model. The addition of acetonitrile (up to 10%) is also studied, since it increases the resolution of the technique for the most lipophilic compounds. The system coefficients obtained are very similar to those of the 1-octanol/water, used as the reference lipophilicity index, allowing simple and linear correlations between the 1-octanol/water partition values (log Po/w ) and MEEKC mass distribution ratios (log kMEEKC ). Variations in the microemulsion composition (aqueous buffer, surfactant, concentration of ACN) did not significantly affect the similarity of the MEEKC systems to log Po/w partition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry's Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds.

    Science.gov (United States)

    Hilal, S H; Saravanaraj, A N; Carreira, L A

    2014-02-01

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry's Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aqueous pKa values, relative pKa values in the gas phase, and aqueous HLC for neutral compounds have been used to develop monopole interaction models that quantify the energy differences upon moving an ionic solute molecule from the gas phase to the liquid phase. Inter-molecular interaction energies were factored into mechanistic contributions of monopoles with polarizability, dipole, H-bonding, and resonance. The monopole ionic models were validated by a wide range of measured gas phase pKa data for 450 acidic compounds. The RMS deviation error and R(2) for the OH, SH, CO2 H, CH3 and NR2 acidic reaction centers (C) were 16.9 kcal/mol and 0.87, respectively. The calculated HLCs of ions were compared to the HLCs of 142 ions calculated by quantum mechanics. Effects of inter-molecular interaction of the monopoles with polarizability, dipole, H-bonding, and resonance on acidity of the solutes in the gas phase are discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model.

    Science.gov (United States)

    Kang, Bo-Sik; Lee, Jang-Eun; Park, Hyun-Jin

    2014-06-01

    In Korean rice wine (makgeolli) model, we tried to develop a prediction model capable of eliciting a quantitative relationship between initial amino acids in makgeolli mash and major aromatic compounds, such as fusel alcohols, their acetate esters, and ethyl esters of fatty acids, in makgeolli brewed. Mass-spectrometry-based electronic nose (MS-EN) was used to qualitatively discriminate between makgeollis made from makgeolli mashes with different amino acid compositions. Following this measurement, headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (GC-MS) combined with partial least-squares regression (PLSR) method was employed to quantitatively correlate amino acid composition of makgeolli mash with major aromatic compounds evolved during makgeolli fermentation. In qualitative prediction with MS-EN analysis, the makgeollis were well discriminated according to the volatile compounds derived from amino acids of makgeolli mash. Twenty-seven ion fragments with mass-to-charge ratio (m/z) of 55 to 98 amu were responsible for the discrimination. In GC-MS combined with PLSR method, a quantitative approach between the initial amino acids of makgeolli mash and the fusel compounds of makgeolli demonstrated that coefficient of determination (R(2)) of most of the fusel compounds ranged from 0.77 to 0.94 in good correlation, except for 2-phenylethanol (R(2) = 0.21), whereas R(2) for ethyl esters of MCFAs including ethyl caproate, ethyl caprylate, and ethyl caprate was 0.17 to 0.40 in poor correlation. The amino acids have been known to affect the aroma in alcoholic beverages. In this study, we demonstrated that an electronic nose qualitatively differentiated Korean rice wines (makgeollis) by their volatile compounds evolved from amino acids with rapidity and reproducibility and successively, a quantitative correlation with acceptable R2 between amino acids and fusel compounds could be established via HS-SPME GC-MS combined with partial least

  8. Evaluation of the pharmacological properties of salicylic acid-derivative organoselenium: 2-hydroxy-5-selenocyanatobenzoic acid as an anti-inflammatory and antinociceptive compound.

    Science.gov (United States)

    Chagas, Pietro Maria; Rosa, Suzan Gonçalves; Sari, Marcel Henrique Marcondes; Oliveira, Carla Elena Sartori; Canto, Rômulo Faria Santos; da Luz, Sônia Cristina Almeida; Braga, Antonio Luiz; Nogueira, Cristina Wayne

    2014-03-01

    The present study evaluated the antinociceptive and anti-inflammatory effects of per oral (p.o.) administration of salicylic acid-derivative organoselenium compounds in chemical models of nociception in mice. The compounds (50 mg/kg; p.o.) were administered 30 and 60 min before the nociceptive behavior and compared to the positive-control, acetylsalicylic acid (ASA; 200 mg/kg; p.o.). In addition, a dose-response curve (25-100 mg/kg) for compounds was carried out in the formalin test. When assessed in the chemical models, acetic acid-induced writhing behavior, formalin and glutamate tests, the compounds showed the following antinociceptive profile 1B>2B>1A>2A, suggesting a chemical structure-dependent relationship. Then, the anti-inflammatory properties and toxicological potential of compound 1B were investigated. Compound 1B, similar to the positive-control, ASA, diminished the edema formation and decreased the myeloperoxidase activity induced by croton oil (2.5%) in the ear tissue. The results also indicate that a single oral administration of 1B caused neither signs of acute toxicity nor those of gastrointestinal injury. The administration of 1B did not alter the water and food intakes, plasma alanine and aspartate aminotransferase activities or urea levels and cerebral or hepatic δ-aminolevulinate dehydratase activity. Salicylic acid-derivative organoseleniums, mainly compound 1B, have been found to be novel compounds with antinociceptive/anti-inflammatory properties; nevertheless, more studies are required to examine their therapeutic potential for pain treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid

    DEFF Research Database (Denmark)

    Rasmussen, Bastian Barker; Grotkjær, Torben; D'Alvise, Paul

    2016-01-01

    -pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any......, and whole-genome sequencing of TDA-exposed lineages and clones revealed few mutational changes, compared to lineages grown without TDA. Amino acid-changing mutations were found in two to six different genes per clone; however, no mutations appeared unique to the TDA-exposed lineages or clones. None...... prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we were concerned regarding whether long-term exposure to this compound could induce resistance or affect the disease-causing ability of the fish...

  10. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  11. An acidity scale of tetrafluoroborate salts of phosphonium and iron hydride compounds in [D2]dichloromethane.

    Science.gov (United States)

    Li, Tianshu; Lough, Alan J; Morris, Robert H

    2007-01-01

    Equilibrium constants (K) for reactions between acids and the conjugate base forms of a number of phosphonium salts, [HPR3][BF4], and iron hydrides, [Fe(CO)3H(PR3)2][BF4], in CD(2)Cl(2) have been determined by means of 31P and 1H NMR spectroscopy at 20 degrees C. The anchor compound chosen for pK(CD(2)Cl(2)) determinations was [HPCy3][BF4] with a pK(CD(2)Cl(2)) value of 9.7, as assigned by literature convention (Cy: cyclohexyl). A continuous scale of pK(CD(2)Cl(2)) values covering the range from 9.7 to -3 was created and correlated with the DeltaH values reported by Angelici and co-workers and literature pK(a) values. The pK(CD(2)Cl(2)) values for 15 other hydride or dihydrogen complexes of the iron group elements and of diethyl ether were also placed on this scale. The crystal structures of [Fe(CO)3H(PCy(2)Ph)2][BF4] and [Fe(CO)3(PCy(2)Ph)2] revealed that the trans-oriented, bulky, unsymmetrical phosphane ligands distort the equatorial plane of the complexes. The acidity of iron carbonyl hydrides is an important feature of the reactions of iron hydrogenase enzymes.

  12. Site-specific acid-base properties of pholcodine and related compounds.

    Science.gov (United States)

    Kovács, Z; Hosztafi, S; Noszál, B

    2006-11-01

    The acid-base properties of pholcodine, a cough-depressant agent, and related compounds including metabolites were studied by 1H NMR-pH titrations, and are characterised in terms of macroscopic and microscopic protonation constants. New N-methylated derivatives were also synthesized in order to quantitate site- and nucleus-specific protonation shifts and to unravel microscopic acid-base equilibria. The piperidine nitrogen was found to be 38 and 400 times more basic than its morpholine counterpart in pholcodine and norpholcodine, respectively. The protonation data show that the molecule of pholcodine bears an average of positive charge of 1.07 at physiological pH, preventing it from entering the central nervous system, a plausible reason for its lack of analgesic or addictive properties. The protonation constants of pholcodine and its derivatives are interpreted by comparing with related molecules of pharmaceutical interest. The pH-dependent relative concentrations of the variously protonated forms of pholcodine and morphine are depicted in distribution diagrams.

  13. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    Science.gov (United States)

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Nucleophilic dearomatization of 4-aza-6-nitrobenzofuroxan by CH acids in the synthesis of pharmacology-oriented compounds

    Directory of Open Access Journals (Sweden)

    Alexey M. Starosotnikov

    2017-12-01

    Full Text Available 4-Aza-6-nitrobenzofuroxan (ANBF reacts with 1,3-dicarbonyl compounds and other CH acids to give carbon-bonded 1,4-adducts – 1,4-dihydropyridines fused with furoxan ring. In the case of most acidic β-diketones, which exist mainly in the enol form in polar solvents, the reactions proceed in the absence of any added base emphasizing the highly electrophilic character of ANBF. The resulting compounds combine in one molecule NO-donor furoxan ring along with a pharmacologically important 1,4-dihydropyridine fragment and therefore can be considered as prospective platforms for the design of pharmacology-oriented heterocyclic systems.

  15. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds.

    Science.gov (United States)

    Slatnar, Ana; Klancar, Urska; Stampar, Franci; Veberic, Robert

    2011-11-09

    Fresh figs were subjected to two different drying processes: sun-drying and oven-drying. To assess their effect on the nutritional and health-related properties of figs, sugars, organic acids, single phenolics, total phenolics, and antioxidant activity were determined before and after processing. Samples were analyzed three times in a year, and phenolic compounds were determined using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). In figs, monomer sugars predominate, which is important nutritional information, and the content of sugars as well as organic acids in fresh figs was lower than in dried fruits. However, the best sugar/organic acid ratio was measured after the sun-drying process. Analysis of individual phenolic compounds revealed a higher content of all phenolic groups determined after the oven-drying process, with the exception of cyanidin-3-O-rutinoside. Similarly, higher total phenolic content and antioxidant activity were detected after the drying process. With these results it can be concluded that the differences in analyzed compounds in fresh and dried figs are significant. The differences between the sun-dried and oven-dried fruits were determined in organic acids, sugars, chlorogenic acid, catechin, epicatechin, kaempferol-3-O-glucoside, luteolin-8-C-glucoside, and total phenolic contents. The results indicate that properly dried figs can be used as a good source of phenolic compounds.

  16. Application of poly(aspartic acid-citric acid copolymer compound inhibitor as an effective and environmental agent against calcium phosphate in cooling water systems

    Directory of Open Access Journals (Sweden)

    Yu-ling Zhang

    2016-12-01

    Full Text Available Poly(aspartic acid-citric acid copolymer (PAC is a new product of poly(carboxylic acid scale inhibitor. The study aims to develop a “green” water treatment agent for calcium phosphate scale. The article compares the efficiency of three polymeric antiscalants, poly(aspartic acid-citric acid copolymer (PAC, polymaleic acid (HPMA and a compound inhibitor (PAC-HPMA, for calcium phosphate scale prevention under varying experimental conditions. Inhibitor concentration, calcium concentration, system pH, temperature and experimental time were varied to determine their influences on inhibitor performance by the static scale inhibition method. The copolymer (PAC was characterized by FTIR, 1H NMR and 13C NMR. The compound inhibitor was applied in the actual circulating cooling water system. An atomic force microscope (AFM, X-ray powder diffraction (XRD and a scale formation process analysis were used to explore the scale inhibition mechanism. The results showed that scale inhibition rates of PAC, HPMA and PAC-HPMA against Ca3(PO42 were, respectively, about 23%, 41.5% and 63% when the dosage was 8 mg/L in the experiment. The compound inhibitor showed the better inhibition performance than the above two kinds of monomers. Under the actual working conditions, the inhibition rate of compound inhibitor was close to 100% and completely met the actual application requirements of scale inhibitor in circulating cooling water systems. The main inhibition mechanism was the decomposition-chelation dispersion effect. The compound inhibitor can be used as an efficient “green” scale inhibitor for calcium phosphate.

  17. Effect of Thermoultrasound on the Antioxidant Compounds and Fatty Acid Profile of Blackberry (Rubus fruticosus spp. Juice

    Directory of Open Access Journals (Sweden)

    José de Jesús Manríquez-Torres

    2016-11-01

    Full Text Available Blackberry (Rubus fruticosus spp. fruit has high antioxidant activity due to its significant content of anthocyanins and antioxidant compounds. Among emerging technologies for food preservation, thermoultrasound is a technique that reduces microbial loads and releases compounds with antioxidant properties. The objective of this study was to determine the antioxidant content and fatty acid profile of blackberry juice subjected to thermoultrasound treatment in comparison to pasteurized juice. Blackberry juice and n-hexane extracts from a control (untreated juice, pasteurized, and thermoultrasonicated samples were evaluated for antioxidant activity, fatty acid profile, and antioxidant content. The juice treated with thermoultrasound exhibited significantly (p < 0.05 higher levels of total phenols (1011 mg GAE/L, anthocyanins (118 mg Cy-3-GlE/L; antioxidant activity by ABTS (44 mg VCEAC/L and DPPH (2665 µmol TE/L in comparison to the control and pasteurized samples. Oil extract from thermoultrasound juice also had the highest antioxidant activity (177.5 mg VCEAC/L and 1802.6 µmol TE/L. The fatty acid profile of the n-hexane extracts showed the presence of myristic, linolenic, stearic, oleic, and linoleic acids and was not affected by the treatments except for stearic acid, whose amount was particularly higher in the control. Our results demonstrated that thermoultrasound can be an alternative technology to pasteurization that maintains and releases antioxidant compounds and preserves the fatty acids of fruit juice.

  18. Production of the flavor compound benzaldehyde by lactic acid bacteria: role of manganese and its transport systems in Lactobacillus plantarum

    NARCIS (Netherlands)

    Nierop Groot, M.N.

    2001-01-01

    One of the aims of the research described in this thesis (Chapter 1 and 2) was to investigate the conversion of phenylalanine to the aromatic flavor compound benzaldehyde in lactic acid bacteria (LAB) (Chapter 3). Lactobacillus plantarum was used as the model organism to study

  19. Thioacidolysis Marker Compound for Ferulic Acid Incorporation into Angiosperm Lignins (and an Indicator for Cinnamoyl-coenzyme-A Reductase Deficiency

    Science.gov (United States)

    A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignification in angiosperms (poplar, Arabidopsis, tobacco) has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-m...

  20. Sacha Inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytoserols, phenolic compounds and antioxidant capacity

    NARCIS (Netherlands)

    Chirinos, R.; Zuloeta, G.; Pedreschi Plasencia, R.P.

    2013-01-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A

  1. Hepatoprotective Activity of a Complex Compound of 5-Hydroxy-6-Methyluracil and Succinic Acid in Experimental Peritonitis

    Directory of Open Access Journals (Sweden)

    D. A. Yenikeyev

    2008-01-01

    Full Text Available Objective: to evaluate the hepatoprotective efficacy of a complex compound of 5-hydroxy-6-methyluracil and succinic acid in experimental peritonitis. Materials and methods. Experiments were carried out on 48 male albino rats in which peritonitis was simulated via intraperitoneal administration of 7% fecal suspension in a dose of 0.6 ml per 100 g bodyweight. The rate of free radical oxidation processes, the activity of antioxidative protection, the degree of endogenous intoxication and cytolytic syndrome, and the effect of the test compound on these parameters were estimated in the experiment. Results. With the development of an abdominal inflammatory process, there were increases in rates of endogenous intoxication and free radical oxidation (FRO, a change in the activity of antioxidative protection enzymes, and a reduction in the levels of ceruloplasmin and sulfahydryl groups. The complex compound, that comprised 5-hydroxy-6-methyluracil and succinic acid used as monotherapy, reduced the degree of endogenous intoxication, FRO, and lipid peroxidation-antioxidative defense system imbalance. Conclusion. The experimental data suggest that the use of the complex compound containing succinic acid and 5-hydroxy-6-methy-luracil is pathogenetically warranted. Key words: peritonitis, lipid peroxidation, antioxidants, succinic acid, pyrim-idine derivatives.

  2. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds.

    Science.gov (United States)

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Peppers (Capsicum spp.) are consumed worldwide, imparting flavor, aroma, and color to foods, additionally containing high concentrations of biofunctional compounds. This is the first report about the effect of the inoculation of two Rhizobium strains on sterols, triterpenes, fatty acids, and volatile compounds of leaves and fruits of pepper (Capsicum annuum L.) plants. Generally, inoculation with strain TVP08 led to the major changes, being observed a decrease of sterols and triterpenes and an increase of fatty acids, which are related to higher biomass, growth, and ripening of pepper fruits. The increase of volatile compounds may reflect the elicitation of plant defense after inoculation, since the content on methyl salicylate was significantly increased in inoculated material. The findings suggest that inoculation with Rhizobium strains may be employed to manipulate the content of interesting metabolites in pepper leaves and fruits, increasing potential health benefits and defense abilities of inoculated plants.

  3. Characterization of Binary Organogels Based on Some Azobenzene Compounds and Alkyloxybenzoic Acids with Different Chain Lengths

    Directory of Open Access Journals (Sweden)

    Yongmei Hu

    2014-01-01

    Full Text Available In this work the gelation behaviors of binary organogels composed of azobenzene amino derivatives and alkyloxybenzoic acids with different lengths of alkyl chains in various organic solvents were investigated and characterized. The corresponding gelation behaviors in 20 solvents were characterized and shown as new binary organic systems. It showed that the lengths of substituent alkyl chains in compounds have played an important role in the gelation formation of gelator mixtures in present tested organic solvents. Longer methylene chains in molecular skeletons in these gelators seem more suitable for the gelation of present solvents. Morphological characterization showed that these gelator molecules have the tendency to self-assemble into various aggregates from lamella, wrinkle, and belt to dot with change of solvents and gelator mixtures. Spectral characterization demonstrated different H-bond formation and hydrophobic force existing in gels, depending on different substituent chains in molecular skeletons. Meanwhile, these organogels can self-assemble to form monomolecular or multilayer nanostructures owing to the different lengths of due to alkyl substituent chains. Possible assembly modes for present xerogels were proposed. The present investigation is perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.

  4. Measurements of Volatile Organic Compounds and Gaseous Sulfuric Acid During the 2008 CAREBEIJING Campaign

    Science.gov (United States)

    Zhang, R.; Zheng, J.; Hu, M.; Zhu, T.

    2009-05-01

    Air quality in Beijing has been a hot topic recently, because Beijing hosted the 2008 summer Olympics. To combat the problem, China ordered numerous factories shut down or used only sporadically during the games to limit air pollution in the area. Another major step involved ordering about one-half of the city's 3.3 million vehicles off the road during the games, allowing only cars on roads with odd or even-numbered license plates on alternate days until the games were over. In addition, China has implemented new auto emission standards since March 2009 with regulations that are similar to those used throughout Europe. Our team at the Texas A&M participated in the 2008 CAREBEIJING campaign, with the objectives of studying the complex chemistry of the air in Beijing, looking at emission controls and their effectiveness, studying the surrounding air from other regions and how it can affect Beijing's air, and comparing all of our findings with air quality in other cities we have examined, such as Mexico City and Houston. In this talk, preliminary results of measurements of volatile organic compounds (VOCs) and gaseous sulfuric acid will be presented to discuss the trends of VOCs and new particle formation associated with the traffic control.

  5. Chlorogenic acid was specifically induced among phenolic compounds in centipedegrass by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    An, Byung Chul; Barampuram, Shyamkumar; Lee, Seung Sik; Lee, Eun Mi; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-03-15

    Centipedegrass is a warm season turfgrass in the world. Chlorogenic acid (CA) is one of the important compounds present in the leaf of centipedegrass and already known as an antioxidant, CA has become a key resistance against insect pests and bacteria pathogens of agricultural and horticultural plants during seedlling stage. Furthermore, CA is accumulated by abiotic stress such as an UV irradiation. In present study, we investigated enhancement of the level of CA upon gamma irradiation in centipedegrass. The high performance liquid chromatography (HPLC) data analysis showed an approximately increasing of the CA levels from among the irradiated samples. However, plants irradiated at 50 Gy showed a constant increase in the CA level (0.0066 to 0.114 mg ml{sup -1} and 0.0258 to 0.2211 mg ml{sup -1}, respectively) from 3{sup rd} to 15{sup th} day among one and three month irradiated plants compared to control. The present study, indicates an increase in the CA level upon gamma irradiation, suggests strategy for conferment of strong resistance on seedling stage plants by gamma irradiation as simplicity and cheaply method.

  6. Cell motility is inhibited by the antiepileptic compound, valproic acid and its teratogenic analogues

    DEFF Research Database (Denmark)

    Walmod, P S; Foley, A; Berezin, A

    1998-01-01

    analysis, and it was found that VPA and selected VPA-analogues inhibited individual cell motility of L-cells in a dose-dependent manner. The compounds caused a decrease in the root-mean-square speed, S, and in the rate of diffusion, R, but an increase in the time of persistence in direction, P. Using short......Valproic acid (VPA) is an established human teratogen that causes neural tube defects in 1-2% of human foetuses exposed to the drug during early pregnancy. In this study, individual cell motility was evaluated using short- and long-term time-lapse video-recording and computer assisted image...... the neuronal marker NCAM and in the neuronal cell line N2a. Furthermore, the observed effect was independent of culture substratum, being observed for L-cells grown on fibronectin as well as on plastic. Immunofluorescence microscopy revealed that VPA-treatment of mouse L-cells caused a redistribution of F...

  7. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils

    Directory of Open Access Journals (Sweden)

    Bertrand Matthäus

    2015-01-01

    Full Text Available Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa, were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil to 96 mg/100 g (apple seed oil. The predominant isomers were established as α- and γ-tocopherol.

  8. A clinical and histopathological comparison of the effectiveness of salicylic acid to a compound of inorganic acids for the treatment of digital dermatitis in cattle

    DEFF Research Database (Denmark)

    Capion, N.; Larsson, E. K.; Nielsen, O. L.

    2018-01-01

    ; however, the demand for effective nonantibiotic alternatives is increasing. The objective was to evaluate the performance of 3 nonantibiotic topical treatments (salicylic acid and a compound of inorganic acids in a 20% solution and in a dry form) on DD in a commercial dairy herd. Within the 30-d test...... of spirochetes present in the epidermis), 2 (moderate number of spirochetes present and reaching an intermediary level in the epidermis), and 3 (large number of spirochetes present and reaching the deepest part of the epidermis or the superficial dermis). The improvement rate was 10/14 (71%) for salicylic acid......, 11/15 (73%) for the inorganic acid solution, and 8/13 (62%) for the inorganic acid powder. The analysis showed no difference among treatments. The association between clinical score and histopathological score was determined by an odds ratio. The odds ratio of a healed lesion having spirochetes...

  9. Novel naproxen/esomeprazole magnesium compound pellets based on acid-independent mechanism: in vitro and in vivo evaluation.

    Science.gov (United States)

    Lu, Jing; Kan, Shuling; Zhao, Yi; Zhang, Wenli; Liu, Jianping

    2016-09-01

    The purpose of this study was to develop the novel naproxen/esomeprazole magnesium compound pellets (novel-NAP/EMZ) depending on EMZ acid-independent mechanism which has been proved to be predominate in the mechanism of co-therapy with nonsteroidal anti-inflammatory drug. The novel-NAP/EMZ compound pellets, composed of NAP colon-specific pellets (NAP-CSPs) and EMZ modified-release pellets (EMZ-MRPs), were prepared by fluid-bed coating technology with desired in vitro release profiles. The resulting pellets were filled into hard gelatin capsules for in vivo evaluation in rats and compared with the reference compound pellets, consisted of NAP enteric-coated pellets (NAP-ECPs) and EMZ immediate-release pellets (EMZ-IRPs). The reference compound pellets were prepared simulating the drug delivery system of VIMOVO(®). In vivo pharmacokinetics, EMZ-MRPs had significantly larger AUC0-t (p pellets, the novel-NAP/EMZ compound pellets did not show distinct differences in histological mucosal morphology. However, biochemical tests exhibited enhanced total antioxidant capacity, increased nitric oxide content and reduced malondialdehyde level for novel-NAP/EMZ compound pellets, indicating that the acid-independent action took effect. The gastric pH values of novel-NAP/EMZ compound pellets were at a low and stable level, which could ensure normal physiological range of human gastric pH. As a result, the novel-NAP/EMZ compound pellets may be a more suitable formulation with potential advantages by improving bioavailability of drug and further reducing undesirable gastrointestinal damages.

  10. Effects of sulfhydryl compounds, carbohydrates, organic acids, and sodium sulfite on the formation of lysinoalanine in preserved egg.

    Science.gov (United States)

    Luo, Xu-Ying; Tu, Yong-Gang; Zhao, Yan; Li, Jian-Ke; Wang, Jun-Jie

    2014-08-01

    To identify inhibitors for lysinoalanine formation in preserved egg, sulfhydryl compounds (glutathione, L-cysteine), carbohydrates (sucrose, D-glucose, maltose), organic acids (L-ascorbic acid, citric acid, DL-malic acid, lactic acid), and sodium sulfite were individually added at different concentrations to a pickling solution to prepare preserved eggs. Lysinoalanine formation as an index of these 10 substances was determined. Results indicate that glutathione, D-glucose, maltose, L-ascorbic acid, citric acid, lactic acid, and sodium sulfite all effectively diminished lysinoalanine formation in preserved egg albumen and yolk. When 40 and 80 mmol/L of sodium sulfite, citric acid, L-ascorbic acid, and D-glucose were individually added into the pickling solution, the inhibition rates of lysinoalanine in the produced preserved egg albumen and yolk were higher. However, the attempt of minimizing lysinoalanine formation was combined with the premise of ensuring preserved eggs quality. Moreover, the addition of 40 and 80 mmol/L of sodium sulfite, 40 and 80 mmol/L of D-glucose, 40 mmol/L of citric acid, and 40 mmol/L of L-ascorbic acid was optimal to produce preserved eggs. The corresponding inhibition rates of lysinoalanine in the albumen were approximately 76.3% to 76.5%, 67.6% to 67.8%, 74.6%, and 74.6%, and the corresponding inhibition rates of lysinoalanine in the yolk were about 68.7% to 69.7%, 50.6% to 51.8%, 70.4%, and 57.8%. It was concluded that sodium sulfite, D-glucose, L-ascorbic, and citric acid at suitable concentrations can be used to control the formation of lysinoalanine during preserved egg processing. © 2014 Institute of Food Technologists®

  11. Influence of the solvents on the extraction of major phenolic compounds (punicalagin, ellagic acid and gallic acid) and their antioxidant activities in pomegranate aril.

    Science.gov (United States)

    Singh, Mithilesh; Jha, Alok; Kumar, Arvind; Hettiarachchy, Navam; Rai, Ashiwini K; Sharma, Divya

    2014-09-01

    Phenolic compounds of fruits have been shown to maintain human health. However, the relative amounts of phenolic compounds and the variation in the types of phenolics are still poorly understood. The purpose of this study was to investigate the most effective solvent for extracting the potent antioxidant compounds, especially phenolics from pomegranate aril. Pomegranate aril was subjected to extraction using different solvents viz., water, ethanol, acetone and diethyl ether either alone or in combination, and the extraction yield, total phenolic contents, and antioxidant activity were investigated. The extracts derived from various solvents were also analysed using high performance liquid chromatography (HPLC) for quantification of major polyphenols (punicalagins, ellagic acid and gallic acid) of pomegranate. Amongst the tested solvents, combination of ethanol, diethyl ether and water (8:1:1) extract exhibited the highest 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging power (IC50 = 10.12 μg mL-1). Further, HPLC analysis of different extracts revealed that ethanol, diethyl ether and water (8:1:1) mixture contained significantly higher (p punicalagin A (1.06 μg mg-1 extract), punicalagin B (2.07 ± 0.03 μg mg-1 extract), ellagic acid (34.5 μg mg-1 extract) and gallic acid (3.37 μg mg-1 extract) in comparison to the other solvents used for extraction. The results demonstrate that pomegranate aril is a good source of phenolic compounds with high antioxidant activity and the antioxidant activity is dependent on the type of solvent system that extracts different phenolic compounds with varying polarity. The solvent extracts that showed effective antioxidants activities have the potential for application in suitable food products.

  12. Crystal structures of two 1:2 dihydrate compounds of chloranilic acid with 2-carboxypyridine and 2-carboxyquinoline

    Directory of Open Access Journals (Sweden)

    Kazuma Gotoh

    2017-12-01

    Full Text Available The crystal structure of the 1:2 dihydrate compound of chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone with 2-carboxypyridine (another common name: picolinic acid; systematic name: pyridine-2-carboxylic acid, namely, 2C6H5.5NO20.5+·C6HCl2O4−·2H2O, (I, has been determined at 180 K, and the structure of the 1:2 dihydrate compound of chloranilic acid with 2-carboxyquinoline (another common name: quinaldic acid; systematic name: quinoline-2-carboxylic acid, namely, 2C10H7NO2·C6H2Cl2O4·2H2O, (II, has been redetermined at 200 K. This determination presents a higher precision crystal structure than the previously published structure [Marfo-Owusu & Thompson (2014. X-ray Struct. Anal. Online, 30, 55–56]. Compound (I was analysed as a disordered structure over two states, viz. salt and co-crystal. The salt is bis(2-carboxypyridinium chloranilate dihydrate, 2C6H6NO2+·C6Cl2O42−·2H2O, and the co-crystal is bis(pyridinium-2-carboxylate chloranilic acid dihydrate, 2C6H5NO2·C6H2Cl2O4·2H2O, including zwitterionic 2-carboxypyridine. In both salt and co-crystal, the water molecule links the chloranilic acid and 2-carboxypyridine molecules through O—H...O and N—H...O hydrogen bonds. The 2-carboxypyridine molecules are connected into a head-to-head inversion dimer by a short O—H...O hydrogen bond, in which the H atom is disordered over two positions. Compound (II is a 1:2 dihydrate co-crystal of chloranilic acid and zwitterionic 2-carboxyquinoline. The water molecule links the chloranilic acid and 2-carboxyquinoline molecules through O—H...O hydrogen bonds. The 2-carboxyquinoline molecules are connected into a head-to-tail inversion dimer by a pair of N—H...O hydrogen bonds.

  13. Influence of Fruit Ripening on Color, Organic Acid Contents, Capsaicinoids, Aroma Compounds, and Antioxidant Capacity of Shimatogarashi (Capsicum frutescens).

    Science.gov (United States)

    Manikharda; Takahashi, Makoto; Arakaki, Mika; Yonamine, Kaoru; Hashimoto, Fumio; Takara, Kensaku; Wada, Koji

    2018-01-01

    Shimatogarashi (Capsicum frutescens) is a typical chili pepper domesticated in southern Japan. Important traits of Shimatogarashi peppers, such as color; proportion of organic acids, capsaicinoids, and aromatic compounds; and antioxidant activity in three stages of maturity (green (immature), orange (turning), and red (mature) stages) were characterized. The results indicated that the concentration of organic acids, including ascorbic, citric, and malic acid, increased during ripening. In addition, the amount of capsaicinoids, which are responsible for the pungent taste of chili peppers, increased as the fruit matured to the orange and red stages. The volatile compound profile of Shimatogarashi was dominated by the presence of esters, which mainly contributed to fruity notes. The total amount of volatile compounds analyzed by gas chromatography-headspace solid-phase microextraction (GC-HS-SPME), especially esters, decreased as the fruit changed in color from green to red. This was in contrast to the amount of terpenoids, especially limonene, which increased at the red stage, denoting a change in flavor from fruity to a more citrus-like aroma. Based on the total phenolic content (TPC), the oxygen radical absorbance capacity (ORAC) and the diphenylpicrylhydrazyl (DPPH) free radical method, the antioxidant capacity of Shimatogarashi showed an increase at the mature red stage. However, while the red stage showed higher pungency and antioxidant capacity as well as an attractive color, the results of aromatic compound analysis revealed that the immature green stage had the advantages of having pleasant fruity smell, making it suitable for use in condiments.

  14. Time course effects of fermentation on fatty acid and volatile compound profiles of Cheonggukjang using new soybean cultivars.

    Science.gov (United States)

    Cho, Kye Man; Lim, Ho-Jeong; Kim, Mi-So; Kim, Da Som; Hwang, Chung Eun; Nam, Sang Hae; Joo, Ok Soo; Lee, Byong Won; Kim, Jae Kyeom; Shin, Eui-Cheol

    2017-07-01

    In this study, we investigated the effects of the potential probiotic Bacillus subtilis CSY191 on the fatty acid profiles of Cheonggukjang, a fermented soybean paste, prepared using new Korean brown soybean cultivars, protein-rich cultivar (Saedanbaek), and oil-rich cultivar (Neulchan). Twelve fatty acids were identified in the sample set-myristic, palmitic, palmitoleic, stearic, oleic, vaccenic, linoleic, α-linolenic, arachidic, gondoic, behenic, and lignoceric acids-yet, no specific changes driven by fermentation were noted in the fatty acid profiles. To further explore the effects of fermentation of B. subtilis CSY191, complete profiles of volatiles were monitored. In total, 121, 136, and 127 volatile compounds were detected in the Saedanbaek, Daewon (control cultivar), and Neulchan samples, respectively. Interestingly, the content of pyrazines-compounds responsible for pungent and unpleasant Cheonggukjang flavors-was significantly higher in Neulchan compared to that in Saedanbaek. Although the fermentation period was not a strong factor affecting the observed changes in fatty acid profiles, we noted that profiles of volatiles in Cheonggukjang changed significantly over time, and different cultivars represented specific volatile profiles. Thus, further sensory evaluation might be needed to determine if such differences influence consumers' preferences. Furthermore, additional studies to elucidate the associations between B. subtilis CSY191 fermentation and other nutritional components (e.g., amino acids) and their health-promoting potential are warranted. Copyright © 2016. Published by Elsevier B.V.

  15. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    Science.gov (United States)

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  16. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    Science.gov (United States)

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder.

    Science.gov (United States)

    García-Salas, Patricia; Gómez-Caravaca, Ana María; Arráez-Román, David; Segura-Carretero, Antonio; Guerra-Hernández, Eduardo; García-Villanova, Belén; Fernández-Gutiérrez, Alberto

    2013-11-15

    The healthy properties of citrus fruits have been attributed to ascorbic acid and phenolic compounds, mainly to flavonoids. Flavonoids are important phytonutrients because they have a wide range of biological effects that provide health-related properties. In this context, this study seeks to characterise the phenolic compounds in lemon and their stability in different drying processes (freeze-drying and vacuum-drying) and storage conditions (-18 and 50°C for 1 and 3months). A powerful high-performance liquid chromatography coupled to DAD and electrospray-ionization time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) method has been applied for the separation, identification, and quantification of 19 phenolic compounds and 4 organic acids. To our knowledge, two hydroxycinnamic acids have been identified for the first time in lemon. Folin-Ciocalteu was applied to determine total phenolic compounds and TEAC, FRAP, and ORAC were applied to determine the antioxidant capacity of lemon. Total phenolic content significantly differed in the samples analysed, vacuum-dried lemon showing the highest phenolic content, followed by freeze-dried lemon and, finally, vacuum-dried lemon stored at 50°C for 1 and 3months. The content in furanic compounds was determined to evaluate the heat damage in lemon and it was showed an increase with the thermal treatment because of the triggering of Maillard reaction. As exception of ORAC, antioxidant-capacity assays were not correlated to phenolic content by HPLC due to the formation of antioxidant compounds during Maillard reaction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    Science.gov (United States)

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Synthesis Characterization and Biological Activities of Coordination Compounds of 4-Hydroxy-3-nitro-2H-chromen-2-one and Its Aminoethanoic Acid and Pyrrolidine-2-carboxylic Acid Mixed Ligand Complexes

    National Research Council Canada - National Science Library

    Aiyelabola, Temitayo; Akinkunmi, Ezekiel; Obuotor, Efere; Olawuni, Idowu; Isabirye, David; Jordaan, Johan

    2017-01-01

      Coordination compounds of 4-hydroxy-3-nitro-2H-chromen-2-one and their mixed ligand complexes with aminoethanoic acid and pyrrolidine-2-carboxylic acid were synthesized by the reaction of Cu(II) and Zn(II...

  20. β-Resorcylic Acid, a Phytophenolic Compound, Reduces Campylobacter jejuni in Postharvest Poultry.

    Science.gov (United States)

    Wagle, B R; Arsi, K; Upadhyay, A; Shrestha, S; Venkitanarayanan, K; Donoghue, A M; Donoghue, D J

    2017-08-01

    Human Campylobacter infections, a leading foodborne illness globally, has been linked with the high prevalence of this bacterium on raw retail chicken products. Reduction of Campylobacter counts on poultry products would greatly reduce the risk of subsequent infections in humans. To this end, this study investigated the potential of the phytophenolic compound β-resorcylic acid (BR) to reduce Campylobacter counts on postharvest poultry (chicken skin or meat). Four trials in total, two each on thigh skin or breast meat, were conducted in which chicken skin or meat samples (2 ± 0.1 g; 10 samples per treatment) were inoculated with 50 μL (∼10 6 CFU per sample) of a cocktail of four wild strains of C. jejuni. After 30 min of attachment, inoculated samples were dipped in a 0, 0.5, 1, or 2% BR solution for 30 s immediately followed by vigorously vortexing the samples in Butterfield's phosphate diluent and plating the supernatant for Campylobacter enumeration. In addition, the effect of BR on the color of skin and meat samples was studied. Moreover, the change in the expression of survival and virulence genes of C. jejuni exposed to BR was evaluated. Data were analyzed by the PROC MIXED procedure of SAS (P Campylobacter populations on both chicken or meat samples by 1 to 3 log CFU/g compared with non-BR-treated washed controls. No significant difference in the lightness, redness, and yellowness of skin and meat samples was observed on exposure to BR wash (P > 0.05). Real-time PCR results revealed that BR treatment down-regulated expression of select genes coding for motility (motA, motB) and attachment (cadF, ciaB) in the majority of C. jejuni strains. Stress response genes (sodB, katA) were upregulated in C. jejuni S-8 (P Campylobacter on chicken carcasses.

  1. Inactivation of oenological lactic acid bacteria (Lactobacillus hilgardii and Pediococcus pentosaceus) by wine phenolic compounds

    National Research Council Canada - National Science Library

    García-Ruiz, A; Bartolomé, B; Cueva, C; Martín-Alvarez, P J; Moreno-Arribas, M V

    2009-01-01

    To investigate the inactivation properties of different classes of phenolic compounds present in wine against two wine isolates of Lactobacillus hilgardii and Pediococcus pentosaceus, and to explore...

  2. Comparison of lipids, fatty acids and volatile compounds of various kumquat species using HS/GC/MS/FID techniques.

    Science.gov (United States)

    Güney, Murat; Oz, Ayse Tulin; Kafkas, Ebru

    2015-04-01

    Kumquat (Fortunella spp.) is one of the important fruit species that has been introduced into Turkey recently. It is well adapted to the Mediterranean region in Turkey. Early research of kumquat was started on adaptation and pomological traits, and only a few studies have been concerned with chemical content. After understanding the health benefits of kumquat fruits farmers started their plantations in Turkey. Thus in this study the fruits of five kumquat species - Fortunella margarita (Lour.) Swingle, F. crassifolia Swingle, F. obovata Hort. ex Tanaka, F. hindsii (Champ. ex Benth.) Swingle, and limequat [Citrus aurantifolia × F. japonica (Thumb.)] - were compared based on their lipids, fatty acids and volatile profiles. The lipids, fatty acids and volatile profiles were determined by using gas chromatography with flame ionisation detection (GC/FID) and headspace gas chromatography mass spectrometry (HS-GC/MS) techniques. Volatile constituents of kumquat fruits were isolated by a headspace method. The total lipid content (%) of kumquat species ranged from 0.26% to 0.37%. The polyunsaturated fatty acids were detected in a higher amount compared to the monounsaturated fatty acids and saturated fatty acids, respectively. The headspace technique led to the identification of 39 compounds and among a total of 39 constituents identified, d-limonene was the most abundant compound, comprising 67.78-88.72%. The results indicated that kumquats are rich in dietary and health benefits. Thirty-nine compounds were identified and terpenes were the major chemical group in all kumquat genotypes. Esters, alcohols, aldehydes and ketones were also detected. The present study revealed that the kumquat fruits have a valuable levels of health beneficial chemo-preventive effects and genotypes varied based on their lipid, fatty acids and volatile constituents. © 2014 Society of Chemical Industry.

  3. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    Science.gov (United States)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  4. Synthesis and study on biological activity of nitrogen-containing heterocyclic compounds – regulators of enzymes of nucleic acid biosynthesis

    Directory of Open Access Journals (Sweden)

    Alexeeva I. V.

    2013-07-01

    Full Text Available Results of investigations on the development of new regulators of functional activity of nucleic acid biosynthesis enzymes based on polycyclic nitrogen-containing heterosystems are summarized. Computer design and molecular docking in the catalytic site of target enzyme (T7pol allowed to perform the directed optimization of basic structures. Several series of compounds were obtained and efficient inhibitors of herpes family (simple herpes virus type 2, Epstein-Barr virus, influenza A and hepatitis C viruses were identified, as well as compounds with potent antitumor, antibacterial and antifungal activity. It was established that the use of model test systems based on enzymes participating in nucleic acids synthesis is a promising approach to the primary screening of potential inhibitors in vitro.

  5. Oleanolic Acid, a Compound Present in Grapes and Olives, Protects against Genotoxicity in Human Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Cristina Sánchez-Quesada

    2015-07-01

    Full Text Available Oleanolic acid (AO and maslinic acid (MA are constituents of the skins of different fruits, including olives and white or red grapes. Although both compounds are known to have beneficial properties against different types of cancers, thus far, there are no studies about their chemopreventive effects in human breast cancer. Thus, we sought to elucidate whether both compounds possess chemopreventive activity. Two cell lines of human breast cancer cells and one noncancerous human mammary epithelial cells were used to determine the effects of OA and MA. The results showed that OA inhibited the proliferation and increased the oxidative stress of highly invasive cells. Additionally, OA decreased oxidative stress and oxidative damage to the DNA in human mammary epithelial cells. These results suggest that OA could act as a chemopreventive agent in human breast cancer and could inhibit the proliferation of highly invasive breast cancer cells.

  6. Development and Elucidation of a Novel Fluorescent Boron-Sensor for the Analysis of Boronic Acid-Containing Compounds

    Directory of Open Access Journals (Sweden)

    Yoshihide Hattori

    2017-10-01

    Full Text Available Novel boron-containing drugs have recently been suggested as a new class of pharmaceuticals. However, the majority of current boron-detection techniques require expensive facilities and/or tedious pretreatment methods. Thus, to develop a novel and convenient detection method for boron-based pharmaceuticals, imine-type boron-chelating-ligands were previously synthesized for use in a fluorescent sensor for boronic acid containing compounds. However, the fluorescence quantum yield of the imine-type sensor was particularly low, and the sensor was easily decomposed in aqueous media. Thus, in this paper, we report the development of a novel, convenient, and stable fluorescent boron-sensor based on O- and N-chelation (i.e., 2-(pyridine-2ylphenol, and a corresponding method for the quantitative and qualitative detection of boronic acid-containing compounds using this commercially available sensor is presented.

  7. Nanostructured Lead Compounds in Electrode Materials of a Lead-Acid Battery

    OpenAIRE

    A.P. Kuzmenko; E.A. Grechushnikov; V.A. Kharseev; M.B. Dobromyslov; P.A. Rusanov

    2016-01-01

    The nanostructure and phase composition of the electrode material of lead-acid batteries, formed by chemical transformations with involvement of sulfuric acid solutions of various concentrations, water and carbon dioxide have been studied.

  8. Separation of heterocyclic compounds from hydropyrolysis oil and testing their activity as corrosion inhibitors in 1 M sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Studnicki, M. (Zaklad Karbochemii PAN, Gliwice (Poland))

    1991-05-01

    Investigates inhibiting properties of coal derived oil concentrates. Hard coal was subject to hydropyrolysis at 600 C and 4 MPa. Coal analysis was provided. Chromatography was employed to separate concentrates of N, O and S compounds from oil fractions. Columns were filled with Amberlite IRA-904 and Amberlyst 15 ion exchange resins as well as with Attapulgus clay. Ten fractions/concentrates were obtained. Their ability to protect StO steel against corrosion in 1 M solution of sulfuric acid was tested and compared to that of a standard compound (S-isothioureide-N-methine-m-phenylenediamine) and a petroleum-derived concentrate of strong bases. The results obtained are tabulated. Some concentrates were found to promote corrosion. It was possible in some cases to determine a threshold concentration of N, below which corrosion was promoted. High resolution mass spectrometry was applied to analyze eight concentrates. Molecular weights and molecular compositions for identified compounds are tabulated. 17 refs.

  9. Highly functionalized 1,2-diamino compounds through reductive amination of amino acid-derived β-keto esters.

    Directory of Open Access Journals (Sweden)

    Paula Pérez-Faginas

    Full Text Available 1,2-Diamine derivatives are valuable building blocks to heterocyclic compounds and important precursors of biologically relevant compounds. In this respect, amino acid-derived β-keto esters are a suitable starting point for the synthesis of β,γ-diamino ester derivatives through a two-step reductive amination procedure with either simple amines or α-amino esters. AcOH and NaBH(3CN are the additive and reducing agents of choice. The stereoselectivity of the reaction is still an issue, due to the slow imine-enamine equilibria through which the reaction occurs, affording mixtures of diastereoisomers that can be chromatographically separated. Transformation of the β,γ-diamino esters into pyrrolidinone derivatives allows the configuration assignment of the linear compounds, and constitutes an example of their potential application in the generation of molecular diversity.

  10. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L. Grape Berries

    Directory of Open Access Journals (Sweden)

    Yan-Lun Ju

    2016-10-01

    Full Text Available The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA and methyl jasmonate (MeJA on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC and individual anthocyanins. Lipoxygenase (LOX activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  11. Influence of Iron on Production of the Antibacterial Compound Tropodithietic Acid and Its Noninhibitory Analog in Phaeobacter inhibens

    OpenAIRE

    D'Alvise, Paul W.; Phippen, Christopher B. W.; Nielsen, Kristian F.; Gram, Lone

    2016-01-01

    Tropodithietic acid (TDA) is an antibacterial compound produced by some Phaeobacter and Ruegeria spp. of the Roseobacter clade. TDA production is studied in marine broth or agar since antibacterial activity in other media is not observed. The purpose of this study was to determine how TDA production is influenced by substrate components. High concentrations of ferric citrate, as present in marine broth, or other iron sources were required for production of antibacterially active TDA. However,...

  12. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  13. Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals.

    Science.gov (United States)

    Chen, Junren; Shafi, Mohammad; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Liu, Chen; Zhong, Bin; Guo, Hua; He, Lizhi; Liu, Dan

    2016-10-01

    Moso bamboo (Phyllostachys pubescens) has great potential as phytoremediation material in soil contaminated by heavy metals. A hydroponics experiment was conducted to determine organic acid compounds of root exudates of lead- (Pb), zinc- (Zn), copper- (Cu), and cadmium (Cd)-tolerant of Moso bamboo. Plants were grown in nutrients solution which included Pb, Zn, Cu, and Cd applied as Pb(NO3)2 (200 μM), ZnSO4·7H2O (100 μM), CuSO4·5H2O (25 μM), and CdCl2 (10 μM), respectively. Oxalic acid and malic acid were detected in all treatments. Lactic acid was observed in Cu, Cd, and control treatments. The oxalic was the main organic acid exudated by Moso bamboo. In the sand culture experiment, the Moso bamboo significantly activated carbonate heavy metals under activation of roots. The concentration of water-soluble metals (except Pb) in sand were significantly increased as compared with control. Organic acids (1 mM mixed) were used due to its effect on the soil adsorption of heavy metals. After adding mixed organic acids, the Cu and Zn sorption capacity in soils was decreased markedly compared with enhanced Pb and Cd sorption capacity in soils. The sorption was analyzed using Langmuir and Freundlich equations with R 2 values that ranged from 0.956 to 0.999 and 0.919 to 0.997, respectively.

  14. Lewis base mediated β-elimination and Lewis acid mediated insertion reactions of disilazido zirconium compounds.

    Science.gov (United States)

    Yan, KaKing; Duchimaza Heredia, Juan J; Ellern, Arkady; Gordon, Mark S; Sadow, Aaron D

    2013-10-09

    The reactivity of a series of disilazido zirconocene complexes is dominated by the migration of anionic groups (hydrogen, alkyl, halide, OTf) between the zirconium and silicon centers. The direction of these migrations is controlled by the addition of two-electron donors (Lewis bases) or two-electron acceptors (Lewis acids). The cationic nonclassical [Cp2ZrN(SiHMe2)2](+) ([2](+)) is prepared from Cp2Zr{N(SiHMe2)2}H (1) and B(C6F5)3 or [Ph3C][B(C6F5)4], while reactions of B(C6F5)3 and Cp2Zr{N(SiHMe2)2}R (R = Me (3), Et (5), n-C3H7 (7), CH═CHSiMe3 (9)) provide a mixture of [2](+) and [Cp2ZrN(SiHMe2)(SiRMe2)](+). The latter products are formed through B(C6F5)3 abstraction of a β-H and R group migration from Zr to the β-Si center. Related β-hydrogen abstraction and X group migration reactions are observed for Cp2Zr{N(SiHMe2)2}X (X = OTf (11), Cl (13), OMe (15), O-i-C3H7 (16)). Alternatively, addition of DMAP (DMAP = 4-(dimethylamino)pyridine) to [2](+) results in coordination to a Si center and hydrogen migration to zirconium, giving the cationic complex [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}H](+) ([19](+)). Related hydrogen migration occurs from [Cp2ZrN(SiHMe2)(SiMe2OCHMe2)](+) ([18](+)) to give [Cp2Zr{N(SiMe2DMAP)(SiMe2OCHMe2)}H](+) ([22](+)), whereas X group migration is observed upon addition of DMAP to [Cp2ZrN(SiHMe2)(SiMe2X)](+) (X = OTf ([12](+)), Cl ([14](+))) to give [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}X](+) (X = OTf ([26](+)), Cl ([20](+))). The species involved in these transformations are described by resonance structures that suggest β-elimination. Notably, such pathways are previously unknown in early metal amide chemistry. Finally, these migrations facilitate direct Si-H addition to carbonyls, which is proposed to occur through a pathway that previously had been reserved for later transition metal compounds.

  15. So different and still so similar: The plant compound rosmarinic acid mimics bacterial homoserine lactone quorum sensing signals.

    Science.gov (United States)

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-01

    Apart from inter-bacteria communication quorum sensing (QS) mechanisms also enable inter-domain interactions. To interfere with bacterial QS, plants were found to secrete compounds; most of which of unknown identity. We have identified the plant compound rosmarinic acid (RA) to modulate Pseudomonas aeruginosa QS by binding to the RhlR QS regulator. RA was found to be a homoserine-lactone (HSL) mimic that caused agonistic effects on transcription, resulting ultimately in a stimulation of several RhlR controlled phenotypes like virulence factor synthesis or biofilm formation. Our study was initiated by in silico screening of an RhlR model with compound libraries, demonstrating that this approach is suitable to tackle a major bottleneck in signal transduction research, which is the identification of sensor protein ligands. Previous work has shown that plant compounds interfere with the function of orphan QS regulators. Our study demonstrates that this has not necessarily to be the case since RhlR forms a functional pair with the RhlI synthase. A wide range of structurally dissimilar compounds have been found to mimic HSLs suggesting that this class of QS regulators is characterized by a significant plasticity in the recognition of effector molecules. Further research will show to what extent RA impacts on QS mechanisms of other bacteria.

  16. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    Science.gov (United States)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  17. Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem

    Science.gov (United States)

    Wu, Ying; Wang, Na; Zhang, Jing; Wan, Ruijing; Dai, Fangqun; Jin, Xianshi

    2016-09-01

    The composition and compound-specific isotopes of fatty acids were studied within food webs in the East China Sea. Lipid-normalized stable carbon isotopes of total organic carbon had a good correlation with trophic level. Variations in fatty acid compositions among diff erent species were observed but were unclear. Diff erent dietary structures could be traced from molecular isotopes of selected fatty acids in the Shiba shrimp ( Matapenaeus joyneri), the coastal mud shrimp ( Solenocera crassicornis) and the northern Maoxia shrimp ( Acetes chinensis). Both M. joyneri and S. crassicornis are mainly benthos feeders, while A. chinensis is a pelagic species, although they have a similar fatty acid composition. There was a good correlation for isotopes of arachidonic acid (C20:4n6; ARA) and docosahexaenoic acid (C22:6n3; DHA) among pelagic species from higher trophic levels. The isotopic compositions of DHA in benthic species were more negative than those of pelagic species at the same trophic level. The fact that the diet of benthic species contains more degraded items, the carbon isotopes of which are derived from a large biochemical fraction, may be the reason for this variation. A comparative study of benthic and pelagic species demonstrated the diff erent carbon sources in potential food items and the presence of a more complex system at the water-sediment interface.

  18. Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis.

    Science.gov (United States)

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2013-09-01

    The impact of humic acid fouling on the membrane transport of two pharmaceutically active compounds (PhACs) - namely carbamazepine and sulfamethoxazole - in forward osmosis (FO) was investigated. Deposition of humic acid onto the membrane surface was promoted by the complexation with calcium ions in the feed solution and the increase in ionic strength at the membrane surface due to the reverse transport of NaCl draw solute. The increase in the humic acid deposition on the membrane surface led to a substantial decrease in the membrane salt (NaCl) permeability coefficient but did not result in a significant decrease in the membrane pure water permeability coefficient. As the deposition of humic acid increased, the permeation of carbamazepine and sulfamethoxazole decreased, which correlated well with the decrease in the membrane salt (NaCl) permeability coefficient. It is hypothesized that the hydrated humic acid fouling layer hindered solute diffusion through the membrane pore and enhanced solute rejection by steric hindrance, but not the permeation of water molecules. The membrane water and salt (NaCl) permeability coefficients were fully restored by physical cleaning of the membrane, suggesting that humic acid did not penetrate into the membrane pores. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Decomposition of organochlorine compounds in flue gas from municipal solid waste incinerators using natural and activated acid clays.

    Science.gov (United States)

    Hwang, In-Hee; Takahashi, Shigetoshi; Matsuo, Takayuki; Matsuto, Toshihiko

    2014-09-01

    High-temperature particle control (HTPC) using a ceramic filter is a dust collection method without inefficient cooling and reheating of flue gas treatment; thus, its use is expected to improve the energy recovery efficiency of municipal solid waste incinerators (MSWIs). However there are concerns regarding de novo synthesis and a decrease in the adsorptive removal efficiency of dioxins (DXNs) at approximately 300 degrees C. In this study, the effect of natural and activated acid clays on the decomposition of monochlorobenzene (MCB), one of the organochlorine compounds in MSW flue gas, was investigated. From the results of MCB removal tests at 30-300 degrees C, the clays were classified as adsorption, decomposition, and low removal types. More than half of the clays (four kinds of natural acid clays and two kinds of activated acid clays) were of the decomposition type. In addition, the presence of Cl atoms detached from MCB was confirmed by washing the clay used in the MCB removal test at 300 degrees C. Activated acid clay was expected to have high dechlorination performance because of its proton-rich-composition, but only two clays were classed as decomposition type. Conversely, all the natural acid clays used in this work were of the decomposition type, which contained relatively higher di- and trivalent metal oxides such as Al2O3, Fe2O3, MgO, and CaO. These metal oxides might contribute to the catalytic dechlorination of MCB at 300 degrees C. Therefore, natural and activated acid clays can be used as alternatives for activated carbon at 300 degrees C to remove organochloride compounds such as DXNs. Their utilization is expected to mitigate the latent risks related to the adoption of HTPC, and also to contribute to the improvement of energy recovery efficiency of MSWI. Implications: The effect of natural and activated acid clays on MCB decomposition was investigated to evaluate their suitability as materials for the removal of organochlorine compounds, such as

  20. Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120)

    DEFF Research Database (Denmark)

    Hansen, Steffen V F; Ulven, Trond

    2017-01-01

    The free fatty acid receptor 4 (FFA4), also known as GPR120, is a G protein-coupled receptor that is activated by long-chain fatty acids and that has been associated with regulation of appetite, release of insulin controlling hormones, insulin sensitization, anti-inflammatory and potentially anti...

  1. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    Science.gov (United States)

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  2. Functional milk beverage fortified with phenolic compounds extracted from olive vegetation water, and fermented with functional lactic acid bacteria.

    Science.gov (United States)

    Servili, M; Rizzello, C G; Taticchi, A; Esposto, S; Urbani, S; Mazzacane, F; Di Maio, I; Selvaggini, R; Gobbetti, M; Di Cagno, R

    2011-05-14

    Functional milk beverages (FMB100 and FMB200) fortified with phenolic compounds (100 and 200mg/l) extracted from olive vegetable water, and fermented with γ-amino butyric acid (GABA)-producing (Lactobacillus plantarum C48) and autochthonous human gastro-intestinal (Lactobacillus paracasei 15N) lactic acid bacteria were manufactured. A milk beverage (MB), without addition of phenolic compounds, was used as the control. Except for a longer latency phase of FMB200, the three beverages showed an almost similar kinetic of acidification, consumption of lactose and synthesis of lactic acid. Apart from the beverage, Lb. plantarum C48 showed a decrease of ca. Log 2.52-2.24 cfu/ml during storage. The cell density of functional Lb. paracasei 15N remained always above the value of Log 8.0 cfu/ml. During fermentation, the total concentration of free amino acids markedly increased without significant (P > 0.05) differences between beverages. The concentration of GABA increased during fermentation and further storage (63.0 ± 0.6-67.0 ± 2.1mg/l) without significant (P > 0.05) differences between beverages. After fermentation, FMB100 and FMB200 showed the same phenolic composition of the phenol extract from olive vegetable water but a different ratio between 3,4-DHPEA and 3,4-DHPEA-EDA. During storage, the concentrations of 3,4-DHPEA-EDA, p-HPEA and verbascoside of both FMB100 and FMB200 decreased. Only the concentration of 3,4-DHPEA increased. As shown by SPME-GC-MS analysis, diactetyl, acetoin and, especially, acetaldehyde were the main volatile compounds found. The concentration of phenolic compounds does not interfere with the volatile composition. Sensory analyses based on triangle and paired comparison tests showed that phenolic compounds at the concentrations of 100 or 200mg/l were suitable for addition to functional milk beverages. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Model steatogenic compounds (amiodarone, valproic acid, and tetracycline alter lipid metabolism by different mechanisms in mouse liver slices.

    Directory of Open Access Journals (Sweden)

    Ewa Szalowska

    Full Text Available Although drug induced steatosis represents a mild type of hepatotoxicity it can progress into more severe non-alcoholic steatohepatitis. Current models used for safety assessment in drug development and chemical risk assessment do not accurately predict steatosis in humans. Therefore, new models need to be developed to screen compounds for steatogenic properties. We have studied the usefulness of mouse precision-cut liver slices (PCLS as an alternative to animal testing to gain more insight into the mechanisms involved in the steatogenesis. To this end, PCLS were incubated 24 h with the model steatogenic compounds: amiodarone (AMI, valproic acid (VA, and tetracycline (TET. Transcriptome analysis using DNA microarrays was used to identify genes and processes affected by these compounds. AMI and VA upregulated lipid metabolism, whereas processes associated with extracellular matrix remodelling and inflammation were downregulated. TET downregulated mitochondrial functions, lipid metabolism, and fibrosis. Furthermore, on the basis of the transcriptomics data it was hypothesized that all three compounds affect peroxisome proliferator activated-receptor (PPAR signaling. Application of PPAR reporter assays classified AMI and VA as PPARγ and triple PPARα/(β/δ/γ agonist, respectively, whereas TET had no effect on any of the PPARs. Some of the differentially expressed genes were considered as potential candidate biomarkers to identify PPAR agonists (i.e. AMI and VA or compounds impairing mitochondrial functions (i.e. TET. Finally, comparison of our findings with publicly available transcriptomics data showed that a number of processes altered in the mouse PCLS was also affected in mouse livers and human primary hepatocytes exposed to known PPAR agonists. Thus mouse PCLS are a valuable model to identify early mechanisms of action of compounds altering lipid metabolism.

  4. Coordination Compounds Based on 1,2,3,4-Tetrahydro-isoquinoline-3-carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Markéta Svobodová

    2007-05-01

    Full Text Available Syntheses of 2,6-bis[((3S-3-(methoxycarbonyl-1,2,3,4-tetrahydroisoquinolin-2-ylcarbonyl]pyridine and its coordination compounds with Cu2+, Co2+, Co3+, or Fe3+ are described. By means of 1H- and 13C-NMR spectra it was proved that 2,6-bis[((3S-3-(methoxycarbonyl-1,2,3,4-tetrahydroisoquinolin-2-ylcarbonyl]pyridine as well as its coordination compound with Co3+ exist in the form of a mixture of three conformers, differing in the conformations at the two amide groups present. The prepared coordination compounds were tested in the enantioselective catalysis of the nitroaldol addition of nitromethane with 2-nitrobenzaldehyde or 4-nitrobenzaldehyde, and in the Michael addition of ethyl 2-oxocyclohexanecarboxylate to but-3-en-2-one.

  5. Sensory Description of Cultivars (Coffea Arabica L. Resistant to Rust and Its Correlation with Caffeine, Trigonelline, and Chlorogenic Acid Compounds

    Directory of Open Access Journals (Sweden)

    Larissa de Oliveira Fassio

    2016-01-01

    Full Text Available Considering the importance of the chemical compounds in Arabica coffee beans in the definition of the drink sensory quality and authentication of coffee regions, the aim of this study was to evaluate, from principal component analysis—PCA—if there is a relation between the caffeine, trigonelline, and chlorogenic acid (5-CQA content and the sensory attributes of the drink, and in this context, enabling the differentiation of cultivars in two coffee-producing regions of Brazil. We evaluated seven rust-resistant Coffea arabica cultivars, and two rust-susceptible cultivars in two cultivation environments: Lavras, in the southern region of Minas Gerais state, and Patrocinio in the Cerrado region of Minas Gerais. The flavor and acidity were determinant for differentiation of the cultivars and their interaction with the evaluated environments. Cultivars Araponga MG1, Catigua MG2, and Catigua MG1 are the most suitable for the production of specialty coffee in the state of Minas Gerais. A poor correlation was found between caffeine, trigonelline, 5-CQA contents, and fragrance, flavor, acidity, body, and final score attributes. However, these compounds enabled the differentiation of the environments. The PCA indicated superiority in the sensory quality of cultivars resistant to rust, compared to the control, Bourbon Amarelo, and Topázio MG1190.

  6. Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: a review.

    Science.gov (United States)

    Ilisz, István; Aranyi, Anita; Pataj, Zoltán; Péter, Antal

    2012-10-01

    Amino acids are essential for life, and have many functions in metabolism. One particularly important function is to serve as the building blocks of peptides and proteins, giving rise to complex three dimensional structures through disulfide bonds or crosslinked amino acids. Peptides are frequently cyclic and contain protein as well as non-protein aminoacids in many instances. Since most of the proteinogenic α-amino acids contain a chiral carbon atom (with the exception of glycine), the stereoisomers of all these amino acids and the peptides in which they are to be found may possess differences in biological activity in living systems. The impetus for advances in chiral separation has been highest in the past decade and this still continues to be an area of high focus. The important analytical task of the separation of isomers is achieved mainly by chromatographic methods. This review surveys indirect and direct HPLC separations of biologically and pharmaceutically important enantiomers of amino acids and related compounds, with emphasis on the literature published from 2005. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Changes in the gene expression of C-myc and CD38 in HL-60 cells during differentiation induced by nicotinic acid-related compounds.

    Science.gov (United States)

    Ida, Chieri; Ogata, Shin; Okumura, Katsuzumi; Taguchi, Hiroshi

    2008-03-01

    Changes in gene expression levels of c-myc and CD38 were examined during the differentiation of HL-60 cells to granulocytes due to three nicotinic acid-related compounds. CD38 expression was increased by isonicotinic acid and all-trans-retinoic acid (ATRA). Nicotinamide and nicotinamide N-oxide drastically decreased c-myc expression, but isonicotinic acid had no effect, suggesting that these compounds differentiate HL-60 to granulocytes through different pathways. These results should provide useful information as to the mechanisms of cell differentiation.

  8. Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, M.J. [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman76169 (Iran, Islamic Republic of); Hosseini, S.M.A., E-mail: s.m.a.hosseini@mail.uk.ac.i [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman76169 (Iran, Islamic Republic of); Pilvar, P. [Department of Chemistry, Payame noor University, Kerman (Iran, Islamic Republic of)

    2010-09-15

    Three synthesized organic compounds were tested as corrosion inhibitors for mild steel in sulfuric acid medium by potentiostatic polarization, FTIR spectroscopy and SEM techniques. Quantum chemical parameters were also calculated to characterize adsorption mechanism. Acceptable correlations were obtained between inhibition efficiency and the calculated quantum chemical parameters. It was found that the investigated compounds exhibit a good inhibition effect especially at 8-10 ppm range concentration, which makes them commercially important. The adsorption of inhibitors on the surface obeys Langmuir adsorption isotherm. The values of activation energy and the thermodynamic parameters, such as K{sub ads}, {Delta}G{sub ads}{sup o}, {Delta}H{sub ads}{sup o} and {Delta}S{sub ads}{sup o} were calculated.

  9. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    Science.gov (United States)

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  10. Omega-3 fatty acids, phenolic compounds and antioxidant characteristics of chia oil supplemented margarine.

    Science.gov (United States)

    Nadeem, Muhammad; Imran, Muhammad; Taj, Imran; Ajmal, Muhammad; Junaid, Muhammad

    2017-05-31

    Chia (Salvia hispanica L.) is known as power house of omega fatty acids which has great health benefits. It contains up to 78% linolenic acid (ω-3) and 18% linoleic acid (ω-6), which could be a great source of omega-3 fatty acids for functional foods. Therefore, in this study, margarines were prepared with supplementation of different concentrations of chia oil to enhance omega-3 fatty acids, antioxidant characteristics and oxidative stability of the product. Margarines were formulated from non-hydrogenated palm oil, palm kernel and butter. Margarines were supplemented with 5, 10, 15 and 20% chia oil (T1, T2, T3 and T4), respectively. Margarine without any addition of chia oil was kept as control. Margarine samples were stored at 5 °C for a period of 90 days. Physico-chemical (fat, moisture, refractive index, melting point, solid fat index, fatty acids profile, total phenolic contents, DPPH free radical scavenging activity, free fatty acids and peroxide value) and sensory characteristics were studied at the interval of 45 days. The melting point of T1, T2, T3 and T4 developed in current investigation were 34.2, 33.8, 33.1 and 32.5 °C, respectively. The solid fat index of control, T1, T2, T3 and T4 were 47.21, 22.71, 20.33, 18.12 and 16.58%, respectively. The α-linolenic acid contents in T1, T2, T3 and T4 were found 2.92, 5.85, 9.22, 12.29%, respectively. The concentration of eicosanoic acid in T2, T3 and T4 was 1.82, 3.52, 6.43 and 9.81%, respectively. The content of docosahexanoic acid in T2, T3 and T4 was present 1.26, 2.64, 3.49 and 5.19%, respectively. The omega-3 fatty acids were not detected in the control sample. Total phenolic contents of control, T1, T2, T3 and T4 samples were 0.27, 2.22, 4.15, 7.23 and 11.42 mg GAE/mL, respectively. DPPH free radical scavenging activity for control, T1, T2, T3 and T4 was noted 65.8, 5.37, 17.82, 24.95, 45.42 and 62.8%, respectively. Chlorogenic acid, caffeic acid, quercetin, phenolic glycoside k and phenolic

  11. Fulvic acid-like organic compounds control nucleation of marine calcite under suboxic conditions

    NARCIS (Netherlands)

    Neuweiler, F.; D'Orazio, M.; Immenhauser, A.M.; Geipel, G.; Heise, K.H.; Cocozza, C.; Miano, T.M.

    2003-01-01

    Intracrystalline organic compounds, enclosed within in situprecipitated marine microcrystalline calcite (automicrite), might represent either an inclusion or the catalyst of such precipitation. We use evidence from a Lower Cretaceous deep-water carbonate mound to show (1) the original source, (2)

  12. Degradation of hyaluronic acid, poly- and monosaccharides, and model compounds by hypochlorite

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1998-01-01

    Degradation of hyaluronic acid by oxidants such as HO. and HOCl/CIO- is believed to be important in the progression of rheumatoid arthritis. While reaction of hyaluronic acid with HO. has been investigated extensively, reaction with HOCl/ClO- is less well defined. Thus, little is known about the ......-acetylglucosamine rings, and the carbon-centered radicals derived from them, brings about polymer fragmentation....

  13. Temperature-/solvent-dependent low-dimensional compounds based on quinoline-2,3-dicarboxylic acid: structures and fluorescent properties.

    Science.gov (United States)

    Wang, Ming-Fang; Hong, Xu-Jia; Zhan, Qing-Guang; Jin, Hong-Guang; Liu, Yi-Ting; Zheng, Zhi-Peng; Xu, Shi-Hai; Cai, Yue-Peng

    2012-10-14

    A series of 0-D, 1-D, and 2-D metal-organic compounds through reactions of quinoline-2,3-dicarboxylic acid (2,3-H(2)qldc) with transition metal salts MCl(2), namely, M(2,3-Hqldc)(2)(H(2)O)(2) (M = Co(1), Zn(4) and Cd(7)), [M(3-qlc)(2)(H(2)O)(2)](n) (M = Co(2), Zn(5) and Cd(8)), M(2-qldc-3-OCH(3))(2)(CH(3)OH)(2) (M = Co(3) and Zn(6)) and [Cd(2,3-qldc-OCH(3))(μ(2)-Cl)](2n) (9) (where, 3-Hqlc = quinoline-3-carboxylic acid and 2-qldc-3-OCH(3) = 3-(methoxycarbonyl)quinoline-2-carboxylic acid), were synthesized and characterized by elemental analysis, IR, thermogravimetric analysis (TG), and single-crystal X-ray diffraction. When the temperature ranged from room temperature to 70 °C, three isomorphous mononuclear complexes 1, 4 and 7 were obtained in H(2)O/H(2)O + CH(3)OH. As the temperature rose further to above 90 °C, due to the decomposition of 2-position carboxyl group in ligand 2,3-H(2)qldc, the same reactions, respectively, produced three isomorphous 2-D layer-like structures 2, 5 and 8 with 4(4) topology in water. By contrast, when the mixed solvent of H(2)O + CH(3)OH at a 1 : 1 ratio (v/v) was applied, the three above-mentioned reactions respectively gave compounds 3, 6 and 9 with the 3-position esterification of 2,3-H(2)qldc. Compounds 3 and 6 are mononuclear and isomorphous, while complex 9 has a 1-D double-stranded chain-like structure connected by two μ(2)-Cl bridges. Obviously, these results reveal that the reaction temperature and solvent play a critical role in structural direction of these low-dimensional compounds. Meanwhile, the photoluminescent property of the selected compounds is also investigated.

  14. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    Science.gov (United States)

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  15. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Elodie Brun

    2015-06-01

    Full Text Available We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  16. The effects of pharmaceutically active compound doxycycline on the corrosion of mild steel in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Sudhish Kumar [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh (India); Quraishi, M.A. [Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh (India)], E-mail: maquraishi.apc@itbhu.ac.in

    2010-02-15

    Corrosion inhibition of mild steel in hydrochloric acid solution by doxycycline has been studied by weight loss measurements, polarization resistance, Tafel polarization and electrochemical impedance spectroscopy. The inhibitor showed more than 95% inhibition efficiency at optimum concentration 9.02 x 10{sup -4} M. Potentiodynamic polarization suggests that it is a mixed type of inhibitor. Electrochemical impedance spectroscopy was used to investigate the mechanism of corrosion inhibition. Thermodynamic parameters were calculated to investigate mechanism of inhibition. The compound follows Langmuir adsorption isotherm. AFM studies of mild steel surface with and without inhibitor were performed and calculated roughness also supported the inhibition data.

  17. RETRACTED: Carotenoids, Mycosporine-Like Amino Acid Compounds, Phycobiliproteins, And Scytonemin In The Genus Scytonema (Cyanobacteria): A Chemosystematic Study(1).

    Science.gov (United States)

    Asencio, Antonia D; García-Pichel, Ferrán; Hoffmann, Lucien

    2011-08-22

    The following article from the Journal of Phycology, "Carotenoids, Mycosporine-Like Amino Acid Compounds, Phycobiliproteins, And Scytonemin In The Genus Scytonema (Cyanobacteria): A Chemosystematic Study," submitted by Antonia D. Asencio, and published online on August 22, 2011 on Wiley Online Library (http://www.wileyonlinelibrary.com), has been retracted by agreement between the journal Editor, Robert Sheath, and Wiley Periodicals, Inc. The retraction has been agreed upon request by Ferran Garcia-Pichel, listed as co-author, but not having agreed to the submission or publication of the manuscript. © 2011 Phycological Society of America.

  18. A Simple and Easy-To-Learn Chart of The Main Classes of Inorganic Compounds and Their Acid-Base Reactions

    Science.gov (United States)

    Sereda, Grigoriy

    2005-01-01

    The main classes of inorganic compounds is presented to students as a two-dimensional chart and one coordinate of the chart corresponds to the acidic equivalent while the other corresponds to the number of bound water molecules. The chart is intended for those students who can assign a compound to a particular class and can be used at different…

  19. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Arumugham Suresh

    2014-09-01

    Full Text Available Objective: To evaluate fatty acid composition and the antimicrobial activity of the major fraction of fatty acid methyl ester (FAME extracts from three microalgae collected from freshwater lakes in Theni District, Tamil Nadu, India. Methods: Antimicrobial study was carried out by well diffusion method against bacterial as well as fungal pathogens such as Escherichia coli, Staphylococcus aureus, Enterobacter sp., Klebsiella sp., Salmonella typhi, Fusarium sp., Cryptococcus sp., Candida sp., and Aspergillus niger and Aspergillus flavus. The FAME profiles were determined through gas chromatography with a flame ionization detector. Results: The FAME was found to be radial effective in inhibiting the radial growth of both bacterial and fungal pathogens. The FAME extracts exhibited the antibacterial activity against three clinical pathogens, namely, Escherichia coli, Salmonella typhi and Enterobacter sp. with the maximum zone of inhibition of 12.0 mm, 12.0 mm and 11.0 mm, respectively. The FAME showed moderate antifungal activity against Cryptococcus sp. (11.8 mm, Aspergillus niger (10.5 mm, Candida sp. (11.8 mm and Fusarium sp. (10.4 mm. Gas chromatography-flame ionization detector analysis revealed about 30 different FAMEs. Conclusions: We assume that the observed antimicrobial potency may be due to the abundance of erucic acid methyl ester (C22:0, arachidic acid methyl ester (C20:0, palmitic acid methyl ester (C16:0, cis-11-eicosenoicmethyl ester (C20:1, cis-11, 14-eicosadienoic acid methyl ester (C20:2 and linolenic acid methyl ester (C18:3 in FAMEs which appears to be promising to treat microbial diseases.

  20. Effect of γ-irradiation on bioactivity, fatty acid compositions and volatile compounds of clary sage seed (Salvia sclarea L.).

    Science.gov (United States)

    Yalcin, Hasan; Ozturk, Ismet; Tulukcu, Eray; Sagdic, Osman

    2011-09-01

    Clary sage seeds (Salvia sclarea L.) were obtained from plants cultivated, and 2.5, 4.0, 5.5, and 7.0 kGy doses of γ-irradiation were applied to the clary sage seeds. They were then analyzed for their protein, ash, oil and dry matter contents, and fatty acid composition. Additionally, the total phenolic contents, antiradical, antioxidant activities, and volatile compounds of the clary sage seed extract were determined. There was no significant difference in protein content. However, the moisture, oil, and ash contents of the samples were affected by irradiation. While the 7 kGy dose had a positive effect on the total phenolic content and antiradical activity of the sage seed extract, all doses have negative effects on the antioxidant activity of the sage seed. The main fatty acid of the sage seed was remarkably found as α-linolenic acid. The four irradiation levels caused significant differences in fatty acid composition by affecting all fatty acids except palmitic, palmitoleic, and eicosenoic acids. The dominant volatile compounds of control sage seed were found as β-pinene (18.81%) and limonene (15.60%). Higher doses of the irradiation decreased volatile components of sage seed. Clary sage seed including high omega-3 can be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. Clary sage is one of the most popular Salvia species in Turkey and many countries. Clary sage seed has approximately 29% oil content and this oil contains >50% of α-linolenic acid. γ-Irradiation is widely applied in the preservation of spice quality. The present study shows that the antioxidant activity of the clary sage seed is decreased by γ-irradiation. Additionally, higher doses of irradiation also decreased the volatile components of sage seed. Therefore, we suggest that clary sage seed which includes high levels of omega-3 should be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. © 2011 Institute of Food Technologists®

  1. Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media

    Directory of Open Access Journals (Sweden)

    Ebadi Mehdi

    2012-12-01

    Full Text Available Abstract Background The corrosion inhibition performance of pyrazolylindolenine compounds, namely 4-(3,3-dimethyl-3H-indol-2-yl-pyrazole-1-carbothioamide (InPzTAm, 4-(3,3-dimethyl-3H-indol-2-yl-1H-pyrazole-1-carbothiohydrazide (InPzTH and 3,3-dimethyl-2-(1-phenyl-1H-pyrazol-4-yl-3H-indole (InPzPh, on copper in 1M HCl solution is investigated by electrochemical impedance spectroscopy (EIS, open circuit potential (OCP and linear scan voltammetry (LSV techniques. Results The results show that the corrosion rate of copper is diminished by the compounds with the inhibition strength in the order of: InPzTAm> InPzTH > InPzPh. The corrosion inhibition efficiencies for the three inhibitors are 94.0, 91.4 and 79.3, for InPzTAm, InPzTH and InPzPh respectively with the same inhibitor concentration (2 mM. Conclusion From the EIS, OCP and LSV results it was concluded that pyrazolylindolenine compounds with S-atom (with an amine group have illustrated better corrosion inhibition performance compared to hydrazine and phenyl group.

  2. Dynamics in the concentrations of health-promoting compounds: lupeol, mangiferin and different phenolic acids during postharvest ripening of mango fruit.

    Science.gov (United States)

    Vithana, Mekhala Dk; Singh, Zora; Johnson, Stuart K

    2018-03-01

    Mango fruit (Mangifera indica L.) is renowned for its pleasant taste and as a rich source of health beneficial compounds. The aim of this study was to investigate the changes in concentrations of health-promoting compounds, namely ascorbic acid, carotenoids, antioxidants, lupeol, mangiferin, total phenols and individual phenolic acids, as well as ethylene production and respiration rates during climacteric ripening in 'Kensington Pride' and 'R2E2' mango fruit. The climacteric ethylene and respiration peaks were noted on the third day of the fruit ripening period. The concentrations of total carotenoids in the pulp, total antioxidants in both pulp and peel, and total phenols of the peel, lupeol and mangiferin were significantly elevated, whereas the concentration of ascorbic acid declined during post-climacteric ripening. Gallic, chlorogenic and vanillic acids were identified as the major phenolic acids in both pulp and peel of 'Kensington Pride' and 'R2E2' mangoes. The concentrations of phenolic acids (gallic, chlorogenic, vanillic, ferulic and caffeic acids) also increased during the post-climacteric phase. The concentrations of all phenolic compounds were several-fold higher in the peel than pulp. Mangoes at post-climacteric ripening phase offer the highest concentrations of health-promoting compounds. Peel, at this stage of fruit ripening, could be exploited as a good source for extraction of these compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    Science.gov (United States)

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Chiral separation of the clinically important compounds fucose and pipecolic acid using CE: determination of the most effective chiral selector.

    Science.gov (United States)

    Hadjistasi, Christoforos A; Stavrou, Ioannis J; Stefan-Van Staden, Raluca-Ioana; Aboul-Enein, Hassan Y; Kapnissi-Christodoulou, Constantina P

    2013-09-01

    In this study, simple electrophoretic methods were developed for the chiral separation of the clinically important compounds fucose and pipecolic acid. In recent years, these analytes, and particularly their individual enantiomers, have attracted considerable attention due to their role in biological functions and disorders. The detectability and sensitivity of pipecolic acid and fucose were improved by reacting them with fluorenylmethyloxycarbonyl chloride (FMOC-Cl) and 5-amino-2-naphthalene-sulfonic acid (ANSA), respectively. The enantioseparation conditions were optimized by initially investigating the type of the chiral selector. Different chiral selectors, such as polymeric surfactants and cyclodextrins, were used and the most effective ones were determined with regard to resolution and analysis time. A 10-mM β-cyclodextrin was able to separate the enantiomers of ANSA-DL-fucose and the polymeric surfactant poly(sodium N-undecanoyl-LL-leucine-valinate) was able to separate the enantiomers of FMOC-DL-pipecolic acid, with resolution values of 3.45 and 2.78, respectively. Additional parameters, such as the concentration and the pH of the background electrolyte (BGE), the concentration of the chiral selector, and the addition of modifiers were examined in order to optimize the separations. The addition of the chiral ionic liquid D-alanine tert-butyl ester lactate into the BGE was also investigated, for the first time, in order to improve resolution of the enantiomers. © 2013 Wiley Periodicals, Inc.

  5. Characteristic of phenolic compound and antioxidant activity of fermented broccoli (Brassica oleracea L. ssp.) beverage by lactic acid bacteria (LAB)

    Science.gov (United States)

    Maryati, Yati; Susilowati, Agustine; Melanie, Hakiki; Lotulung, Puspa D.

    2017-01-01

    Broccoli (Brassica oleracea L. ssp.) has a relatively high nutrient content, especially as a source of vitamins, minerals and fiber and contain bioactive compounds that act as antioxidants. In order to increase the nutritional value and innovate new products, fermentation process involving rich-antioxidants lactic acid bacteria (LAB) was done. The aim of this study is to determine the content of bioactive components, such as total polyphenols, total acid and antioxidant activity of the mixed culture of LAB (L. bulgaricus, S. thermophulus, L. acidophilus, Bd. bifidum)-fermented broccoli extracts. Ratio of fermented broccoli extract and concentration of starter cultureLAB was varied in the range of 5, 10, 15 and 20% (v/v), and the alterations of characteristics of the fermented broccoli extract, before and after fermentation (0 and 24 hours), were evaluated. The results showed that fermentation functional beverage broccoli with different concentrations of LAB cultures affect the antioxidant activity, total polyphenols, total acid and total cell of LAB generated. The optimum conditions obtained for the highest antioxidant activity of 6.74%, at aculture concentration of 20% during fermentation time of 24 h with a pH value of 4.29, total sugar of 10.89%, total acids of 0.97%, total polyphenols of 0.076%, and total LAB of 13.02 + 0.05 log cfu /ml.

  6. Distribution of Major Chlorogenic Acids and Related Compounds in Brazilian Green and Toasted Ilex paraguariensis (Maté) Leaves.

    Science.gov (United States)

    Lima, Juliana de Paula; Farah, Adriana; King, Benjamin; de Paulis, Tomas; Martin, Peter R

    2016-03-23

    Ilex paraguariensis (maté) is one of the best sources of chlorogenic acids (CGA) in nature. When leaves are toasted, some isomers are partly transformed into 1,5-γ-quinolactones (CGL). Both CGA and CGL are important contributors to the brew's flavor and are thought to contribute to human health. In this study, we quantified 9 CGA, 2 CGL, and caffeic acid in 20 samples of dried green and toasted maté that are commercially available in Brazil. Total CGA content in green maté varied from 8.7 to 13.2 g/100 g, dry weight (dw). Caffeic acid content varied from 10.8 to 13.5 mg/100 g dw, respectively. Content in toasted maté varied from 1.5 to 4.6 g/100 g and from 1.5 to 7.2 mg/100 g dw, respectively. Overall, caffeoylquinic acid isomers (CQA) were the most abundant CGA in both green and toasted maté, followed by dicaffeoylquinic acids (diCQA) and feruloylquinic acids (FQA). These classes accounted for 58.5%, 40.0%, and 1.5% of CGA, respectively, in green maté and 76.3%, 20.7%, and 3.0%, respectively, in toasted maté. Average contents of 3-caffeoylquinolactone (3-CQL) and 4-caffeoylquinolactone (4-CQL) in commercial toasted samples were 101.5 mg/100 g and 61.8 mg/100 g dw, respectively. These results show that, despite overall losses during the toasting process, CGA concentrations are still substantial in toasted leaves, compared to other food sources of CGA and phenolic compounds in general. In addition to evaluating commercial samples, investigation of changes in CGA profile and formation of 1,5-γ-quinolactones was performed in experimental maté toasting.

  7. Exploratory catalyst screening studies on the base free conversion of glycerol to lactic acid and glyceric acid in water using bimetallic Au-Pt compounds on acidic zeolites

    NARCIS (Netherlands)

    Pazhavelikkakath Purushothaman, Rajeesh Kumar; van Haveren, J.; Mayoral, A.; Melian Cabrera, I.; Heeres, H.J.

    2014-01-01

    The base free oxidation of glycerol with molecular oxygen in water using bimetallic Au-Pt catalysts on three different acidic zeolite supports (H-mordenite, H-beta and H-USY) was explored in a batch setup. At temperatures between 140 and 180 degrees C, lactic acid formation was significant and

  8. Amino acid-catalysed retroaldol condensation: The production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, M.J. van der

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other α,β -unsaturated aldehydes. In the presence of glycine and an elevated pH, six other α,β-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as its proposed

  9. Reactions of. cap alpha. -hydroxy acid chemical exchange in titanium (3) and vanadyl (2) coordination compounds

    Energy Technology Data Exchange (ETDEWEB)

    Glebov, A.N.; Sal' nikov, Yu.I.; Zakharov, A.V.; Saprykova, Z.A.; Gogolashvili, Eh.L. (Kazanskij Gosudarstvennyj Univ. (USSR))

    1983-06-01

    For the first time a study was made on the effect of chemical exchange of oxygen-containing ligands (lactic, mandelic, sulfosalicylic acids) on the relaxation period of solvent water protons. Constants of exchange rates of protonated ligand forms were evaluated. The mechanism of the observed processes are proposed.

  10. Role of sulfur compounds in the detection of amino acids by ninhydrin on TLC plate.

    Science.gov (United States)

    Basak, B; Bandyopadhyay, D; Patra, M; Banerji, A; Chatterjee, A; Banerji, J

    2005-02-01

    Three new sulfur reagents for specific identification of amino acids on thin-layer chromatography plates have been introduced. These three sulfur containing reagents are capable of developing various distinguishable colors with many of them. A probable mechanism for such color formation is proposed.

  11. Application of HPLC capacity coefficients to characterize the sorption of polycyclic aromatic compounds to humic acid

    DEFF Research Database (Denmark)

    Nielsen, T.; Helweg, C.; Siigur, K.

    1997-01-01

    The sorption coefficients to humic acid of 46 PAC having a wide range in polarity were compared with the capacity coefficients of the PAC to a non-polar HPLC column material (ODS) and a polar one (Diol). It is shown that polar interactions contribute to the sorption of polar PAC in addition...

  12. Increased urinary imidazolepropionic acid, n-acetylhistamine and other imidazole compounds in patients with intestinal disorders

    NARCIS (Netherlands)

    Heiden, C. van der; Wadman, S.K.; Bree, P.K. de; Wauters, E.A.K.

    In 26 out of a large group of patients with gastrointestinal disorders abnormal urinary imidazole excretion patterns were found. Most frequently excessive or increased amounts of imidazolepropionic acid (ImPA) occurred, and as next N-acetylhistamine was excreted in excess. In a number of cases the

  13. Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content.

    Science.gov (United States)

    Cais-Sokolińska, D; Wójtowski, J; Pikul, J; Danków, R; Majcher, M; Teichert, J; Bagnicka, E

    2015-10-01

    This article explored the formation of volatile compounds during the production of kefir from goat and sheep milks with high polyunsaturated fatty acids (PUFA) as a result of feeding animals forage supplemented with maize dried distillers grains with solubles (DDGS). The increased PUFA content of the goat and sheep milks resulted in significant changes to the fermentation process. In particular, apart from an increase in the time taken to ferment sheep milk, fermentation yielded less 2,3-butanedione. The highest quantities of this compound were assayed in kefir produced from goat milk with an increased content of PUFA. An increase of PUFA significantly elevated ethanal synthesis during lactose-alcohol fermentation of sheep milk. Neither the origin of milk (sheep or goat) nor the level of PUFA had any statistical effect on the amount of ethanal assayed during the fermentation of milk and within the finished product. The proportion of l(+)-lactic acid was higher in kefirs produced using goat milk compared with sheep milk and did not depend on the content of PUFA in milk fat. The content of PUFA had a significant effect on the aroma profile of the resulting kefirs. An increase in PUFA content resulted in the loss of whey aroma in goat milk kefirs and the animal odor in sheep milk kefirs, and a creamy aroma became more prevalent in kefirs made from sheep milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Evaluation of Antioxidant Activity, Polyphenolic Compounds, Amino Acids and Mineral Elements of Representative Genotypes of Lonicera edulis

    Directory of Open Access Journals (Sweden)

    Jiri Sochor

    2014-05-01

    Full Text Available The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis. A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC–UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity during one growing season.

  15. Biofilm formation is not a prerequisite for production of the antibacterial compound tropodithietic acid in Phaeobacter inhibens DSM17395

    DEFF Research Database (Denmark)

    Prol García, María Jesús; D'Alvise, Paul; Rygaard, Anita Mac

    2014-01-01

    Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth as multice......Aims The goal of this study was to investigate if biofilm formation on population level is a physiological requirement for antagonism in Phaeobacter inhibens DSM17395, since the antibiotic compound tropodithietic acid (TDA) is produced by several Roseobacter clade species during growth...... as multicellular aggregates or biofilms at the air–liquid interface and is induced on single cell level upon attachment. Methods and Results A mutant library was created by Tn5 transposon insertion and 22 TDA-positive (brown) mutants with decreased biofilm formation or adhesion, and eight TDA-negative (white...... that are likely involved in EPS/LPS production, motility and chemotaxis, and redox regulation play a role in biofilm formation and/or adhesion in P. inhibens DSM17395. Conclusions Cell aggregation and biofilm formation are not physiological prerequisites for TDA production. Significance and Impact of the Study...

  16. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    Science.gov (United States)

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  17. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  18. Metabolism of Seriola lalandi during Starvation as Revealed by Fatty Acid Analysis and Compound-Specific Analysis of Stable Isotopes within Amino Acids.

    Directory of Open Access Journals (Sweden)

    Fernando Barreto-Curiel

    Full Text Available Fish starvation is defined as food deprivation for a long period of time, such that physiological processes become confined to basal metabolism. Starvation provides insights in physiological processes without interference from unknown factors in digestion and nutrient absorption occurring in fed state. Juveniles of amberjack Seriola lalandi were isotopically equilibrated to a formulated diet for 60 days. One treatment consisted of fish that continued to be fed and fish in the other treatment were not fed for 35 days. The isotopic signatures prior to the beginning of and after the starvation period, for fish in the starvation and control treatments, were analysed for lipid content, fatty acid composition and isotopic analysis of bulk (EA-IRMS and of amino acids (compound specific isotope analysis, CSIA. There were three replicates for the starvation group. Fatty acid content in muscle and liver tissue before and after starvation was determined to calculate percent change. Results showed that crude lipid was the most used source of energy in most cases; the PUFAs and LC-PUFAs were highly conserved. According to the protein signature in bulk (δ15N and per amino acid (δ13C and δ15N, in muscle tissue, protein synthesis did not appear to occur substantially during starvation, whereas in liver, increases in δ13C and δ15N indicate that protein turnover occurred, probably for metabolic routing to energy-yielding processes. As a result, isotopic values of δ15N in muscle tissue do not change, whereas CSIA net change occurred in the liver tissue. During the study period of 35 days, muscle protein was largely conserved, being neither replenished from amino acid pools in the plasma and liver nor catabolized.

  19. The use of L-ascorbic acid in speciation of arsenic compounds in drinking water

    Directory of Open Access Journals (Sweden)

    Marjanović Nikola J.

    2009-01-01

    Full Text Available Arsenic speciation, besides total arsenic content determination, is very important in analysis of water, foodstuffs, and environmental samples, because of varying degrees of toxicity of different species. For such purpose hydride generation atomic absorption spectrometry can be used based on the generation of certain types of hydride, depending on the pH value and pretreatment in different reaction media. In this study, we have investigated the effect of L-ascorbic acid as the reaction medium as well as the pre-reducing agent in speciation of arsenic by hydride generation-atomic absorption spectrometry in order to determine monomethyl arsonic acid (MMA in the presence of inorganic forms of arsenic.

  20. Chlorinated acidic and phenolic compounds in pine needles in the recipient area of pulp mill emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sinkkonen, S.; Paasivirta, J. [Department of Chemistry, Jyvaeskylae Univ. (Finland); Lammi, R. [UPM-Kymmene Co, Pietarsaari Mills, Pietarsaari (Finland)

    2000-06-01

    Pine or spruce needles can be used in monitoring of atmospheric pollution on global, regional and local levels. Different extraction, purification and derivatization methods were tested. Derivatization with pentafluorobenzyl bromide and consequent analyses by GC-ECD was found feasible for the chlorinated acids (CAs), except for trichloroacetic acid (TCA). Most part of polychlorinated phenols (PCPs) in needles are bound to the plant material and need alkali treatment for extraction. The pulp mill could not be shown to be the source of the quite low concentrations of CAs in the needles in the vicinity of the mill. Three guaiacols, 2,3,4,6-tetrachlorophenol and pentachlorophenol, observed in concentrations up to 100-300 ng/g in dried needles, probably originate from the pulp mill. (orig.)

  1. Synthesis and Characterization of Long-Chain Tartaric Acid Diamides as Novel Ceramide-Like Compounds

    Directory of Open Access Journals (Sweden)

    Krisztina Takács-Novák

    2010-02-01

    Full Text Available Ceramides play a crucial role in the barrier function of the skin as well as in transmembrane signaling. In this study long aliphatic chain tartaric acid diamides able to replace ceramides in an in vitro model of the stratum corneum lipid matrix due to their similar physico-chemical properties were synthesized from diacetoxysuccinic anhydride in four steps. Their pro-apoptotic effect on fibroblast cells was also investigated.

  2. Antiinflammatory properties of a hydroperoxide compound, structurally related to acetylsalicylic acid.

    Science.gov (United States)

    Killackey, J J; Killackey, B A; Cerskus, I; Philp, R B

    1984-06-01

    3-Hydroperoxy-3-methylphthalide (3-HMP), a structural analog of acetylsalicylic acid (ASA), was found to have some antiinflammatory properties which are distinct from those of ASA. 3-HMP inhibits human platelet aggregation and ATP release in response to low concentrations of collagen but is less effective than ASA. 3-HMP inhibits prostaglandin and thromboxane production from exogenous [14C]arachidonic acid by human platelet lysates in vitro and does so at lower concentrations than ASA (3-HMP IC50 = 10 microM; ASA IC50 = 50 microM). 3-HMP is also more effective than ASA as an inhibitor of prostacyclin-like activity production by rings of rabbit aorta. Human polymorphonuclear (PMN) leukocyte [14C]arachidonic acid metabolism is inhibited by 3-HMP but not ASA. In urethane-anesthetized rats, 3-HMP (10 mg/kg intravenously) is effective in inhibiting PMN leukocyte accumulation in response to intrapleural carrageenan administration whereas ASA is ineffective (100 mg/kg intravenously). This hydroperoxy analog of ASA has antiinflammatory activity which may result from a combination of the ASA-like and hydroperoxide-related pharmacological properties.

  3. A Single Amino Acid Substitution in the Core Protein of West Nile Virus Increases Resistance to Acidotropic Compounds

    Science.gov (United States)

    Martín-Acebes, Miguel A.; Blázquez, Ana-Belén; de Oya, Nereida Jiménez; Escribano-Romero, Estela; Shi, Pei-Yong; Saiz, Juan-Carlos

    2013-01-01

    West Nile virus (WNV) is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu) on the highly basic internal capsid or core (C) protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A) and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses. PMID:23874963

  4. The effect of organic acids and sulfur dioxide on C4 compound production and β-glucosidase activity of Oenococcus oeni from wines under acidic conditions

    Directory of Open Access Journals (Sweden)

    Maturano C

    2016-09-01

    activities at both pH values which were >4.8. As observed for C4 compounds, organic acids stimulated this activity (28%–49% at pH 4.8; ~20% at pH 3.8, thus partially reverting the inhibition caused by acid stress, while SO2 did not affect it. The use of different cell fractions (permeabilized cells, cell protoplasts, and cell extracts associated this activity to the cell surface. Results indicated that diacetyl formation and β-glucosidase activity levels in O. oeni strains as influenced by acidity and organic acids are of relevance for vinification decisions. Keywords: O. oeni, metabolism, enzymatic activity, aroma, wine 

  5. Chiral separation of acidic compounds using an O-9-(tert-butylcarbamoyl)quinidine functionalized monolith in micro-liquid chromatography.

    Science.gov (United States)

    Wang, Qiqin; Zhu, Peijie; Ruan, Meng; Wu, Huihui; Peng, Kun; Han, Hai; Somsen, Govert W; Crommen, Jacques; Jiang, Zhengjin

    2016-04-29

    An O-9-(tert-butylcarbamoyl) quinidine (t-BuCQD) functionalized polymeric monolithic capillary column was prepared by the in situ copolymerization method. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy and micro-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained for this monolithic column. The chiral recognition ability of the resulting monolith was also evaluated using 47 N-derivatized amino acids, eight N-derivatized dipeptides, and two herbicides. Under the selected conditions, the enantiomers of all chiral analytes were baseline separated with exceptionally high selectivity and resolution using micro-LC. It is worth noting that this chiral stationary phase (CSP) containing quinidine with a tert-butyl carbamate residue as chiral selector exhibits much higher enantioselectivity and diastereoselectivity than the previously developed O-9-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine (MQD) based CSP for N-derivatized amino acids and dipeptides. These results indicate that this novel quinidine-based polymeric monolith can be used as an effective tool for the enantioseparation of chiral acidic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Rosmarinic Acid, a New Polyphenol from Baccaurea ramiflora Lour. Leaf: A Probable Compound for Its Anti-Inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Talambedu Usha

    2014-12-01

    Full Text Available Despite several pharmacological applications of Baccaurea ramiflora Lour., studies on the influence of its polyphenol content on pharmacological activity such as anti-inflammatory properties have been scarce. Here we evaluated in vitro antioxidant activity, poyphenolics by HPLC and the anti-inflammatory potential of the methanolic leaf extract of Baccaurea ramiflora (BME and its protective effects in carrageenan-induced paw edema model of inflammation in rats. The BME extract contained 79.06 ± 0.03 mg gallic acid equivalent (GAE/g total polyphenols, 28.80 ± 0.01 mg quercetin equivalent (QE/g flavonoid and 29.42 ± 0.01 μg cathechin equivalent/g proanthocyanidin respectively and rosmarinic acid (8 mg/kg as a main component was identified by HPLC. Results demonstrate that administration of BME at the dose of 200 mg/kg can reduce paw edema by over 63%, and it exhibits a dose-response effect. Depending on concentration, the extract exerted scavenging activity on DPPH radical (IC50 36.4 μg/mL, significantly inhibited IL-1β (4.4 pg/mg protein and TNF-α (0.21 ng/μg protein. Therefore, we conclude BME causes a substantial reduction of inflammation in in vivo models. We propose that rosmarinic acid and similar phenolic compounds may be useful in the therapy of inflammation-related injuries.

  7. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

    2014-04-16

    Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries.

  8. Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Daquan; Gao Lixin; Zhou Guoding

    2004-12-01

    Inhibition of copper corrosion by benzotriazole (BTA), 2-mercapto benzoxazole (MBO) and 2-mercapto benzimidazole (MBI) in 0.5 mol L{sup -1} HCl was investigated by weight-loss measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy. MBI was shown to be the most effective inhibitor among those tested. Potentiodynamic polarization results revealed that the three compounds acted as anodic inhibitors, particularly MBI strongly suppressed anodic current densities. Molecular structure parameters of BTA, MBO and MBI were obtained by using an MM2 forcefield program and PPP-SCF quantum chemical calculation. It was found that MBI has higher levels of HOMO and LUMO energy and the larger {pi}-electron density.

  9. METABOLIC ENGINEERING OF LACTIC ACID BACTERIA FOR THE PRODUCTION OF INDUSTRIALLY IMPORTANT COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Maria Papagianni

    2012-10-01

    Full Text Available Lactic acid bacteria (LAB are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review.

  10. Synthesis of poly(N-isopropylacrylamide-co-acrylic acid) model compounds for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens; Christensen, Morten Lykkegaard; Scales, Peter

    2005-01-01

    is investigated by titration, differential scanning calorimetry (DSC) and capillary rheometry. The titration experiments indicates that the polymerization is a block copolymerization and the DSC result show that the blocks of poly(N-isopropylacrylamide) are not randomly distributed in the microgels. Capillary...... concentrations of acrylic acid as co-monomer. The microgels have a charge density between 0.2 and 0.9 mmol/g.   Preliminary filtration experiments show that filtration properties of the microgel model system significantly differs from the properties for inorganic colloidals such as titaniumdioxid....

  11. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds

    Directory of Open Access Journals (Sweden)

    Maria Papagianni

    2012-10-01

    Full Text Available Lactic acid bacteria (LAB are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review.

  12. Physicochemical properties, phenolic acids and volatile compounds of oil extracted from dry alhydwan (Boerhavia elegana Choisy seeds

    Directory of Open Access Journals (Sweden)

    Al-Farga, A.

    2015-09-01

    Full Text Available In this study, the chemical composition, physicochemical properties, phenolic acids and volatile compounds of alhydwan (Boerhavia elegana Choisy seed oil were evaluated. The crude oil content was 11.49%, ash 6.88%, moisture 6.12%, protein content 14.60%, total carbohydrate 24.77% and fiber 36.13%. The oil contain a high quantity of unsaturated fatty acids (74.63 mg·100 g−1 with oleic (C18:1 (57.77%, palmitic (C16:0 (18.65% and linoleic (C18:2 (12.88% acids as the most abundant. The relative density was 0.88 and the iodine value 105.59. The color analysis showed a value of 28.33 Y+1.43 R. The oil also had a high relative oxidative stability. The tocol composition showed that α-tocotrienol, γ-tocopherol and γ-tocotrienol were in a higher concentration than the rest. Seven phenolic acids (caffeic, vanillic, galic, p-coumaric, ascorbic, cinnamic and ferulic were detected, with ascorbic acid as the predominant one (5.44 mg·100 g−1. In relation to the volatile composition, 48 compounds were found with Z-10-Pentadecen-1-ol (56.73%; Hexadecenoic acid, Z-11- (18.52%; 9,12-Octadecadienoic acid (Z,Z- (3.93% and 9,12-Octadecadienoic acid (Z,Z-, 2-hydroxy-1-(hydroxymethyl ethyl ester (3.04% as the most abundant. These findings demonstrated the potential of alhydwan seeds to be used as a good source of quality edible oil.En este estudio se ha determinado la composición química, las propiedades físico-químicas, ácidos fenólicos y compuestos volátiles de aceites de semillas de alhydwan (Boerhavia elegana Choisy. Las semillas contenían un 11.49% de aceite, 6.88% de cenizas, 6,12% de humedad, 14.60% de proteínas, 24.77% de carbohidratos totales y 36.13% de fibra. El aceite contiene 74,63 mg·100 g−1 de ácidos grasos insaturados, con oleico (C18: 1 (57,77%, palmítico (C16: 0 (18,65% y linoleico (C18: 2 (12,88% como los más abundantes. La densidad relativa fue de 0,88 y el índice de yodo de 105,59. El análisis del color mostró un valor de

  13. Compound-specific amino acid isotopic analyses of invertebrates in the Chukchi Sea: New insights on food web dynamics

    Science.gov (United States)

    Zhang, M.; Cooper, L. W.; Biasatti, D. M.; Kedra, M.; Grebmeier, J. M.

    2016-02-01

    Food web dynamics in the Chukchi Sea have been previously evaluated using bulk analysis of stable carbon and nitrogen isotopes of organisms. However, recent advances in compound-specific stable isotope analysis of amino acids indicate the potential to better identify the contributions of different dietary sources (e.g., pelagic vs. benthic, ice algae vs. phytoplankton) and to resolve complexities of food web structure that are difficult to address with bulk isotope analysis. Here we combine amino acid δ13C and δ15N data measured from primary producers and tissues of bivalves, polychaetes and other benthic invertebrates collected during two cruises in the summer of 2013 and 2015 in the Pacific Arctic. The results showed spatial variation of carbon isotope values in amino acids with difference up to 6 per mil for each individual species or taxa studied, indicating a shift in the food-web baseline geographically. Furthermore, the spatial variation in isotopic values was related to environmental factors, specifically sea ice extent, and total organic carbon, total organic nitrogen and the carbon/nitrogen ratio of the organic fractions of surface sediments. Results also indicated that trophic levels, as estimated by differences in the nitrogen isotope composition of glutamic acid and phenylalanine [Δ15Nglu-phe (δ15Nglu - δ15Nphe)], varied spatially by 0.5 to 1.5 trophic levels for certain species or taxa such as Macoma calcarea, Maldanidae and Ampelisca, indicating trophic level shifts that were associated with the food quality of organic matter in the organic fraction of the sediments. These results can be potentially used to predict future food web change in this high latitude marine system that is known for its ecological importance and on-going environmental changes, including warming and sea ice decline.

  14. Combined effects of ozone and nitrogen on secondary compounds, amino acids, and aphid performance in Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, P.; Holopainen, J.K.; Holopainen, T.

    2000-02-01

    Combined effects of O{sub 3} and N supply on Scots pine (Pinus sylvestris L.) were studied in two separate growth chamber experiments exposing seedlings to 0, 0.075, 0.15, and 0.3 {micro}L/L of O{sub 3} during 8 h/d, 5 d/wk for a period of 5 wk. Seedlings were fertilized with low, medium, and high levels of N. Ozone and N availability affected concentrations of several primary and secondary metabolites. More changes on metabolites were detected in Exp. 1 (with seedlings ceasing their annual growth) than in Exp. 2 (with seedlings actively growing). Overall, high O{sub 3} exposure levels significantly decreased concentrations of monoterpenes and increased concentrations of resin acids. Concentrations of total phenolics were not affected by O{sub 3} exposure. Mostly lower concentrations of monoterpenes and resin acids were found at a medium N-fertilization level than at low and high N-fertilization levels, while total phenolic concentration decreased by enhanced N availability. In Exp. 1, significantly elevated concentrations of free amino acids were found at O{sub 3} concentration of 0.3 {micro}L/L. Nitrogen availability did not have remarkable effects on amino acid concentrations. In Exp. 1, both {sub 3} and N had a significant effect on the MRGR of the aphid Schizolachnus pineti. In Exp. 2, the weight of the females and nymphs and the total number of reproduced nymphs were significantly affected by O{sub 3} and N. Only a few interaction effects were found, suggesting that the N supply does not significantly modify O{sub 3}-induced effects on studied primary and secondary compounds and aphid performance in Scots pine seedlings.

  15. Compound-Specific δ¹⁵N and δ¹³C Analyses of Amino Acids for Potential Discrimination between Organically and Conventionally Grown Wheat.

    Science.gov (United States)

    Paolini, Mauro; Ziller, Luca; Laursen, Kristian Holst; Husted, Søren; Camin, Federica

    2015-07-01

    We present a study deploying compound-specific nitrogen and carbon isotope analysis of amino acids to discriminate between organically and conventionally grown plants. We focused on grain samples of common wheat and durum wheat grown using synthetic nitrogen fertilizers, animal manures, or green manures from nitrogen-fixing legumes. The measurement of amino acid δ(15)N and δ(13)C values, after protein hydrolysis and derivatization, was carried out using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our results demonstrated that δ(13)C of glutamic acid and glutamine in particular, but also the combination of δ(15)N and δ(13)C of 10 amino acids, can improve the discrimination between conventional and organic wheat compared to stable isotope bulk tissue analysis. We concluded that compound-specific stable isotope analysis of amino acids represents a novel analytical tool with the potential to support and improve the certification and control procedures in the organic sector.

  16. Evaluation of Hydrocalumite-Like Compounds as Catalyst Precursors in the Photodegradation of 2,4-Dichlorophenoxyacetic Acid

    Directory of Open Access Journals (Sweden)

    Manuel Sánchez-Cantú

    2016-01-01

    Full Text Available Three hydrocalumite-like compounds in a Ca/Al ratio of 2 containing nitrate and acetate anions in the interlaminar region were prepared by a simple, economic, and environmentally friendly method. The solids were characterized by X-ray powder diffraction (XRD, thermogravimetric (TG analysis, nitrogen adsorption-desorption at −196°C, scanning electron microscopy (SEM, infrared spectroscopy (FTIR, and UV-Vis Diffuse Reflectance Spectroscopy (DRS. The catalytic activity of the calcined solids at 700°C was tested in the photodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D where 57% degradation of 2,4-D (40 ppm and a mineralization percentage of 60% were accomplished within 150 minutes. The photocatalytic properties were attributed to mayenite hydration, since the oxide ions in the cages are capable of reacting with water to form hydroxide anions capable of breaking down the 2,4-D molecules.

  17. Studies of dissolution solutions of ruthenium metal, oxide and mixed compounds in nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mousset, F.; Eysseric, C.; Bedioui, F

    2004-07-01

    Ruthenium is one of the fission products generated by irradiated nuclear fuel. It is present throughout all the steps of nuclear fuel reprocessing-particularly during extraction-and requires special attention due to its complex chemistry and high {beta}{gamma} activity. An innovative electro-volatilization process is now being developed to take advantage of the volatility of RuO{sub 4} in order to eliminate it at the head end of the Purex process and thus reduce the number of extraction cycles. Although the process operates successfully with synthetic nitrato-RuNO{sup 3+} solutions, difficulties have been encountered in extrapolating it to real-like dissolution solutions. In order to better approximate the chemical forms of ruthenium found in fuel dissolution solutions, kinetic and speciation studies on dissolved species were undertaken with RuO{sub 2},xH{sub 2}O and Ru{sup 0} in nitric acid media. (authors)

  18. Employing rubusoside to improve the solubility and permeability of antitumor compound betulonic acid.

    Science.gov (United States)

    Zhang, Jian; Chou, Guixin; Liu, Zhijun; Liu, Mei

    2016-10-19

    To examine if rubusoside (RUB) can overcome insolubility of betulonic acid (BEA), it can be accurately evaluated for its intrinsic activity against cancer in cell culture and in tumor animal models. By processing RUB and BEA together using a solvent evaporation method, a joint nanoparticulate structure is formed, designated as BEA-NP. BEA-NP was found over three-times more permeable than that solubilized by DMSO in Caco-2 cell monocultures. In an in vivo efficacy study, the tumor growth in the S180 berry mice orally dosed with BEA-NP at 75 mg/kg was inhibited by 50%. RUB was effective in solubilizing BEA, maintaining its cytotoxicity, enhancing its permeability and reducing tumor growth when orally administered.

  19. Synthetic analogues of the natural compound cryphonectric acid interfere with photosynthetic machinery through two different mechanisms.

    Science.gov (United States)

    Teixeira, Róbson Ricardo; Pereira, Wagner Luiz; Tomaz, Deborah Campos; de Oliveira, Fabrício Marques; Giberti, Samuele; Forlani, Giuseppe

    2013-06-12

    A series of isobenzofuran-1(3H)-ones (phthalides), analogues of the naturally occurring phytotoxin cryphonectric acid, were designed, synthesized, and fully characterized by NMR, IR, and MS analyses. Their synthesis was achieved via condensation, aromatization, and acetylation reactions. The measurement of the electron transport chain in spinach chloroplasts showed that several derivatives are capable of interfering with the photosynthetic apparatus. Few of them were found to inhibit the basal rate, but a significant inhibition was brought about only at concentrations exceeding 50 μM. Some other analogues acted as uncouplers or energy transfer inhibitors, with a remarkably higher effectiveness. Isobenzofuranone addition to the culture medium inhibited the growth of the cyanobacterium Synechococcus elongatus , with patterns consistent with the effects measured in vitro upon isolated chloroplasts. The most active derivatives, being able to completely suppress algal growth at 20 μM, may represent structures to be exploited for the design of new active ingredients for weed control.

  20. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections.

    Science.gov (United States)

    Chung, Yi-Ching; Hsieh, Feng-Chia; Lin, Ying-Ju; Wu, Tzong-Yuan; Lin, Cheng-Wen; Lin, Ching-Ting; Tang, Nou-Ying; Jinn, Tzyy-Rong

    2015-05-15

    The aim of this study was to identify the active ingredients responsible for the anti-EV71 activity produced by Salvia miltiorrhiza extracts. A pGS-EV71 IRES-based bicistronic reporter assay platform was used for rapid analysis of compounds that could specifically inhibit EV71 viral IRES-mediated translation. The analysis identified 2 caffeic acid derivatives, magnesium lithospermate B (MLB) and rosmarinic acid (RA), which suppressed EV71 IRES-mediated translation at concentrations of 30μg/ml. We also found that MLB and RA inhibited EV71 infection when they were added to RD cells during the viral absorption stage. MLB had a low IC50 value of 0.09mM and a high TI value of 10.52. In contrast, RA had an IC50 value of 0.50mM with a TI value of 2.97. MLB and RA (100µg/ml) also reduced EV71 viral particle production and significantly decreased VP1 protein production. We propose that these two derivatives inhibit EV71 viral entry into cells and viral IRES activity, thereby reducing viral particle production and viral RNA expression and blocking viral VP1 protein translation. This study provides useful information for the development of anti-EV71 assays and reagents by demonstrating a convenient EV71 IRES-based bicistronic assay platform to screen for anti-EV71 IRES activity, and also reports 2 compounds, MLB and RA, which are responsible for the anti-EV71 activity of S. miltiorrhiza. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. THE COORDINATION COMPOUNDS OF COBALT (II, III WITH DITHIOCARBAMIC ACID DERIVATIVES — MODIFICATORS OF HYDROLYTIC ENZYMES ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. D. Varbanets

    2013-02-01

    Full Text Available Chloride, bromide and isothiocyanate complexes of cobalt(II with N-substituted thiocarbamoyl-N?-pentamethylenesulfenamides (1–(12, and also complexes of cobalt(II, Ш with derivatives of morpholine-4-carbodithioic acid (13–(18 have been used as modificators of enzymes of hydrolytic action — Bacillus thurin-giensis ІМВ В-7324 peptidases, Bacillus subtilis 147 and Aspergillus flavus var. oryzae 80428 amylases, Eupenicillium erubescens 248 and Cryptococcus albidus 1001 rhamnosidases. It was shown that cobalt (II, Ш compounds influence differently on the activity of enzymes tested, exerted both inhibitory and stimulatory action. It gives a possibility to expect that manifestation of activity by complex molecule depends on ligand and anion presence — Cl–, Br– or NCS–. The high activating action of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides (1–(12 on elastase and fibrinolytic activity of peptidases compared to tris(4-morpholinecarbodithioatocobalt(ІІІ (14 and products of its interaction with halogens (15–(17, causes inhibitory effect that is probably due to presence of a weekly S–N link, which is easy subjected to homolytic breaking. The studies of influences of cobalt(II complexes on activity of C. аlbidus and E. еrubescens ?-Lrhamnosidases showed, that majority of compounds inhibits of its activity, at that the most inhibitory effect exerts to C. аlbidus enzyme.To sum up, it is possible to state that character of influence of cobalt(II complexes with N-substituted thiocarbamoyl-N?-pentamethylenesulphenamides, and also cobalt(II, Ш complexes with derivatives of morpholine-4-carbodithioic acid varies depending on both strain producer and enzyme tested. The difference in complex effects on enzymes tested are due to peculiarities of building and functional groups of their active centers, which are also responsible for binding with modificators.

  2. Influence of Iron on Production of the Antibacterial Compound Tropodithietic Acid and Its Noninhibitory Analog in Phaeobacter inhibens.

    Science.gov (United States)

    D'Alvise, Paul W; Phippen, Christopher B W; Nielsen, Kristian F; Gram, Lone

    2015-10-30

    Tropodithietic acid (TDA) is an antibacterial compound produced by some Phaeobacter and Ruegeria spp. of the Roseobacter clade. TDA production is studied in marine broth or agar since antibacterial activity in other media is not observed. The purpose of this study was to determine how TDA production is influenced by substrate components. High concentrations of ferric citrate, as present in marine broth, or other iron sources were required for production of antibacterially active TDA. However, when supernatants of noninhibitory, low-iron cultures of Phaeobacter inhibens were acidified, antibacterial activity was detected in a bioassay. The absence of TDA in nonacidified cultures and the presence of TDA in acidified cultures were verified by liquid chromatography-high-resolution mass spectrometry. A noninhibitory TDA analog (pre-TDA) was produced by P. inhibens, Ruegeria mobilis F1926, and Phaeobacter sp. strain 27-4 under low-iron concentrations and was instantaneously converted to TDA when pH was lowered. Production of TDA in the presence of Fe(3+) coincides with formation of a dark brown substance, which could be precipitated by acid addition. From this brown pigment TDA could be liberated slowly with aqueous ammonia, and both direct-infusion mass spectrometry and elemental analysis indicated a [Fe(III)(TDA)2]x complex. The pigment could also be produced by precipitation of pure TDA with FeCl3. Our results raise questions about how biologically active TDA is produced in natural marine settings where iron is typically limited and whether the affinity of TDA to iron points to a physiological or ecological function of TDA other than as an antibacterial compound. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Synthesis, Structures and Photoluminescent Properties of Two Novel Zinc(II) Compounds Constructed from 5-Sulfoisophthalic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yu Lan; Tang, Xue Ling; Ma, Kui Rong; Chen, Hao [Huaiyin Normal University, Huaian (China); Ma, Feng; Zhao, Lian Hua [Yanbian University, Yanji (China)

    2010-07-15

    Hydrothermal reaction of zinc(II) salts with 5-sulfoisophthalic acid monosodium salt (NaO{sub 3}SC{sub 6}H{sub 3}-1,3-(COOH){sub 2}, NaH{sub 2}- SIP) and 1,10-phenanthroline (phen) led to two new compounds, [Zn(phen){sub 3}]{center_dot}2H{sub 2}SIP{center_dot}4H{sub 2}O and [Zn(phen){sub 2}(H{sub 2}O){sub 2}]{center_dot} 2H{sub 2}SIP{center_dot}2H{sub 2}O. They were characterized by element analysis, IR spectroscopy, thermal gravimetric analysis (TGA), X-ray powder diffraction (XRD), and single-crystal X-ray diffraction. Both compounds 1-2 represent the first example of Zn/phen/SIP system. The Zn (II) ion in 1 is six-coordinated by six nitrogen atoms from three phen molecules, and the H{sub 2}SIP{sup -} ligands engage in the formation of hydrogen bond. The Zn(II) ion in 2 is coordinated by four nitrogen atoms from two phen molecules and two oxygen atoms from two water molecules. Moreover, both 1 and 2 are assembled into 3D supramolecular architectures by hydrogen bonds (O-H{center_dot}{center_dot}{center_dot}O) and {pi}-{pi} interactions. Solvent water molecules occupying voids of the compounds serve as receptors or donors of the extensive O-H{center_dot}{center_dot}{center_dot}O hydrogen bonds.

  4. Clove and Its Active Compound Attenuate Free Fatty Acid-Mediated Insulin Resistance in Skeletal Muscle Cells and in Mice.

    Science.gov (United States)

    Ghaffar, Safina; Afridi, Shabbir Khan; Aftab, Meha Fatima; Murtaza, Munazza; Hafizur, Rahman M; Sara, Sara; Begum, Sabira; Waraich, Rizwana Sanaullah

    2017-04-01

    Several reports indicate anti-hyperglycemic effects of Syzygium aromaticum. In the present study, we report for the first time that clove extract (SAM) and its compound nigricin (NGC) decreases free fatty acid-mediated insulin resistance in mouse myoblasts. In addition, NGC was able to diminish insulin resistance in a diabetic mouse model. We observed that SAM and its compound NGC exhibited significant antioxidant activity in murine skeletal muscle cells. They also modulated stress signaling by reducing p38 MAP kinase phosphorylation. NGC and SAM treatments enhanced proximal insulin signaling by decreasing serine phosphorylation of insulin receptor substrate-1 (IRS-1) and increasing its tyrosine phosphorylation. SAM and NGC treatments also modified distal insulin signaling by enhancing protein kinase B (PKB) and glycogen synthase kinase-3-beta (GSK-3 beta) phosphorylation in muscle cells. Glucose uptake was enhanced in muscle cells after treatment with SAM and NGC. We observed increased glucose tolerance, glucose-stimulated insulin secretion, decreased insulin resistance, and increased beta cell function in diabetic mice treated with NGC. The results of our study demonstrate that clove extract and its active agent NGC can be potential therapeutic agents for alleviating insulin resistance.

  5. Fermentation of liquid coproducts and liquid compound diets: Part 2. Effects on pH, acid-binding capacity, organic acids and ethanol during a 6-day storage period.

    Science.gov (United States)

    Scholten, R H; Rijnen, M M; Schrama, J W; Boer, H; van der Peet-Schwering, C M; Den Hartog, L A; Vesseur, P C; Verstegen, M W

    2001-06-01

    The effects of a 6-day storage period on changes in pH, acid-binding capacity, level of organic acids and ethanol of three liquid coproducts [liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW)] and two liquid compound diets [liquid grower diet (LGD) and liquid finisher diet (LFD)] were studied. All products, except LWS, showed a significant decrease in pH and acid-binding capacity during storage. At the end of the storage period, all products reached a pH of between 3.5 and 3.9. In general, it can be concluded that the lactic acid content, and to a lesser extent the acetic acid content, increased dramatically during storage. In contrast, the ethanol content increased significantly in the liquid compound diets only. The pattern of changes in pH and organic acids during the 6-day storage period was different between the liquid coproducts and the liquid compound diets. At the start of storage, liquid coproducts are already in the 'middle' of the fermentation process, while liquid compound diets need approximately 24-36 h before fermentation begins. Consequently, in practice a different approach to obtain fermented diets is needed for liquid coproducts and liquid compound diets.

  6. Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenol compounds.

    Science.gov (United States)

    Gracia, Ana; Elcoroaristizabal, Xabier; Fernández-Quintela, Alfredo; Miranda, Jonatan; Bediaga, Naiara G; M de Pancorbo, Marian; Rimando, Agnes M; Portillo, María P

    2014-07-01

    DNA methylation is an epigenetic mechanism that can inhibit gene transcription. The aim of this study was to assess changes induced by an obesogenic diet in the methylation profile of genes involved in adipose tissue triacylglycerol metabolism, and to determine whether this methylation pattern can be altered by resveratrol and pterostilbene. Rats were divided into four groups. The control group was fed a commercial standard diet, and the other three groups were fed a commercial high-fat, high-sucrose diet (6 weeks): the high-fat, high-sucrose group, the resveratrol-treated group (RSV; 30 mg/kg/day), and the pterostilbene-treated group (PT; 30 mg/kg/day). Gene expression was measured by RT-PCR and gene methylation by pyrosequencing. The obesogenic diet induced a significant increase in adipose tissue weight. Resveratrol and pterostilbene partially prevented this effect. Methylation pattern of ppnla2 and pparg genes was similar among the experimental groups. In fasn, significant hypomethylation in -90-bp position and significant hypermethylation in -62-bp position were induced by obesogenic feeding. Only pterostilbene reversed the changes induced by the obesogenic diet in fasn methylation pattern. By contrast, the addition of resveratrol to the diet did not induce changes. Both phenolic compounds averted fasn up-regulation. These results demonstrate that the up-regulation of fasn gene induced by an obesogenic feeding, based on a high-fat, high-sucrose diet, is related to hypomethylation of this gene in position -90 bp. Under our experimental conditions, both molecules prevent fasn up-regulation, but this change in gene expression seems to be mediated by changes in methylation status only in the case of pterostilbene.

  7. Photocatalytic hydrogen production from biomass-derived compounds: a case study of citric acid.

    Science.gov (United States)

    Alkaim, Ayad F; Kandiel, Tarek A; Dillert, Ralf; Bahnemann, Detlef W

    2016-11-01

    Highly crystalline anatase TiO2 nanoparticles with high BET surface area have been synthesized by thermal hydrolysis of titanium(IV) bis(ammoniumlactato) dihydroxide aqueous solutions. The photocatalytic H2 production from aqueous citric acid (CA) solutions over Pt-loaded TiO2 has been investigated under different experimental conditions, that is, different CA concentration, temperature, light intensity, and pH of Pt/TiO2 suspension. For comparison, the photocatalytic dehydrogenation of triethanolamine (TEA) has also been investigated. The highest H2 production rates were obtained at pH 3 and 9 for CA and TEA, respectively. This behavior is readily explained by the adsorption characteristic of the employed reagent on the surface of the charged TiO2. The effect of the photocatalyst loading and the light intensity on the H2 production rate showed the same behavior in the case of CA and TEA evincing that these parameters are catalyst dependent. The apparent activation energies have been determined to be 13.5 ± 1.8 and 14.7 ± 1.6 kJ mol(-1) for CA and TEA, respectively, indicating the existence of an activation energy barrier in a photocatalytic process which can be attributed to the desorption of adsorbed products.

  8. Acid-base and catalytic properties of the products of oxidative thermolysis of double complex compounds

    Science.gov (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.; Ivanov, Yu. V.

    2016-01-01

    Acid-base properties of the products of thermal decomposition of [M(A)6] x; [M1(L)6] y (where M is Co, Cr, Cu, Ni; M1 is Fe, Cr, Co; A is NH3, 1/2 en, 1/2 pn, CO(NH2)2; and L is CN, 1/2C2O4) binary complexes in air and their catalytic properties in the oxidation reaction of ethanol with atmospheric oxygen are studied. It is found that these thermolysis products are mixed oxides of the central atoms of complexes characterized by pH values of the zero charge point in the region of 4-9, OH-group sorption limits from 1 × 10-4 to 4.5 × 10-4 g-eq/g, OH-group surface concentrations of 10-50 nm-2 in 0.1 M NaCl solutions, and S sp from 3 to 95 m2/g. Their catalytic activity is estimated from the apparent rate constant of the conversion of ethanol in CO2. The values of constants are (1-6.5) × 10-5 s-1, depending on the gas flow rate and the S sp value.

  9. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis.

    Science.gov (United States)

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D

    2016-03-14

    Nanoparticles entering the human body instantly become coated with a "protein corona" that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an "organic corona" containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.

  10. Zn-Al LAYERED DOUBLE HYDROXIDE AS HOST MATERIAL FOR SUNSCREEN COMPOUND OF p-AMINOBENZOIC ACID

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2010-06-01

    Full Text Available Zn-Al layered double hydroxide can be used as host material for UV active compound p-aminobenzoic acid (PABA, which is having capability to block UV light of sunlight. The formation of Zn-Al-PABA was best developed in which the nucleation process was done at room temperature and followed by hydrothermal treatment at 100 oC.   To make a better product, the molar ratio of Zn to Al to PABA was adjusted to 3:1:1. From the elemental analysis and the content of PABA, it was observed that the product has structural formula of Zn0,745Al0.254(OH1.650(PABA0.349. 0.684H2O. The particle size of the powder as estimated using SEM was in the range 100-200 nm. FTIR and XRD proved that the p-amino benzoate ion occupied the interlayer space. This material is expected to have high sun protection factor (SPF.   Keywords: layered double hydroxide, sunscreen, p-amino benzoic acid, nanoparticle

  11. Anticonvulsant efficiency, behavioral performance and cortisol levels: a comparison of carbamazepine (CBZ) and a fatty acid compound (SR-3).

    Science.gov (United States)

    Rabinovitz, Sharon; Mostofsky, David I; Yehuda, Shlomo

    2004-02-01

    The role of fatty acids (FA) and their impact on nervous system activity and immune function has attracted much attention. The interest extends beyond a basic understanding of the potential role exerted by FA on the neuronal membrane and its properties, to the implications and clinical significance for many neurological disorders. This is especially true for epilepsy, where many conventional anticonvulsant preparations carry undesired side effects, and a significant number of patients remain refractory to the drug treatment. We report on a comparative examination in rats of carbamazepine (CBZ) and SR-3 (a fatty acid compound) with respect to seizure control efficiency, as well as protective features against cognitive impairment and cortisol level elevation. With pentylenetetrazol (PTZ) induced seizures pre-treated by CBZ, or SR-3, both CBZ and SR-3 were equally effective in providing seizure control and both were superior to the saline control. However SR-3 provided greater protection in Morris Water Maze performance and control of cortisol level elevation.

  12. Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products.

    Science.gov (United States)

    Droussi, Zainab; D'Orazio, Valeria; Hafidi, Mohamed; Ouatmane, Aaziz

    2009-04-30

    Humic acids (HAs) were isolated at different stages of composting from two piles of solid olive mill residues (SOR) treated for the first 30 days with tap water (pile C1) or olive mill wastewater (pile C2), for a total composting period of 9 months. The HA fractions were characterized by elemental analysis, UV-visible, Fourier transform infrared and fluorescence spectroscopy in order to monitor humification process and the maturity of the composts. As composting proceeded, the elemental composition of the humic acids showed a decrease in C and H content, and in the C/N ratio, and an increase in N and O contents and in the C/H and O/C ratios. These changes could be attributed to a loss of aliphatic groups and to an increase of aromatic character, polycondensation and degree of oxidation of the HAs. Spectroscopic data agree and support these results, suggesting that the chemical and structural features of the HAs of both composts tend to reach those typical of native soil HAs, that is compounds with a high degree of humification and a high molecular weight and complexity. Therefore, both composting processes seem suitable to produce well-humified organic matter, with important benefits for their use in soil amendment. No differences appeared between the two treatments concerning the humic character of the two final composts.

  13. Microwave (MW) irradiated Ugi four-component reaction (Ugi-4CR): Expedited synthesis of steroid-amino acid conjugates--A novel class of hybrid compounds.

    Science.gov (United States)

    Borah, Preetismita; Borah, Juri Moni; Chowdhury, Pritish

    2015-06-01

    Microwave (MW) assisted chemical reactions are currently gaining considerable importance in organic synthesis to contribute in green technology. Considering the importance of peptidomimetic steroid-amino acid conjugates - a novel class of hybrid compounds having diverse biological properties, we report here synthesis of these compounds of alanine and valine methyl esters with seco-steroids (A, B and D ring cleavage) in expedited way by MW promoted Ugi-four-component reaction (Ugi-4CR). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis

    Science.gov (United States)

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.

    2016-03-01

    Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See

  15. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    Science.gov (United States)

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-01-15

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (> 5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, Fragment Ion Searching and parent list-based multistage mass spectrometry acquisition by Linear Trap Quadropole-orbitrap Velos Mass Spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Electrochemical and spectroscopic characteristics of p-acryloyloxybenzoyl chloride and p-acryloyloxybenzoic acid and antimicrobial activity of organic compounds

    Science.gov (United States)

    Cakir, I.; Soykan, U.; Cetin, S.; Karaboga, F.; Zalaoglu, Y.; Dogruer, M.; Terzioglu, C.; Yildirim, G.

    2014-11-01

    The purpose of this multidisciplinary work is to characterize title compounds, p-acryloyloxybenzoyl chloride (ABC) and p-acryloyloxybenzoic acid (ABA) by means of experimental and theoretical evidences. As experimental research, Fourier transformation-infrared spectra (in the region 400-4000 cm-1) and nuclear magnetic resonance (NMR) chemical shifts (with a frequency of 400 MHz) are examined for spectroscopic properties belonging to the new synthesized compounds. Moreover, the compounds are investigated for antimicrobial activity against various microorganisms (Gram-positive and Gram-negative) by means of the visual inhibition zone technique on the agar media. The experimental results observed indicate that ABA exhibits more powerful inhibitors of microorganisms due to the presence of the hydroxyl group leading to higher reactive system, one of the most striking features of the paper. As for the theoretical studies, the optimized molecular structures, vibrational frequencies, corresponding vibrational spectra interpreted with the aid of normal coordinate analysis based on scaled density functional force field, atomic charges, thermodynamic properties at different temperature, 1H NMR chemical shifts by way of density functional theory (DFT) with the standard (B3LYP) methods at 6-311G++(d,p) basis set combination for the first time. According to findings, the 1H NMR chemical shifts and vibrational frequencies are obtained to be in good agreement with the suitable experimental results. Thus, it would be more precise to say that the calculation level chosen is powerful approach for understanding in the identification of the molecules investigated. At the same time, we determine the electrochemical characteristics belonging to the samples via the simulation of translation energy (HOMO-LUMO), molecular electrostatic potential (MEP) and electrostatic potential (ESP) investigations. It is observed that the strong intra-molecular charge transfer (ICT) appears between the

  17. Susceptibility of Saccharomyces cerevisiae and lactic acid bacteria from the alcohol industry to several antimicrobial compounds

    Directory of Open Access Journals (Sweden)

    Oliva-Neto Pedro de

    2001-01-01

    Full Text Available The antimicrobial effect of several products including commercial formulations currently used in sugar and alcohol factories was determined by adapted MIC (Minimal Inhibitory Concentration test on Saccharomyces cerevisiae and on natural contaminants Lactobacillus fermentum and Leuconostoc mesenteroides. The MIC test by macrodilution broth method was adapted by formulating of the culture medium with cane juice closely simulating industrial alcoholic fermentation must. Acid penicillin V (MIC 0.10-0.20 µg/ml and clindamycin (MIC 0.05-0.40 µg/ml were most effective against bacterial growth in 24 h. Among the chemicals, sulphite (MIC 10-40 µg/ml, nitrite (MIC 50 µg/ml. Methyldithiocarbamate was efficient only on L. fermentum (MIC 2.5 µg/ml and S. cerevisiae (MIC 5.0 µg/ml. Thiocianate (MIC 1.2-5.0 µg/ml, bromophenate (MIC 9-18 µg/ml and n- alkyldimethylbenzylammonium cloride (MIC 1-8 µg/ml affected S. cerevisiae at similar inhibitory concentration for L. mesenteroides or L. fermentum. Formaldehyde was more effective on bacteria (MIC 11.5 - 23 µg/ml in both pH (4.5 and 6.5 than yeast (MIC 46-92 µg/ml. Several tested formulated biocides seriously affect S. cerevisiae growth in the similar dosages of the bacterial inhibition, so these products should be avoided or used only in special conditions for the bacterium control of fermentation process. For this step, the control of these contaminants by antibiotics are more suitable and effective.

  18. Development of an Interaction Assay between Single-Stranded Nucleic Acids Trapped with Silica Particles and Fluorescent Compounds

    Directory of Open Access Journals (Sweden)

    R. Maeda

    2012-09-01

    Full Text Available Biopolymers are easily denatured by heating, a change in pH or chemical substances when they are immobilized on a substrate. To prevent denaturation of biopolymers, we developed a method to trap a polynucleotide on a substrate by hydrogen bonding using silica particles with surfaces modified by aminoalkyl chains ([A-AM silane]/SiO2. [A-AM silane]/SiO2 was synthesized by silane coupling reaction of N-2-(aminoethyl-3-aminopropyltrimethoxysilane (A-AM silane with SiO2 particles with a diameter of 5 μm at 100 °C for 20 min. The surface chemical structure of [A-AM silane]/SiO2 was characterized by Fourier transform infrared spectroscopy and molecular orbital calculations. The surface of the silica particles was modified with A-AM silane and primary amine groups were formed. [A-AM silane]/SiO2 was trapped with single-stranded nucleic acids [(Poly-X; X = A (adenine, G (guanine and C (cytosine] in PBS solution at 37 °C for 1 h. The single-stranded nucleic acids were trapped on the surface of the [A-AM silane]/SiO2 by hydrogen bonding to form conjugated materials. The resulting complexes were further conjugated by derivatives of acridine orange (AO as fluorescent labels under the same conditions to form [AO:Poly-X:A-AM silane]/SiO2 complexes. Changes in the fluorescence intensity of these complexes originating from interactions between the single-stranded nucleic acid and aromatic compounds were also evaluated. The change in intensity displayed the order [AO: Poly-G: A-AM silane]/SiO2 > [AO:Poly-A:A-AM silane]/SiO2 >> [AO:Poly-C:A-AM silane]/SiO2. This suggests that the single-stranded nucleic acids conjugated with aminoalkyl chains on the surfaces of SiO2 particles and the change in fluorescence intensity reflected the molecular interaction between AO and the nucleic-acid base in a polynucleotide.

  19. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds.

    Science.gov (United States)

    Oja, M; Maran, U

    2015-01-01

    Absorption in gastrointestinal tract compartments varies and is largely influenced by pH. Therefore, considering pH in studies and analyses of membrane permeability provides an opportunity to gain a better understanding of the behaviour of compounds and to obtain good permeability estimates for prediction purposes. This study concentrates on relationships between the chemical structure and membrane permeability of acidic and basic drugs and drug-like compounds. The membrane permeability of 36 acidic and 61 basic compounds was measured using the parallel artificial membrane permeability assay (PAMPA) at pH 3, 5, 7.4 and 9. Descriptive and/or predictive single-parameter quantitative structure-permeability relationships were derived for all pH values. For acidic compounds, membrane permeability is mainly influenced by hydrogen bond donor properties, as revealed by models with r(2) > 0.8 for pH 3 and pH 5. For basic compounds, the best (r(2) > 0.7) structure-permeability relationships are obtained with the octanol-water distribution coefficient for pH 7.4 and pH 9, indicating the importance of partition properties. In addition to the validation set, the prediction quality of the developed models was tested with folic acid and astemizole, showing good matches between experimental and calculated membrane permeabilities at key pHs. Selected QSAR models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.166 ).

  20. Synthesis, structures of four coordination compounds constructed from o-methacrylamidobenzoic acid and their relationship between structure and solid state luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong-Xia; Ma, Yong; Zhou, Feng; Wu, Bing [Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry, Chemical Engineering and Materials Science, Soochow University(DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Key Laboratory of Energy-Saving And Environmental Protection Materials Test and Technical Service Center of Jiangsu Province, Soochow University (DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Xu, Qing-Feng, E-mail: xuqingfeng@suda.edu.cn [Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry, Chemical Engineering and Materials Science, Soochow University(DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Key Laboratory of Energy-Saving And Environmental Protection Materials Test and Technical Service Center of Jiangsu Province, Soochow University (DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Lu, Jian-Mei, E-mail: lujm@suda.edu.cn [Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry, Chemical Engineering and Materials Science, Soochow University(DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Key Laboratory of Energy-Saving And Environmental Protection Materials Test and Technical Service Center of Jiangsu Province, Soochow University (DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Ge, Jian-Feng [Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry, Chemical Engineering and Materials Science, Soochow University(DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China); Key Laboratory of Energy-Saving And Environmental Protection Materials Test and Technical Service Center of Jiangsu Province, Soochow University (DuShuHu Campus), 199 Renai Road, Suzhou, 215123 (China)

    2013-07-15

    Four new coordination compounds, namely, Zn(o-MAABA){sub 2}(Phen) (1), [Cd(o-MAABA){sub 2}·2H{sub 2}O]{sub 2} (2), ([Pb{sub 2}Cl{sub 2}(o-MAABA){sub 2}(Phen){sub 4}])·2H{sub 2}O (3·2H{sub 2}O), [Pb(NO{sub 3})(o-MAABA)(Phen)]{sub n} (4), where o-MAABA=o-methacrylamidobenzoic acid and phen=1, 10-phenanthroline, have been synthesized. All compounds were fully confirmed by FT-IR, elemental analysis and TGA analysis. Their structures were determined by single crystal X-ray diffraction, in which compound 1 shows a mononuclear structure, compounds 2 and 3 have binuclear structures and compound 4 shows an infinite chain. In 2 and 4, the adjacent chains are extended into a 3D supramolecular architecture via π–π interactions. Solid-state room temperature luminescence spectra revealed that emission bands of compound 1 were located at 524 nm (λ{sub ex}=352 nm) and compound 4 at 479 and 584 nm (λ{sub ex}=390 nm) assigned to the excimer formation. The emission at 454 nm (λ{sub ex}=340 nm) of compound 2 was mainly ascribed to the Ligand–Metal Charge Transfer (LMCT). - Graphical abstract: Four coordination compounds constructed by o-methacrylamidobenzoic, phenanthroline and metal ions are reported. The photoluminescent properties is studied, which is affected by the molecular stacking and LMCT.

  1. Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis vinifera L. Karaoglan.

    Science.gov (United States)

    Kocabey, N; Yilmaztekin, M; Hayaloglu, A A

    2016-09-01

    Effects of different maceration times (5, 10 and 15 days) on composition, phenolic compounds and antioxidant activities of red wines made from the Vitis vinifera L. Karaoglan grown in Malatya were investigated. Maceration duration changed some chemical constituents and color of Karaoglan red wines. A linear relationship was observed between antioxidant activity of wine and maceration duration. Major organic acid was tartaric acid which was at the highest concentration in wine macerated for 10 days. A total of 25 phenolic compounds was determined in wine samples. Within these phenolics; procyanidin B2, trans-caftaric acid, gallic acid, trans-caffeic acid, (+) catechin, (-) epicatechin and quercetin-3-O-glucoside were the most abundant phenolics regardless of maceration duration. In general, extended maceration duration resulted in increase in the concentration of phenolic compounds, reflecting the antioxidant activities of wine. In conclusion, the highest concentrations of total and individual phenolic compounds as well as antioxidant activities were found in wines macerated for 15 days.

  2. Ampholine-functionalized hybrid organic-inorganic silica material as sorbent for solid-phase extraction of acidic and basic compounds.

    Science.gov (United States)

    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Chen, Mingliang; Nie, Chenggang; Hu, Minjie; Li, Ying; Jia, Zhijian; Fang, Jianghua; Gao, Haoqi

    2013-09-20

    A novel sorbent for solid-phase extraction (SPE) was synthesized by chemical immobilization of ampholine on hybrid organic-inorganic silica material. The ampholine-functionalized hybrid organic-inorganic silica sorbent is consisted of aliphatic amine groups, carboxyl groups and long carbon chains, allowing for extraction of both acidic and basic compounds. The retention properties of the developed sorbent were evaluated for 1-hydroxy-2-naphthoic acid (HNA), 1-naphthoic acid (NA), 3-hydroxybenzoic acid (HBA), benzoic acid (BA), sorbic acid (SA), vanillic aldehyde (VA), butyl 4-hydroxybenzoate (BHB), propyl 4-hydroxybenzoate (PHB), ethyl 4-hydroxybenzoate (EHB), and methyl 4-hydroxybenzoate (MHB). The results show that such a sorbent has three types of interaction, i.e., electrostatic interaction, hydrophobic interaction, and hydrogen bonding, exhibiting high extraction efficiency towards the compounds tested. The adsorption capacities of the analytes ranged from 0.61 to 6.54μgmg(-1). The reproducibility of the sorbent preparation was evaluated at three spiking concentration levels, with relative standard deviations (RSDs) of 1.0-10.5%. The recoveries of ten acidic and basic compounds spiked in beverage Coca-Cola(®) sample ranged from 82.5% to 98.2% with RSDs less than 5.8%. Under optimum conditions, the ampholine-functionalized hybrid organic-inorganic silica sorbent rendered higher extraction efficiency for acidic compounds than that of the commercially available ampholine-functionalized silica particles, and was comparable to that of the commercial Oasis WAX and Oasis WCX. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Laboratory replication of filtration procedures associated with Serratia marcescens bloodstream infections in patients receiving compounded amino acid solutions.

    Science.gov (United States)

    Moulton-Meissner, Heather; Noble-Wang, Judith; Gupta, Neil; Hocevar, Susan; Kallen, Alex; Arduino, Matthew

    2015-08-01

    Specific deviations from United States Pharmacopeia standards were analyzed to investigate the factors allowing an outbreak of Serratia marcescens bloodstream infections in patients receiving compounded amino acid solutions. Filter challenge experiments using the outbreak strain of S. marcescens were compared with those that used the filter challenge organism recommended by ASTM International (Brevundimonas diminuta ATCC 19162) to determine the frequency and degree of organism breakthrough. Disk and capsule filters (0.22- and 0.2-μm nominal pore size, respectively) were challenged with either the outbreak strain of S. marcescens or B. diminuta ATCC 19162. The following variables were compared: culture conditions in which organisms were grown overnight or cultured in sterile water (starved), solution type (15% amino acid solution or sterile water), and filtration with or without a 0.5-μm prefilter. Small-scale, syringe-driven, disk-filtration experiments of starved bacterial cultures indicated that approximately 1 in every 1,000 starved S. marcescens cells (0.12%) was able to pass through a 0.22-μm nominal pore-size filter, and about 1 in every 1,000,000 cells was able to pass through a 0.1-μm nominal pore-size filter. No passage of the B. diminuta ATCC 19162 cells was observed with either filter. In full-scale experiments, breakthrough was observed only when 0.2-μm capsule filters were challenged with starved S. marcescens in 15% amino acid solution without a 0.5-μm prefiltration step. Laboratory simulation testing revealed that under certain conditions, bacteria can pass through 0.22- and 0.2-μm filters intended for sterilization of an amino acid solution. Bacteria did not pass through 0.2-μm filters when a 0.5-μm prefilter was used. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  4. Microencapsulated sorbic acid and nature-identical compounds reduced Salmonella Hadar and Salmonella Enteritidis colonization in experimentally infected chickens.

    Science.gov (United States)

    Grilli, E; Tugnoli, B; Formigoni, A; Massi, P; Fantinati, P; Tosi, G; Piva, A

    2011-08-01

    The reduction of Salmonella prevalence in broilers is a priority in European Union agricultural policies because treatment with antibiotics is forbidden by Regulation (EC) 2160/2003. Two trials were conducted to evaluate the efficacy of a microencapsulated blend of sorbic acid and nature-identical compounds (i.e., chemically synthesized botanicals; SAB) on the reduction of the cecal prevalence and contents of Salmonella enterica serovars Hadar and Enteritidis in experimentally infected chickens. In the first trial, 125 one-day-old Lohmann specific-pathogen-free chickens were assigned to one of the following treatments: negative control (not challenged and not treated), positive control (challenged and not treated), SAB0.3, SAB1, or SAB5 (challenged and treated with the microencapsulated blend included in the feed at 0.03, 0.1, or 0.5%, respectively). At 30 d of age, birds were infected with 10(6) cfu of Salmonella Hadar, and after 5, 10, or 20 d postinfection, 5, 10, and 10 birds per treatment, respectively, were killed and the cecal contents and liver and spleen samples were analyzed for Salmonella Hadar. In the second trial, 100 one-day-old Ross 708 chickens were assigned to 1 of 5 treatments: control (not treated), SAB0.3, SAB1, SAB2, or SAB5 (treated with the blend included in the feed at 0.03, 0.1, 0.2, or 0.5%, respectively). At 7 d of age, the birds were challenged with 10(5) cfu of Salmonella Enteritidis, and after 7, 14, or 24 d after challenge, 5, 5, and 10 birds per treatment, respectively, were killed and cecal contents were analyzed for Salmonella Enteritidis. Results showed that in the early stage of infection Salmonella prevalence was high in both studies, whereas at the end of the observation periods, the blends at 0.03, 0.1, and 0.5 in the challenge with Salmonella Hadar and at 0.2 and 0.5% in the challenge with Salmonella Enteritidis significantly reduced (by 2 log(10) cfu) the cecal content of Salmonella. This study showed that intestinal

  5. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  6. Determination of Acid Dissociation Constants (pK a ) of Bicyclic Thiohydantoin-Pyrrolidine Compounds in 20% Ethanol-Water Hydroorganic Solvent.

    Science.gov (United States)

    Nural, Yahya; Döndaş, H Ali; Sarı, Hayati; Atabey, Hasan; Belveren, Samet; Gemili, Müge

    2014-01-01

    The acid dissociation constants of potential bioactive fused ring thiohydantoin-pyrrolidine compounds were determined by potentiometric titration in 20% (v/v) ethanol-water mixed at 25 ± 0.1°C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Proton affinities of potential donor atoms of the ligands were calculated by AM1 and PM3 semiempiric methods. We found, potentiometrically, three different acid dissociation constants for 1a-f. We suggest that these acid dissociation constants are related to the carboxyl, enol, and amino groups.

  7. Determination of Acid Dissociation Constants (pK a ) of Bicyclic Thiohydantoin-Pyrrolidine Compounds in 20% Ethanol-Water Hydroorganic Solvent

    OpenAIRE

    Yahya Nural; H. Ali Döndaş; Hayati Sarı; Hasan Atabey; Samet Belveren; Müge Gemili

    2014-01-01

    The acid dissociation constants of potential bioactive fused ring thiohydantoin-pyrrolidine compounds were determined by potentiometric titration in 20% (v/v) ethanol-water mixed at 25 ± 0.1°C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Proton affinities of potential donor atoms of the ligands were calculated by AM1 and PM3 semiempiric methods. We found, potentiometrically, three different acid dissociation constants for 1a–f. We suggest that these acid ...

  8. Determination of Acid Dissociation Constants (pKa of Bicyclic Thiohydantoin-Pyrrolidine Compounds in 20% Ethanol-Water Hydroorganic Solvent

    Directory of Open Access Journals (Sweden)

    Yahya Nural

    2014-01-01

    Full Text Available The acid dissociation constants of potential bioactive fused ring thiohydantoin-pyrrolidine compounds were determined by potentiometric titration in 20% (v/v ethanol-water mixed at 25±0.1°C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Proton affinities of potential donor atoms of the ligands were calculated by AM1 and PM3 semiempiric methods. We found, potentiometrically, three different acid dissociation constants for 1a–f. We suggest that these acid dissociation constants are related to the carboxyl, enol, and amino groups.

  9. Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term Continuous Exposure to the Antibacterial Compound Tropodithietic Acid

    DEFF Research Database (Denmark)

    Rasmussen, Bastian Barker; Grotkjær, Torben; D'Alvise, Paul

    2016-01-01

    prevent or reduce bacterial diseases in fish larvae, acting as probiotics. Roseobacters produce the antimicrobial compound tropodithietic acid (TDA), and we were concerned regarding whether long-term exposure to this compound could induce resistance or affect the disease-causing ability of the fish......Minimizing the use of antibiotics in the food production chain is essential for limiting the development and spread of antibiotic-resistant bacteria. One alternative intervention strategy is the use of probiotic bacteria, and bacteria of the marine Roseobacter clade are capable of antagonizing fish......-pathogenic vibrios in fish larvae and live feed cultures for fish larvae. The antibacterial compound tropodithietic acid (TDA), an antiporter that disrupts the proton motive force, is key in the antibacterial activity of several roseobacters. Introducing probiotics on a larger scale requires understanding of any...

  10. GC/MS analysis of chlorinated organic compounds generated from the chlorination of fulvic acid solution; Furubosan yoeki no enso shori ni yotte seisei suru yuki enso kagobutsu no GC/MS bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, H. [Fukuoka City Inst. for Hygiene and Environment, Fukuoka (Japan). Environmental Chemisty Section; Urano, K. [Yokohama National Univ. (Japan)

    1997-12-10

    In this study, GC/MS analysis of the compounds generated in the chlorination of fulvic acid extracted and purified from treated sewage as humic substances originating from human activities is executed, then among the peaks of total ion chromatogram obtained therefrom, those considered as the chlorinated organic compounds are analyzed, and identification and estimation of the compounds are carried out. As a results, it is clarified that in addition to trihalomethane and chloroacetic acids, chloropropionic, chloromaleic, chlorofumaric acids and chlorinate organic compounds having ring structure are generated. Further, samples of chlorinated fulvic acid extracted and purified from rotted leaves as humic substances originating from nature are analyzed with GC/MS analysis. A results of the analysis is that the same compounds as those in the chlorination of fulvic acid in treated sewage are generated. However, peaks presumed as the chlorinated organic compounds having aromatic rings can not be confirmed. 6 refs., 7 figs.

  11. Brønsted Acidic Ionic Liquid Accelerated Halogenation of Organic Compounds with N-Halosuccinimides (NXS

    Directory of Open Access Journals (Sweden)

    Stojan Stavber

    2012-12-01

    Full Text Available The Brønsted-acidic ionic liquid 1-methyl-3-(4-sulfobutylimidazolium triflate [BMIM(SO3H][OTf] was demonstrated to act efficiently as solvent and catalyst for the halogenation of activated organic compounds with N-halosuccinimides (NXS under mild conditions with short reaction times. Methyl aryl ketones were converted into α-halo and α,α-dihaloketones, depending on the quantity of NXS used. Ketones with activated aromatic rings were selectively halogenated, however in some cases mixtures of α-halogenated ketone and ring-halogenated ketones were obtained. Activated aromatics were regioselectively ring halogenated to give mono- and dihalo-substituted products. The [BMIM(SO3H][OTf] ionic liquid (IL-A was successfully reused eight times in a representative monohalogenation reaction with no noticeable decrease in efficiency. An effective halogenation scale-up in this IL is also presented. The reactivity trend and the observed chemo- and regioselectiivities point to an ET process in these IL-promoted halofunctionalization reactions.

  12. Effects of Dimethylaminoethanol and Compound Amino Acid on D-Galactose Induced Skin Aging Model of Rat

    Directory of Open Access Journals (Sweden)

    Su Liu

    2014-01-01

    Full Text Available A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE and compound amino acid (AA in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat.

  13. Effects of Dimethylaminoethanol and Compound Amino Acid on D-Galactose Induced Skin Aging Model of Rat

    Science.gov (United States)

    Liu, Su; Chen, Zhenyu; Cai, Xia; Sun, Ying; Zhao, Cailing

    2014-01-01

    A lasting dream of human beings is to reverse or postpone aging. In this study, dimethylaminoethanol (DMAE) and compound amino acid (AA) in Mesotherapy were investigated for their potential antiaging effects on D-galactose induced aging skin. At 18 days after D-gal induction, each rat was treated with intradermal microinjection of saline, AA, 0.1% DMAE, 0.2% DMAE, 0.1% DMAE + AA, or 0.2% DMAE + AA, respectively. At 42 days after treatment, the skin wound was harvested and assayed. Measurement of epidermal and dermal thickness in 0.1% DMAE + AA and 0.2% DMAE + AA groups appeared significantly thicker than aging control rats. No differences were found in tissue water content among groups. Hydroxyproline in 0.1% DMAE + AA, 0.2% DMAE + AA, and sham control groups was much higher than all other groups. Collagen type I, type III, and MMP-1 expression was highly upregulated in both 0.1% DMAE + AA and 0.2% DMAE + AA groups compared with aging control. In contrast, TIMP-1 expression levels of various aging groups were significantly reduced when compared to sham control. Coinjection of DMAE and AA into target tissue has marked antiaging effects on D-galactose induced skin aging model of rat. PMID:25133239

  14. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid.

    Science.gov (United States)

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Choi, Yun-Hyeok; Hong, Seong Su; Suh, Hwa-Jin; Park, Woncheol; Boo, Yong Chool

    2016-07-01

    Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening.

  15. Marine mammal blubber reference and control materials for use in the determination of halogenated organic compounds and fatty acids.

    Science.gov (United States)

    Kucklick, John R; Schantz, Michele M; Pugh, Rebecca S; Porter, Barbara J; Poster, Dianne L; Becker, Paul R; Rowles, Teri K; Leigh, Stefan; Wise, Stephen A

    2010-05-01

    The National Institute of Standards and Technology (NIST) has a diverse collection of control materials derived from marine mammal blubber, fat, and serum. Standard Reference Material (SRM) 1945 Organics in Whale Blubber was recertified for polychlorinated biphenyl (PCB) congeners, organochlorine pesticides, and polybrominated diphenyl ether (PBDE) congeners. SRM 1945 has also been assigned mass fraction values for compounds not frequently determined in marine samples including toxaphene congeners, coplanar PCBs, and methoxylated PBDE congeners which are natural products. NIST also has assigned mass fraction values, as a result of interlaboratory comparison exercises, for PCB congeners, organochlorine pesticides, PBDE congeners, and fatty acids in six homogenate materials produced from marine mammal blubber or serum. The materials are available from NIST upon request; however, the supply is very limited for some of the materials. The materials include those obtained from pilot whale blubber (Homogenates III and IV), Blainville's beaked whale blubber (Homogenate VII), polar bear fat (Homogenate VI), and California sea lion serum (Marine Mammal Control Material-1 Serum) and blubber (Homogenate V).

  16. Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments

    Science.gov (United States)

    Winter, Armin; Mundigler, Norbert; Holzweber, Julian; Veigel, Stefan; Müller, Ulrich; Kovalcik, Adriana; Gindl-Altmutter, Wolfgang

    2017-12-01

    Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  17. Effect of salicylic acid on phenolic compounds related to date palm resistance to Fusarium oxysporum f.sp. albedinis

    Directory of Open Access Journals (Sweden)

    A. Dihazi

    2003-04-01

    Full Text Available Salicylic acid (SA plays a key role in establishing resistance to pathogens in many plants. To study the possible involvement of SA in the resistance of date palm (Phoenix dactylifera L. to Fusarium oxysporum f. sp. albedinis (FOA, we investigated levels of phenolic compounds, known as indicators of resistance in the date palm/ Fusarium pathosystem. After treatment with SA the content of root soluble phenolics in F. oxysporum inoculated date palm seedlings was about 4 times higher in cv. Bousthami noir and 6 times higher in cv. Jihel than that in untreated plants showing disease symptoms. The largest increase was at a SA concentration of 50 µM. SA treatment also enhanced the content of cell wall phenolics. In addition, inoculation of SA-treated roots of date palm with FOA (strain ZAG resulted in a greater number of plants showing only limited hypersensitive reaction-like necrotic lesions. In contrast, SA-untreated plants normally showed spreading necrosis in response to fungus inoculation.

  18. Analysis of the isobaric compounds propanol, acetic acid and methyl formate in humid air and breath by selected ion flow tube mass spectrometry, SIFT-MS

    Science.gov (United States)

    Pysanenko, Andriy; Spanel, Patrik; Smith, David

    2009-08-01

    Numerous analyses of exhaled breath using selected ion flow tube mass spectrometry, SIFT-MS, over the last few years have revealed the presence of volatile compounds with molecular weight 60 and the concern has been to identify which of the isobaric compounds from the set of 1-propanol, 2-propanol, acetic acid and methyl formate are present in human breath. The problem is compounded by the formation of hydrates of the characteristic primary product ions of the reactions of the H3O+ and NO+ precursor ions with these compounds, this being particularly efficient for humid samples such as exhaled breath. Thus, the resulting product ion spectra are complex and choices have to be made as to which of the characteristic product ions and their hydrates can best be used for the quantitative analyses. To facilitate this choice for the particular problem of identifying and quantifying the four aforementioned isobaric compounds, a study has been made of the ion chemistry of H3O+ and NO+ with the two propanol isomers, acetic acid and methyl formate for increasing sample humidity up to that of exhaled breath, which is about 6% by volume. The problems involved in the separate analysis of propanol have been met and solved by previous SIFT-MS studies and now the present study has revealed how acetic acid and methyl formate can be separately identified in a humid mixture using NO+ precursor ions only. Following this work, the kinetics database entries for the SIFT-MS analyses of these compounds in breath have been constructed and the analysis of the exhaled breath of five healthy volunteers showed that, in addition to the propanol isomers, acetic acid was present at levels typically within the range from 30 to 60 parts-per-billion by volume and that methyl formate was not present above the limit of detection.

  19. Fatty acid composition, oxidation status and volatile organic compounds in "Colonnata" lard from Large White or Cinta Senese pigs as affected by curing time.

    Science.gov (United States)

    Serra, A; Buccioni, A; Rodriguez-Estrada, M T; Conte, G; Cappucci, A; Mele, M

    2014-08-01

    The aim of the present paper was to evaluate the fatty acid composition, lipolysis, lipid oxidation and volatile organic compounds (VOCs) in Colonnata lard from Large White (LW) or Cinta Senese (CS) pigs during one-year of curing. CS lard contained higher amounts of unsaturated fatty acids than that from LW, due to the different rearing and feeding systems. Despite higher lipolysis in CS backfat during the curing period, the rate of fatty acid and cholesterol oxidation was higher in LW. The amount of cholesterol oxidation products (COPs) and thiobarbituric acid reactive substances (TBARs) significantly decreased after 3 months of curing, regardless of the type of lard. VOCs composition of lard was affected by curing time, but not by breed. While volatile fatty acid oxidation products (mainly aldehydes) were present at the beginning of curing, subsequently other volatile compounds (such as sulphur compounds and terpenes) that derived from ingredients used for lard production, increased in the samples. Copyright © 2014. Published by Elsevier Ltd.

  20. In vitro and in vivo evaluation of various carbonyl compounds against cyanide toxicity with particular reference to alpha-ketoglutaric acid.

    Science.gov (United States)

    Bhattacharya, Rahul; Tulsawani, Rajkumar

    2008-01-01

    Cyanide is a rapidly acting neurotoxin that necessitates immediate, vigorous therapy. The commonly used treatment regimen for cyanide includes the intravenous administration of sodium nitrite (SN) and sodium thiosulphate (STS). Due to many limitations of these antidotes, a search for more effective, safer molecules continues. Cyanide is known to react with carbonyl compounds to form the cyanohydrin complex. The present study addresses the efficacy of several carbonyl compounds and their metabolites or nutrients with alpha-ketoglutaric acid (A-KG), citric acid, succinic acid, maleic acid, malic acid, fumaric and oxaloacetic acid, glucose, sucrose, fructose, mannitol, sorbitol, dihydroxyacetone, and glyoxal (5 or 10 mM; -10 min) against toxicity of potassium cyanide (KCN; 10 mM) in rat thymocytes in vitro. Six hours after KCN, cell viability measured by MTT assay and crystal violet dye exclusion revealed maximum cytoprotection by A-KG, followed by oxaloacetic acid. A-KG also resolved the leakage of intracellular lactate dehydrogenase, loss in nuclear integrity (propidium iodide staining), and altered mitochondrial membrane potential (rhodamine 123 assay) as a result of cyanide toxicity. Protection Index (ratio of LD(50) of KCN in protected and unprotected animals; PI) of all the compounds (oral; 1.0 g/kg; -10 min) determined in male mice, revealed that maximum protection was afforded by A-KG (7.6 PI), followed by oxaloacetic acid (6.4 PI). Comparative evaluation of various salts of A-KG alone or with STS (intraperitoneal; 1.0 g/kg; -15 min) showed that maximum protection was conferred by disodium anhydrous salt of A-KG, which also significantly prevented the inhibition of brain cytochrome oxidase caused by 0.75 LD(50) KCN. This study indicates the potential of A-KG as alternative cyanide antidote.

  1. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  2. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    Directory of Open Access Journals (Sweden)

    Junghyun Kim

    2016-09-01

    Full Text Available Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE against damage to retinal vascular cells were investigated in streptozotocin (STZ-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB and inducible nitric oxide synthase (iNOS were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells.

  3. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils.

    Science.gov (United States)

    Al Juhaimi, Fahad; Özcan, Mehmet Musa; Uslu, Nurhan; Ghafoor, Kashif

    2018-01-01

    In this study, the effect of drying temperature on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol content of citrus seeds and oils were studied. Kinnow mandarin seed, dried at 60 °C, exhibited the highest antioxidant activity. Orlendo orange seed had the maximum total phenolic content and α-tocopherol content, with a value of 63.349 mg/100 g and 28.085 mg/g (control samples), respectively. The antioxidant activity of Orlendo orange seed (63.349%) was higher than seeds of Eureka lemon (55.819%) and Kinnow mandarin (28.015%), while the highest total phenolic content was found in seeds of Kinnow mandarin, followed by Orlendo orange and Eureka lemon (113.132). 1.2-Dihydroxybenzene (13.171), kaempferol (10.780), (+)-catechin (9.341) and isorhamnetin (7.592) in mg/100 g were the major phenolic compounds found in Kinnow mandarin. Among the unsaturated fatty acids, linoleic acid was the most abundant acid in all oils, which varied from 44.4% (dried at 80 °C) to 46.1% (dried at 70 °C), from 39.0% (dried at 60 °C) to 40.0% (dried at 70 °C). The total phenolic content, antioxidant activity and phenolic compounds of citrus seeds and tocopherol content of seed oils were significantly affected by drying process and varied depending on the drying temperature.

  4. Catalytic Upgrading of Bio-Oil by Reacting with Olefins and Alcohols over Solid Acids: Reaction Paths via Model Compound Studies

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-03-01

    Full Text Available Catalytic refining of bio-oil by reacting with olefin/alcohol over solid acids can convert bio-oil to oxygen-containing fuels. Reactivities of groups of compounds typically present in bio-oil with 1-octene (or 1-butanol were studied at 120 °C/3 h over Dowex50WX2, Amberlyst15, Amberlyst36, silica sulfuric acid (SSA and Cs2.5H0.5PW12O40 supported on K10 clay (Cs2.5/K10, 30 wt. %. These compounds include phenol, water, acetic acid, acetaldehyde, hydroxyacetone, d-glucose and 2-hydroxymethylfuran. Mechanisms for the overall conversions were proposed. Other olefins (1,7-octadiene, cyclohexene, and 2,4,4-trimethylpentene and alcohols (iso-butanol with different activities were also investigated. All the olefins and alcohols used were effective but produced varying product selectivities. A complex model bio-oil, synthesized by mixing all the above-stated model compounds, was refined under similar conditions to test the catalyst’s activity. SSA shows the highest hydrothermal stability. Cs2.5/K10 lost most of its activity. A global reaction pathway is outlined. Simultaneous and competing esterification, etherfication, acetal formation, hydration, isomerization and other equilibria were involved. Synergistic interactions among reactants and products were determined. Acid-catalyzed olefin hydration removed water and drove the esterification and acetal formation equilibria toward ester and acetal products.

  5. The assembly of two isomorphous coordination compounds based on 1,4-cyclohexanedicarboxylic acid and 2,4-diamino-6-phenyl-1,3,5-triazine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue-Fei; Wang, Xiao; Lun, Hui-Jie; Jin, Lin-Yu [Henan Key Laboratory of Polyoxometalate, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Li, Ya-Min, E-mail: liyamin@henu.edu.cn [Henan Key Laboratory of Polyoxometalate, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000 (China); Yang, Jing-He [Research Center of Heterogeneous Catalysis and Engineering Sciences, School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China)

    2017-02-15

    The compounds [Co(e,a-cis-1,4-chdc)(phdat)]{sub n} (1) and [Cd(e,a-cis-1,4-chdc)(phdat)]{sub n} (2) have been synthesized under hydrothermal method by using 1,4-cyclohexanedicarboxylic acid (1,4-H{sub 2}chdc), 2,4-diamino-6-phenyl-1,3,5-triazine (phdat) as well as CoCl{sub 2}·6H{sub 2}O, CdCl{sub 2}·2.5H{sub 2}O respectively and characterized by IR spectra, X-ray single-crystal diffraction, powder X-ray single-crystal diffraction (PXRD), elemental analyses and thermogravimetric analyses (TGA). The results show the compounds 1 and 2 are isomorphous and exhibit paddle-wheel dinuclear Co{sub 2}(CO{sub 2}){sub 4}/Cd{sub 2}(CO{sub 2}){sub 4} units, which are further connected to 1D chain structures by μ{sub 4}:η{sup 1}:η{sup 1}:η{sup 1}:η{sup 1} 1,4-chdc{sup 2–} ligands and extended into a 3D structures via different hydrogen bonding and π…π stacking interactions. Furthermore, compound 1 exhibits antiferromagnetic behavior and compound 2 displays luminescent behavior at solid state. - Graphical abstract: Two isomorphous coordination compounds 1–2 have been synthesized and characterized by XRD, IR spectra and TGA etc. Compound 1 and 2 display antiferromagnetic behavior and luminescent behavior respectively. - Highlights: • Two novel polymers based on 1,4-cyclohexanedicarboxylic acid have been synthesized. • Compounds 1 and 2 feather 1D chain structure built up from paddle-wheel SBUs. • The magnetism of 2 is investigated. • The electrochemical property and luminescent property of 1 are investigated.

  6. Estimation of Bioactive Compound, Maslinic Acid by HPTLC, and Evaluation of Hepatoprotective Activity on Fruit Pulp of Ziziphus jujuba Mill. Cultivars in India

    Directory of Open Access Journals (Sweden)

    Anagha Rajopadhye

    2016-01-01

    Full Text Available Fruits of Ziziphus jujuba Mill. (family: Rhamnaceae, known as Indian jujube or “Ber,” are of potential nutritional and medicinal value. The objectives of the present study were to estimate bioactive compound maslinic acid by HPTLC method and to evaluate in vitro antioxidant and hepatoprotective activity of eight cultivars of Indian jujube. Maslinic acid and the fruit pulp of various cultivars of Indian jujube, namely, Gola, Sannur, Umaran, Mehrun, and Chhuhara, exhibited significantly high antioxidant and hepatoprotective activity. HPTLC-densitometric method was developed for quantification of maslinic acid from fruits of Indian jujube cultivars. The trend of occurrence of maslinic acid in fruits pulp extracts was as follows: Gola > Sannur > Umaran > Mehrun > Chhuhara > Wild > Kadaka > Apple. A significant correlation was shown by maslinic acid content and prevention of oxidative stress induced by CCl4 in liver slice culture cell treated with extract. Maslinic acid along with its other phytoconstituents like phenols, flavonoids, and ascorbic acid may act as a possible therapeutic agent for preventing hepatotoxicity caused by oxidative stress generated due to the prooxidants like CCl4. This is the first report of fruit pulp extracts of Z. jujube cultivars in India and maslinic acid preventing CCl4 induced damage in liver slice culture cell of mice.

  7. Estimation of Bioactive Compound, Maslinic Acid by HPTLC, and Evaluation of Hepatoprotective Activity on Fruit Pulp of Ziziphus jujuba Mill. Cultivars in India

    Science.gov (United States)

    Rajopadhye, Anagha; Upadhye, Anuradha S.

    2016-01-01

    Fruits of Ziziphus jujuba Mill. (family: Rhamnaceae), known as Indian jujube or “Ber,” are of potential nutritional and medicinal value. The objectives of the present study were to estimate bioactive compound maslinic acid by HPTLC method and to evaluate in vitro antioxidant and hepatoprotective activity of eight cultivars of Indian jujube. Maslinic acid and the fruit pulp of various cultivars of Indian jujube, namely, Gola, Sannur, Umaran, Mehrun, and Chhuhara, exhibited significantly high antioxidant and hepatoprotective activity. HPTLC-densitometric method was developed for quantification of maslinic acid from fruits of Indian jujube cultivars. The trend of occurrence of maslinic acid in fruits pulp extracts was as follows: Gola > Sannur > Umaran > Mehrun > Chhuhara > Wild > Kadaka > Apple. A significant correlation was shown by maslinic acid content and prevention of oxidative stress induced by CCl4 in liver slice culture cell treated with extract. Maslinic acid along with its other phytoconstituents like phenols, flavonoids, and ascorbic acid may act as a possible therapeutic agent for preventing hepatotoxicity caused by oxidative stress generated due to the prooxidants like CCl4. This is the first report of fruit pulp extracts of Z. jujube cultivars in India and maslinic acid preventing CCl4 induced damage in liver slice culture cell of mice. PMID:26904143

  8. Affinity labels for membrane components involved in the uptake of bile acids and of phallotoxins by hepatocytes. Development of covalently binding derivatives of bile acids and of compounds related to cholecystographic agents.

    Science.gov (United States)

    Ziegler, K; Frimmer, M; Möller, W; Fasold, H

    1982-06-01

    A series of covalently binding derivatives of bile acids, fusidic acid and of compounds similar to cholecystographic agents were synthesized. Nearly all of them inhibited the development of protrusions on the surface of isolated hepatocytes regularly seen after treatment with phalloidin. The same compounds inhibited the uptake of demethylphalloin and of cholate in a concentration dependent manner. Two kinds of effects could be distinguished: The irreversible part of the inhibition depended on the incubation period and could not be removed by washing procedures. The reversible one was independent on the duration of the preincubation. Final results indicated that the tested derivatives inhibited either both transports, and the phalloidin response of liver cells to the same degree and in the same manner, or were found to be ineffective in all tests. The above parallelism supports the hypothesis that phallotoxins may be translocated by a carrier system normally responsible for the uptake of bile acids from the portal blood.

  9. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices.

    Science.gov (United States)

    Valero-Cases, Estefanía; Nuncio-Jáuregui, Nallely; Frutos, María José

    2017-08-09

    This study describes the effect of fermentation and the impact of simulated gastrointestinal digestion (SGD) of four fermented pomegranate juices with different lactic acid bacteria (LAB) on the biotransformation of phenolic compounds. The changes of the antioxidant capacity (AOC) and of LAB growth and survival in different fermented juices were also studied. Two new phenolic derivatives (catechin and α-punicalagin) were identified only in fermented juices. During SGD, the AOC increased together with the phenolic derivatives concentration mainly in the juices fermented with Lactobacillus. These derivatives were formed due to the LAB metabolism of the ellagitannins, epicatechin, and catechin after fermentation and during SGD. The FRAP assay performance might be associated with the degradation and biotransformation of catechin. The fermented pomegranate juices with these LAB increased the bioaccessibility of phenolic compounds, ensuring the survival of LAB after SGD, suggesting a possible prebiotic effect of phenolic compounds on LAB.

  10. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Science.gov (United States)

    2010-07-01

    ..., compounds with 2-(dibutylamino) ethanol. 721.6100 Section 721.6100 Protection of Environment ENVIRONMENTAL..., compounds with 2-(dibutylamino) ethanol. (a) Chemical substances and significant new uses subject to...-(dibutylamino)ethanol (PMN P-90-384) are subject to reporting under this section for the significant new use...

  11. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  12. Direct one step preparation and 13C-NMR spectroscopic characterization of a-ferrocenyl carbocations derived from ferrocene and carbonyl compounds in trifluoroacetic acid medium1a

    Directory of Open Access Journals (Sweden)

    Prakash G.K. Surya

    1999-01-01

    Full Text Available Reaction of aldehydes and ketones with ferrocene, in the presence of trifluoroacetic acid, afforded a series of stable long lived alpha-ferrocenylalkyl carbocations which were characterized by 13C-NMR spectroscopy. When this reaction was attempted using tetraphenylcyclopentadienone, quite unexpectedly the corresponding dihydro derivative 3 was isolated, in very good yield. Formation of this compound may require ferrocene acting as a reducing agent.

  13. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 1: Condensation of phthalic anhydride with acetoacetic and malonic ester

    Science.gov (United States)

    Oshkaya, V. P.; Vanag, G. Y.

    1985-01-01

    Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.

  14. Chemical and serological studies with an iodine-containing synthetic immunological determinant 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP) and related compounds

    Science.gov (United States)

    Brownstone, A.; Mitchison, N. A.; Pitt-Rivers, R.

    1966-01-01

    The synthesis and properties of 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP) and several related compounds are described. Conjugates of NIP with proteins are prepared from the azide, synthesized from commercial 4-hydroxy-phenylacetic acid. Sera from rabbits and mice immunized with NIP—ovalbumin or NIP—chicken serum globulin bind N131IP-containing compounds, as judged from precipitation of radioactivity by salting-out of immunoglobulins. Homogeneous binding is obtained with N131IP—polylysine, N131IP—ε-amino-n-caproic acid (N131IP—aminocap), and other structurally related haptens; non-homogeneous binding is obtained with N131IP—bovine serum albumin. Binding to salt-precipitated immunoglobulin of N131IP—aminocap, the hapten of choice for this purpose, provides an assay for antibody measurable at concentrations down to at least M-9 serum binding capacity (∼0.1 μg antibody/ml). Structurally related compounds and NIP—protein conjugates competitively inhibit binding of N131IP—aminocap. The inhibitions indicate that the iodine contained in NIP, but not the carrier protein, contributes significantly to the binding site. PMID:5939478

  15. Endocytotic uptake of zoledronic acid by tubular cells may explain its renal effects in cancer patients receiving high doses of the compound.

    Directory of Open Access Journals (Sweden)

    Anja Verhulst

    Full Text Available Zoledronic acid, a highly potent nitrogen-containing bisphosphonate used for the treatment of pathological bone loss, is excreted unmetabolized via the kidney if not bound to the bone. In cancer patients receiving high doses of the compound renal excretion may be associated with acute tubular necrosis. The question of how zoledronic acid is internalized by renal tubular cells has not been answered until now. In the current work, using a primary human tubular cell culture system, the pathway of cellular uptake of zoledronic acid (fluorescently/radiolabeled and its cytotoxicity were investigated. Previous studies in our laboratory have shown that this primary cell culture model consistently mimics the physiological characteristics of molecular uptake/transport of the epithelium in vivo. Zoledronic acid was found to be taken up by tubular cells via fluid-phase-endocytosis (from apical and basolateral side as evidenced by its co-localization with dextran. Cellular uptake and the resulting intracellular level was twice as high from the apical side compared to the basolateral side. Furthermore, the intracellular zoledronic acid level was found to be dependent on the administered concentration and not saturable. Cytotoxic effects however, were only seen at higher administration doses and/or after longer incubation times. Although zoledronic acid is taken up by tubular cells, no net tubular transport could be measured. It is concluded that fluid-phase-endocytosis of zoledronic acid and cellular accumulation at high doses may be responsible for the acute tubular necrosis observed in some cancer patients receiving high doses of the compound.

  16. The dynamics of acid-soluble phosphorus compounds in the course of winter and spring wheat germination under various thermic conditions. Part II. Labile phosphorus after hydrolysis of the acid-soluble fraction

    Directory of Open Access Journals (Sweden)

    A. Barbaro

    2015-06-01

    Full Text Available The changes in labile phosphorus compounds content during germination of wheat were investigated. These compounds were determined in acid-soluble germ extracts separated into fractions according to the solubility of their barium salts. Low germination temperature was found to raise the labile phosphorus content in the fraction of insoluble barium salts. If we assume that labile P of this fraction consisted mainly of adenosinedi- and triphosphates, it would seem that the rise, in the ATP and ADP level under the influence of low temperature may be essential for initiating flowering in winter varieties.

  17. Structures and standard molar enthalpies of formation of a series of Ln(III)-Cu(II) heteronuclear compounds with pyrazine-2,3-dicarboxylic acid

    Science.gov (United States)

    Yang, Qi; Xie, Gang; Wei, Qing; Chen, Sanping; Gao, Shengli

    2014-07-01

    Fifteen lanthanide-copper heteronuclear compounds, formulated as [CuLn2(pzdc)4(H2O)6]·xH2O (1-6(x=2), 8(x=3), 9-10(x=4); [CuLn2(pzdc)4(H2O)4]·xH2O (7, 12-13, 15(x=4), 14(x=5), 11(x=8) (Ln(III)=La(1); Ce(2); Pr(3); Nd(4); Sm(5); Eu(6); Gd(7); Tb(8); Dy(9); Ho(10); Er(11); Tm(12); Yb(13); Lu(14); Y(15); H2pzdc (C6H4N2O4)=pyrazine-2,3-dicarboxylic acid) have been hydrothermally synthesized. All compounds were characterized by element analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analyses confirm that all compounds are isostructural and feature a 3D brick-like framework structure with {4.62}2{42.62.82}{63}2{65.8}2 topology. Using 1 mol cm-3 HCl(aq) as calorimetric solvent, with an isoperibol solution-reaction calorimeter, the standard molar enthalpies of formation of all compounds were determined by a designed thermochemical cycle. In addition, solid state luminescence properties of compounds 5, 6, 8 and 9 were studied in the solid state.

  18. Silica-titania xerogel doped with Mo,P-heteropoly compounds for solid phase spectrophotometric determination of ascorbic acid in fruit juices, pharmaceuticals, and synthetic urine.

    Science.gov (United States)

    Morosanova, Maria A; Morosanova, Elena I

    2017-01-01

    Ascorbic acid is one of the most important vitamins to monitor in dietary sources (juices and vitamins) and biological liquids. Silica and silica-titania xerogels doped with Mo,P-heteropoly compounds (HPC) have been synthesized varying titanium(IV) and HPC content in sol. Their surface area and porosity have been studied with nitrogen adsorption and scanning electron microscopy, their elemental composition has been studied with energy-dispersive X-ray analysis. The redox properties of the sensor material with sufficient porosity and maximal HPC content have been studied with potentiometry and solid phase spectrophotometry and it has been used for solid phase spectrophotometric determination of ascorbic acid. The proposed method is characterized by good selectivity, simple probe pretreatment and broad analytical range (2-200 mg/L, LOD 0.7 mg/L) and has been applied to the analysis of fruit juices, vitamin tablets, and synthetic urine. New sensor material has been used for simple and selective solid phase spectrophotometric procedure of ascorbic acid determination in fruit juices, vitamin tablets, and synthetic urine.Graphical abstractWe synthesized several silica-titania xerogels doped with Mo,P-heteropoly compounds, studied their properties, and designed the sensor material for solid phase spectrophotometric determination of ascorbic acid in fruit juices, pharmaceuticals, and synthetic urine.

  19. Petroleum-collecting and dispersing complexes based on oleic acid and nitrogenous compounds as surface-active agents for removing thin petroleum films from water surface.

    Science.gov (United States)

    Asadov, Ziyafaddin H; Tantawy, Ahmed H; Zarbaliyeva, Ilhama A; Rahimov, Ravan A

    2012-01-01

    Petroleum-collecting and dispersing complexes were synthesized on the basis of oleic acid and nitrogen-containing compounds. Surface-active properties (interfacial tension) of the obtained complexes were investigated by stalagmometric method. Petroleum-collecting and dispersing properties of the oleic acid complexes in diluted (5% wt. water or alcoholic solution) and undiluted form have been studied in waters of varying salinity (distilled, fresh and sea waters). Some of physico-chemical indices of the prepared compounds such as solubility, acid and amine numbers as well as electrical conductivity have been determined. The ability of oleic acid complex with ethylenediamine as petro-collecting and dispersing agent towards different types of petroleum has been studied. The influence of thickness and "age" of the petroleum slick on collecting and dispersing capacity of this complex has been clarified. Surface properties studied included critical micelle concentration (CMC), maximum surface excess (Γ(max)), and minimum surface area (A(min)). Free energies of micellization (ΔG°(mic)) and adsorption (ΔG°(ads)) were calculated.

  20. Study of adsorption of organic compounds on gold with radioactive tracers - adsorption of chloroacetic and phenylacetic acids and effect on it of cadmium, copper and silver adsorbed atoms

    Energy Technology Data Exchange (ETDEWEB)

    Khorani, G.; Andreev, V.N.; Kazarinov, V.E.

    1985-10-01

    Compared with platinum, gold is less active as a catalyst and the adsorption of organic compounds on its surface my therefore be less subject to destructive changes. This opens up the possibility of conducting new reactions of organic synthesis on its surface. Results of a study of the adsorption of monochloroacetic and phenylacetic acids on a gilded fold electrode in acid medium employing radioactive HCl and the effects of copper, cadmium and silver adsorbed atoms are reported. The results show that at E > 0.7v the presence of copper ions has no effect on the adsorption of organic compounds on the gold electrode. At E approx. = 0.7v, adsorption increases. Cadmium, copper and silver present in solution have no effect on the adsorption of phenylacetic acid at those potentials where these ions are not adsorbed on a gold surface, although they do suppress phenylacetic acid adsorption at potentials where they are adsorbed. The results confirm that the radioactive tracer method is just as effective for studying gilded gold electrodes as it was for platinized platinum. 19 references, 4 figures.

  1. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Science.gov (United States)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2‧-bipy)(H2O)]n (1), [Cd(bzgluO)(2,4‧-bipy)2(H2O)·3H2O]n (2), [Cd(bzgluO)(phen)·H2O]n (3), [Cd(bzgluO)(4,4‧-bipy)(H2O)]n (4), [Cd(bzgluO)(bpp)(H2O)·2H2O]n (5) were synthesized (2,2‧-bipy=2,2‧-bipyridine, 2,4‧-bipy=2,4‧-bipyridine, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1-2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π-π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π-π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H2bzgluO. Luminescent properties of 1-5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated.

  2. Effect of different extraction methods on fatty acids, volatile compounds, and physical and chemical properties of avocado (Persea americana Mill.) oil.

    Science.gov (United States)

    Moreno, Alicia Ortiz; Dorantes, Lidia; Galíndez, Juvencio; Guzmán, Rosa I

    2003-04-09

    Because Mexico is the number one producer of avocados in the world, this fruit has potential as a source for oil extraction. It is appropriate to further investigate the detailed changes that the oil undergoes when different extraction methods are applied. This research paper presents the study of the physical and chemical changes, the fatty acids profile, the trans fatty acid content, and the identification of volatile compounds of the oils from avocado pulp (Persea americana Mill.), obtained by four different extraction methods. The method with the greatest extraction yield was the combined microwave-hexane method. The amount of trans fatty acids produced in the microwave-squeezing treatment was oil quality was a novel combined extraction method of microwave-squeezing proposed by the authors.

  3. Bimodal electricity generation and aromatic compounds removal from purified terephthalic acid plant wastewater in a microbial fuel cell.

    Science.gov (United States)

    Marashi, Seyed Kamran Foad; Kariminia, Hamid-Reza; Savizi, Iman Shahidi Pour

    2013-02-01

    Wastewater of purified terephthalic acid (PTA) from a petrochemical plant was examined in a membrane-less single chamber microbial fuel cell for the first time. Time course of voltage during the cell operation cycle had two steady phases, which refers to the fact that metabolism of microorganisms was shifted from highly to less biodegradable carbon sources. The produced power density was 31.8 mW m(-2) (normalized per cathode area) and the calculated coulombic efficiency was 2.05 % for a COD removal of 74 % during 21 days. The total removal rate of different pollutants in the PTA wastewater was observed in the following order: (acetic acid) > (benzoic acid) > (phthalic acid) > (terephthalic acid) > (p-toluic acid). The cyclic voltammetry results revealed that the electron transfer mechanism was dominated by mediators which were produced by bacteria.

  4. The effects of bud load and regulated deficit irrigation on sugar, organic acid, phenolic compounds and antioxidant activity of Razakı table grape berries

    Directory of Open Access Journals (Sweden)

    Tangolar Semih

    2015-01-01

    Full Text Available This study aims at assessing the effects of increased bud load and irrigation applications on berry quality of the Razakı table grape. Two Regulated Deficit Irrigation (RDI having different irrigation levels (RDI-I and RDI-II based on the growth stages, in addition to a non-irrigated control treatment together with two different bud load practices (K-normal and 2K-two-fold buds of the normal were examined for their effects on quality attributes such as sugar and organic acids contents, phenolic compounds as well as antioxidant capacity of the berries. The non-irrigated vines had highest sugar level (198.86 g/kg in the first year (2013 of the experiment whilst the sugar content of the berries was increased with irrigation (RDI-II in 2014. However the highest organic acid (7.10 g/kg was recorded from the RDI-II treatment in 2013 whereas those of from non-irrigated vines were highest (7.81 g/kg in 2014. Considering the sugar and organic acid content of the berries, bud load effects were not significant. The total phenolic acids were higher under non-irrigated and 2K bud load conditions. Antioxidant activity of berries was increased with RDI-I irrigation and 2K practices in the first year (2013 although no significant effect was recorded in the second year of the experiment. In all applications, glucose among the sugars, tartaric acid among the organic acids, catechin and epicatechin among the phenolic compounds were detected to be higher compared to other components in berries.

  5. Lactic Acid Fermentation Improved Textural Behaviour, Phenolic Compounds and Antioxidant Activity of Chia (Salvia hispanica L.) Dough

    OpenAIRE

    Ana Yanina Bustos; Carla Luciana Gerez; Lina Goumana Mohtar Mohtar; Verónica Irene Paz Zanini; Mónica Azucena Nazareno; María Pía Taranto; Laura Beatriz Iturriaga

    2017-01-01

    In this work, autochthonous lactic acid bacteria (LAB) were isolated from chia (Salvia hispanica L.) dough and selected on the basis of the kinetics of acidifi cation and proteolytic activity. Strain no. C8, identifi ed as Lactobacillus plantarum C8, was selected and used as starte r to obtain chia sourdough. Lactic acid fermentation increased the organic acid mass fractions (lactic, acetic and phenyl lactic acids to 12.3 g, 1.0 g and 23.8 μg per kg of dough respectively), and antioxidant act...

  6. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China.

    Science.gov (United States)

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Liu, Xiaoyan; Yang, Chi; Xu, Zufei; Fan, Meiyi; Zhang, Wenqi; Bao, Mengying; Chang, Yunhua; Song, Wenhuai; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yan-Lin

    2017-12-01

    Fine particulate matter (PM2.5) samples were collected using a high-volume air sampler and pre-combusted quartz filters during May 2013 to January 2014 at a background rural site (47∘35 N, 133∘31 E) in Sanjiang Plain, Northeast China. A homologous series of dicarboxylic acids (C2-C11) and related compounds (oxoacids, α-dicarbonyls and fatty acids) were analyzed by using a gas chromatography (GC) and GC-MS method employing a dibutyl ester derivatization technique. Intensively open biomass-burning (BB) episodes during the harvest season in fall were characterized by high mass concentrations of PM2.5, dicarboxylic acids and levoglucosan. During the BB period, mass concentrations of dicarboxylic acids and related compounds were increased by up to >20 times with different factors for different organic compounds (i.e., succinic (C4) acid > oxalic (C2) acid > malonic (C3) acid). High concentrations were also found for their possible precursors such as glyoxylic acid (ωC2), 4-oxobutanoic acid, pyruvic acid, glyoxal, and methylglyoxal as well as fatty acids. Levoglucosan showed strong correlations with carbonaceous aerosols (OC, EC, WSOC) and dicarboxylic acids although such good correlations were not observed during non-biomass-burning seasons. Our results clearly demonstrate biomass burning emissions are very important contributors to dicarboxylic acids and related compounds. The selected ratios (e.g., C3/C4, maleic acid/fumaric acid, C2/ωC2, and C2/levoglucosan) were used as tracers for secondary formation of organic aerosols and their aging process. Our results indicate that organic aerosols from biomass burning in this study are fresh without substantial aging or secondary production. The present chemical characteristics of organic compounds in biomass-burning emissions are very important for better understanding the impacts of biomass burning on the atmosphere aerosols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enantiomeric Excess Determination without Chiral Auxiliary Compounds. A New 31P NMR Method for Amino Acid Esters and Primary Amines

    NARCIS (Netherlands)

    Strijtveen, Bert; Kellogg, Richard M.; Feringa, Bernard

    1986-01-01

    Amino acid esters and primary amines yield diastereoisomeric methylphosphonic diamides 5 upon reaction with MePSCl2. The enantiomeric excess of amino acid esters and amines is easily determined by measurement of the ratio of diastereoisomers of 5 by 31P NMR spectroscopy.

  8. Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-02-01

    Full Text Available This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5 in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m−3, whereas oxoacids (9.50–353 ng m−3 and dicarbonyls (1.50–85.9 ng m−3 were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh, a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m−3 and tPh (48.7 ± 51.1 ng m−3 were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 ∕ C4 were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of −17.1 ± 3.9 ‰ (winter and −17.1 ± 2.0 ‰ (spring, while malonic acid is more enriched in 13C than others in autumn (−17.6 ± 4.6 ‰ and summer (−18.7 ± 4.0 ‰. The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our

  9. Characterization and Influence of Green Synthesis of Nano-Sized Zinc Complex with 5-Aminolevulinic Acid on Bioactive Compounds of Aniseed.

    Science.gov (United States)

    Tavallali, Vahid; Rahmati, Sadegh; Rowshan, Vahid

    2017-11-01

    A new water soluble zinc-aminolevulinic acid nano complex (n[Zn(ALA)2 ]), which was characterized by TEM, IR, and EDX spectra, has been prepared via sonochemical method under green conditions in water. In the current study, the effectiveness of foliar Zn amendment using synthetic Zn-ALA nano complex, as a new introduced Zn-fertilizer here, was evaluated. As the model plant, Pimpinella anisum, the most valuable spice and medicinal plant grown in warm regions, was used. By using zinc nano complex, further twenty compounds were obtained in the essential oil of anise plants. Application of 0.2% (w/v) Zn-ALA nano complex increased the levels of (E)-anethole, β-bisabolene, germacrene D, methyl chavicol, and α-zingiberene in the essential oil. Nano Zn complex at the rate of 0.2% induced considerable high phenolic compounds and zinc content of shoots and seeds. Chlorogenic acid had the highest level between four detected phenolic compounds. The maximum antioxidant activity was monitored through the application of Zn nano complex. According to the results, nanoscale nutrients can be provided with further decreased doses for medicinal plants. Using Zn-ALA nano complex is a new and efficient method to improve the pharmaceutical and food properties of anise plants. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    Directory of Open Access Journals (Sweden)

    Ridla Bakri

    2014-01-01

    Full Text Available Histone deacetylase (HDAC has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA, has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔGbinding value more negative than the standards, SAHA and trichostatin A (TSA. That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6, which was then further studied by molecular dynamics simulations.

  11. Collision-induced dissociation processes of protonated benzoic acid and related compounds: competitive generation of protonated carbon dioxide or protonated benzene.

    Science.gov (United States)

    Xu, Sihang; Pavlov, Julius; Attygalle, Athula B

    2017-04-01

    Upon activation in the gas phase, protonated benzoic acid (m/z 123) undergoes fragmentation by several mechanisms. In addition to the predictable water loss followed by a CO loss, the m/z 123 ion more intriguingly eliminates a molecule of benzene to generate protonated carbon dioxide (H - O+  ═ C ≡ O, m/z 45), or a molecule of carbon dioxide to yield protonated benzene (m/z 79). Experimental evidence shows that the incipient proton ambulates during the fragmentation processes. For the CO2 or benzene loss, protonated benzoic acid transfers the charge-imparting proton initially to the ortho position and then to the ipso position to generate a transient species which dissociates to form an ion-neutral complex between benzene and protonated CO2 . The formation of the m/z 45 ion is not a phenomenon unique to benzoic acid: spectra from protonated isophthalic acid, terephthalic acid, trans-cinnamic acid and some aliphatic acids also displayed a peak for m/z 45. However, the m/z 45 peak is structurally diagnostic only for certain benzene polycarboxylic acids because the spectra of compounds with two carboxyl groups on adjacent ring carbons do not produce a peak at m/z 45. For the m/z 79 ion to be formed, an intramolecular reaction should take place in which protonated CO2 within the ion-neutral complex acts as the attacking electrophile to transfer a proton to benzene. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Lactic Acid Fermentation Improved Textural Behaviour, Phenolic Compounds and Antioxidant Activity of Chia 
(Salvia hispanica L.) Dough.

    Science.gov (United States)

    Bustos, Ana Yanina; Gerez, Carla Luciana; Mohtar Mohtar, Lina Goumana; Paz Zanini, Verónica Irene; Nazareno, Mónica Azucena; Taranto, María Pía; Iturriaga, Laura Beatriz

    2017-09-01

    In this work, autochthonous lactic acid bacteria (LAB) were isolated from chia (Salvia hispanica L.) dough and selected on the basis of the kinetics of acidification and proteolytic activity. Strain no. C8, identified as Lactobacillus plantarum C8, was selected and used as starter to obtain chia sourdough. Lactic acid fermentation increased the organic acid mass fractions (lactic, acetic and phenyl lactic acids to 12.3 g, 1.0 g and 23.8 µg per kg of dough respectively), and antioxidant activities, which increased by approx. 33-40% compared to unfermented chia flour dough. In addition, total phenolic content increased 25% and its composition was strongly modified after 24 h of fermentation by L. plantarum C8. Chlorogenic acid was only found in the fermented dough (2.5 mg/g), while ferulic acid was detected from the beginning of fermentation, being 32% higher in chia sourdough (5.6 mg/g). The use of fermented chia sourdough improved the overall characteristics of white bread, including physical (e.g. reduced hardness and chewiness of the crumb) and antioxidant properties (25% on average), compared to the white bread. These results indicate that the use of chia sourdough could be a promising alternative to improve the technological and antioxidant properties of wheat bread. In addition, this work has shown, for the first time, that lactic acid bacterium is able to ferment chia dough, improving its overall characteristics.

  13. Lactic Acid Fermentation Improved Textural Behaviour, Phenolic Compounds and Antioxidant Activity of Chia (Salvia hispanica L. Dough

    Directory of Open Access Journals (Sweden)

    Ana Yanina Bustos

    2017-01-01

    Full Text Available In this work, autochthonous lactic acid bacteria (LAB were isolated from chia (Salvia hispanica L. dough and selected on the basis of the kinetics of acidifi cation and proteolytic activity. Strain no. C8, identifi ed as Lactobacillus plantarum C8, was selected and used as starte r to obtain chia sourdough. Lactic acid fermentation increased the organic acid mass fractions (lactic, acetic and phenyl lactic acids to 12.3 g, 1.0 g and 23.8 μg per kg of dough respectively, and antioxidant activities, which increased by approx. 33–40 % compared to unfermented chia fl our dough. In addition, total phenolic content increased 25 % and its composition was strongly modifi ed aft er 24 h of fermentation by L. plantarum C8. Chlorogenic acid was only found in the fermented dough (2.5 mg/g, while ferulic acid was detected from the beginning of fermentation, being 32 % higher in chia sourdough (5.6 mg/g. The use of fermented chia sourdough improved the overall characteristics of white bread, including physical (e.g. reduced hardness and chewiness of the crumb and antioxidant properties (25 % on average, compared to the white bread. These results indicate that the use of chia sourdough could be a promising alternative to improve the technological and antioxidant properties of wheat bread. In addition, this work has shown, for the fi rst time, that lactic acid bacterium is able to ferment chia dough, improving its overall characteristics.

  14. Influence of heating time and metal ions on the amount of free fatty acids and formation rates of selected carbonyl compounds during the thermal oxidation of canola oil.

    Science.gov (United States)

    Bastos, Luciane Conceição Silva; Pereira, Pedro Afonso de Paula

    2010-12-22

    Canola oil was heated continuously for 8 h at a typical frying temperature (180 °C) in the presence of various concentrations of the metal ions Fe(III), Cu(II), and Al(III) (9.2, 27.5, and 46.0 μg L(-1) of oil) to evaluate changes occurring in the amount of free fatty acids, expressed as acidity index, and in the formation rates of aldehydes. The aldehydes were collected and derivatized in silica cartridges functionalized with C18 and impregnated with an acid solution of 2,4-dinitrophenylhydrazine, after which they were eluted with acetonitrile and analyzed by LC-DAD-MS. Among the substances emitted, the following were identified and quantified: formaldehyde, acetaldehyde, acrolein, propanal, butanal, hexanal, (E)-2-heptenal, and octanal. During heating of the oil, the compounds presenting the highest mean formation rates were acrolein, hexanal, and acetaldehyde. In the study of the metal ions, the addition of ions to the samples generally led to a corresponding increase in the formation rates of the eight substances. The compounds showing the highest relative increases in formation rates were formaldehyde, acetaldehyde, propanal, and heptenal. In terms of catalytic effect, copper proved to be the most efficient in promoting increased formation rates, followed by iron and aluminum.

  15. Presence of 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid, a precursor of a mutagenic nitroso compound, in soy sauce.

    Science.gov (United States)

    Wakabayashi, K; Ochiai, M; Saitô, H; Tsuda, M; Suwa, Y; Nagao, M; Sugimura, T

    1983-01-01

    After treatment with nitrite, Japanese soy sauce was strongly mutagenic to Salmonella typhimurium TA100 without S9 mixture. Two precursors of the mutagen were isolated from Japanese soy sauce, and these were identified as (-)-(1S,3S)-1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid [(-)-(1S,3S)-MTCA] and its stereoisomer (-)-(1R,3S)-MTCA. After treatment with nitrite, 1-mg samples of these compounds induced 17,400 and 13,000 revertants of TA100, respectively, without S9 mixture. Quantitative analysis of various kinds of soy sauces produced in Japan showed the presence of 82-678 micrograms of MTCA per ml. The mutagenicities of these compounds with nitrite accounted for 16-61% of the total mutagenicity of soy sauce with nitrite. Most soy sauces produced in the United States were less mutagenic than those produced in Japan and little, if any, of these two precursors of the mutagen was found in them. A major reaction product of (-)-(1S,3S)-MTCA and nitrite was a compound having a nitroso substitution at position N-2, but this compound was not mutagenic. Thus, the mutagen(s) formed from (-)-(1S,3S)-MTCA and nitrite was a minor product(s), and its specific mutagenic activity must be very high. Images PMID:6574460

  16. Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity.

    Science.gov (United States)

    Rangel-Sánchez, Gerardo; Castro-Mercado, Elda; García-Pineda, Ernesto

    2014-02-15

    We demonstrated the ability of salicylic acid (SA) to induce a compound in avocado roots that strengthens their defense against Phytophthora cinnamomi. The SA content of avocado roots, before and after the application of exogenous SA, was determined by High-Performance Liquid Chromatography (HPLC). After 4h of SA feeding, the endogenous level in the roots increased to 223 μg g(-1) FW, which was 15 times the amount found in control roots. The methanolic extract obtained from SA-treated avocado roots inhibited the radial growth of P. cinnamomi. A thin layer chromatographic bioassay with the methanolic extract and spores of Aspergillus showed a distinct inhibition zone. The compound responsible for the inhibition was identified as phenol-2,4-bis (1,1-dimethylethyl) by gas chromatography and mass spectrometry. At a concentration of 100 μg/mL, the substance reduced germinative tube length in Aspergillus and radial growth of P. cinnamomi. A commercial preparation of phenol-2,4-bis (1,1-dimethylethyl) caused the same effects on mycelium morphology and radial growth as our isolate, confirming the presence of this compound in the root extracts. This is the first report of the induction of this compound in plants by SA, and the results suggest that it plays an important role in the defense response of avocado. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. New CE-ESI-MS analytical method for the separation, identification and quantification of seven phenolic acids including three isomer compounds in virgin olive oil.

    Science.gov (United States)

    Nevado, Juan José Berzas; Peñalvo, Gregorio Castañeda; Robledo, Virginia Rodríguez; Martínez, Gabriela Vargas

    2009-10-15

    A sensitive and expeditious CE-ESI-MS analytical method for the separation, identification and determination of seven selected antioxidants (cinnamic and benzoic acids), including three isomers of coumaric acid (ortho-, meta- and para-) has been developed. In order to obtain the analytical separation, capillary electrophoresis and CE-MS interface parameters (e.g., buffer pH and composition, sheath liquid and gas flow rates, sheath liquid composition, electrospray voltage, etc.) were carefully optimized. The polar fraction containing the selected phenolic acids was obtained using a previously optimized SPE pretreatment. An MS detector in order to extract structural information about the target compounds and facilitate their qualitative analysis was used in the negative ion mode. The proposed off-line SPE CE-ESI-MS method was validated by assessing its precision, LODs and LOQs, linearity range and accuracy. The optimized and validated method was used in order to quantify the selected antioxidants in various samples of virgin olive oil and extra-virgin olive oil obtained from the main olive varieties cropped in Castilla-La Mancha, Spain. Salicylic acid was used as internal standard throughout in order to ensure reproducibility in the quantitative analysis of the oil samples. The results confirmed the presence of hydroxyphenyl acetic, p-coumaric, ferulic and vanillic acids in substantial amounts (microg g(-1) level) in all samples.

  18. The effect of lysergic acid diethylamide, 5-hydroxytryptamine, and related compounds on the liver fluke, fasciola hepatica

    Science.gov (United States)

    Mansour, T. E.

    1957-01-01

    The rhythmical activity of the liver fluke, Fasciola hepatica, was stimulated by 5-hydroxytryptamine and by lysergic acid diethylamide at very low concentrations. The effect was peripheral and was not mediated through the central ganglion. Other amines also stimulated rhythmical activity, the most potent being the indolamines. Bromolysergic acid diethylamide, and other analogues such as yohimbine, harmine, and dopamine depressed rhythmical movement and antagonized the stimulant action of 5-hydroxytryptamine and lysergic acid diethylamide. Evidence which suggests the presence of tryptamine receptors in the trematode is discussed. PMID:13489165

  19. The use of a topical compound cream product with Chitosan, Silver Sulfadiazine Bentonite hidrogel and Lactic acid for the treatment of a patient with Rosacea and ulcerated Livedoid Vasculopathy

    National Research Council Canada - National Science Library

    Tatu, Alin Laurentiu

    2015-01-01

    Introduction: The aims of this study were to investigate the use of a topical compound cream product with Chitosan, Silver Sulfadiazine, Bentonite hidrogel and Lactic acid for the treatment of a patient...

  20. Reduction of benzylic alcohols and α-hydroxycarbonyl compounds by hydriodic acid in a biphasic reaction medium

    National Research Council Canada - National Science Library

    Dobmeier, Michael; Herrmann, Josef M; Lenoir, Dieter; König, Burkhard

    2012-01-01

    .... Instead of a strongly acidic, aqueous solution, a biphasic toluene-water reaction medium was used, which allowed the conversion of primary, secondary and tertiary benzylic alcohols, in good yields...

  1. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization : Identification of Renewable Aromatics and a Lignin-Derived Solvent

    NARCIS (Netherlands)

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-01-01

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges

  2. Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M{sub 1}-immunosensor

    Energy Technology Data Exchange (ETDEWEB)

    Rameil, Steffen, E-mail: s.rameil@r-biopharm.de [R-Biopharm AG, An der neuen Bergstrasse 17, 64297 Darmstadt (Germany); Schubert, Peter, E-mail: p.schubert@r-biopharm.de [R-Biopharm AG, An der neuen Bergstrasse 17, 64297 Darmstadt (Germany); Grundmann, Peter, E-mail: peter.grundmann@jennewein-biotech.de [R-Biopharm AG, An der neuen Bergstrasse 17, 64297 Darmstadt (Germany); Dietrich, Richard, E-mail: R.Dietrich@mh.vetmed.uni-muenchen.de [Department of Veterinary Sciences, University of Munich, Schoenleutner Str 8, 85764 Oberschleissheim (Germany); Maertlbauer, Erwin, E-mail: E.Maertlbauer@mh.vetmed.uni-muenchen.de [Department of Veterinary Sciences, University of Munich, Schoenleutner Str 8, 85764 Oberschleissheim (Germany)

    2010-02-19

    We developed a potentiometric aflatoxin M{sub 1}-immunosensor which utilizes 3-(4-hydroxyphenyl)propionic acid (p-HPPA) as electron donating compound for horseradish peroxidase (HRP; EC 1.11.1.7). The assay system consists of a polypyrrole-surface-working electrode coated with a polyclonal anti-M{sub 1} antibody (pAb-AFM{sub 1}), a Ag/AgCl reference electrode and a HRP-aflatoxin B{sub 1} conjugate (HRP-AFB{sub 1} conjugate). To optimize the potentiometric measuring system p-HPPA as well as related compounds serving as electron donating compounds were compared. Also the influence of different buffer systems, varying pH and substrate concentrations on signal intensity was investigated. Our results suggest that reaction conditions that favor the formation of Pummerer's type ketones lead to an increase in signal intensity rather than formation of fluorescent dye. Comparison with commercial ready-to-use HRP electron donating compounds such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), o-phenylenediamine (OPD) or 3,3',5,5'-tetramethylbenzidine (TMB) showed that only 34%, 77% and 49% of the signal intensity of p-HPPA were reached, respectively. The optimized assay had a detection limit of 40 pg mL{sup -1} and allowed detection of 500 pg mL{sup -1} (FDA action limit) aflatoxin M{sub 1} (AFM{sub 1}) in pasteurized milk and UHT-milk containing 0.3-3.8% fat within 10 min without any sample treatment. The working range was between 250 and 2000 pg mL{sup -1} AFM{sub 1}.

  3. The application of compound-specific isotope analysis of fatty acids for traceability of sea cucumber (Apostichopus japonicus) in the coastal areas of China.

    Science.gov (United States)

    Liu, Yu; Zhang, Xufeng; Li, Ying; Wang, Haixia

    2017-11-01

    Geographical origin traceability is an important issue for controlling the quality of seafood and safeguarding the interest of consumers. In the present study, a new method of compound-specific isotope analysis (CSIA) of fatty acids was established to evaluate its applicability in establishing the origin traceability of Apostichopus japonicus in the coastal areas of China. Moreover, principal component analysis (PCA) and discriminant analysis (DA) were applied to distinguish between the origins of A. japonicus. The results show that the stable carbon isotope compositions of fatty acids of A. japonicus significantly differ in terms of both season and origin. They also indicate that the stable carbon isotope composition of fatty acids could effectively discriminate between the origins of A. japonicus, except for between Changhai Island and Zhangzi Island in the spring of 2016 because of geographical proximity or the similarity of food sources. The fatty acids that have the highest contribution to identifying the geographical origins of A. japonicus are C22:6n-3, C16:1n-7, C20:5n-3, C18:0 and C23:1n-9, when considering the fatty acid contents, the stable carbon isotope composition of fatty acids and the results of the PCA and DA. We conclude that CSIA of fatty acids, combined with multivariate statistical analysis such as PCA and DA, may be an effective tool for establishing the traceability of A. japonicus in the coastal areas of China. The relevant conclusions of the present study provide a new method for determining the traceability of seafood or other food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cottonwood trees at rural and forested sites in Central New Mexico

    Science.gov (United States)

    Villanueva-Fierro, Ignacio; Popp, Carl J.; Martin, Randal S.

    Direct emission rates of carbonyl compounds, carboxylic acids and hydrocarbons from Populus fremontil (cottonwood) and Pinus ponderosa (ponderosa pine) trees were studied during the summer of 1997. Ambient air concentrations of these compounds in the vicinity of the sampled trees were also identified and quantified. Study sites were Socorro, NM and Langmuir Laboratory, NM a rural and forested, high mountain site, respectively, located in Central New Mexico. A dynamic branch enclosure method was used to perform the sampling of tree emissions, that are given at standard atmospheric temperature of 303 K, and 1000 μmol m -2 s -1 PAR. Average emission rates of acetic and formic acid, respectively, from cottonwood were 470±540 and 310±300 ng g -1 h -1 and from ponderosa pine were 170±180 and 210±210 ng g -1 h -1. Formaldehyde and acetaldehyde average emission rates, respectively, from ponderosa pine were 500±400 and 250±190 ng g -1 h -1, and from cottonwood were 4070±3570 and 1190±1360 ng g -1 h -1. Cottonwood had an average isoprene emission rate of 9050±10700 ng g -1 h -1, while ponderosa pine had emission rates of α-pinene and β-pinene of 450±1100 and 520±1050 ng g -1 h -1, respectively. Total mass emissions of carbon compounds measured from cottonwood were four times larger than from ponderosa pine. Seasonal, diurnal, and temperature dependence of concentrations in ambient air and emission rates from trees are also discussed. Average ambient air concentrations of acetic and formic acid, respectively, were 2.7±3.8 and 0.7±0.9 ppbv for the rural site, and 1.7±2.0 and 0.6±0.5 ppbv for the mountain site. The average range of carbonyl compound concentrations in ambient air was from 0.3 to 3.4 ppbv for various carbonyl compounds with about 60% of the ambient carbonyls consisting of formaldehyde, acetaldehyde and acetone. Isoprene and monoterpene concentrations in ambient air were usually below the detection limit.

  5. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey.

    Science.gov (United States)

    Eyduran, Sadiye Peral; Akin, Meleksen; Ercisli, Sezai; Eyduran, Ecevit; Maghradze, David

    2015-01-13

    The Eurasian grapevine (Vitis vinifera L.) is the most widely cultivated and economically important horticultural crop in the world. As a one of the origin area, Anatolia played an important role in the diversification and spread of the cultivated form V. vinifera ssp. vinifera cultivars and also the wild form V. vinifera ssp. sylvestris ecotypes. Although several biodiversity studies have been conducted with local cultivars in different regions of Anatolia, no information has been reported so far on the biochemical (organic acids, sugars, phenolic acids, vitamin C) and antioxidant diversity of local historical table V. vinifera cultivars grown in Igdir province. In this work, we studied these traits in nine local table grape cultivars viz. 'Beyaz Kismis' (synonym name of Sultanina or Thompson seedless), 'Askeri', 'El Hakki', 'Kirmizi Kismis', 'Inek Emcegi', 'Hacabas', 'Kerim Gandi', 'Yazen Dayi', and 'Miskali' spread in the Igdir province of Eastern part of Turkey. Variability of all studied parameters is strongly influenced by cultivars (P < 0.01). Among the cultivars investigated, 'Miskali' showed the highest citric acid content (0.959 g/l) while 'Kirmizi Kismis' produced predominant contents in tartaric acid (12.71 g/l). The highest glucose (16.47 g/100 g) and fructose (15.55 g/100 g) contents were provided with 'Beyaz Kismis'. 'Kirmizi Kismis' cultivar had also the highest quercetin (0.55 mg/l), o-coumaric acid (1.90 mg/l), and caffeic acid (2.73 mg/l) content. The highest ferulic acid (0.94 mg/l), and syringic acid (2.00 mg/l) contents were observed with 'Beyaz Kismis' cultivar. The highest antioxidant capacity was obtained as 9.09 μmol TE g(-1) from 'Inek Emcegi' in TEAC (Trolox equivalent Antioxidant Capacity) assay. 'Hacabas' cultivar had the highest vitamin C content of 35.74 mg/100 g. Present results illustrated that the historical table grape cultivars grown in Igdir province of Eastern part of Turkey contained diverse

  6. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua, E-mail: songhuihua@mail.hebtu.edu.cn; Yu, Hai-Tao, E-mail: haitaoyu@mail.hebtu.edu.cn

    2016-01-15

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H{sub 2}bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H{sub 2}O)]{sub n} (1), [Cd(bzgluO)(2,4′-bipy){sub 2}(H{sub 2}O)·3H{sub 2}O]{sub n} (2), [Cd(bzgluO)(phen)·H{sub 2}O]{sub n} (3), [Cd(bzgluO)(4,4′-bipy)(H{sub 2}O)]{sub n} (4), [Cd(bzgluO)(bpp)(H{sub 2}O)·2H{sub 2}O]{sub n} (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H{sub 2}bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H{sub 2}bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H{sub 2}bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid

  8. Functionalization of hydroxy compounds with nitrilotriacetic acid for technetium-99m chelation: excretory properties of the radiolabelled chelates.

    Science.gov (United States)

    Chatterjee, M; Banerjee, S

    1991-01-01

    Substituted monoanilides of nitrilotriacetic acid (NTA) have gained much popularity in recent years as an important class of ligands for technetium-99m (99mTc) radiopharmaceutical preparations used in liver imaging and function studies. We were interested in investigating the properties of the corresponding ester analogues of this important class of ligands and for this study cyclohexanol was selected as a hydroxy component, which on condensation with nitrilotriacetic acid in the presence of acetic anhydride, furnished the monoester, N-cyclohexyloxycarbonylmethyl iminodiacetic acid 4 and the corresponding diester 5. Phenol on similar condensation produced mainly the diester, N,N-di(phenyloxycarbonylmethyl) aminoacetic acid 2, with traces of the corresponding monoester 7. A reinvestigation of the well known condensation reaction of aniline with nitrilotriacetic acid revealed that in addition to the reported monoanilide, N-phenylcarbamoylmethyl imino diacetic acid 3, the corresponding dianilide 6 was also produced in appreciable amount. The ester ligands 2, 4, 5 after 99mTc chelation exhibited good in vitro and in vivo stabilities. The biodistribution characteristics of these radiolabelled esters and amides were very similar showing thereby that esterification with NTA could be an effective method for converting alcohols to 99mTc-radiopharmaceuticals without generating any unusual properties because of the ester linkage. Residual radiopharmaceutical concentration after i.v. administration of these amide and ester 99mTc chelates at 30 min in blood, urine, liver, kidney and intestine were correlated with their lipophilicities and during this correlation it was observed that in addition to lipophilicity the anionic strength of these chelates is also an important determinant in governing their biodistribution. The ester ligand 4 after 99mTc chelation showed ultrafast hepatobiliary kinetics and was therefore compared in a rabbit model with a standard hepatobiliary

  9. Microbial utilization of amino acids in soil assessed by position-specific labeling and compound-specific 13C-PLFA-analysis

    Science.gov (United States)

    Dippold, M.; Apostel, C.; Glaser, B.; Kuzyakov, Y.

    2012-04-01

    Transformation of low molecular weight organic substances (LMWOS) organic substances in soil is one of the most important processes in the turnover of organic matter, as all high molecular substances pass this stage during their decomposition. Microbial utilization is the most important process for the transformation of LMWOS in soil and thus is an important process in the turnover of organic matter. Position-specific labeling combined with compound-specific 13C analysis of microbial biomass allows a closer look on the mechanisms of LMWOS transformation in soil. We assessed short-term (3 and 10 days) transformations of the amino acids by adding position-specifically labeled 13C and 15N alanine and glutamic acid to soil in a field experiment. We quantified the microbial utilization of the different functional groups by 13C- and 15N-analysis of microbial biomass with the chloroform-fumigation-extraction method. A more specific look on the utilization of individual C positions by distinct microbial groups was gained by 13C-PLFA analysis. Microbial degradation was fastest with the highly oxidized carboxylic groups of the amino acids, whereas more reduced C positions showed a higher utilization by microbial anabolism. Microbial groups revealed different incorporation of specific C positions into their PLFA. The highest incorporation was reached by the prokaryotic groups, especially the gram-negatives. Whereas alanine was metabolized similar by different microbial groups glutamic acid C showed different utilization of the individual C positions for distinct microbial groups. This may arise from the use of glutamic acid as a general N transport molecule in bacterial metabolism. Hence, position-specifically labeled glutamic acid may act as a tracer of bacterial N metabolism. The application of position-specifically labeled substances opens a new way to investigate the microbial transformations of amino acids in soil. Observing single C atoms and their utilization by

  10. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    Science.gov (United States)

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  11. Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Jianan; Niu, Yongwu; Bakur, Abdelmoneim; Li, Hao; Chen, Qihe

    2017-06-27

    Betulinic acid is a product of plant secondary metabolism which has shown various bioactivities. Several CYP716A subfamily genes were recently characterized encoding multifunctional oxidases capable of C-28 oxidation. CYP716A12 was identified as betulin C-28 oxidase, capable of modifying betulin. This study aimed to induce the transformation of betulin to betulinic acid by co-expressing enzymes CYP716A12 from Medicago truncatula and ATR1 from Arabidopsis thaliana in Saccharomyces cerevisiae. The microsome protein extracted from the transgenic yeast successfully catalyzed the transformation of betulin to betulinic acid. We also characterized the optimization of cell fragmentation, protein extraction method, and the conversion conditions. Response surface methodology was implemented, and the optimal yield of betulinic acid reached 18.70%. After optimization, the yield and the conversion rate of betulin were increased by 83.97% and 136.39%, respectively. These results may present insights and strategies for the sustainable production of betulinic acid in multifarious transgenic microbes.

  12. The effect of flooding on the exchange of the volatile C2-compounds ethanol, acetaldehyde and acetic acid between leaves of Amazonian floodplain tree species and the atmosphere

    Directory of Open Access Journals (Sweden)

    W. Junk

    2008-08-01

    Full Text Available The effect of root inundation on the leaf emissions of ethanol, acetaldehyde and acetic acid in relation to assimilation and transpiration was investigated with 2–3 years old tree seedlings of four Amazonian floodplain species by applying dynamic cuvette systems under greenhouse conditions. Emissions were monitored over a period of several days of inundation using a combination of Proton Transfer Reaction Mass Spectrometry (PTR-MS and conventional techniques (HPLC, ion chromatography. Under non-flooded conditions, none of the species exhibited measurable emissions of any of the compounds, but rather low deposition of acetaldehyde and acetic acid was observed instead. Tree species specific variations in deposition velocities were largely due to variations in stomatal conductance. Flooding of the roots resulted in leaf emissions of ethanol and acetaldehyde by all species, while emissions of acetic acid were only observed from the species exhibiting the highest ethanol and acetaldehyde emission rates. All three compounds showed a similar diurnal emission profile, each displaying an emission burst in the morning, followed by a decline in the evening. This concurrent behavior supports the conclusion, that all three compounds emitted by the leaves are derived from ethanol produced in the roots by alcoholic fermentation, transported to the leaves with the transpiration stream and finally partly converted to acetaldehyde and acetic acid by enzymatic processes. Co-emissions and peaking in the early morning suggest that root ethanol, after transportation with the transpiration stream to the leaves and enzymatic oxidation to acetaldehyde and acetate, is the metabolic precursor for all compounds emitted, though we can not totally exclude other production pathways. Emission rates substantially varied among tree species, with maxima differing by up to two orders of magnitude (25–1700 nmol m−2 min−1 for ethanol and 5–500 nmol m−2 min−1 for

  13. Evaluation of Hydrocalumite-Like Compounds as Catalyst Precursors in the Photodegradation of 2,4-Dichlorophenoxyacetic Acid

    OpenAIRE

    Manuel Sánchez-Cantú; Clara Barcelos-Santiago; Claudia M. Gomez; Esthela Ramos-Ramírez; Ma. de Lourdes Ruiz Peralta; Nancy Tepale; Valeria J. González-Coronel; Mantilla, A.; Francisco Tzompantzi

    2016-01-01

    Three hydrocalumite-like compounds in a Ca/Al ratio of 2 containing nitrate and acetate anions in the interlaminar region were prepared by a simple, economic, and environmentally friendly method. The solids were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, nitrogen adsorption-desorption at −196°C, scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and UV-Vis Diffuse Reflectance Spectroscopy (DRS). The catalytic activity of the calcined solid...

  14. Structure determination of a novel metal-organic compound synthesized from aluminum and 2,5-pyridinedicarboxylic acid

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Brink, Bastian; Andersen, Jonas

    2011-01-01

    The structure of [Al2(pydc)2(μ2-OH)2(H2O)2]n(pydc=2,5-pyridinedicarboxylate) was successfully determined from powder X-ray diffraction data. The compound crystallizes in the triclinic system (space group P -1) with a=6.7813(1) A° , b=7.4944(1) A°, c=8.5013(1) A° , α=95.256(1)°, β=102.478(1)°, γ=1...

  15. Protective effect of pantothenic acid and related compounds against permeabilization of Ehrlich ascites tumour cells by digitonin

    Energy Technology Data Exchange (ETDEWEB)

    Slyshenkov, Vyacheslav S.; Rakowska, Mariola; Wojtczak, Lech [Polska Akademia Nauk, Warsaw (Poland). Inst. Biologii Doswiadczalnej

    1996-12-31

    Preincubation of Ehrlich ascites tumour cells with millimolar concentrations of pantothenic acid, pantothenol or panthethine, but not with homopantothenic acid, at 22 C or 32 C, but not at 0 C, makes the plasma membrane more resistant to the damaging effect of submillimolar concentrations of digitonin. It is proposed that this increased resistance is due to the increased rate of cholesterol biosynthesis. In fact, incorporation of [{sup 14}C]acetate into cholesterol is by 45% increased in the cells preincubated with pantothenic acid; this probably reflects elevation of the content of CoA in such cells [Slyshenkov, V.S., Rakowska, M., Moiseenok, A.G and Wojtczak, L. (1995) Free Radical Biol. Med. 19, 767-772]. (author). 9 refs, 2 figs, 1 tab.

  16. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times

    Directory of Open Access Journals (Sweden)

    Katya Carbone

    2016-07-01

    Full Text Available Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates, bioactive compounds (total polyphenols and flavan-3-ols, HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH• and ABTS+• assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  17. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times.

    Science.gov (United States)

    Carbone, Katya; Fiordiponti, Luciano

    2016-07-22

    Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols), HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h) were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH(•) and ABTS(+•) assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  18. The Isolated and Combined Effects of Folic Acid and Synthetic Bioactive Compounds against Aβ(25-35-Induced Toxicity in Human Microglial Cells

    Directory of Open Access Journals (Sweden)

    Ming-Chi Tang

    2010-03-01

    Full Text Available Folic acid plays an important role in neuronal development. A series of newly synthesized bioactive compounds (NSCs was reported to exhibit immunoactive and neuroprotective functions. The isolated and combined effects of folic acid and NSCs against β-amyloid (Aβ-induced cytotoxicity are poorly understood. These effects were tested using human microglia cells (C13NJ subjected to Aβ(25-35 challenge. According to an MTT assay, treatment of C13NJ cells with Aβ(25-35 at 10~100 μM for 48 h induced 18%~43% cellular death in a dose-dependent manner (p < 0.05. Aβ(25-35 treatment at 25 μM induced nitrite oxide (NO release, elevated superoxide production, and reduced the distribution of cells in the S phase. Preincubation of C13NJ with 100 μM folic acid protected against Aβ(25-35-induced cell death, which coincided with a reduction in NO release by folic acid supplements. NSC47 at a level of 50 μM protected against Aβ(25-35-induced cell death and reduced Aβ-promoted superoxide production (p < 0.05. Folic acid in combination with NSC47 at their cytoprotective doses did not synergistically ameliorate Aβ(25-35-associated NO release, superoxide production, or cell cycle arrest. Taken together, folic acid or NSC treatment alone, but not the combined regimen, protected against Aβ(25-35-induced cell death, which may partially, if not completely, be mediated by free radical-scavenging effects.

  19. Salinity, water hardness, and dissolved organic carbon modulate degradation of peracetic acid (PAA) compounds in aqueous solutions

    Science.gov (United States)

    Peracetic acid (PAA) is used in aquaculture under different conditions for disinfection purposes. However, there is a lack of information about its environmental fate, particularly its persistence in aquatic systems with different chemistries. Therefore, the impact of water hardness, salinity, and d...

  20. Cover picture: Difluoroacetic Acid as a New Reagent for Direct C−H Difluoromethylation of Heteroaromatic Compounds

    DEFF Research Database (Denmark)

    Thanh Tung, Truong; Christensen, Søren Brøgger; Nielsen, John

    2017-01-01

    Direct C−H difluoromethylation of electron-deficient positions in nitrogen-containing heterocycles is attained by difluoromethyl radicals generated in-situ from difluoroacetic acid under silver-catalyzed oxidative decarboxylation. Control of the reaction temperature permits either mono- or disubs...

  1. Effect of compounding approaches on fiber dispersion and performance of poly(lactic acid)/cellulose nanocrystal composite blown films

    Science.gov (United States)

    Sonal S. Karkhanis; Laurent M. Matuana; Nicole M. Stark; Ronald C. Sabo

    2017-01-01

    This study was aimed to identify the best approach for incorporating cellulose nanocrystals (CNCs) into a poly(lactic acid) (PLA) matrix by examining two different CNC addition approaches. The first approach consisted of melt blending PLA and CNCs in a three-piece internal mixer whereas the second method involved the direct dry mixing of PLA and CNCs. The prepared...

  2. Selective Enrichment and MALDI-TOF MS Analysis of Small Molecule Compounds with Vicinal Diols by Boric Acid-Functionalized Graphene Oxide

    Science.gov (United States)

    Zhang, Jing; Zheng, Xiaoling; Ni, Yanli

    2015-08-01

    In this study, a 4-vinylphenylboronic acid-functionalized graphene oxide (GO) material was prepared via atom-transfer radical polymerization (ATRP) method and applied for the first time as a novel matrix for the selective enrichment and analysis of small-molecule compounds with vicinal diols, which have been the focus of intense research in the field of life science, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in positive-ion mode. There are two main factors playing a decisive role in assisting laser D/I process comparing to some traditional matrices: (1) GO provides π-conjugated system by itself for laser absorption and energy transfer; (2) the modified 4-vinylphenylboronic acid can selectively capture small-molecule compounds with vicinal diols. The results demonstrate that the novel material has distinct advantages over previously reported matrices in enriching and assisting the highly efficient ionization of target molecules for mass spectrometry analysis. This work indicates a new application branch for graphene-based matrices and provides an alternative solution for small-molecules analysis.

  3. Crispoic acid, a new compound from Laelia marginata (Orchidaceae), and biological evaluations against parasites, human cancer cell lines and Zika virus.

    Science.gov (United States)

    Belloto, Andrezza C; Souza, Gredson K; Perin, Paula C; Schuquel, Ivania T A; Santin, Silvana M O; Chiavelli, Lucas U R; Garcia, Francielle P; Kaplum, Vanessa; Rodrigues, Jean H S; Scariot, Débora B; Delvecchio, Rodrigo; Machado-Ferreira, Erik; Santana Aguiar, Renato; Soares, Carlos A G; Nakamura, Celso V; Pomini, Armando M

    2017-11-08

    The phytochemical study of Laelia marginata (Lindl.) L. O. Williams (Orchidaceae) led to the isolation of a new natural product named crispoic acid (1), together with six other known compounds (2-7). The new natural product was identified as a dimer of eucomic acid and was structurally characterised based upon 1D and 2D NMR and HRMS data. Biological assays with plant crude extract, fractions and isolated compounds were performed against two human cancer cell lines (Hela and Siha), and the tropical parasites Trypanosoma cruzi and Leishmania (Leishmania) amazonensis. The phenantrenoid 9,10-dihydro-4-methoxyphenanthren-2,7-diol 2 was active against Hela and Siha cells (CC 50 5.86 ± 0.19 and 20.78 ± 2.72 μg/mL, respectively). Sub-lethal concentrations of the flavone rhamnazin 4 were not able to rescue the viability of the Vero cells infected by Zika virus.

  4. Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus Bath to adapt to the presence of toxic organic compounds.

    Science.gov (United States)

    Löffler, Claudia; Eberlein, Christian; Mäusezahl, Ines; Kappelmeyer, Uwe; Heipieper, Hermann J

    2010-07-01

    The physiology of the response in the methanotrophic bacterium Methylococcus capsulatus Bath towards thermal and solvent stress was studied. A systematic investigation of the toxic effects of organic compounds (chlorinated phenols and alkanols) on the growth of this bacterium was carried out. The sensitivity to the tested alkanols correlated with their chain length and hydrophobicity; methanol was shown to be an exception to which the cells showed a very high tolerance. This can be explained by the adaptation of these bacteria to growth on C1 compounds. On the other hand, M. capsulatus Bath was very sensitive towards the tested chlorinated phenols. The high toxic effect of phenolic compounds on methanotrophic bacteria might be explained by the occurrence of toxic reactive oxygen species. In addition, a physiological proof of the presence of cis-trans isomerization as a membrane-adaptive response mechanism in M. capsulatus was provided. This is the first report on physiological evidence for the presence of the unique postsynthetic membrane-adaptive response mechanism of the cis-trans isomerization of unsaturated fatty acids in a bacterium that does not belong to the genera Pseudomonas and Vibrio where this mechanism was already reported and described extensively.

  5. Formation mechanism of manganese compounds in acidic electrolytes of copper; Mecanismo de la formacion de compuestos de manganeso en electrolitos acidos

    Energy Technology Data Exchange (ETDEWEB)

    Ipinza, J.; Ibanez, J. P.; Pagliero, A.; Vergara, F.

    2007-07-01

    The formation mechanism of manganese compounds in acidic electrolytes (180 g/l of H{sub 2}SO{sub 4}) was studied by potentiostatic experiments at 50 degree centigree. In the oxide layer on a PbCaSn anode, amorphous MnOOH was formed XRD showed that anodic slimes collected from the cell bottom after 3 h was made up of: {gamma}-MnO{sub 2} and {epsilon}-MnO{sub 2}. It was proved that the {epsilon} type oxide was formed by an electrochemical process and the {gamma} type oxide was formed by a pure chemical precipitation, the last one depends on the MnO{sub 4} concentration in the electrolyte. The electrochemical formation of MnOOH only depends on the concentrations of Mn''3+ in the electrolyte, and this amorphous compounds in the intermediate specie for generating {epsilon}-MnO{sub 2}. Fe''2+, in the presence of Mn''2+. inhibited the formation of both MnO{sub 2} oxides, and in the anode interface reduces PbO{sub 2} to PbSO{sub 4}, that reports in the anodic slime. furthermore, the presence of ferrous ion resulted in a better distribution of the manganese compounds and originates PbSO{sub 4} precipitates, which report on the slime. (Author) 25 refs.

  6. Thermal and spectroscopic study to investigate p-aminobenzoic acid, sodium p-aminobenzoate and its compounds with some lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, J.A.; Nunes, W.D.G.; Colman, T.A.D.; Nascimento, A.L.C.S do [Instituto de Química, UNESP—Universidade Estadual Paulista, Campus Araraquara, Departamento de Química Analítica, Araraquara 14801-970, SP (Brazil); Caires, F.J. [Faculdade de Ciências, UNESP—Universidade Estadual Paulista, Campus Bauru, Departamento de Química, Bauru 17033-260, SP (Brazil); Campos, F.X. [Instituto de Química, UNESP—Universidade Estadual Paulista, Campus Araraquara, Departamento de Química Analítica, Araraquara 14801-970, SP (Brazil); Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Primavera do Leste 78850-000, MT (Brazil); Gálico, D.A. [Instituto de Química, UNICAMP—Universidade Estadual de Campinas, Campinas 13083-970, SP (Brazil); Ionashiro, M., E-mail: massaoi@yahoo.com.br [Instituto de Química, UNESP—Universidade Estadual Paulista, Campus Araraquara, Departamento de Química Analítica, Araraquara 14801-970, SP (Brazil)

    2016-01-20

    Highlights: • The p-aminobenzoic acid melts followed partial evaporation. • The stoichiometry of compounds was established by TG, EA and complexometry. • The TG–DTA curves provided previously unreported information about thermal behavior. - Abstract: The characterization, thermal stability and thermal decomposition of some lighter trivalent lanthanide p-aminobenzoates, Ln(C{sub 7}H{sub 6}NO{sub 2}){sub 3}·H{sub 2}O (Ln = La, Ce, Pr, Nd, Sm), as well as the thermal behavior and spectroscopic study of p-aminobenzoic acid C{sub 7}H{sub 7}NO{sub 2} and its sodium salt were investigated. The following methods were utilized: simultaneous thermogravimetry and differential thermal analysis (TG–DTA) in dynamic dry air and nitrogen atmospheres; differential scanning calorimetry (DSC); middle (MIR) and near (NIR) infrared region spectroscopy; evolved gas analysis (EGA); elemental analysis; complexometry; X-ray diffraction (XRD); and diffuse reflectance spectroscopy (DR) in the ultraviolet and visible regions. All the compounds were obtained monohydrated and the thermal decomposition occurred in two, three or four steps in an air atmosphere, and three or four steps in N{sub 2} atmosphere. In both atmospheres (air and N{sub 2}) the final residues were CeO{sub 2}, Pr{sub 6}O{sub 11}, Ln{sub 2}O{sub 3} (Ln = La, Nd, Sm). The results also provided information concerning the coordination mode and thermal behavior, as well as the identification of the gaseous products which evolved during the thermal decomposition of these compounds. The DR and NIR spectra provided information about the ligand absorption bands and the f–f transitions of the Nd{sup 3+}, Pr{sup 3+} and Sm{sup 3+} ions.

  7. Silver(I) compounds of the anti-inflammatory agents salicylic acid and p-hydroxyl-benzoic acid which modulate cell function.

    Science.gov (United States)

    Banti, C N; Giannoulis, A D; Kourkoumelis, N; Owczarzak, A M; Kubicki, M; Hadjikakou, S K

    2015-01-01

    Silver nitrate reacts with salicylic acid (salH2) or p-hydroxy-benzoic acid (p-HbzaH2) and equimolar amount of NaOH to yield a white precipitations which are then treated with tri(p-tolyl)phosphine (tptp) or tri(m-tolyl)phosphine (tmtp) to yield the complexes [Ag(tptp)2(salH)] (1), [Ag(tptp)2(p-Hbza)] (2) and [Ag(tmtp)2(salH)] (3). Complexes 1 and 3 are also obtained when aspirin (aspH) is used. The acetic ester of salicylic acid is hydrolyzed to form the complexes 1 and 3. However, when aspirin and tptp are used, a mixture of products was obtained which contains both 1 and an ionic complex of formula {[Ag(tptp)4](+)[(salH)(-)]∙[(CH3)2NCHO)]∙(H2O)} (1a). The complexes were characterized by m.p., e.a., mid-FT-IR, (1)H-,(31)P-NMR, HRMS, UV-vis spectroscopic techniques and X-ray crystallography. Two phosphorus and one carboxylic oxygen atoms form a trigonal planar geometry around Ag(I) ions in complexes 1-3. Complex 1a consists of a [Ag(tptp)4](+) cation and a deprotonated salH(-) counter anion. The influence of 1-3 on the viability of MCF-7 (breast) and HeLa (cervix) adenocarcinoma cells, is evaluated. DNA binding tests indicate the ability of 1-3 to modify the activity of cells. The binding constants of 1-3 towards calf-thymus DNA, reveal stronger interaction of 2. Changes in fluorescent emission light of ethidium bromide (EB) in the presence of DNA suggest intercalation or electrostatic interactions into DNA for 1 and 3. Docking studies on DNA-complex interactions confirm the binding of 1-3 in the minor groove of B-DNA. Moreover, the influence of 1-3 on the peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX) was kinetically and theoretically studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. pKa prediction for acidic phosphorus-containing compounds using multiple linear regression with computational descriptors.

    Science.gov (United States)

    Yu, Donghai; Du, Ruobing; Xiao, Ji-Chang

    2016-07-05

    Ninety-six acidic phosphorus-containing molecules with pKa 1.88 to 6.26 were collected and divided into training and test sets by random sampling. Structural parameters were obtained by density functional theory calculation of the molecules. The relationship between the experimental pKa values and structural parameters was obtained by multiple linear regression fitting for the training set, and tested with the test set; the R(2) values were 0.974 and 0.966 for the training and test sets, respectively. This regression equation, which quantitatively describes the influence of structural parameters on pKa , and can be used to predict pKa values of similar structures, is significant for the design of new acidic phosphorus-containing extractants. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Faecal blood loss during administration of acetylsalicylic acid, ketoprofen and two new ketoprofen sustained-release compounds.

    Science.gov (United States)

    Ranløv, P J; Nielsen, S P; Bärenholdt, O

    1983-01-01

    The influence of one week's treatment with acetylsalicylic acid, ketoprofen, ketoprofen sustained-release capsules (Biovail capsules), and ketoprofen sustained-release tablets (IBP tablet) on gastrointestinal bleeding was investigated in 41 healthy male volunteers by means of a radiochromium assay. The physiological faecal bleeding was 0.10 to 0.90 ml/day (99% confidence limits). It appeared that faecal bleeding during treatment with acetylsalicylic acid medication was greater than bleeding during medication with ketoprofen capsules in equipotent dosage, the latter being in turn causing significantly more bleeding than during medication with the newly developed Biovail capsules. The most modest faecal bleeding (0.8 ml/day) was seen with IBP tablets.

  10. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Reiffarth, D.G., E-mail: Dominic.Reiffarth@unbc.ca [Natural Resources and Environmental Studies Program, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Petticrew, E.L., E-mail: Ellen.Petticrew@unbc.ca [Geography Program and Quesnel River Research Centre, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Owens, P.N., E-mail: Philip.Owens@unbc.ca [Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9 (Canada); Lobb, D.A., E-mail: David.Lobb@umanitoba.ca [Watershed Systems Research Program, University of Manitoba, 13 Freedman Crescent, Winnipeg, MB R3T 2N2 (Canada)

    2016-09-15

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C{sub 16} and C{sub 18}. - Highlights: • Compound-specific stable isotopes (CSSIs) of carbon may be used as soil tracers. • The variables affecting CSSI data are: biological, environmental and analytical. • Understanding sources of variability will lead

  11. Percent recoveries of anthropogenic organic compounds with and without the addition of ascorbic acid to preserve finished-water samples containing free chlorine, 2004-10

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Bender, David A.; Price, Curtis V.

    2011-01-01

    This report presents finished-water matrix-spike recoveries of 270 anthropogenic organic compounds with and without the addition of ascorbic acid to preserve water samples containing free chlorine. Percent recoveries were calculated using analytical results from a study conducted during 2004-10 for the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The study was intended to characterize the effect of quenching on finished-water matrix-spike recoveries and to better understand the potential oxidation and transformation of 270 anthropogenic organic compounds. The anthropogenic organic compounds studied include those on analytical schedules 1433, 2003, 2033, 2060, 2020, and 4024 of the USGS National Water Quality Laboratory. Three types of samples were collected from 34 NAWQA locations across the Nation: (1) quenched finished-water samples (not spiked), (2) quenched finished-water matrix-spike samples, and (3) nonquenched finished-water matrix-spike samples. Percent recoveries of anthropogenic organic compounds in quenched and nonquenched finished-water matrix-spike samples are presented. Comparisons of percent recoveries between quenched and nonquenched spiked samples can be used to show how quenching affects finished-water samples. A maximum of 18 surface-water and 34 groundwater quenched finished-water matrix-spike samples paired with nonquenched finished-water matrix-spike samples were analyzed. Percent recoveries for the study are presented in two ways: (1) finished-water matrix-spike samples supplied by surface-water or groundwater, and (2) by use (or source) group category for surface-water and groundwater supplies. Graphical representations of percent recoveries for the quenched and nonquenched finished-water matrix-spike samples also are presented.

  12. Growth stimulation and inhibition effects of 4-hydroxybenzoic acid and some related compounds on the freshwater green alga Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Kamaya, Y; Tsuboi, S; Takada, T; Suzuki, K

    2006-11-01

    4-hydroxybenzoic acid (4-HBA) exhibited low algal toxicity with the 72-h median inhibition concentration (IC50) of 9.9 mmol/L in the standard growth inhibition test using the freshwater green alga Pseudokirchneriella subcapitata. In contrast, it stimulated the algal growth at lower concentrations ranging from 0.1 to 1.0 mmol/L. Comparative studies with benzoic acid and 2- and 3-hydroxybenzoic acids (2-HBA and 3-HBA) indicated that 2-HBA was the most toxic, giving a 72-h IC50 of 0.172 mmol/L, and 4-HBA was the least toxic and that only 4-HBA had the pronounced growth stimulation activity. In a semicontinuous exposure to 4-HBA (0.15 and 0.3 mmol/L), algae maintained increased cell growth compared with controls during up to 10 times consecutive batch cultures, without any indication of adaptive responses to the growth enhancing effect of 4-HBA. Return to the clean standard medium of the exposed cells resulted in the quick recovery from the stimulant effect. Furthermore, 4-HBA (0.3 mmol/L) was found to diminish the toxicity of 2-HBA (growth inhibition test. The effects of 4-HBA on P. subcapitata growth observed in the present study are not expected for planktonic algae in the aquatic environments, because known environmental concentrations are far below the effective concentration range.

  13. A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone

    Directory of Open Access Journals (Sweden)

    Jo Davisson V

    2011-04-01

    Full Text Available Abstract Background Breast cancer is a collection of diseases in which molecular phenotypes can act as both indicators and mediators of therapeutic strategy. Therefore, candidate therapeutics must be assessed in the context of multiple cell lines with known molecular phenotypes. Docosahexaenoic acid (DHA and curcumin (CCM are dietary compounds known to antagonize breast cancer cell proliferation. We report that these compounds in combination exert a variable antiproliferative effect across multiple breast cell lines, which is synergistic in SK-BR-3 cells and triggers cell signaling events not predicted by the activity of either compound alone. Methods Dose response curves for CCM and DHA were generated for five breast cell lines. Effects of the DHA+ CCM combination on cell proliferation were evaluated using varying concentrations, at a fixed ratio, of CCM and DHA based on their individual ED50. Detection of synergy was performed using nonlinear regression of a sigmoid dose response model and Combination Index approaches. Cell molecular network responses were investigated through whole genome microarray analysis of transcript level changes. Gene expression results were validated by RT-PCR, and western blot analysis was performed for potential signaling mediators. Cellular curcumin uptake, with and without DHA, was analyzed via flow cytometry and HPLC. Results CCM+DHA had an antiproliferative effect in SK-BR-3, MDA-MB-231, MDA-MB-361, MCF7 and MCF10AT cells. The effect was synergistic for SK-BR-3 (ER- PR- Her2+ relative to the two compounds individually. A whole genome microarray approach was used to investigate changes in gene expression for the synergistic effects of CCM+DHA in SK-BR-3 cells lines. CCM+DHA triggered transcript-level responses, in disease-relevant functional categories, that were largely non-overlapping with changes caused by CCM or DHA individually. Genes involved in cell cycle arrest, apoptosis, inhibition of metastasis, and

  14. Cobinding of Pharmaceutical Compounds at Mineral Surfaces: Mechanistic Modeling of Binding and Cobinding of Nalidixic Acid and Niflumic Acid at Goethite Surfaces.

    Science.gov (United States)

    Xu, Jing; Marsac, Rémi; Wei, Cheng; Wu, Feng; Boily, Jean-François; Hanna, Khalil

    2017-10-17

    Although emerging contaminants rarely exist individually in environmental contaminated systems, only limited information on their adsorption mechanisms in multicomponent solutions is currently available. To address this shortcoming, this work examines for the first time the accuracy of a surface complexation model in predicting the cooperative adsorption of nalidixic acid (NA) and niflumic acid (NFA) at goethite (α-FeOOH) surfaces. Our model adequately predicts cobinding of an outer-sphere (OS) complex of NFA onto NA bound to goethite through metal-bonded (MB), hydrogen-bonded (HB), or OS complexes. More positive charge is introduced in the system via sodium interactions in order to describe the NFA adsorption at high NaCl concentrations in both single and binary systems. Our model confidently predicts multilayers of NA on goethite as well as NFA binding on goethite-bound NA over a large range of pH and salinity values as well as NA and NFA loadings. These findings have strong implications in the assessment and prediction of contaminant fate in multicomponent contaminated systems by invoking a nontraditional form of ligand-ligand interaction in this field of study.

  15. Glycyrrhetinic acid and E.resveratroloside act as potential plant derived compounds against dopamine receptor D3 for Parkinson’s disease: a pharmacoinformatics study

    Directory of Open Access Journals (Sweden)

    Mirza MU

    2014-12-01

    , metabolism, and excretion-toxicity profile. From the study it is concluded that glycyrrhetinic acid and E.resveratroloside are potent compounds having high binding energies which should be considered as potential lead compounds for drug development against PD. Keywords: AutoDock, AutoDockVina, molecular docking, parkinson’s disease, glycyrrhetinic acid, E.resveratroloside

  16. The individual contribution of starter and non-starter lactic acid bacteria to the volatile organic compound composition of Caciocavallo Palermitano cheese.

    Science.gov (United States)

    Guarrasi, Valeria; Sannino, Ciro; Moschetti, Marta; Bonanno, Adriana; Di Grigoli, Antonino; Settanni, Luca

    2017-10-16

    The contribution of two starter (Lactobacillus delbrueckii and Streptococcus thermophilus) and nine non-starter (Enterococcus casselliflavus, Enterococcus faecalis, Enterococcus durans, Enterococcus gallinarum, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, Pediococcus acidilactici and Pediococcus pentosaceus) species of lactic acid bacteria (LAB) to the volatile organic compounds (VOCs) of Caciocavallo Palermitano cheese was investigated. The strains used in this study were isolated during the production/ripening of the stretched cheese and tested in a cheese-based medium (CBM). The fermented substrates were analyzed for the growth of the single strains and subjected to the head space solid phase micro-extraction (HS-SPME) and gas chromatography - mass spectrometry (GC-MS). The 11 strains tested were all able to increase their numbers in CBM, even though the development of the starter LAB was quite limited. GC-MS analysis registered 43 compounds including seven chemical classes. A lower diversity of VOCs was registered for the unfermented curd based medium (CuBM) analyzed for comparison. The class of ketones represented a consistent percentage of the VOCs for almost all LAB, followed by alcohols and esters. The volatile profile of Pediococcus acidilactici and Lactobacillus delbrueckii was mainly characterized by 2-butanol, butanoic acid and hexanoic acid and their esters, while that of Lactobacillus casei and Lactobacillus rhamnosus was characterized by 2,3-butanedione and 2-butanone, 3-hydroxy. In order to correlate the VOCs produced by Caciocavallo Palermitano cheeses with those generated by individual LAB, the 4-month ripened cheeses resulting from the dairy process monitored during the isolation of LAB were also analyzed for the volatile chemical fraction and the compounds in common were subjected to a multivariate statistical analysis. The canonical analysis indicated that the VOCs of the ripened cheeses were mainly influenced by E

  17. Removal of the hazardous, volatile, and organic compound benzene from aqueous solution using phosphoric acid activated carbon from rice husk.

    Science.gov (United States)

    Yakout, Sobhy M

    2014-01-01

    Benzene is one of the most hazardous organic pollutants in groundwater. The removal of benzene from water is very important from a health point of view and for environmental protection. In this study, benzene adsorption kinetics was investigated using phosphoric acid activated carbon, prepared from rice husk. An initial rapid uptake of benzene was observed and became almost constant after 40 minutes of contact. Kinetic data was analyzed using pseudo first order, pseudo second order, and Elovich equations. Kinetic data was well fitted to pseudo-second order models (R(2) = 0.98), indicating chemisorption. Results from intraparticle diffusion and Boyed models indicate that particle diffusion is the most probable operating mechanism and does not control the kinetics of benzene sorption. A comparative study on the benzene adsorption revealed that the rice husk carbon (RHC) had better benzene adsorption capacity (365 mg/g) as compared to other adsorbents. In conclusion, we have demonstrated that rice husk carbons are efficient benzene adsorbents and that they possess a good potential for benzene removal in wastewater treatment. Graphical AbstractPhosphoric acid activated carbon from rice husk and benzene adsorption mechanism.

  18. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology

    Directory of Open Access Journals (Sweden)

    Hui-Zhen LI

    Full Text Available Abstract Response surface methodology (RSM was used to optimize ultrasound-assisted extraction (UAE of functional components from perilla leaves. The factors investigated were ethanol concentration, extraction temperature, and extraction time. The results revealed that ethanol concentration had significant effects on all extraction parameters. Based on the RSM results, the optimal conditions were an ethanol concentration of 56%, a UAE temperature of 54 °C, and a UAE time of 55 min. Under these conditions, the experimental TPC (total phenolic content, RA (rosmarinic acid, FRAP (ferric reducing antioxidant power and DPPH (1,1-diphenyl-2-picrylhydrazyl values were 48.85 mg GAE/g DW (mg gallic acid equivalent /g of dry weight, 31.02 mg/g DW, 85.55 μmol Fe2+/g DW and 73.35%, respectively. The experimental values were in agreement with those predicted by RSM models, confirming suitability of the model employed and the success of RSM for optimization of the extraction conditions.

  19. Content of Minerals and Fatty Acids and Their Correlation with Phytochemical Compounds and Antioxidant Activity of Leguminous Seeds.

    Science.gov (United States)

    Grela, Eugeniusz R; Samolińska, Wioletta; Kiczorowska, Bożena; Klebaniuk, Renata; Kiczorowski, Piotr

    2017-12-01

    The aim of the study was to determine the mineral composition and fatty acid profile in the seeds of selected Fabaceae species and cultivars and to assess their correlations with phytochemicals and antioxidant activity. The Andean lupine was characterised by a particularly high level of Mg and K as well as Cu, Zn, and Fe (P bean (11.9 in 100 g-1 fat), and pea seeds (10.4 in 100 g-1 fat) (P = 0.028). In turn, the white lupine contained the highest content of ALA-0.67 g 100 g-1 seeds; its lowest level was determined in the broad bean-0.03 g 100 g-1 seeds. The seeds exhibited a high proportion of hypocholesterolemic fatty acids (on average 86%). The 2,2-diphenyl-1-picrylhydrazyl antiradical activity was positively correlated with UFA and PUFA (P < 0.05). This indicates great protective potential of legume seeds for prevention and treatment of diet-dependent diseases.

  20. Lactic acid bacteria isolated from artisanal dry sausages: characterization of antibacterial compounds and study of the factors affecting bacteriocin production.

    Science.gov (United States)

    Castro, M P; Palavecino, N Z; Herman, C; Garro, O A; Campos, C A

    2011-04-01

    Lactic acid bacteria (LAB) were isolated from artisanal dry sausages sampled from north-eastern region of Chaco, Argentina. Among 141 isolates, 27 showed antimicrobial activity against Listeria innocua, Staphyloccus aureus or Brochothrix spp. One isolate, identified as Lb. curvatus/sakei, produced bacteriocin like substances (BLIS). These BLIS were heat stable, effective after refrigerated storage and freeze/thaw cycles and even active against pathogens when produced under refrigeration at 3% NaCl concentration. The influence of several factors on production of BLIS was assessed in MRS broth added with: EDTA, ascorbic acid, KCl, potassium sorbate, sodium citrate, 3 and 6% NaCl, Tween 20 or Brij 35. These additives showed different effects towards the effectiveness of the bacteriocin produced by Lb. sakei/curvatus against L. innocua and S. aureus. Conditions that provided high cell density favored high bacteriocin production. BLIS production by this LAB strain was greatly influenced by NaCl concentration and the presence of surfactants. © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  1. Increase in the penetration of tracer compounds into the rat brain during 2-methyl-4-chlorophenoxyacetic acid (MCPA) intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Elo, H.A.; Ylitalo, P.; Kyoettilae, J.; Hervonen, H. (Department of Biomedical Sciences, University of Tampere, Tampere, Finland)

    1982-01-01

    The penetration of different intravenous tracer molecules such as /sup 14/C-labelled 2-methyl-4-chlorophenoxyacetic acid (/sup 14/C-MCPA), /sup 14/C-p-aminobenzoic acid (/sup 14/C-PABA), /sup 14/C-sucrose, /sup 14/C-antipyrine and iodinated (/sup 125/I) human albumin (/sup 125/I-HA) into the brain and cerebrospinal fluid (CSF) was studied in MCPA-intoxicated and control rats. Toxic subcutaneous doses of sodium salt of MCPA (200-500 mg/kg) increased highly the brain/plasma and CSF/plasma ratios of /sup 14/C-MCPA and /sup 14/C-PABA, as compared to the muscle/plasma ratio. Probenecid (200 mg/kg) did not affect the cerebral MCPA concentration in the intoxicated animals. The tissue/plasma ratios of /sup 14/C-sucrose, /sup 14/C-antipyrine and /sup 125/I-HA were also increased in the brain and CSF of intoxicated animals, but the increases were less pronounced than those of /sup 14/C-MCPA or /sup 14/C-PABA. The results indicate that MCPA intoxication caused a selective damage of the blood-brain barrier in the brain areas studied.

  2. How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family.

    Science.gov (United States)

    Magalhaes, Jurandir V

    2010-07-01

    Aluminium (Al) toxicity is a major agricultural constraint for crop cultivation on acid soils, which comprise a large portion of the world's arable land. One of the most widely accepted mechanisms of Al tolerance in plants is based on Al-activated organic acid release into the rhizosphere, with organic acids forming stable, non-toxic complexes with Al. This mechanism has recently been validated by the isolation of bona-fide Al-tolerance genes in crop species, which encode membrane transporters that mediate Al-activated organic acid release leading to Al exclusion from root apices. In crop species such as sorghum and barley, members in the multidrug and toxic compound extrusion (MATE) family underlie Al tolerance by a mechanism based on Al-activated citrate release. The study of Al tolerance in plants as conferred by MATE family members is in its infancy. Therefore, much is yet to be discovered about the functional diversity and evolutionary dynamics that led MATE proteins to acquire transport properties conducive to Al tolerance in plants. In this paper we review the major characteristics of transporters in the MATE family and will relate this knowledge to Al tolerance in plants. The MATE family is clearly extremely flexible with respect to substrate specificity, which raises the possibility that Al tolerance as encoded by MATE proteins may not be restricted to Al-activated citrate release in plant species. There are also indications that regulatory loci may be of pivotal importance to fully explore the potential for Al-tolerance improvement based on MATE genes.

  3. In silico modification of Zn2+ binding group of suberoylanilide hydroxamic acid (SAHA) by organoselenium compounds as Homo sapiens class II HDAC inhibitor of cervical cancer

    Science.gov (United States)

    Sumo Friend Tambunan, Usman; Bakri, Ridla; Aditya Parikesit, Arli; Ariyani, Titin; Dyah Puspitasari, Ratih; Kerami, Djati

    2016-02-01

    Cervical cancer is the most common cancer in women, and ranks seventh of all cancers worldwide, with 529000 cases in 2008 and more than 85% cases occur in developing countries. One way to treat this cancer is through the inhibition of HDAC enzymes which play a strategic role in the regulation of gene expression. Suberoyl Anilide Hydroxamic Acid (SAHA) or Vorinostat is a drug which commercially available to treat the cancer, but still has some side effects. This research present in silico SAHA modification in Zinc Binding Group (ZBG) by organoselenium compound to get ligands which less side effect. From molecular docking simulation, and interaction analysis, there are five best ligands, namely CC27, HA27, HB28, IB25, and KA7. These five ligands have better binding affinity than the standards, and also have interaction with Zn2+ cofactor of inhibited HDAC enzymes. This research is expected to produce more potent HDAC inhibitor as novel drug for cervical cancer treatment.

  4. Antimicrobial Activity of Chlorhexidine, Peracetic acid/ Peroxide hydrogen and Alcohol based compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran

    Directory of Open Access Journals (Sweden)

    Reza Ghotaslou

    2012-06-01

    Full Text Available Purpose: The aim of present study was to investigate the effect of chemical agents on the clinical isolates in Madani Heart Hospital, Tabriz, Iran. Methods: The minimum bactericide concentration (MBC of disinfectants including chlorhexidine (Fort, peracetic acid (Micro and an alcohol based compound (Deconex on selected bacteria at various dilutions were determined by the standard suspension technique. Results: MBC of Micro, Fort and Deconex were 2-128 mg/L, 2-64 mg/L and 4 - 32 mg/L, respectively. The Gram negative bacteria were more resistance to disinfectant relation to Gram positive bacteria. Conclusion: The results showed that these agents are able to eradicate the bacteria and they can be used lonely.

  5. Identification of animal fats via compound specific δ13C values of individual fatty acids: assessments of results for reference fats and lipid extracts of archaeological pottery vessels

    Directory of Open Access Journals (Sweden)

    Richard P. Evershed

    2002-12-01

    Full Text Available The possibility of obtaining molecular information from lipid residues associated with archaeological pottery has dramatically increased the potential for deriving new information on the use of ancient vessels and the commodities processed therein. Motivated by the high proportion of the archaeological potsherds that have been shown to contain animal fats, a new approach invol- ving compound specific stable isotope analysis of remnant fats has been developed to retrieve infor- mation which will allow new insights into animal exploitation, dietary preferences and vessel use amongst prehistoric peoples. The new approach uses the δ13C values of the major saturated fatty acid (C16:0 and C18:0 determined by gas chromatography-combustion-isotope ratio mass spectrometry (GC–C–IRMS to characterise the origins of animal fat recovered from archaeological pottery.

  6. The ability of a novel sorptive polymer to determine the freely dissolved fraction of polar organic compounds in the presence of fulvic acid or sediment.

    Science.gov (United States)

    Magnér, Jörgen A; Alsberg, Tomas E; Broman, Dag

    2009-11-01

    A novel plastic material, poly(ethylene-co-vinyl acetate-co-carbon monoxide) (PEVAC), was evaluated as an absorptive passive equilibrium sampler for determination of the freely dissolved fraction of seven polar organic contaminants (POCs) in the presence of fulvic acid and sediment. The seven compounds selected were imidacloprid, carbendazim, metoprolol, atrazin, carbamazepine, diazinon and chlorpyrifos, i.e. a mixture of pharmaceuticals and pesticides having logarithmic octanol/water partition coefficients (log K(OW)) ranging from 0.2 to 4.77. The experiments demonstrated that the PEVAC sampler is well suited for determination of the freely dissolved fraction of chemicals in aquatic environments. Generally, the freely dissolved fraction of the POCs decreased with increasing hydrophobicity. However, strong interactions with functional groups of the organic matter seemed to dominate the partitioning for imidacloprid and carbendazim, having logarithmic dissociation partition coefficient log D < 1.47, and for metoprolol, which is positively charged at neutral pH.

  7. Influence of Iron on Production of the Antibacterial Compound Tropodithietic Acid and Its Noninhibitory Analog in Phaeobacter inhibens

    DEFF Research Database (Denmark)

    D'Alvise, Paul W; Phippen, Christopher B W; Nielsen, Kristian Fog

    2016-01-01

    Tropodithietic acid (TDA) is an antibacterial compound produced by some Phaeobacter and Ruegeria spp. of the Roseobacter clade. TDA production is studied in marine broth or agar since antibacterial activity in other media is not observed. The purpose of this study was to determine how TDA...... production is influenced by substrate components. High concentrations of ferric citrate, as present in marine broth, or other iron sources were required for production of antibacterially active TDA. However, when supernatants of noninhibitory, low-iron cultures of Phaeobacter inhibens were acidified......, antibacterial activity was detected in a bioassay. The absence of TDA in nonacidified cultures and the presence of TDA in acidified cultures were verified by liquid chromatography-high-resolution mass spectrometry. A noninhibitory TDA analog (pre-TDA) was produced by P. inhibens, Ruegeria mobilis F1926...

  8. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry.

    Science.gov (United States)

    Gündüz, Kazim; Ozdemir, Emine

    2014-07-15

    In this study, the genotypic and environmental effects for bioactive compounds in strawberries were partitioned. 13 strawberry genotypes from diverse breeding programs were selected. The genotypes were grown in three growing conditions: greenhouse (GH), plastic tunnel (PT) and open-field (OF) for two growing seasons. The results indicated that the genotypes were significantly different for most of the characteristics tested except the ferric reducing ability assay (FRAP) and Trolox-equivalent antioxidant capacity assay (TEAC) in the second growing season, while the growing conditions were only significant for total phenolic content (TPC) and fructose and total sugar content in the first growing season. Genotype had 71% and 72% of the total variance for total monomeric anthocyanin contents (TMA), while it had only 12% and 13% of the variance for TPC in the first and second year of the experiment. Genotype effect was larger than that from the growing conditions for most of the bioactive component variables in the experiment indicated that breeding for bioactive components may be successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Volatile constituents of selected Parmeliaceae lichens

    Directory of Open Access Journals (Sweden)

    GORDANA S. STOJANOVIĆ

    2011-07-01

    Full Text Available The acetone soluble fraction of the methanol extracts of Parmeliaceae lichens: Hypogymnia physodes, Evernia prunastri and Parmelia sulcata, growing on the same host tree (Prunus domestica and at the same locality was analyzed for the first time by GC and GC–MS. The major identified components were olivetol (33.5 % of the H. physodes extract, atraric acid (30.1 and 30.3 % of the E. prunastri and P. sulcata extracts, respectively, orcinol (25.0 % of the E. prunastri extract, vitamin E (24.7 % of the P. sulcata extract and olivetonide (15.7 % of the H. physodes extract. Even though all the identified compounds are known, a number of them were found for the first time in the examined lichens, i.e., orcinol monomethyl ether (H. physodes, orcinol, atranol, lichesterol, ergosterol (H. physodes and P. sulcata, methyl haematommate, atraric acid, olivetol, vitamin E (H. physodes and P. sulcata and b-sitosterol (P. sulcata.

  10. Application of compound mixture of caprylic acid, iron and mannan oligosaccharide against Sparicotyle chrysophrii (Monogenea: Polyopisthocotylea) in gilthead sea bream, Sparus aurata.

    Science.gov (United States)

    Rigos, George; Mladineo, Ivona; Nikoloudaki, Chrysa; Vrbatovic, Anamarija; Kogiannou, Dimitra

    2016-08-05

    We have evaluated the therapeutic effect of a compound mixture of caprylic acid (200 mg/kg fish), organic iron (0.2% of diet) and mannan oligosaccharide (0.4% of diet) in gilthead sea bream, Sparus aurata Linnaeus, infected with Sparicotyle chrysophrii Beneden et Hesse, 1863 in controlled conditions. One hundred and ten reared and S. chrysophrii-free fish (197 g) located in a cement tank were infected by the parasite two weeks following the addition of 150 S. chrysophrii-infected fish (70 g). Growth parameters and gill parasitic load were measured in treated against control fish after a ten-week-period. Differences in final weight, feed conversion ratio, specific growth rate and feed efficiency were not statistically significant between the experimental groups, suggesting no evident effect with respect to fish growth during the study period. Although the prevalence of S. chrysophrii was not affected by the mixture at the end of the experiment, the number of adults and larvae was significantly lower. The mean intensity encompassing the number of adults and larvae was 8.1 in treated vs 17.7 in control fish. Individual comparisons of gill arches showed that the preferred parasitism site for S. chrysophrii it the outermost or fourth gill arch, consistently apparent in fish fed the modified diet and in control fish. In conclusion, the combined application of caprylic acid, organic iron and mannan oligosaccharide can significantly affect the evolution of infection with S. chrysophrii in gilthead sea bream, being capable of reducing adult and larval stages of the monogenean. However, no difference in growth improvement was observed after the trial period, potentially leaving space for further optimisation of the added dietary compounds.

  11. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    Science.gov (United States)

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids

    Science.gov (United States)

    Taipale, Sami J.; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I.; Hahn, Martin W.; Biasi, Christina; Brett, Michael T.

    2015-01-01

    Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of

  13. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds.

    Science.gov (United States)

    Qadri, Masroor; Deshidi, Ramesh; Shah, Bhawal Ali; Bindu, Kushal; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2015-10-01

    An endophytic fungus, PR4 was found in nature associated with the rhizome of Picrorhiza kurroa, a high altitude medicinal plant of Kashmir Himalayas. The fungus was found to inhibit the growth of several phyto-pathogens by virtue of its volatile organic compounds (VOCs). Molecular phylogeny, based on its ITS1-5.8S-ITS2 ribosomal gene sequence, revealed the identity of the fungus as Phomopsis/Diaporthe sp. This endophyte was found to produce a unique array of VOCs, particularly, menthol, phenylethyl alcohol, (+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone and 1-pentanol. The purification of compounds from the culture broth of PR4 led to the isolation of 3-hydroxypropionic acid (3-HPA) as a major metabolite. This is the first report of a fungal culture producing a combination of biologically and industrially important metabolites—menthol, phenylethyl alcohol, and 3-HPA. The investigation into the monoterpene biosynthetic pathway of PR4 led to the partial characterization of isopiperitenone reductase (ipr) gene, which seems to be significantly distinct from the plant homologue. The biosynthesis of plant-like-metabolites, such as menthol, is of significant academic and industrial significance. This study indicates that PR4 is a potential candidate for upscaling of menthol, phenylethyl alcohol, and 3-HPA, as well as for understanding the menthol/monoterpene biosynthetic pathway in fungi.

  14. Resolving the bulk δ 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    Science.gov (United States)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    the biosynthetic pathway of threonine and the other amino acids. The δ 15N value of phenylalanine does not change significantly with trophic level, reflecting its conservative nature as an essential amino acid, and thus represents the isotopic composition of the nitrogen at the base of the food web. Δ 15N Glu-Phe values in particular are shown to reflect trophic level nitrogen sources within a food web. In relation to the reconstruction of ancient human diet the contribution of marine and terrestrial protein are strongly reflected in Δ 15N Glu-Phe values. Differences in nitrogen metabolism are also shown to have an influence upon individual amino acid δ 15N values with Δ 15N Glu-Phe values emphasising differences between the different physiological adaptations. The latter is demonstrated in tortoises, which can excrete nitrogen in the form of uric acid and urea and display negative Δ 15N Glu-Phe values whereas those for marine and terrestrial mammals are positive. The findings amplify the potential advantages of compound-specific nitrogen isotope analysis in the study of nitrogen flow within food webs and in the reconstruction of past human diets.

  15. Assessment of the deoxyribonucleic acid damage caused by occupational exposure to chemical compounds in Isfahan Polyacryl Company.

    Science.gov (United States)

    Etebari, Mahmoud; Jafarian-Dehkordi, Abbas; Kahookar, Ahmad; Moradi, Shahla

    2014-06-01

    Chemical pollutants found in industrial environments can cause chronic genotoxicity in vulnerable individuals during the long-term exposure. The primary purpose of the present study was to assess the deoxyribonucleic acid (DNA) damage caused by occupational exposure to industrial chemicals and secondary purpose is to investigate the effect of possible risk factors of genotoxicity. The blood samples of the workers of Isfahan Polyacryl Company were evaluated in terms of genotoxicity using the comet assay method. The percentage of DNA in the tail and tail moment were measured and DNA damage was evaluated. Furthermore, the effect of age, smoking, duration of working in the company and working in two parts of the company on the degree of vulnerability to genotoxicity was assessed. The amount of DNA damage in the target group (the production line workers) was significantly higher than the control group (the staffs), 3.87 versus 1.52 as tail moment, (P company compared to those work in one part and control group, 4.63 versus 3.74 and 1.52 respectively as tail moment, (P company may have a significant role in DNA damage.

  16. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    Science.gov (United States)

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  17. Probiotic yogurts manufactured with increased glucose oxidase levels: postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds.

    Science.gov (United States)

    Cruz, A G; Castro, W F; Faria, J A F; Lollo, P C B; Amaya-Farfán, J; Freitas, M Q; Rodrigues, D; Oliveira, C A F; Godoy, H T

    2012-05-01

    We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive postacidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: Effects of polyunsaturated fatty acids and their relation with BMI

    KAUST Repository

    Cifre, Margalida

    2016-11-22

    Scope: To analyse the usefulness of isolated human peripheral blood mononuclear cells (PBMC) to rapidly/easily reflect n-3 long-chain polyunsaturated fatty acid (LCPUFA) effects on lipid metabolism/inflammation gene profile, and evaluate if these effects are body mass index (BMI) dependent. Methods and results: PBMC from normoweight (NW) and overweight/obese (OW/OB) subjects were incubated with physiological doses of docosahexaenoic (DHA), eicosapentaenoic acid (EPA), or their combination. PBMC reflected increased beta-oxidation-like capacity (CPT1A expression) in OW/OB but only after DHA treatment. However, insensitivity to n-3 LCPUFA was evident in OW/OB for lipogenic genes: both PUFA diminished FASN and SREBP1C expression in NW, but no effect was observed for DHA in PBMC from high-BMI subjects. This insensitivity was also evident for inflammation gene profile: all treatments inhibited key inflammatory genes in NW; nevertheless, no effect was observed in OW/OB after DHA treatment, and EPA effect was impaired. SLC27A2, IL6 and TNFα PBMC expression analysis resulted especially interesting to determine obesity-related n-3 LCPUFA insensitivity. Conclusion: A PBMC-based human in vitro system reflects n-3 LCPUFA effects on lipid metabolism/inflammation which is impaired in OW/OB. These results confirm the utility of PBMC ex vivo systems for bioactive-compound screening to promote functional food development and to establish appropriate dietary strategies for obese population.

  19. Bioactive compounds during storage of fresh-cut spinach: the role of endogenous ascorbic acid in the improvement of product quality.

    Science.gov (United States)

    Bottino, Antonella; Degl'Innocenti, Elena; Guidi, Lucia; Graziani, Giulia; Fogliano, Vincenzo

    2009-04-08

    Spinach is rich in bioactive constituents such as vitamin C, flavonoids and phenolic acids. In this work, the biochemical modifications occurring during one week of storage at 4 degrees C were evaluated both in intact and in fresh-cut spinach. Results showed that vitamin C concentration is less affected by storage in fresh-cut spinach with respect to intact spinach. MS/MS analysis showed that the main flavonoids are not modified during storage in intact leaves, while some of them increased significantly during storage in the fresh-cut samples. Fresh-cut spinach did not show color alteration even if PPO activity increased significantly during storage. This finding was related to the high ascorbic acid content, which delays the subsequent polymerization events. This finding was confirmed by the unaltered concentration of phenolic compounds in fresh-cut spinach during storage. In conclusion, data about nutritional content and visual performance concurrently suggest that spinach is a suitable species for marketing as a fresh-cut product.

  20. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea.

    Science.gov (United States)

    Deng, Wei-Wei; Wang, Rongxiu; Yang, Tianyuan; Jiang, Li'na; Zhang, Zheng-Zhu

    2017-12-20

    Methyl salicylate (MeSA) is one of the volatile organic compounds (VOCs) that releases floral scent and plays an important role in the sweet flowery aroma of tea. During the withering process for white tea producing, MeSA was generated by salicylic acid carboxyl methyltransferase (SAMT) with salicylic acid (SA), and the specific floral scent was formed. In this study, we first cloned a CsSAMT from tea leaves (GenBank accession no. MG459470) and used Escherichia coli and Saccharomyces cerevisiae to express the recombinant CsSAMT. The enzyme activity in prokaryotic and eukaryotic expression systems was identified, and the protein purification, substrate specificity, pH, and temperature optima were investigated. It was shown that CsSAMT located in the chloroplast, and the gene expression profiles were quite different in tea organs. The obtained results might give a new understanding for tea aroma formation, optimization, and regulation and have great significance for improving the specific quality of white tea.

  1. Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds.

    Science.gov (United States)

    Grebel, Janel E; Pignatello, Joseph J; Mitch, William A

    2011-12-01

    Sorbic acid (trans,trans-hexadienoic acid) was developed as a probe for the quantification of the formation rate, overall solution scavenging rate and steady-state concentrations of triplet-excited states of organic compounds. The method was validated against literature data for the quenching rate constant of triplet benzophenone by tyrosine obtained by laser flash photolysis and by Stern-Volmer plots of phosphorescence quenching. In contrast to these methods, the probe method does not require knowledge of the optical properties of triplets to monitor their quenching. Moreover, the probe method permits simultaneous quantification of triplet formation, quenching and steady-state concentrations during illumination of complex chromophore mixtures, such as natural organic matter (NOM), with polychromatic light >315 nm. Application of the method to de-aerated Suwannee River NOM illuminated with polychromatic light (315-430 nm) resulted in a triplet quantum yield of 0.062. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Cell-free supernatants obtained from fermentation of cheese whey hydrolyzates and phenylpyruvic acid by Lactobacillus plantarum as a source of antimicrobial compounds, bacteriocins, and natural aromas.

    Science.gov (United States)

    Rodríguez-Pazo, Noelia; Vázquez-Araújo, Laura; Pérez-Rodríguez, Noelia; Cortés-Diéguez, Sandra; Domínguez, José Manuel

    2013-10-01

    Cheese whey hydrolyzates supplemented with phenylpyruvic acid (PPA) and commercial nutrients can be efficiently metabolized by Lactobacillus plantarum CECT-221 to biosynthesize some compounds with attractive applications in the food market. The main metabolites of cell-free extracts were antimicrobial compounds such as phenyllactic acid (PLA) and lactic acid (LA). The production of PLA by L. plantarum CECT-221 was evaluated in the Man-Rogosa-Sharpe broth supplemented with two biosynthetic precursors: phenylalanine or PPA. Using 30.5 mM PPA, the microorganism increased sevenfold the concentration of PLA producing 16.4 mM PLA in 46 h. A concentration of 40 mM PPA was a threshold to avoid substrate inhibition. The biosynthesis of whey hydrolyzates as a carbon source was enhanced by fed-batch fermentation of PPA; the average productivity of PLA increased up to 45.4 ± 3.02 mM after 120 h with a product yield of 0.244 mM mM(-1); meanwhile, LA reached 26.1 ± 1.3 g L(-1) with a product yield of 0.72 g g(-1). Cell-free fed-batch extracts charged in wells showed bacteriocin activity with halos of 7.49 ± 1.44 mm in plates inoculated with Carnobacterium piscicola and antimicrobial activity against Staphylococcus aureus (11.54 ± 1.14 mm), Pseudomonas aeruginosa (10.17 ± 2.46 mm), Listeria monocytogenes (7.75 ± 1.31 mm), and Salmonella enterica (3.60 ± 1.52 mm). Additionally, the analysis of the volatile composition of the headspace of this cell-free extract revealed that L. plantarum is a potential producer for natural aromas, such as acetophenone, with high price in the market. This is the first report of PLA production from cheese whey and PPA. The extracts showed bacteriocin activity and potential to be applied as an antimicrobial in the elaboration of safer foods.

  3. Volatile Organic Compounds in Naturally Fermented Milk and Milk Fermented Using Yeasts, Lactic Acid Bacteria and Their Combinations As Starter Cultures

    Directory of Open Access Journals (Sweden)

    Bennie C. Viljoen

    2007-01-01

    Full Text Available The volatile organic compounds present in 18 Zimbabwean naturally fermented milk (amasi samples and those produced by various yeasts, lactic acid bacteria (LAB and yeast/ LAB combinations were determined using headspace gas chromatography. The yeast strains used were: Candida kefyr 23, C. lipolytica 57, Saccharomyces cerevisiae 71, C. lusitaniae 68, C. tropicalis 78, C. lusitaniae 63, C. colliculosa 41, S. dairenensis 32, and Dekkera bruxellensis 43, and were coded Y1 to Y9, respectively. The LAB strains used were Lactococcus lactis subsp. lactis Lc39, L. lactis subsp. lactis Lc261, Lactobacillus paracasei Lb11, and L. lactis subsp. lactis biovar. diacetylactis C1, and were coded B1 to B4, respectively. Some of the volatile organic compounds found in amasi were acetaldehyde, ethanol, acetone, 2-methyl propanal, 2-methyl-1-propanol and 3-methyl-1-butanol. However, the levels of volatile organic compounds in the naturally fermented milk (NFM samples varied from one sample to another, with acetaldehyde ranging from 0.1–18.4 ppm, 3-methyl butanal from <0.1–0.47 ppm and ethanol from 39.3–656 ppm. The LAB/C. kefyr 23 (B/Y1 co-cultures produced significantly (p<0.05 higher levels of acetaldehyde and ethanol than the levels found in the NFM. The acetaldehyde levels in the B/Y1 samples ranged from 26.7–87.7 ppm, with L. lactis subsp. lactis biovar. diacetylactis C1 (B4 producing the highest level of acetaldehyde in combination with C. kefyr 23 (Y1. Using principal component analysis (PCA, most of the NFM samples were grouped together with single and co-cultures of Lc261, Lb11 and the non-lactose fermenting yeasts, mainly because of the low levels of ethanol and similar levels of 3-methyl butanal. Chromatograms of amasi showed prominent peak of methyl aldehydes and their alcohols including 3-methyl-butanal and 3-methyl-butanol, suggesting that these compounds are important attributes of Zimbabwean naturally fermented milk.

  4. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    Science.gov (United States)

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  5. Assessment of the deoxyribonucleic acid damage caused by occupational exposure to chemical compounds in Isfahan Polyacryl Company

    Directory of Open Access Journals (Sweden)

    Mahmoud Etebari

    2014-01-01

    Full Text Available Background: Chemical pollutants found in industrial environments can cause chronic genotoxicity in vulnerable individuals during the long-term exposure. The primary purpose of the present study was to assess the deoxyribonucleic acid (DNA damage caused by occupational exposure to industrial chemicals and secondary purpose is to investigate the effect of possible risk factors of genotoxicity. Materials and Methods: The blood samples of the workers of Isfahan Polyacryl Company were evaluated in terms of genotoxicity using the comet assay method. The percentage of DNA in the tail and tail moment were measured and DNA damage was evaluated. Furthermore, the effect of age, smoking, duration of working in the company and working in two parts of the company on the degree of vulnerability to genotoxicity was assessed. Results: The amount of DNA damage in the target group (the production line workers was significantly higher than the control group (the staffs, 3.87 versus 1.52 as tail moment, (P < 0.0001. DNA damage was significantly higher in smoker groups compared with non-smoker target group and control group, 4.18 versus 3.07 and 1.52 respectively as tail moment, (P < 0.0001. Furthermore, it was higher in person working in two different parts of the company compared to those work in one part and control group, 4.63 versus 3.74 and 1.52 respectively as tail moment, (P < 0.0001. Conclusion: Occupational exposure to Polyacryl caused DNA damage. Smoking and working in two parts of the company may have a significant role in DNA damage.

  6. Assessing the effects of the three herbicides acetochlor, 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4-dichlorophenoxyacetic acid on the compound action potential of the sciatic nerve of the frog (Rana ridibunda).

    Science.gov (United States)

    Zafeiridou, Georgia; Geronikaki, Athina; Papaefthimiou, Chrisovalantis; Tryfonos, Melpomeni; Kosmidis, Efstratios K; Theophilidis, George

    2006-11-01

    To assess the relative toxicity of the herbicides acetochlor and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) on the nervous system, the sciatic nerve of the frog (Rana ridibunda) nerve was incubated in saline inside a specially designed recording chamber. This chamber permits monitoring of the evoked compound action potential (CAP) of the nerve, a parameter that could be used to quantify the vitality of the nerve in normal conditions as well as when the nerve was exposed to the compounds under investigation. Thus, when the nerve was exposed to acetochlor, the EC(50) was estimated to be 0.22mM, while for 2,4,5-T the EC(50) was 0.90mM. Using the identical nerve preparation, the EC(50) of 2,4-D was estimated to be 3.80mM [Kouri, G., Theophilidis, G., 2002. The action of the herbicide 2,4-dichlorophenoxyacetic acid on the isolated sciatic nerve of the frog (Rana ridibunda). Neurotoxicol. Res. 4, 25-32]. The ratio of the relative toxicity for acetochlor, 2,4,5-T and 2,4-D was found to be 1:4:17.2. However, because it is well-known that the action of 2,4-D is dependent on the pH, the relative toxicity of the three compounds was tested at pH 3.3, since it has been found that the sciatic nerve of the frog is tolerant of such a low pH. Under these conditions, the EC(50) was 0.77mM (from 0.22mM at pH 7.2) for acetochlor, 0.20mM (from 0.90mM) for 2,4,5-T and 0.24mM (from 3.80mM at pH 7.2) for 2,4-D. Thus, the relative toxicity of the three compounds changed drastically to 1:0.25:0.31. This change in the relative toxicity is due not only to the increase in the toxicity of 2,4,5-T and 2,4-D at low pH levels, but also to the decrease in the toxicity of acetochlor at pH 3.3.

  7. Pretreatment of MQA, a caffeoylquinic acid derivative compound, protects against H2O2-induced oxidative stress in SH-SY5Y cells.

    Science.gov (United States)

    Tian, Xing; Gao, Lingyue; An, Li; Jiang, Xiaowen; Bai, Junpeng; Huang, Jian; Meng, Weihong; Zhao, Qingchun

    2016-12-01

    Compound MQA (1,5-O-dicaffeoyl-3-O-[4-malic acid methyl ester]-quinic acid) is a natural caffeoylquinic acid derivative isolated from Arctium lappa L. roots. This study aims to explore the neuroprotective effects of MQA against hydrogen peroxide (H 2 O 2 )-induced oxidative stress in SH-SY5Y neuroblastoma cells. The SH-SY5Y cells were divided into four groups, including control, 20 μM MQA, 200 μM H2O2, 200 μM H2O2 + 20 μM MQA groups. The effects of MQA on H 2 O 2 -induced cell death were measured by MTT and LDH assays. Hoechst 33342 and Annexin V-PI double staining were used to observed H2O2-induced apoptosis. Also, the effects of MQA on antioxidant system and mitochondrial pathway were explored. Further, steady-state phosphorylation levels of ERK1/2, Akt and GSK-3β were examined by Western blot analysis. Pretreatment with MQA prevented cell death in SH-SY5Y cells exposed to 200 μM H2O2 for 3 h. Meanwhile, Hoechst 33342 and Annexin V-PI double staining showed that MQA attenuated H 2 O 2 -induced apoptosis. These changes are related to elevation in SOD activity, reduction in MDA production and ROS formation, and increases in mitochondrial membrane potential (MMP). In addition, the potential mechanisms of MQA against H 2 O 2 -induced apoptosis are associated with increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, caspase-3 and caspase-9 expressions, phosphorylation of ERK1/2, and dephosphorylation of AKT and GSK-3β. These findings suggest that protective effects of MQA against H 2 O 2 -induced apoptosis might be associated with mitochondrial apoptosis, ERK1/2 and AKT/GSK-3β pathway.

  8. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  9. New bioactive fatty acids

    Science.gov (United States)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  10. Gold Electrodes Modified with Self-Assembled Layers Made of Sulphur Compounds and Gold Nanoparticles Used for Selective Electrocatalytic Oxidation of Catecholamine in the Presence of Interfering Ascorbic and Uric Acids

    OpenAIRE

    Teresa Łuczak

    2011-01-01

    Gold electrodes modified with S-containing compounds and gold nanoparticles were used for determination of epinephrine (EP) in aqueous solution. The modified electrodes exhibited a good sensitivity, reproducibility, and stability. The results have shown that modified electrodes could clearly resolve the oxidation peaks of epinephrine, ascorbic acid (AA), and uric acid (UA) with peak-to-peak separation enabling determination of EP, AA, and UA in their simultaneous presence. A linear relationsh...

  11. Crystal structures of three hydrogen-bonded 1:2 compounds of chloranilic acid with 2-pyridone, 3-hydroxypyridine and 4-hyroxypyridine

    Directory of Open Access Journals (Sweden)

    Kazuma Gotoh

    2017-10-01

    Full Text Available The crystal structures of the 1:2 compounds of chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone with 2-pyridone, 3-hydroxypyridine and 4-hyroxypyridine, namely, bis(2-pyridone chloranilic acid, 2C5H5NO·C6H2Cl2O4, (I, bis(3-hydroxypyridinium chloranilate, 2C5H6NO+·C6Cl2O42−, (II, and bis(4-hydroxypyridinium chloranilate, 2C5H6NO+·C6Cl2O42−, (III, have been determined at 120 K. In the crystal of (I, the base molecule is in the lactam form and no acid–base interaction involving H-atom transfer is observed. The acid molecule lies on an inversion centre and the asymmetric unit consists of one half-molecule of chloranilic acid and one 2-pyridone molecule, which are linked via a short O—H...O hydrogen bond. 2-Pyridone molecules form a head-to-head dimer via a pair of N—H...O hydrogen bonds, resulting in a tape structure along [201]. In the crystals of (II and (III, acid–base interactions involving H-atom transfer are observed and the divalent cations lie on an inversion centre. The asymmetric unit of (II consists of one half of a chloranilate anion and one 3-hydroxypyridinium cation, while that of (III comprises two independent halves of anions and two 4-hydroxypyridinium cations. The primary intermolecular interaction in (II is a bifurcated O—H...(O,O hydrogen bond between the cation and the anion. The hydrogen-bonded units are further linked via N—H...O hydrogen bonds, forming a layer parallel to the bc plane. In (III, one anion is surrounded by four cations via O—H...O and C—H...O hydrogen bonds, while the other is surrounded by four cations via N—H...O and C—H...Cl hydrogen bonds. These interactions link the cations and the anions into a layer parallel to (301.

  12. Different responses of vanillic acid, a phenolic compound, in HTC cells: cytotoxicity, antiproliferative activity, and protection from DNA-induced damage.

    Science.gov (United States)

    Almeida, I V; Cavalcante, F M L; Vicentini, V E P

    2016-12-19

    The consumption of healthy and natural foods has increased over the last few years, primarily because these foods are rich in substances with biological properties of interest, such as exerting anticancer effects and decreasing oxidative stress in living tissues. These foods support adequate nutrition, maintain health, and improve quality of life. Vanillic acid (VA) is a phenolic compound used widely in the food industry as a flavoring, preservative, and food additive. VA can be found in various cereals, whole grains, fruits, herbs, green tea, juices, beers, and wines and possesses antioxidant, hepatoprotective, cardioprotective, and antiapoptotic activities. Studying the cytotoxicity as well as the mutagenic and antimutagenic effects of different concentrations of VA in Rattus norvegicus hepatoma cells (HTC) can identify new cellular activities of this substance. Concentrations up to 100 µM VA are not cytotoxic to HTC cells in a MTT [3-(4,5-dimethilthiazol-2-yl)-2,5-diphenil tetrazolium bromide] assay after 96-h exposure; therefore, VA does not compromise mitochondrial activity. Similarly, concentrations up to 500 µM do not compromise plasma membrane integrity. VA at 10 and 50 µM showed no mutagenic/clastogenic effects, as no significant micronuclei induction was observed. VA 10 µM presented no antiproliferative activity and reduced the cytotoxicity induced by benzo[a]pyrene. The antimutagenic activity of 10 µM VA was observed by the simultaneous, pre-, and post-treatments, as the phenolic compound significantly reduced the frequency of micronuclei induced by the mutagen. These results indicate that VA exerts different responses in HTC cells. Low concentrations present no cytotoxic, mutagenic, or antiproliferative effects and protect cells from DNA damage.

  13. Characterization of the Phenolic Compound, Gallic Acid from Sansevieria roxburghiana Schult and Schult. f. Rhizomes and Antioxidant and Cytotoxic Activities Evaluation

    Science.gov (United States)

    Maheshwari, Rajalekshmi; Shreedhara, Chandrashekara Shastry; Polu, Picheswara Rao; Managuli, Renuka Suresh; Xavier, Seena Kanniparambil; Lobo, Richard; Setty, Manjunath; Mutalik, Srinivas

    2017-01-01

    Background: Sansevieria roxburghiana Schult. and Schult. f. (Asparagaceae) grows in India, Indonesia, Sri Lanka, and tropical Africa. Even though the plant has been traditionally used for the treatment of many ailments, the antioxidant and antiproliferative activities of S. roxburghiana methanol extract and its fractions have not yet been explored. Materials and Methods: Quantitative estimation of phenols and different antioxidant assays were performed using standard methods. Anti-proliferative effect of the extract and fractions were evaluated in HCT-116, HeLa, MCF-7, HepG2, and A-549 cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and sulforhodamine B (SRB) assay methods. High-performance liquid chromatography (HPLC) and high-performance thin layer chromatography (HPTLC) fingerprint profiling were carried out for extract and different fractions. Results: Significant antioxidant and anti-proliferate activity were detected in ethyl acetate fraction. Ethyl acetate fraction showed prominent scavenging activity in 1,1-diphenyl-2-picrylhydrazyl, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and nitric oxide antioxidant assays with an concentration yielding 50% inhibition (IC50) 15.33 ± 1.45, 45.3 ± 1.93 and 48.43 ± 0.46 mg/ml, respectively. Cytotoxicity of ethyl acetate fraction was the highest among other fractions against HCT-116, HeLa, and MCF-7cancer cell lines with IC50 values 16.55 ± 1.28, 12.38 ± 1.36, and 8.03 ± 1.9 μg/ml, respectively, by MTT assay and 15.57 ± 0.70, 13.19 ± 0.49, and 10.34 ± 0.9 μg/ml, respectively, by SRB assay. The presence of gallic acid in the ethyl acetate fraction of S. roxburghiana rhizomes was confirmed by HPLC and HPTLC analysis. Conclusion: Results suggested that ethyl acetate fraction exhibited effective antioxidant and antiproliferative activities. The phenolic compounds identified in ethyl acetate fraction could be responsible for the activities

  14. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: Effects of polyunsaturated fatty acids and their relation with BMI.

    Science.gov (United States)

    Cifre, Margalida; Díaz-Rúa, Rubén; Varela-Calviño, Rubén; Reynés, Bàrbara; Pericás-Beltrán, Jordi; Palou, Andreu; Oliver, Paula

    2017-04-01

    To analyse the usefulness of isolated human peripheral blood mononuclear cells (PBMC) to rapidly/easily reflect n-3 long-chain polyunsaturated fatty acid (LCPUFA) effects on lipid metabolism/inflammation gene profile, and evaluate if these effects are body mass index (BMI) dependent. PBMC from normoweight (NW) and overweight/obese (OW/OB) subjects were incubated with physiological doses of docosahexaenoic (DHA), eicosapentaenoic acid (EPA), or their combination. PBMC reflected increased beta-oxidation-like capacity (CPT1A expression) in OW/OB but only after DHA treatment. However, insensitivity to n-3 LCPUFA was evident in OW/OB for lipogenic genes: both PUFA diminished FASN and SREBP1C expression in NW, but no effect was observed for DHA in PBMC from high-BMI subjects. This insensitivity was also evident for inflammation gene profile: all treatments inhibited key inflammatory genes in NW; nevertheless, no effect was observed in OW/OB after DHA treatment, and EPA effect was impaired. SLC27A2, IL6 and TNFα PBMC expression analysis resulted especially interesting to determine obesity-related n-3 LCPUFA insensitivity. A PBMC-based human in vitro system reflects n-3 LCPUFA effects on lipid metabolism/inflammation which is impaired in OW/OB. These results confirm the utility of PBMC ex vivo systems for bioactive-compound screening to promote functional food development and to establish appropriate dietary strategies for obese population. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    Science.gov (United States)

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (Pcoating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.

  16. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  17. Elevated O3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants.

    Science.gov (United States)

    Cui, Hongying; Wei, Jianing; Su, Jianwei; Li, Chuanyou; Ge, Feng

    2016-12-01

    The elevated atmospheric O3 level may change the interactions of plants and insects, which potentially affects direct and indirect plant defences. However, the underlying mechanism of the impact of elevated O3 on indirect plant defence, namely the efficacy of natural enemies, is unclear. Here we tested a hypothesis that linked the effects of elevated O3 and whitefly herbivory on tomato volatile releases mediated by the jasmonic acid (JA) pathway with the preferences of parasitoid Encarsia formosa for two different tomato genotypes (wild-type (Wt) and JA-deficient genotype (spr2)). The O3 and whitefly herbivory significantly increased the production of volatile organic compounds (VOCs), including monoterpenes and green leaf volatiles (GLVs). The Wt plants released higher volatile levels, particularly monoterpenes, than did the spr2 plants. In Y-tube tests, limonene and Z-3-hexanol played key roles in the attraction of E. formosa. Moreover, regardless of plant genotype, the two plant genotypes were preferred by adult E. formosa under the O3 and O3+ herbivory treatments. Our results suggest that under elevated O3, the activation of the JA pathway significantly up-regulates the emission rates of volatiles, through which the efficacy of natural enemy might be promoted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants

    Science.gov (United States)

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs’ mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (Pimplant contact rate and ultimate interfacial strength were significantly lower than those of the other two groups (Pantibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage. PMID:27099494

  19. Radiolysis of linear model compounds of polyamide. 1. Formation of stable products of radiolysis of the oligomers of epsilon-aminocaproic acid

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, W.; Truszkowski, S. (Uniwersytet Mikolaja Kopernika, Torun (Poland). Inst. Chemii)

    1985-07-01

    Polyamide oligomers of epsilon-aminocaproic acid (ACA) were used as model compounds. Six oligomers with the number of mers, 2-7, designated as K/sub 2/-K/sub 7/ were synthesized. The ACA oligomers were irradiated with /sup 60/Co gamma rays in an atmosphere of nitrogen and in air in a dose range from 0 to 1300 kGy. The concentration of the CHO, NH/sub 2/ and COOH groups formed and the yields of gaseous products, hydrogen and carbon monoxide, as well as the absorption of oxygen, were determined. The polycaprolactam PA6 in the form of unstabilized fibres was investigated for comparison. The number of CHO groups increases with the dose for all oligomers; this value is, in air, for K/sub 5/-K/sub 7/ three times, for K/sub 3/-K/sub 4/ six times, and for K/sub 2/ nine times as large as in the atmosphere of nitrogen. The number of NH/sub 2/ groups goes through a maximum with increasing dose; in air the maximum is smaller and occurs at lower doses. The number of COOH groups changes only slightly with the dose; in air the number of COOH groups increases for longer oligomers (K/sub 5/-K/sub 7/). The concentration of hydrogen increases linearly with the dose both in the atmosphere of nitrogen and in air. In the latter case the radiation yields Gsub((H/sub 2/)) are lower.

  20. Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature

    Directory of Open Access Journals (Sweden)

    Berdeaux, O.

    1999-02-01

    Full Text Available Monoepoxy compounds formed after heating methyl oleate and linoleate, triolein and trilinolein at 180°C for 5, 10 and 15 hours, were characterized and quantitated after derivatization to fatty acid methyl esters by using two base-catalyzed procedures. Structures were identified by GC-MS before and after hydrogénation. A complete recovery of the epoxy compounds was obtained by comparing results from methyl oleate and linoleate before and after transesterification, and good repeatability was also attained. Similar amounts of epoxides were found for methyl esters and triglycerides of the same degree of unsaturation, although formation was considerably greater for the less unsaturated substrates, methyl oleate and triolein, possibly due to the absence of remaining double bonds in the molecule which would involve a lower tendency to participate in further reactions. On other hand, independently of the degree of unsaturation of the model systems and of the period of heating, significantly higher amounts of trans isomers were formed. Finally from comparison between the amounts of epoxides and the level of polar fatty acids in samples, it was deduced that monoepoxy compounds were one of the major groups formed under the conditions used.

    En este estudio se identifican y cuantifican los compuestos epoxidados formados a partir de sistemas modelo de oleato y linoleato de metilo, trioleína y trilinoleína, calentados a 180°C durante 5,10 y 15 horas. La identificación se lleva a cabo mediante CG-EM en las muestras de esteres metílicos antes y después de someter a hidrogenación y para su cuantificación se utilizan dos procedimientos de transesterificación en medio alcalino. La comparación de las cantidades obtenidas, antes y después de la derivatización de los sistemas modelo de esteres metílicos, permitió deducir que la recuperación fue completa, obteniéndose también una excelente repetibilidad. Las cantidades de ep

  1. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana.

    Science.gov (United States)

    Müller, Axel; Düchting, Petra; Weiler, Elmar W

    2002-11-01

    A highly sensitive and accurate multiplex gas chromatography-tandem mass spectrometry (GC-MS/MS) technique is reported for indole-3-acetic acid, abscisic acid, jasmonic acid, 12-oxo-phytodienoic acid and salicylic acid. The optimized setup allows the routine processing and analysis of up to 60 plant samples of between 20 and 200 mg of fresh weight per day. The protocol was designed and the equipment used was chosen to facilitate implementation of the method into other laboratories and to provide access to state-of-the-art analytical tools for the acidic phytohormones and related signalling molecules. Whole-plant organ-distribution maps for indole-3-acetic acid, abscisic acid, jasmonic acid, 12-oxo-phytodienoic acid and salicylic acid were generated for Arabidopsis thaliana (L.) Heynh. For leaves of A. thaliana, a spatial resolution of hormone quantitation down to approximately 2 mm(2) was achieved.

  2. Spica prunellae and its marker compound rosmarinic acid induced the expression of efflux transporters through activation of Nrf2-mediated signaling pathway in HepG2 cells.

    Science.gov (United States)

    Wu, Jinjun; Zhu, Yuanfeng; Li, Fangyuan; Zhang, Guiyu; Shi, Jian; Ou, Rilan; Tong, Yunli; Liu, Yuting; Liu, Liang; Lu, Linlin; Liu, Zhongqiu

    2016-12-04

    Spica prunellae (SP) is a well-known traditional Chinese medicinal herb with properties of antihypertensive, antihyperglycemic, antiviral, anti-inflammatory, and antitumor activities. This herb is also popularly consumed as a food additive in some drinks or other food forms for treating pyreticosis. Rosmarinic acid (RA) is the marker compound from SP, which possesses anti-oxidative and anti-inflammatory functions. This study aims to investigate the regulatory effect of the water extract of SP (WESP) and RA on efflux transports (ETs), including P-glycoprotein (p-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) in HepG2 cell line. Results would provide beneficial information for the proper application of SP in clinics. HepG2 cells were treated with different doses of the tested drugs for 24 or 96h. MTT assay was used to examine cell viability. The protein and mRNA levels of the ETs were measured by using Western blot and real-time PCR, respectively. Reporter assay was used to study the antioxidant response element (ARE)-luciferin activity by using HepG2-C8 cells, which were generated by transfecting plasmid containing ARE-luciferin gene into HepG2 cells. The transport activities of ETs were tested by using substrate probes. WESP significantly (p<0.05) increased the expression of ETs in a dose-dependent manner. The increase caused by WESP was stronger than RA alone. Both WESP and RA promoted the translocation of nuclear factor E2-related factor-2 (Nrf2) from cytoplasm to the nucleus as well as significantly (p<0.05) enhanced the ARE-luciferin activity. WESP and RA also enhanced the efflux activity of P-gp and MRP2, accompanied by marked increase (p<0.05) in the intracellular ATP levels. WESP could significantly induce the expression of ETs through the activation of Nrf2-mediated signaling pathway in HepG2 cells. RA could be one of the active compounds responsible for the induction. WESP and RA also enhanced the efflux

  3. Enhanced corrosion resistance of carbon steel in normal sulfuric acid medium by some macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety: AC impedance and computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)], E-mail: fbentiss@enscl.fr; Lebrini, M. [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, BP. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, H. [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Chai, F. [Groupe de Recherche sur les biomateriaux, Laboratoire de Biophysique, UPRES EA 1049, Faculte de Medecine, F-59045 Lille Cedex (France); Traisnel, M.; Lagrene, M. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2009-09-15

    We report here the use of macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety (n-MCTH) in the corrosion inhibition of C38 carbon steel in 0.5 M H{sub 2}SO{sub 4} acid medium. The aim of this work is devoted to study the inhibition characteristics of these compounds for acid corrosion of C38 steel using electrochemical impedance spectroscopy (EIS). Data obtained from EIS show a frequency distribution and therefore a modeling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The experimental results obtained revealed that these compounds inhibited the steel corrosion in acid solution and the protection efficiency increased with increasing inhibitors concentration. The difference in their inhibitive action can be explained on the basis of the number of oxygen atoms present in the polyether ring which contribute to the chemisorption strength through the donor acceptor bond between the non bonding electron pair and the vacant orbital of metal surface. Adsorption of n-MCTH was found to follow the Langmuir's adsorption isotherm. The thermodynamic functions of adsorption process were calculated and the interpretation of the results is given. These results are complemented with quantum chemical study in order to provide an explanation of the differences between the probed inhibitors. Correlation between the inhibition efficiency and the structure of these compounds are presented.

  4. In vitro anticancer activity of Betulinic acid and derivatives thereof on equine melanoma cell lines from grey horses and in vivo safety assessment of the compound NVX-207 in two horses.

    Science.gov (United States)

    Liebscher, G; Vanchangiri, K; Mueller, Th; Feige, K; Cavalleri, J-M V; Paschke, R

    2016-02-25

    Betulinic acid, a pentacyclic triterpene, and its derivatives are promising compounds for cancer treatment in humans. Melanoma is not only a problem for humans but also for grey horses as they have a high potential of developing melanoma lesions coupled to the mutation causing their phenotype. Current chemotherapeutic treatment carries the risk of adverse health effects for the horse owner or the treating veterinarian by exposure to antineoplastic compounds. Most treatments have low prospects for systemic tumor regression. Thus, a new therapy is needed. In this in vitro study, Betulinic acid and its two derivatives B10 and NVX-207, both with an improved water solubility compared to Betulinic acid, were tested on two equine melanoma cell lines (MelDuWi and MellJess/HoMelZh) and human melanoma (A375) cell line. We could demonstrate that all three compounds especially NVX-207 show high cytotoxicity on both equine melanoma cell lines. The treatment with these compounds lead to externalization of phosphatidylserines on the cell membrane (AnnexinV-staining), DNA-fragmentation (cell cycle analysis) and activation of initiator and effector caspases (Caspase assays). Our results indicate that the apoptosis is induced in the equine melanoma cells by all three compounds. Furthermore, we succeed in encapsulating the most active compound NVX-207 in 2-Hydroxyprolyl-β-cyclodextrine without a loss of its activity. This formulation can be used as a promising antitumor agent for treating grey horse melanoma. In a first tolerability evaluation in vivo the formulation was administered every one week for 19 consecutive weeks and well tolerated in two adult melanoma affected horses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Phenolic compounds in flaxseed

    OpenAIRE

    Johnsson, Pernilla

    2004-01-01

    The dietary lignan secoisolariciresinol diglucoside (SDG), present in high concentrations in flaxseed, and its metabolites enterolactone and enterodiol are thought to decrease the risk of hormone dependent cancers, cardiovascular disease and other “welfare” diseases. Flaxseed also contains other biologically active phenolic compounds, such as phenolic acids. The understanding of the nature of these compounds is crucial for their possible exploitation in drugs and functional foods. Until the m...

  6. Sources and transformation of dissolved and particulate organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific δ15N analysis of amino acids

    Science.gov (United States)

    Yamaguchi, Yasuhiko T.; McCarthy, Matthew D.

    2018-01-01

    This study explores the use of compound-specific nitrogen isotopes of amino acids (δ15NAA) of coupled dissolved and particulate organic nitrogen (DON, PON) samples as a new approach to examine relative sources, transformation processes, and the potential coupling of these two major forms of N cycle in the ocean water column. We measured δ15NAA distributions in high-molecular-weight dissolved organic nitrogen (HMW DON) and suspended PON in the North Pacific Subtropical Gyre (NPSG) from surface to mesopelagic depths. A new analytical approach achieved far greater δ15NAA measurement precision for DON than earlier work, allowing us to resolve previously obscured differences in δ15NAA signatures, both with depth and between ON pools. We propose that δ15N values of total hydrolysable amino acids (THAA) represents a proxy for proteinaceous ON δ15N values in DON and PON. Together with bulk δ15N values, this allows δ15N values and changes in bulk, proteinaceous, and ;other-N; to be directly evaluated. These novel measurements suggest three main conclusions. First, the δ15NAA signatures of both surface and mesopelagic HMW DON suggest mainly heterotrophic bacterial sources, with mesopelagic HMW DON bearing signatures of far more degraded material compared to surface material. These results contrast with a previous proposal that HMW DON δ15NAA patterns are essentially ;pre-formed; by cyanobacteria in the surface ocean, undergo little change with depth. Second, different δ15NAA values and patterns of HMW DON vs. suspended PON in the surface NPSG suggest that sources and cycling of these two N reservoirs are surpisingly decoupled. Based on molecular δ15N signatures, we propose a new hypothesis that production of surface HMW DON is ultimately derived from subsurface nitrate, while PON in the mixed layer is strongly linked to N2 fixation and N recycling. In contrast, the comparative δ15NAA signatures of HMW DON vs. suspended PON in the mesopelagic also suggest a

  7. THE USE OF THE FURFURAL FROM THE SOLID WASTE OF SUGAR INDUSTRY (BAGASSE TO SYNTHESIZE -(2-FURYL ACRYLIC ACID AS AN ALTERNATIVE FOR THE RAW MATERIAL OF SUNSCREEN COMPOUND

    Directory of Open Access Journals (Sweden)

    Mitarlis Mitarlis

    2010-06-01

    Full Text Available The research of the usefullness of furfural from bagasse for the production of β-(2-furyl-acrilyc acid as an alternative raw material of sunscreen compound had been done. The research was done on two stages, the first stage was synthesis of furfural from bagasse and the second was synthesis of β-(2-furyl-acrilyc acid that is an analog of cynnamic acid in which some derivatives are known possess activities as sunscreen. Cynnamic acid could be produced from benzaldehyde by Perkin methods using alkali hydrolysis. With the similarity of the main structure, so β-(2-furyl-acrilyc acid can also be synthesized from furfural by Perkin method. The β-(2-furyl-acrilyc acid had been synthesized in this research from furfural isolated from bagasse by NaOH hydrolysis. Synthesis was done by reflux for 2 hr at 140 - 145 oC and 3 hr at 145 - 150 oC. From the spectroscopic data its known that furfural could be produced from bagasse in 11.65 % yield and 33.83% of β-(2-furyl-acrilyc acid from the synthesis on the second process. The UV -Vis spectrophotometer analysis result of β-(2-furyl-acrilyc acids showed λmax at 296.20 nm. It showed that until this step the sunscreen compound can be resulted from furfural isolated from bagasse, especially as a sunscreen that protected skin from eritema (λmax at 290 - 320 nm that is called as sunscreen UV-B. Keywords: Bagasse, furfural, sunscreen, β-(2- furil - acrylic acid.

  8. Seven organic salts assembled from hydrogen-bonds of N-H⋯O, O-H⋯O, and C-H⋯O between acidic compounds and bis(benzimidazole)

    Science.gov (United States)

    Jin, Shouwen; Liu, Hui; Gao, Xin Jun; Lin, Zhanghui; Chen, Guqing; Wang, Daqi

    2014-10-01

    Seven crystalline organic acid-base adducts derived from 1,4-bis(benzimidazol-2-yl)butane/1,2-bis(2-benzimidazolyl)-1,2-ethanediol and acidic components (picric acid, 2-hydroxy-5-(phenyldiazenyl)benzoic acid, 5-sulfosalicylic acid, oxalic acid, and 1,5-naphthalenedisulfonic acid) were prepared and characterized by the single crystal X-ray diffraction analysis, IR, mp, and elemental analysis. All of the seven compounds are organic salts involving proton transfer from the acidic components to the bis(benzimidazole). For the salt 3, although a competing carboxyl group is present, it has been observed that only the proton at the -SO3H group is deprotonized rather than the H at the COOH. While in the salt 7, both COOH and SO3H were ionized to exhibit a valence number of -2. For 4, the oxalic acid existed as unionized molecule, monoanion, and dianion simultaneously in one compound. All supramolecular architectures of the organic salts 1-7 involve extensive intermolecular N-H⋯O, O-H⋯O, and C-H⋯O hydrogen bonds as well as other noncovalent interactions. Since the potentially hydrogen bonding phenol group is present in the ortho position to the carboxyl group in 2, 3, and 7, it forms the more facile intramolecular O-H⋯O hydrogen bonding. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure.

  9. Effects of Coated Compound Proteases on Apparent Total Tract Digestibility of Nutrients and Apparent Ileal Digestibility of Amino Acids for Pigs

    Directory of Open Access Journals (Sweden)

    L. Pan

    2016-12-01

    Full Text Available Two experiments were conducted to evaluate effects of coated compound proteases (CC protease on apparent total tract digestibility (ATTD of nitrogen (N and energy, and apparent ileal digestibility (AID of amino acids (AA and nutrients in diets for pigs. In Exp. 1, 12 crossbred barrows (initial body weight: 20.14±1.71 kg were housed in individual metabolism crates and allotted into 2 treatments with 6 piglets per treatment according to weight in a randomized complete block design. The 2 diets were corn-soybean meal basal diets with (0.2 g/kg or without CC protease supplementation. The CC protease supplementation increased (p<0.05 the digestible and metabolizable N and energy values and the digestibility and retention rate of N in the diet. The ATTD of energy and nutrients had been improved (p<0.05 in the diet supplemented with CC protease. In Exp. 2, 12 crossbred barrows (initial body weight: 20.79±1.94 kg, fitted with T-cannulas at the distal ileum, were blocked by body weight into 2 groups with 6 pigs each. The diets were the same as those in Exp. 1. The CC protease increased (p<0.05 the AID of crude protein and some essential AA including arginine, isoleucine and leucine. The AID and ATTD of energy and nutrients had been improved (p<0.05 by supplemental CC protease, but the hindgut digestibility of nutrients was unaffected. Overall, the CC protease improved the ATTD of N and energy and AID of some indispensible AA and nutrients in the corn-soybean meal diet for pigs. Therefore, the CC protease supplement could improve the utilization of protein in the corn-soybean meal diet and thus contribute to lower N excretion to the environment.

  10. Inhibitory Interactions of Aspalathus linearis (Rooibos Extracts and Compounds, Aspalathin and Z-2-(β-d-Glucopyranosyloxy-3-phenylpropenoic Acid, on Cytochromes Metabolizing Hypoglycemic and Hypolipidemic Drugs

    Directory of Open Access Journals (Sweden)

    Oelfah Patel

    2016-11-01

    Full Text Available Rooibos extract, due to its glucose and lipid lowering effects, has potential as a nutraceutical for improvement of metabolic dysfunction. Potential herb-drug interactions as a result of the use of natural products are of increasing concern. Cytochrome P450 enzymes, CYP2C8, CYP2C9, and CYP3A4, are important in the metabolism of hypoglycemic drugs, such as thiazolidinediones (TZDs and sulfonylureas, and hypocholesterolemic drugs, such as atorvastatin. This study investigated the effects of rooibos extracts, prepared from “unfermented” and “fermented” rooibos plant material and two of the major bioactive compounds, Z-2-(β-d-glucopyranosyloxy-3-phenylpropenoic acid (PPAG and aspalathin (ASP, on Vivid® recombinant CYP450 enzymes. Unfermented (GRT and fermented (FRE rooibos extracts inhibited the activity of CYP2C8 (7.69 ± 8.85 µg/mL and 8.93 ± 8.88 µg/mL, respectively and CYP3A4 (31.33 ± 4.69 µg/mL and 51.44 ± 4.31 µg/mL, respectively based on their respective IC50 concentrations. Both extracts dose- and time-dependently inhibited CYP2C8 activity, but only time-dependently inhibited CYP2C9. CYP3A4 showed concentration-dependent inhibition by ASP, GRT, and FRE at 25, 50, and 100 µg/mL concentrations. ASP, GRT, and FRE time-dependently inhibited CYP3A4 activity with GRT and FRE showing a more potent time-dependent inhibition, comparable to erythromycin. These findings suggest that herb-drug interactions may occur when nutraceuticals containing rooibos extracts are co-administered with hypoglycemic drugs such as TZDs, sulfonylureas, and dyslipidemic drug, atorvastatin.

  11. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds.

    Science.gov (United States)

    Poimenidou, Sofia V; Chrysadakou, Marilena; Tzakoniati, Aikaterini; Bikouli, Vasiliki C; Nychas, George-John; Skandamis, Panagiotis N

    2016-11-21

    Listeria monocytogenes is a foodborne pathogen able to tolerate adverse conditions by forming biofilms or by deploying stress resistant mechanisms, and thus manages to survive for long periods in food processing plants. This study sought to investigate the correlation between biofilm forming ability, tolerance to disinfectants and cell surface characteristics of twelve L. monocytogenes strains. The following attributes were evaluated: (i) biofilm formation by crystal violet staining method on polystyrene, and by standard cell enumeration on stainless steel and polystyrene; (ii) hydrophobicity assay using solvents; (iii) minimum inhibitory concentration (MIC) and biofilm eradication concentration (BEC) of peracetic acid (PAA) and quaternary ammonium compounds (QACs), and (iv) resistance to sanitizers (PAA 2000ppm; QACs 500ppm) of biofilms on polystyrene and stainless steel. After 72h of incubation, higher biofilm levels were formed in TSB at 20°C, followed by TSB at 37°C (P=0.087) and diluted TSB 1/10 at both 20 (P=0.005) and 37°C (P=0.004). Cells grown at 30°C to the stationary phase had significant electron donating nature and a low hydrophobicity, while no significant correlation of cell surface properties to biofilm formation was observed. Strains differed in MIC PAA and BEC PAA by 24- and 15-fold, respectively, while a positive correlation between MIC PAA and BEC PAA was observed (P=0.02). The MIC QACs was positively correlated with the biofilm-forming ability on stainless steel (P=0.03). Regarding the impact of surface type, higher biofilm populations were enumerated on polystyrene than on stainless steel, which were also more tolerant to disinfectants. Among all strains, the greatest biofilm producer was a persistent strain with significant tolerance to QACs. These results may contribute to better understanding of L. monocytogenes behavior and survival on food processing surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of different drying methods on chlorophyll, ascorbic acid and antioxidant compounds retention of leaves of Hibiscus sabdariffa L.

    Science.gov (United States)

    Kumar, Sandopu Sravan; Manoj, Prabhakaran; Shetty, Nandini P; Giridhar, Parvatam

    2015-07-01

    Use of the indigenous, easily accessible leafy vegetable roselle (Hibiscus sabdariffa L.) for value addition is gaining impetus as its nutritive and nutraceutical compounds are exposed by investigations. Being a perishable, storage is challenging, hence different methods of drying have been an attractive alternative for its postharvest usage in foods without much compromising its quality and antioxidant potential. Room- and freeze-dried samples were found to have best quality in terms of colour, total flavonoid content (18.53 ± 2.39 and 18.66 ± 1.06 g kg(-1) respectively), total phenolic content (17.76 ± 1.93 and 18.91 ± 0.48 g kg(-1)), chlorophyll content (1.59 ± 0.001 and 1.55 ± 0.001 g kg(-1)) and ascorbic acid content (11.11 ± 1.04 and 8.92 ± 0.94 g kg(-1)) compared with those subjected to infrared, crossflow, microwave, oven or sun drying. Samples treated by room and freeze drying retained maximum antioxidant potential as shown by the phosphomolybdate method and the 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity and ferric-reducing antioxidant power assays. Cold water and hot water extracts showed significantly higher total phenolic content and total antioxidant activity owing to the greater solubility of phenolics and destruction of cellular components in polar solvents than in organic solvents. The data obtained show the potential for retaining quality parameters of roselle leaf under suitable drying methods. © 2014 Society of Chemical Industry.

  13. Modeling of RO/NF membrane rejections of PhACs and organic compounds : A statistical analysis

    NARCIS (Netherlands)

    Yangali-Quintanilla, V.; Kim, T.U.; Kennedy, M.; Amy, G.

    2008-01-01

    Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide) by NF (Filmtec, Saehan)

  14. Assay of phenolic compounds from four species of ber (Ziziphus mauritiana L.) fruits: comparison of three base hydrolysis procedure for quantification of total phenolic acids.

    Science.gov (United States)

    Memon, Ayaz Ali; Memon, Najma; Bhanger, Muhammad Iqbal; Luthria, Devanand L

    2013-08-15

    The present study was undertaken to investigate the flavonoid profile in four species of ber (Ziziphus mauritiana Lamk.) fruit. The 12 flavonoids identified were quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, quercetin 3'-O-galactoside, quercetin 3'-O-glucoside, quercetin 3'-O-rhamnoside, quercetin 3'-O-pentosylhexoside, quercetin 3-O-6'malonylglucoside, quercetin 3'-O-malonylglucoside, luteolin 7-O-6'malonylglucoside, luteolin 7-O-malonylglucoside, myricetin 3-O-galactoside, and naringenin tri glycoside. This is the first report on extraction of nine additional flavonoids from the ber fruits. In addition, we also compared the impact of three different base hydrolysis techniques namely ultrasonic assisted base hydrolysis (UABH), microwave assisted base hydrolysis (MWABH), and pressurised liquid assisted base hydrolysis (PLABH) for the quantification of total phenolic acids. Nine phenolic acids, protocatechuic acid, p-hydroxybenzoic acid, ferulic acid, chlorogenic acid, vanillic acid, caffeic acid, vanillin, ortho- and para-coumaric acids, were identified and quantified. The three major phenolic acids identified in all four ber species were p-coumaric acid, vanillin and ferulic acids. Higher amounts (p<0.05) of total phenolic acids in all cultivars were obtained with the PLABH technique as compared to other two procedures (UABH and MWABH). Published by Elsevier Ltd.

  15. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    Science.gov (United States)

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Study design and percent recoveries of anthropogenic organic compounds with and without the addition of ascorbic acid to preserve water samples containing free chlorine, 2004-06

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Price, Curtis V.; Sandstrom, Mark W.

    2008-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) began implementing Source Water-Quality Assessments (SWQAs) in 2002 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water). Finished water is the water that is treated, which typically involves, in part, the addition of chlorine or other disinfection chemicals to remove pathogens, and is ready to be delivered to consumers. Finished water is collected before the water enters the distribution system. This report describes the study design and percent recoveries of anthropogenic organic compounds (AOCs) with and without the addition of ascorbic acid to preserve water samples containing free chlorine. The percent recoveries were determined by using analytical results from a laboratory study conducted in 2004 by the USGS's National Water Quality Laboratory (NWQL) and from data collected during 2004-06 for a field study currently (2008) being conducted by the USGS's NAWQA Program. The laboratory study was designed to determine if preserving samples with ascorbic acid (quenching samples) adversely affects analytical performance under controlled conditions. During the laboratory study, eight samples of reagent water were spiked for each of five analytical schedules evaluated. Percent recoveries from these samples were then compared in two ways: (1) four quenched reagent spiked samples analyzed on day 0 were compared with four quenched reagent spiked samples analyzed on day 7 or 14, and (2) the combined eight quenched reagent spiked samples analyzed on day 0, 7, or 14 were compared with eight laboratory reagent spikes (LRSs). Percent

  17. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.

    Science.gov (United States)

    Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei

    2017-03-13

    A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.

  18. Assimilation of Unusual Carbon Compounds

    Science.gov (United States)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  19. Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney

    OpenAIRE

    Miner,Jeffrey; Tan, Philip K.; Hyndman, David; Liu, Sha; Iverson, Cory; Nanavati, Payal; Hagerty, David T.; Manhard, Kimberly; Shen, Zancong; Girardet, Jean-Luc; Yeh, Li-Tain; Terkeltaub, Robert; Quart, Barry

    2016-01-01

    Background Excess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug?drug interactions and off-target toxicity, respectively. Here, we define the mechanism of action of lesinurad (Zurampic?; RDEA594), a...

  20. Characterisation of selected volatile organic compounds in ...

    African Journals Online (AJOL)

    GCMS), was used to identify volatile compounds at three different temperatures. Fifty volatile compounds, inclusive of 14 acids, 14 alcohols, and 22 esters were identified and quantified in the two brands of indigenous banana beer samples. Only 12 ...

  1. Phenolic Compounds in Brassica Vegetables

    OpenAIRE

    Cartea González, María Elena; Francisco Candeira, Marta; Soengas Fernández, María del Pilar; Velasco Pazos, Pablo

    2011-01-01

    Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The...

  2. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    Science.gov (United States)

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  3. Phenolic compounds in Ecuadorian fruits

    OpenAIRE

    Vasco, Catalina

    2009-01-01

    A group of eighteen fruits cultivated in Ecuador were evaluated for their total soluble phenolic compounds and antioxidant activity and attempts were made to identify the group and content of phenolic compounds responsible for the antioxidant activity. In terms of total phenolic content, three groups (with 1000 mg gallic acid equivalents/100 g FW) were clearly distinguishable. RP-HPLC-DAD and/or LC-MS/MS were used to study the phenolic compounds in four Rosaceae fruits (Andean blackberry, str...

  4. Development of an acetic acid tolerant Spathaspora passalidarum strain through evolutionary engineering with resistance to inhibitors compounds of autohydrolysate of Eucalyptus globulus

    DEFF Research Database (Denmark)

    Morales, Paulina; Gentina, Juan Carlos; Aroca, German

    2017-01-01

    Evolutionary engineering strategy based on mutagenesis by UV irradiation and subsequent selectionby continuous cultivation at increasing concentrations of acetic acid in synthetic medium with glucoseand xylose mixtures was used to develop an evolved strain of the yeast Spathaspora passalidarum...... withimproved resistance to acetic acid. After 380 generations, the yeast was able to produce 5.8 g/L ethanolin the presence of 3.5 g/L acetic acid in synthetic medium with mixture of 15 g L−1glucose and 15 g L−1xylose. To demonstrate the improved resistance to acetic acid of the evolved strain compared...... to the nativestrain, growth kinetics and bioethanol production of both strains in batch cultures under microaerobiccondition were performed. The evolved strain reached an ethanol volumetric productivity of 0.23 g/L hand ethanol yield of 0.48 g/g in the presence of 4.5 g/L acetic acid. These results were 7-fold and 2...

  5. Methods of making organic compounds by metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  6. A lubricating compound

    Energy Technology Data Exchange (ETDEWEB)

    Barchan, G.P.; Boltnikov, V.S.; Bulgarevich, A.F.; Chigarenko, G.G.; Ponomarenko, A.G.

    1982-01-01

    In a known lubricating compound (SK) in order to improve the loading, antifriction and antiwear properties, a dicarbonic acid of a complex ether of azelaic acid of the formula (CH/sub 2/)/sub 7/(COOC/sub 2/H/sub 2//sub n+1/)/sub 2/, where n = 4 to 8, is additionally introduced as a complex ether (SE). 1-(2-oxy-1-naphthylazo)-2-naphthol-4-sulfo acid is introduced as an additive. The ratio of components in percent is: 1-(2-oxy-1-naphthylazo)-2-naphthol-4-sulfo acid 0.1 to 0.5 and complex ether, 20 to 30 and petroleum or synthetic oil (Ms) to 100 percent. Synthetic or petroleum oil of varying chemical structure and physical and chemical properties is used to prepare the lubricating compound: industrialnoye-20, vaseline, industrialnoye-50, instrumental MPV, vacuum MV-4 and polytehylsiloxanic liquid 32 to 25. The oil is mixed with the complex ether and the additive in the cited ratios with heating to 100 degrees and intensive mixing. After cooling, an oil ready for use is produced. The lubricating properties of the lubricating compound are studied in a facial friction (Tr) machine with a movable sample of St45.

  7. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine

    Energy Technology Data Exchange (ETDEWEB)

    Rudnitskaya, A., E-mail: alisa.rudnitskaya@gmail.com [CESAM/Chemistry Department, University of Aveiro, Aveiro 3810-193 (Portugal); Chemistry Department, St. Petersburg University, St. Petersburg 199034 (Russian Federation); Rocha, S.M. [Chemistry Department, University of Aveiro, Aveiro 3810-193 (Portugal); Legin, A. [Chemistry Department, St. Petersburg University, St. Petersburg 199034 (Russian Federation); Pereira, V.; Marques, J.C. [Madeira Chemistry Center, University of Madeira, Funchal 9000-390 (Portugal)

    2010-03-03

    A set of fourteen Madeira wines comprising wines produced from four Vitis vinifera L. varieties (Bual, Malvasia, Verdelho and Tinta Negra Mole) that were 3, 6, 10 and 17 years old was analysed using HPLC and an electronic tongue (ET) multisensor system. Concentrations of 24 organic acids, phenolic and furanic compounds were determined by HPLC. The ET consisting of 26 potentiometric chemical sensors with plasticized PVC and chalcogenide glass membranes was used. Significance of the effects of age and variety on the ET response and wine composition with respect to the organic acids, phenolics and furanic derivatives were evaluated using ANOVA-Simultaneous Component Analysis (ASCA). Significance of the effects was estimated using a permutation test (1000 permutations). It was found that effects of age, grape variety and their interaction were significant for the HPLC data set and only the effect of age was significant for the ET data. Calibration models of the HPLC and ET data with respect to the wine age and of the ET data with respect to the concentration of the organic acids and phenolics were calculated using PLS1 regression. Models were validated using cross-validation. It was possible to predict wine age from HPLC and ET data with the accuracy in cross-validation of 2.6 and 1.8 years respectively. The ET was capable of detecting the following components (mean relative error in cross-validation is shown in the parentheses): tartaric (8%), citric (5%), formic (12%), protocatehuic (5%), vanillic (18%) and sinapic (14%) acids, catechin (6%), vanillin (12%) and trans-resveratrol (5%). The ET capability of predicting Madeira wine age with good accuracy (1.8 years) as well as quantify of some organic acids and phenolic compounds was demonstrated.

  8. Uma metodologia simples e eficiente para a cloração de compostos aromáticos ativados utilizando o ácido tricloro-isocianúrico A simple and efficient methodology for chlorination of activated aromatic compounds using trichloroisocyanuric acid

    Directory of Open Access Journals (Sweden)

    Gabriela F. Mendonça

    2008-01-01

    Full Text Available The chlorination of activated aromatic rings is efficiently achieved under mild conditions by reaction of aromatic compounds with trichloroisocyanuric acid in acetonitrile, at room temperature, leading to products in 60-95% isolated yields and good regioselectivity.

  9. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells

    Directory of Open Access Journals (Sweden)

    Giang Thanh Thi Ho

    2017-01-01

    Full Text Available Type 2 diabetes (T2D is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.

  10. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways

    NARCIS (Netherlands)

    Verhoeckx, K.C.M.; Korthout, H.A.A.J.; Meeteren-Kreikamp, A.P. van; Ehlert, K.A.; Wang, M.; Greef, J. van der; Rodenburg, R.J.T.; Witkamp, R.F.

    2006-01-01

    There is a great interest in the pharmacological properties of cannabinoid like compounds that are not linked to the adverse effects of Δ9-tetrahydrocannabinol (THC), e.g. psychoactive properties. The present paper describes the potential immuno-modulating activity of unheated Cannabis sativa

  11. Structure-activity relationship for the estimation of OH-oxidation rate constants of aliphatic organic compounds in the aqueous phase: alkanes, alcohols, organic acids and bases

    National Research Council Canada - National Science Library

    Monod, A; Doussin, J.F

    2008-01-01

    ...-initiated oxidation of organic compounds have been determined experimentally, but a robust estimation method would be of high benefit to a wide community. Different methods have been explored so far. One method consists of correlations between the rate constant and the Bond Dissociation Energy (BDE), based on the method developed by Evans and Polanyi ...

  12. Relative developmental toxicity of glycol ether alkoxy acid metabolites in the embryonic stem cell test as compared with the in vivo potency of their parent compounds

    NARCIS (Netherlands)

    Jong, E. de; Louisse, J.; Verwei, M.; Blaauboer, B.J.; Sandt, J.J.M. van de; Woutersen, R.A.; Rietjens, I.M.C.M.; Piersma, A.H.

    2009-01-01

    The embryonic stem cell test (EST) has been proposed as an in vitro assay that might reduce animal experimentation in regulatory developmental toxicology. So far, evaluation of the EST was not performed using compounds within distinct chemical classes. Evaluation within a distinct class of

  13. Stereoselective synthesis of 2,3,7-trimethylcyclooctanone and related compounds and determination of their relative and absolute configurations by the M alpha NP acid method

    NARCIS (Netherlands)

    Naito, Junpei; Kuwahara, Shunsuke; Watanabe, Masataka; Decatur, John; Bos, Pieter H.; Van Summeren, Ruben P.; Ter Horst, Bjorn; Feringa, Ben L.; Minnaard, Adriaan J.; Harada, Nobuyuki

    2008-01-01

    The copper/chiral phosphoramidite (L-1)-catalyzed conjugate addition of dimethylzinc to cycloocta-2,7-dienone 4, followed by the methylation of the intermediate enolate, yielded a single isomer of 7,8-dimethylcyclooct-2-enone (+)-5. Compound (+)-5 was subjected to the second conjugate addition with

  14. Characterization of Titratable Acids, Phenolic Compounds, and Antioxidant Activities of Wines Made from Eight Mississippi-Grown Muscadine Varieties during Fermentation

    Science.gov (United States)

    Muscadine grape (vitis rotundifolia) Michx.) and its wine products are becoming more acceptable due to potential health benefits associated with high concentrations of phenolic compounds. In this research, wines made from eight high-yielding muscadine grape varieties grown in Mississippi were compa...

  15. Identification and quantitation of key aroma compounds formed in Maillard-type reactions of fructose with cysteamine or isothiaproline (1,3-thiazolidine-2-carboxylic acid).

    Science.gov (United States)

    Engel, Wolfgang; Schieberle, Peter

    2002-09-11

    Fructose was reacted in the presence of either cysteamine (model A) or isothiaproline (model B) in aqueous buffer at 145 degrees C and pH 7.0. Application of an aroma extract dilution analysis on the bulk of the volatile compounds formed in model A revealed 5-acetyl-3,4-dihydro-2H-1,4-thiazine (19), N-(2-mercaptoethyl)-1,3-thiazolidine (16), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (15), and 2-acetyl-2-thiazoline (11) as the key aroma compounds among the 10 odorants detected. A similar set of aroma compounds was formed when isothiaproline was reacted (model B), but the flavor dilution factors were generally lower. Substitution of the buffer by silica gel/water (9 + 1 w/w) in both models and application of 150 degrees C for 10 min also gave the same key odorants from both thio compounds; however, under these conditions isothiaproline was the better precursor of, in particular, 19 and 11. Quantitative measurements performed by means of stable isotope dilution assays revealed a significant effect of the pH on odorant formation. For example, in model A, formation of 19 as well as of 11 was suppressed at pH values <5.0. A clear maximum was, however, found for 19 at pH 7.0 (approximately 1 mol % yield), whereas 11 increased with increasing pH from 7.0 to 9.0.

  16. Physiologically active substances from marine sponges IV: Heterocyclic compounds.

    Science.gov (United States)

    Chib, J S; Stempien, M F; Cecil, J T; Ruggieri, G D; Nigrelli, R F

    1977-07-01

    Several guanidine compounds were synthesized by the reaction of acid chlorides of thiophene and furan with guanidines. Some of these compounds showed antibiotic and cytotoxic activities. Series of pyrrole compounds were synthesized and found to have significant antibiotic activity.

  17. Gold Electrodes Modified with Self-Assembled Layers Made of Sulphur Compounds and Gold Nanoparticles Used for Selective Electrocatalytic Oxidation of Catecholamine in the Presence of Interfering Ascorbic and Uric Acids

    Directory of Open Access Journals (Sweden)

    Teresa Łuczak

    2011-01-01

    Full Text Available Gold electrodes modified with S-containing compounds and gold nanoparticles were used for determination of epinephrine (EP in aqueous solution. The modified electrodes exhibited a good sensitivity, reproducibility, and stability. The results have shown that modified electrodes could clearly resolve the oxidation peaks of epinephrine, ascorbic acid (AA, and uric acid (UA with peak-to-peak separation enabling determination of EP, AA, and UA in their simultaneous presence. A linear relationship between EP concentration and current response was obtained in the range of 0.1 μM to 700 μM with the detection limit ≥0.034 μM for the electrodes modified at 2D template and in the range of 0.1 μM to 800 μM with the detection limit ≥0.030 μM for the electrodes modified at 3D template.

  18. Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney.

    Science.gov (United States)

    Miner, Jeffrey; Tan, Philip K; Hyndman, David; Liu, Sha; Iverson, Cory; Nanavati, Payal; Hagerty, David T; Manhard, Kimberly; Shen, Zancong; Girardet, Jean-Luc; Yeh, Li-Tain; Terkeltaub, Robert; Quart, Barry

    2016-10-03

    Excess body burden of uric acid promotes gout. Diminished renal clearance of uric acid causes hyperuricemia in most patients with gout, and the renal urate transporter (URAT)1 is important for regulation of serum uric acid (sUA) levels. The URAT1 inhibitors probenecid and benzbromarone are used as gout therapies; however, their use is limited by drug-drug interactions and off-target toxicity, respectively. Here, we define the mechanism of action of lesinurad (Zurampic®; RDEA594), a novel URAT1 inhibitor, recently approved in the USA and Europe for treatment of chronic gout. sUA levels, fractional excretion of uric acid (FEUA), lesinurad plasma levels, and urinary excretion of lesinurad were measured in healthy volunteers treated with lesinurad. In addition, lesinurad, probenecid, and benzbromarone were compared in vitro for effects on urate transporters and the organic anion transporters (OAT)1 and OAT3, changes in mitochondrial membrane potential, and human peroxisome proliferator-activated receptor gamma (PPARγ) activity. After 6 hours, a single 200-mg dose of lesinurad elevated FEUA 3.6-fold (p transporters for uric acid. Lesinurad also has a favorable selectivity and safety profile, consistent with an important role in sUA-lowering therapy for patients with gout.

  19. Effect of harvest, drying and storage on the bitterness, moisture, sugars, free amino acids and phenolic compounds of jujube fruit (Zizyphus jujuba cv. Junzao).

    Science.gov (United States)

    Pu, Yunfeng; Ding, Tian; Wang, Wenjun; Xiang, Yanju; Ye, Xingqian; Li, Mei; Liu, Donghong

    2018-01-01

    The taste of dried jujube fruit when compared with fresh ones is less palatable, as it develops bitterness during drying and storage. Therefore, identifying the methods by which bitterness occurs is essential for developing strategies for processing and storage. Bitterness in fresh jujube fruit was negligible; however, it increased by 0.9-, 1.5- and 1.8-fold during drying and storage over 6 and 12 months. The moisture significantly decreased during harvesting and drying. Free amino acids, except proline and tyrosine, significantly decreased during drying and storage. Fructose, glucose and sucrose hardly changed during harvest, drying and storage. Titratable acidity, total phenolic and total flavonoids contents were stable during harvest and drying, but increased upon storage. Additionally, protocatechuic and ellagic acids were not detected in fresh jujube fruit, however, were found to increase during drying and storage. Bitterness in fresh jujube fruit tasted negligible because of meagre amount of phytochemicals, while the condensation effect of moisture reduction, the loss of free amino acids, and the formation of protocatechuic and ellagic acids could aggravate the bitterness of jujube fruit during drying and storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Toxicology of perfluorinated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Thorsten [Hessian State Laboratory, Wiesbaden (Germany); Mattern, Daniela; Brunn, Hubertus [Hessian State Laboratory, Giessen (Germany)

    2011-12-15

    Perfluorinated compounds [PFCs] have found a wide use in industrial products and processes and in a vast array of consumer products. PFCs are molecules made up of carbon chains to which fluorine atoms are bound. Due to the strength of the carbon/fluorine bond, the molecules are chemically very stable and are highly resistant to biological degradation; therefore, they belong to a class of compounds that tend to persist in the environment. These compounds can bioaccumulate and also undergo biomagnification. Within the class of PFC chemicals, perfluorooctanoic acid and perfluorosulphonic acid are generally considered reference substances. Meanwhile, PFCs can be detected almost ubiquitously, e.g., in water, plants, different kinds of foodstuffs, in animals such as fish, birds, in mammals, as well as in human breast milk and blood. PFCs are proposed as a new class of 'persistent organic pollutants'. Numerous publications allude to the negative effects of PFCs on human health. The following review describes both external and internal exposures to PFCs, the toxicokinetics (uptake, distribution, metabolism, excretion), and the toxicodynamics (acute toxicity, subacute and subchronic toxicities, chronic toxicity including carcinogenesis, genotoxicity and epigenetic effects, reproductive and developmental toxicities, neurotoxicity, effects on the endocrine system, immunotoxicity and potential modes of action, combinational effects, and epidemiological studies on perfluorinated compounds). (orig.)

  1. Tracing in situ amino acid uptake in plants and microbes with15N13C labelled compounds

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen; Michelsen, Anders; Jonasson, Sven Evert

    amino acids. Furthermore, tannin addition tended to reduce plant uptake of label. By combining data on 15N recovery after 1 day in shoots and roots (fine and coarse) of the dominant heathland plants: the evergreen dwarf shrub Calluna vulgaris and the graminoid Deschampsia flexuosa, in soil...... microorganisms (chloroform fumigation extraction) and in soil water, we discuss the relative importance of free amino acids and ammonium as plant nutrients and microbial substrates in natural N-limited ecosystems with a high proportion of soil N held in tannin-N complexes. ...

  2. Multipurpose Compound

    Science.gov (United States)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  3. Assay of phenolic compounds from four species of Ber (Ziziphus mauritiana L.) Fruits: Comparision of three base hydrolysis procedure for quantification of total phenolic acids

    Science.gov (United States)

    The present study was undertaken to investigate the flavonoids profile in four species of ber (Ziziphus mauritiana Lamk) fruit and to compare various techniques for the analysis of total phenolic acids. The 12 flavonoids identified were quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, querceti...

  4. Efficacy and safety profile of a compound composed of platelet-rich plasma and hyaluronic acid in the treatment for knee osteoarthritis (preliminary results).

    Science.gov (United States)

    Abate, Michele; Verna, Sandra; Schiavone, Cosima; Di Gregorio, Patrizia; Salini, Vincenzo

    2015-12-01

    The combined use of hyaluronic acid and platelet-rich plasma has never been reported in the treatment for osteoarthritis. Aim of this paper was to evaluate the efficacy of this association and to compare retrospectively these results with those of a cohort of patients treated with platelet-rich plasma only. Subjects with mild-to-moderate knee osteoarthritis were enrolled. After clinical and ultrasound evaluation, patients received a weekly intra-articular injection of 2 ml of hyaluronic acid added with 2 ml of platelet-rich plasma for 3 weeks. Follow-up was performed at 1, 3, and 6 months. The same clinical parameters were retrospectively collected from a cohort of patients treated with 4-5 ml of platelet-rich plasma only. Forty knees were treated in both groups. The intra-group comparison showed a significant improvement in clinical and functional outcomes at 1, 3, and 6 months, while the infra-group comparison did not show any significant difference. The association of platelet-rich plasma + hyaluronic acid has the same efficacy of platelet-rich plasma only, administered in higher volume. We may infer that hyaluronic acid works synergically and improves the activity of several molecules contained in platelet-rich plasma.

  5. Acidity of precipitation as influenced by the filtering of atmospheric sulphur and nitrogen compounds - its role in the element balance and effect on soil

    Science.gov (United States)

    Robert Mayer; Bernhard Ulrich

    1976-01-01

    The data presented here are based upon element balance investigations in a beech forest in Central Germany (Ellenberg 1971). Being located in an altitude of about 500 m above sea level with an annual precipitation of about 1000 mm, and an acid soil with loess as the main constituent, the test site represents a typical environment for many Central European forests....

  6. Efficient and convenient oxidation of benzyl halides to carbonyl compounds with sodium nitrate and acetic acid by phase transfer catalysis in aqueous media

    Directory of Open Access Journals (Sweden)

    Yu Lin Hu

    2010-08-01

    Full Text Available A variety of benzyl halides were converted to the corresponding aldehydes/ketones in good to high yields by phase transfer catalysis combined with sodium nitrate and acetic acid at reflux. As a result, a simple and high yield procedure has been developed.

  7. Nontargeted LC-MSn Profiling of Compounds in Ileal Fluids That Decrease after Raspberry Intake Identifies Consistent Alterations in Bile Acid Composition.

    Science.gov (United States)

    McDougall, Gordon J; Allwood, J William; Pereira-Caro, Gema; Brown, Emma M; Ternan, Nigel; Verrall, Susan; Stewart, Derek; Lawther, Roger; O'Connor, Gloria; Rowland, Ian; Crozier, Alan; Gill, Chris I R

    2016-10-28

    Ileostomy studies provide a unique insight into the digestion of foods, allowing identification of physiologically relevant dietary phytochemicals and their metabolites that are important to gut health. We previously reported an increase of components, including novel triterpenoids, in ileal fluids of 11 ileostomates following consumption of raspberries using nontargeted LC-MSn techniques in combination with data deconvolution software. The current study focused on components that consistently decreased postsupplementation. After data deconvolution, 32 components were identified that met exclusion parameters of m/z signals and which decreased significantly in ileal fluids from eight of 11 participants post-raspberry supplementation. Two-thirds of these components were identified putatively from their MS properties. Consistent decreases were observed in components that possibly reflected "washing out" of presupplementation intake of common foods/drinks including (poly)phenol metabolites. Metabolites associated with fat metabolism such as hydroxylated fatty acids and cholate-type bile acids were specifically reduced. However, more directed re-examination of the data revealed that although some cholates were consistently reduced, the more polar glyco- and tauro-linked bile acid derivatives increased consistently, by as much as 100-fold over presupplementation levels. The possible reasons for these substantial alterations in bile acid composition in ileal fluids in response to raspberry intake are discussed.

  8. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products

    NARCIS (Netherlands)

    Troise, Antonio Dario; Wiltafsky, Markus; Fogliano, Vincenzo; Vitaglione, Paola

    2018-01-01

    The quantification of protein bound Maillard reaction products (MRPs) is still a challenge in food chemistry. Protein hydrolysis is the bottleneck step: it is time consuming and the protein degradation is not always complete. In this study, the quantitation of free amino acids and Amadori products

  9. Quantitative profiling of bile acids in biofluids and tissues based on accurate mass high resolution LC-FT-MS: Compound class targeting in a metabolomics workflow

    NARCIS (Netherlands)

    Bobeldijk, I.; Hekman, M.; Vries de- Weij, J.van der; Coulier, L.; Ramaker, R.; Kleemann, R.; Kooistra, T.; Rubingh, C.; Freidig, A.; Verheij, E.

    2008-01-01

    We report a sensitive, generic method for quantitative profiling of bile acids and other endogenous metabolites in small quantities of various biological fluids and tissues. The method is based on a straightforward sample preparation, separation by reversed-phase high performance

  10. The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics.

    Science.gov (United States)

    Bak, Annette; Gore, Anu; Yanez, Evelyn; Stanton, Mary; Tufekcic, Sunita; Syed, Rashid; Akrami, Anna; Rose, Mark; Surapaneni, Sekhar; Bostick, Tracy; King, Anthony; Neervannan, Sesha; Ostovic, Drazen; Koparkar, Arun

    2008-09-01

    Co-crystals are relatively novel in the pharmaceutical field and are not reported extensively. AMG 517 is an insoluble small molecule VR1 (vanilloid receptor 1) antagonist. In animal studies, good exposure of AMG 517 is seen from a 10% (w/v) Pluronic F108 in OraPlus suspension. Investigation of the suspension formulation revealed that AMG 517 forms a co-crystal with sorbic acid, a preservative in OraPlus. This co-crystal of AMG 517 was isolated by coslurrying AMG 517 and sorbic acid; studied by DSC and XRD; and identified by solution NMR, TGA, and HPLC to be a 1:1 association of AMG 517 and sorbic acid. Single crystal structure analysis revealed a 1:1 co-crystal of AMG 517 and sorbic acid, held together by two hydrogen bonds and other noncovalent, nonionic forces. The co-crystal has better aqueous solubility initially as compared to AMG 517 free base but does revert back to a form of the free base hydrate during prolonged slurry in FaSIF (fasted simulated intestinal fluid). Pharmacokinetic evaluation of the co-crystal in rats using 10% (w/v) Pluronic F108 in OraPlus suspensions revealed that a 30 mg/kg dose in suspension had comparable exposure to a 500 mg/kg dose of the free base.

  11. Evaluation of the Organic Acids Ability for Extraction of Anthocyanins and Phenolic Compounds from Different Sources and Their Degradation Kinetics During Cold Storage

    Directory of Open Access Journals (Sweden)

    Hosseini Sepideh

    2016-12-01

    Full Text Available The study of anthocyanin and phenolic acids has always received much attention due to their extensive range of colors and potential beneficial health effects. In this study extraction of anthocyanins from barberry, eggplant peel and red cabbage was investigated by using different organic solvents. Soluble solid content, antioxidant capacity, total monomeric anthocyanins and total phenolic content were determined and then degradation kinetics of anthocyanin in different solution during freezing process was assayed. In order to examine the effect of different acids on the degree of extraction of anthocyanin and total phenol, varied concentration of hydrochloric, citric and acetic acids were dissolved in a mixture of water and ethanol to prepare acidified aqueous solution. Results indicated that citric acid solution is one of the best solvents for phenolic and anthocyanin extraction which showed the best scavenging activity of DPPH radical. Results from degradation kinetics of total monomeric anthocyanins revealed that stability of anthocyanins in the solution depended on temperature and other ingredients which are present in the medium. Moreover, the present data confirmed that barberry and red cabbage acidified extracts could be one of the more stable natural food colorants based on anthocyanins.

  12. Application of headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry to determine esters of carboxylic acids and other volatile compounds in Dermestes maculatus and Dermestes ater lipids.

    Science.gov (United States)

    Cerkowniak, Magdalena; Boguś, Mieczysława I; Włóka, Emilia; Stepnowski, Piotr; Gołębiowski, Marek

    2017-07-19

    A constant problem in veterinary medicine, human healthcare, agriculture, forestry and horticulture is the large number of pests, and the lack of effective methods to combat them which cause no harm to the rest of the environment. It is recommended and desired to reduce the use of chemicals and increase the use of agents based on knowledge acquired in the fields of biology, chemistry and agrochemicals. To learn the defense mechanisms of insects we should consider not only the site of their physiological ability to protect against external factors (cuticle), but also the possibility of chemical protection, formed by all compounds on the surface and in the body of insects. In this study, a procedure was developed to determine the esters of carboxylic acids in insect lipids. Headspace solid-phase microextraction was followed by gas chromatography coupled with gas spectrometry. First, the best conditions were selected for the analysis to obtain the best chromatographic separation. An RTx-5 column was used for this purpose. Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate fibers were used to isolate acid esters. PDMS/DVB fiber achieved the best conditions for the extraction; the extraction time was 50 min, the extraction temperature was 105°C and the desorption time was 10 min at 230°C. These solid-phase microextraction conditions were used to analyze volatile compounds extracted from insects belonging to the Dermestidae family. Copyright © 2017 John Wiley & Sons, Ltd.

  13. 2-[4,5-Difluoro-2-(2-Fluorobenzoylamino)-Benzoylamino]Benzoic Acid, an Antiviral Compound with Activity against Acyclovir-Resistant Isolates of Herpes Simplex Virus Types 1 and 2

    Science.gov (United States)

    Islam, Koushikul; Edlund, Karin; Öberg, Christopher T.; Allard, Annika; Bergström, Tomas; Mei, Ya-Fang; Elofsson, Mikael

    2012-01-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are responsible for lifelong latent infections in humans, with periods of viral reactivation associated with recurring ulcerations in the orofacial and genital tracts. In immunosuppressed patients and neonates, HSV infections are associated with severe morbidity and, in some cases, even mortality. Today, acyclovir is the standard therapy for the management of HSV infections. However, the need for novel antiviral agents is apparent, since HSV isolates resistant to acyclovir therapy are frequently isolated in immunosuppressed patients. In this study, we assessed the anti-HSV activity of the antiadenoviral compounds 2-[2-(2-benzoylamino)-benzoylamino]benzoic acid (benzavir-1) and 2-[4,5-difluoro-2-(2-fluorobenzoylamino)-benzoylamino]benzoic acid (benzavir-2) on HSV-1 and HSV-2. Both compounds were active against both viruses. Importantly, benzavir-2 had potency similar to that of acyclovir against both HSV types, and it was active against clinical acyclovir-resistant HSV isolates. PMID:22908173

  14. Mesoionic Compounds

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 10. Mesoionic Compounds - An Unconventional Class of Aromatic Heterocycles. Bharati V Badami. General Article Volume 11 Issue 10 October 2006 pp 40-48. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Mesoionic Compounds

    Indian Academy of Sciences (India)

    Sydnone, the representative mesoionic compound has been extensively studied because of its unusual structure, chemi- cal properties and synthetic utility. Sydnone is used as a versatile synthon in heterocyclic synthesis. This article gives a brief account of the comparative studies of the structural features of mesoionic ...

  16. Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine) as Film Component.

    Science.gov (United States)

    Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi; Anzai, Jun-Ichi

    2018-01-22

    Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at -0.50 and -0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at -0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at -0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.

  17. Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine as Film Component

    Directory of Open Access Journals (Sweden)

    Shigehiro Takahashi

    2018-01-01

    Full Text Available Alizarin red S (ARS was confined in layer-by-layer (LbL films composed of phenylboronic acid-modified poly(ethyleneimine (PBA-PEI and carboxymethylcellulose (CMC to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at −0.50 and −0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at −0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at −0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.

  18. Application of a simple column-switching ion chromatography technique for removal of matrix interferences and sensitive fluorescence determination of acidic compounds (pharmaceutical drugs) in complex samples.

    Science.gov (United States)

    Muhammad, Nadeem; Subhani, Qamar; Wang, Fenglian; Guo, Dandan; Zhao, Qiming; Wu, Shuchao; Zhu, Yan

    2017-09-15

    This work illustrates the introduction of a simple, rugged and flexible column-switching ion chromatography (IC) technique for an automated on-line QuEChERS extracted samples extracts washing followed by sensitive fluorescence (FLD) determination of five acidic pharmaceutical drugs namely; clofibric acid (CLO), ibuprofen (IBU), aspirin (ASP), naproxen (NAP) and flurobrofen (FLU) in three complex samples (spinach, apple and hospital sewage sludge). An old anion exchange column IonPac ® AS11-HC was utilized as a pre-treatment column for on-line washing of inorganic and organic interferences followed by isocratic separation of five acidic drugs with another anion exchange IonPac ® AS12A analytical column by exploiting the column-switching technique. This novel method exhibited good linearity with correlation coefficients (r 2 ) for all drugs were in the range 0.976-0.996. The limit of detection and quantification of all five acidic drugs were in the range 0.024μg/kg to 8.70μg/kg and 0.082μg/kg to 0.029mg/kg, respectively, and better recoveries in the range 81.17-112.5% with percentage relative standard deviations (RSDs) less than 17.8% were obtained. This on-line sample pre-treatment method showed minimum matrix effect in the range of 0.87-1.25 except for aspirin. This simple rugged and flexible column-switching system required only 28min for maximum elimination of matrices and interferences in three complex samples extracts, isocratic separation of five acidic drugs and for the continuous regeneration of pre-treatment column prior to every subsequent analysis. Finally, this simple automated IC system was appeared so rugged and flexible, which can eliminate and wash out most of interference, impurities and matrices in complex samples, simply by adjusting the NaOH and acetonitrile concentration in washing mobile phase with maximum recoveries of acidic analytes of interest. Copyright © 2017. Published by Elsevier B.V.

  19. An isoperibol micro-bomb calorimeter for measurement of the enthalpy of combustion of organic compounds. Application to the study of succinic acid and acetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Aaron. E-mail: arojas@mail.cinvestav.mx; Valdes, Alejandro

    2003-08-01

    A micro static-bomb combustion calorimeter, developed from a 1107 Parr semi-micro bomb, has been provided with a new micro-bomb and calorimetric bucket. In the best conditions of operation, the energy equivalent of this calorimetric arrangement is just {epsilon}(calor)=(731.82 {+-} 0.22) J {center_dot} K{sup -1}, which means an uncertainty of 0.03 per cent for the calibration with benzoic acid NIST 39j. This combustion calorimeter has been used in the measurement of the enthalpy of combustion of the succinic acid and acetanilide, giving -(1489.3 {+-} 1.6) kJ {center_dot} mol{sup -1} and -(4222.5 {+-} 1.1) kJ {center_dot} mol{sup -1}, respectively, for these substances.

  20. Radiotracer study of the adsorption of organic compounds on gold. adsorption of chloroacetic and phenylacetic acid, and the effects of cadmium, copper, and silver adatoms on it

    Energy Technology Data Exchange (ETDEWEB)

    Horani, G.; Andreev, V.N.; Vazarinov, V.E.

    1986-04-01

    This paper studies the adsorption of monochloroacetic and phenylacetic acid (MA and PA, respectively) by the radiotracer technique on gold-plated gold electrodes in acidic solutions. The authors also study the effect of cadmium, copper, and silver adatoms on these processes. The adsorption of MA was measured as a function of potential of the electrode. Data from these measurements are presented. Data show that cadmium, copper, and silver ions present in the solution have no effect on the adsorption of PA at potentials where they are not adsorbed on the gold surface. It is confirmed that the radiotracer technique will be as effective in adsorption studies on the gold-plated gold electrode as it was in the case of the platinized platinum electrode.

  1. Potential Antibacterials Compounds of Lactic Acid Bacteria (LAB from Quail Intestine (Coturnix japonica in Inhibition Growth of Escherichia coli and Salmonella typhimurium

    Directory of Open Access Journals (Sweden)

    Osfar Sjofjan

    2010-10-01

    Full Text Available Quail (Coturnix japonica is a bird that have high protein content, but vulnerable to digestive diseases. The purpose of this research was to determine the ability of antibacterial compounds of LAB from intestinal quail origin in bacterial growth inhibition test. This research used Completely Randomized Design (CRD with variable concentrations of Cell Free Supernatant (CFS for 10, 20, 30, 40, 50, and 60% and bacterial pathogens of the digestive tract of quail (S. typhimurium, E. coli of human origin, and E. coli of bird origin by using the Minimum inhibitory Concentration (MIC and Minimal Bactericidal Concentration (MBC. The data obtained were analyzed by Analysis of Variance (ANOVA. The results obtained showed that the bacterium Lactobacillus fermentum and L. salivarius derived from quail intestine can produce antibacterial compounds that could inhibit the growth of Salmonella typhimurium, Escherichia coli (human, and E. coli (bird. Minimum concentration of the addition of CFS from L. fermentum in inhibiting the growth of tested bacteria was 30% for S. typhimurium, 30% for E. coli (human, and 20% for E. coli (bird. While the addition of CFS minimum concentration of L. salivarius in inhibiting the growth of tested bacteria was 20% for S. typhimurium, 20% for E. coli (human, and 10% for E. coli (bird.

  2. pH-specific hydrothermal assembly of binary and ternary Pb(II)-(O,N-carboxylic acid) metal organic framework compounds: correlation of aqueous solution speciation with variable dimensionality solid-state lattice architecture and spectroscopic signatures.

    Science.gov (United States)

    Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A

    2012-09-03

    Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.

  3. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 19: Condensation of phthalic and substituted phthalic anhydrides with benzoylacetic ester

    Science.gov (United States)

    Rotberg, Y. T.; Oshkaya, V. P.

    1985-01-01

    Phthalylbenzoylacetic ester and its nitro and halogen derivatives were prepared through condensation of phthalic anhydride, nitrophthalic anhydride, and phthalic halide anhydride with benzoylacetic ester in a solution of acetic anhydride and triethylamine. The condensation of hemipinic acid anhydride proceeds similarly, but under more drastic conditions. Derivatives of indan-1,3-dione are also formed, with a small yield, in the reaction of nitrophthalic anhydrides with benzoylacetic ester in the presence of increased quantities of triethylamine.

  4. Comparative study of phenolic compounds, vitamin E, and fatty acids compositional profiles in black seed-coated soybeans (Glycine Max (L.) Merrill) depending on pickling period in brewed vinegar.

    Science.gov (United States)

    Chung, Ill-Min; Oh, Jin-Young; Kim, Seung-Hyun

    2017-07-18

    Pickled soybeans or vinegar beans have long been used as a folk remedy and also a supplemental nutritional source in Korea. In general the pickling process in vinegar improves the digestibility of soybeans as well as increases the availability of various (non-)nutrients in soybeans. However, detailed information about the changes in functional substances such as (poly)phenolic compounds, vitamin E, and fatty acids (FAs) in soybeans during the pickling process is quite limited. Therefore, this study aims to investigate the changes in the selected phenolic compounds, vitamin E, and FAs in soybeans as a function of the pickling time. The sum of the total phenolics in both the pickled soybeans and the pickling solutions increased by as much as 47% after pickling. Naringenin, vanillin, and catechin were the major phenolics observed in the pickled soybeans and pickling solutions. The total vitamin E content in the pickled soybeans decreased by 23% after pickling, although no vitamin E molecules were found in the pickling solution. γ-Tocopherol was abundant in the untreated soybeans, but decreased by ~29% after pickling. Both the total and major FA contents varied by less than 1% during the pickling period. In this study, a 10-20 day pickling period may be considered suitable in terms of retention of functional substances in the pickled soybeans, such as selected phenolics, vitamin E, and FAs. Our findings provide basic information and insight into the production of functional compounds in soybeans upon immersing in brewed vinegar, and also may be helpful toward improving the health-functionality of soybean-based foods in the food industry. Graphical abstract How to change bioactive compounds during the pickling process?

  5. Structural diversity of Cu(II) compounds of Schiff bases derived from 2-hydroxy-1-naphthaldehyde and a series of aminobenzoic acid

    Science.gov (United States)

    Niu, Meiju; Cao, Zhiqiang; Xue, Ruiting; Wang, Suna; Dou, Jianmin; Wang, Daqi

    2011-06-01

    Five novel Cu(II) metal-organic coordination polymers, [(CuL 1) n] ( 1), [CuL22(Py)4] ( 2), [Cu(HL 3)(DMF) 2] ( 3), [CuL43(Py)6·HO]n ( 4), [CuL43(Py)8(CHN)2·8CHOH]n ( 5) (H 2L 1 = N-2-hydroxy-naphthaldehyde-1-alkenyl- o-amino acid, H 2L 2 = N-2-hydroxy-naphthaldehyde-1-alkenyl- m-amino acid, H 2L 3 = N-2-hydroxy-naphthaldehyde-1-alkenyl- o-amino-terephthalic acid), have been synthesized and characterized by IR, elemental analysis, UV spectroscopy and single-crystal X-ray diffraction analyses. Complex 1 possesses helical chain structure, which are further assembled to form three-dimensional frameworks by π⋯π stacking interactions. Complex 2 and 3 exhibit dimeric and monomeric structure. Complex 4 is a novel two-dimensional layer structure based on two kinds of binuclear Secondary Building Units (SBUs), Cu 2O 2 and Cu 2(CO 2) 4. Complex 5 exhibits a distorted zigzag chain by the alternate connectivity of L and bpy molecules. This result shows that the position of carboxylate groups play an important role in the formation of supramolecular networks.

  6. Evaluation of the anxiolytic and antidepressant effects of asiatic acid, a compound from Gotu kola or Centella asiatica, in the male Sprague Dawley rat.

    Science.gov (United States)

    Ceremuga, Tomás Eduardo; Valdivieso, Debra; Kenner, Catherine; Lucia, Amy; Lathrop, Keith; Stailey, Owen; Bailey, Heather; Criss, Jonathan; Linton, Jessica; Fried, Jordan; Taylor, Andrew; Padron, Gina; Johnson, Arthur Don

    2015-04-01

    Herbal medication use continues to rise and interactions with existing medications propose risks and may have significant effects and consequences on the administration of anesthesia. The purpose of this study was to investigate the anxiolytic and antidepressant effects of asiatic acid and its potential modulation of the γ-aminobutyric acid (GABAA) receptor. Fifty-five male Sprague Dawley rats were divided into 5 groups: vehicle (DMSO), asiatic acid (AA), midazolam, or a combination of flumazenil + AA or midazolam + AA, and injected intraperitoneally 30 minutes prior to testing. The rats were tested on the Elevated Plus Maze (EPM) and the Forced Swim Test (FST). Data were analyzed using a two-tailed multivariate analysis of variance (MANOVA). Significance was found regarding the ratio of open arm time, maximum speed, and time spent mobile in the AA group and the midazolam + AA group (P < .05). Flumazenil decreased the anxiolytic effects, suggesting that AA modulates the benzodiazepine site on the GABAA receptor. Further studies are recommended to determine the efficacy of prolonged treatment for anxiety and depression.

  7. Compound odontoma

    Directory of Open Access Journals (Sweden)

    Monica Yadav

    2012-01-01

    Full Text Available Odontomas have been extensively reported in the dental literature, and the term refers to tumors of odontogenic origin. Though the exact etiology is still unknown, the postulated causes include: local trauma, infection, inheritance and genetic mutation. The majority of the lesions are asymptomatic; however, may be accompanied with pain and swelling as secondary complaints in some cases. Here, we report a case of a compound odontome in a 14 year old patient.

  8. Composite glycerol/graphite/aromatic acid matrices for thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry of heterocyclic compounds.

    Science.gov (United States)

    Esparza, Cesar; Borisov, R S; Varlamov, A V; Zaikin, V G

    2016-10-28

    New composite matrices have been suggested for the analysis of mixtures of different synthetic organic compounds (N-containing heterocycles and erectile dysfunction drugs) by thin layer chromatography/matrix-assisted laser desorption ionization time-of-flight mass spectrometry (TLC/MALDI-TOF). Different mixtures of classical MALDI matrices and graphite particles dispersed in glycerol were used for the registration of MALDI mass spectra directly from TLC plates after analytes separation. In most of cases, the mass spectra possessed [M+H](+) ions; however, for some analytes only [M+Na](+) and [M+K](+) ions were observed. These ions have been used to generate visualized TLC chromatograms. The described approach increases the desorption/ionization efficiencies of analytes separated by TLC, prevent spot blurring, simplifies and decrease time for sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Corrosion inhibition of carbon steel pipelines by some novel Schiff base compounds during acidizing treatment of oil wells studied by electrochemical and quantum chemical methods

    Science.gov (United States)

    Abd El-Lateef, Hany M.; Abu-Dief, Ahmed M.; Mohamed, Mounir A. A.

    2017-02-01

    Three novel Schiff bases compounds were prepared and their structures were characterized by X-ray, 13C-NMR, 1H-NMR, mass, UV-Vis, FT-IR, spectral data and elemental analyses. The corrosion inhibition of the investigated inhibitors towards carbon steel in 15% HCl was investigated by using electrochemical measurements (EIS, LPR corrosion rate and Tafel plots), SEM, EDX and quantum chemical methods. The results showed that, the inhibitors are efficient mixed type corrosion inhibitors, and their inhibition performance increased with the rise of inhibitor concentration and temperature. The adsorption of the inhibitors on steel surface was found to obey Langmuir's adsorption isotherm and chemisorption. Quantum chemical calculations provide good support to empirical results.

  10. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as

  11. Phenolic compounds of three unconventional Sudanese oils.

    Science.gov (United States)

    Mariod, Abdalbasit; Matthäus, Bertrand; Eichner, Karl; Hussein, Ismail H

    2015-01-01

    The total amount and content of phenolic and flavonoid compounds using the Folin-Ciocalteu and Aluminum chloride methods of the methanolic extracts of Sclerocarya birrea oil (SCO), Melon bug oil (MBO), and Sorghum bug oil (SBO) were studied. Dry samples of Sclerocarya birrea, Aspongopus vidiuatus and Agonoscelis pubescens were used in this study. The oil was extracted using n-hexane following AOCS method. The phenolic compounds were extracted following a well known method and the total amounts of phenolic and flavonoids were determined using Folin-Ciocalteau and aluminum chloride methods, respectively and were identified by HPLC. The concentration of total phenolic compounds was determined as 3.3, 20.7 and 0.9 mg/100 g oil, in SCO, MBO and SBO, respectively, calculated as gallic acid equivalents. The polar fraction of the three oils was separated using solid phase extraction method. The variation of simple and complex oils phenols studied by high-performance liquid chromatography with diode-array detection (DAD) using sephadex eluted by acetone revealed six phenolic compounds which were identified as vanillic acid, callistephin, sinapic acid, t-cinnamic acid, epicatechin, and luteolin in SCO, and four phenolic compounds were identified as vanillin, sinapic acid, o-coumaric acid, and quercetin, in SBO, while in MBO four phenolic compounds were identified as t-cinnamic, syringic acid, quercetin and pelargonin. The phenolic compounds found in SCO, SBO, and MBO can be divided into phenolic compounds and flavonoids.

  12. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  13. Supercritical extraction from vinification residues: fatty acids, α-tocopherol, and phenolic compounds in the oil seeds from different varieties of grape.

    Science.gov (United States)

    Agostini, F; Bertussi, R A; Agostini, G; Atti Dos Santos, A C; Rossato, M; Vanderlinde, R

    2012-01-01

    Supercritical fluid extraction has been widely employed in the extraction of high purity substances. In this study, we used the technology to obtain oil from seeds from a variety of grapes, from vinification residues generated in the Southern region of the state of Rio Grande do Sul, Brazil. This work encompasses three varieties of Vitis vinifera (Moscato Giallo, Merlot, and Cabernet Sauvignon) and two of Vitis labrusca (Bordô e Isabel), harvested in 2005 and 2006. We obtained the highest oil content from Bordô (15.40%) in 2005 and from Merlot (14.66%), 2006. The biggest concentration of palmitic, stearic, and linoleic acids was observed in Bordô, 2005, and in Bordô, Merlot, and Moscato Giallo, 2006. Bordô showed the highest concentration of oleic acid and α-tocopherol in both seasons too. For the equivalent of procyanidins, we did not notice significant difference among the varieties from the 2005 harvest. In 2006, both varieties Isabel and Cabernet Sauvignon showed a value slightly lower than the other varieties. The concentration of total phenolics was higher in Bordô and Cabernet Sauvignon. The presence of these substances is related to several important pharmacological properties and might be an alternative to conventional processes to obtain these bioactives.

  14. N-Heterocycle-Forming Amino/Carboperfluoroalkylations of Aminoalkenes by Using Perfluoro Acid Anhydrides: Mechanistic Studies and Applications Directed Toward Perfluoroalkylated Compound Libraries.

    Science.gov (United States)

    Kawamura, Shintaro; Dosei, Kento; Valverde, Elena; Ushida, Kiminori; Sodeoka, Mikiko

    2017-12-01

    This work describes a practical and efficient method for synthesizing a diverse array of perfluoroalkylated amines, including N-heterocycles, to afford perfluoroalkylated chemical libraries as potential sources of drug candidates, agrochemicals, and probe molecules for chemical-biology research. Perfluoro acid anhydrides, which are commonly used in organic synthesis, were employed as a perfluoroalkyl source for intramolecular amino- and carbo-perfluoroalkylations of aminoalkenes, affording perfluoroalkylated N-heterocycles, including: aziridines, pyrrolidines, benzothiazinane dioxides, indolines, and hydroisoquinolinones. Diacyl peroxides were generated in situ from the perfluoro acid anhydrides with urea·H 2 O 2 , and allowed to react with aminoalkenes in the presence of copper catalyst to control the product selectivity between amino- and carbo-perfluoroalkylations. To illustrate the synthetic utility of bench-stable trifluoromethylated aziridine, which was prepared on a gram scale, we used it to synthesize a wide variety of trifluoromethylated amines including complex molecules, such as trifluoromethylated tetrahydroharmine and spiroindolone. A mechanistic study of the role of the copper catalyst in the aminotrifluoromethylation of allylamine suggested that Cu(I) accelerates CF 3 radical formation via decomposition of diacyl peroxide, which appears to be the turnover-limiting step, while Cu(II) controls the product selectivity.

  15. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products.

    Science.gov (United States)

    Troise, Antonio Dario; Wiltafsky, Markus; Fogliano, Vincenzo; Vitaglione, Paola

    2018-05-01

    The quantification of protein bound Maillard reaction products (MRPs) is still a challenge in food chemistry. Protein hydrolysis is the bottleneck step: it is time consuming and the protein degradation is not always complete. In this study, the quantitation of free amino acids and Amadori products (APs) was compared to the percentage of blocked lysine by using chemometric tools. Eighty thermally treated soybean samples were analyzed by mass spectrometry to measure the concentration of free amino acids, free APs and the protein-bound markers of the Maillard reaction (furosine, Nε-(carboxymethyl)-l-lysine, Nε-(carboxyethyl)-l-lysine, total lysine). Results demonstrated that Discriminant Analysis (DA) and Correlated Component Regression (CCR) correctly estimated the percent of blocked lysine in a validation and prediction set. These findings indicate that the measure of free markers reflects the extent of protein damage in soybean samples and it suggests the possibility to obtain rapid information on the quality of the industrial processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characterization and quantification of odor-active compounds in unsaturated fatty acid/conjugated linoleic acid (UFA/CLA)-enriched butter and in conventional butter during storage and induced oxidation.

    Science.gov (United States)

    Mallia, Silvia; Escher, Felix; Dubois, Sébastien; Schieberle, Peter; Schlichtherle-Cerny, Hedwig

    2009-08-26

    Dairy products enriched in unsaturated fatty acids (UFA) and conjugated linoleic acids (CLA) have a higher nutritional value and are suggested to have beneficial health effects. However, such acids are susceptible to oxidation, and off-flavors may be formed during storage. This study was aimed to compare the most important odorants in UFA/CLA-enriched butter to that of conventional butter during storage and induced oxidation. Volatiles were isolated by solvent-assisted flavor evaporation and identified by gas chromatography-olfactometry and mass spectrometry. Aroma extract dilution analysis revealed 18 odorants that were quantified by stable isotope dilution analysis. Another important odorant, 3-methyl-1H-indole (mothball-like odor), was quantified by high-performance liquid chromatography. After storage, UFA/CLA-enriched butter showed higher concentrations of pentanal (fatty), heptanal (green), butanoic acid (cheesy), and delta-decalactone (peach-like). Photo-oxidation of butter samples induced increases in heptanal, (E)-2-octenal, and trans-4,5-epoxy-(E)-2-decenal, especially in conventional butter. The higher vitamin content in UFA/CLA samples may protect this butter from oxidation.

  17. Synthesis, photophysical properties and structures of organotin-Schiff bases utilizing aromatic amino acid from the chiral pool and evaluation of the biological perspective of a triphenyltin compound.

    Science.gov (United States)

    Basu Baul, Tushar S; Kehie, Pelesakuo; Duthie, Andrew; Guchhait, Nikhil; Raviprakash, Nune; Mokhamatam, Raveendra B; Manna, Sunil K; Armata, Nerina; Scopelliti, Michelangelo; Wang, Ruimin; Englert, Ulli

    2017-03-01

    Five new organotin(IV) complexes of compositions [Me2SnL1] (1), [Me2SnL2]n (2), [Me2SnL3] (3), [Ph3SnL1H]n (4) and [Ph3SnL3H] (5) (where L1=(2S)-2-((E)-((Z)-4-hydroxypent-3-en-2-ylidene)amino)-3-(1H-indol-3-yl)propanoate, L2=(2S)-(E)-2-((2-hydroxybenzylidene)amino)-3-(1H-indol-3-yl)propanoate and L3=(2S)-(E)-2-((1-(2-hydroxyphenyl)ethylidene)amino)-3-(1H-indol-3-yl)propanoate were synthesized and spectroscopically characterized. The crystal structures of 1-4 were determined. For the dimethyltin derivative 2, a polymeric chain structure was observed as a result of a long Sn∙∙∙O contact involving the exocyclic carbonyl oxygen-atom from the tridentate ligand of a neighboring Sn-complex unit. The tin atom in this complex has a distorted octahedral coordination geometry, in which the long Sn-O bond is almost trans to the tridentate ligand nitrogen-atom. In contrast, the dimethyltin(IV) complexes 1 and 3 displayed discrete monomeric structures where the tin atom has distorted trigonal-bipyramidal geometry with the two coordinating L oxygen atoms defining the axial positions. On the other hand, 4 is a chain polymer in the solid state. The ligand-bridged Sn atoms adopt a trans-Ph3SnO2 trigonal-bipyramidal configuration with equatorial phenyl groups. A carboxylato oxygen atom from one and the hydroxyl oxygen of the successive ligand in the chain occupy the axial positions. The solution structures were predicted by the use of 119Sn NMR chemical shifts. The photophysical properties of the complexes were investigated in the solid and in solution. The triphenyltin(IV) compound 4 was tested in detail ex vivo against A375 (human melanoma) cell line, exhibiting an IC50 value of 261nM to induce cell death as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay without significant alteration of cytolysis as determined by lactate dehydrogenase (LDH) assay. Compound 4-mediated potent cell death was also determined by Live and Dead assay and

  18. Extraterrestrial Organic Compounds in Meteorites

    Science.gov (United States)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  19. Analysis of twenty phenolic compounds in human urine: hydrochloric acid hydrolysis, solid-phase extraction based on K2CO 3-treated silica, and gas chromatography tandem mass spectrometry.

    Science.gov (United States)

    Lu, Dasheng; Feng, Chao; Wang, Dongli; Lin, Yuanjie; Ip, Ho Sai Simon; She, Jianwen; Xu, Qian; Wu, Chunhua; Wang, Guoquan; Zhou, Zhijun

    2015-05-01

    This study developed a new method for the analysis of 20 phenolic compounds in human urine. The urine samples were prepared by hydrochloric acid (HCl) hydrolysis, liquid-liquid extraction (LLE), and solid-phase extraction (SPE) cleanup. We found that HCl hydrolysis is of similar effectiveness to, and much cheaper than, the traditional enzymatic method. Vanillic acid was co-eluted with butyl paraben and interfered with the determination of butyl paraben in urine. K2CO3-treated-silica-gel SPE was designed to efficiently eliminate interference from the endogenous organic acids (especially vanillic acid) in urine. After derivatization, the samples were analyzed by large-volume-injection gas chromatography-tandem mass spectrometry (LVI-GC-MS-MS). Good linearity (R (2) ≥ 0.996) was established in the range 0.1-100 ng mL(-1) for all analytes. Method detection limits (MDLs) were 0.7-9.8 pg mL(-1). Intraday (n = 5) and interday (n = 5 days) validation was performed, with satisfactory accuracy (recovery: 70-126 % and 73-107 %, respectively) and precision (RSD ≤ 19 %) at two levels (low: 0.1 and 0.5 ng mL(-1); high: 5 and 10 ng mL(-1)). The method was used in a population study and achieved more than 85 % detection for most analytes; mean analyte concentrations were in the range 0.01-185 ng mL(-1). The method is suitable for the analysis of multiple phenolic metabolites in human urine.

  20. Effect of temperature and solvent composition on acid dissociation equilibria, I: Sequenced {sup s}{sub s}pK{sub a} determination of compounds commonly used as buffers in high performance liquid chromatography coupled to mass spectroscopy detection

    Energy Technology Data Exchange (ETDEWEB)

    Padro, Juan M.; Acquaviva, Agustin; Tascon, Marcos [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina); Gagliardi, Leonardo G., E-mail: leogagliardi@quimica.unlp.edu.ar [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina); Castells, Cecilia B., E-mail: castells@isis.unlp.edu.ar [Laboratorio de Separaciones Analiticas, Division Quimica Analitica, Universidad Nacional de La Plata y CIDEPINT, 47 y 115, (1900) La Plata (Argentina)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer We developed a rapid potentiometric method for sequential pK{sub a} determinations. Black-Right-Pointing-Pointer We measured pK{sub a} of buffers from 0 to 90% (v/v) acetonitrile/water and from 20 to 60 Degree-Sign C. Black-Right-Pointing-Pointer Sequences of 42 pK{sub a}-data spanned over a wide solvent composition range needed 2 h. Black-Right-Pointing-Pointer We measured pK{sub a} of formic acid and triethylamine/HCl in up to 90% (v/v) acetonitrile. Black-Right-Pointing-Pointer The high-throughput method was applied to obtain pK{sub a} of two common buffers in LC/MS. - Abstract: A new automated and rapid potentiometric method for determining the effect of organic-solvent composition on pK{sub a} has been developed. It is based on the measurements of pH values of buffer solutions of variable solvent compositions using a combined glass electrode. Additions of small volumes of one precisely thermostated solution into another, both containing exactly the same analytical concentrations of the buffer components, can produce continuous changes in the solvent composition. Two sequences of potential measurements, one of increasing and the other of decreasing solvent content, are sufficient to obtain the pK{sub a} values of the acidic compound within the complete solvent-composition range in about 2 h. The experimental design, procedures, and calculations needed to convert the measured pH into the thermodynamic pK{sub a} values are thoroughly discussed. This rapid and automated method allows the systematic study of the effect of solvent compositions and temperatures on the pK{sub a}. It has been applied to study the dissociation constants of two monoprotic acids: formic acid and triethylamine:HCl in acetonitrile/water mixtures within the range from 0 to 90% (v/v) at temperatures between 20 Degree-Sign C and 60 Degree-Sign C. These volatile compounds are frequently used to control the pH of the mobile phase in HPLC, especially in

  1. Incorporation of sunflower oil or linseed oil in equine compound feedstuff: 1 Effects on haematology and on fatty acids profiles in the red blood cells membranes.

    Science.gov (United States)

    Patoux, S; Istasse, L

    2016-10-01

    Eight trained horses (6 mares - 2 geldings, 6 Selle Français, 2 Trotteur Français, 12 ± 5.8 years old, 538 ± 72.5 kg) were offered three diets to potentially affect haematology and the fatty acids (FA) profiles in red blood cells (RBC) membranes. The control diet was composed of 50% hay and 50% concentrate containing mainly rolled barley (48%) and whole spelt (48%). In the case of sunflower oil diet, sunflower oil (62.0% of α-linoleic acid, LA) was incorporated at a rate of 8% and substituted by an equal proportion of barley. In the linseed oil diet, first cold-pressed linseed oil (56.0% of α-linolenic acid, ALA) was utilised at a similar incorporation rate of 8%. The experimental design consisted of three 3 × 3 latin squares with one being incomplete. Each period lasted 8 weeks. On average, the total feed intake (straw excluded) was 6.2 kg/day and the oil intake 0.278 kg/day. The oils significantly increased the concentrations of RBC, haemoglobin and haematocrit. The oils had no significant impact on the haematology profiles except that platelets tended to decrease in both oil-based diets. The most abundant FA in the RBC membranes of the control diet samples were in the decreasing order LA, C18:1n9-7, C18:0, C16:0 and the arachidonic acid (ARA) respectively. The sunflower oil supplementation slightly increased the amount of LA (36.23 vs. 34.72 mg/dl, p = 0.55) and C22:4n-6 (0.21 vs. 0.09 mg/dl, p = 0.22), while the decrease was observed in case of other FA (C16:1n-7, 1.08 vs. 1.42 mg/dl, p = 0.03), C20:3n-6 (0.22 vs. 0.31 mg/dl, p = 0.02), and ARA (1.17 vs. 1.63 mg/dl, p = 0.08). Linseed oil induced similar effects in the n-6 series FA profiles. In the context of practical applications, our results show that linseed oil incorporation in the diet could improve the haematology and the n-3 FA profiles potentially leading to an increased performance. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  2. Exposure to perfluorononanoic acid combined with a low-dose mixture of 14 human-relevant compounds disturbs energy/lipid homeostasis in rats

    DEFF Research Database (Denmark)

    Skov, Kasper; Kongsbak, Kristine Grønning; Hadrup, Niels

    2015-01-01

    differentially affected across study groups. In the liver, expression of 182 and 203 genes—mainly related to energy homeostasis and lipid metabolism—were differentially expressed upon exposure to PFNA alone or PFNA + Mix, respectively. In general, Mix alone affected lipid metabolism evident in blood plasma...... consequences of low-dose exposure to complex mixtures remain poorly understood. We have profiled the effects on rat blood plasma and liver homeostasis using metabolomics and transcriptomics following 2-week exposure to either a mixture of 14 common chemicals (Mix), perfluorononanoic acid (PFNA) at low (0......, whereas effects on lipid metabolism in the liver were mainly driven by PFNA. This study verifies that a chemical mixture given at high-end human exposure levels can affect lipid homeostasis and that the combined use of metabolomics and transcriptomics can provide complimentary information allowing...

  3. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  4. Development of C60-based labeling reagents for the determination of low-molecular-weight compounds by matrix assisted laser desorption ionization mass (I): Determination of amino acids in microliter biofluids.

    Science.gov (United States)

    Wu, Pin; Xiao, Hua-Ming; Ding, Jun; Deng, Qian-Yun; Zheng, Fang; Feng, Yu-Qi

    2017-04-01

    Quantification of low molecular weight compounds (C60 labeling-MALDI MS strategy was proposed for the fast, sensitive and reliable determination of amino acids (AAs) in biofluids. An N-hydroxysuccinimide functionalized C60 was synthesized as the labeling reagent and added as an 880 Da tag to AAs; a carboxyl acid containing C60 was employed as the internal standards to normalize MS variations. This solved the inherent problems of MALDI MS for small molecule analysis. The entire analytical procedure-which consisted of simple protein precipitation and 10 min of derivatization in a microwave prior to the MALDI MS analysis-could be accomplished within 20 min with high throughput and great sample matrix tolerance. AA quantification showed good linearity from 0.7 to 70.0 μM with correlation coefficients (R) larger than 0.9954. The limits of detection were 70.0-300.0 fmol. Good reproducibility and reliability of the method were demonstrated by intra-day and inter-day precision with relative standard deviations less than 13.8%, and the recovery in biofluid ranged from 80.4% to 106.8%. This approach could be used in 1 μL of urine, serum, plasma, whole blood, and cerebrospinal fluid. Most importantly, the C60 labeling strategy is a universal approach for MALDI MS analysis of various LMW compounds because functionalized C60 is now available on demand. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Phenolic compounds in Ross Sea water

    Science.gov (United States)

    Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo; Corami, Fabiana; Kehrwald, Natalie; Capodaglio, Gabriele

    2016-04-01

    Phenolic compounds are semi-volatile organic compounds produced during biomass burning and lignin degradation in water. In atmospheric and paleoclimatic ice cores studies, these compounds are used as biomarkers of wood combustion and supply information on the type of combusted biomass. Phenolic compounds are therefore indicators of paleoclimatic interest. Recent studies of Antarctic aerosols highlighted that phenolic compounds in Antarctica are not exclusively attributable to biomass burning but also derive from marine sources. In order to study the marine contribution to aerosols we developed an analytical method to determine the concentration of vanillic acid, vanillin, p-coumaric acid, syringic acid, isovanillic acid, homovanillic acid, syringaldehyde, acetosyringone and acetovanillone present in dissolved and particle phases in Sea Ross waters using HPLC-MS/MS. The analytical method was validated and used to quantify phenolic compounds in 28 sea water samples collected during a 2012 Ross Sea R/V cruise. The observed compounds were vanillic acid, vanillin, acetovanillone and p-coumaric acid with concentrations in the ng/L range. Higher concentrations of analytes were present in the dissolved phase than in the particle phase. Sample concentrations were greatest in the coastal, surficial and less saline Ross Sea waters near Victoria Land.

  6. All fats are not equal: Considerations when using fatty acid biomarkers in compound-specific stable isotope soil and sediment tracing

    Science.gov (United States)

    Reiffarth, Dominic; Petticrew, Ellen; Owens, Philip; Lobb, David

    2013-04-01

    The development of cost-effective, convenient and reliable methods for tracing sediment movement will help establish water security. The use of compound-specific stable isotopes (CSSIs) has seen limited, small-scale applications, often in watersheds exhibiting exotic and highly diverse vegetation types. The CSSI tracing technique relies on the detection and transport of naturally occurring organics of plant origin (biomarkers); the biomarkers of interest are produced by flora, deposited on the soil and potentially mobilized along with soil particles. In part, the uniqueness of a biomarker is dependent on its biological pathway. As a plant fixes CO2-its primary source of carbon for building larger organic molecules-discrimination against the heavier 13C isotope leads to an enrichment of 12C. The more complex the biological pathway the biomarker has been subjected to, the more discrimination and unique isotopic signature the biomarker exhibits. Successfully implementing CSSI tracing requires recognizing: (i) factors contributing to the natural variability of the isotopic signature (ii) the suitability of a biomarker and (iii) factors affecting sensitivity during analysis. Considering the relatively low input of suitable organic biomarkers into the soil and degree of signal dispersion, care must be taken to isolate and correctly identify biomarkers, particularly where vegetation types show low variability and where long-range transport occurs. Research is currently being conducted in the Horsefly River (British Columbia, Canada) and South Tobacco Creek (Manitoba, Canada) watersheds; the research seeks to address some of these concerns, particularly in a temperate climate where exotic vegetation types are not common and variability is expected to be low.

  7. Phenolic compounds from Bletilla striata.

    Science.gov (United States)

    Wang, Li-Ning; He, Yong-Zhi; Zhao, Qi-Duo; Deng, Yan-Ru; Wu, Pei-Qian; Zhang, Yan-Jun

    2017-10-01

    Two new malic acid derivatives, namely eucomic acid 1-methyl ester (2) and 6'''-acetylmilitaline (7), together with ten known compounds (1, 3-6, 8-12), were isolated from the dry tubers of Bletilla striata (Thunb.) Reichb. F., a perennial traditional Chinese medicinal herb, which was used for the treatment of pneumonophthisis, pneumonorrhagia, tuberculosis, and hemorrhage of the stomach or lung. Their structures were elucidated by spectroscopic analyses, including 1D-, 2D-NMR, and HR-ESI-MS.

  8. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  9. Bismaleimide compounds

    Science.gov (United States)

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  10. The metabolic response in fish to mildly elevated water temperature relates to species-dependent muscular concentrations of imidazole compounds and free amino acids.

    Science.gov (United States)

    Geda, Fikremariam; Declercq, Annelies M; Remø, Sofie C; Waagbø, Rune; Lourenço, Marta; Janssens, Geert P J

    2017-04-01

    Fish species show distinct differences in their muscular concentrations of imidazoles and free amino acids (FAA). This study was conducted to investigate whether metabolic response to mildly elevated water temperature (MEWT) relates to species-dependent muscular concentrations of imidazoles and FAA. Thirteen carp and 17 Nile tilapia, housed one per aquarium, were randomly assigned to either acclimation (25°C) or MEWT (30°C) for 14 days. Main muscular concentrations were histidine (HIS; P0.05), (NAH+HIS)/TAU ratio was markedly higher in carp versus tilapia, and decreased with MEWT only in carp (Pacids in carp metabolism (Pacids (NEFA) in carp (P=0.001), the latter shows that carp, being a fatter fish, more readily mobilises fat than tilapia at MEWT, which coincides with more intensive muscular mobilization of imidazoles. This study demonstrates that fish species differ in their metabolic response to MEWT, which is associated with species-dependent changes in muscle imidazole to taurine ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Anti-Inflammatory Activities of Licorice Extract and Its Active Compounds, Glycyrrhizic Acid, Liquiritin and Liquiritigenin, in BV2 Cells and Mice Liver

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Yu

    2015-07-01

    Full Text Available This study provides the scientific basis for the anti-inflammatory effects of licorice extract in a t-BHP (tert-butyl hydrogen peroxide-induced liver damage model and the effects of its ingredients, glycyrrhizic acid (GA, liquiritin (LQ and liquiritigenin (LG, in a lipopolysaccharide (LPS-stimulated microglial cell model. The GA, LQ and LG inhibited the LPS-stimulated elevation of pro-inflammatory mediators, such as inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, tumor necrosis factor (TNF-alpha, interleukin (IL-1beta and interleukin (IL-6 in BV2 (mouse brain microglia cells. Furthermore, licorice extract inhibited the expression levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6 in the livers of t-BHP-treated mice models. This result suggested that mechanistic-based evidence substantiating the traditional claims of licorice extract and its three bioactive components can be applied for the treatment of inflammation-related disorders, such as oxidative liver damage and inflammation diseases.

  12. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium.

    Science.gov (United States)

    Cheng, Yicheng; Zhao, Xianghui; Liu, Xianghui; Sun, Weige; Ren, Huifang; Gao, Bo; Wu, Jiang

    2015-01-01

    Titanium implants have been widely used for many medical applications, but bacterial infection after implant surgery remains one of the most common and intractable complications. To this end, long-term antibacterial ability of the implant surface is highly desirable to prevent implant-associated infection. In this study, a novel antibacterial coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone loaded poly(L-lactic acid) nanoparticles, was fabricated on microarc-oxidized titanium for this purpose. The antibacterial coating produced a unique inhibition zone against Staphylococcus aureus throughout a 60-day study period, which is normally long enough to prevent the infection around implants in the early and intermediate stages. The antibacterial rate for adherent S. aureus was about 100% in the first 10 days and constantly remained over 90% in the following 20 days. Fluorescence staining of adherent S. aureus also confirmed the excellent antibacterial ability of the antibacterial coating. Moreover, in vitro experiments showed an enhanced osteoblast adhesion and proliferation on the antibacterial coating, and more notable cell spread was observed at the early stage. It is therefore concluded that the fabricated antibacterial coating, which exhibits relatively long-term antibacterial ability and excellent biological performance, is a potential and promising strategy to prevent implant-associated infection.

  13. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria.

    Science.gov (United States)

    Salimi, Ahmad; Roudkenar, Mehryar Habibi; Sadeghi, Leila; Mohseni, Alireza; Seydi, Enayatollah; Pirahmadi, Nahal; Pourahmad, Jalal

    2015-12-01

    To investigate the effects ofellagic acid (EA) on the cytotoxicity, B-lymphocytes isolated from CLL patients and healthy individuals. Flow cytometric assay was used to measure the percentage of apoptosis versus necrosis, intracellular active oxygen radicals (ROS), mitochondrial membrane potential (MMP) and the caspase-3 activity and then mitochondria were isolated from both groups B-lymphocytes and parameters of mitochondrial toxicity was investigated. Based on our results EA decreased the percentage of viable cells and induced apoptosis. EA increased ROS formation, mitochondria swelling, MMP decrease and cytochrome c release in mitochondria isolated from CLL BUT NOT healthy B-lymphocytes while pre-treatment with cyclosporine A and Butylated hydroxyl toluene (BHT) prevented these effects. Our results suggest that EA can act as an anti cancer candidate by directly and selectively targeting mitochondria could induce apoptosis through mitochondria pathway with increasing ROS production which finally ends in cytochrome c release, caspase 3 activation and apoptosis in cancerous B-lymphocytes isolated from CLL patients. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium

    Science.gov (United States)

    Cheng, Yicheng; Zhao, Xianghui; Liu, Xianghui; Sun, Weige; Ren, Huifang; Gao, Bo; Wu, Jiang

    2015-01-01

    Titanium implants have been widely used for many medical applications, but bacterial infection after implant surgery remains one of the most common and intractable complications. To this end, long-term antibacterial ability of the implant surface is highly desirable to prevent implant-associated infection. In this study, a novel antibacterial coating containing a new antibacterial agent, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone loaded poly(L-lactic acid) nanoparticles, was fabricated on microarc-oxidized titanium for this purpose. The antibacterial coating produced a unique inhibition zone against Staphylococcus aureus throughout a 60-day study period, which is normally long enough to prevent the infection around implants in the early and intermediate stages. The antibacterial rate for adherent S. aureus was about 100% in the first 10 days and constantly remained over 90% in the following 20 days. Fluorescence staining of adherent S. aureus also confirmed the excellent antibacterial ability of the antibacterial coating. Moreover, in vitro experiments showed an enhanced osteoblast adhesion and proliferation on the antibacterial coating, and more notable cell spread was observed at the early stage. It is therefore concluded that the fabricated antibacterial coating, which exhibits relatively long-term antibacterial ability and excellent biological performance, is a potential and promising strategy to prevent implant-associated infection. PMID:25632231

  15. Flavour Compounds in Fungi

    DEFF Research Database (Denmark)

    Ravasio, Davide Antonio

    from the catabolism of amino acids. These compounds are produced by the Ehrlich pathway. The conversion of amino acids into aroma alcohols is accomplished by three enzymatic steps: i) a transamination, ii) a decarboxylation and iii) a dehydration reaction. The transaminase and decarboxylase enzymes...... and 2-phenylacetate. The last part of this thesis presents the initial characterization of twenty non-conventional yeasts (NCY) and their potential application in fermentative processes. These strains have been selected as they have been previously isolated from various fermented food sources....... This selection of strains was used in fermentations with the aim of identifying new interesting flavour producers. Fermentation profiles, volatile analyses, off-flavour identification and resistance to osmotic/oxidative stress have been addressed to highlight new candidates to use for industrial applications...

  16. Effect of dosing sequence and solution pH on floc properties of the compound bioflocculant-aluminum sulfate dual-coagulant in kaolin-humic acid solution treatment.

    Science.gov (United States)

    Bo, Xiaowen; Gao, Baoyu; Peng, Nana; Wang, Yan; Yue, Qinyan; Zhao, Yingcan

    2012-06-01

    The compound bioflocculant (CBF)-aluminum sulfate (AS) dual-coagulant and AS were comparatively studied for the coagulation of kaolin-humic acid solution. Floc properties including floc growth rate, size, strength, recoverability and fractal dimension under different pH conditions were investigated by Mastersizer 2000. Results indicated that, the flocs formed by AS-CBF (AS dosed first) showed the largest size and the best recoverability across the pH range investigated. While flocs formed by CBF-AS gave the most compact structure. The three coagulants exhibited similar floc growth rate and strength. Moreover, flocs formed in acidic conditions were stronger and more recoverable but showed lower growth rate, smaller size and looser structure compared to those formed at pH>6 regardless of the coagulant used. Charge neutralization was the dominant mechanism for AS at low pH, while the coagulation mechanism transformed to enmeshment as the pH increased. There was an additional adsorption bridging effect for AS-CBF and CBF-AS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Applications of direct analysis in real time mass spectrometry (DART-MS) in Allium chemistry. 2-propenesulfenic and 2-propenesulfinic acids, diallyl trisulfane S-oxide, and other reactive sulfur compounds from crushed garlic and other Alliums.

    Science.gov (United States)

    Block, Eric; Dane, A John; Thomas, Siji; Cody, Robert B

    2010-04-28

    Through the use of direct analysis in real time mass spectrometry (DART-MS), 2-propenesulfenic acid, an intermediate long postulated as being formed when garlic ( Allium sativum ) is crushed, has been detected for the first time and determined by mass spectrometric methods to have a half-life of garlic, along with allicin and related thiosulfinates, allyl alcohol, sulfur dioxide, propene, and pyruvate as coproducts. A commercial dietary supplement containing garlic powder, which was sampled after crushing, was found to contain alliin, methiin, and S-allylcysteine and produced allicin upon addition of water. DART-MS detection of 1-butenesulfenic acid from the ornamental A. siculum is also reported. (Z)-Propanethial S-oxide (onion lachrymatory factor), absent in garlic, is found to be formed from crushed elephant garlic ( Allium ampeloprasum ), consistent with the classification of this plant as a closer relative of leek than of garlic. Mixtures of thiosulfinates, lachrymatory thial S-oxides, and related compounds are directly observed from crushed leek ( Allium porrum ) and Chinese chive ( Allium tuberosum ). Disulfanes and polysulfanes are detected only when the Allium samples are heated, consistent with earlier conclusions that these are not primary products from cut or crushed alliums.

  18. Argyreia nervosa (Burm. f.): receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches.

    Science.gov (United States)

    Paulke, Alexander; Kremer, Christian; Wunder, Cora; Achenbach, Janosch; Djahanschiri, Bardya; Elias, Anderson; Schwed, J Stefan; Hübner, Harald; Gmeiner, Peter; Proschak, Ewgenij; Toennes, Stefan W; Stark, Holger

    2013-07-09

    The convolvulacea Argyreia nervosa (Burm. f.) is well known as an important medical plant in the traditional Ayurvedic system of medicine and it is used in numerous diseases (e.g. nervousness, bronchitis, tuberculosis, arthritis, and diabetes). Additionally, in the Indian state of Assam and in other regions Argyreia nervosa is part of the traditional tribal medicine (e.g. the Santali people, the Lodhas, and others). In the western hemisphere, Argyreia nervosa has been brought in attention as so called "legal high". In this context, the seeds are used as source of the psychoactive ergotalkaloid lysergic acid amide (LSA), which is considered as the main active ingredient. As the chemical structure of LSA is very similar to that of lysergic acid diethylamide (LSD), the seeds of Argyreia nervosa (Burm. f.) are often considered as natural substitute of LSD. In the present study, LSA and LSD have been compared concerning their potential pharmacological profiles based on the receptor binding affinities since our recent human study with four volunteers on p.o. application of Argyreia nervosa seeds has led to some ambiguous effects. In an initial step computer-aided in silico prediction models on receptor binding were employed to screen for serotonin, norepinephrine, dopamine, muscarine, and histamine receptor subtypes as potential targets for LSA. In addition, this screening was extended to accompany ergotalkaloids of Argyreia nervosa (Burm. f.). In a verification step, selected LSA screening results were confirmed by in vitro binding assays with some extensions to LSD. In the in silico model LSA exhibited the highest affinity with a pKi of about 8.0 at α1A, and α1B. Clear affinity with pKi>7 was predicted for 5-HT1A, 5-HT1B, 5-HT1D, 5-HT6, 5-HT7, and D2. From these receptors the 5-HT1D subtype exhibited the highest pKi with 7.98 in the prediction model. From the other ergotalkaloids, agroclavine and festuclavine also seemed to be highly affine to the 5-HT1D

  19. One lignanoid compound and four triterpenoid compounds with anti-inflammatory activity from the leaves of Elaeagnus oldhamii maxim.

    Science.gov (United States)

    Liao, Chi-Ren; Ho, Yu-Ling; Huang, Guan-Jhong; Yang, Chang Syun; Chao, Che-Yi; Chang, Yuan-Shiun; Kuo, Yueh-Hsiung

    2013-10-25

    One lignanoid compound, isoamericanol B (1), along with four triterpenoid compounds-cis-3-O-p-hydroxycinnamoyloleanolic acid (2), trans-3-O-p-hydroxy cinnamoyloleanolic acid (3), cis-3-O-p-hydroxycinnamoylursolic acid (4), trans-3-O-p-hydroxycinnamoylursolic acid (5) have been isolated for the first time from the leaves of Elaeagnus oldhamii Maxim. Compounds 1-4 significantly inhibited the expression of NO (nitric oxide) produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The IC50 value for inhibition of nitrite production of compound 1 was about 10.3 ± 0.4 μg/mL. In the cell viability test, however, among compounds 1-4 compound 1 did not significantly change cell viability. Therefore, in this study compound 1 possessed anti-inflammatory effects. The result suggests compound 1 as a potential lead compound for the treatment of inflammatory diseases.

  20. Assimilation of Unusual Carbon Compounds

    NARCIS (Netherlands)

    Middelhoven, W.J.

    2009-01-01

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are

  1. Inhibition of trimethadione and dimethadione teratogenicity by the cyclooxygenase inhibitor acetylsalicylic acid: a unifying hypothesis for the teratologic effects of hydantoin anticonvulsants and structurally related compounds.

    Science.gov (United States)

    Wells, P G; Nagai, M K; Greco, G S

    1989-03-01

    Teratogenicity of the anticonvulsant phenytoin may be due in part to its bioactivation by prostaglandin synthetase, forming a reactive free radical intermediate. We examined whether teratogenicity of the structurally similar oxazolidinedione anticonvulsants, trimethadione and its N-demethylated metabolite dimethadione, could be inhibited by the prostaglandin synthetase inhibitor acetylsalicylic acid (ASA). Trimethadione, 700 or 1000 mg/kg intraperitoneally (ip), was given to pregnant CD-1 mice during (Gestational Days 12 and 13) or before (Days 11 and 12) the critical period of susceptibility to phenytoin-induced fetal cleft palates. Dimethadione was given similarly on Days 11 and 12, or 12 and 13, in a dose (900 mg/kg ip) that was equimolar to 1000 mg/kg of trimethadione. ASA, 10 or 1 mg/kg ip, was given 2 hr before trimethadione or dimethadione on Days 11 and 12, and before trimethadione on Day 11 only. Dams were killed on Day 19 and fetuses were examined for anomalies. Either dose of trimethadione given on Days 12 and 13 was negligibly teratogenic, as evidenced by a non-dose-related, 1.1% mean incidence of fetal cleft palates. However, when given earlier on Days 11 and 12, trimethadione 1000 mg/kg caused an 8.9% incidence of cleft palates (p less than 0.05). Similarly, dimethadione caused a 3.9-fold higher incidence of cleft palates when given earlier on Days 11 and 12 (17.3-34.9%) than on Days 12 and 13 (4.4%) (p less than 0.05). At equimolar doses, dimethadione caused a 1.9- to 3.9-fold higher incidence of cleft palates compared to trimethadione (p less than 0.05), suggesting that dimethadione may be the proximate teratogen. Either dose of ASA given on both days before trimethadione totally prevented cleft palates, and ASA 10 mg/kg given only on Day 11 reduced the incidence of trimethadione-induced cleft palates to 1.1% (p less than 0.05). ASA reduced the incidence of cleft palates caused by dimethadione given on Days 11 and 12 from 34.9 to 20.3% (p less than

  2. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  3. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Natasha L Vokhshoori

    Full Text Available We explored δ(15N compound-specific amino acid isotope data (CSI-AA in filter-feeding intertidal mussels (Mytilus californianus as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15N gradients in the California Upwelling Ecosystem (CUE, determining bulk δ(15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2 = 0.759. In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15N trend is therefore most consistent with a baseline δ(15N gradient, likely due to the mixing of two source waters: low δ(15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC, with (15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15N values of phenylalanine (δ(15NPhe, the best AA proxy for baseline δ(15N values. We hypothesize δ(15N(Phe values in intertidal mussels can approximate annual integrated δ(15N values of coastal phytoplankton primary production. We therefore used δ(15N(Phe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15N values. We propose that δ(15N(Phe isoscapes derived from filter feeders can directly characterize baseline δ(15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  4. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, M.R.; Hollman, P.C.H.; Katan, M.B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  5. Phenolic Compounds in the Potato and Its Byproducts: An Overview

    National Research Council Canada - National Science Library

    Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito

    2016-01-01

    The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds...

  6. Hausa verbal compounds

    NARCIS (Netherlands)

    McIntyre, Joseph Anthony

    2006-01-01

    Verbal compounds abound in Hausa (a Chadic language). A very broad definition of Hausa verbal compounds (henceforth: VC) is “a compound with a verb”. Four types of verbal compound are analysed: V[erb]+X compounds, PAC+V compounds (a PAC is a pronoun complex indicating TAM), VCs with a ma prefix

  7. Oxygen compounds in the Irati Shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, J.C.; Schmal, M. (Federal Univ. of Rio de Janeiro, COPPE/EQ/UFRJ, C.P. 68502, 21945 Rio de Janeiro (Brazil)); Cardoso, J.N. (Inst. of Chemistry/UFRJ, Centro de Technologia, Bloco A, Sala A-603, 21901 Rio de Janeiro (Brazil))

    1992-04-01

    This paper reports the principal alkylphenols (4 wt %) and carboxylic acids (1.2 wt %) present in the Irati Shale oil S[tilde a]o Mateus do Sul, Paran acute (a) by means of a combination of gas chromatography-mass spectrometry (GC-MS) and retention time-data of standard compounds. it appears that the phenols are essentially monocyclic in nature with methyl groups as the main substituents. Carboxylic acids are principally linear and predominantly of the range C[sub 14]--C[sub 20]. After catalytic hydrotreatment (400 [degrees]C, 125 atm) high hydrodeoxygenation levels were obtained (87 wt %) for phenols and carboxylic