WorldWideScience

Sample records for compositionally varied rock

  1. Compositional Differences between Felsic Volcanic rocks from the ...

    African Journals Online (AJOL)

    The elemental and Sr-Nd isotopic compositions of the volcanic rocks suggest that fractional crystallization from differing basic parents accompanied by a limited assimilation (AFC) was the dominant process controlling the genesis of the MER felsic volcanic rocks. Keywords: Ethiopia; Northern Main Ethiopian Rift; Bimodal ...

  2. Influence of substrate rocks on Fe-Mn crust composition

    Science.gov (United States)

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  3. Dry Sliding Wear Charactristics of Aluminum 6061-T6, Magnesium AZ31 and Rock Dust Composite

    Science.gov (United States)

    Balachandar, R.; Balasundaram, R.; Rajkumar, G.

    2018-02-01

    In recent years, the use of aluminum composite is gaining popularity in a wide range of applications like automobiles, aerospace and constructions (both interior & exterior) panels etc., due to its high strength, low density characteristics. Various reinforcing materials are used with aluminum 6061-T6 in order to have better mechanical properties. The addition of 0.3% of magnesium AZ31 will increase the ultimate tensile strength by 25 %. The reinforcement of rock dust will decrease the density. Hence, in order to have an advantages of magnesium AZ31 and rock dust, in this work, these two constitutes are varied from 1% to 2% on the base material of Al6061-T6 in stir casting. To evaluate the wear characteristics, Pin on disc is used in these composites. The input parameters are speed, time & load. The output response is wear. To minimize the number of experiments, L9 orthogonal array is used. The test results showed that a composite of 97% of Al (6061-T6), 1% Mg (AZ31) & 2 % of rock dust produced less wear. To find the best value of operating parameter for each sample, ANN-GA is used.

  4. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  5. Theoretical Calculation and Analysis on the Composite Rock-Bolt Bearing Structure in Burst-Prone Ground

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2015-01-01

    Full Text Available Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structure in burst-prone ground, and confirms the rock burst prevention criterion of the Composite Rock-Bolt Bearing Structure. According to the rock burst prevention criterion, the amount of the influence on rock burst prevention ability from the surrounding rock parameters and bolt support parameters is discussed.

  6. Improved microstructure of cement-based composites through the addition of rock wool particles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Ting [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China); Cheng, An, E-mail: ancheng@niu.edu.tw [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Huang, Ran; Zou, Si-Yu [Dept. of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  7. Impact of grain size and rock composition on simulated rock weathering

    Science.gov (United States)

    Israeli, Yoni; Emmanuel, Simon

    2018-05-01

    Both chemical and mechanical processes act together to control the weathering rate of rocks. In rocks with micrometer size grains, enhanced dissolution at grain boundaries has been observed to cause the mechanical detachment of particles. However, it remains unclear how important this effect is in rocks with larger grains, and how the overall weathering rate is influenced by the proportion of high- and low-reactivity mineral phases. Here, we use a numerical model to assess the effect of grain size on chemical weathering and chemo-mechanical grain detachment. Our model shows that as grain size increases, the weathering rate initially decreases; however, beyond a critical size no significant decrease in the rate is observed. This transition occurs when the density of reactive boundaries is less than ˜ 20 % of the entire domain. In addition, we examined the weathering rates of rocks containing different proportions of high- and low-reactivity minerals. We found that as the proportion of low-reactivity minerals increases, the weathering rate decreases nonlinearly. These simulations indicate that for all compositions, grain detachment contributes more than 36 % to the overall weathering rate, with a maximum of ˜ 50 % when high- and low-reactivity minerals are equally abundant in the rock. This occurs because selective dissolution of the high-reactivity minerals creates large clusters of low-reactivity minerals, which then become detached. Our results demonstrate that the balance between chemical and mechanical processes can create complex and nonlinear relationships between the weathering rate and lithology.

  8. Contrasted glass-whole rock compositions and phenocryst re-distribution, IPOD Sites 417 and 418

    Science.gov (United States)

    Staudigel, H.; Bryan, W. B.

    1982-01-01

    Major element composition ranges of closely associated basalt glass-whole rock pairs from individual small cooling units approach the total known range of basalt glass and whole rock compositions at IPOD sites 417 and 418. The whole rock samples fall into two groups: one is depleted in MgO and distinctly enriched in plagioclase but has lost some olivine and/or pyroxene relative to its corresponding glass; and the other is enriched in MgO and in phenocrysts of olivine and pyroxene as well as plagioclase compared to its corresponding glass. By analogy with observed phenocryst distributions in lava pillows, tubes, and dikes, and with some theoretical studies, we infer that bulk rock compositions are strongly affected by phenocryst redistribution due to gravity settling, flotation, and dynamic sorting after eruption, although specific models are not well constrained by the one-dimensional geometry of drill core. Compositional trends or groupings in whole rock data resulting from such late-stage processes should not be confused with more fundamental compositional effects produced in deep chambers or during partial melting.

  9. Theoretical Calculation and Analysis on the Composite Rock-Bolt Bearing Structure in Burst-Prone Ground

    OpenAIRE

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Cui, Mantang; Zhang, Kai; Zhang, Minglei

    2015-01-01

    Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structur...

  10. A Comprehensive Study on Dielectric Properties of Volcanic Rock/PANI Composites

    Science.gov (United States)

    Kiliç, M.; Karabul, Y.; Okutan, M.; İçelli, O.

    2016-05-01

    Basalt is a very well-known volcanic rock that is dark colored and relatively rich in iron and magnesium, almost located each country in the world. These rocks have been used in the refused rock industry, to produce building tiles, construction industrial, highway engineering. Powders and fibers of basalt rocks are widely used of radiation shielding, thermal stability, heat and sound insulation. This study examined three different basalt samples (coded CM-1, KYZ-13 and KYZ-24) collected from different regions of Van province in Turkey. Polyaniline (PANI) is one of the representative conductive polymers due to its fine environmental stability, huge electrical conductivity, as well as a comparatively low cost. Also, the electrical and thermal properties of polymer composites containing PANI have been widely studied. The dielectric properties of Basalt/Polyaniline composites in different concentrations (10, 25, 50 wt.% PANI) have been investigated by dielectric spectroscopy method at the room temperature. The dielectric parameters (dielectric constants, loss and strength) were measured in the frequency range of 102 Hz-106 Hz at room temperature. The electrical mechanism change with PANI dopant. A detailed dielectrically analysis of these composites will be presented.

  11. Diversity of Rock Compositions at Gale Crater Observed by ChemCam and APXS on Curiosity, and Comparison to Meteorite and Orbital Observations

    Science.gov (United States)

    Wiens, R. C.; Maurice, S.; Grotzinger, J. P.; Gellert, R.; Mangold, N.; Sautter, V.; Ollila, A.; Dyar, M. D.; Le Mouelic, S.; Ehlmann, B. L.; Clegg, S. M.; Lanza, N.; Cousin, A.; Forni, O.; Gasnault, O.; Lasue, J.; Blaney, D. L.; Newsom, H. E.; Herkenhoff, K. E.; Anderson, R. B.; D'Uston, L.; Bridges, N. T.; Fabre, C.; Meslin, P.; Johnson, J.; Vaniman, D.; Bridges, J.; Dromart, G.; Schmidt, M. E.; Team, M.

    2013-12-01

    Gale crater was selected as the Curiosity landing site because of the apparent sedimentary spectral signatures seen from orbit. Sedimentary materials on Mars have to this point showed very little expression of major element mobility, so compositions of precursor igneous minerals play a strong role in the compositions of sediments. In addition, pebbles and float rocks on Bradbury Rise (sols 0-50, > 324) appear to be mostly igneous in origin, and are assumed to have been carried down from the crater rim. Overall in the first year on Mars ChemCam obtained >75,000 LIBS spectra on > 2,000 observation points, supported by > 1,000 RMI images, and APXS obtained a significant number of observations. These show surprisingly variable compositions. The mean ChemCam compositions for Bradbury Rise dust-free rocks and pebbles (62 locations) give SiO2 = 56%, FeOT = 16% and show high alkalis consistent with Jake Matijevic (sol ~47) APXS Na2O ~6.6 wt%. ChemCam observations on the conglomerate Link (sol 27) gave Rb > 150 ppm and Sr > 1500 ppm. These compositions imply the presence of abundant alkali feldspars in the material infilling the lower parts of Gale crater. They are generally consistent with the more feldspar-rich SNC meteorites but show a radical departure from larger scale orbital observations, e.g., GRS, raising the question of how widespread these compositions are outside of Gale crater. Sedimentary materials at Yellowknife Bay encompassing the Sheepbed (sols 125-300) and Shaler (sols 121, 311-324) units, potentially including Point Lake (sols 301-310) and Rocknest (sols 57-97), appear to have incorporated varying amounts of igneous source materials. Seven rocks investigated at Rocknest show significant additions of Fe, with mean FeOT = 25% (154 locations), suggesting that FeO was a cementing agent. ChemCam observations at Shaler show varying amounts of alkali feldspar (i.e., related to Bradbury Rise), Fe-rich material (Rocknest-like), and potassium-rich material

  12. Lead isotopes in archaean plutonic rocks

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1978-01-01

    Archaean intrusive rocks have initial Pb isotopic compositions which show a varied and complex history for the source regions of the rocks. Even the oldest rocks from Greenland indicate heterogenous U and Pb distribution prior to 3800 m.y. ago. Source regions with μ values less than 7 must have played a significant role in the early history of the earth. By late Archaean time U/Pb ratios of source regions had increased substantially. Data from Australia and North America show distinct regional differences, both within and between continents. (Auth.)

  13. Compositional characteristics and industrial qualities of talcose rock ...

    African Journals Online (AJOL)

    Compositional characteristics and industrial qualities of talcose rock in Erin Omu area, southwestern Nigeria. OA Okunlola, FA Anikulapo. Abstract. No Abstract. Journal of Mining and Geology Vol. 42 (2) 2006: pp. 105-112. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  14. Method, equipment and results of determination of element composition of the Venus rock by the Vega-2 space probe

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Moskaleva, L.P.; Shcheglov, O.P.

    1985-01-01

    Venus rock composition was determined by X-ray radiometric method in the northeast site of the Aphrodita terra. The experiment was performed on the Vega-2 spacecraft. Composition of Venus rock proved to be close to the composition of the anorthosite-norite-troctolite rocks widespread in the lunar highland crust. The descriptions of the method, instrumentation and results of determining the composition of rocks in landing site of Vega-2 spacecraft are given

  15. Rock Physics of Reservoir Rocks with Varying Pore Water Saturation and Pore Water Salinity

    DEFF Research Database (Denmark)

    Katika, Konstantina

    experiments, the rock is subjected to high external stresses that resemble the reservoir stresses; 2) the fluid distribution within the pore space changes during the flow through experiments and wettability alterations may occur; 3) different ions, present in the salt water injected in the core, interact......Advanced waterflooding (injection of water with selective ions in reservoirs) is a method of enhanced oil recovery (EOR) that has attracted the interest of oil and gas companies that exploit the Danish oil and gas reservoirs. This method has been applied successfully in oil reservoirs...... and in the Smart Water project performed in a laboratory scale in order to evaluate the EOR processes in selected core plugs. A major step towards this evaluation is to identify the composition of the injected water that leads to increased oil recovery in reservoirs and to define changes in the petrophysical...

  16. Mineral and chemical composition of rock core and surface gas composition in Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Hiraga, Naoto; Ishii, Eiichi

    2008-02-01

    The following three kinds of analyses were conducted for the 1st phase of the Horonobe Underground Research Laboratory Project. Mineral composition analysis of core sample. Whole rock chemical composition analysis of core sample. Surface gas composition analysis. This document summarizes the results of these analyses. (author)

  17. Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands ophiolite

    Science.gov (United States)

    Smith, Susan E.; Elthon, Don

    1988-01-01

    Mineral compositions of residual and cumulate rocks from the Lewis Hills massif of the Bay of Islands ophiolite complex are reported and interpreted in the context of magnetic processes involved in the geochemical evolution of spatially associated diabase dikes. The mineral compositions reflect greater degrees of partial melting than most abyssal peridotites do and appear to represent the most depleted end of abyssal peridotite compositions. Subsolidus equilibration between Cr-Al spinal and olivine generally has occurred at temperatures of 700 to 900 C. The spinel variations agree with the overall fractionation of basaltic magmas producing spinels with progressively lower Cr numbers. The compositions of clinopyroxenes suggest that the fractionation of two different magma series produced the various cumulate rocks.

  18. Phase Composition Maps integrate mineral compositions with rock textures from the micro-meter to the thin section scale

    Science.gov (United States)

    Willis, Kyle V.; Srogi, LeeAnn; Lutz, Tim; Monson, Frederick C.; Pollock, Meagen

    2017-12-01

    Textures and compositions are critical information for interpreting rock formation. Existing methods to integrate both types of information favor high-resolution images of mineral compositions over small areas or low-resolution images of larger areas for phase identification. The method in this paper produces images of individual phases in which textural and compositional details are resolved over three orders of magnitude, from tens of micrometers to tens of millimeters. To construct these images, called Phase Composition Maps (PCMs), we make use of the resolution in backscattered electron (BSE) images and calibrate the gray scale values with mineral analyses by energy-dispersive X-ray spectrometry (EDS). The resulting images show the area of a standard thin section (roughly 40 mm × 20 mm) with spatial resolution as good as 3.5 μm/pixel, or more than 81 000 pixels/mm2, comparable to the resolution of X-ray element maps produced by wavelength-dispersive spectrometry (WDS). Procedures to create PCMs for mafic igneous rocks with multivariate linear regression models for minerals with solid solution (olivine, plagioclase feldspar, and pyroxenes) are presented and are applicable to other rock types. PCMs are processed using threshold functions based on the regression models to image specific composition ranges of minerals. PCMs are constructed using widely-available instrumentation: a scanning-electron microscope (SEM) with BSE and EDS X-ray detectors and standard image processing software such as ImageJ and Adobe Photoshop. Three brief applications illustrate the use of PCMs as petrologic tools: to reveal mineral composition patterns at multiple scales; to generate crystal size distributions for intracrystalline compositional zones and compare growth over time; and to image spatial distributions of minerals at different stages of magma crystallization by integrating textures and compositions with thermodynamic modeling.

  19. Waste-rock interactions and bedrock reactions

    International Nuclear Information System (INIS)

    White, W.B.

    1977-01-01

    The experimental program is designed to discover possible reactions between shale repository rocks and radioactive wastes. The canister can be regarded in three ways: (a) As a source of heat that modifies the mineralogy and therefore the physical properties of the surrounding rock (dry heat). (b) As a source of heat that activates reactions between minerals in the surrounding rock and slowly percolating ground water. (c) As a source of reaction materials of different composition from the surrounding rock and which therefore may react to form completely new ''minerals'' in a contact aureole around the canister. The matrix of interactions contains two composition axes. The waste compositions are defined by the various prototype waste forms usually investigated: glass, calcine, ''spent fuel'' and the ceramic supercalcine. The temperatures and pressures at which these reactions take place must be investigated. Thus each node on the ''wiring diagram'' is itself a matrix of experiments in which the T and to some extent P are varied. Experiments at higher pressure and temperature allow reactions to take place on a laboratory time scale and thus identify what could happen. These reactions are then followed downward in temperature to determine both phase boundaries and kinetic cut-offs below which equilibrium cannot be achieved on a laboratory time scale

  20. Study on the Venus rock composition in the northern part of the Land Aphrodita at the Vega 2 landing spacecraft

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Moskaleva, L.P.; Shzheglov, O.P.; 9400005SU; AN SSSR, Moscow. Fizicheskij Inst.)

    1986-01-01

    A brief description is given of experiment on X-ray radiometric determination of the elemental composition of Venus rock carried out with the help of the landing spacecraft Vega 2. Preliminary data on the rock composition in the Northern part of the Land Aphrodita and geochemical interpretation of the studied rock character are given. The detailed analysis of the Venus rock composition with application of iterations according to the ITERA program (Surkov etalli 1983) and application of the data on content of natural raedioactive elements determined by the ''Vega-2'' station gamma spectrometer (Surkov and et alli). Show that in the northen part of the Land Aphrodita rock is close by its composition with rocks of anorthosite-norite-troctolite group, which are widely distributed on the Moon surface

  1. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks.

    Science.gov (United States)

    Wigger, Cornelia; Van Loon, Luc R

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl 2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl 2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl 2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks

    Science.gov (United States)

    Wigger, Cornelia; Van Loon, Luc R.

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described.

  3. Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site

    Science.gov (United States)

    McSween, H.Y.; Murchie, S.L.; Crisp, J.A.; Bridges, N.T.; Anderson, R.C.; Bell, J.F.; Britt, D.T.; Brückner, J.; Dreibus, G.; Economou, T.; Ghosh, A.; Golombek, M.P.; Greenwood, J.P.; Johnson, J. R.; Moore, H.J.; Morris, R.V.; Parker, T.J.; Rieder, R.; Singer, R.; Wänke, H.

    1999-01-01

    Rocks at the Mars Pathfinder site are probably locally derived. Textures on rock surfaces may indicate volcanic, sedimentary, or impact-generated rocks, but aeolian abration and dust coatings prevent unambiguous interpretation. Multispectral imaging has resolved four spectral classes of rocks: gray and red, which occur on different surfaces of the same rocks; pink, which is probably soil crusts; and maroon, which occurs as large boulders, mostly in the far field. Rocks are assigned to two spectral trends based on the position of peak reflectance: the primary spectral trend contains gray, red, and pink rocks; maroon rocks constitute the secondary spectral trend. The spatial pattern of spectral variations observed is oriented along the prevailing wind direction. The primary spectral trend arises from thin ferric coatings of aeolian dust on darker rocks. The secondary spectral trend is apparently due to coating by a different mineral, probably maghemite or ferrihydrite. A chronology based on rock spectra suggests that rounded maroon boulders constitute the oldest petrologic unit (a flood deposit), succeeded by smaller cobbles possibly deposited by impact, and followed by aeolian erosion and deposition. Nearly linear chemical trends in alpha proton X-ray spectrometer rock compositions are interpreted as mixing lines between rock and adhering dust, a conclusion supported by a correlation between sulfur abundance and red/blue spectral ratio. Extrapolations of regression lines to zero sulfur give the composition of a presumed igneous rock. The chemistry and normative mineralogy of the sulfur-free rock resemble common terrestrial volcanic rocks, and its classification corresponds to andesite. Igneous rocks of this composition may occur with clastic sedimentary rocks or impact melts and breccias. However, the spectral mottling expected on conglomerates or breccias is not observed in any APXS-analyzed rocks. Interpretation of the rocks as andesites is complicated by absence

  4. Lead isotopic composition of paleozoic and late proterozoic marine carbonate rocks in the vicinity of Yucca Mountains, Nevada

    International Nuclear Information System (INIS)

    Zartman, R.E.; Kwak, L.M.

    1993-01-01

    Paleozoic and Late Proterozoic marine carbonate rocks (limestones, dolomites, and their metamorphic equivalents) cropping out in the vicinity of Yucca Mountain contain lead with an isotopic composition strongly suggesting them to be a major source of the lead observed at Trench 14 in the carbonate phase of carbonate-silica veins and nearby surficial calcrete deposits. Six whole-rock samples of marine carbonate rocks yield 206 Pb/ 204 Pb = 19.21-29.06, 207 Pb/ 204 Pb = 15.74-16.01, and 208 Pb/ 204 Pb = 37.90-39.25, and leachate and residue fractions of the rocks reveal additional isotopic heterogeneity within individual samples. Two samples of eolian dust also have isotopic compositions lying along a 'carbonate' to 'silicate' mixing trend that appears to arise entirely from pedeogenic processes. The tendency for the marine carbonate rocks to evolve highly uranogenic, but not thorogenic, lead results in a distinctive isotopic composition that serves as a tracer in eolian dust and secondary carbonate minerals derived from the marine carbonate rocks

  5. Spinning in different directions: western rock lobster larval condition varies with eddy polarity, but does their diet?

    OpenAIRE

    O'Rorke, R.; Jeffs, A. G.; Wang, M.; Waite, A. M.; Beckley, L. E.; Lavery, S. D.

    2015-01-01

    Larvae of the western rock lobster (Panulirus cygnus) that occur in the south-east Indian Ocean offshore of Western Australia have been found to be in poorer nutritional condition in anticyclonic compared with cyclonic mesoscale eddies. The reason for this is unknown, but culture-based experiments have shown that diet composition and water temperature are key determinants of phyllosoma health and survival. Whether differences in prey composition are the cause of poor phyllosoma co...

  6. New Data on the Composition of Cretaceous Volcanic Rocks of the Alazeya Plateau, Northeastern Yakutia

    Science.gov (United States)

    Tsukanov, N. V.; Skolotnev, S. G.

    2018-02-01

    This work presents new data on the composition of volcanics, developed within the Alazeya Plateau of the Kolyma-Indigirka fold area (Northeast Russia), which indicate essential differences in their composition and, accordingly, different geodynamic settings of the formation of rocks. The studied igneous rocks are subdivided into two groups. Volcanics of the first group of the Late Cretaceous age, which are represented by differentiated volcanic rock series (from andesitobasalts to dacites and rhyolites), were formed under island arc conditions in the continent-ocean transition zone. Volcanics of the second group are ascribed to the tholeiitic series and were formed under the other geodynamic setting, which is associated with the regime of extension and riftogenesis, manifested in the studied area probably at the later stage.

  7. Geological constraints for muon tomography: The world beyond standard rock

    Science.gov (United States)

    Lechmann, Alessandro; Mair, David; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Käser, Samuel; Nishiyama, Ryuichi; Scampoli, Paola; Vladymyrov, Mykhailo; Schlunegger, Fritz

    2017-04-01

    In present day muon tomography practice, one often encounters an experimental setup in which muons propagate several tens to a few hundreds of meters through a material to the detector. The goal of such an undertaking is usually centred on an attempt to make inferences from the measured muon flux to an anticipated subsurface structure. This can either be an underground interface geometry or a spatial material distribution. Inferences in this direction have until now mostly been done, thereby using the so called "standard rock" approximation. This includes a set of empirically determined parameters from several rocks found in the vicinity of physicist's laboratories. While this approach is reasonable to account for the effects of the tens of meters of soil/rock around a particle accelerator, we show, that for material thicknesses beyond that dimension, the elementary composition of the material (average atomic weight and atomic number) has a noticeable effect on the measured muon flux. Accordingly, the consecutive use of this approximation could potentially lead into a serious model bias, which in turn, might invalidate any tomographic inference, that base on this standard rock approximation. The parameters for standard rock are naturally close to a granitic (SiO2-rich) composition and thus can be safely used in such environments. As geophysical surveys are not restricted to any particular lithology, we investigated the effect of alternative rock compositions (carbonatic, basaltic and even ultramafic) and consequentially prefer to replace the standard rock approach with a dedicated geological investigation. Structural field data and laboratory measurements of density (He-Pycnometer) and composition (XRD) can be merged into an integrative geological model that can be used as an a priori constraint for the rock parameters of interest (density & composition) in the geophysical inversion. Modelling results show that when facing a non-granitic lithology the measured muon

  8. A new design concept of fully grouted rock bolts in underground construction

    Science.gov (United States)

    Phich Nguyen, Quang; Nguyen, Van Manh; Tuong Nguyen, Ke

    2018-04-01

    The main problem after excavating an underground excavation is to maintain the stability of the excavation for a certain period of time. Failure in meeting this demand is a threat to safety of men and equipment. Support and reinforcement are different instruments with different mechanisms. Among the common support systems in tunnelling and mining, rock bolts have been widely used to reinforce rock mass and also to reduce geological hazards. Furthermore rock bolts can be applied under varying different geological conditions with cost-effectiveness. Although different methods are developed for grouted rock bolts design until now, the interaction mechanism of the rock bolts and rock mass is still very complicated issue. The paper addresses an analytical model for the analysis and design of fully grouted rock bolts based on the reinforcement principle. According to this concept the jointed rock mass reinforced by grouted rock bolts is considered as composite material which includes rock mass, the grout material and the bolt shank. The mechanical properties of this composite material depend on the ratio of the components. The closed-form solution was developed based on the assumption that the rock mass arround a circular tunnel remained elastic after installing fully grouted rock bolts. The main parameters of the rock-bolt system (the diameter and length of bolt shank, the space between the bolts) are then easily estimated from the obtained solution.

  9. Temporal variations of Sr isotopic compositions for the rocks from Dogo, Oki islands Shimane Prefecture

    International Nuclear Information System (INIS)

    Fujimaki, Hirokazu; Xu Hong; Aoki, Ken-ichiro

    1991-01-01

    Fifty-three volcanic rocks from Dogo island, Oki, Shimane Prefecture, southwestern Japan were analyzed for Sr isotopic compositions with two basement rocks. The rock samples consist of calc-alkali rock suite, Nagaoda shoshonite-banakite suite, Oki trachyte-rhyolite suite, Dogo mugearite suite, Hei trachyte and Tsuzurao rhyolite series, and Daimanjiyama, Ohmine, Kuroshima, Shiroshimazaki, Saigo, and Misaki alkali basalt groups in the order of probable eruption sequence. The volcanic rocks of calc-alkali suite and shoshonite-banakite suite were produced before Japan Sea opening (ca. 15 Ma), and both have 87 Sr/ 86 Sr ratios higher than 0.7068. Long after Japan Sea opening Oki-trachyte-rhyolite suite was erupted (ca. 6.6 Ma); they have rather low 87 Sr/ 86 Sr ratios (0.7066-0.7081). Mugearites followed and have similar Sr isotopic composition, whereas 4.6 Ma old Daimanjiyama basalts have clearly low 87 Sr/ 86 Sr ratios (0.7050-0.7051). The rocks erupted 3-4 Ma seem to have the lowest 87 Sr/ 86 Sr ratios; they are Ohmine, Kuroshima, Shiroshimazaki alkali basalt suites (0.7044-0.7048). The 87 Sr/ 86 Sr ratios of the Saigo basalts erupted 0.84 Ma are higher than those erupted 3-4 Ma. The latest volcanic products in Dogo island, Misaki basalt suite has even higher 87 Sr/ 86 Sr ratios (0.7054-0.7057) than the Saigo basalt suite. Thus, temporal and systematic variation of Sr isotopic compositions of the volcanic rocks from Dogo can be recognized. The 87 Sr/ 86 Sr ratios of the rocks were once as high as 0.7066 or even higher than 0.708, but they started decreasing down to ca. 0.7044-0.7048 4-3 Ma ago. Since then the ratios rebounded to 0.7049-0.7055. The Hei trachyte and Tsuzurao rhyolite series are not included in this temporal and systematic change. The mantle diapir associated with Japan Sea spreading might have caused the decrease in the ratios, and either Pacific Ocean plate or Philippine Sea plate subduction may be responsible for this rebound. (author)

  10. Change with time in extrusion and chemical composition of volcanic rock in geothermal areas in central Kyushu

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Hiroki

    1986-10-01

    Changes with time in extrusion and chemical composition of volcanic rocks in central Kyushu are studied to provide basic data required for evaluation of geothermal resources. Distribution of volcanic rocks in successive 1Ma (10/sup 6/ year) periods and the average thickness of volcanic rock layers in each period are determined, from which the volume of volcanic rocks in each 1Ma period is calculated. Results indicate that volcanos in central Kyushu extruded about 3,000 km/sup 3//Ma of volcanic rocks during the early periods (about 5Ma), followed by a series of declining periods up to the present. Comparison of volcanic extrusive rocks of each 1Ma period shows that lava of hornblende andesite and pyroxenic andesite has been extruded in great quantities in every period. Chemical composition is studied based on diagrams showing changes in SiO/sub 2/ content. The K/sub 2/O content is relatively high in most volcanos younger than 1.6Ma, compared to those older than 1.6Ma. the K/sub 2/O content in extruded rocks has been high during the latest 0.4Ma in the Aso volcanic area, unlike other island arc conjunction areas. (4 figs, 5 tabs, 28 refs)

  11. Chemical and physical characteristics of phosphate rock materials of varying reactivity

    International Nuclear Information System (INIS)

    Syers, J.K.; Currie, L.D.

    1986-01-01

    Several chemical and physical properties of 10 phosphate rock (PR) materials of varying reactivity were evaluated. The highest concentrations of As and Cd were noted. Because Cd and U can accumulate in biological systems, it may be necessary to direct more attention towards the likely implications of Cd and U concentrations when evaluating a PR for direct application. Three sequential extractions with 2% citric acid may be more useful for comparing the chemical solubility of PR materials, particularly for those containing appreciable CaC0 3 . The poor relationship obtained between surface area and the solubility of the PR materials suggests that surface area plays a secondary role to chemical reactivity in controlling the solubility of a PR in a chemical extractant. A Promesh plot provided an effective method for describing the particle-size characteristics of those PR materials which occurred as sands. Fundamental characteristics, such as mean particle size and uniformity, can readily be determined from a Promesh plot. (author)

  12. Development of soda-lime glasses from ornamental rock wastes

    International Nuclear Information System (INIS)

    Babisk, Michelle Pereira

    2009-01-01

    During the ornamental rocks production, among other steps, one saw the rock blocks in order to transform them into semi-finished plates. In this step, expressive amounts of residues are generated, which are not properly discharged in nature, without any programmed utilization. The residues of silicide rocks present, in their compositions, oxides which are raw materials employed to fabricate soda-lime type glasses (containing SiO_2, Al_2O_3, CaO, Na_2O and K_2O). On the other hand the residues of carbonatic rocks are constituted of glass net modifier oxides, like CaO and MgO. In this work it was developed four types of soda-lime glasses using ornamental rock residues, where the glasses compositions were adjusted by adding sand, as silica source, as well as sodium and calcium carbonates as sources of Na_2O and CaO, respectively. The obtained glasses were characterized by means of Archimed's method for densities measurements, microstructure by using optical and electronic microscopy, phases by means of X-ray diffraction (XRD), hardness by Vickers indentation, spectroscopy (UV/VIS), and hydrolytic resistance according to ISO 719. The XRD analyses confirmed the compositions total vitrification, where the greened aspect of the samples was due to the presence of the iron oxides. The produced glasses properties were compared with those of commercial glasses aiming their industrial employment. The main difference between the produced glasses and those commercials varied primarily regarding the amount of carbonates incorporated. The results showed that the ornamental rocks residues may be used as raw materials for glasses fabrication, and they found a useful economic destination rather than discharge which promotes undesirable environmental impact. (author)

  13. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  14. Dependence of frictional strength on compositional variations of Hayward fault rock gouges

    Science.gov (United States)

    Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.

    2010-01-01

    The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.

  15. Organic compositions of lacustrine source rocks in Jiyang super-depression and its implication to petroleum geology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The compositions of organic matter in four immature source rocks from Tertiary strata of Jiyang super-depression, the most typical continental rift subsidence basin in East China, have been studied by different extracting methods with CHCl3, MAC and CS2/NMP, respectively. The results suggest that there are great differences among the chemical compositions of organic matter in the source rocks derived from different depositional environments. About 79% of all the organic matter exists by non- covalent bond in the Es4 source rocks which were deposited under the saline lacustrine, indicating that its organic matter is not the real kerogen, but mainly composed of soluble organic matter which is easy to generate hydrocarbon at lower temperature. This is why the immature oils were derived from Es4 source rocks in Dongying depression. In contrast, around 60% of organic matter exists by covalent bond in Es3 source rocks which were deposited under the deep brackish-fresh lacustrine, showing that Es3 source rocks are mainly composed of kerogen producing mature hydrocarbon at higher temperature. The thermal simulation experiments, upon the remaining solid source rocks which were sequentially extracted by the three solvents, have been carried out. The chloroform extracts from the simulation product have been compared with the other three solvent extracts gained at room temperature. It is obvious that remarkable odd/even predominance (OEP) is mainly the characteristic of soluble organic matter; phytane mostly exists in the soluble organic matter by means of non-covalent bonds and characteristics of soluble organic matter are similar to these in immature oils produced in Jiyang super-depression.

  16. Lead isotope analyses of standard rock samples

    International Nuclear Information System (INIS)

    Koide, Yoshiyuki; Nakamura, Eizo

    1990-01-01

    New results on lead isotope compositions of standard rock samples and their analytical procedures are reported. Bromide form anion exchange chromatography technique was adopted for the chemical separation lead from rock samples. The lead contamination during whole analytical procedure was low enough to determine lead isotope composition of common natural rocks. Silica-gel activator method was applied for emission of lead ions in the mass spectrometer. Using the data reduction of 'unfractionated ratios', we obtained good reproducibility, precision and accuracy on lead isotope compositions of NBS SRM. Here we present new reliable lead isotope compositions of GSJ standard rock samples and USGS standard rock, BCR-1. (author)

  17. Seasonal variation in the proximate composition of rock oyster Saccostrea cucullata from Bombay coast

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Nair, V.R.

    Changes in proximate composition of soft tissue of rock oyster Saccostrea cucullata inhabiting a polluted station at Bandra (stn. B) and a relatively clean area at Mudh Island (stn. M) were studied. An average protein content of 48.88 + or - 3...

  18. The Ediacaran volcanic rocks and associated mafic dykes of the Ouarzazate Group (Anti-Atlas, Morocco): Clinopyroxene composition, whole-rock geochemistry and Sr-Nd isotopes constraints from the Ouzellarh-Siroua salient (Tifnoute valley)

    Science.gov (United States)

    Belkacim, Said; Gasquet, Dominique; Liégeois, Jean-Paul; Arai, Shoji; Gahlan, Hisham A.; Ahmed, Hassan; Ishida, Yoshito; Ikenne, Moha

    2017-03-01

    Belonging to the huge Ouarzazate volcanic Group that covered the whole Anti-Atlas during the late Ediacaran (580-545 Ma), the Tifnoute valley volcanic formations are mainly pyroclastic and show a large composition, from trachybasalt to rhyolite and are crosscut by dolerite dykes. The Tifnoute valley volcanic rocks are located within a rigid salient of the Anti-Atlas that gives them special extreme characteristics. Due to the heavy greenschist alteration that affects this volcanic group, we focused the more immobile elements, but as REE can also be affected, we used the composition of unaltered clinopyroxene crystals to determine the nature of these volcanic rocks. The clinopyroxene is an augite diopside in the basalt, an augite in the andesite and an augite-salite in the dolerite. Petrography of the Tifnoute mafic volcanic rocks and clinopyroxene compositions indicate the presence of two magmatic series: (i) older high-K calc-alkaline (alkali-calcic) andesite and basalt characterized by the early crystallization of Fe-Ti oxides and of the late fractionation of plagioclase, the modal proportion of the latter increasing from the basalt to the andesite and (ii) younger alkalic dolerite dykes. With clinopyroxene trace element compositions obtained using laser ablation ICP-MS, we calculated the composition of the melts in equilibrium with the pyroxenes. The volcanic rocks of the Tifnoute Valley have positive εNd570 (+1.7 to +5.0), low Sri (volcanic rocks emplaced in a Pan-African transtensive post-collisional environment that evolved towards the major rifting event that will give rise to the Rheic ocean, in a similar way to what occurred just after the Variscan orogeny during the Triassic period that evolved to the Tethys ocean opening.

  19. Quantifying elemental compositions of primary minerals from granitic rocks and saprolite within the Santa Catalina Mountain Critical Zone Observatory

    Science.gov (United States)

    Lybrand, R. A.; Rasmussen, C.

    2011-12-01

    Granitic terrain comprises a significant area of the earth's land surface (>15%). Quantifying weathering processes involved in the transformation of granitic rock to saprolite and soil is central to understanding landscape evolution in these systems. The quantification of primary mineral composition is important for assessing subsequent mineral transformations and soil production. This study focuses on coupling detailed analysis of primary mineral composition to soil development across an array of field sites sampled from the Santa Catalina Mountain Critical Zone observatory (SCM-CZO) environmental gradient. The gradient spans substantial climate-driven shifts in vegetation, ranging from desert scrub to mixed conifer forests. The parent material is a combination of Precambrian and Tertiary aged granites and quartz diorite. Primary mineral type and composition are known to vary among the various aged granitic materials and this variability is hypothesized to manifest as significant variation in regolith forming processes across the SCM-CZO. To address this variability, the mineral composition and mineral formulae of rock and saprolite samples were determined by electron microprobe chemical analyses. The rocks were pre-dominantly quartz, biotite, muscovite, orthoclase and calcium/sodium-rich plagioclase feldspars. Trace minerals observed in the samples included sphene, rutile, zircon, garnet, ilmenite, and apatite. Mineral formulae from electron microprobe analyses were combined with quantitative x-ray diffraction (QXRD) and x-ray fluorescence (XRF) data to quantify both primary and secondary mineralogical components in soil profiles from each of the field sites. Further, electron microprobe analyses of <2mm mixed conifer saprolite revealed weathered plagioclase grains coated with clay-sized particles enriched in silica and aluminum (~25% and 15%, respectively), suggesting kaolin as the secondary phase. The coatings were interspersed within each plagioclase grain, a

  20. Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39Ar, and U-Pb mineral ages, and strontium, lead, neodymium, and oxygen isotopic compositions for granitic rocks from the Salinian Composite Terrane, California:

    Science.gov (United States)

    Kistler, R.W.; Champion, D.E.

    2001-01-01

    This report summarizes new and published age and isotopic data for whole-rocks and minerals from granitic rocks in the Salinian composite terrane, California. Rubidium-strontium whole-rock ages of plutons are in two groups, Early Cretaceous (122 to 100 Ma) and Late Cretaceous (95 to 82 Ma). Early Cretaceous plutons occur in all granitic rock exposures from Bodega Head in the north to those from the Santa Lucia and Gabilan Ranges in the central part of the terrane. Late Cretaceous plutons have been identified in the Point Reyes Peninsula, the Santa Lucia and the Gabilan Ranges, and in the La Panza Range in the southern part of the terrane. Ranges of initial values of isotopic compositions are 87Sr/86Sr, 0.7046-0.7147, δ18O, +8.5 to +12.5 per mil, 206Pb/204Pb, 18.901-19.860, 207Pb/204Pb, 15.618-15.814, 208Pb/204Pb, 38.569- 39.493, and εNd, +0.9 to -8.6. The initial 87Sr/86Sr=0.706 isopleth is identified in the northern Gabilan Range and in the Ben Lomond area of the Santa Cruz Mountains, in Montara Mountain, in Bodega Head, and to the west of the Farallon Islands on the Cordell Bank. This isotopic boundary is offset about 95 miles (160km) by right-lateral displacements along the San Gregorio-Hosgri and San Andreas fault systems.

  1. Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC)

    Science.gov (United States)

    Cheng, Jian-Long; Yang, Sheng-Qi; Chen, Kui; Ma, Dan; Li, Feng-Yuan; Wang, Li-Ming

    2017-12-01

    In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0{°}-45{°} specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60{°}-90{°} specimens gradually increased during the loading process. When the anisotropic angle θ increased from 0{°} to 90{°}, the peak strength, peak strain, and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories: tensile fracture across the discontinuities (θ = 0{°}-30{°}), sliding failure along the discontinuities (θ = 45{°}-75{°}), and tensile-split along the discontinuities (θ = 90{°}). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0{°}-45{°} specimens and was almost the same as that of the θ = 60{°}-90{°} specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0{°}-30{°} specimens appeared in the rock

  2. Determination of chemical composition of soils and rocks at the MER landing sites Gusev crater and Meridiani Planum using the APXS

    Science.gov (United States)

    Brueckner, J.

    2004-05-01

    The new Alpha Particle X-Ray Spectrometer (APXS) is a small, light-weight instrument to obtain x-ray spectra from Martian surface samples. The sensor head contains a high-resolution x-ray detector that is surrounded by a circle of radioactive Cm-244 sources. Alpha and x-ray radiation emitted by the sources is used to induce x-ray excitation in the sample. Elements from sodium to zinc (increasing by atomic weight) are detected and their concentrations determined. The APXS is mounted on each Instrument Deployment Device (IDD) of the two Mars Exploration Rovers (MER) Spirit and Opportunity. Rover Spirit landed in the large Gusev crater that seems to have been altered by water activities in the past based on evidence of orbital images. Rover Opportunity landed in a very small crater of the Meridiani Planum, where the mineral hematite that points to water-related processes is expected to be found. Inside the little crater, a light-colored outcrop is exposed that shows widespread fine layering. The first APXS high-resolution x-ray spectrum of a Gusev soil indicated many similarities to the composition of the Mars Pathfinder (MPF) and Viking soils. However, differences are also noticeable: Low-Z elements are somewhat higher compared to MPF soils, while high-Z elements are depleted, notably Ti. Potassium in the soils reflects the K concentration of the local rocks at the different landing sites pointing toward a local contribution to the soil's composition. The Rock Abrasion Tool was used to grind the first rock on Mars at Gusev: Adirondack's undisturbed and ground surface was measured by the APXS. The composition of its fresh surface is different from the MPF soilfree rock, noticeably in Mg and Al, and clearly exhibits a basaltic nature related to the composition of basaltic shergottites. The first rock at the Meridiani crater outcrop (dubbed Robert-E) exhibited a very high sulfur concentration, more than a factor of 15 compared to rock Adirondack, indicating it is

  3. Radiological hazard indices and elemental composition of Brazilian and Swiss ornamental rocks

    Energy Technology Data Exchange (ETDEWEB)

    El Hajj, T.M. [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil); Silva, P.S.C.; Santos, A., E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Gandolla, M.P.A. [Universita della Svizzera Italiana (USI), Lugano (Switzerland); Dantas, G.A.S.A.; Delboni Junior, H. [Universidade de Sao Paulo (USP), SP (Brazil)

    2017-09-01

    The objective of this paper was to evaluate the radiological risk index of ornamental rocks sold both in Brazil and Europe and to correlate their radioactive content with their chemical composition. The {sup 238}U, {sup 232}Th and {sup 40}K mean values were 62 ± 65, 122 ± 111, 1126 ± 516 Bq kg{sup -1} for Brazilian and 93 ± 59, 70 ± 67 and 1005 ± 780 Bq kg{sup -1} for Swiss samples, respectively. The radiological index: radium equivalent, external hazard index, absorbed dose rate in air, annual gonadal equivalent dose, annual effective dose equivalent, and excess lifetime cancer risk for Brazilian and Swiss samples were calculated. The main contribution for the radiological indices observed was the radionuclide {sup 232}Th, which is associated with REE, Br, Hf, Na, Rb, Sb and Zr in the rock matrix. (author)

  4. Development and application of new composite grouting material for sealing groundwater inflow and reinforcing wall rock in deep mine.

    Science.gov (United States)

    Jinpeng, Zhang; Limin, Liu; Futao, Zhang; Junzhi, Cao

    2018-04-04

    With cement, bentonite, water glass, J85 accelerator, retarder and water as raw materials, a new composite grouting material used to seal groundwater inflow and reinforce wall rock in deep fractured rock mass was developed in this paper. Based on the reaction mechanism of raw material, the pumpable time, stone rate, initial setting time, plastic strength and unconfined compressive strength of multi-group proportion grouts were tested by orthogonal experiment. Then, the optimum proportion of composite grouting material was selected and applied to the grouting engineering for sealing groundwater inflow and reinforcing wall rock in mine shaft lining. The results show the mixing proportion of the maximum pumpable time, maximum stone rate and minimum initial setting time of grout are A K4 B K1 C K4 D K2 , A K3 B K1 C K1 D K4 and A K3 B K3 C K4 D K1 , respectively. The mixing proportion of the maximum plastic strength and unconfined compressive strength of grouts concretion bodies are A K1 B K1 C K1 D K3 and A K1 B K1 C K1 D K1 , respectively. Balanced the above 5 indicators overall and determined the optimum proportion of grouts: bentonite-cement ratio of 1.0, water-solid ratio of 3.5, accelerator content of 2.9% and retarder content of 1.45%. This new composite grouting material had good effect on the grouting engineering for sealing groundwater inflow and reinforcing wall rock in deep fractured rock mass.

  5. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    International Nuclear Information System (INIS)

    Xiong Yongqiang; Wang Yanmei; Wang Yongquan; Xu Shiping

    2007-01-01

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition

  6. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)], E-mail: xiongyq@gig.ac.cn; Wang Yanmei; Wang Yongquan; Xu Shiping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2007-11-15

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition.

  7. Ballistic performance of a Kevlar-29 woven fibre composite under varied temperatures

    Science.gov (United States)

    Soykasap, O.; Colakoglu, M.

    2010-05-01

    Armours are usually manufactured from polymer matrix composites and used for both military and non-military purposes in different seasons, climates, and regions. The mechanical properties of the composites depend on temperature, which also affects their ballistic characteristics. The armour is used to absorb the kinetic energy of a projectile without any major injury to a person. Therefore, besides a high strength and lightness, a high damping capacity is required to absorb the impact energy transferred by the projectile. The ballistic properties of a Kevlar 29/polyvinyl butyral composite are investigated under varied temperatures in this study. The elastic modulus of the composite is determined from the natural frequency of composite specimens at different temperatures by using a damping monitoring method. Then, the backside deformation of composite plates is analysed experimentally and numerically employing the finite-element program Abaqus. The experimental and numeric results obtained are in good agreement.

  8. Heating effects in Rio Blanco rock

    International Nuclear Information System (INIS)

    Taylor, R.W.; Bowen, D.W.; Rossler, P.E.

    1975-01-01

    Samples of ''sandstone'' from near the site of the upper Rio Blanco nuclear explosion were heated in the laboratory at temperatures between 600 and 900 0 C. The composition and amount of noncondensable (dry) gas released were measured and compared to the amount and composition of gas found underground following the explosion. The gas released from the rock heated in the laboratory contained approximately 80 percent CO 2 and 10 percent H 2 ; the balance was CO and CH 4 . With increasing temperature, the amounts of CO 2 , CO, and H 2 released increased. The composition of gas released by heating Rio Blanco rock in the laboratory is similar to the composition of gas found after the nuclear explosion except that it contains less natural gas (CH 4 , C 2 H 6 . . .). The amount of noncondensable gas released by heating the rock increases from approximately 0.1 mole/kg of rock at 600 0 C to 0.9 mole/kg at 900 0 C. Over 90 percent of the volatile components of the rock are released in less than 10 h at 900 0 C. A comparison of the amount of gas released by heating rock in the laboratory to the amount of gas released by the heat of the Rio Blanco nuclear explosion suggests that the explosion released the volatile material from about 0.42 mg of rock per joule of explosive energy (1700 to 1800 tonnes per kt). (auth)

  9. Stable mineral assemblages of igneous rocks . A. Rittmann, 1973. Springer, Berlin, 262 pp., D.M. 76.00

    NARCIS (Netherlands)

    Tobi, A.C.

    1974-01-01

    Rocks can be named, described and compared in terms of their chemical analysis, or in terms of their actual mineral content measured in volume per cent (the "mode"). Both are of course related, although similar chemical compositions may lead to widely varying modes depending on subtle

  10. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars

    Science.gov (United States)

    Mangold, Nicolas; Forni, Olivier; Dromart, G.; Stack, K.M.; Wiens, Roger C.; Gasnault, Olivier; Sumner, Dawn Y.; Nachon, Marion; Meslin, Pierre-Yves; Anderson, Ryan B.; Barraclough, Bruce; Bell, J.F.; Berger, G.; Blaney, D.L.; Bridges, J.C.; Calef, F.; Clark, Brian R.; Clegg, Samuel M.; Cousin, Agnes; Edgar, L.; Edgett, Kenneth S.; Ehlmann, B.L.; Fabre, Cecile; Fisk, M.; Grotzinger, John P.; Gupta, S.C.; Herkenhoff, Kenneth E.; Hurowitz, J.A.; Johnson, J. R.; Kah, Linda C.; Lanza, Nina L.; Lasue, Jeremie; Le Mouélic, S.; Lewin, Eric; Malin, Michael; McLennan, Scott M.; Maurice, S.; Melikechi, Noureddine; Mezzacappa, Alissa; Milliken, Ralph E.; Newsome, H.L.; Ollila, A.; Rowland, Scott K.; Sautter, Violaine; Schmidt, M.E.; Schroder, S.; D'Uston, C.; Vaniman, Dave; Williams, R.A.

    2015-01-01

    The Yellowknife Bay formation represents a ~5 m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (~1 m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.

  11. Evaluation of Many Load Tests of Passive Rock Bolts in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Holý Ondřej

    2017-03-01

    Full Text Available Within the research project “FR-TI4/329 Research and development - creating an application system for the design and analysis of soil and rock anchors including the development of monitoring elements”, an extensive stage of field load tests of rock bolts was carried out. The tests were conducted at 14 locations with varied rock composition. Before the initial tests, a loading stand was designed and constructed. A total of 201 pieces of tensile tests of bolts having lengths from 0.5 up to 2.5 m, a diameter of 22-32 mm, were performed. These were fully threaded rods, self-drilling rods, and fiberglass rods. The bolts were clamped into the cement and resin. The loading tests were always performed until material failure of bolts or shear stress failure at the interface cement-rock. At each location, basic geotechnical survey was carried out in the form of core drilling in a length of 3.0 metres with the assessment of the rock mass in situ, and laboratory testing of rock mechanics. Upon the completion of testing protocols, rock mass properties analysis was performed focusing on the evaluation of shear friction at the grouting-rock interface.

  12. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance

    Science.gov (United States)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Zaitsev, Anatoly N.; Couëslan, Christopher; Xu, Cheng; Kynický, Jindřich; Mumin, A. Hamid; Yang, Panseok

    2017-03-01

    Apatite-group phosphates are nearly ubiquitous in carbonatites, but our understanding of these minerals is inadequate, particularly in the areas of element partitioning and petrogenetic interpretation of their compositional variation among spatially associated rocks and within individual crystals. In the present work, the mode of occurrence, and major- and trace-element chemistry of apatite (sensu lato) from calcite and dolomite carbonatites, their associated cumulate rocks (including phoscorites) and hydrothermal parageneses were studied using a set of 80 samples from 50 localities worldwide. The majority of this set represents material for which no analytical data are available in the literature. Electron-microprobe and laser-ablation mass-spectrometry data ( 600 and 400 analyses, respectively), accompanied by back-scattered-electron and cathodoluminescence images and Raman spectra, were used to identify the key compositional characteristics and zoning patterns of carbonatitic apatite. These data are placed in the context of phosphorus geochemistry in carbonatitic systems and carbonatite evolution, and compared to the models proposed by previous workers. The documented variations in apatite morphology and zoning represent a detailed record of a wide range of evolutionary processes, both magmatic and fluid-driven. The majority of igneous apatite from the examined rocks is Cl-poor fluorapatite or F-rich hydroxylapatite (≥ 0.3 apfu F) with 0.2-2.7 wt.% SrO, 0-4.5 wt.% LREE2O3, 0-0.8 wt.% Na2O, and low levels of other cations accommodated in the Ca site (up to 1000 ppm Mn, 2300 ppm Fe, 200 ppm Ba, 150 ppm Pb, 700 ppm Th and 150 ppm U), none of which show meaningful correlation with the host-rock type. Silicate, (SO4)2 - and (VO4)3 - anions, substituting for (PO4)3 -, tend to occur in greater abundance in crystals from calcite carbonatites (up to 4.2 wt.% SiO2, 1.5 wt.% SO3 and 660 ppm V). Although (CO3)2 - groups are very likely present in some samples, Raman micro

  13. Tales from the tomb: the microbial ecology of exposed rock surfaces.

    Science.gov (United States)

    Brewer, Tess E; Fierer, Noah

    2018-03-01

    Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones

    Science.gov (United States)

    Keller, Margaret A.; Macquaker, Joe H.S.; Taylor, Kevin G.; Polya, David

    2014-01-01

    Diagenesis significantly impacts mudstone lithofacies. Processes operating to control diagenetic pathways in mudstones are poorly known compared to analogous processes occurring in other sedimentary rocks. Selected organic-carbon-rich mudstones, from the Kimmeridge Clay and Monterey Formations, have been investigated to determine how varying starting compositions influence diagenesis.The sampled Kimmeridge Clay Formation mudstones are organized into thin homogenous beds, composed mainly of siliciclastic detritus, with some constituents derived from water-column production (e.g., coccoliths, S-depleted type-II kerogen, as much as 52.6% total organic carbon [TOC]) and others from diagenesis (e.g., pyrite, carbonate, and kaolinite). The sampled Monterey Formation mudstones are organized into thin beds that exhibit pelleted wavy lamination, and are predominantly composed of production-derived components including diatoms, coccoliths, and foraminifera, in addition to type-IIS kerogen (as much as 16.5% TOC), and apatite and silica cements.During early burial of the studied Kimmeridge Clay Formation mudstones, the availability of detrital Fe(III) and reactive clay minerals caused carbonate- and silicate-buffering reactions to operate effectively and the pore waters to be Fe(II) rich. These conditions led to pyrite, iron-poor carbonates, and kaolinite cements precipitating, preserved organic carbon being S-depleted, and sweet hydrocarbons being generated. In contrast, during the diagenesis of the sampled Monterey Formation mudstones, sulfide oxidation, coupled with opal dissolution and the reduced availability of both Fe(III) and reactive siliciclastic detritus, meant that the pore waters were poorly buffered and locally acidic. These conditions resulted in local carbonate dissolution, apatite and silica cements precipitation, natural kerogen sulfurization, and sour hydrocarbons generation.Differences in mud composition at deposition significantly influence subsequent

  15. Pristine rocks (8th Foray) - Plagiophile element ratios, crustal genesis, and the bulk composition of the moon

    International Nuclear Information System (INIS)

    Warren, P.H.; Kallemeyn, G.W.

    1984-01-01

    Eu/Al, Sr/Al, Eu/Sr, and similar ratios among pristine lunar nonmare lithologies with implications for nonmare petrogenesis and for the bulk composition of the moon are examined. On a plot of Eu/Al versus mg, ferroan anorthosites are separated from all other pristine nonmare rocks by a considerable gap. A nonrandom process must be invoked to account for the gap in the spectrum of ratios. A single magma probably cannot account for even the Mg-rich pristine rocks subset, based on diversity of plagiophile ratios among samples with similar mg ratios. Plagiophile ratios also constrain the bulk composition of the moon. Plagiophile ratios among ferroan anorthosites exactly match those expected under a model in which ferroan anorthosites formed by flotation of plagioclase cumulates over a primordial magmasphere. Ratios among nonvolatile elements confirm that the moon formed out of materials akin to chondritic meteorites

  16. ONKALO rock mechanics model (RMM) - Version 2.0

    International Nuclear Information System (INIS)

    Moenkkoenen, H.; Hakala, M.; Paananen, M.; Laine, E.

    2012-02-01

    The Rock Mechanics Model of the ONKALO rock volume is a description of the significant features and parameters related to rock mechanics. The main objective is to develop a tool to predict the rock properties, quality and hence the potential for stress failure which can then be used for continuing design of the ONKALO and the repository. This is the second implementation of the Rock Mechanics Model and it includes sub-models of the intact rock strength, in situ stress, thermal properties, rock mass quality and properties of the brittle deformation zones. Because of the varying quantities of available data for the different parameters, the types of presentations also vary: some data sets can be presented in the style of a 3D block model but, in other cases, a single distribution represents the whole rock volume hosting the ONKALO. (orig.)

  17. Whole-rock and mineral compositional constraints on the magmatic evolution of the Ni-Cu-(PGE) sulfide ore-bearing Kevitsa intrusion, northern Finland

    Science.gov (United States)

    Luolavirta, Kirsi; Hanski, Eero; Maier, Wolfgang; Santaguida, Frank

    2018-01-01

    The 2.06 Ga mafic-ultramafic Kevitsa intrusion is located in the Central Lapland greenstone belt. The lower ultramafic part of the intrusion hosts a large disseminated Ni-Cu-(PGE) sulfide deposit with Ni tenors ranging widely from architecture, variations in whole-rock and mineral compositions, and the presence of numerous inclusions and xenoliths. The OLPXs are mainly composed of cumulus olivine (Fo77-89) and clinopyroxene (Mg#81-92) with variable amounts of oikocrystic orthopyroxene (Mg#79-84). They comprise the bulk of the ultramafic cumulates and are the dominant host rocks to the sulfide ore. The host rocks to the regular and false ore type are mineralogically and compositionally similar (Fo 80-83, mostly) and show mildly LREE-enriched REE patterns (CeN/YbN 2), characteristic for the bulk of the Kevitsa ultramafic cumulates. The abundance of orthopyroxene and magnetite is lowest in the host rocks to the Ni-PGE ore type, being in line with the mineral compositions of the silicates, which are the most primitive in the intrusion. However, it contrasts with the LREE-enriched nature of the ore type (CeN/YbN 7), indicating significant involvement of crustal material in the magma. The contrasting intrusive stratigraphy in the different parts of the intrusion likely reflects different emplacement histories. It is proposed that the Kevitsa magma chamber was initially filled by stable continuous flow ("single" input) of basaltic magma followed by differentiation in an at least nearly closed system. In the following stage, new magma pulses were repeatedly emplaced into the interior of the intrusion in a dynamic (open) system forming the sulfide ore bodies. To gain the peculiar compositional and mineralogical characteristics of the Ni-PGE ore type, the related magma probably interacted with different country rocks en route to the Kevitsa magma chamber.

  18. A system of nomenclature for rocks in Olkiluoto

    International Nuclear Information System (INIS)

    Mattila, J.

    2006-06-01

    Due to international interest in the Finnish deep repository project at Olkiluoto (SW Finland) and the need for collaboration between scientists involved in site investigations for the disposal of spent nuclear fuel in other countries, a well-documented system of rock nomenclature is required, based on existing classification schemes and international recommendations. The BGS (British Geological Survey) rock classification scheme is the most comprehensive rock classification scheme and the basic principles behind it are utilised for the system of nomenclature for rocks in Olkiluoto. The BGS classification system is based on the use of descriptive names and a clear hierarchy, making it possible to classify rocks at different levels depending on the specific goals of the study, the level of available information, and the expertise of the user. Each rock type is assigned a root name, which is based on structural and textural characteristics or modal compositions of the rock and the root names are refined with qualifier terms as prefixes. Qualifier terms refer to the structure or modal composition of the rock. The bedrock at the Olkiluoto site consists of metamorphic and igneous rocks. The metamorphic rocks consist of migmatitic gneisses and (non-migmatitic) gneisses, which are further divided according to their structural characteristics and modal compositions, the former into stromatic, veined, diatexitic gneisses, the latter into mica, quartz, mafic and TGG gneisses. Igneous rocks consist of pegmatitic granites, K-feldspar porphyry and diabases. (orig.)

  19. Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars

    Science.gov (United States)

    Rampe, E. B.; Morris, R. V.; Bish, D. L.; Chipera, S. J.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Cavanagh, P.; Farmer, J. D.; hide

    2015-01-01

    The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.

  20. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in Lau Basin

    Directory of Open Access Journals (Sweden)

    Jason B Sylvan

    2013-03-01

    Full Text Available The East Lau Spreading Center (ELSC and Valu Fa Ridge (VFR comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria and ε-proteobacteria while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis.

  1. Rocks Whose Compositions are Determined by Flow Differentiation of Olivine- and Sulfide Droplet-Laden Magma: the Jinchuan Story

    Science.gov (United States)

    Li, C.; Ripley, E. M.; de Waal, S. A.; Xu, Z.

    2002-12-01

    The Jinchuan intrusion in western China is an elongated, deeply-dipping dyke-like body of dominantly olivine-rich ultramafic rocks of high magnesium basaltic magma. It hosts the second largest Ni-Cu sulfide deposit in the world. More than 500 million tones of sulfide ore grading 1.2 percent Ni and 0.7 percent Cu occur mostly as next-textured and disseminated sulfide (pyrrhotite, pentlendite and chalcopyrite) with cumulus olivine in about half of the rocks of the intrusion. Based on different petrological zonations, the Jinchuan intrusion is further divided into three segments: eastern, central and western segments. The central segment is characterized by concentric enrichments of cumulus olivine and sulfide, whereas the eastern and western segments are characterized by the increase of both cumulus olivine and sulfide toward the footwall. The forsterite contents of fresh olivine from different segments are similar and vary between 82 and 86 mole percent. The small range of olivine compositional variation corresponds to less than 6 percent of fractional crystallization. Mass balance calculations based on sulfide solubility in basaltic magma indicate that the volume of the parental magma of the sulfide is many times larger than that which is currently represented in the intrusion. Large amounts of cumulus olivine (more than 40 weight percent) in the marginal samples and high concentrations of sulfide in the intrusion are consistent with an interpretation that the Jinchuan intrusion was formed by olivine- and sulfide droplet-laden magma ascending through a subvertical conduit to a higher level. Differentiation processes of the olivine- and sulfide droplet-laden magma varied in different parts of the conduit. Sub-vertical flow differentiation controlled the central segment of the conduit, resulting in further enrichment of olivine crystals and sulfide droplets in the conduit center. In contrast, sub-lateral flow and gravitational differentiation dominated in the eastern

  2. Pb, Sr, and Nd isotopic compositions of a suite of Large Archean, igneous rocks, eastern Beartooth Mountains - Implications for crust-mantle evolution

    Science.gov (United States)

    Wooden, J. L.; Mueller, P. A.

    1988-01-01

    Compositionally diverse Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains (Montana and Wyoming) were studied and shown to have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial values lower than predicted for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. A model involving subduction of continental detritus and contamination of the overlying mantle is suggested.

  3. Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene ( 64 Ma) pseudoleucite phonolitic rocks in central Lhasa terrane

    Science.gov (United States)

    Qi, Yue; Gou, Guo-Ning; Wang, Qiang; Wyman, Derek A.; Jiang, Zi-Qi; Li, Qiu-Li; Zhang, Le

    2018-03-01

    The question of whether continental subduction processes in collisional orogenic belts can trigger wide-spread mantle metesomatism and crustal material recycling remains unresolved. Miocene (25-8 Ma) ultrapotassic rocks in southern Tibet are the only mantle-derived magmatic rocks emplaced after the collision between India and Asia and they have been linked to the onset of east-west extensional stresses as the surface uplift of the Tibetan Plateau reached near-maximum elevation. However, their petrogenesis remains highly controversial, particularly the issue of whether their extremely enriched Sr-Nd isotopic characteristics were related to metasomatism derived from subducted Indian continental materials during the Cenozoic. Here we report on a Paleocene silicate-unsaturated, pseudoleucite phonolitic dike, in the Rongniduo area of central Lhasa terrane. In-situ SIMS (secondary ion mass spectrometry) apatite U-Pb age indicates the dike was generated at 64.1 ± 4.2 Ma, which slightly predates the age of initial India and Asia collision (about 55-50 Ma). This is the oldest age yet reported for ultrapotassic rocks in southern Tibet. Samples from this dike have distinctly more depleted Sr-Nd (whole rock: (87Sr/86Sr)i = 0.7064 to 0.7062, εNd(t) = - 1.5 to 0.4; in situ apitite: (87Sr/86Sr)i = 0.7059 to 0.7060, εNd(t) = - 2.0 to 0.4) isotopic compositions, than those of Miocene (25-8 Ma) ultrapotassic rocks in the central Lhasa terrane ((87Sr/86Sr)i = 0.7106 to 0.7399, εNd(t) = - 10.6 to - 18.5). Our new data provides important constraints on pre-collisional mantle characteristics beneath the Lhasa terrane. We suggest that these 64 Ma pseudoleucite phonolitic rocks were derived from the enriched lithospheric mantle metasomatized by subducted Tethyan oceanic materials in response to Neo-Tethyan slab roll-back. As a consequence, the younger Miocene ultrapotassic rocks, which display different geochemical compositions from the pre-collisional ultrapotassic rocks, were most

  4. Discussion on the origin of sedimentary rock resistivity

    International Nuclear Information System (INIS)

    Dong Gangjian

    2012-01-01

    Conduction current way of sedimentary rock sedimentary rock is caused by the internal structure of sedimentary rock sedimentary rock pore resistance depends on the salinity of pore water and clay content and distribution. Resistivity of sedimentary rock sedimentary rock major factor in mineral composition, water resistance, oil resistance. and sedimentary structures. In practice, we should give full attention to the difference between lithology and physical properties. (author)

  5. Physicochemical effects of varying fuel composition on knock characteristics of natural gas mixtures

    NARCIS (Netherlands)

    Gersen, Sander; van Essen, Martijn; van Dijk, Gerco; Levinsky, Howard

    2014-01-01

    The physicochemical origins of how changes in fuel composition affect autoignition of the end gas, leading to engine knock, are analyzed for a natural gas engine. Experiments in a lean-burn, high-speed medium-BMEP gas engine are performed using a reference natural gas with systematically varied

  6. PYROXENITE VEINS WITHIN SSZ PERIDOTITES – EVIDENCE OF MELT-ROCK INTERACTION (EGIINGOL MASSIF), MAJOR AND TRACE ELEMENT COMPOSITION OF MINERALS

    OpenAIRE

    A. A. Karimov; M A. Gornova; V. A. Belyaev

    2017-01-01

    Evidence of melt-rock reaction between suprasubduction zone (SSZ) peridotites and island arc boninititc and tholeiitic melts are identified. This process is the cause of replacive dunites and pyroxenite veins forming, which are represent the ways of island-arc melts migration. The peridotite-melt interaction is confirmed by compositional features of rocks and minerals. Influence of boninitic melt in peridotites of South Sandwich island arc leads to increasing of TiO2 and Cr-number (Cr#) in sp...

  7. Microstructural controls on the macroscopic behavior of geo-architected rock samples

    Science.gov (United States)

    Mitchell, C. A.; Pyrak-Nolte, L. J.

    2017-12-01

    Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  8. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    International Nuclear Information System (INIS)

    Dongyu, Xu; Xin, Cheng; Shifeng, Huang; Banerjee, Sourav

    2014-01-01

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer

  9. Nutritional composition of honey bee food stores vary with floral composition.

    Science.gov (United States)

    Donkersley, Philip; Rhodes, Glenn; Pickup, Roger W; Jones, Kevin C; Power, Eileen F; Wright, Geraldine A; Wilson, Kenneth

    2017-12-01

    Sufficiently diverse and abundant resources are essential for generalist consumers, and form an important part of a suite of conservation strategies for pollinators. Honey bees are generalist foragers and are dependent on diverse forage to adequately meet their nutritional needs. Through analysis of stored pollen (bee bread) samples obtained from 26 honey bee (Apis mellifera L.) hives across NW-England, we quantified bee bread nutritional content and the plant species that produced these stores from pollen. Protein was the most abundant nutrient by mass (63%), followed by carbohydrates (26%). Protein and lipid content (but not carbohydrate) contributed significantly to ordinations of floral diversity, linking dietary quality with forage composition. DNA sequencing of the ITS2 region of the nuclear ribosomal DNA gene identified pollen from 89 distinct plant genera, with each bee bread sample containing between 6 and 35 pollen types. Dominant genera included dandelion (Taraxacum), which was positively correlated with bee bread protein content, and cherry (Prunus), which was negatively correlated with the amount of protein. In addition, proportions of amino acids (e.g. histidine and valine) varied as a function of floral species composition. These results also quantify the effects of individual plant genera on the nutrition of honey bees. We conclude that pollens of different plants act synergistically to influence host nutrition; the pollen diversity of bee bread is linked to its nutrient content. Diverse environments compensate for the loss of individual forage plants, and diversity loss may, therefore, destabilize consumer communities due to restricted access to alternative resources.

  10. Actual methods of nuclear physics in the analysis of the elemental composition of rocks and minerals

    International Nuclear Information System (INIS)

    Leonard, M.; Tsipenyuk, Yu. M.

    1981-01-01

    In this paper two methods are described for the Nuclear Physical analysis of the elementary composition of ores, mineral rocks and principles, elementary particles and radiation sources. Some examples are given showing their applications, high sensibility, selectivity, quichness and economy in comparison with other analytical methods. They are classified by their sensibilities among other analytical techniques in the determination of a large quantity of elements. (author)

  11. Mineral Composition and Abundance of the Rocks and Soils at Gusev and Meridiani from the Mars Exploration Rover Mini-TES Instruments

    Science.gov (United States)

    Christensen, P. R.; Wyatt, M. B.; Glotch, T. D.; Rogers, A. D.; Anwar, S.; Arvidson, R. E.; Bandfield, J. L.; Blaney, D. L.; Budney, C.; Calvin, W. M.

    2005-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) has provided remote measurements of mineralogy, thermophysical properties, and atmospheric temperature profile and composition of the outcrops, rocks, spherules, and soils surrounding the Spirit and Opportunity Rovers. The mineralogy of volcanic rocks provides insights into the composition of the source regions and the nature of martian igneous processes. Carbonates, sulfates, evaporites, and oxides provide information on the role of water in the surface evolution. Oxides, such as crystalline hematite, provide insight into aqueous weathering processes, as would the occurrence of clay minerals and other weathering products. Diurnal temperature measurements can be used to determine particle size and search for the effects of sub-surface layering, which in turn provide clues to the origin of surficial materials through rock disintegration, aeolian transport, atmospheric fallout, or induration. In addition to studying the surface properties, Mini-TES spectra have also been used to determine the temperature profile in the lower boundary layer, providing evidence for convective activity, and have determined the seasonal trends in atmospheric temperature and dust and cloud opacity.

  12. Current status of crushed rock and whole rock column studies

    International Nuclear Information System (INIS)

    Vine, E.N.; Daniels, W.R.; Rundberg, R.S.; Thompson, J.L.

    1980-01-01

    Measurements on a large number of crushed rock columns of tuff, granite, and argillite are discussed. The isotopes 85 Sr, 137 Cs, 133 Ba, 141 Ce, 152 Eu, /sup 95m/Tc, and 233 U were used. Flow rates were varied from approx. 30 to approx. 30000 m/y. Other parameters studied include isotope concentration and atmosphere. The sorption ratios calculated were compared with batch sorption ratios on the same samples. Methods of studying the movement of radionuclides through whole rock cores are described. The problems associated with sealing the cores to prevent leaking along the exterior surface and one possible solution are discussed. The strontium sorption ratio obtained by elution of one solid tuff core is compared with the batch and crushed rock column sorption ratios

  13. Radiation transport in statistically inhomogeneous rocks

    International Nuclear Information System (INIS)

    Lukhminskij, B.E.

    1975-01-01

    A study has been made of radiation transfer in statistically inhomogeneous rocks. Account has been taken of the statistical character of rock composition through randomization of density. Formulas are summarized for sigma-distribution, homogeneous density, the Simpson and Cauchy distributions. Consideration is given to the statistics of mean square ranges in a medium, simulated by the jump Markov random function. A quantitative criterion of rock heterogeneity is proposed

  14. Petrography, Geochemistry and Petrogenesis of Volcanic Rocks, NW Ghonabad, Iran

    Directory of Open Access Journals (Sweden)

    Sedigheh Zirjanizadeh

    2016-07-01

    Full Text Available Introduction The study area is located in NW Gonabad, Razavi Khorasan Province, northern Lut block and eastern Iran north of the Lut Block. Magmatism in NW Gonabad produced plutonic and volcanic rock associations with varying geochemical compositions. These rocks are related to the Cenozoic magmatic rocks in Iran and belong to the Lut Block volcanic–plutonic belt. In this study, petrogenesis of volcanic units in northwest Gonabad was investigated. The volcanic rocks are andesites/trachyandesites, rhyolites, dacites/ rhyodacites and pyroclastics.These rocks show porphyritic, trachytic and embayed textures in phenocrysts with plagioclase, sanidine and quartz (most notably in dacite and rhyolite, hornblende and rare biotite. The most important alteration zones are propylitic, silicification and argillic.Four kaolinite- bearing clay deposits have been located in areas affectedby hydrothermal alteration of Eocene rhyolite, dacite and rhyodacite. Analytical techniques Five samples were analyzed for major elements by wavelength dispersive X-ray fluorescence (XRF and six samples were analyzed for trace elements using inductively coupled plasma-mass spectrometry (ICP-MS in the Acme Laboratories, Vancouver (Canada.Sr and Nd isotopic compositions were determined for four whole-rock samples at the Laboratório de GeologiaIsotópica da Universidade de Aveiro, Portugal. Results Petrography. The rocks in this area are consist of trachyte, andesite/ trachyandesite, dacite/ rhyodacite, principally as ignimbrites and soft tuff. The textures of phenocrysts are mainly porphyritic, glomerophyric, trachytic and embayed textures in plagioclase, hornblende and biotite. The groundmasses consist of plagioclase and fine-grainedcrystals of hornblende. Plagioclase phenocrysts and microlitesare by far the most abundant textures in andesite - trachyandesites (>25% and in size from 0.01 to 0.1mm. Euhedral to subhedral hornblende phenocrysts areabundant (3-5%and 0.1 to 0

  15. The Getafe rock: Fall, composition and cosmic ray records of an unusual ultrarefractory scoriaceous material

    International Nuclear Information System (INIS)

    Martinez-Frias, J.; Weigel, A.; Marti, K.; Boyd, T.; Wilson, G. H.; Jull, T.

    1999-01-01

    In 1994 a moving car and its driver, on a highway in southern Madrid (Getafe) were struck by a falling rock. Eighty-one additional fragments (total weight: 55.926 kg) were later recovered, which all pointed towards a meteorite fall. A study of the composition of this object revealed an ultrarefractory material displaying a most unusual chemical make-up which differs from any known meteorite class, and for some elements and minerals approaches the composition of CAI (Ca-Al. rich inclusions in chondrites). A study of some cosmic-ray-produced stable and radioactive nuclides indicates: a) space and terrestrial exposure ages which do not exceed 1,000 and 520,000 years, respectively; b) the presence of a small ''227 Ne excess (1,100 deg C fraction), which suggest either a nucleogenic contribution from the ''19 F (α, n) ''22Ne reaction or a trapped Ne signature distinct from atmospheric Ne, and c) the existence of minor variations in the ''38Ar/Ar ratios also indicating a nucleogenic component or fractionation effects ''14C data are consistent with modern carbon originated in the period 1955-1958 and not earlier or more recently. The possibility that the Getafe rock could have a man-made origin (i.e. ceramic and refractory tiles, industrial slag) is also considered. (Author) 29 refs

  16. GIS database and discussion for the distribution, composition, and age of Cenozoic volcanic rocks of the Pacific Northwest Volcanic Aquifer System study area

    Science.gov (United States)

    Sherrod, David R.; Keith, Mackenzie K.

    2018-03-30

    A substantial part of the U.S. Pacific Northwest is underlain by Cenozoic volcanic and continental sedimentary rocks and, where widespread, these strata form important aquifers. The legacy geologic mapping presented with this report contains new thematic categorization added to state digital compilations published by the U.S. Geological Survey for Oregon, California, Idaho, Nevada, Utah, and Washington (Ludington and others, 2005). Our additional coding is designed to allow rapid characterization, mainly for hydrogeologic purposes, of similar rocks and deposits within a boundary expanded slightly beyond that of the Pacific Northwest Volcanic Aquifer System study area. To be useful for hydrogeologic analysis and to be more statistically manageable, statewide compilations from Ludington and others (2005) were mosaicked into a regional map and then reinterpreted into four main categories on the basis of (1) age, (2) composition, (3) hydrogeologic grouping, and (4) lithologic pattern. The coding scheme emphasizes Cenozoic volcanic or volcanic-related rocks and deposits, and of primary interest are the codings for composition and age.

  17. Questa baseline and pre-mining ground-water quality investigation. 19. Leaching characteristics of composited materials from mine waste-rock piles and naturally altered areas near Questa, New Mexico

    Science.gov (United States)

    Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.

    2007-01-01

    The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the

  18. Analysis of volcano rocks by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Dekan, J.

    2012-01-01

    In this work we have analysed the basalt rock from Mount Ba tur volcano situated on the Island of Bali in Indonesia.We compared our results with composition of basalt rocks from some other places on the Earth. (authors)

  19. Studies on the radiation absorption characteristics of various rocks

    International Nuclear Information System (INIS)

    Rahman, K.N.; Abdullah, S.A.; Gazzaz, M.A.

    1984-05-01

    Radiation absorption characteristics of nine different rocks, namely, ferrugenous quartz, metabasalt, larvikite, coarse grained diorite, coarse grained granite, coarse grained alkali granite, marble, quartz mica schist, and metamorphosed rock are studied. The rocks were collected from Jeddah, Makkah, Mina and Taif areas. Special attention was given on the availability, compactness, physical formation and uniform composition in selecting the rocks. The rocks were identified by optical method and their elemental composition determined by chemical analysis. The data were used to calculate the effective atomic numbers, half value layers mass and linear attenuation coefficients. The half value layers and the linear attenuation coefficientsof these rocks were determined experimentally using Am-241, Cs-137,and Co-60 sources. The results are compared with those obtained by theoretical calculations and agrre within 10%. Most of the rocks show much higher radiation attenuation characteristics than the standard concrete. Rocks containing higher percentage of Fe, Ca, Ti, and Mn show much higher radiation absorption characteristics than concrete. Only granites are found to be almost equivalent to concrete. 12 Ref

  20. 10 CFR 960.5-2-9 - Rock characteristics.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Rock characteristics. 960.5-2-9 Section 960.5-2-9 Energy... Rock characteristics. (a) Qualifying condition. The site shall be located such that (1) the thickness and lateral extent and the characteristics and composition of the host rock will be suitable for...

  1. Analysis of volcano rock from Canary islands

    International Nuclear Information System (INIS)

    Sitek, J.; Sedlackova, K.; Dekan, J.

    2013-01-01

    In this work we have analyzed the basalt rock from Lanzarote, which is the easternmost island of the Canary Islands lying in the Atlantic Ocean and has a volcanic origin. It was born through fiery eruptions and has solidified lava streams as well as extravagant rock formations. We compared our results with composition of basalt rocks from some other places on the Earth. Different iron oxides created on the volcanic rocks during their weathering on the Earth surface has been also analyzed. (authors)

  2. Source rock identification of sediments using trace element ratios and 13C isotope data - a case study from Pondicherry region

    International Nuclear Information System (INIS)

    Tirumalesh, K.; Kulkarni, U.P.; Singh, Gursharan; Ramakumar, K.L.; Chidambaram, S.

    2012-01-01

    Compositional characteristics of source rocks are generally well recorded in sedimentary deposits and provide valuable information about nature of source rocks even though weathering, physical sorting and deposition environment influence the sediment geochemistry. In this paper we report major, trace element and 13 C isotope data of cutting samples collected from Quaternary, Tertiary and Cretaceous formations in Pondicherry area. The distribution patterns and inter elemental correlations are used to identify source rock composition and carbon isotope compositions to understand the sediment deposition conditions. Mineralogy of the bulk sediment indicates presence of Quartz, K-feldspar, Calcite, Mg-calcite, Aragonite and Clay minerals. Compared to upper continental crust values most of these sediments show lower concentration of all elements except Ca and Zn at some depths. The depletion is probably associated with weathering of feldspar and removal of elements through solution. This also increases the proportion of quartz relative to source rock. The ratios of redox sensitive elements (Th/U) infer oxic weathering in shallow sediments. Elemental ratios (La/Sc, Th/Sc, Th/Cr, Th/Co) and ternary plots (La-Th-Sc and Th-Hf-Co) indicate contribution of felsic source rocks with varying degree of weathering. These plots also infer the inherent heterogeneity in the source rocks. Hafnium correlations with other trace elements suggest contribution of Tonalitic rocks in addition to granite to these sediments. The geochemical characteristics of the sediments are found to be similar to that of sediments belonging to similar geology in nearby regions. Presence of shallow marine condition during the sedimentation is inferred from the detrital index (DI) values, which is further supported by the presence of fibrous clay minerals in ESEM scans. This study also brings out the utility of δ 13 C information to reinforce the geochemical and mineralogical inferences. (author)

  3. The effects of lateral variations in rock composition and texture on anhydrite caprock integrity of CO2 storage systems

    NARCIS (Netherlands)

    Hangx, S. J T; Pluymakers, A. M H; Ten Hove, A.; Spiers, C. J.

    2014-01-01

    We investigated the effect of rock texture and composition on the mechanical strength and volumetric behaviour of anhydrite-rich caprock. Conventional triaxial experiments were performed at 80°C, confining pressures of 1.5-35MPa and strain rates of ~10-5s-1, both dry and in the presence of fluids.

  4. Aqueous Alteration of Endeavour Crater Rim Apron Rocks

    Science.gov (United States)

    Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Peretyazhko, T.

    2014-12-01

    Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis

  5. Organic geochemistry and petrology of oil source rocks, Carpathian Overthrust region, southeastern Poland - Implications for petroleum generation

    Science.gov (United States)

    Kruge, M.A.; Mastalerz, Maria; Solecki, A.; Stankiewicz, B.A.

    1996-01-01

    The organic mailer rich Oligocene Menilite black shales and mudstones are widely distributed in the Carpathian Overthrust region of southeastern Poland and have excellent hydrocarbon generation potential, according to TOC, Rock-Eval, and petrographic data. Extractable organic matter was characterized by an equable distribution of steranes by carbon number, by varying amounts of 28,30-dinor-hopane, 18??(H)-oleanane and by a distinctive group of C24 ring-A degraded triterpanes. The Menilite samples ranged in maturity from pre-generative to mid-oil window levels, with the most mature in the southeastern portion of the study area. Carpathian petroleum samples from Campanian Oligocene sandstone reservoirs were similar in biomarker composition to the Menilite rock extracts. Similarities in aliphatic and aromatic hydrocarbon distributions between petroleum asphaltene and source rock pyrolyzates provided further evidence genetically linking Menilite kerogens with Carpathian oils.

  6. Lithium isotope as a proxy for water/rock interaction between hydrothermal fluids and oceanic crust at Milos, Greece

    Science.gov (United States)

    Lou, U.-Lat; You, Chen-Feng; Wu, Shein-Fu; Chung, Chuan-Hsiung

    2014-05-01

    Hydrothermal activity at Milos in the Aegean island (Greece) is mainly located at rather shallow depth (about 5 m). It is interesting to compare these chemical compositions and the evolution processes of the hydrothermal fluids at deep sea hydrothermal vents in Mid-ocean Ridge (MOR). Lithium (Li) is a highly mobile element and its isotopic composition varies at different geological settings. Therefore, Li and its isotope could be used as an indicator for many geochemical processes. Since 6Li preferential retained in the mineral phase where 7Li is leached into fluid phase during basalt alteration, the Li isotopic fractionation between the rocks and the fluids reflect sensitively the degree of water-rock interaction. In this study, Bio-Rad AG-50W X8 cation exchange resin was used for purifying the hydrothermal fluids to separate Li from other matrix elements. The Li isotopic composition (δ7Li) was determined by Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) with precision better than 0.2‰ (2σ, n=20). The Li concentration in the hydrothermal fluids falls between 0.02 to 10.31 mM. The δ7Li values vary from +1.9 to +29.7‰, indicating significant seawater contamination have occurred. These hydrothermal fluids fit well with seawater and brine two end-member binary mixing model. During phase separation, lithium, boron, chlorine, iodine, bromine, sodium and potassium were enriched in the brine phase. On the other hand, aluminum, sulphur and iron were enriched in the vapor phase. There is no significant isotope fractionation between the two phases. The water/rock ratio (W/R) calculated is low (about 1.5 to 1.8) for the Milos fluids, restricted seawater recharge into the oceanic crust. Moreover, the oceanic crust in the region becomes less altered since the W/R is low. The δ7Li value of the hydrothermal fluids can be used as a sensitive tool for studying water-rock interaction.

  7. Digital Rock Simulation of Flow in Carbonate Samples

    Science.gov (United States)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  8. Rapid formation of rock armour for soil - rock fragment mixture during simulated rainfall

    Science.gov (United States)

    Poultney, E.; McGrath, G. S.; Hinz, C.

    2009-04-01

    Preventing erosion is an important issue in disturbed semi-arid and arid landscapes. This is in particular of highest importance for mining companies while undertaking land rehabilitation. An onsite investigation of the impact of surface rock fragments on erosion was conducted at Telfer goldmine in the Great Sandy Desert, Western Australia. The study site is a waste rock dump designed to mimic the concave slope of a natural mesa to both discourage erosion and blend in with its natural surroundings. Four treatments were used to construct the slope: two are topsoil mixed with rock fragments, and two are unmixed topsoil. A field study investigating erosion rills, particle size distribution, rock fragment coverage surface roughness and vegetation was carried out to determine changes down and across slope. The treatments constructed by mixing topsoil and rock fragments are more stable and show rock fragment distributions that more closely resemble patterns found on natural mesas surrounding Telfer. A controlled study using trays of topsoil mixed with rock fragment volumes of 50%, 60%, 70% and 80% were used to investigate how varying mixtures of rock fragments and topsoil erode using rainfall intensities between 20 and 100 mm h-1. Two runs of 25 minutes each were used to assess the temporal evolution of rock armouring. Surface coverage results converged for the 50%, 60% and 70% mixtures after the first run to coverage of about 90%, suggesting that fine sediment proportion does not affect rate and degree of rock armouring.

  9. Preliminary results of the determination of the Venus rock comsposition by ''Venera 13'' and ''Venera 14'' space probes

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Moskaleva, L.P.; Shcheglov, O.P.; Kharyukova, V.P.; Manvelyan, O.S.; Smirnov, G.G.

    1982-01-01

    Composition of the rocks on Venus was determined for the first time. The determination of rock composition was carried out at the landing sites of Venera 13 and Venera 14. The rock samples analyzed by the X-ray radiometri.c method. The study of rocks was carried out in most typical of the surface of Venus provinces: rolling upland (Venera 13) and flat lowland (Venera 14). The rock composition at the Venera 13 landing site proved to be close to potassium alkaline basalt, that at the Venera 14 landing site close to tholeitic basalt of the Earth's crust. The comparison of the typical composition of Venus rocks with the composition of rocks of the same structural-morphological provinces of the Earth sws some differences in formation of the surface and the crust of those planets

  10. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    Science.gov (United States)

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  11. Pb, Sr and Nd isotope geological characteristics and its evolution of Jianchaling rock

    International Nuclear Information System (INIS)

    Pang Chunyong; Chen Minyang; Xu Wenxin

    2003-01-01

    It has been a long time debatable subject on the raw material source and its genesis of Jianchaling ultrabasic rock, because the original rock phases, the original mineral compositions, texture and structure, even part of the chemical components of the rocks had been changed completely after many periods and phases of metamorphism. According to the content of Pb, Rb, Sr, Nd elements and their Pb, Sr, Nd isotope compositions of the rocks, together with the isotope geological age of late magmatic activities, the authors analyze the evolution of Pb, Sr, Nd isotope compositions, The inferred initiate Nd isotope ratio of ultrabasic rocks is 0.510233, lower than that of meteorite unity at a corresponding period, its ε Nd(T)>O; The initiate Sr ratios inferred by the isotope geological age ranges from 0.702735 to 0.719028; Projecting the lead isotope compositions on the Pb tectonic evolution model, the result indicates that the raw material of Jianchaling ultrabasic rock coming from the deplete upper mantle. The ultrabasic magma which enrich of Mg, Ni and less S intruded the crust and formed the Jianchaling ultrabasic rock at late Proterozoic era (927 Ma±). The forming time of serpentinite is mostly equal to the granitoid intruding time, showing the intrusion o flate acidic magma caused a large scale alteration of the ultrabasic rocks and formed the meta-ultrabasic phase rock observed today. (authors)

  12. Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand

    Science.gov (United States)

    Zorn, Edgar U.; Rowe, Michael C.; Cronin, Shane J.; Ryan, Amy G.; Kennedy, Lori A.; Russell, James K.

    2018-04-01

    Lava domes pose a significant hazard to infrastructure, human lives and the environment when they collapse. Their stability is partly dictated by internal mechanical properties. Here, we present a detailed investigation into the lithology and composition of a Rocks with variable porosity and groundmass crystallinity were compared using measured compressive and tensile strength, derived from deformation experiments performed at room temperature and low (3 MPa) confining pressures. Based on data obtained, porosity exerts the main control on rock strength and mode of failure. High porosity (> 23%) rocks show low rock strength (rocks (5-23%) exhibit higher measured rock strengths (up to 278 MPa) and brittle failure. Groundmass crystallinity, porosity and rock strength are intercorrelated. High groundmass crystal content is inversely related to low porosity, implying crystallisation and degassing of a slowly undercooled magma that experienced rheological stiffening under high pressures deeper within the conduit. This is linked to a slow magma ascent rate and results in a lava dome with higher rock strength. Samples with low groundmass crystallinity are associated with higher porosity and lower rock strength, and represent magma that ascended more rapidly, with faster undercooling, and solidification in the upper conduit at low pressures. Our experimental results show that the inherent strength of rocks within a growing dome may vary considerably depending on ascent/emplacement rates, thus significantly affecting dome stability and collapse hazards.

  13. The source rock characters of U-rich granite

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Debao, He [CNNC Key Laboratory of Uranium Resources Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology (China)

    2012-03-15

    This paper discusses the stratum composition, lithological association, uranium content of crust and the activation, migration, concentration of uranium at each tectonic cycle in South China. The authors point out that the source rock of U-rich granite is U-rich continental crust which is rich in Si, Al and K. The lithological association is mainly composed of terrestrial clastic rocks formation of mudstone and sandstone, mingled with intermediate-acidic, mafic pyroclastic rocks and carbonate rocks formation. During tectonic movements, the rocks had undergone regional metamorphism, migmatitization, granitization, and formed U-rich granites finally. (authors)

  14. The source rock characters of U-rich granite

    International Nuclear Information System (INIS)

    Feng Mingyue; He Debao

    2012-01-01

    This paper discusses the stratum composition, lithological association, uranium content of crust and the activation, migration, concentration of uranium at each tectonic cycle in South China. The authors point out that the source rock of U-rich granite is U-rich continental crust which is rich in Si, Al and K. The lithological association is mainly composed of terrestrial clastic rocks formation of mudstone and sandstone, mingled with intermediate-acidic, mafic pyroclastic rocks and carbonate rocks formation. During tectonic movements, the rocks had undergone regional metamorphism, migmatitization, granitization, and formed U-rich granites finally. (authors)

  15. Search for magnetic minerals in Martian rocks: Overview of the Rock Abrasion Tool (RAT) magnet investigation on Spirit and Opportunity

    DEFF Research Database (Denmark)

    Goetz, W.; Leer, K.; Gunnlaugsson, H.P.

    2008-01-01

    The Rock Abrasion Tool (RAT) on board the Mars Exploration Rovers (MER) is a grinding tool designed to remove dust coatings and/or weathering rinds from rocks and expose fresh rock material. Four magnets of different strengths that are built into the structure of the RAT have been attracting...... is interpreted as magnetite. The amount of abraded rock material adhering to the magnets varied strongly during the mission and is correlated in a consistent way to the amount of magnetite inferred from Mossbauer spectra for the corresponding rock. The RAT magnet experiment as performed on Opportunity also...

  16. Water-rock interaction and chemistry of groundwaters from the Canadian Shield

    International Nuclear Information System (INIS)

    Frape, S.K.; Fritz, P.; McNutt, R.H.

    1984-01-01

    The chemical and isotopic compositions of groundwaters in the crystalline rocks of the Canadian Shield reflect different degrees of rock-water interactions. The chemistry of the shallow, geochemically immature ground waters and especially of the major cations is controlled by local rock compositions, whereby dissolution reactions dominate. Conservative constituents, such as chloride and bromide, however, are not entirely a result of such reactions but appear to be readily added from leachable salts during the initial stages of the geochemical evolution of these waters. Their concentration changes little as major cations increase, until concentrations of Total Dissolved Solids (TDS) reach 3000 to 5000 mg l -1 . The isotopic composition of these shallow waters reflects local, present day precipitations. In contrast to the shallow groundwaters, the isotopic and chemical compositions of the deep, saline waters and brines are determined by extensive, low-temperature rock-water interactions. This is documented in major ion chemistries, 18 O contents and strontium isotopic compositions. These data indicate that the deep brines have been contained in hydrologically isolated pockets. The almost total loss of primary compositions make discussions on the origin of these brines very speculative. However, all brines from across the Canadian Shield have a very similar chemical composition, which probably reflects a common geochemical history. (author)

  17. Crustal contamination versus an enriched mantle source for intracontinental mafic rocks: Insights from early Paleozoic mafic rocks of the South China Block

    Science.gov (United States)

    Xu, Wenjing; Xu, Xisheng; Zeng, Gang

    2017-08-01

    Several recent studies have documented that the silicic rocks (SiO2 > 65 wt.%) comprising Silicic Large Igneous Provinces are derived from partial melting of the crust facilitated by underplating/intraplating of "hidden" large igneous province-scale basaltic magmas. The early Paleozoic intracontinental magmatic rocks in the South China Block (SCB) are dominantly granitoids, which cover a combined area of 22,000 km2. In contrast, exposures of mafic rocks total only 45 km2. These mafic rocks have extremely heterogeneous isotopic signatures that range from depleted to enriched (whole rock initial 87Sr/86Sr = 0.7041-0.7102; εNd(t) = - 8.4 to + 1.8; weighted mean zircon εHf(t) = - 7.4 to + 5.2), show low Ce/Pb and Nb/U ratios (0.59-13.1 and 3.5-20.9, respectively), and variable Th/La ratios (0.11-0.51). The high-MgO mafic rocks (MgO > 10 wt.%) tend to have lower εNd(t) values (- 4) and Sm/Nd ratios (> 0.255). The differences in geochemistry between the high-MgO and low-MgO mafic rocks indicate greater modification of the compositions of high-MgO mafic magmas by crustal material. In addition, generally good negative correlations between εNd(t) and initial 87Sr/86Sr ratios, MgO, and K2O, along with the presence of inherited zircons in some plutons, indicate that the geochemical and isotopic compositions of the mafic rocks reflect significant crustal contamination, rather than an enriched mantle source. The results show that high-MgO mafic rocks with fertile isotopic compositions may be indicative of crustal contamination in addition to an enriched mantle source, and it is more likely that the lithospheric mantle beneath the SCB during the early Paleozoic was moderately depleted than enriched by ancient subduction processes.

  18. Classification and Distribution of Mars Pathfinder Rocks Using Quantitative Morphologic Indices

    Science.gov (United States)

    Yingst, R. A.; Biederman, K. L.; Monhead, A. M.; Haldemann, A. F. C.; Kowalczyk, M. R.

    2004-01-01

    The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder visible/near-infrared spectra, it has not been fully determined which of these stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique mineralogy's difficult. Efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, and the current understanding is such that many factors influencing spectral signatures cannot be quantified to a sufficient level so they may be removed. The result is that fundamental questions regarding information needed to reveal the present and past interactions between the rocks and rock surfaces and the Martian environment remain unanswered. But it is possible to approach the issue of identifying distinct rock and rock surface types from a different angle.

  19. Nagra technical report 14-02, Geological basics - Dossier VI - Barrier properties of proposed host rock sediments and neighbouring rock

    International Nuclear Information System (INIS)

    Gautschi, A.; Deplazes, G.; Traber, D.; Marschall, P.; Mazurek, M.; Gimmi, T.; Maeder, U.

    2014-01-01

    This dossier is the sixth of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. It discusses the barrier properties of the proposed host rock sediments and neighbouring rock layers. The mineralogical composition of the host rocks are discussed as are their pore densities and hydrological properties. Diffusion aspects are discussed. The aquifer systems in the proposed depository areas and their classification are looked at. The barrier properties of the host rocks and those of neighbouring sediments are discussed. Finally, modelling concepts and parameters for the transport of radionuclides in the rocks are discussed

  20. The Kimberlites and related rocks of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa

    Science.gov (United States)

    Donnelly, Cara L.; Griffin, William L.; O'Reilly, Suzanne Y.; Pearson, Norman J.; Shee, Simon R.

    2011-03-01

    The Kuruman Kimberlite Province is comprised of 16 small pipes and dikes and contains some of the oldest known kimberlites (>1.6 Ga). In this study, 12 intrusions are subdivided into three groups with distinct petrology, age, and geochemical and isotopic compositions: (1) kimberlites with groundmass perovskites defining a Pb-Pb isochron age of 1787 ± 69 Ma, (2) orangeite with a U-Pb perovskite age of 124 ± 16 Ma, and (3) ultramafic lamprophyres (aillikite and mela-aillikite) with a zircon U-Pb age of 1642 ± 46 Ma. The magma type varies across the Province, with kimberlites in the east, lamprophyres in the west and orangeite and ultramafic lamprophyres to the south. Differences in the age and petrogenesis of the X007 orangeite and Clarksdale and Aalwynkop aillikites suggest that these intrusions are probably unrelated to the Kuruman Province. Kimberlite and orangeite whole-rock major and trace element compositions are similar to other South African localities. Compositionally, the aillikites typically lie off kimberlite and orangeite trends. Groundmass mineral chemistry of the kimberlites has some features more typical of orangeites. Kimberlite whole-rock Sr and Nd isotopes show zoning across the Province. When the kimberlites erupted at ~1.8 Ga, they sampled a core volume (ca 50 km across) of relatively depleted SCLM that was partially surrounded by a rim of more metasomatized mantle. This zonation may have been related to the development of the adjacent Kheis Belt (oldest rocks ~2.0 Ga), as weaker zones surrounding the more resistant core section of SCLM were more extensively metasomatized.

  1. Influence of the mineral composition of clay rocks on the stability of oil wells

    International Nuclear Information System (INIS)

    Amorocho, P. R; Badillo, Juan

    2012-01-01

    In the oil companies, the operation of drilling well bore could be more expensive if the composition of the rocks is clay, the cost could increase between 10 and 15% from the starting budget. In order to decrease this problem, the oil industry has spent too much money for developing mechanisms that can provide better control and stability in clay formations during the drilling. The Society Petroleum Engineers (SPE) in some researches have published that the main chemical effects that are involved in the interaction of perforation fluids and the clay formation are: 1) chemical osmosis; and 2) hydration stresses, although, there are others like: Capillary effects, dehydration, differences in pressure and cationic exchange. These factors are not present generally in independent form. At Piedemonte Llanero the problem of the well bore stability represents a high spending of money for oil companies, caused in this region by chemical factors between fluid/rock and mechanical factors as resulted of the stresses in the area. Metil Blue Testing (MBT) and X-ray Diffraction (DR-X) were made in samples of clay; these were taken from cuts extracted of boreholes drilled in some places of the Colombian Llanos. It was found that these samples had a moderate content of reactive and low content of swell minerals.The samples main component was kaolinite, this mineral does not let the rock get swell, but it produces caving in the hole. However, it is necessary to do other tests to quantify the damages and evaluate the influence of there gime of the stress during the perforation of well bore.

  2. Bacterial Presence in Layered Rock Varnish-Possible Mars Analog?

    Science.gov (United States)

    Krinsley, D.; Rusk, B. G.

    2000-08-01

    Rock varnish from locations in Death Valley, California; Peru; Antarctica; and Hawaii reveal nanometer scale layering (less than 1 nm to about 75 nm) when studied with transmission electron microscopy (TEM). Parallel layers of clay minerals containing evidence of presumed bacteria were present in all samples. Samples range in age from a few thousand years to perhaps a million years. Diagenesis is relatively limited, as chemical composition is variable, both from top to bottom and along layers in these varnish samples. Also, occasional exotic minerals occur randomly in most varnish sections, and vary in size and hardness, again suggesting relative lack of diagenetic alteration. Additional information can be found in the original extended abstract.

  3. Petrology, composition, and age of intrusive rocks associated with the Quartz Hill molybdenite deposit, southeastern Alaska.

    Science.gov (United States)

    Hudson, T.; Smith, James G.; Elliott, R.L.

    1979-01-01

    A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors

  4. Nature of the interfacial region between cementitious mixtures and rocks from the Palo Duro Basin and other seal components

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Roy, D.M.

    1986-03-01

    Using the interface zone as an indicator of compatibility, preliminary tests were run using cement-based formulations designed to be used for shaft sealing in conjunction with evaporite and clastic rocks of the Palo Duro Basin, one of several potential sites for a high-level radioactive waste repository. Emphasis focused on two formulations, both designed to be slightly expansive. Mixture 83-05 was tested in combination with anhydrite and siltstone. A comparable mixture (83-03) containing salt was used with the halite. Cement, rocks, and their respective interfaces were examined using x-ray diffraction, optical microscopy, and scanning electron microscopy. Bond strengths between rock and cement as well as between selected steels and grout were determined as a function of curing conditions and pretest surface treatment. Permeabilities of cement/rock and cement/steel composites were also determined. Bond strength and permeability were found to vary with curing conditions as well as surface treatment

  5. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  6. Zircon U-Pb chronology, geochemistry and Sr-Nd-Pb isotopic compositions of the Volcanic Rocks in the Elashan area, NW China: petrogenesis and tectonic implications

    Science.gov (United States)

    Zhou, H.; Wei, J.; Shi, W.; Li, P.; Chen, M.; Zhao, X.

    2017-12-01

    Elashan area is located in the intersection of the East Kunlun Orogenic Belt (EKOB) and the West Qinling Orogenic (WQOB). We present petrology, zircon U-Pb ages, whole-rock geochemistry and Sr-Nd-Pb isotopic compositions from the andesite and felsic volcanic rocks (rhyolite and rhyolitic tuffs) in Elashan group volcanic rock. The LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks are emplaced at 250 247 Ma. The volcanic rocks have high -K and aluminum - peraluminous characteristics, A/CNK = 1.07 1.82, δ ranges from 1.56 2.95, the main body is calc-alkaline rock. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb, Ta, P and Ti), while having a flat heavy REE (HREEs) pattern. The ∑REE values of 178.68 to 298.11 ppm, average 230.50 ppm. The LREE/HREE values of 4.39 to 11.78 ppm, average 6.77 ppm. REE fractionation is obvious, REE distribution curve was right smooth, and have slightly negative Eu anomalies (Eu/Eu*=0.44-0.80, average 0.60), which as similar to the island arc volcanic rocks. The volcanic rocks have initial 87Sr/86Sr ratios of 0.71028-0.71232, ɛNd(t) values of -6.7 to -7.6, with T2DM-Nd ranging from 1561 to 1640 Ma. Pb isotopic composition (206 Pb / 204 Pb)t = 18.055 18.330, (207 Pb / 204 Pb)t = 15.586 15.618, (208 Pb / 204 Pb)t = 37.677 38.332. Geochemical and Sr-Nd-Pb isotopes indicates that Elashan group volcanic magma derived mainly from the lower crust. Elashan group volcanic rocks is the productive East Kunlun block and West Qinling block collision, which makes the thicken crust caused partial melting in the study area. The source rocks is probably from metamorphic sandstone of Bayankala. But with Y-Nb and Rb-(Y+Nb), R1-R2 and Rb/10-Hf-Ta*3 diagrams showing that intermediate-acid rocks mainly formed in volcanic arc-collision environment, probably the collision event is short , therefore rocks retain the original island

  7. An unconventional depiction of viewpoint in rock art.

    Science.gov (United States)

    Pettigrew, Jack; Scott-Virtue, Lee

    2015-01-01

    Rock art in Africa sometimes takes advantage of three-dimensional features of the rock wall, such as fissures or protuberances, that can be incorporated into the artistic composition (Lewis-Williams, 2002). More commonly, rock artists choose uniform walls on which two-dimensional depictions may represent three-dimensional figures or objects. In this report we present such a two-dimensional depiction in rock art that we think reveals an intention by the artist to represent an unusual three-dimensional viewpoint, namely, with the two human figures facing into the rock wall, instead of the accustomed Western viewpoint facing out!

  8. Heat production in granitic rocks

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Jakobsen, Kiki

    2017-01-01

    Granitic rocks play special role in the dynamics and evolution of the Earth and its thermal regime. First, their compositional variability, reflected in the distribution of concentrations of radiogenic elements, provides constraints on global differentiation processes and large scale planetary...... evolution, where emplacement of granites is considered a particularly important process for the formation of continental crust. Second, heat production by radioactive decay is among the main heat sources in the Earth. Therefore knowledge of heat production in granitic rocks is pivotal for thermal modelling...... of the continental lithosphere, given that most radiogenic elements are concentrated in granitic rocks of the upper continental crust whereas heat production in rocks of the lower crust and lithospheric mantle is negligible. We present and analyze a new global database GRANITE2017 (with about 500 entries...

  9. Continuation of down-hole geophysical testing for rock sockets : [technical summary].

    Science.gov (United States)

    2013-11-01

    The rock socket is critical to a drilled shaft : foundation because it lies within a rock stratum : and accounts for much of the capacity of the : foundational unit. Consistency of the rocks : structure and composition must be identifed : because ...

  10. Rock-colonizing plants: abundance of the endemic cactus Mammillaria fraileana related to rock type in the southern Sonoran Desert

    Science.gov (United States)

    Blanca R. Lopez; Yoav Bashan; Macario Bacilio; Gustavo. De la Cruz-Aguero

    2009-01-01

    Establishment, colonization, and permanence of plants affect biogenic and physical processes leading to development of soil. Rockiness, temperature, and humidity are accepted explanations to the influence and the presence of rock-dwelling plants, but the relationship between mineral and chemical composition of rocks with plant abundance is unknown in some regions. This...

  11. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  12. Hot spring microbial community composition, morphology, and carbon fixation: implications for interpreting the ancient rock record

    Science.gov (United States)

    Schuler, Caleb G.; Havig, Jeff R.; Hamilton, Trinity L.

    2017-11-01

    Microbial communities in hydrothermal systems exist in a range of macroscopic morphologies including stromatolites, mats, and filaments. The architects of these structures are typically autotrophic, serving as primary producers. Structures attributed to microbial life have been documented in the rock record dating back to the Archean including recent reports of microbially-related structures in terrestrial hot springs that date back as far as 3.5 Ga. Microbial structures exhibit a range of complexity from filaments to more complex mats and stromatolites and the complexity impacts preservation potential. As a result, interpretation of these structures in the rock record relies on isotopic signatures in combination with overall morphology and paleoenvironmental setting. However, the relationships between morphology, microbial community composition, and primary productivity remain poorly constrained. To begin to address this gap, we examined community composition and carbon fixation in filaments, mats, and stromatolites from the Greater Obsidian Pool Area (GOPA) of the Mud Volcano Area, Yellowstone National Park, WY. We targeted morphologies dominated by bacterial phototrophs located in close proximity within the same pool which are exposed to similar geochemistry as well as bacterial mat, algal filament and chemotrophic filaments from nearby springs. Our results indicate i) natural abundance δ13C values of biomass from these features (-11.0 to -24.3 ‰) are similar to those found in the rock record; ii) carbon uptake rates of photoautotrophic communities is greater than chemoautotrophic; iii) oxygenic photosynthesis, anoxygenic photosynthesis, and chemoautotrophy often contribute to carbon fixation within the same morphology; and iv) increasing phototrophic biofilm complexity corresponds to a significant decrease in rates of carbon fixation—filaments had the highest uptake rates whereas carbon fixation by stromatolites was significantly lower. Our data highlight

  13. Hot Spring Microbial Community Composition, Morphology, and Carbon Fixation: Implications for Interpreting the Ancient Rock Record

    Directory of Open Access Journals (Sweden)

    Caleb G. Schuler

    2017-11-01

    Full Text Available Microbial communities in hydrothermal systems exist in a range of macroscopic morphologies including stromatolites, mats, and filaments. The architects of these structures are typically autotrophic, serving as primary producers. Structures attributed to microbial life have been documented in the rock record dating back to the Archean including recent reports of microbially-related structures in terrestrial hot springs that date back as far as 3.5 Ga. Microbial structures exhibit a range of complexity from filaments to more complex mats and stromatolites and the complexity impacts preservation potential. As a result, interpretation of these structures in the rock record relies on isotopic signatures in combination with overall morphology and paleoenvironmental setting. However, the relationships between morphology, microbial community composition, and primary productivity remain poorly constrained. To begin to address this gap, we examined community composition and carbon fixation in filaments, mats, and stromatolites from the Greater Obsidian Pool Area (GOPA of the Mud Volcano Area, Yellowstone National Park, WY. We targeted morphologies dominated by bacterial phototrophs located in close proximity within the same pool which are exposed to similar geochemistry as well as bacterial mat, algal filament and chemotrophic filaments from nearby springs. Our results indicate (i natural abundance δ13C values of biomass from these features (−11.0 to −24.3‰ are similar to those found in the rock record; (ii carbon uptake rates of photoautotrophic communities is greater than chemoautotrophic; (iii oxygenic photosynthesis, anoxygenic photosynthesis, and chemoautotrophy often contribute to carbon fixation within the same morphology; and (iv increasing phototrophic biofilm complexity corresponds to a significant decrease in rates of carbon fixation—filaments had the highest uptake rates whereas carbon fixation by stromatolites was significantly lower

  14. Characterization of crystalline rocks in the Lake Superior region, USA: implications for nuclear waste isolation

    International Nuclear Information System (INIS)

    Sood, M.K.; Flower, M.F.J.; Edgar, D.E.

    1984-01-01

    The Lake Superior region (Wisconsin, the Upper Peninsula of Michigan, and Minnesota) contains 41 Precambrian crystalline rock complexes comprising 64 individual but related rock bodies with known surface exposures. Each complex has a map area greater than 78 km 2 . About 54% of the rock complexes have areas of up to 500 km 2 , 15% fall between 500 km 2 and 1000 km 2 , 19% lie between 1000 km 2 and 2500 km 2 , and 12% are over 2500 km 2 . Crystalline rocks of the region vary widely in composition, but they are predominantly granitic. Repeated thermo-tectonic events have produced early Archean gneisses, migmatites, and amphibolites with highly tectonized fabrics that impart a heterogeneous and anisotropic character to the rocks. Late Archean rocks are usually but not invariably gneissose and migmatitic. Proterozoic rocks of the region include synorogenic (foliated) granitic rocks, anorogenic (non-foliated) granites, and the layered gabbro-anorthosite-troctolite intrusives of the rift-related Keweenawan igneous activity. Compared with the Archean rocks of the region, the Proterozoic bodies generally lack highly tectonized fabrics and have more definable contacts where visible. Anorogenic intrusions are relatively homogeneous and isotropic. On the basis of observed geologic characteristics, postorogenic and anorogenic crystalline rock bodies located away from recognized tectonic systems have attributes that make them relatively more desirable as a possible site for a nuclear waste repository in the region. This study was conducted at Argonne National Laboratory under the sponsorship of the US Department of Energy through the Office of Crystalline Repository Development at Battelle Memorial Institute, Columbus, Ohio. 84 references, 4 figures, 3 tables

  15. Characterization of crystalline rocks in the Lake Superior region, USA: implications for nuclear waste isolation

    International Nuclear Information System (INIS)

    Sood, M.K.; Edgar, D.E.; Flower, M.F.J.

    1984-01-01

    The Lake Superior region (Wisconsin, the Upper Peninsula of Michigan, and Minnesota) contains 41 Precambrian crystalline (medium- to coarse-grained igneous and high-grade metamorphic) rock complexes comprising 64 individual but related rock bodies with known surface exposures. Each complex has a map area greater than 78 km 2 . About 54% of the rock complexes have areas of up to 500 km 2 , 15% fall between 500 km 2 and 1000 km 2 , 19% lie between 1000 km 2 and 2500 km 2 , and 12% are over 2500 km 2 . Crystalline rocks of the region vary widely in composition, but they are predominantly granitic. Repeated thermo-tectonic events have produced early Archean gneisses, migmatites, and amphibolites with highly tectonized fabrics that impart a heterogeneous and anisotropic character to the rocks. Late Archean rocks are usually but not invariably gneissose an migmatitic. Proterozoic rocks of the region include synorogenic (foliated) granitic rocks, anorogenic (nonfoliated) granites, and the layered gabbro-anorthosite-troctolite intrusives of the rift-related Keweenawan igneous activity. Compared with the Archean rocks of the region, the Proterozoic bodies generally lack highly tectonized fabrics and have more definable contacts where visible. Anorogenic intrusions are relatively homogeneous and isotropic. On the basis of observed geologic characteristics, postorogenic and anorogenic crystalline rock bodies located away from recognized tectonic systems have attributes that make them relatively more desirable as a possible site for a nuclear waste repository in the region. This study was conducted at Argonne National Laboratory under the sponsorship of the US Department of Energy through the Office of Crystalline Repository Development at Battelle Memorial Institute, Columbus, Ohio

  16. A diffuse radar scattering model from Martian surface rocks

    Science.gov (United States)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  17. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    OpenAIRE

    Wen, Zhijie; Wang, Xiao; Chen, Lianjun; Lin, Guan; Zhang, Hualei

    2017-01-01

    Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE), which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the i...

  18. U-Pb isotope systematics in josephinites and associated rocks

    Energy Technology Data Exchange (ETDEWEB)

    Goepel, C.; Manhes, G.; Allegre, C.J. (Lab. Geochimie et Cosmochimie, I.P.G., 75 - Paris (France))

    1990-02-01

    Josephinite nodules, composed of metallic nickel iron alloy intergrown with andradite garnet, are found in the peridotitic section of an obducted ophiolite in SW Oregon. The origin of josephinite is widely debated: for example, previous investigation have proposed it as a byproduct of low temperature synserpentinization processes linked to the intrusion of dikes or and its derivation from primitive mantle, conceivably from as deep as the core mantle boundary. We report U-Pb data from josephinites, wyrdite (a rock associated with josephinite) consisting of rutile and ilmente intergrown with silicates, and their surrounding rocks (hornblende diorites and harzburgites). The measured Pb isotopic composition of all decontaminated, leached josephinite metal samples plots in the Pb-Pb diagram just above/in the MORB field, while the first leachates are characterized by higher {sup 207}Pb/{sup 204}Pb ratios. The isotopic Pb composition measured in the leachates of the wyrdite defines a line whose slope corresponds to an age of 159{plus minus}8 Myr. The harzburgites show a wide spread in Pb isotopic compositions; all samples lie above the MORB field and three samples plot to the left side of the 4.55 AE geochron. The hornblende diorite dikes, characterized by the highest U and Pb concentrations of all studied rocks, plot in the MORB field. None of these different rocks is characterized by a single or homogeneous Pb composition. All samples are affected by secondary alteration processes: the circulation of hydrothermal fluids disturbed the dikes and ultramafic rocks and serpentinization processes have affected harzburgites, josephinites, and wyrdites. Thus the Pb isotopic composition measured today represents a mixture of initial Pb, radiogenic Pb and inherited Pb in variable proportions. Concerning the origin of josephinite these results show a close relationship between josephinite, wyrdite, and the dikes. (orig./WB).

  19. Oxygen isotope geochemistry of The Geysers reservoir rocks, California

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, Richard P.; Moore, Joseph N.

    1994-01-20

    Whole-rock oxygen isotopic compositions of Late Mesozoic graywacke, the dominant host rock at The Geysers, record evidence of a large liquid-dominated hydrothermal system that extended beyond the limits of the present steam reservoir. The graywackes show vertical and lateral isotopic variations that resulted from gradients in temperature, permeability, and fluid composition during this early liquid-dominated system. All of these effects are interpreted to have resulted from the emplacement of the granitic "felsite" intrusion 1-2 million years ago. The {delta}{sup 18}O values of the graywacke are strongly zoned around a northwest-southeast trending low located near the center of and similar in shape to the present steam system. Vertical isotopic gradients show a close relationship to the felsite intrusion. The {delta}{sup 18}O values of the graywacke decrease from approximately 15 per mil near the surface to 4-7 per mil 300 to 600 m above the intrusive contact. The {delta}{sup 18}O values then increase downward to 8-10 per mil at the felsite contact, thereafter remaining nearly constant within the intrusion itself. The large downward decrease in {delta}{sup 18}O values are interpreted to be controlled by variations in temperature during the intrusive event, ranging from 150{degree}C near the surface to about 425{degree}C near the intrusive contact. The upswing in {delta}{sup 18}O values near the intrusive contact appears to have been caused by lower rock permeability and/or heavier fluid isotopic composition there. Lateral variations in the isotopic distributions suggests that the effects of temperature were further modified by variations in rock permeability and/or fluid-isotopic composition. Time-integrated water:rock ratios are thought to have been highest within the central isotopic low where the greatest isotopic depletions are observed. We suggest that this region of the field was an area of high permeability within the main upflow zone of the liquid

  20. How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota.

    Science.gov (United States)

    Bost, Alyssa; Franzenburg, Soeren; Adair, Karen L; Martinson, Vincent G; Loeb, Greg; Douglas, Angela E

    2018-04-01

    Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution. © 2017 John Wiley & Sons Ltd.

  1. Composition of rock core from hole AEC-8, New Mexico

    International Nuclear Information System (INIS)

    Rhoderick, J.E.; Buck, A.D.

    1981-12-01

    AEC-8 is a borehole about 5000 ft deep located within the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. About 28 ft of rock core from seven depth intervals in this hole was characterized by petrographic examination. This included logging, examination of the rock with a stereomicroscope, examination of thin sections with a polarizing microscope, and examination of each sample by x-ray diffraction

  2. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina

    Science.gov (United States)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.

    2017-07-01

    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  3. Desperate Prawns: Drivers of Behavioural Innovation Vary across Social Contexts in Rock Pool Crustaceans.

    Science.gov (United States)

    Duffield, Callum; Wilson, Alastair J; Thornton, Alex

    2015-01-01

    Innovative behaviour may allow animals to cope with changes in their environment. Innovative propensities are known to vary widely both between and within species, and a growing body of research has begun to examine the factors that drive individuals to innovate. Evidence suggests that individuals are commonly driven to innovate by necessity; for instance by hunger or because they are physically unable to outcompete others for access to resources. However, it is not known whether the factors that drive individuals to innovate are stable across contexts. We examined contextual variation in the drivers of innovation in rock pool prawns (Palaemon spp), invertebrates that face widely fluctuating environments and may, through the actions of tides and waves, find themselves isolated or in groups. Using two novel foraging tasks, we examined the effects of body size and hunger in prawns tested in solitary and group contexts. When tested alone, small prawns were significantly more likely to succeed in a spatial task, and faster to reach the food in a manipulation task, while hunger state had no effect. In contrast, size had no effect when prawns were tested in groups, but food-deprived individuals were disproportionately likely to innovate in both tasks. We suggest that contextual variation in the drivers of innovation is likely to be common in animals living in variable environments, and may best be understood by considering variation in the perception of relative risks and rewards under different conditions.

  4. What is the Emerging Knowledge of the Early Earth from the Oldest (>3.6 Ga) Rocks?

    Science.gov (United States)

    Bennett, V. C.; Nutman, A. P.

    2016-12-01

    Eoarchean to Hadean rocks are direct samples of early Earth chemistry and conditions and provide the ground-truth for models of early Earth formation, environments and evolution. Intensive investigations by many groups reveal rocks of this age comprise only one millionth of Earth's surface and are found in 9 areas of varying extent distributed worldwide. This record is of variable fidelity however, owing to metamorphic overprinting. The majority of the oldest rocks are high grade gneisses with protoliths from mid-crustal levels; the more rare supracrustal assemblages reflect early Earth's surface conditions and processes. First-order observations from supracrustal sequences at several localities and from 3.6 Ga to ≥3.9 Ga in age provide abundant evidence of liquid water at the Earth's surface with pillow basalts and chemical sedimentary rocks in the form of cherts, banded Fe formations and carbonates. Trace element patterns of these sedimentary rocks strongly resemble modern seawater compositions, except for the absence of redox sensitive Ce anomalies. Evidence for early life remains controversial and is mainly in the form of stable isotopic signatures of C and Fe. Our recent work from newly-discovered, exceptionally well-preserved 3.7 Ga sedimentary rocks and the deformed unconformity they rest on has provided the first evidence of Eoarchean intense weathering and shallow water sedimentary processes. Whilst the major and trace element compositions of Eoarchean gneisses have analogs in younger rocks in accord with a continuum of crust formation processes, radiogenic isotopic signatures from both long and short half-life decay schemes record an image of the Earth in transition from early differentiation processes, likely associated with planetary accretion and formation, to more modern styles. Most Eoarchean rocks possess extinct nuclide anomalies in the form of 142Nd and 182W isotopic signatures that are absent in modern terrestrial samples, and developed from

  5. Strontium isotopic geochemistry of intrusive rocks, Puerto Rico, Greater Antilles

    International Nuclear Information System (INIS)

    Jones, L.M.; Kesler, S.E.

    1980-01-01

    The strontium isotope geochemistry is given for three Puerto Rican intrusive rocks: the granodioritic Morovis and San Lorenzo plutons and the Rio Blanco stock of quartz dioritic composition. The average calculated initial 87 Sr/ 86 Sr ratios are 0.70370, 0.70355 and 0.70408, respectively. In addition, the San Lorenzo data establish a whole-rock isochron of 71 +- 2 m.y., which agrees with the previously reported K-Ar age of 73 m.y. Similarity of most of the intrusive rocks in the Greater Antilles with respect to their strontium isotopic geochemistry regardless of their major element composition indicates that intrusive magmas with a wide range of composition can be derived from a single source material. The most likely source material, in view of the available isotopic data, is the mantle wedge overlying the subduction zone. (orig.)

  6. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: Evidence from mantle xenoliths from French Polynesia

    Science.gov (United States)

    Tommasi, A.; Godard, M.; Coromina, G.; Dautria, J. M.; Barczus, H.

    2003-04-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2.5 (2

  7. VNIR spectral modeling of Mars analogue rocks: first results

    Science.gov (United States)

    Pompilio, L.; Roush, T.; Pedrazzi, G.; Sgavetti, M.

    Knowledge regarding the surface composition of Mars and other bodies of the inner solar system is fundamental to understanding of their origin, evolution, and internal structures. Technological improvements of remote sensors and associated implications for planetary studies have encouraged increased laboratory and field spectroscopy research to model the spectral behavior of terrestrial analogues for planetary surfaces. This approach has proven useful during Martian surface and orbital missions, and petrologic studies of Martian SNC meteorites. Thermal emission data were used to suggest two lithologies occurring on Mars surface: basalt with abundant plagioclase and clinopyroxene and andesite, dominated by plagioclase and volcanic glass [1,2]. Weathered basalt has been suggested as an alternative to the andesite interpretation [3,4]. Orbital VNIR spectral imaging data also suggest the crust is dominantly basaltic, chiefly feldspar and pyroxene [5,6]. A few outcrops of ancient crust have higher concentrations of olivine and low-Ca pyroxene, and have been interpreted as cumulates [6]. Based upon these orbital observations future lander/rover missions can be expected to encounter particulate soils, rocks, and rock outcrops. Approaches to qualitative and quantitative analysis of remotely-acquired spectra have been successfully used to infer the presence and abundance of minerals and to discover compositionally associated spectral trends [7-9]. Both empirical [10] and mathematical [e.g. 11-13] methods have been applied, typically with full compositional knowledge, to chiefly particulate samples and as a result cannot be considered as objective techniques for predicting the compositional information, especially for understanding the spectral behavior of rocks. Extending the compositional modeling efforts to include more rocks and developing objective criteria in the modeling are the next required steps. This is the focus of the present investigation. We present results of

  8. Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada

    Science.gov (United States)

    Power, Christopher; Tsourlos, Panagiotis; Ramasamy, Murugan; Nivorlis, Aristeidis; Mkandawire, Martin

    2018-03-01

    Mine waste rock piles (WRPs) can contain sulfidic minerals whose interaction with oxygen and water can generate acid mine drainage (AMD). Thus, WRPs can be a long-term source of environmental pollution. Since the generation of AMD and its release into the environment is dependent on the net volume and bulk composition of waste rock, effective characterization of WRPs is necessary for successful remedial design and monitoring. In this study, a combined DC resistivity and induced polarization (DC-IP) approach was employed to characterize an AMD-generating WRP in the Sydney Coalfield, Nova Scotia, Canada. Two-dimensional (2D) DC-IP imaging with 6 survey lines was performed to capture the full WRP landform. 2D DC results indicated a highly heterogeneous and moderately conductive waste rock underlain by a resistive bedrock containing numerous fractures. 2D IP (chargeability) results identified several highly-chargeable regions within the waste, with normalized chargeability delineating regions specific to waste mineralogy only. Three-dimensional (3D) DC-IP imaging, using 17 parallel lines on the plateau of the pile, was then used to focus on the composition of the waste rock. The full 3D inverted DC-IP distributions were used to identify coincident and continuous zones (isosurfaces) of low resistivity (0.4 mS/m) that were inferred as generated AMD (leachate) and stored AMD (sulfides), respectively. Integrated geological, hydrogeological and geochemical data increased confidence in the geoelectrical interpretations. Knowledge on the location of potentially more reactive waste material is extremely valuable for improved long-term AMD monitoring at the WRP.

  9. Petrogenesis of siliceous high-Mg series rocks as exemplified by the Early Paleoproterozoic mafic volcanic rocks of the Eastern Baltic Shield: enriched mantle versus crustal contamination

    Science.gov (United States)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexeii

    2015-04-01

    The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the

  10. Chemical analysis of minerals in granitic rocks by electron probe micro analyser

    International Nuclear Information System (INIS)

    Hiraoka, Yoshihiro

    1994-01-01

    The chemical compositions of minerals in a few granitic rocks were determined by electron probe micro analyser (EPMA). The accurate analytical data for standard feldspar groups were obtained by correcting the low analytical values of sodium and potassium that were arised from the damage in EPMA analysis. Using this method, feldspar groups and biotites in three granitic rocks gathered from Hiei, Hira and Kurama areas respectively, were analyzed. As the results, the local characteristics were observed in the kinds of feldspar groups and the chemical compositions of biotites that were contained in granitic rocks. (author)

  11. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  12. Ion microprobe analyses of aluminous lunar glasses - A test of the 'rock type' hypothesis

    Science.gov (United States)

    Meyer, C., Jr.

    1978-01-01

    Previous soil survey investigations found that there are natural groupings of glass compositions in lunar soils and that the average major element composition of some of these groupings is the same at widely separated lunar landing sites. This led soil survey enthusiasts to promote the hypothesis that the average composition of glass groupings represents the composition of primary lunar 'rock types'. In this investigation the trace element composition of numerous aluminous glass particles was determined by the ion microprobe method as a test of the above mentioned 'rock type' hypothesis. It was found that within any grouping of aluminous lunar glasses by major element content, there is considerable scatter in the refractory trace element content. In addition, aluminous glasses grouped by major elements were found to have different average trace element contents at different sites (Apollo 15, 16 and Luna 20). This evidence argues that natural groupings in glass compositions are determined by regolith processes and may not represent the composition of primary lunar 'rock types'.

  13. Synthetic multielement standards used for instrumental neutron activation analysis as rock imitations

    International Nuclear Information System (INIS)

    Leypunskaya, D.I.; Drynkin, V.I.; Belenky, B.V.; Kolomijtsev, M.A.; Dundera, V.Yu.; Pachulia, N.V.

    1975-01-01

    Complex (multielemental) standards representing microelement composition of standard rocks such as trap ST-1 (USSR), gabbrodiorite SGD-1 (USSR), albitized granite SG-1 (USSR), basalt BCR-1 (USA) and granodiorite GSP-1 (USA) have been synthesized. It has been shown that the concentration of each microelement in the synthetic standards can be given with a high precision. Comparative investigation has been carried out of the synthetic imitations and the above natural standard rocks. It has been found that the result of the instrumental neutron activation analysis using the synthetic standards is as good as in the case when natural standard rocks are used. The results obtained have been also used for substantiation of the versatility of the method used for standard preparation, i.e. a generalization has been made of a possibility of using this method for the preparation of synthetic standards representing the microelement composition of any natural rocks with various compositions and concentrations of microelements. (T.G.)

  14. Influence of Rock Properties on Wear of M and SR Grade Rubber with Varying Normal Load and Sliding Speed

    Directory of Open Access Journals (Sweden)

    Pal Samir Kumar

    2017-09-01

    Full Text Available Rubbers are interesting materials and are extensively used in many mining industries for material transportation. Wear of rubber is a very complex phenomenon to understand. The present study aims to explain the influence of rock properties on wear of M and SR grade rubber used in top cover of conveyor belts. Extensive laboratory experiments were conducted under four combinations of normal load and sliding speed. The wear of both the rubber types were analyzed based on the rock properties like shear strength, abrasivity index and fractal dimension. A fully instrumented testing set up was used to study the wear of rubber samples under different operating conditions. In general, wear was higher for M grade rubber compared to SR grade rubber. Increase in shear strength of rocks depicts decreasing trend for the wear of M and SR grade rubber at lower load conditions. Moreover, a higher load combination displays no definite trend in both the rubbers. The strong correlation between the wear of rubber and frictional power for all rubber-rock combinations has given rise to the parameter A, which reflects the relative compatibility between the rubber and rock. Increase of Cerchar’s Abrasivity Index of rocks shows gradual enhancement in wear for M grade rubber in all the load and speed combinations whereas, it fails in SR grade rubber due to its higher strength. The wear of rubber tends to decrease marginally with the surface roughness of rocks at highest normal load and sliding speed in M grade rubber. However, the wear of M and SR grade rubber is influenced by the surface roughness of rocks.

  15. PYROXENITE VEINS WITHIN SSZ PERIDOTITES – EVIDENCE OF MELT-ROCK INTERACTION (EGIINGOL MASSIF, MAJOR AND TRACE ELEMENT COMPOSITION OF MINERALS

    Directory of Open Access Journals (Sweden)

    A. A. Karimov

    2017-01-01

    Full Text Available Evidence of melt-rock reaction between suprasubduction zone (SSZ peridotites and island arc boninititc and tholeiitic melts are identified. This process is the cause of replacive dunites and pyroxenite veins forming, which are represent the ways of island-arc melts migration. The peridotite-melt interaction is confirmed by compositional features of rocks and minerals. Influence of boninitic melt in peridotites of South Sandwich island arc leads to increasing of TiO2 and Cr-number (Cr# in spinels [Pearce et al., 2000] e.g. REE patterns of clinopyroxene from Voykar are equilibrium to boninitic melts [Belousov et al., 2009]. We show that pyroxenites are formed sequential, orthopyroxenites are originated firstly, websterites – after, and the main forming process is interaction of SSZ peridotites with percolating boninite-like melts.

  16. Hot dry rock heat mining

    International Nuclear Information System (INIS)

    Duchane, D.V.

    1992-01-01

    Geothermal energy utilizing fluids from natural sources is currently exploited on a commercial scale at sites around the world. A much greater geothermal resource exists, however, in the form of hot rock at depth which is essentially dry. This hot dry rock (HDR) resource is found almost everywhere, but the depth at which usefully high temperatures are reached varies from place to place. The technology to mine the thermal energy from HDR has been under development for a number of years. Using techniques adapted from the petroleum industry, water is pumped at high pressure down an injection well to a region of usefully hot rock. The pressure forces open natural joints to form a reservoir consisting of a small amount of water dispensed in a large volume of hot rock. This reservoir is tapped by second well located at some distance from the first, and the heated water is brought to the surface where its thermal energy is extracted. The same water is then recirculated to mine more heat. Economic studies have indicated that it may be possible to produce electricity at competitive prices today in regions where hot rock is found relatively close to the surface

  17. Origin of the ca. 50 Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet

    Science.gov (United States)

    Liu, An-Lin; Wang, Qing; Zhu, Di-Cheng; Zhao, Zhi-Dan; Liu, Sheng-Ao; Wang, Rui; Dai, Jin-Gen; Zheng, Yuan-Chuan; Zhang, Liang-Liang

    2018-04-01

    The origin of the Eocene shoshonitic rocks within the upper part of the extensive Linzizong volcanic succession (i.e., the Pana Formation) in the Gangdese arc, southern Tibet remains unclear, inhibiting the detailed investigations on the crust-mantle interaction and mantle dynamics that operate the generation of the coeval magmatic flare-up in the arc. We report mineral composition, zircon U-Pb age and zircon Hf isotope, whole-rock element and Sr-Nd-Hf isotope data for the Pana Formation volcanic rocks from Pangduo, eastern Gangdese arc in southern Tibet. The Pana volcanic rocks from Pangduo include basalts, basaltic andesites, and dacites. SIMS and LA-ICPMS zircon U-Pb dating indicates that the Pangduo dacites were erupted at 50 ± 1 Ma, representing the volcanic equivalent of the coeval Gangdese Batholith that define a magmatic flare-up at 51 ± 1 Ma. The Pangduo volcanic rocks are exclusively shoshonitic, differing from typical subduction-related calc-alkaline volcanic rocks. The basalts have positive whole-rock ƐNd(t) (+1.7) and ƐHf(t) (+3.8) with high Zr abundances (121-169 ppm) and Zr/Y ratios (4.3-5.2), most likely derived from the partial melting of an enriched garnet-bearing lithospheric mantle that was metasomatized by subduction-related components with input from asthenosphere. Compared to the basalts, similar trace elemental patterns and decreased whole-rock ƐNd(t) (-3.5 to -3.3) and ƐHf(t) (-2.5 to -1.6) of the basaltic andesites can be attributed to the input of the ancient basement-derived material of the central Lhasa subterrane into the basaltic magmas. The coherent whole-rock Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)i = 0.7064-0.7069, ƐNd(t) = -6.0 to -5.2, ƐHf(t) = -5.6 to -5.0) and varying zircon ƐHf(t) (-6.0 to +4.1) of the dacites can be interpreted by the partial melting of a hybrid lower crust source (juvenile and ancient lower crust) with incorporation of basement-derived components. Calculations of zircon-Ti temperature and whole-rock

  18. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    International Nuclear Information System (INIS)

    Feng Mingyue

    1997-01-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits

  19. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng [Beijing Research Inst. of Uranium Geology (China)

    1997-03-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits.

  20. Vibrations of laminated composite thick shells of revolution having meridionally varying curvature

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Shikanai, Genji; Baba, Iwato

    1998-01-01

    An exact solution is presented for solving free vibrations of laminated composite thick shells of revolution having meridionally varying curvature. Based on the thick lamination theory considering the shear deformation and rotary inertia, equations of motion and boundary conditions are obtained from the stationary conditions of the Lagrangian. The equations of motion are solved exactly by using a power series expansion for symmetrically laminated cross-ply shells. Frequencies and mode shapes of shells of revolution having elliptical and parabolical meridians are presented for both ends clamped, and the effects of shear deformation and rotary inertia are discussed by comparing the results from the present theory with those from the thin lamination theory. (author)

  1. The Dalradian rocks of Scotland: an introduction

    OpenAIRE

    Stephenson, David; Mendum, John R.; Fettes, Douglas J.; Leslie, A. Graham

    2013-01-01

    The Dalradian Supergroup and its basement rocks, together with younger plutons, underpin most of the Grampian Highlands and the islands of the Inner Hebrides between the Highland Boundary and Great Glen faults. The Dalradian is a mid-Neoproterozoic to early-Ordovician sequence of largely clastic metasedimentary rocks, with some volcanic units, which were deformed and metamorphosed to varying degrees during the Early Palaeozoic Caledonian Orogeny. Sedimentation of the lower parts of the Da...

  2. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    Science.gov (United States)

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  3. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California

    International Nuclear Information System (INIS)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; Brian D. Marshall.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  4. Basaltic rocks analyzed by the Spirit rover in Gusev crater

    Science.gov (United States)

    McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  5. Analysis of rocks involving the x-ray diffraction, infrared and thermal gravimetric techniques

    International Nuclear Information System (INIS)

    Ikram, M.; Rauf, M.A.; Munir, N.

    1998-01-01

    Chemical analysis of rocks and minerals are usually obtained by a number of analytical techniques. The purpose of present work is to investigate the chemical composition of the rock samples and also to find that how far the results obtained by different instrumental methods are closely related. Chemical tests wee performed before using the instrumental techniques in order to determined the nature of these rocks. The chemical analysis indicated mainly the presence of carbonate and hence the carbonate nature of these rocks. The x-ray diffraction, infrared spectroscopy and thermal gravimetric analysis techniques were used for the determination of chemical composition of these samples. The results obtained by using these techniques have shown a great deal of similarities. (author)

  6. A conjugate thermo-electric model for a composite medium.

    Directory of Open Access Journals (Sweden)

    Oscar Chávez

    Full Text Available Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons with experimental data obtained from rock characterization tests.

  7. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes

    Science.gov (United States)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling

    2017-10-01

    Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values

  8. Multiple ways of producing intermediate and silicic rocks within Thingmúli and other Icelandic volcanoes

    DEFF Research Database (Denmark)

    Charreteur, Gilles; Tegner, Christian; Haase, Karsten

    2013-01-01

    Major and trace element compositions of rocks and coexisting phenocrysts of the ThingmA(0)li volcano suggest a revision of the existing models for the formation of intermediate and silicic melts in Iceland. The new data define two compositional tholeiitic trends with a significant gap between the...... between the compositions of intermediate and silicic rocks and plate tectonic setting, therefore, should be avoided....

  9. Composition of the Rex Chert and associated rocks of the Permian Phosphoria Formation: Soda Springs area, SE Idaho

    Science.gov (United States)

    Hein, James R.; McIntyre, Brandie; Perkins, Robert B.; Piper, David Z.; Evans, James

    2002-01-01

    This study, one in a series, reports bulk chemical and mineralogical compositions, as well as petrographic and outcrop descriptions of rocks collected from three measured outcrop sections of the Rex Chert member of the Phosphoria Formation in SE Idaho. The three measured sections were chosen from ten outcrops of Rex Chert that were described in the field. The Rex Chert overlies the Meade Peak Phosphatic Shale Member of the Phosphoria Formation, the source of phosphate ore in the region. Rex Chert removed as overburden comprises part of the material disposed in waste-rock piles during phosphate mining. It has been proposed that the chert be used to cap and isolate waste piles, thereby inhibiting the leaching of potentially toxic elements into the environment. It is also used to surface roads in the mining district. The rock samples studied here constitute a set of individual chert beds that are representative of each stratigraphic section sampled. The informally named cherty shale member that overlies the Rex Chert in measured section 1 was also described and sampled. The upper Meade Peak and the transition zone to the Rex Chert were described and sampled in section 7. The cherts are predominantly spicularite composed of granular and mosaic quartz, and sponge spicules, with various but minor amounts of other fossils and detrital grains. The cherty shale member and transition rocks between the Meade Peak and Rex Chert are siliceous siltstones and argillaceous cherts with ghosts of sponge spicules and somewhat more detrital grains than the chert. The overwhelmingly dominant mineral is quartz, although carbonate beds are rare in each section and are composed predominantly of calcite and dolomite in addition to quartz. Feldspar, mica, clay minerals, calcite, dolomite, and carbonate fluorapatite are minor to trace minerals in the chert. The mean concentrations of oxides and elements in the Rex Chert and the cherty shale member are dominated by SiO2, which averages 94

  10. High Sr/Y rocks are not all adakites!

    Science.gov (United States)

    Moyen, Jean-François

    2010-05-01

    The name of "adakite" is used to describe a far too large group of rocks, whose sole common feature is high Sr/Y and La/Yb ratios. Defining adakites only by this criterion is misleading, as the definition of this group of rocks does include many other criteria, including major elements. In itself, high (or commonly moderate!) Sr/Y ratios can be achieved via different processes: melting of a high Sr/Y (and La/Yb) source; deep melting, with abundant residual garnet; fractional crystallization or AFC; or interactions of felsic melts with the mantle, causing selective enrichment in LREE and Sr over HREE. A database of the compositions of "adakitic" rocks - including "high silica" and "low silica" adakites, "continental" adakites and Archaean adakites—was assembled. Geochemical modeling of the potential processes is used to interpret it, and reveals that (1) the genesis of high-silica adakites requires high pressure evolution (be it by melting or fractionation), in equilibrium with large amounts of garnet; (2) low-silica adakites are explained by garnet-present melting of an adakite-metasomatized mantle, i.e at depths greater than 2.5 GPa; (3) "Continental" adakites is a term encompassing a huge range of rocks, with a corresponding diversity of petrogenetic processes, and most of them are different from both low- and high- silica adakites; in fact in many cases it is a complete misnomer and the rocks studied are high-K calc-alkaline granitoids or even S-type granites; (4) Archaean adakites show a bimodal composition range, with some very high Sr/Y examples (similar to part of the TTG suite) reflecting deep melting (> 2.0 GPa) of a basaltic source with a relatively high Sr/Y, while lower Sr/Y rocks formed by shallower (1.0 GPa) melting of similar sources. Comparison with the Archaean TTG suite highlights the heterogeneity of the TTGs, whose composition spreads the whole combined range of HSA and Archaean adakites, pointing to a diversity of sources and processes

  11. Identification of provenance rocks based on EPMA analyses of heavy minerals

    Science.gov (United States)

    Shimizu, M.; Sano, N.; Ueki, T.; Yonaga, Y.; Yasue, K. I.; Masakazu, N.

    2017-12-01

    Information on mountain building is significant in the field of geological disposal of high-level radioactive waste, because this affects long-term stability in groundwater flow system. Provenance analysis is one of effective approaches for understanding building process of mountains. Chemical compositions of heavy minerals, as well as their chronological data, can be an index for identification of provenance rocks. The accurate identification requires the measurement of as many grains as possible. In order to achieve an efficient provenance analysis, we developed a method for quick identification of heavy minerals using an Electron Probe Micro Analyzer (EPMA). In this method, heavy mineral grains extracted from a sample were aligned on a glass slide and mounted in a resin. Concentration of 28 elements was measured for 300-500 grains per sample using EPMA. To measure as many grains as possible, we prioritized swiftness of measurement over precision, configuring measurement time of about 3.5 minutes for each grain. Identification of heavy minerals was based on their chemical composition. We developed a Microsoft® Excel® spread sheet input criteria of mineral identification using a typical range of chemical compositions for each mineral. The grains of 110 wt.% total were rejected. The criteria of mineral identification were revised through the comparison between mineral identification by optical microscopy and chemical compositions of grains classified as "unknown minerals". Provenance rocks can be identified based on abundance ratio of identified minerals. If no significant difference of the abundance ratio was found among source rocks, chemical composition of specific minerals was used as another index. This method was applied to the sediments of some regions in Japan where provenance rocks had lithological variations but similar formation ages. Consequently, the provenance rocks were identified based on chemical compositions of heavy minerals resistant to

  12. Standard characterization of phosphate rock samples from the FAO/IAEA phosphate project

    International Nuclear Information System (INIS)

    Binh, Truong; Zapata, F.

    2002-01-01

    Phosphate rocks (PR) are phosphate-bearing minerals that vary widely in their inherent characteristics and consequently their agronomic potential. In the framework of a FAO/IAEA networked research project, the evaluation of the agronomic effectiveness of natural and modified PR products under a variety of soil climate and crop management conditions was carried out. The characterization of phosphate rocks is the first and essential step in evaluating their suitability for direct application. If several PR sources are utilized, standardized methods should be used for comparison purposes to determine their agronomic potential. This paper describes the standard characterization of phosphate rock products utilized in the project, in particular the mineralogical and crystallographic analyses, physical analyses, chemical composition and solubility in conventional reagents. A total of 28 phosphate rock samples from 15 countries were collected and analyzed in specialized laboratories. The data on mineralogy, chemical composition and solubility in conventional reagents are closely interrelated. An arbitrary classification of the reactivity of the PR samples was made based on the solubility indices in conventional reagents. On another hand, the results of the crystallographic parameters, calculated indices of absolute solubility, specific surface and porosity reflect the variability of the physical state and the sample pre-conditioning treatment of the analyzed products. A proper characterization of phosphate rock samples should provide the maximum of basic information that can be obtained in a cost-effective manner in normal chemical laboratories. Based on the results of this characterization, the following determinations are recommended: a description of the sample, major elemental (total P, Ca, Mg) composition, solubility in conventional reagents (neutral ammonium citrate, citric and formic acid) and particle size analysis. The classification of PR samples for direct

  13. Rock Magnetic Properties of Remagnetised Devonian and Carboniferous Carbonate and Clastic Rocks From The NE Rhenish Massif, Germany

    Science.gov (United States)

    Zwing, A.; Matzka, J.; Bachtadse, V.; Soffel, H. C.

    Previous studies on remagnetised carbonate rocks from the North American and Eu- ropean Variscides reported characteristic rock magnetic properties which are thought to be diagnostic for a chemical remagnetisation event. Their hysteresis properties with high ratios of Mrs/Ms and Hcr/Hc indicate the presence of a mixture of single-domain and superparamagnetic magnetite (Jackson, et al. 1990). In order to test if this fin- gerprint can be identified in remagnetised carbonate and clastic rocks from the NE Rhenish Massif, Germany, a series of rock magnetic experiments has been carried out. The hysteresis properties of the remagnetised clastic rocks indicate the domi- nance of large MD particles, as can be expected for detrital sediments. The carbon- ates yield significantly higher ratios of Mrs/Ms and Hcr/Hc than the clastic rocks, but only partly correspond to the characteristic properties of remagnetised carbon- ates described above. The latter might be attributed to detrital input into the carbonate platforms. Additional low-temperature remanence measurements show a wide vari- ety of phenomena, including Verwey transitions and indications for the presence of superparamagnetic grains. However, the low-temperature experiments do not allow a straightforward discrimination between the clastic and carbonate rocks and suggest more complex magnetomineralogies than expected from the hysteresis measurements alone.

  14. Geology and Geochemistry of some crystalline basement rocks in ilesha area, southwestern nigeria: implications on provenance and evolution

    International Nuclear Information System (INIS)

    Oyinloye, A.O.

    2007-01-01

    Geological and geochemical study of the basement complex rocks in ilesha schist belt revealed that amphibolite, hornblende gneiss and granite gneiss are the major constituents. The gneisses are composed of similar rock forming silicates with variations in abundance. The amphibolite being a mafic rock has different compositions, containing abundant pyroxene, actinolite and tremolite. Monazite is present in the mineralogy of all these rocks. Chemical composition of these rocks revealed that they are petrogenetically related. Geochemical diagrams, plotted from chemical composition of these rocks, REE fractionation trends and presence of monazite in their mineralogy reveal that all these rocks were derived from a mixed magma source which did not originate from a pure tipper mantle, but possibly from a back arc tectonic setting. The pattern of the REE, progressively increasing negative Eu/Eu anomaly, La/sub N//Yb/sub N/ from the amphibolite to the granite gneiss and marked Eu depletion tend to implicate evolution through fractionation of a mixed basaltic magma to form the precursor of these rocks. The amphibolite probably represents the sample of the original basaltic magma. (author)

  15. Characterization and utilization potential of basalt rock from East-Lampung district

    Science.gov (United States)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  16. Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks

    Science.gov (United States)

    Sebastian, Resmi; Sitharam, T. G.

    2018-01-01

    Rocks are generally regarded as linearly elastic even though the manifestations of nonlinearity are prominent. The variations of elastic constants with varying strain levels and stress conditions, disagreement between static and dynamic moduli, etc., are some of the examples of nonlinear elasticity in rocks. The grain-to-grain contact, presence of pores and joints along with other compliant features induce the nonlinear behavior in rocks. The nonlinear elastic behavior of rocks is demonstrated through resonant column tests and numerical simulations in this paper. Resonant column tests on intact and jointed gypsum samples across varying strain levels have been performed in laboratory and using numerical simulations. The paper shows the application of resonant column apparatus to obtain the wave velocities of stiff samples at various strain levels under long wavelength condition, after performing checks and incorporating corrections to the obtained resonant frequencies. The numerical simulation and validation of the resonant column tests using distinct element method are presented. The stiffness reductions of testing samples under torsional and flexural vibrations with increasing strain levels have been analyzed. The nonlinear elastic behavior of rocks is reflected in the results, which is enhanced by the presence of joints. The significance of joint orientation and influence of joint spacing during wave propagation have also been assessed and presented using the numerical simulations. It has been found that rock joints also exhibit nonlinear behavior within the elastic limit.

  17. Theoretical study of rock mass investigation efficiency

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Outters, Nils

    2002-05-01

    inclined 45 degrees. Borehole lengths are varied between 20 and 1000 metres. Circular horizontal rock surfaces are also analysed, the radii of these surfaces were varied between 4 and 150 metres. The results of the study are based on both parametrical. and non-parametrical statistical tests (parametrical tests for Fisher spherical distributions). The detailed results of the study are given as calculated borehole lengths and radii of rock surfaces (sample sizes), necessary for estimating structural-geological parameters of each fracture set, for a given confidence interval and a given confidence level. The sensitivity analysis, demonstrates and discuses how sample size varies with the properties of the DFN-model (fracture density [P32] and fracture radius distribution.) In addition the results of the study includes discussions of (i) the optimal orientation of a borehole, (ii) the exchangeability of samples from several shorter boreholes and smaller surfaces contra samples from fewer but larger boreholes and surfaces, and (iii) the applicability of parametrical tests in relation to sampling bias. Different methods for calculation of the structural-geological parameters from samples taken in boreholes and on surfaces are discussed and analysed in the study, e.g. for fracture orientation the eigenvalues and resultant vector methods (with inclusion of TerLaghi-correction). For the trace-length and strike distributions, moments and shape of distributions have been analysed (with inclusion of curve fitting procedures)

  18. Characterization of rock samples and mineralogical controls on leachates

    Science.gov (United States)

    Hammarstrom, Jane M.; Cravotta, Charles A.; Galeone, Daniel G.; Jackson, John C.; Dulong, Frank T.; Hornberger, Roger J.; Brady, Keith B.C.

    2009-01-01

    Rocks associated with coal beds typically include shale, sandstone, and (or) limestone. In addition to common rock-forming minerals, all of these rock types may contain sulfide and sulfate minerals, various carbonate minerals, and organic material. These different minerals have inherently different solubility characteristics, as well as different acid-generating or acid-neutralizing potentials. The abundance and composition of sulfur- and carbonate-bearing minerals are of particular interest in interpreting the leaching column data because (1) pyrite and carbonate minerals are the primary controls on the acid-base account of a sample, (2) these minerals incorporate trace metals that can be released during weathering, and (3) these minerals readily react during weathering due to mineral dissolution and oxidation of iron.Rock samples were collected by the Pennsylvania Department of Environmental Protection (PaDEP) from five different sites to assess the draft standardized leaching column method (ADTI-WP2) for the prediction of weathering rates and water quality at coal mines. Samples were sent to USGS laboratories for mineralogical characterization and to ActLabs for chemical analysis. The samples represent a variety of rock types (shales, sandstones, and coal refuse) that are typical of coal overburden in the eastern United States. These particular samples were chosen for testing the weathering protocols because they represent a range of geochemical and lithologic characteristics, sulfur contents, and acid-base accounting characteristics (Hornberger et al., 2003). The rocks contain variable amounts of pyrite and carbonate minerals and vary in texture.This chapter includes bulk rock chemical data and detailed mineralogical and textural data for unweathered starting materials used in the interlaboratory validation study, and for two samples used in the early phases of leaching column tests (Wadesville Sandstone, Leechburg Coal Refuse). We also characterize some of the

  19. Mineral and Nutrient Leaf Composition of Two Cassava (Manihot esculenta Crantz Cultivars Defoliated at Varying Phenological Phases

    Directory of Open Access Journals (Sweden)

    Oyeyemi Adigun DADA

    2010-12-01

    Full Text Available The effect of defoliation on mineral and food value of two cassava varieties defoliated at varying phenological phases was studied to ascertain the appropriate phenological phase when harvested leaves would contain the optimum mineral and proximate composition, gross energy and the least cyanide content. Two cassava cultivars were subjected to defoliation at varying phenological stages including logarithmic, vegetative and physiological maturity phases. The mineral content was highest at the logarithmic phase than any other phases. The proximate composition of the cassava leaves showed that crude protein was highest at physiological maturity, while the least HCN was observed in cassava defoliated at logarithmic phase. Analysis of mineral and proximate content showed that leaf of the �TMS30572� cultivar had the highest mineral content, fat, fibre, ash, dry matter and gross energy at the logarithm phase while �Oko-Iyawo� had the highest crude protein and HCN at physiological maturity. This study indicates the high potential of cassava leaf as an unconventional source of protein for both humans and animals when defoliated at logarithmic growth phase.

  20. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  1. Characteristics and genesis of porphyroclastic lava rock in Xiangshan

    International Nuclear Information System (INIS)

    Zhou Xiaohua; Wang Zhuning

    2012-01-01

    Due to the transitional characteristics of porphyroclastic lava rock in Xiangshan of Jiangxi province, there are a variety of views on its genesis, petrographic attribution. This is because the marginal facies of the porphyroclastic lava is with ignimbrite and tuff characteristics, its transition phase has the characteristics of lava, and its intermediate phase has the feature of sub-volcanic rocks, further more, different texture of the rocks bears transition relationship. By the study of mineral composition, REE pattern, trace elements, isotopes, we put forward that the porphyroclastic lava is formed by the remelting of basement metamorphic rocks. The rocks was believed to be formed in the environment similar to volcanics and subvolcanics, and quite different to plutonic rocks due to the features of low-structure of potassium feldspar phenocrysts and solution mechanism, because the porphyroclastic lava phenocrysts occurs as fragments and maybe related to cryptoexplosion. Therefore the rocks was believed to belong to the volcano extrusive facies. (authors)

  2. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: A petrological and microstructural study of mantle xenoliths from French Polynesia

    Science.gov (United States)

    Tommasi, A.; Godard, M.

    2002-12-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2

  3. Selection of the host rock for high level radioactive waste repository in China

    International Nuclear Information System (INIS)

    Jin Yuanxin; Wang Wenguang; Chen Zhangru

    2001-01-01

    The authors has briefly introduced the experiences of the host rock selection and the host rock types in other countries for high level radioactive waste repository. The potential host rocks in China are investigated. They include granite, tuff, clay, basalt, salt, and loess. The report has expounded the distributions, scale, thickness, mineral and chemical composition, construction, petrogenesis and the ages of the rock. The possibility of these rocks as the host rock has been studied. The six pieces of distribution map of potential rocks have been made up. Through the synthetical study, it is considered that granite as the host rock of high level radioactive waste repository is possible

  4. Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps.

    Directory of Open Access Journals (Sweden)

    Lisa A Levin

    Full Text Available Carbonate communities: The activity of anaerobic methane oxidizing microbes facilitates precipitation of vast quantities of authigenic carbonate at methane seeps. Here we demonstrate the significant role of carbonate rocks in promoting diversity by providing unique habitat and food resources for macrofaunal assemblages at seeps on the Costa Rica margin (400-1850 m. The attendant fauna is surprisingly similar to that in rocky intertidal shores, with numerous grazing gastropods (limpets and snails as dominant taxa. However, the community feeds upon seep-associated microbes. Macrofaunal density, composition, and diversity on carbonates vary as a function of seepage activity, biogenic habitat and location. The macrofaunal community of carbonates at non-seeping (inactive sites is strongly related to the hydrography (depth, temperature, O2 of overlying water, whereas the fauna at sites of active seepage is not. Densities are highest on active rocks from tubeworm bushes and mussel beds, particularly at the Mound 12 location (1000 m. Species diversity is higher on rocks exposed to active seepage, with multiple species of gastropods and polychaetes dominant, while crustaceans, cnidarians, and ophiuroids were better represented on rocks at inactive sites. Macro-infauna (larger than 0.3 mm from tube cores taken in nearby seep sediments at comparable depths exhibited densities similar to those on carbonate rocks, but had lower diversity and different taxonomic composition. Seep sediments had higher densities of ampharetid, dorvilleid, hesionid, cirratulid and lacydoniid polychaetes, whereas carbonates had more gastropods, as well as syllid, chrysopetalid and polynoid polychaetes. Stable isotope signatures and metrics: The stable isotope signatures of carbonates were heterogeneous, as were the food sources and nutrition used by the animals. Carbonate δ13Cinorg values (mean = -26.98‰ ranged from -53.3‰ to +10.0‰, and were significantly heavier than

  5. Long-term changes to flood conditions due to varying management strategies, Rock River, WI

    Science.gov (United States)

    Fredrick, K. C.

    2015-12-01

    The Rock River is a 300-mile tributary of the Mississippi River in southern Wisconsin. Its source is a protected migratory bird habitat called the Horicon National Wildlife Refuge. Below the refuge, the Rock River flows through mostly rural, agricultural areas, with wide floodplain of mixed land use. Between the dam at Horicon and a hydroelectric dam in Watertown, WI, lie the townships of Lebanon, Ashippun, and Ixonia. These rural townships boast productive agricultural lands of mostly corn, soybeans, and alfalfa. Large portions of their land are within the floodplain, underlain by vast expanses of outwash sands and gravels, glaciolacustrine deposits, and tills. Throughout the region, spring floods are common from snowmelt and spring rain. These annual floods may be exacerbated by frozen ground and slow infiltration, making it an accepted part of life for residents. Over the last 8 years, and possibly as many as 20, this segment of the Rock River has seen an increase in flooding both in periodicity and retention of flood waters. Due to the delicate habitat of the wildlife refuge and the commissioned hydroelectric installation at the upper dam in Watertown, the residents and local governments of the Lebanon/Ashippun/Ixonia segment of the river have mostly been left to their own devices to monitor and manage flood events. Lebanon Township has been recording water levels for several years. Recent events at the hydroelectric plant seem to indicate that it may be playing a more important role in the flooding. High water events and flood retention do not correlate well with precipitation for the region. It appears that releases at the dam, or periods of water retention, are driving the long flooding periods upstream. Negative impacts to the region from the flooding include property damage, loss of arable land, and environmental effects.

  6. U-Th-Pb systematics of precambrian rocks in the Laramie Mountains, Wyoming

    International Nuclear Information System (INIS)

    Nkomo, I.T.; Rosholt, J.N.; Dooley, J.R. Jr.

    1979-01-01

    Uranium, thorium and lead concentrations and the isotopic composition of whole-rock samples of granite from the Laramie Mountains, Wyoming, suggest intrusion of the granite no later than 2530 +- 80 m.y. ago. The uranium in surface samples is present in amounts that are insufficient to account for the observed lead isotopic composition. However, some core samples of heavily fractured rock show an extreme isotopic disequilibrium between 238 U and 206 Pb. Their uranium concentrations are generally far in excess (up to 60%) of average amounts required to support the measured lead-206. Radioactive disequilibrium measurements indicate that large amounts of uranium were gained by these fractured rocks during the last 150,000 years. Lead data on K-feldspar separated from the rocks analyzed suggest that lead has been assimilated by these minerals since time of crystallization. 8 figures, 6 tables

  7. Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.

    Science.gov (United States)

    Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella

    2006-01-01

    Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.

  8. Light element geochemistry and spallogenesis in lunar rocks

    International Nuclear Information System (INIS)

    Des Marais, D.J.

    1983-01-01

    The abundances and isotopic compositions of carbon, nitrogen and sulfur were measured in eleven lunar rocks. Samples were combusted sequentially at three temperatures to resolve terrestrial contamination from indigenous volatiles. Sulfur abundances in Apollo 16 highland rocks range from 73 to 1165 μg/g, whereas sulfur contents in Apollo 15 and 17 basalts range from 719 to 1455 μg/g and correlate with TiO 2 content. Lunar rocks as a group have a remarkably uniform sulfur isotopic composition, which may reflect the low oxygen fugacity of the basaltic magmas. Much of the range of reported delta 34 Ssub(CD) values is caused by systematic analytical discrepancies between laboratories. Lunar rocks very likely contain less than 0.1 μg/g of nitrogen. The measured spallogenic production rate, 4.1 x 10 -6 μg 15 N/g sample/m.y., agrees remarkably closely with previous estimates. An estimate which includes all available data is 3.7 x 10 -6 μg 15 N/g sample/m.y. Lunar basalts may contain no indigenous lunar carbon in excess of procedural blank levels. Highland rocks consistently release about 1 to 5 μg/g of carbon in excess of blank levels, but this carbon might either derive from ancient meteoritic debris or be a mineralogic product of terrestrial weathering. The average measured spallogenic 13 C production rate is 4.1 x 10 -6 μg 13 C/g sample/m.y. (author)

  9. Remote Sensing of Rock Type in the Visible and Near-Infrared,

    Science.gov (United States)

    Visible and near-infrared spectra of minerals and rocks have been measured and evaluated in terms of remote sensing applications. The authors...difficult or impossible to use in a generalized remote sensing effort in which the composition of all rocks is to be mapped. Instead, this spectral

  10. FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH

    Directory of Open Access Journals (Sweden)

    Q. A. HASAN

    2017-11-01

    Full Text Available The paper presents Finite Element Analysis to determine the ultimate shear capacity of tapered composite plate girder. The effect of degree of taper on the ultimate shear capacity of tapered steel-concrete composite plate girder with a nonlinear varying web depth, effect of slenderness ratio on the ultimate shear capacity, and effect of flange stiffness on the ductility were considered as the parametric studies. Effect of concrete slab on the ultimate shear capacity of tapered plate girders was also considered and it was found to be so effective on the ultimate shear capacity of the tapered plate girder compared with the steel one. The accuracy of the finite element method is established by comparing the finite element with the results existing in the literature. The study was conducted using nonlinear finite element modelling with computer software LUSAS 14.7.

  11. Mechanical properties of granitic rocks from Gideaa, Sweden

    International Nuclear Information System (INIS)

    Ljunggren, C.; Stephansson, O.; Alm, O.; Hakami, H.; Mattila, U.

    1985-10-01

    The elastic and mechanical properties were determined for two rock types from the Gideaa study area. Gideaa is located approximately 30 km north-east of Oernskoeldsvik, Northern Sweden. The rock types that were tested were migmatitic gneiss and migmatitic granite. The following tests were conducted: - sound velocity measurements; - uniaxial compression tests with acoustic emission recording; - brazilian disc tests; - triaxial tests; - three point bending tests. All together, 12 rock samples were tested with each test method. Six samples of these were migmatic gneiss and six samples were migmatitic granite. The result shows that the migmatitic gneiss has varying strength properties with low compressive strength in comparison with its high tensile strength. The migmatitic granite, on the other hand, is found to have parameter values similar to other granitic rocks. With 15 refs. (Author)

  12. Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement

    Science.gov (United States)

    Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin

    2018-03-01

    Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.

  13. Lithological discrimination of accretionary complex (Sivas, northern Turkey) using novel hybrid color composites and field data

    Science.gov (United States)

    Özkan, Mutlu; Çelik, Ömer Faruk; Özyavaş, Aziz

    2018-02-01

    One of the most appropriate approaches to better understand and interpret geologic evolution of an accretionary complex is to make a detailed geologic map. The fact that ophiolite sequences consist of various rock types may require a unique image processing method to map each ophiolite body. The accretionary complex in the study area is composed mainly of ophiolitic and metamorphic rocks along with epi-ophiolitic sedimentary rocks. This paper attempts to map the Late Cretaceous accretionary complex in detail in northern Sivas (within İzmir-Ankara-Erzincan Suture Zone in Turkey) by the analysis of all of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) bands and field study. The new two hybrid color composite images yield satisfactory results in delineating peridotite, gabbro, basalt, and epi-ophiolitic sedimentary rocks of the accretionary complex in the study area. While the first hybrid color composite image consists of one principle component (PC) and two band ratios (PC1, 3/4, 4/6 in the RGB), the PC5, the original ASTER band 4 and the 3/4 band ratio images were assigned to the RGB colors to generate the second hybrid color composite image. In addition to that, the spectral indices derived from the ASTER thermal infrared (TIR) bands discriminate clearly ultramafic, siliceous, and carbonate rocks from adjacent lithologies at a regional scale. Peridotites with varying degrees of serpentinization illustrated as a single color were best identified in the spectral indices map. Furthermore, the boundaries of ophiolitic rocks based on fieldwork were outlined in detail in some parts of the study area by superimposing the resultant maps of ASTER maps on Google Earth images of finer spatial resolution. Eventually, the encouraging geologic map generated by the image analysis of ASTER data strongly correlates with lithological boundaries from a field survey.

  14. Formation of Intermediate Plutonic Rocks by Magma Mixing: the Shoshonite Suite of Timna, Southern Israel.

    Science.gov (United States)

    Fox, S.; Katzir, Y.

    2017-12-01

    In magmatic series considered to form by crystal fractionation intermediate rocks are usually much less abundant than expected. Yet, intermediate plutonic rocks, predominantly monzodiorites, are very abundant in the Neoproterozoic Timna igneous complex, S. Israel. A previously unnoticed plutonic shoshonitic suite was recently defined and mapped in Timna (Litvinovsky et al., 2015). It mostly comprises intermediate rocks in a seemingly 'continuous' trend from monzodiorite through monzonite to quartz syenite. Macroscale textures including gradational boundaries of mafic and felsic rocks and MME suggest that magma mixing is central in forming intermediate rocks in Timna. Our petrographic, microtextural and mineral chemistry study delineates the mode of incipient mixing, ultimate mingling and crystal equilibration in hybrid melts. An EMP study of plagioclase from rocks across the suite provides a quantitative evaluation of textures indicative of magma mixing/mingling, including recurrent/patchy zoning, Ca spike, boxy/sponge cellular texture and anti-Rapakivi texture. Each texture has an affinity to a particular mixing region. A modal count of these textures leads to a kinetic mixing model involving multi temporal and spatial scales necessary to form the hybrid intermediate rocks. A `shell'-like model for varying degrees of mixing is developed with the more intensive mixing at the core and more abundant felsic and mafic end-members towards the outer layer. REE patterns in zircon shows that it originated from both mafic and felsic parent melts. Whole rock Fe vs Sr plot suggests a two-stage mixing between the monzogabbro and quartz-syenite producing first mesocratic syenite, and subsequent mixing with a fractionating monzogabbro resulting in monzonitic compositions. A fractionating monzogabbro intruded into a syenitic melt sequentially. While slowly cooling, the monzogabbro heated the immediate syenitic melt, lowering the viscosity and rheological obstruction to overturn

  15. Stratigraphy and structure of volcanic rocks in drill hole USW-G1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Byers, F.M. Jr.; Warner, J.B.

    1981-01-01

    Detailed subsurface studies in connection with the Nevada Nuclear Waste Storage Investigations program are being conducted to investigate the stratigraphic and structural features of volcanic rocks underlying Yucca Mountain, a volcanic highland situated along the western boundary of the Nevada Test Site in southern Nevada. As part of this continuing effort, drill hole USW-G1 was cored from 292 ft to a depth of 6000 ft from March to August 1980. The stratigraphic section is composed of thick sequences of ash-flow tuff and volcanic breccia interbedded with subordinate amounts of fine- to coarse-grained volcaniclastic rocks. All rocks are of Tertiary age and vary in composition from rhyolite to dacite. The 3005-ft level in the drill hole represents a significant demarcation between unaltered and altered volcanic rocks. For the most part, tuff units above 3005 ft appear devitrified and show little secondary alteration except within tuffaceous beds of Calico Hills, where the rock contains 60 to 80% zeolites. Below 3005 ft, most rocks show intermittent to pervasive alteration to clay minerals and zeolites. Examination of core for structural features revealed the presence of 61 shear fractures, 528 joints, and 4 conspicuous fault zones. Shear fractures mainly occurred in the Topopah Spring Member of the Paintbrush Tuff, flow breccia, and near fault zones. Nearly 88% of shear and joint surfaces show evidence of coatings. Approximately 40% of the fractures were categorized as completely healed. Rock quality characteristics as defined by the core index indicate that greater amounts of broken and lost core are commonly associated with (1) the densely welded zone of the Topopah Spring, (2) highly silicified zones, and (3) fault zones

  16. Changes of the groundwater composition in fractured rocks of low permeability as a consequence of deglaciation

    International Nuclear Information System (INIS)

    Delos, A.; Duro, L.; Guimera, J.; Bruno, J.; Puigdomenech, I.

    2005-01-01

    Full text of publication follows: The Swedish concept of a spent fuel repository is based on deep geological disposal in granitic bedrock under geochemically reducing conditions. Groundwaters in areas that have been subjected to advance and retreat of glacial sheets such as the Canadian and Scandic shields, display a signature of deep penetration of oxidant waters such as melt waters, likely to affect the stability of the repository. Some studies have been focused on new experimental methodologies to understand the depletion of oxygen in granitic rocks. They determine how the oxygen reacts with rocks mineral and the water conducting zones [1]. A former study analyses the redox front migration due to the effect of the oxygen intrusion [2]. It concluded that the oxygen in groundwater derived from ice melting would be consumed by the rock minerals, and that the Eh of the system would be oxidising in case of very high groundwater velocities are maintained over long time periods. This work was reviewed by [3] and considered over-conservative and too much simplistic. The objective of this present work is to calculate the impacts of the ice melt on the composition of groundwater likely to reach the repository by means of multicomponent reactive transport simulations. The latest updates of the thermodynamic and kinetic databases will allow more accurate understanding of the processes occurring in the system. The latest hydrogeological, geochemical and mineralogical characterizations performed in the Foersmark region are used in the definition of the more realistic 2D conceptual model. [1] Puigdomenech, I., J.P. Ambrosi, L. Eisenlohr, J.E. Lartigue, S.A. Banwart, K. Bateman, A.E. Milodowski, J. M. West, L. Griffault, E. Gustafsson, K. Hama, H. Yoshida, S. Kotelkinova, K. Pedersen, V. Michaud, L. Trotignon, J. Rivas-Perez and E.L. Tullborg (2001) O 2 depletion in granitic media. The REX project. SKB TR-01-05, 92 pp. [2] Guimera, J., L.Duro, S.Jordana and J.Bruno (1999

  17. Excess europium content in Precambrian sedimentary rocks and continental evolution

    Science.gov (United States)

    Jakes, P.; Taylor, S. R.

    1974-01-01

    It is proposed that the europium excess in Precambrian sedimentary rocks, relative to those of younger age, is derived from volcanic rocks of ancient island arcs, which were the source materials for the sediments. Precambrian sedimentary rocks and present-day volcanic rocks of island arcs have similar REE patterns, total REE abundances, and excess Eu, relative to the North American shale composite. The present upper crustal REE pattern, as exemplified by that of sediments, is depleted in Eu, relative to chondrites. This depletion is considered to be a consequence of development of a granodioritic upper crust by partial melting in the lower crust, which selectively retains europium.

  18. Moessbauer Study of Sedimentary Rocks from King George Island, Antarctica

    International Nuclear Information System (INIS)

    Kuzmann, E.; Souza, P. A. de; Schuch, L. A.; Oliveira, A. C. de; Garg, R.; Garg, V. K.

    2002-01-01

    The separation of continents at the periphery of Antarctica occurred about 180 ma ago due to volcanic activity. Geological faults can be very important in the study of geological occurrences. Such geological faults occur across the Admiralty Bay, King George Island, and have been studied in detail previously. Controversial statements were given in earlier works, based on conventional geological investigations, as to whether altered 'Jurassic' and unaltered Tertiary rocks were separated by a major fault which goes across the Admiralty Bay, or whether there is no difference in the alteration of the rocks located at either side of the fault. The aim of our work is to investigate rock samples from the Admiralty Bay of King George Island, Antarctica, from different locations on both sides of the geological fault. For these investigations 57 Fe Moessbauer spectroscopy and X-ray diffractometry were used. We have found that the phase composition, and the iron distribution among the crystallographic sites of iron-bearing minerals, are characteristic of the location of the rock samples from the Admiralty Bay of King George Island. There is a much higher amount of iron oxides in the rocks from the south part of the geological fault than in the north part. The differences in the mineral composition and iron distribution showed that the rocks in the southern part of the geological fault of King George Island are significantly altered compared to the rocks in the northern part. Our present results support and complement well the results obtained earlier on soils from King George Island.

  19. Longwave thermal infrared spectral variability in individual rocks

    Energy Technology Data Exchange (ETDEWEB)

    Balick, Lee K [Los Alamos National Laboratory; Gillespie, Alan [UN. WASHINGTON; French, Andrew [USDA-ARS; Danilina, Iryna [UN. WASHINGTON

    2008-01-01

    A hyperspectral imaging spectrometer measuring in the longwave thermal infrared (7.6-11.6 {micro}m) with a spatial resolution less than 4 mm was used in the field to observe the variability of emissivity spectra within individual rocks. The rocks were obtained commercially, were on the order of 20 cm in size and were selected to have distinct spectral features: they include alabaster (gypsum), soapstone (steatite with talc), obsidian (volcanic glass), norite (plagioclase and orthopyroxene), and 'jasper' (silica with iron oxides). The advantages of using an imaging spectrometer to spectrally characterize these rocks are apparent. Large spectral variations were observed within individual rocks that may be attributed to roughness, surface geometry, and compositional variation. Non-imaging spectrometers would normally miss these variations as would small samples used in laboratory measurements, spatially averaged spectra can miss the optimum spectra for identification materials and spatially localized components of the rock can be obscured.

  20. Characterization of MBE-grown InAlN/GaN heterostructure valence band offsets with varying In composition

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wenyuan, E-mail: wyjiaonju@gmail.com; Kong, Wei; Li, Jincheng; Kim, Tong-Ho; Brown, April S. [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States); Collar, Kristen [Department of Physics, Duke University, Durham, NC, 27708 (United States); Losurdo, Maria [CNR-NANOTEC, Istituto di Nanotecnologia, via Orabona, 4-70126 Bari (Italy)

    2016-03-15

    Angle-resolved X-ray photoelectron spectroscopy (XPS) is used in this work to experimentally determine the valence band offsets of molecular beam epitaxy (MBE)-grown InAlN/GaN heterostructures with varying indium composition. We find that the internal electric field resulting from polarization must be taken into account when analyzing the XPS data. Valence band offsets of 0.12 eV for In{sub 0.18}Al{sub 0.82}N, 0.15 eV for In{sub 0.17}Al{sub 0.83}N, and 0.23 eV for In{sub 0.098}Al{sub 0.902}N with GaN are obtained. The results show that a compositional-depended bowing parameter is needed in order to estimate the valence band energies of InAlN as a function of composition in relation to those of the binary endpoints, AlN and InN.

  1. Characterization of MBE-grown InAlN/GaN heterostructure valence band offsets with varying In composition

    Directory of Open Access Journals (Sweden)

    Wenyuan Jiao

    2016-03-01

    Full Text Available Angle-resolved X-ray photoelectron spectroscopy (XPS is used in this work to experimentally determine the valence band offsets of molecular beam epitaxy (MBE-grown InAlN/GaN heterostructures with varying indium composition. We find that the internal electric field resulting from polarization must be taken into account when analyzing the XPS data. Valence band offsets of 0.12 eV for In0.18Al0.82N, 0.15 eV for In0.17Al0.83N, and 0.23 eV for In0.098Al0.902N with GaN are obtained. The results show that a compositional-depended bowing parameter is needed in order to estimate the valence band energies of InAlN as a function of composition in relation to those of the binary endpoints, AlN and InN.

  2. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    Science.gov (United States)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This

  3. Considering clay rock heterogeneity in radionuclide retention

    International Nuclear Information System (INIS)

    Grambow, B.; Montavon, G.; Tournassat, C.; Giffaut, E.; Altmann, S.

    2010-01-01

    Document available in extended abstract form only. The Callovo-Oxfordian clay rock formation has a strong retention capacity for radionuclides, a favorable condition for the implementation of a nuclear waste repository. Principal retaining minerals are illite, and inter-stratified illite/smectite (I/S). Radionuclide retention has been studied on illite, illite/smectite and on clay rock obtained from different locations and data for retention on bentonite (80% smectite) are available. Sorption depends on the type of mineral, composition of mineralogical assemblages, individual mineral ion exchange capacities, ion distribution on exchange sites, specific surface areas, surface site types and densities for surface complexation as well as on water/rock ratios, temperature etc. As a consequence of mineralogical and textural variations, radionuclide retention properties are expected to vary with depth in the Callovo-Oxfordian formation. Using a simple additivity approach for the case of sorption of Cs and Ni it is shown that models and databases for illite and bentonite can be used to describe sorption in heterogeneous clay rock systems. A surface complexation/ion-exchange model as proposed by Bradbury and Baeyens without electrostatic contributions, was used directly as far as acid base properties are concerned but was modified with respect to sorption constants, in order to describe Na-, Ca, and Cs montmorillonite and bentonite MX-80 with a single set of surface complexation constants and also to account for carbonate and sulphate concentrations in groundwater. The model is integrated into the geochemical code PHREEQC considering dissolution/ precipitation/solubility constraints of accessory minerals (calcite, illite, celestite, quartz). Site densities for surface complexation and ion exchange are derived from the mass fractions of illite and of smectite in illite/smectite obtained from an overall fit of measured CEC data from all samples of the EST205 drill core

  4. Petrological studies of plutonic rocks of Ecuador

    International Nuclear Information System (INIS)

    Aly, S.

    1980-01-01

    The feldspars of many tonalitic plutonic rocks in the coastal regions and West Andean regions are zoned. This leads to the conclusion that they are relatively flat intrusions and to some extent transition rocks in the subvulcanite direction. This is in accordance with the genetic and chronological relationship between plutonites and the surrounding vulcanites of the Basic Igreous Complex (BIC). The composition of representative minerals, e.g. alkali feldspar, plagioclase feldspar, biotite, chlorite, and amphibole has been determined as well as the age of plutonite samples by the K/Ar dating method. (DG) [de

  5. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  6. A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling

    Science.gov (United States)

    Liu, Jingao; Pearson, D. Graham; Chacko, Thomas; Luo, Yan

    2018-02-01

    High-precision measurements of W isotopic ratios have enabled increased exploration of early Earth processes. However, when applying W isotopic data to understand the geological processes, it is critical to recognize the potential mobility of W and hence evaluate whether measured W contents and isotopic compositions reflect the primary petrogenetic processes or instead are influenced by the effects of secondary inputs/mobility. Furthermore, if we are to better understand how W is partitioned between different minerals during melting and metasomatic processes it is important to document the likely sinks for W during these processes. In addition, an understanding of the main hosts for W in the crust and mantle is critically important to constrain how W is cycled and stored in the crust-mantle geochemical cycle. As a first step to investigate these issues, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases within a broad spectrum of crustal and mantle rocks, along with whole-rock concentration measurements. Mass balance shows that for tonalitic gneiss and amphibolite, the major rock-forming minerals can adequately account for the bulk W budget, and for the pristine ultramafic rocks, olivine and orthopyroxene are the major controlling phases for W whereas for metasomatized ultramafic rocks, significant W is hosted in Ti-bearing trace phases (e.g., rutile, lindsleyite) along grain boundaries or is inferred to reside in cryptic W-bearing trace phases. Formation or decomposition of these phases during secondary processes could cause fractionation of W from other HFSEs, and also dramatically modify bulk W concentrations in rocks. For rocks that experienced subsequent W enrichment/alteration, their W isotopic compositions may not necessarily represent their mantle sources, but could reflect later inputs. The relatively small suite of rocks analyzed here serves as a reconnaissance study but allows some preliminary speculations on

  7. Igneous rocks formed by hypervelocity impact

    Science.gov (United States)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not

  8. Compositional, mechanical and transport properties of carbonate fault rocks and the seismic cycle in limestone terrains : A case study of surface exposures on the Longmenshan Fault, Sichuan, China

    NARCIS (Netherlands)

    Chen, Jianye

    2015-01-01

    Destructive earthquakes are common in tectonically active regions dominated by carbonate cover rocks. The catastrophic Wenchuan earthquake that struck Sichuan, China, also affected a section of carbonate cover terrain. Numerous studies have focused on characterizing the compositional, transport and

  9. Aqueous processes at Gusev crater inferred from physical properties of rocks and soils along the Spirit traverse

    Science.gov (United States)

    Cabrol, N.A.; Farmer, J.D.; Grin, E.A.; Ritcher, L.; Soderblom, L.; Li, R.; Herkenhoff, K.; Landis, G.A.; Arvidson, R. E.

    2006-01-01

    Gusev crater was selected as the landing site for Spirit on the basis of morphological evidence of long-lasting water activity, including possibly fluvial and lacustrine episodes. From the Columbia Memorial Station to the Columbia Hills, Spirit's traverse provides a journey back in time, from relatively recent volcanic plains showing little evidence for aqueous processes up to the older hills, where rock and soil composition are drastically different. For the first 156 sols, the only evidence of water action was weathering rinds, vein fillings, and soil crust cementation by salts. The trenches of Sols 112-145 marked the first significant findings of increased concentrations of sulfur and magnesium varying in parallel, suggesting that they be paired as magnesium-sulfate. Spirit's arrival at West Spur coincided with a shift in rock and soil composition with observations hinting at substantial amounts of water in Gusev's past. We used the Microscopic Imager data up to Sol 431 to analyze rock and soil properties and infer plausible types and magnitude of aqueous processes through time. We show the role played early by topography and structure. The morphology, texture, and deep alteration shown by the rocks in West Spur and the Columbia Hills Formation (CHF) suggest conditions that are not met in present-day Mars and required a wetter environment, which could have included transport of sulfur, chlorine, and bromine in water, vapor in volcanic gases, hydrothermal circulation, or saturation in a briny fluid containing the same elements. Changing conditions that might have affected flow circulation are suggested by different textural and morphological characteristics between the rocks in the CHF and those of the plains, with higher porosity proxy, higher void ratio, and higher water storage potential in the CHF. Soils were used to assess aqueous processes and water pathways in the top layers of modern soils. We conclude that infiltration might have become more difficult

  10. Petrology, Magnetic susceptibility, Tectonic setting and mineralization associated with Plutonic and Volcanic Rocks, Eastern Bajestan and Taherabad, Iran

    Directory of Open Access Journals (Sweden)

    Malihe Ghoorchi

    2009-09-01

    Full Text Available Study area is located in district of Bajestan and Ferdows cities, NE of Iran. Structurally, this area is part of Lut block. The oldest exposed rocks, to the north of intrusive rocks and in Eastern Bajestan, are meta-chert, slate, quartzite, thin-bedded crystalline limestone and meta-argillite. The sedimentary units are: Sardar Formation (Carboniferous, Jamal Formation (Permian, Sorkh Shale and Shotori Formations (Triassic, carbonateous rocks (Cretaceous and lithostratigraphically equivalent to Kerman conglomerate (Cretaceous-Paleocene are exposed in this area. Based on relative age, magmatism in eastern Bajestan and Taherabad started after Late Cretaceous and it has been active and repeated during Tertiary time. At least, three episodes of volcanic activities are recognized in this area. The first stage was mainly volcanic flow with mafic composition and minor intermediate. The second episode was mainly intermediate in composition. The third stage was changed to acid-intermediate in composition. Since the plutonic rocks intruded the volcanic rocks, therefore they may be Oligo-Miocene age. Bajestan intrusive rocks are granite-granodiorite-quartz monzonite. Taherabad intrusive rocks are diorite-quartz diorite- monzonite-latite. Bajestan intrusive rocks are reduced type (ilmenite series and Taherabad intrusive rocks are oxidized type (magnetite series.Based on geochemical analysis including trace elements, REE and isotopic data, Bajestan intrusive rocks formed in continental collision zone and the magma has crustal origin. Taherabad intrusive rocks were formed in subduction zone and magma originated from oceanic crust. Taherabad intrusive rock has exploration potential for Cu-Au and pb.

  11. A composite sphere assemblage model for porous oolitic rocks: Application to thermal conductivity

    Directory of Open Access Journals (Sweden)

    F. Chen

    2017-02-01

    Full Text Available The present work is devoted to the determination of linear effective thermal conductivity of porous rocks characterized by an assemblage of grains (oolites coated by a matrix. Two distinct classes of pores, i.e. micropores or intra oolitic pores (oolite porosity and mesopores or inter oolitic pores (inter oolite porosity, are taken into account. The overall porosity is supposed to be connected and decomposed into oolite porosity and matrix porosity. Within the framework of Hashin composite sphere assemblage (CSA models, a two-step homogenization method is developed. At the first homogenization step, pores are assembled into two layers by using self-consistent scheme (SCS. At the second step, the two porous layers constituting the oolites and the matrix are assembled by using generalized self-consistent scheme (GSCS and referred to as three-phase model. Numerical results are presented for data representative of a porous oolitic limestone. It is shown that the influence of porosity on the overall thermal conductivity of such materials may be significant.

  12. Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale

    International Nuclear Information System (INIS)

    Jiang, Meijuan; Spikes, Kyle T

    2016-01-01

    Seismic reservoir characterization of unconventional gas shales is challenging due to their heterogeneity and anisotropy. Rock properties of unconventional gas shales such as porosity, pore-shape distribution, and composition are important for interpreting seismic data amplitude variations in order to locate optimal drilling locations. The presented seismic reservoir characterization procedure applied a grid-search algorithm to estimate the composition, pore-shape distribution, and porosity at the seismic scale from the seismically inverted impedances and a rock-physics model, using the Haynesville Shale as a case study. All the proposed rock properties affected the seismic velocities, and the combined effects of these rock properties on the seismic amplitude were investigated simultaneously. The P- and S-impedances correlated negatively with porosity, and the V _P/V _S correlated positively with clay fraction and negatively with the pore-shape distribution and quartz fraction. The reliability of these estimated rock properties at the seismic scale was verified through comparisons between two sets of elastic properties: one coming from inverted impedances, which were obtained from simultaneous inversion of prestack seismic data, and one derived from these estimated rock properties. The differences between the two sets of elastic properties were less than a few percent, verifying the feasibility of the presented seismic reservoir characterization. (paper)

  13. Are the Vinjamur rocks carbonatites or meta-limestones?

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, K V; Bhaskar Rao, B [Indian Institute of Technology, Bombay (India). Dept. of Earth Sciences; Le Bas, M J [Univ. of Leicester, Leicester (United Kingdom). Dept. of Geology

    1995-08-01

    New whole-rock rare earth element (REE) data for the metacarbonate rocks inter bedded with schists at Vinjamur in the Nellore schist belt of Andhra Pradesh, show low total REE contents ({sigma}9-128 ppm) that are inconsistent with an igneous carbonatitic origin but which correspond more closely with a sedimentary limestone origin. The REE data of these rocks however, do not give absolute discrimination between marbles of meta-limestone and metacarbonatite origin. Micro-probe analytical data give better discrimination, and the chemical compositions of the calcite, micas, amphibole, plagioclase, apatite, monazite and staurolite in the Vinjamur marbles give strong and consistent evidence of a metamorphosed sedimentary rather than an igneous origin. (author). 35 refs., 7 figs., 9 tabs.

  14. Are the Vinjamur rocks carbonatites or meta-limestones?

    International Nuclear Information System (INIS)

    Subbarao, K.V.; Bhaskar Rao, B.; Le Bas, M.J.

    1995-01-01

    New whole-rock rare earth element (REE) data for the metacarbonate rocks inter bedded with schists at Vinjamur in the Nellore schist belt of Andhra Pradesh, show low total REE contents (σ9-128 ppm) that are inconsistent with an igneous carbonatitic origin but which correspond more closely with a sedimentary limestone origin. The REE data of these rocks however, do not give absolute discrimination between marbles of meta-limestone and metacarbonatite origin. Micro-probe analytical data give better discrimination, and the chemical compositions of the calcite, micas, amphibole, plagioclase, apatite, monazite and staurolite in the Vinjamur marbles give strong and consistent evidence of a metamorphosed sedimentary rather than an igneous origin. (author). 35 refs., 7 figs., 9 tabs

  15. A microfluidic approach to water-rock interactions using thin rock sections: Pb and U sorption onto thin shale and granite sections

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Youn Soo [Institute of Mine Reclamation Technology, Mine Reclamation Corp., 2 Segye-ro, Wonju-si, Gangwon-do, 26464 (Korea, Republic of); Jo, Ho Young, E-mail: hyjo@korea.ac.kr [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841 (Korea, Republic of); Ryu, Ji-Hun; Kim, Geon-Young [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon, 34057 (Korea, Republic of)

    2017-02-15

    Highlights: • Microfluidic tests was used to investigate water-rock (mineral) interactions. • Pb and U sorption onto thin shale and granite sections was evaluated. • Pb removal by thin shale section is related primarily to Fe-containing minerals. • A slightly larger amount of U was removed onto the thin granite section with Fe-containing minerals. - Abstract: The feasibility of using microfluidic tests to investigate water-rock (mineral) interactions in fractures regarding sorption onto thin rock sections (i.e., shale and granite) of lead (Pb) and uranium (U) was evaluated using a synthetic PbCl{sub 2} solution and uranium-containing natural groundwater as fluids. Effluent composition and element distribution on the thin rock sections before and after microfluidic testing were analyzed. Most Pb removal (9.8 mg/cm{sup 2}) occurred within 3.5 h (140 PVF), which was 74% of the total Pb removal (13.2 mg/cm{sup 2}) at the end of testing (14.5 h, 560 PVF). Element composition on the thin shale sections determined by μ-XRF analysis indicated that Pb removal was related primarily to Fe-containing minerals (e.g., pyrite). Two thin granite sections (biotite rich, Bt-R and biotite poor, Bt-P) exhibited no marked difference in uranium removal capacity, but a slightly higher amount of uranium was removed onto the thin Bt-R section (266 μg/cm{sup 2}) than the thin Bt-P section (240 μg/cm{sup 2}) within 120 h (4800 PVF). However, uranium could not be detected by micro X-ray fluorescence (μ-XRF) analysis, likely due to the detection limit. These results suggest that microfluidic testing on thin rock sections enables quantitative evaluation of rock (mineral)-water interactions at the micro-fracture or pore scale.

  16. Activity of radioactive inclusions in igneous rocks

    Energy Technology Data Exchange (ETDEWEB)

    Coppens, R

    1949-01-10

    It has been shown by Hee (Compt. rend. 227, 356(1948)) that the radioactivity of igneous rocks is traceable to radioactive inclusions. The present author used the photoemulsion method for the determination of U and Th content of rocks, by counting ..cap alpha.. tracks produced by such inclusions, per cm/sup 2/ and per sec. Rock powder was placed upon Ilford C/sub 2/ emulsions, the exposition time varying between 7 and 18 days. In most cases, prolonged trajectories meet upon a well delineated small surface corresponding to the inclusions. The formula used is that given by I. Curie (J. Phys., (1946) Nov) which, after substitution of constants, has the form N = 8.4KC(U) + 2.5KC(Th); here N is the number of trajectories, C(U) and C(Th) are the concentrations of U and Th, and K is a coefficient varying between 14 for granite and 31 for uranium oxide and thorite. Using as a second equation C(Th) = 2.5C(U), the concentrations C(Th) and C(U) can be determined. The method was tested on seven samples of granitic sand and micaschist from Brittany. Their average contents was found to be about 10% U and 22% Th, with approximations of about 20%.

  17. Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    Science.gov (United States)

    Bennett, Vickie C.; Brandon, alan D.; Hiess, Joe; Nutman, Allen P.

    2007-01-01

    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia.

  18. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    McLennan, S. M.; Anderson, R. B.; Bell, J. F.; Bridges, J. C.; Calef, F.; Campbell, J. L.; Clark, B. C.; Clegg, S.; Conrad, P.; Cousin, A.; Des Marais, D. J.; Dromart, G.; Dyar, M. D.; Edgar, L. A.; Ehlmann, B. L.; Fabre, C.; Forni, O.; Gasnault, O.; Gellert, R.; Gordon, S.; Grant, J. A.; Grotzinger, J. P.; Gupta, S.; Herkenhoff, K. E.; Hurowitz, J. A.; King, P. L.; Le Mouélic, S.; Leshin, L. A.; Léveillé, R.; Lewis, K. W.; Mangold, N.; Maurice, S.; Ming, D. W.; Morris, R. V.; Nachon, M.; Newsom, H. E.; Ollila, A. M.; Perrett, G. M.; Rice, M. S.; Schmidt, M. E.; Schwenzer, S. P.; Stack, K.; Stolper, E. M.; Sumner, D. Y.; Treiman, A. H.; VanBommel, S.; Vaniman, D. T.; Vasavada, A.; Wiens, R. C.; Yingst, R. A.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; Blank, Jennifer; Weigle, Gerald; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Siebach, Kirsten; Brunet, Claude; Hipkin, Victoria; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Robert, François; Sautter, Violaine; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Fassett, Caleb; Blake, David F.; Bristow, Thomas; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Williams, Rebecca M. E.; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Wolff, Michael; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Pradler, Irina; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

  19. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.

    Science.gov (United States)

    McLennan, S M; Anderson, R B; Bell, J F; Bridges, J C; Calef, F; Campbell, J L; Clark, B C; Clegg, S; Conrad, P; Cousin, A; Des Marais, D J; Dromart, G; Dyar, M D; Edgar, L A; Ehlmann, B L; Fabre, C; Forni, O; Gasnault, O; Gellert, R; Gordon, S; Grant, J A; Grotzinger, J P; Gupta, S; Herkenhoff, K E; Hurowitz, J A; King, P L; Le Mouélic, S; Leshin, L A; Léveillé, R; Lewis, K W; Mangold, N; Maurice, S; Ming, D W; Morris, R V; Nachon, M; Newsom, H E; Ollila, A M; Perrett, G M; Rice, M S; Schmidt, M E; Schwenzer, S P; Stack, K; Stolper, E M; Sumner, D Y; Treiman, A H; VanBommel, S; Vaniman, D T; Vasavada, A; Wiens, R C; Yingst, R A

    2014-01-24

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

  20. The influence of microwave irradiation on thermal properties of main rock-forming minerals

    International Nuclear Information System (INIS)

    Lu, Gao-ming; Li, Yuan-hui; Hassani, Ferri; Zhang, Xiwei

    2017-01-01

    Highlights: • Different rock-forming minerals present very different microwave absorption capacity to microwave energy. • The test results can be used to estimate the heating behaviors of rocks to microwave irradiation. • SEM-EDX technique was used to determine the elemental distribution and mineralogical composition. • Ferrum may influence the interacting mechanisms between rock-forming minerals and microwaves. - Abstract: The sample will burst into fragment when the thermal stress induced by thermal expansion greater than the ultimate strength of the rock after microwave irradiation. Microwave-assisted rock fragmentation has been illustrated to be potentially beneficial for mineral processing, mining and geotechnical engineering. In order to have a comprehensive understanding on the influence of microwave on thermo-mechanical properties of rocks, it is necessary to investigate the interaction effect between microwaves and the main rock-forming minerals. In this work, eleven rock-forming minerals were tested in a multimode cavity at 2.45G Hz with a power of 2 kW, subsequently, the Scanning Electron Microscopy–Energy Dispersive X-ray (SEM-EDX) was used to determine the elemental distribution and mineralogical composition of the tested samples. It was observed that different rock-forming minerals present very different susceptibility induced by microwave treatment. Enstatite presents the strongest microwave absorption capacity by a large margin and most of the rock-forming minerals are weak microwave absorbers. It is significant that the results can be used to predict the heating behaviors of rocks subjected to microwave energy. Furthermore, the SEM-EDX elemental analysis demonstrates that the microwave absorption capacity of rock-forming minerals could link to the contribution of the ferrum, which may influence the interacting mechanisms between microwaves and the rock-forming minerals.

  1. Experimental investigation of the role of rock fabric in gas generation and expulsion during thermal maturation: Anhydrous closed-system pyrolysis of a bitumen-rich Eagle Ford Shale

    Science.gov (United States)

    Shao, Deyong; Ellis, Geoffrey S.; Li, Yanfang; Zhang, Tongwei

    2018-01-01

    Gold-tube pyrolysis experiments were conducted on miniature core plugs and powdered rock from a bitumen-rich sample of Eagle Ford Shale to investigate the role of rock fabric in gas generation and expulsion during thermal maturation. The samples were isothermally heated at 130, 300, 310, 333, 367, 400, and 425 °C for 72 h under a confining pressure of 68.0 MPa, corresponding to six levels of induced thermal maturity: pre-oil generation (130 °C/72 h), incipient oil/bitumen generation (300 and 310 °C/72 h), early oil generation (333 °C/72 h), peak oil generation (367 °C/72 h), early oil cracking (400 °C/72 h), and late oil cracking (425 °C/72 h). Experimental results show that gas retention coupled with compositional fractionation occurs in the core plug experiments and varies as a function of thermal maturity. During the incipient oil/bitumen generation stage, yields of methane through pentane (C1–C5) from core plugs are significantly lower than those from rock powder, and gases from core plugs are enriched in methane. However, the differences in C1–C5 gas yield and composition decrease throughout the oil generation stage, and by the oil cracking stage no obvious compositional difference in C1–C5 gases exists. The decrease in the effect of rock fabric on gas yield and composition with increasing maturity is the result of an increase in gas expulsion efficiency. Pyrolysis of rock powder yields 4–16 times more CO2 compared to miniature core plugs, with δ13CCO2 values ranging from −2.9‰ to −0.6‰, likely due to carbonate decomposition accelerated by reactions with organic acids. Furthermore, lower yields of gaseous alkenes and H2 from core plug experiments sugge

  2. Geochemical constraints on the petrogenesis of the pyroclastic rocks in Abakaliki basin (Lower Benue Rift), Southeastern Nigeria

    Science.gov (United States)

    Chukwu, Anthony; Obiora, Smart C.

    2018-05-01

    The pyroclastic rocks in the Cretaceous Abakaliki basin occur mostly as oval-shaped bodies, consisting of lithic/lava and vitric fragments. They are commonly characterized by parallel and cross laminations, as well contain xenoliths of shale, mudstone and siltstones from the older Asu River Group of Albian age. The rocks are basic to ultrabasic in composition, comprising altered alkali basalts, altered tuffs, minor lapillistones and agglomerates. The mineral compositions are characterized mainly by laths of calcic plagioclase, pyroxene (altered), altered olivines and opaques. Calcite, zeolite and quartz represent the secondary mineral constituents. Geochemically, two groups of volcaniclastic rocks, are distinguished: alkaline and tholeiitic rocks, both represented by fresh and altered rock samples. The older alkali basalts occur within the core of the Abakaliki anticlinorium while the younger tholeiites occur towards the periphery. Though most of the rocks are moderate to highly altered [Loss on ignition (LOI, 3.43-22.07 wt. %)], the use of immobile trace element such as Nb, Zr, Y, Hf, Ti, Ta and REEs reflect asthenospheric mantle source compositions. The rocks are enriched in incompatible elements and REEs (∑REE = 87.98-281.0 ppm for alkaline and 69.45-287.99 ppm for tholeiites). The ratios of La/Ybn are higher in the alkaline rocks ranging from 7.69 to 31.55 compared to the tholeiitic rocks which range from 4.4 to 16.89 and indicating the presence of garnet-bearing lherzolite in the source mantle. The spidergrams and REEs patterns along with Zr/Nb, Ba/Nb, Rb/Nb ratios suggest that the rocks were generated by a mantle plume from partial melting of mixed enriched mantle sources (HIMU, EMI and EMII) similar to the rocks of the south Atlantic Ocean such as St. Helena (alkaline rocks) and Ascension rocks (tholeiitic rocks). The rocks were formed in a within-plate setting of the intra-continental rift type similar to other igneous rocks in the Benue Rift and are not

  3. Isotopic determinations of carbon and oxygen in the metasedimentary rocks of the Rio Pardo group-Bahia State, Brazil

    International Nuclear Information System (INIS)

    Costa Pinto, N.M.A.C.

    1977-01-01

    Determination of the carbon and oxygen isotopic compositions were made on approximately 100 samples of Late Precambrian metasedimentary rocks of the Rio Pardo Group from Southern Bahia. The results obtained show that carbon varies from δ 13 =C=5,73 per mille to δ 13 C=+9,00 per mille, and oxygen from δ 18 O=-1,87 per mille to δ 18 O=-19,67 per mille relative to PBD. The interpretations lead to some conclusions which confirm the validity the isotopic technique as auxiliary instrument in the study of geological problems. These include: 1) the evidence of a marine transgression during the Camaca sedimentation; 2) the probability that the dolomitic metalimestones of the Agua Preta formation belong to the Serra do Paraiso formation; 3) the assignment of the dolomitic metalismestones, which occur in Itiroro and which had been previously grouped with the crystalline basement rocks, to the Serra do Paraiso formation; 4) the removal of the marble from Serra do Paraiso formation and re-signment to the basement rocks, and finally; 5) the sedimentary evolution of the Rio Pardo Group from a typical fresh-water to a marine environment. (Author) [pt

  4. Numerical simulation of rock cutting using 2D AUTODYN

    International Nuclear Information System (INIS)

    Woldemichael, D E; Rani, A M Abdul; Lemma, T A; Altaf, K

    2015-01-01

    In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force. (paper)

  5. On the radiogenic heat production of igneous rocks

    Directory of Open Access Journals (Sweden)

    D. Hasterok

    2017-09-01

    Full Text Available Radiogenic heat production is a physical parameter crucial to properly estimating lithospheric temperatures and properly understanding processes related to the thermal evolution of the Earth. Yet heat production is, in general, poorly constrained by direct observation because the key radiogenic elements exist in trace amounts making them difficulty image geophysically. In this study, we advance our knowledge of heat production throughout the lithosphere by analyzing chemical analyses of 108,103 igneous rocks provided by a number of geochemical databases. We produce global estimates of the average and natural range for igneous rocks using common chemical classification systems. Heat production increases as a function of increasing felsic and alkali content with similar values for analogous plutonic and volcanic rocks. The logarithm of median heat production is negatively correlated (r2 = 0.98 to compositionally-based estimates of seismic velocities between 6.0 and 7.4 km s−1, consistent with the vast majority of igneous rock compositions. Compositional variations for continent-wide models are also well-described by a log-linear correlation between heat production and seismic velocity. However, there are differences between the log-linear models for North America and Australia, that are consistent with interpretations from previous studies that suggest above average heat production across much of Australia. Similar log-linear models also perform well within individual geological provinces with ∼1000 samples. This correlation raises the prospect that this empirical method can be used to estimate average heat production and natural variance both laterally and vertically throughout the lithosphere. This correlative relationship occurs despite a direct causal relationship between these two parameters but probably arises from the process of differentiation through melting and crystallization.

  6. Groundwater flow and sorption processes in fractured rocks (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Woo, Nam Chul; Yum, Byoung Woo; Choi, Young Sub; Chae, Byoung Kon; Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja; Lee, Kil Yong; Lee, Seung Gu; Youn, Youn Yul; Choon, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This study is objected to characterize groundwater flow and sorption processes of the contaminants (ground-water solutes) along the fractured crystalline rocks in Korea. Considering that crystalline rock mass is an essential condition for using underground space cannot be overemphasized the significance of the characterizing fractured crystalline rocks. the behavior of the groundwater contaminants is studied in related to the subsurface structure, and eventually a quantitative technique will be developed to evaluate the impacts of the contaminants on the subsurface environments. The study has been carried at the Samkwang mine area in the Chung-Nam Province. The site has Pre-Cambrian crystalline gneiss as a bedrock and the groundwater flow system through the bedrock fractures seemed to be understandable with the study on the subsurface geologic structure through the mining tunnels. Borehole tests included core logging, televiewer logging, constant pressure fixed interval length tests and tracer tests. The results is summarized as follows; 1) To determine the hydraulic parameters of the fractured rock, the transient flow analysis produce better results than the steady - state flow analysis. 2) Based on the relationship between fracture distribution and transmissivities measured, the shallow part of the system could be considered as a porous and continuous medium due to the well developed fractures and weathering. However, the deeper part shows flow characteristics of the fracture dominant system, satisfying the assumptions of the Cubic law. 3) Transmissivities from the FIL test were averaged to be 6.12 x 10{sup -7}{sub m}{sup 2}{sub /s}. 4) Tracer tests result indicates groundwater flow in the study area is controlled by the connection, extension and geometry of fractures in the bedrock. 5) Hydraulic conductivity of the tracer-test interval was in maximum of 7.2 x 10{sup -6}{sub m/sec}, and the effective porosity of 1.8 %. 6) Composition of the groundwater varies

  7. Petrology of lunar rocks and implication to lunar evolution

    Science.gov (United States)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  8. Chemical analysis of carbonates and carbonate rocks by atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tardon, S

    1981-01-01

    Evaluates methods of determining chemical composition of rocks surrounding black coal seams. Carbonate rock samples were collected in the Ostrava-Karvina coal mines. Sampling methods are described. Determination of the following elements and compounds in carbonate rocks is discussed: calcium, magnesium, iron, manganese, barium, silicon, aluminium, titanium, sodium, potassium, sulfur trioxide, phosphorus pentoxide, water and carbon dioxide. Proportion of compounds insoluble in water in the investigated rocks is also determined. Most of the elements are determined by means of atomic absorption analysis. Phosphorus is also determined by atomic absorption analysis. Other compounds are determined gravimetrically. The described procedure permits weight of a rock sample to be reduced to 0.5 g without reducing analysis accuracy. The results of determining carbonate rock components by X-ray analysis and by chemical analysis are compared. Equipment used for atomic absorption analysis is characterized (the 503 Perkin-Elmer and the CF-4 Optica-Milano spectrophotometers). The analyzed method for determining carbonate rock permits more accurate classification of rocks surrounding coal seams and rock impurities in run-of-mine coal. (22 refs.) (In Czech)

  9. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  10. Characterization and differentiation of rock varnish types from different environments by microanalytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Macholdt, D. S. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Jochum, K. P. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Pöhlker, C. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Arangio, A. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Förster, J. -D. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Stoll, B. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Weis, U. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Weber, B. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Müller, M. [Max Planck Inst. for Polymer Research, Mainz (Germany); Kappl, M. [Max Planck Inst. for Polymer Research, Mainz (Germany); Shiraiwa, M. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Kilcoyne, A. L. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weigand, M. [Max Planck Inst. for Intelligent Systems, Stuttgart (Germany); Scholz, D. [Johannes Gutenberg Univ., Mainz (Germany); Haug, G. H. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; Al-Amri, A. [King Saud Univ., Riyadh (Saudi Arabia); Andreae, M. O. [Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry; King Saud Univ., Riyadh (Saudi Arabia)

    2017-04-13

    We investigated rock varnishes collected from several locations and environments worldwide by a wide range of microanalytical techniques. These techniques were selected to address the challenges posed by the chemical and structural complexity within the micrometer- to nanometer-sized structures in these geological materials. Femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS), scanning transmission X-ray microscopy-near edge X-ray adsorption fine structure spectroscopy (STXM-NEXAFS) in combination with scanning electron microscopy (SEM) of focused ion beam (FIB) ultra-thin (100–200 nm) sections, conventional and polarization microscopy, as well as electron paramagnetic resonance (EPR) measurements were used to obtain information about these rock varnishes. Rock varnishes from different environments, which cannot readily be distinguished based on their macroscopic appearance, differ significantly in their constituent elemental mass fractions, e.g., of Mn, Fe, Ni, Co, Ba, and Pb, and their rare earth element (REE) patterns. Structural characteristics such as the particle sizes of embedded dust grains, internal structures such as layers of Mn-, Fe-, and Ca -rich material, and structures such as cavities varied between varnishes from different environments and regions in the world. The EPR spectra were consistent with aged biogenic Mn oxides in all samples, but showed subtle differences between samples of different origin. Our observations allow us to separate rock varnishes into different types, with differences that might be indicators of distinct geneses. Five different types of rock varnish could be distinguished, Type I–V, of which only Type I might be used as potential paleoclimate archive. Each varnish type has specific characteristics in terms of their elemental composition, element distribution, and structures. The combination of element ratios (Mn/Ba, Al/Ni, Mn/REY, Mn/Ce, Mn/Pb, La N /Yb N , and Ce/Ce*), total REE

  11. Application of Ga-Al discrimination plots in identification of high strength granitic host rocks for deep geological repository of high level radioactive waste

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Narayan, P.K.; Trivedi, R.K.; Purohit, M.K.

    2010-01-01

    The permanent disposal of vitrified high level wastes and in some cases even spent fuel, is being planned in specifically designed and built deep geological repository located in the depth range of 500-600m in appropriate host rock at carefully selected sites. Such facilities are expected to provide very long term isolation and confinement to the disposed waste by means of long term mechanical stability of such structures that results from very high strength and homogeneity of the chosen rock, geochemical compatible environment around the disposed waste and general lack of groundwater. In Indian geological repository development programme, granites have been selected as target host rock and large scale characterization studies have been undertaken to develop database of mineralogy, petrology, geochemistry and rock mechanical characteristics. The paper proposes a new approach for demarcation of high strength homogeneous granite rocks from within an area of about 100 square kilometres wherein a cocktail of granites of different origins with varying rock mass characteristics co exists. The study area is characterised by the presence of A, S and I type granites toughly intermixed. The S type granites are derived from sedimentary parent material and therefore carry relics of parent fabric and at times undigested material with resultant reduction in their strength and increased inhomogeneity. On the other hand I type varieties are derived from igneous parents and are more homogeneous with sufficient strength. The A type granites are emplaced as molten mass in a complete non-tectonic setting with resultant homogeneous compositions, absence of tectonic fabric and very high strength. Besides they are silica rich with less vulnerability to alterations with time. Thus A type granites are most suited for construction of Deep Geological Repository. For developing a geochemical approach for establishing relation between chemical compositions and rock strength parameters, a

  12. Modeling of thermal evolution of near field area around single pit mode nuclear waste canister disposal in soft rocks

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Verma, A.K.; Maheshwar, Sachin

    2016-01-01

    Soft rocks like argillites/shales are under consideration worldwide as host rock for geological disposal of vitrified as well as spent fuel nuclear waste. The near field around disposed waste canister at 400-500m depth witnesses a complex heat field evolution due to varying thermal characteristics of rocks, coupling with hydraulic processes and varying intensity of heat flux from the canister. Smooth heat dissipation across the rock is desirable to avoid buildup of temperature beyond design limit (100 °C) and resultant micro fracturing due to thermal stresses in the rocks and intervening buffer clay layers. This also causes enhancement of hydraulic conductivity of the rocks, radionuclide transport and greater groundwater ingress towards the canister. Hence heat evolution modeling constitutes an important part of safety assessment of geological disposal facilities

  13. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2017-01-01

    Full Text Available Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE, which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the influence of different height to diameter ratio on the acoustic emission characteristics of coal-rock damage evolution was discussed by microparticle flow PFC2D software platform. The results show that coal-rock size influences the uniaxial compressive strength, peak strain, and elastic modulus of itself; the size effect has little effect on the acoustic emission law of coal-rock damage and the effects of the size of coal-rock samples on acoustic emission characteristics are mainly reflected in three aspects: the triggering time of acoustic emission, the strain range of strong acoustic emission, and the intensity of acoustic emission; the damage evolution of coal-rock specimen can be divided into 4 stages: initial damage, stable development, accelerated development, and damage.

  14. Sorption data bases for generic Swiss argillaceous rock systems

    International Nuclear Information System (INIS)

    Bradbury, M. H.; Baeyens, B.; Thoenen, T.

    2010-09-01

    In Switzerland the site selection procedure for both high level waste (HLW) and low and intermediate level waste (L/ILW) repositories is specified by the Swiss Federal Office of Energy in the Sectoral Plan for Deep Geological Repositories. In the forthcoming stage 2 of this plan, potential sites will be identified within regions previously selected based on the presence of suitable host rocks, namely Opalinus Clay, 'Brauner Dogger', Effingen Member and Helvetic Marl. Preliminary safety analyses are an integral part of this procedure, and require, amongst other information, the radionuclide sorption properties of the host rock. This report describes a methodology to develop a Generic Rock Sorption Data Base (GR-SDB) for argillaceous rocks. The method will be used to compile specific SDBs for the above mentioned host rocks. Arguments are presented that the main factor influencing sorption on argillaceous rocks is the phyllosilicate mineral content. These minerals are particularly effective at binding metals to their surfaces by cation exchange and surface complexation. Generally, the magnitude of sorption is directly correlated with the phyllosilicate content (2:1 type clays: illite/smectite/illitesmectite mixed layers), and this parameter best reflects the sorption potential of a given mineral assembly. Consequently, sorption measurements on illite were preferably used as source data for the GR-SDB. The second component influencing radionuclide sorption is the porewater chemistry. In the present report, generic water compositions were extracted from the analytical ranges of deep ground waters in various sedimentary formations in Switzerland. In order to cover the range of ionic strength (I) and pH values of Swiss ground waters in argillaceous rocks, five types of generic water compositions were defined, combining low, intermediate and high values of ionic strength and pH. The GR-SDB for in situ conditions was derived using conversion factors (CF). As the name

  15. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  16. Postsedimentary Alterations of Coal-bearing Rocks and New Factors Affecting their Quality and Ingredient Composition as Exemplified by the Akhaltsikhe Brown Coal Deposit (Georgia)

    International Nuclear Information System (INIS)

    Maghalashvili, G.

    2008-01-01

    It has been established that in the case when coal-bearing rocks are represented by bentonitic clays, coal undergoes significant alterations, for the bentonitic clays, as a strong absorbent, absorb from the coal under conditions of natural humidity part of organics (humic acids, gums and other moving composite substances) thus depleting the coal, increasing its ash content and accordingly decreasing its calorific capacity. In this case it is expedient to exploit the coal and ''black'' or organics-saturated rocks selectively. It has also been established that the organics-saturated ''black'' bentonite is an excellent organic and mineral fertilizer that has been tested by the autor in the patented man-made soil. At the same time, in the case of coal briquetting, it may be used as a bonding material. (author)

  17. Stages of material transformations of Archean-Proterozoic rocks (Central-Karelian domain)

    International Nuclear Information System (INIS)

    Vinogradov, V.I.; Buyakajte, M.I.; Kolodyazhnyj, S.Yu.; Leonov, M.G.; Orlov, S.Yu.

    2001-01-01

    The age of the Archean-Proterozoic rocks from the south-east part of the Central-Karelian domain was determined by the method of Rb-Sr dating. It was ascertained that the age of the least tectonized rocks of granite-greenstone Archean foundation makes up 2800±70 mln. years at initial strontium isotopic ratio of 0.7022±0.0007. Gneisses of mainly plagiogranite composition, their age 1930±118 mln. years and strontium isotopic ratio 0.7170±0.0026, constitute the second group of the rocks. It is shown that isotopic age defined for the two groups of rocks agrees well with major geological events on the Baltic shield and planet as a whole [ru

  18. Mantle heterogeneity in northeastern Africa: evidence from Nd isotopic compositions and hygromagmaphile element geochemistry of basaltic rocks from the Gulf of Tadjoura and southern Red Sea regions

    International Nuclear Information System (INIS)

    Barrat, J.A.; Jahn, B.M.; Auvray, B.; Hamdi, H.; Joron, J.L.

    1990-01-01

    Basaltic rocks from the Gulf of Tadjoura and southern Red Sea regions have been analysed for their Nd isotopic compositions and major and trace element concentrations. The wide variation in isotopic and geochemical compositions of the basaltic rocks is best explained by the mixing phenomenon involving a variety of mantle source components. To test the mixing hypothesis, a combined use of Nd isotopes and hygromagmaphile elemental ratios is proven very powerful. Three reservoirs have been identified as minimum components in their petrogenesis: (1) DMM (depleted MORB mantle), a mantle source depleted in light rare earth elements (LREE), which is the principal component of the N-MORB type basalts of this region; (2) REC (Ramad enriched component), equivalent to the hot-spot type of source detected in the south of Red Sea; (3) TEC (Tadjoura enriched component), a rather unique component located in the region of Tadjoura Gulf; it is characterised by a relative depletion in Rb, K, Th and U in a primitive mantle- or chondrite-normalised incompatible element pattern; this component could have been produced by mantle metasomatism of an originally depleted mantle. Mixing in various proportions of the above components is considered to be the principal mechanism for the formation of basalts with such diverse isotopic and trace element compositions. (orig.)

  19. Superhard nanophase cutter materials for rock drilling applications; FINAL

    International Nuclear Information System (INIS)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-01-01

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications

  20. Tests of Rock Cores Scott Study Area, Missouri

    Science.gov (United States)

    1970-05-01

    little potassium feldspar is present in these cores. The bulk composition of this rock is quartz, plagio - clase feldspar (near oligoclase), chlorite...rhyolite porphyry, containing quartz and equal amounts of potassium and plagio - clase feldspar. Piece 22 of PC-2 (Figure 4.8) and Piece 22 of DC-5 (Figure...representative of this type. The bulk composition was Plagio - clase, orthoclase, quartz, biotite, and chlorite. About one-third of the pieces of the core

  1. Multi-elemental characterization of volcanic and vulcano-sedimentary rocks from Pina petroleum ore, central Cuba

    International Nuclear Information System (INIS)

    Montero-Cabrera, M.E.; Herrera-Peraza, E.; Betancourt-Tanda, L.; Campa-Menendez, R.; Diaz-Rizo, O.; Rodriguez-Martinez, N.; Segura-Soto, R.; Hernandez-Lopez, B.; Valdes-Lopez, S.

    1994-01-01

    Concentrations of 32 elements in 22 clay, limestone, tuff and volcanic rock samples from the Pina ore have been obtained by neutron activation and X-ray fluorescence analyses. Several LILE (large ion lithofile elements) and REE (rare earth element) concentration diagrams showed the calc-alkaline character of the volcanic rocks corresponding to the Greater Antilles Island, Arc. The basaltic andesite behavior of the rocks studied was confirmed by comparing the average concentrations obtained from tuffs and volcanic rocks with proper mean values of rock elemental compositions of the earth's crust. (Author)

  2. Multi-elemental characterization of volcanic and vulcano-sedimentary rocks from Pina petroleum ore, central Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Montero-Cabrera, M.E.; Herrera-Peraza, E.; Betancourt-Tanda, L.; Campa-Menendez, R.; Diaz-Rizo, O. (Instituto Superior de Ciencia y Tecnologia Nuclear (ISCTN), La Habana (Cuba)); Rodriguez-Martinez, N.; Segura-Soto, R.; Hernandez-Lopez, B.; Valdes-Lopez, S. (Centro de Investigaciones y Desarrollo del Petroleo, La Habana (Cuba))

    1994-08-01

    Concentrations of 32 elements in 22 clay, limestone, tuff and volcanic rock samples from the Pina ore have been obtained by neutron activation and X-ray fluorescence analyses. Several LILE (large ion lithofile elements) and REE (rare earth element) concentration diagrams showed the calc-alkaline character of the volcanic rocks corresponding to the Greater Antilles Island, Arc. The basaltic andesite behavior of the rocks studied was confirmed by comparing the average concentrations obtained from tuffs and volcanic rocks with proper mean values of rock elemental compositions of the earth's crust. (Author).

  3. Brittleness and Packing Density Effects on Blast-hole Cuttings Yield of Selected Rocks

    Directory of Open Access Journals (Sweden)

    B. Adebayo

    2016-06-01

    Full Text Available This paper evaluates brittleness and packing density to analysis their effects on blast-hole cutting yield for three selected rocks in Nigeria. Brittleness test (S20 was carried out in accordance with Norwegian Soil and Rock Engineering and the Brittleness Index (BI for the selected rocks were estimated. The packing density determined from the photomicrograph of the rock samples. The grain size of 45 blast-holes drill cuttings collected from three selected while drilling of these rocks were determined using standard method of America Society for Testing and Materials (ASTM D 2487. The brittleness values are 50%, 44% and 42% for micro granite, porphyritic granite and medium biotite granite respectively. The result of BI varied from 10.32 – 11.59 and they are rated as moderately brittle rocks. The values of packing density varied from 92.20 – 94.55%, 91.00 -92.96% and 92.92 – 94.96% for all the rocks. The maximum weights of blast-hole particle size retained at 75 µm are 106.00g, 103.28 g and 99.76 g for medium biotite granite, micro granite and porhyritic granite respectively. Packing density values have correlation to some extent with (S20 values hence, this influence the yield of blast-hole cuttings as drilling progresses. The minimum weight of blast-hole cuttings particle size retained at 150 µm agrees with brittleness index classification for micro granite.

  4. Geochemistry of the Oruatemanu Formation, Arrow Rocks, Northland, New Zealand

    International Nuclear Information System (INIS)

    Hori, R.S.; Higuchi, Y.; Fujiki, T.; Maeda, T.; Ikehara, M.

    2007-01-01

    We investigated the geochemical characteristics of sedimentary rocks from the Upper Permian - Middle Triassic Oruatemanu Formation on Arrow Rocks, Waipapa Terrane, New Zealand. The sedimentary rocks consist of limestone, tuffaceous shale, vari-coloured bedded chert, hemipelagic shale and green siliceous mudstone (= green argillite), in ascending order, a typical oceanic plate sequence. Shale and green argillite have higher Zr/Nb ratios than do chert and tuffaceous shales, and show similar REE patterns to PAAS (Post-Archean average Australian shale). In contrast, chert sequences from the basal part and intercalated tuff layers have high TiO 2 contents and Zr/Nb ratios similar to those of basaltic rocks from Arrow Rocks. These geochemical characteristics suggest that the sedimentary environment of the Oruatemanu Formation changed upward, from an open sea setting to the continental margin of Gondwanaland. Chemical compositions of bedded cherts from Arrow Rocks indicate a mixing of biogenic silica, detritus from continents and basaltic materials. In the interval from Upper Permian to Lower Middle Triassic this mixing shows remarkable secular variations. We detected geochemical signals of two Oceanic Anoxic Events (OAEs), one at the Permian/Triassic (P/T) boundary, and the other at the middle Upper Induan level. We name them the OAEα (P/T OAE) and OAEβ (Upper Induan OAE). These OAE horizons are enriched in S, U and other heavy metals (e.g. Mo and Cr), and also have high V/(V+Ni) ratios. Based on a comparison between enrichment factors of Cr and other redox-sensitive trace elements (e.g. Zn, Pb, Co, Cu), the Upper Induan OAEβ is considered to be more intense than the P/T boundary OAEα. This result is not in agreement with the superanoxia model previously proposed. In addition, OAEβ corresponds well with the radiolarian faunal turnover from Permian to Triassic forms documented from the Oruatemanu Formation in this volume. These results may suggest that peak time and

  5. Mg-spinel lithology: A new rock type on the lunar farside

    Science.gov (United States)

    Pieters, C.M.; Besse, S.; Boardman, J.; Buratti, B.; Cheek, L.; Clark, R.N.; Combe, J.-P.; Dhingra, D.; Goswami, J.N.; Green, R.O.; Head, J.W.; Isaacson, P.; Klima, R.; Kramer, G.; Lundeen, S.; Malaret, E.; McCord, T.; Mustard, J.; Nettles, J.; Petro, N.; Runyon, C.; Staid, M.; Sunshine, J.; Taylor, L.A.; Thaisen, K.; Tompkins, S.; Whitten, J.

    2011-01-01

    High-resolution compositional data from Moon Mineralogy Mapper (M 3) for the Moscoviense region on the lunar farside reveal three unusual, but distinctive, rock types along the inner basin ring. These are designated "OOS" since they are dominated by high concentrations of orthopyroxene, olivine, and Mg-rich spinel, respectively. The OOS occur as small areas, each a few kilometers in size, that are widely separated within the highly feldspathic setting of the basin rim. Although the abundance of plagioclase is not well constrained within the OOS, the mafic mineral content is exceptionally high, and two of the rock types could approach pyroxenite and harzburgite in composition. The third is a new rock type identified on the Moon that is dominated by Mg-rich spinel with no other mafic minerals detectable (lunar crust; they may thus be near contemporaneous with crustal products from the cooling magma ocean. Copyright ?? 2011 by the American Geophysical Union.

  6. Do Hf isotopes in magmatic zircons represent those of their host rocks?

    Science.gov (United States)

    Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao

    2018-04-01

    Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.

  7. ROCKS & MINERALS DETERMINATION AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150204 Abaydulla Alimjan(Department of Chemistry and Environmental Sciences,Kashgar Teachers College,Kashgar 844006,China);Cheng Chunying Non-Metallic Element Composition Analysis of Non-Ferrous Metal Ores from Oytagh Town,Xinjiang(Rock and Mineral Analysis,ISSN0254-5357,CN11-2131/TD,33(1),2014,p.44-50,5illus.,4tables,28refs.)Key words:nonferrous metals ore,nonmetals,chemical analysis,thermogravimetric analysis Anions in non-ferrous ore materials

  8. Biomarkers, carbon isotopic composition and source rock potentials of Awgu coals, middle Benue trough, Nigeria

    Science.gov (United States)

    Adedosu, Taofik A.; Sonibare, Oluwadayo O.; Tuo, Jincai; Ekundayo, Olusegun

    2012-05-01

    Coal and carbonaceous shale samples were collected from two boreholes (BH 94 and BH 120) in Awgu formation of Middle Benue Trough, Nigeria. Source rock potentials of the samples were studied using biomarkers and carbon isotopic composition. Biomarkers in the aliphatic fractions in the samples were studied using Gas Chromatography-Mass Spectrometry (GC-MS). The Carbon isotope analysis of individual n-alkanes in the aliphatic fraction was performed using Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometer (GC-IRMS). The abundance of hopanes, homohopanes (C31-C35), and C29 steranes in the samples indicate terrestrial plant, phytoplankton and cyanobacteria contributions to the organic matter that formed the coal. High (Pr/Ph) ratio (3.04-11.07) and isotopic distribution of individual alkanes showed that the samples consisted of mixed terrestrial/marine organic matter deposited under oxic condition in lacustrine-fluvial/deltaic depositional environment. The maturity parameters derived from biomarker distributions showed that the samples are in the main phase of oil window.

  9. Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model

    Directory of Open Access Journals (Sweden)

    Isa Kolo

    2016-01-01

    Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.

  10. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  11. Mineralogical and geological study of fault rocks and associated strata

    International Nuclear Information System (INIS)

    Kim, Jeon Jin; Jeong, Gyo Cheol; Bae, Doo Won; Park, Seong Min; Kim, Jun Yeong

    2007-01-01

    Mineralogical characterizations of fault clay and associated strata in fault zone with field study and analytical methods. Mineral composition and color of fault clay and rock occur in fracture zone different from bed rocks. Fault clay mainly composed of smectite with minor zeolite such as laumontite and stilbite, and halloysite, illite, Illite and halloysite grow on the surface of smectite, and laumontite and stilbite result from precipitation or alteration of Ca rich bed rock. The result of mineralogical study at Ipsil, Wangsan, Gaegok, Yugyeori, Gacheon in Gyeongju area, the detail research of microstructure in the fault clay making it possible for prediction to age of fault activity

  12. Mineralogical and geological study of fault rocks and associated strata

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeon Jin; Jeong, Gyo Cheol; Bae, Doo Won; Park, Seong Min; Kim, Jun Yeong [Andong Univ., Andong (Korea, Republic of)

    2007-01-15

    Mineralogical characterizations of fault clay and associated strata in fault zone with field study and analytical methods. Mineral composition and color of fault clay and rock occur in fracture zone different from bed rocks. Fault clay mainly composed of smectite with minor zeolite such as laumontite and stilbite, and halloysite, illite, Illite and halloysite grow on the surface of smectite, and laumontite and stilbite result from precipitation or alteration of Ca rich bed rock. The result of mineralogical study at Ipsil, Wangsan, Gaegok, Yugyeori, Gacheon in Gyeongju area, the detail research of microstructure in the fault clay making it possible for prediction to age of fault activity.

  13. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    Science.gov (United States)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  14. Sr–Nd isotopic compositions of Paleoproterozoic metavolcanic rocks from the southern Ashanti volcanic belt, Ghana

    OpenAIRE

    Dampare, Samuel; Shibata, Tsugio; Asiedu, Daniel; Okano, Osamu; Manu, Johnson; Sakyi, Patrick

    2009-01-01

    Neodymium (Nd) and strontium (Sr) isotopic data are presented for Paleoproterozoic metavolcanic rocks in the southern part of the Ashanti volcanic belt of Ghana. The metavolcanic rocks are predominantly basalts/basaltic andesites and andesites with minor dacites. Two types of basalts/basaltic andesites (B/A), Type I and Type II, have been identified. The Type I B/A are stratigraphically overlain by the Type II B/A, followed by the andesites and the dacites. The analyzed volcanic rocks commonl...

  15. Stable isotope compositions and water contents of boninite series volcanic rocks from Chichi-jima, Bonin Islands, Japan

    Science.gov (United States)

    Dobson, P.F.; O'Neil, J.R.

    1987-01-01

    Measurements of stable isotope compositions and water contents of boninite series volcanic rocks from the island of Chichi-jima, Bonin Islands, Japan, confirm that a large amount (1.6-2.4 wt.%) of primary water was present in these unusual magmas. An enrichment of 0.6??? in 18O during differentiation is explained by crystallization of 18O-depleted mafic phases. Silicic glasses have elevated ??18O values and relatively low ??D values indicating that they were modified by low-temperature alteration and hydration processes. Mafic glasses, on the other hand, have for the most part retained their primary isotopic signatures since Eocene time. Primary ??D values of -53 for boninite glasses are higher than those of MORB and suggest that the water was derived from subducted oceanic lithosphere. ?? 1987.

  16. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain

    Science.gov (United States)

    Siegesmund, S.; Mosch, S.; Scheffzük, Ch.; Nikolayev, D. I.

    2008-10-01

    The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.

  17. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Science.gov (United States)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  18. Neutrons from rock radioactivity in the new Canfranc underground laboratory

    International Nuclear Information System (INIS)

    Amare, J; Bauluz, B; Beltran, B; Carmona, J M; Cebrian, S; GarcIa, E; Gomez, H; Irastorza, I G; Luzon, G; MartInez, M; Morales, J; Solorzano, A Ortiz de; Pobes, C; Jpuimedon; RodrIguez, A; Ruz, J; Sarsa, M L; Torres, L; Villar, J A

    2006-01-01

    Measurements of radioactivity and composition of rock from the main hall of the new Canfranc underground laboratory are reported. Estimates of neutron production by spontaneous fission and (α, n) reactions are given

  19. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data

    Science.gov (United States)

    Lanza, Nina L.; Ollila, Ann M.; Cousin, Agnes; Wiens, Roger C.; Clegg, Samuel M.; Mangold, Nicolas; Bridges, Nathan; Cooper, Daniel; Schmidt, Mariek E.; Berger, Jeffrey; Arvidson, Raymond E.; Melikechi, Noureddine; Newsom, Horton E.; Tokar, Robert; Hardgrove, Craig; Mezzacappa, Alissa; Jackson, Ryan S.; Clark, Benton C.; Forni, Olivier; Maurice, Sylvestre; Nachon, Marion; Anderson, Ryan B.; Blank, Jennifer; Deans, Matthew; Delapp, Dorothea; Léveillé, Richard; McInroy, Rhonda; Martinez, Ronald; Meslin, Pierre-Yves; Pinet, Patrick

    2015-01-01

    Surface compositional features on rocks such as coatings and weathering rinds provide important information about past aqueous environments and water–rock interactions. The search for these features represents an important aspect of the Curiosity rover mission. With its unique ability to do fine-scale chemical depth profiling, the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) onboard Curiosity can be used to both identify and analyze rock surface alteration features. In this study we analyze a terrestrial manganese-rich rock varnish coating on a basalt rock in the laboratory with the ChemCam engineering model to determine the LIBS signature of a natural rock coating. Results show that there is a systematic decrease in peak heights for elements such as Mn that are abundant in the coating but not the rock. There is significant spatial variation in the relative abundance of coating elements detected by LIBS depending on where on the rock surface sampled; this is due to the variability in thickness and spatial discontinuities in the coating. Similar trends have been identified in some martian rock targets in ChemCam data, suggesting that these rocks may have coatings or weathering rinds on their surfaces.

  20. Intermediate-scale Fire Performance of Composite Panels under Varying Loads

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dodd, Amanda B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    New aircraft are being designed with increasing quantities of composite materials used in their construction. Different from the more traditional metals, composites have a higher propensity to burn. This presents a challenge to transportation safety analyses, as the aircraft structure now represents an additional fuel source involved in the fire scenario. Most of the historical fire testing of composite materials is aime d at studying kinetics, flammability or yield strength under fire conditions. Most of this testing is small - scale. Heterogeneous reactions are often length - scale dependent, and this is thought to be particularly true for composites which exhibit signific ant microscopic dynamics that can affect macro - scale behavior. We have designed a series of tests to evaluate composite materials under various structural loading conditions with a consistent thermal condition. We have measured mass - loss , heat flux, and temperature throughout the experiments. Several types of panels have been tested, including simple composite panels, and sandwich panels. The main objective of the testing was to understand the importance of the structural loading on a composite to its b ehavior in response to fire - like conditions. During flaming combustion at early times, there are some features of the panel decomposition that are unique to the type of loading imposed on the panels. At load levels tested, fiber reaction rates at later t imes appear to be independent of the initial structural loading.

  1. Fractal analysis of fractures and microstructures in rocks

    International Nuclear Information System (INIS)

    Merceron, T.; Nakashima, S.; Velde, B.; Badri, A.

    1991-01-01

    Fractal geometry was used to characterize the distribution of fracture fields in rocks, which represent main pathways for material migration such as groundwater flow. Fractal investigations of fracture distribution were performed on granite along Auriat and Shikoku boreholes. Fractal dimensions range between 0.3 and 0.5 according to the different sets of fracture planes selected for the analyses. Shear, tension and compressional modes exhibit different fractal values while the composite fracture patterns are also fractal but with a different, median, fractal value. These observations indicate that the fractal method can be used to distinguish fracture types of different origins in a complex system. Fractal results for Shikoku borehole also correlate with geophysical parameters recorded along, drill-holes such as resistivity and possibly permeability. These results represent the first steps of the fractal investigation along drill-holes. Future studies will be conducted to verify relationships between fractal dimensions and permeability by using available geophysical data. Microstructures and microcracks were analysed in the Inada granite. Microcrack patterns are fractal but fractal dimensions values vary according to both mineral type and orientations of measurement within the mineral. Microcracks in quartz are characterized by more irregular distribution (average D = 0.40) than those in feldspars (D = 0.50) suggesting a different mode of rupture. Highest values of D are reported along main cleavage planes for feldspars or C axis for quartz. Further fractal investigations of microstructure in granite will be used to characterize the potential pathways for fluid migration and diffusion in the rock matrix. (author)

  2. Alteration of Lunar Rock Surfaces through Interaction with the Space Environment

    Science.gov (United States)

    Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.

    2014-01-01

    Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.

  3. Theory and test research on permeability of coal and rock body influenced by mining

    Energy Technology Data Exchange (ETDEWEB)

    Qing-xin Qi; Hong-yan Li; You-gang Wang; Zhi-gang Deng; Hang Lan; Yong-wei Peng; Chun-rui Li [China Coal Research Institute, Beijing (China)

    2009-06-15

    Stress distribution rules and deformation and failure properties of coal and rock bodies influenced by mining were analyzed. Experimental research on permeability of coal and rock samples under different loading conditions was finished in the laboratory. In-situ measurement of coal permeability influenced by actual mining was done as well. Theory analysis show that permeability varied with damage development of coal and rock under stress, and the influence of fissure on permeability was greatest. Laboratory results show that under different loading conditions permeability was different and it varied with stress, which indicated that permeability was directly related to the loading process. In-situ tests showed that permeability is related to abutment stress to some degree. The above results may be referenced to gas prevention and drainage. 11 refs., 6 figs., 1 tab.

  4. Heat production rate from radioactive elements in igneous and metamorphic rocks in eastern desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, A G.E.; Arabi, A.M.; Abbay, A.

    2005-01-01

    Radioactive heat - production data of igneous and metamorphic rocks cropping out from the eastern desert are presented. Samples were analysed using low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 Μ Wm-3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite) to 0.91 (metagabroo) Μ W.m-3. The contribution due to U is about (51%), whereas that of Th (31%) and (18%) by K. The corresponding values in igneous rocks are 76%: 19%: 5%, respectively. The calculated values showed good agreement with global values expect in some areas contained granite rocks

  5. Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in LOMU-Like Potassium-Rich Volcanic Rocks

    Science.gov (United States)

    Sun, Yang; Teng, Fang-Zhen; Ying, Ji-Feng; Su, Ben-Xun; Hu, Yan; Fan, Qi-Cheng; Zhou, Xin-Hua

    2017-10-01

    To evaluate the role of subducted oceanic crust in the genesis of potassium-rich magmas, we report high-precision Mg isotopic data for a set of Cenozoic volcanic rocks from Northeast China. These rocks overall are lighter in Mg isotopic composition than the normal mantle and display considerable Mg isotopic variations, with δ26Mg ranging from -0.61 to -0.23. The covariation of δ26Mg with TiO2 in these rocks suggests that their light Mg isotopic compositions were derived from recycled oceanic crust in the form of carbonated eclogite in the source region. The strong correlations between δ26Mg and (Gd/Yb)N ratio as well as Sr-Pb isotopes further indicate a multicomponent and multistage origin of these rocks. Magnesium isotopes may thus be used as a novel tracer of recycled oceanic crust in the source region of mantle-derived magmas.

  6. Isotopic studies of mariposite-bearing rocks from the south- central Mother Lode, California.

    Science.gov (United States)

    Kistler, R.W.; Dodge, F.C.W.; Silberman, M.L.

    1983-01-01

    Gold-bearing vein formation in the Mother Lode belt of the study area apparently occurred during the Early Cretaceous between 127 and 108 m.y. B.P. The hydrothermal fluids that carried the gold precipitated quartz and mariposite at approx 320oC, similar to the T of precipitation of gold-bearing quartz veins in the Allegheny district. The O- and H-isotopic composition calculated for the fluid indicate that it was similar to formation water or was metamorphic in origin. If the carbonate in the veins was in isotopic equilibrium with this same fluid, it apparently precipitated at a higher T of approx 400oC. The Sr in the carbonate is much less radiogenic than that in any known marine carbonate, but is similar in isotopic composition to that in metamorphosed mafic volcanic rocks of the general region. These mafic rocks could have been the source for the Sr in the hydrothermal veins. This observation supports the contention that the gold-mariposite-quartz-carbonate rocks were formed as an alteration product of serpentinite and other mafic igneous rocks.-A.P.

  7. Opportunity Examining Composition of 'Cook Islands' Outcrop

    Science.gov (United States)

    2009-01-01

    This image taken by the front hazard-avoidance camera on NASA's Mars Exploration Rover Opportunity shows the rover's arm extended to examine the composition of a rock using the alpha particle X-ray spectrometer. Opportunity took this image during the 1,826th Martian day, or sol, of the rover's Mars-surface mission (March 13, 2009). The spectrometer is at a target called 'Penrhyn,' on a rock called 'Cook Islands.' As Opportunity makes its way on a long journey from Victoria Crater toward Endeavour Crater, the team is stopping the drive occasionally on the route to check whether the rover finds a trend in the composition of rock exposures.

  8. Response function of an HPGe detector simulated through MCNP 4A varying the density and chemical composition of the matrix

    International Nuclear Information System (INIS)

    Leal A, B.; Mireles G, F.; Quirino T, L.; Pinedo, J.L.

    2005-01-01

    In the area of the Radiological Safety it is required of a calibrated detection system in energy and efficiency for the determination of the concentration in activity in samples that vary in chemical composition and by this in density. The area of Nuclear Engineering requires to find the grade of isotopic enrichment of the uranium of the Sub-critic Nuclear Chicago 9000 Mark. Given the experimental importance that has the determination from the curves of efficiency to the effects of establishing the quantitative results, is appealed to the simulation of the response function of the detector used in the Regional Center of Nuclear Studies inside the range of energy of 80 keV to 1400 keV varying the density of the matrix and the chemical composition by means of the application of the Monte Carlo code MCNP-4A. The obtained results in the simulation of the response function of the detector show a grade of acceptance in the range from 500 to 1400 keV energy, with a smaller percentage discrepancy to 10%, in the range of low energy that its go from 59 to 400 keV, the percentage discrepancy varies from 17% until 30%, which is manifested in the opposing isotopic relationship for 5 fuel rods of the Sub critic nuclear assemble. (Author)

  9. Electrochemistry of lunar rocks

    Science.gov (United States)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  10. Study of natural radioactivity in the rocks of Coorg District, Karnataka State

    International Nuclear Information System (INIS)

    Prakash, M.M; KaliPrasad, C.S.; Narayana, Y.

    2016-01-01

    The paper deals with the study of natural radioactivity in the rocks of Coorg district, Karnataka state. The level of terrestrial radiation are related to the geological composition of the region, and to the concentration of 226 Ra, 232 Th and 40 K in rock. Rocks are used in various construction activities, which also have these natural radionuclides. Hence, a study was done to assess the concentration of these radionuclides in rock samples. Coorg lies along the eastern slopes of Western Ghats, which is in the south western side of Karnataka state. The rock samples were collected from different locations of Coorg. The samples were crushed, ovendried and sieved through 240µm sieve. The sieved samples were sealed in a plastic container of 300ml and stored for 30 days

  11. Rock pushing and sampling under rocks on Mars

    Science.gov (United States)

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  12. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    Science.gov (United States)

    Edman, Janell D.; Pitman, Janet K.; Hammes, Ursula

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  13. Petrology and geochronology of metamorphosed volcanic rocks and a middle Cretaceous volcanic neck in the east-central Sierra Nevada, California.

    Science.gov (United States)

    Kistler, R.W.; Swanson, S.E.

    1981-01-01

    Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors

  14. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    Science.gov (United States)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the

  15. Hydrologic properties of shale and related argillaceous rocks

    International Nuclear Information System (INIS)

    Moiseyev, A.N.

    1979-01-01

    This report is the result of a bibliographic study designed primarily to collect hydrologic data on American clay-rich rocks. The following information was also sought: stratigraphy, environment of deposition, mineralogic composition, and diagenetic changes. The collected numerical data are presented in tables which contain densities, porosities, and/or hydraulic conductivities of approximately 360 samples. Additional data include hydraulic diffusivities, resistivities, flow rates, and rock strengths. Geologic information suggests that large deposits of shale which may be suited for waste repository belong to all ages and were formed in both marine and continental environments. Of the studied units, the most promising are Paleozoic in the eastern half of the country, Mesozoic in the central part, and Cenozoic in the Gulf Coast area and the West. Less widespread units locally present some additional possibilities. Mineralogic investigations suggest that the smectite content in rocks shows a decrease in time (70% in Recent rocks; 35% in pre-Mesozoic rocks). Because of this predominance of smectite in younger rocks, the modeling of repositories in post-Paleozoic formations might require knowledge of additional and poorly known parameters. Results of investigations into the mathematical relationships between porosity and permeability (or hydralic conductivity) suggest that in situ permeabilities could be estimated from sonic logs and fluid pressure changes at depth. 16 figures, 8 tables

  16. Popping Rocks Revealed: Investigations from 14°N on the Mid-Atlantic Ridge

    Science.gov (United States)

    Wanless, V. D.; Jones, M.; Kurz, M. D.; Soule, S. A.; Fornari, D. J.; Bendana, S.; Mittelstaedt, E. L.

    2017-12-01

    The popping rock, recovered in dredge 2πD43 in 1985, is commonly considered to be one of the most representative samples of undegassed upper mantle, based on high volatile and noble gas abundances. While this basalt is used to reconstruct mantle volatile contents and CO2 fluxes from mid-ocean ridges (MOR), the origin of the popping rock has remained ambiguous due to a lack of geologic context. Here, we present results from the first combined geochemical, geophysical, and geologic investigation of popping rocks from 14N on the Mid-Atlantic Ridge. By combining lava compositions with high-resolution bathymetric maps, we show that the popping rocks are confined to a single geographic area, at the transition between magmatic and tectonic segments. Fifteen popping rocks were collected in situ using the Alvin submersible in 2016. X-ray microtomography indicates that these lavas have variable vesicle abundances; including the highest vesicularities (>19%) recorded for any MOR basalt. Dissolved CO2 contents (163-175 ppm) are similar to proximal non-popping rocks and are in equilibrium at their eruption depths (>3600 m); however, total CO2 contents (based on vesicularity, dissolved CO2, and vesicle gas contents) are higher than non-popping rocks, ranging from 2800-14150 ppm. The popping rocks have average 3He/4He ratios of 8.17 ± 0.1 Ra and 4He concentrations of 1.84e-5 to 7.67e-5 cc/g STP. Compared to non-popping lavas, the popping rocks have a narrow range of major and trace element concentrations, suggesting little to no crystallization occurred during ascent or eruption. REE patterns and trace element ratios are indistinguishable in the popping rocks (La/Sm = 2.89 ± 0.05), indicating similar mantle sources and extents of melting. Based on lava compositions and spatial distribution, we suggest that the popping rocks at 14N were produced under similar magmatic conditions and erupted over short timescales, perhaps during a series of closely timed eruptions.

  17. Magnetic mineralogy and rock magnetic properties of silicate and carbonatite rocks from Oldoinyo Lengai volcano (Tanzania)

    Science.gov (United States)

    Mattsson, H. B.; Balashova, A.; Almqvist, B. S. G.; Bosshard-Stadlin, S. A.; Weidendorfer, D.

    2018-06-01

    Oldoinyo Lengai, a stratovolcano in northern Tanzania, is most famous for being the only currently active carbonatite volcano on Earth. The bulk of the volcanic edifice is dominated by eruptive products produced by silica-undersaturated, peralkaline, silicate magmas (effusive, explosive and/or as cumulates at depth). The recent (2007-2008) explosive eruption produced the first ever recorded pyroclastic flows at this volcano and the accidental lithics incorporated into the pyroclastic flows represent a broad variety of different rock types, comprising both extrusive and intrusive varieties, in addition to various types of cumulates. This mix of different accidental lithics provides a unique insight into the inner workings of the world's only active carbonatite volcano. Here, we focus on the magnetic mineralogy and the rock magnetic properties of a wide selection of samples spanning the spectrum of Oldoinyo Lengai rock types compositionally, as well from a textural point of view. Here we show that the magnetic properties of most extrusive silicate rocks are dominated by magnetite-ulvöspinel solid solutions, and that pyrrhotite plays a larger role in the magnetic properties of the intrusive silicate rocks. The natrocarbonatitic lavas, for which the volcano is best known for, show distinctly different magnetic properties in comparison with the silicate rocks. This discrepancy may be explained by abundant alabandite crystals/blebs in the groundmass of the natrocarbonatitic lavas. A detailed combination of petrological/mineralogical studies with geophysical investigations is an absolute necessity in order to understand, and to better constrain, the overall architecture and inner workings of the subvolcanic plumbing system. The results presented here may also have implications for the quest in order to explain the genesis of the uniquely natrocarbonatitic magmas characteristic of Oldoinyo Lengai.

  18. Characterization of rock samples localized in some sites of the Mexican Pacific coast

    International Nuclear Information System (INIS)

    Pena, P.; Torre, J. de la; Falcon, T.; Segovia, N.; Azorin, J.

    1999-01-01

    Geophysical studies in zones of high seismicity have showed differences in the content of radioactive material that is used in the study of the geochemical behavior of the subsoil. In an emanometric mapping of radon in soil realized in the Mexican Pacific coast were finding distinct levels in zones with different lithology. With the finality to know the mineralization types in two zones of study which are localized in the Guerrero coast and they belonging to terrains named Guerrero and Xolapa it was determined the mineralogic characteristics in two types of rocks. The identification of the rocks was realized by X-ray diffraction and was determined the elemental chemical composition using a scanning electron microscope. It was indicated in the results obtained that in the two types of rocks were found minerals such as: quartz, albite, microcline anortite, ferroactinolite and biotite. However, it was found differences between them by the presence of their mineralogic compounds because in the rock belonging to Xolapa terrain were presented whereas in the rock localized in the Guerrero terrain were presented sodic and potassic feldspars. The analysis by the Elemental Chemical Composition technique (Energy Dispersive Spectroscopy) corroborated the results obtained by the X-ray diffraction technique. (Author)

  19. Bulk rock composition and geochemistry of olivine-hosted melt inclusions in the Grey Porri Tuff and selected lavas of the Monte dei Porri volcano, Salina, Aeolian Islands, southern Italy

    Science.gov (United States)

    Doherty, Angela L.; Bodnar, Robert J.; De Vivo, Benedetto; Bohrson, Wendy A.; Belkin, Harvey E.; Messina, Antonia; Tracy, Robert J.

    2012-01-01

    The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72−84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57−78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.

  20. Geochemical behaviour of rare earth elements on metasomatic alteration of volcanic rocks

    International Nuclear Information System (INIS)

    Jordanov, J.A.; Kunov, A.J.

    1987-01-01

    Investigations are carried out on metasomatically altered Paleogene latites in order to follow up the rare earth elements (REE) geochemical behavour. Representative samples of the initial rocks (latites), from propylitized latites and quartz-sericite rocks, as well as from dickite, alumite, diaspore and monoquartzites, are analysed. The results show that REE have a behaviour of moderately mobile elements. They undergo redistribution both in quantity and in the composition of the group. The different concentrations and changes in the ΣREE compared to the initial rocks are observed and direct relationships to the degree of endogenic leaching are made. The REE mobility and redistribution during the metasomatic alterations in the region investigated are controlled by the physical-chemical conditions which play a significant role both in determining the composition of the mineral paragenese and in the fixing of REE. The distribution patterns indicate that REE redistribution in the case of metasomatic alterations is almost isochemical without any supply from hydrothermal solutions

  1. Simulation of crack propagation in rock in plasma blasting technology

    Science.gov (United States)

    Ikkurthi, V. R.; Tahiliani, K.; Chaturvedi, S.

    Plasma Blasting Technology (PBT) involves the production of a pulsed electrical discharge by inserting a blasting probe in a water-filled cavity drilled in a rock, which produces shocks or pressure waves in the water. These pulses then propagate into the rock, leading to fracture. In this paper, we present the results of two-dimensional hydrodynamic simulations using the SHALE code to study crack propagation in rock. Three separate issues have been examined. Firstly, assuming that a constant pressure P is maintained in the cavity for a time τ , we have determined the P- τ curve that just cracks a given rock into at least two large-sized parts. This study shows that there exists an optimal pressure level for cracking a given rock-type and geometry. Secondly, we have varied the volume of water in which the initial energy E is deposited, which corresponds to different initial peak pressures Ppeak. We have determined the E- Ppeak curve that just breaks the rock into four large-sized parts. It is found that there must be an optimal Ppeak that lowers the energy consumption, but with acceptable probe damage. Thirdly, we have attempted to identify the dominant mechanism of rock fracture. We also highlight some numerical errors that must be kept in mind in such simulations.

  2. Pheromone Production by an Invasive Bark Beetle Varies with Monoterpene Composition of its Naïve Host.

    Science.gov (United States)

    Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir

    2015-06-01

    The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.

  3. Effects of hydrologic variables on rock riprap design for uranium tailings impoundments

    International Nuclear Information System (INIS)

    Walters, W.H.; Skaggs, R.L.

    1985-01-01

    Pacific Northwest Laboratory is studying the mitigation of erosion of earthen radon suppression covers for uranium tailings impoundments. Because the covers will require erosion protection for upwards of 1000 years, rock riprap (armoring) has been proposed as the primary protection method. This study investigates the sensitivity of riprap design procedures to extreme flood events that can generate high flow velocities and shear stresses. The study uses two decommissioned tailings sites (Grand Junction and Slick Rock, Colorado) as case studies to evaluate the sensitivity of design rock size with respect to variables such as flood discharge, side slope, specific gravity, safety factor, and channel roughness. The results indicate that design rock size can vary significantly for different design procedures. Other significant results indicate that embankment side slopes of about 4H:1V are optimum for rock riprap and that the use of rock material with specific gravities less than about 2.50 may prove too costly

  4. Biodiversity in intertidal rock pools: informing engineering criteria for artificial habitat enhancement in the built environment.

    Science.gov (United States)

    Firth, Louise B; Schofield, Meredith; White, Freya J; Skov, Martin W; Hawkins, Stephen J

    2014-12-01

    Coastal defence structures are proliferating to counter rising and stormier seas. With increasing concern about the ecological value of built environments, efforts are being made to create novel habitat to increase biodiversity. Rock pools are infrequent on artificial structures. We compared biodiversity patterns between rock pools and emergent rock and assessed the role of pool depth and substratum incline in determining patterns of biodiversity. Rock pools were more taxon rich than emergent substrata. Patterns varied with depth and incline with algal groups being more positively associated with shallow than deeper habitats. Substratum incline had little influence on colonising epibiota, with the exception of canopy algae in deeper habitats where vertical surfaces supported greater taxon richness than horizontal surfaces. The creation of artificial rock pools in built environments will have a positive effect on biodiversity. Building pools of varying depths and inclines and shore heights will provide a range of habitats, increase environmental heterogeneity, therefore creating more possible ecological niches, promoting local biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks

    Science.gov (United States)

    Trépanier, Sylvain; Mathieu, Lucie; Daigneault, Réal; Faure, Stéphane

    2016-04-01

    This study proposes an artificial neural networks-based method for predicting the unaltered (precursor) chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting precursor's major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr, which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass balance calculations. Various statistics were calculated to validate the predictions of precursors' major components, which indicate that, overall, the predictions are precise and accurate. For example, rank-based correlation coefficients were calculated to compare predicted and analysed values from a least-altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant. Also, predictions are performant for most volcanic rock compositions, except for ultra-K rocks. The proposed method provides an easy and rapid solution to the often difficult task of determining appropriate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for large volcanic rock databases and is most useful, for example, to mineral exploration performed in complex or poorly known volcanic settings. The method is implemented as a simple C++ console program.

  6. In situ Laser Induced Breakdown Spectroscopy as a tool to discriminate volcanic rocks and magmatic series, Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Roux, C.P.M., E-mail: clement.roux@u-bourgogne.fr [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47 870, F-21078 Dijon Cedex (France); Rakovský, J.; Musset, O. [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, BP 47 870, F-21078 Dijon Cedex (France); Monna, F. [Laboratoire ARTéHIS, UMR 6298 CNRS-Université de Bourgogne, 6 Boulevard Gabriel, F-21000 Dijon (France); Buoncristiani, J.-F.; Pellenard, P.; Thomazo, C. [Laboratoire Biogéosciences, UMR 6282 CNRS-Université de Bourgogne, 6 Boulevard Gabriel, F-21000 Dijon (France)

    2015-01-01

    This study evaluates the potentialities of a lab-made pLIBS (portable Laser-Induced Breakdown Spectroscopy) to sort volcanic rocks belonging to various magmatic series. An in-situ chemical analysis of 19 atomic lines, including Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Na, Si, Sr and Ti, from 21 sampled rocks was performed during a field exploration in Iceland. Iceland was chosen both for the various typologies of volcanic rocks and the rugged conditions in the field in order to test the sturdiness of the pLIPS. Elemental compositions were also measured using laboratory ICP-AES measurements on the same samples. Based on these latter results, which can be used to identify three different groups of volcanic rocks, a classification model was built in order to sort pLIBS data and to categorize unknown samples. Using a reliable statistical scheme applied to LIBS compositional data, the classification capability of the pLIBS system is clearly demonstrated (90–100% success rate). Although this prototype does not provide quantitative measurements, its use should be of particular interest for future geological field investigations. - Highlights: • Portable LIBS applied to field geology • Fast semi-quantitative geochemical analysis of volcanic rocks and magmatic series • Discriminant analysis and statistical treatments for LIBS compositional data.

  7. Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials

    Directory of Open Access Journals (Sweden)

    Liu Lang

    2016-05-01

    Full Text Available Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.

  8. Change in cap rock porosity triggered by pressure and temperature dependent CO2–water–rock interactions in CO2 storage systems

    Directory of Open Access Journals (Sweden)

    Christina Hemme

    2017-03-01

    Full Text Available Carbon capture and storage in deep geological formations is a method to reduce greenhouse gas emissions. Supercritical CO2 is injected into a reservoir and dissolves in the brine. Under the impact of pressure and temperature (P–T the aqueous species of the CO2-acidified brine diffuse through the cap rock where they trigger CO2–water–rock interactions. These geochemical reactions result in mineral dissolution and precipitation along the CO2 migration path and are responsible for a change in porosity and therefore for the sealing capacity of the cap rock. This study focuses on the diffusive mass transport of CO2 along a gradient of decreasing P–T conditions. The process is retraced with a one-dimensional hydrogeochemical reactive mass transport model. The semi-generic hydrogeochemical model is based on chemical equilibrium thermodynamics. Based on a broad variety of scenarios, including different initial mineralogical, chemical and physical parameters, the hydrogeochemical parameters that are most sensitive for safe long-term CO2 storage are identified. The results demonstrate that P–T conditions have the strongest effect on the change in porosity and the effect of both is stronger at high P–T conditions because the solubility of the mineral phases involved depends on P–T conditions. Furthermore, modeling results indicate that the change in porosity depends strongly on the initial mineralogical composition of the reservoir and cap rock as well as on the brine compositions. Nevertheless, a wide range of conditions for safe CO2 storage is identified.

  9. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    International Nuclear Information System (INIS)

    Marques, L.S.

    1988-01-01

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO 2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO 2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO 2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO 2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author) [pt

  10. Composition of the Earth's interior: the importance of early events.

    Science.gov (United States)

    Carlson, Richard W; Boyet, Maud

    2008-11-28

    The detection of excess 142Nd caused by the decay of 103Ma half-life 146Sm in all terrestrial rocks compared with chondrites shows that the chondrite analogue compositional model cannot be strictly correct, at least for the accessible portion of the Earth. Both the continental crust (CC) and the mantle source of mid-ocean ridge basalts (MORB) originate from the material characterized by superchondritic 142Nd/144Nd. Thus, the mass balance of CC plus mantle depleted by crust extraction (the MORB-source mantle) does not sum back to chondritic compositions, but instead to a composition with Sm/Nd ratio sufficiently high to explain the superchondritic 142Nd/144Nd. This requires that the mass of mantle depleted by CC extraction expand to 75-100 per cent of the mantle depending on the composition assumed for average CC. If the bulk silicate Earth has chondritic relative abundances of the refractory lithophile elements, then there must exist within the Earth's interior an incompatible-element-enriched reservoir that contains roughly 40 per cent of the Earth's 40Ar and heat-producing radioactive elements. The existence of this enriched reservoir is demonstrated by time-varying 142Nd/144Nd in Archaean crustal rocks. Calculations of the mass of the enriched reservoir along with seismically determined properties of the D'' layer at the base of the mantle allow the speculation that this enriched reservoir formed by the sinking of dense melts deep in a terrestrial magma ocean. The enriched reservoir may now be confined to the base of the mantle owing to a combination of compositionally induced high density and low viscosity, both of which allow only minimal entrainment into the overlying convecting mantle.

  11. Analysis and design of composite slab by varying different parameters

    Science.gov (United States)

    Lambe, Kedar; Siddh, Sharda

    2018-03-01

    Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.

  12. Combined stable isotope trajectories for water-rock interaction

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1981-01-01

    The 'mixed' model of water-rock interaction (1980 Workshop) is explained in detail. Based on the magnitude of the oxygen isotope shifts of their recharge water, different geothermal systems can be placed in an evolutionary series, from incipient (large shift of water) to mature (small shift of water). Isotopes of different chemical elements may be combined, to yield a stringent test of whether or not a given change in rock composition may be ascribed to interaction with water (L-shaped trajectories). For the acidic eruptives of the Taupo Volcanic Zone, available strontium and oxygen isotope data practically rule out an origin by partial melting of greywacke basement

  13. Petrography, mineral chemistry and lithochemistry of the albitite and granite-gneissics rocks of anomaly 35 from Lagoa Real uranium province

    International Nuclear Information System (INIS)

    Santos, Camila Marques dos

    2016-01-01

    different compositions with varied range of rocks, such as granite, syenite and mafic rocks. Thus, albitite s must be the result of successive processes of change influenced by the interaction of fluids with different rocks in the area, and varying compositionally on a local scale. (author)

  14. Development Of Silica Potassium Fertilizers From Trass Rock With Calcination Process

    Science.gov (United States)

    Wahyusi, KN; Siswanto

    2018-01-01

    Rocks and sand mines have important benefits for life. With the many benefits of rocks, it is a pity if Indonesia has a lot of raw material reserves waste it. Examples of the benefits of rocks that can be converted into silica potassium fertilizer by reacting with potassium hydroxide. Examples of rocks that can be taken trass rock. The procedure for making silica potassium is by reacting 100 mesh trass rock with KOH and K2CO3 reagents whose composition is arranged by weight ratio, where the base of the trass rock is 100 gr. The process is carried out at a temperature of 1.250 °C with a reaction time of 1 hour. The results obtained are the best silica potassium fertilizer for K2CO3 reagent which is 500gr: 74gr with SiO2 content: 26.8% and K2O content: 27.3%, with water solubility 24.02%, while for silica potassium fertilizer product from The best trass rock for KOH reagent is with a mol ratio of 400 gr : 60 gr with SiO2 content : 23.6% and K2O content: 22.2%, with 25.65% water solubility. The pore size of silica potassium fertilizer product of this trass rock, the range 350 - 1000 nm.

  15. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    Science.gov (United States)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  16. Ground water chemistry and water-rock interaction at Olkiluoto

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Front, K.

    1992-02-01

    Bedrock investigations for the final repository for low- and intermediate level wastes (VLJ repository) generated at the Olkiluoto (TVO-I and TVO-II) nuclear power plant, stareted in 1980. Since 1988 the area has been investigated for the final disposal of spent nuclear fuel. In the report the geochemistry at the nuclear waste investigation site, Olkiluoto, is evaluated. The hydrogeological data are collected from boreholes drilled down to 1000-m depth into Proterozoic crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data, and the structure and hydrology of the bedrock, using correlation diagrams and thermodynamic calculations (PHREEQE). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed. The groundwater types are characterized by water-rock interaction but they also show features of other origins. The fresh and brackish waters are contaminated by varying amounts of young meteoric water and brackish seawater. The saline water contains residues of possibly ancient hydrothermal waters, imprints of which are occasionally seen in the rock itself. Different mixing phenomenas are indicated by the isotope contents (O-l8/H-2, H-3) and the Ca/Cl, Na/Cl, HCO 3 /Cl, SO 4 /Cl, Br/Cl, SI(calcite)/SI(dolomite) ratios. The interaction between bedrock and groundwater is reflected by the behaviour of pH, Eh, Ca, Mg, Na, K, Fe, HCO 3 and S0 4 . Dissolution and precipitation of calcite and pyrite, and aluminosilicate hydrolysis play the major role in defining the groundwater composition of the above components

  17. Source rock hydrocarbons. Present status

    International Nuclear Information System (INIS)

    Vially, R.; Maisonnier, G.; Rouaud, T.

    2013-01-01

    This report first presents the characteristics of conventional oil and gas system, and the classification of liquid and gaseous non conventional hydrocarbons, with the peculiar case of coal-bed methane. The authors then describe how source rock hydrocarbons are produced: production of shale oils and gases (horizontal drilling, hydraulic fracturing, exploitation) and of coal-bed methane and coal mine methane. In the next part, they address and discuss the environmental impact of source rock hydrocarbon production: installation footprint, water resource management, drilling fluids, fracturing fluids composition, toxicity and recycling, air pollution, induced seismicity, pollutions from other exploitation and production activities. They propose an overview of the exploitation and production of source rock gas, coal-bed gas and other non conventional gases in the world. They describe the current development and discuss their economic impacts: world oil context and trends in the USA, in Canada and other countries, impacts on the North American market, on the world oil industry, on refining industries, on the world oil balance. They analyse the economic impacts of non conventional gases: development potential, stakes for the world gas trade, consequence for gas prices, development opportunities for oil companies and for the transport sector, impact on CO 2 emissions, macro-economic impact in the case of the USA

  18. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  19. Analysis of effects of geological structures in rock driving by TBM

    Directory of Open Access Journals (Sweden)

    Ľudmila Tréfová

    2006-12-01

    Full Text Available Although mechanical properties belongs to important parameter for the excavation modelling, effect of geological structures on the rock massive fragmentation is often much higher than varying rock properties. This paper deals with the analysis of geological structures. It is focused on the schistosity orientation towards the tunnel azimuth. The aim is to define of schistosity effect on the penetration rate. It is a basis creating of fuzzy rules for the performance model full-profile tunnel boring machine

  20. The effective stress concept in a jointed rock mass. A literature survey

    International Nuclear Information System (INIS)

    Olsson, Roger

    1997-04-01

    The effective stress concept was defined by Terzaghi in 1923 and was introduced 1936 in a conference at Harvard University. The concept has under a long time been used in soil mechanics to analyse deformations and strength in soils. The effective stress σ' is equal to the total stress σ minus the pore pressure u (σ'=σ-u). The concepts's validity in a jointed rock mass has been investigated by few authors. A literature review of the area has examined many areas to create an overview of the use of the concept. Many rock mechanics and rock engineering books recommend that the expression introduced by Terzaghi is suitable for practical purpose in rock. Nevertheless, it is not really clear if they mean rock or rock mass. Within other areas such as porous rocks, mechanical compressive tests on rock joints and determination of the permeability, a slightly changed expression is used, which reduces the acting pore pressure (σ'=σ-α·u). The α factor can vary between 0 and 1 and is defined differently for different areas. Under assumption that the pore system of the rock mass is sufficiently interconnected, the most relevant expression for a jointed rock mass, that for low effective stresses should the Terzagi's original expression with α=1 be used. But for high normal stresses should α=0.9 be used

  1. Evidence for a Meteoritic Component in Impact Melt Rock from the Chicxulub Structure

    Science.gov (United States)

    Koeberl, Christian; Sharpton, Virgil L.; Schuraytz, Benjamin C.; Shirey, Steven B.; Blum, Joel D.; Marin, Luis E.

    1994-01-01

    The Chicxulub structure in Yucatan, Mexico, has recently been recognized as a greater then 200-km-diameter multi-ring impact crater of K-T boundary age. Crystalline impact melt rocks and breccias from within the crater, which have compositions similar to those of normal continental crustal rocks and which show shock metamorphic effects, have been studied for trace element and Re-Os isotope compositions. Re-Os isotope systematics allow the sensitive and selective determination of an extraterrestrial component in impact-derived rocks. A melt rock sample shows elevated iridium concentrations, an osmium concentration of 25 ppb, and a low Os-187/Os-188 ratio of 0.113, which are incompatible with derivation from the continental crust. Even though the Os-187/Os-188 ratio is slightly lower than the range so far measured in meteorites, a mantle origin seems unlikely for mass balance reasons and because the cratering event is unlikely to have excavated mantle material. The data support the hypothesis of a heterogeneously distributed meteoritic component in the Chicxulub melt rock. A sample of impact glass from the Haitian K-T boundary at Beloc yielded about 0.1 ppb osmium and an Os-187/0s-188 ratio of 0.251, indicating the presence of a small meteoritic component in the impact ejecta as well.

  2. Water-rock interaction during diagenesis and thermal recovery, Cold Lake, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, H.J.

    1988-12-01

    Fluid and rocks interact at high temperatures during diagenesis and steam assisted thermal recovery of bitumen from the Clearwater Formation at Cold Lake, Alberta. A study was carried out to assess the effects of natural diagenesis in rocks of the formation, and using these data, to relate the chemical and isotopic compositions of fluids produced during thermal recovery to water-rock interactions occurring in the reservoir. X-ray diffraction (XRD) studies on core from Leming and Marguerite Lake document a variety of diagenetic clays including mixed layer minerals smectite-illite and chlorite-smectite, chlorite, illite, berthierine and kaolinite. A method for internally generating factors to convert clay mineral XRD peak heights to relative weight percents was used. Semi-quantitative results show that smectite-illite is ubiquitous and the most abundant clay present. Details are provided of the diagenetic sequence illustrating water-rock interaction over a prolonged period. Three types of water were found to be produced from the wells: injected water, formation water associated with bitumen, and bottom water from the underlying McMurray Formation. Produced water compositions were used to estimate in-situ temperatures of fluids produced from reservoirs. It is concluded that equilibrium closed-system models can be applied to natural diagenesis and artificial diagenesis induced during thermal recovery. 132 refs., 52 figs., 5 tabs.

  3. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane

    Science.gov (United States)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan

    2017-05-01

    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  4. Investigation into relations between physical and electrical properties of rocks and concretes

    Science.gov (United States)

    Sertçelik, İbrahim; Kurtuluş, Cengiz; Sertçelik, Fadime; Pekşen, Ertan; Aşçı, Metin

    2018-02-01

    The physical and electrical properties of natural rocks, namely limestone, sandstone, amphibolite, arkose, schist, granite, basalt, and concrete were investigated in order to characterize the relationships between these properties. The measurements were conducted on 96 cylindrical specimens of limestone, sandstone, amphibolite, arkose, schist, granite, basalt, and 14 cubic concrete samples. Strong correlations between ultrasonic pulse velocity (UPV), uniaxial compressive strength (UCS), electrical resistivity, and chargeability were confirmed. High correlation coefficients were observed among the properties, varying between 0.53 and 0.92 for all the rocks and concrete. Test results show the following relations among the corresponding parameters: the UPV increases with the increase in UCS, resistivity decreases with the decrease in chargeability for all rocks and concrete, and the electrical resistivities of rock and concrete decrease with the increase in chargeability.

  5. Clinopyroxene application in petrogenesis identification of volcanic rocks associated with salt domes from Shurab (Southeast Qom

    Directory of Open Access Journals (Sweden)

    Somayeh Falahaty

    2016-07-01

    Full Text Available Introduction The study area is located in the Shurab area that is about 50 Km Southeast of Qom. Volcanic rocks of the Shurab area have basaltic composition that is associated with salt and marl units. Igneous rocks of the Shurab area have not been comprehensively studied thus far. Clinopyroxene composition of volcanic rocks, and especially the phenocrysts show Magma chemistry and can help to identify magma series (Lebas, 1962; Verhooge, 1962; Kushiro, 1960, Leterrier et al., 1982, tectonic setting (Leterrier et al., 1982; Nisbet and Pearce, 1977 as well as temperature formation and pressure of rock formation. Some geologists have estimated temperature of clinopyroxene formation by clinopyroxene composition (Adams and Bishop, 1986 and clinopyroxene-olivine couple. So, clinopyroxene is used in this study in order to identify magma series, tectonic setting, plus the temperature and pressure of volcanic rocks of the Shurab. Material and method Clinopyroxene analyses were conducted by wavelength-dispersive EPMA (JEOL JXA-8800R at the Cooperative Centre of Kanazawa University (Japan. The analyses were performed under an accelerating voltage of 15 kV and a beam current of 20 nA. The ZAF program was used for data corrections. Natural and synthetic minerals of known composition were used as standards. The Fe3+ content in minerals was estimated by Droop method (Droop, 1987. Discussion In the Shurab area, the volcanic rocks area with basaltic composition are located 50 km Southeast of Qom. Their age is the early Oligocene and they are associated with the salty marl units of the Lower Red Formation (LRF. The hand specimens of the studied rocks look green. These rocks are intergranular, microlitic, porphyric, vitrophyric and amygdaloidal and they consist of olivine, pyroxene and plagioclase. Accessory minerals contain sphene, apatite and opaque. According to Wo-En-Fs diagram (Morimoto, 1988, clinopyroxenes indicate diopside composition. Clinopyroxenes are

  6. Dielectric non destructive testing for rock characterization in natural stone industry and cultural heritage

    Science.gov (United States)

    López-Buendía, Angel M.; García-Baños, Beatriz; Mar Urquiola, M.; Gutiérrez, José D.; Catalá-Civera, José M.

    2016-04-01

    Dielectric constant measurement has been used in rocks characterization, mainly for exploration objective in geophysics, particularly related to ground penetration radar characterization in ranges of 10 MHz to 1 GHz. However, few data have been collected for loss factor. Complex permittivity (dielectric constant and loss factor) characterization in rock provide information about mineralogical composition as well as other petrophysic parameters related to the quality, such as fabric parameters, mineralogical distribution, humidity. A study was performed in the frequency of 2,45GHz by using a portable kit for dielectric device based on an open coaxial probe. In situ measurements were made of natural stone marble and granite on selected industrial slabs and building stone. A mapping of their complex permittivity was performed and evaluated, and variations in composition and textures were identified, showing the variability with the mineral composition, metal ore minerals content and fabric. Dielectric constant was a parameter more sensible to rock forming minerals composition, particularly in granites for QAPF-composition (quartz-alkali feldspar-plagioclases-feldspathoids) and in marbles for calcite-dolomite-silicates. Loss factor shown a high sensibility to fabric and minerals of alteration. Results showed that the dielectric properties can be used as a powerful tool for petrographic characterization of building stones in two areas of application: a) in cultural heritage diagnosis to estimate the quality and alteration of the stone, an b) in industrial application for quality control and industrial microwave processing.

  7. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    International Nuclear Information System (INIS)

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas

  8. Radionuclide migration in crystalline rock fractures

    International Nuclear Information System (INIS)

    Hoelttae, P.

    2002-01-01

    first time in a series of experiments where the experimental arrangements enabled very low water flow rates. FTRANS, a modified numerical code that can simulate both groundwater flow and the transport of radionuclides in porous or fractured medium, was tested in order to interpret laboratory scale migration experiments. The code was able to interpret in-diffusion of calcium into altered tonalites. The elution curves of calcium for the altered tonalite fracture columns were explained adequately by the code when using parameters obtained from in-diffusion calculations. The K d -values for intact rock obtained on the basis of the fracture column experiments were one order of magnitude lower than the K d -values for crushed rock, indicating that batch experiments overestimate the retardation of sorbing radionuclides onto the rock matrices owing to the larger surface areas that are available. The greater sorption on altered tonalites was explained by the composition of the sorptive alteration minerals and the large specific surface areas. In this research, sodium, calcium and strontium were used as tracers in order to compare various experimental techniques. Experiments with relevant nuclear waste nuclides are needed to enable more detailed discussion of the differences in K d -values and the implication for performance assessment calculations. Data obtained from transport experiments conducted in well-defined laboratory conditions is the basis for the block scale and field experiments that are necessary to validate the radionuclide transport concept and to test the transferability of laboratory data to field conditions.(orig.)

  9. Natural radioactivity of the rocks from the Moon and planets

    Energy Technology Data Exchange (ETDEWEB)

    Surkov, Yu.A. (AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient continent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts.

  10. Natural radioactivity of the rocks from the Moon and planets

    International Nuclear Information System (INIS)

    Surkov, Yu.A.

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient contineent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts

  11. Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas

    Science.gov (United States)

    Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.

    2018-02-01

    Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.

  12. Mass Dependent Fractionation of Hg Isotopes in Source Rocks, Mineral Deposits and Spring Waters of the California Coast Ranges, USA

    Science.gov (United States)

    Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.

    2007-12-01

    We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that extend to greater depths (200 to 1000 m), as well as active springs and geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a

  13. Impact of modernization on adult body composition on five islands of varying economic development in Vanuatu.

    Science.gov (United States)

    Olszowy, Kathryn M; Pomer, Alysa; Dancause, Kelsey N; Sun, Cheng; Silverman, Harold; Lee, Gwang; Chan, Chim W; Tarivonda, Len; Regenvanu, Ralph; Kaneko, Akira; Weitz, Charles A; Lum, J Koji; Garruto, Ralph M

    2015-01-01

    The Republic of Vanuatu, similar to other South Pacific island nations, is undergoing a rapid health transition as a consequence of modernization. The pace of modernization is uneven across Vanuatu's 63 inhabited islands, resulting in differential impacts on overall body composition and prevalence of obesity among islands, and between men and women. In this study, we investigated (1) how modernization impacts body composition between adult male and female Melanesians living on four islands of varying economic development in Vanuatu, and (2) how body composition differs between adult Melanesians and Polynesians living on rural islands in Vanuatu. Anthropometric measurements were taken on adult male and female Melanesians aged 18 years and older (n = 839) on the islands of Ambae (rural), Aneityum (rural with tourism), Nguna (rural with urban access), and Efate (urban) in Vanuatu, in addition to Polynesian adults on Futuna (rural). Mean measurements of body mass and fatness, and prevalence of obesity, were greatest on the most modernized islands in our sample, particularly among women. Additionally, differences between men and women became more pronounced on islands that were more modernized. Rural Polynesians on Futuna exhibited greater body mass, adiposity, and prevalence of obesity than rural Melanesians on Ambae. We conclude that Vanuatu is undergoing an uneven and rapid health transition resulting in increased prevalence of obesity, and that women are at greatest risk for developing obesity-related chronic diseases in urbanized areas in Vanuatu. © 2015 Wiley Periodicals, Inc.

  14. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  15. Numerical Analyses of the Influence of Blast-Induced Damaged Rock Around Shallow Tunnels in Brittle Rock

    Science.gov (United States)

    Saiang, David; Nordlund, Erling

    2009-06-01

    Most of the railway tunnels in Sweden are shallow-seated (rock cover) and are located in hard brittle rock masses. The majority of these tunnels are excavated by drilling and blasting, which, consequently, result in the development of a blast-induced damaged zone around the tunnel boundary. Theoretically, the presence of this zone, with its reduced strength and stiffness, will affect the overall performance of the tunnel, as well as its construction and maintenance. The Swedish Railroad Administration, therefore, uses a set of guidelines based on peak particle velocity models and perimeter blasting to regulate the extent of damage due to blasting. However, the real effects of the damage caused by blasting around a shallow tunnel and their criticality to the overall performance of the tunnel are yet to be quantified and, therefore, remain the subject of research and investigation. This paper presents a numerical parametric study of blast-induced damage in rock. By varying the strength and stiffness of the blast-induced damaged zone and other relevant parameters, the near-field rock mass response was evaluated in terms of the effects on induced boundary stresses and ground deformation. The continuum method of numerical analysis was used. The input parameters, particularly those relating to strength and stiffness, were estimated using a systematic approach related to the fact that, at shallow depths, the stress and geologic conditions may be highly anisotropic. Due to the lack of data on the post-failure characteristics of the rock mass, the traditional Mohr-Coulomb yield criterion was assumed and used. The results clearly indicate that, as expected, the presence of the blast-induced damage zone does affect the behaviour of the boundary stresses and ground deformation. Potential failure types occurring around the tunnel boundary and their mechanisms have also been identified.

  16. Alpine glacial topography and the rate of rock column uplift

    DEFF Research Database (Denmark)

    Pedersen, Vivi Kathrine; Egholm, D.L.; Nielsen, S.B.

    2010-01-01

    The present study investigates the influence of alpine glacial erosion on the morphology and relief distribution of mountain regions associated with varying rock column uplift rates. We take a global approach and analyse the surface area distribution of all mountain regions affected by glacial er...

  17. Petrology, Geochemistry and Tectonomagmatic Setting of Farmahin Volcanic Rocks (North of Arak

    Directory of Open Access Journals (Sweden)

    Reza Zarei Sahamieh

    2018-04-01

    fractional crystallization (AFC were the dominant processes in the genesis of the studied volcanic rocks. As a conclusion and according to field evidence and geochemical characteristics presented in this article, the studied area is composed of lava flows and pyroclastic rocks such as andesite, dacite, rhyodacite, ignimbrite, tuff and tuffits that cross cut by younger dykes and belong to the middle to late Eocene age (middle to upper Lutetien. According to Sm/Yb vs. Sm diagram (Aldanmaz et al., 2000, all the studied samples in terms of composition are similar to enriched mantle-derived melts that are generated by varying degrees of partial melting (10% - 20% from a spinel lherzolite to spinel-garnet lherzolite source. Considering the evidences, all rocks in the studied area belong to the subduction zone and the parent magma originated from mantle and was contaminated with continental crust during eruption and rising. Acknowledgments The authors wish to thank the Journal Manager and reviewers who critically reviewed the manuscript and made valuable suggestions for its improvement. References Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2: 67–95. Ghasemi, A. and Talbot, C.J., 2006. A new scenario for the Sanandaj-Sirjan zone (Iran. Journal of Asian Earth Sciences, 26 (6: 683–693. Hajian, J., 1970. Geological map of Farmahin, scale1:100000. Geological Survey of Iran. Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5: 523–548. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali silica diagram. Journal of Petrology, 27 (3:745–750. Morimoto, N., Fabrise, J., Ferguson, A., Ginzburg, I.V., Ross, M., Seifert, F

  18. Semantic modeling of plastic deformation of polycrystalline rock

    Science.gov (United States)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  19. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Abbady, Adel G.E.; El-Arabi, A.M.; Abbady, A.

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 μW m -3 (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 μW m -3 (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites

  20. To the question the unity of composition of fluids of heterogeneous geological objects.

    Science.gov (United States)

    Galant, Yuri

    2017-04-01

    Creation of Unit Theory Oil Generation based on a number of the provisions, one of which is the unity of the hydrocarbon composition in various geological objects. Studies conducted in various geological conditions and tectonic - magmatic environment. In studying the hydrocarbon composition of various geological objects, untraditional for petroleum geology (igneous rocks, metamorphic rocks, mineral deposits, etc.) progressively manifested that hydrocarbons are also distributed and have the following features. Studies have shown: 1. The composition of the hydrocarbon components presented by, light hydrocarbons, heavy hydrocarbons up to including hexane, normal forms, isoforms, saturated and unsaturated hydrocarbons. 2. Hydrocarbon composition and the ratio of methane to heavy hydrocarbons corresponds to the composition of gases gas fields. 3. The composition and the ratio of hydrocarbons do not depend on genetic types of heterogeneous geological objects. 4. Gas saturation meets the prevailing structure of rocks - pores or fractures. The foregoing allows us to speak of a single source of generating and delivering hydrocarbons in the Earth's Crust, regardless of the geological situation. I.e. the presence of hydrocarbons in the Earth's Crust is UNITED! 5. From a practical point of view - virtually unconventional for hydrocarbons rock can serve as unconventional hydrocarbon resources.

  1. Strontium isotopic ratios of Tertiary volcanic rocks of northeastern Honshu, Japan: implication for the spreading of the Japan Sea

    International Nuclear Information System (INIS)

    Kurasawa, Hajime; Konda, Tadashi.

    1986-01-01

    Strontium isotopic ratios of sixty-seven Tertiary volcanic rocks from the northeastern Honshu, Japan, were determined for the purpose of examining the genesis among the volcanic rocks. Two distince suites of volcanic rocks occur in the northeastern Honshu; the rocks older than 16 Ma (Monzen-Daijima Stege) of predominantly intermediate composition and the rocks younger than 16 Ma (Nishikurosawa-Funakawa Stege) with bimodal suite of mafic and felsic composition. Initial values of 87 Sr/ 86 Sr in the Teriary volcanic rocks from the northeastern Honshu, lie in the range from 0.7033 to 0.7068. High ( 87 Sr/ 86 Sr) I ratios are observed for the rocks older than 16 Ma from the Japan Sea side (H zone). It is noteworthy that the rocks younger than 16 Ma show significantly lower ( 87 Sr/ 86 Sr) I ratios in the Dewa Hill, Japan Sea coast and North Akita areas in the northeastern Honshu (L zone). The rocks younger than 16 Ma from the L zone can also be interpreted as having been originated as a mantle-diapir associated with the spreading of the Japan Sea basin. If the basaltic magma was formed from the diapir, the 87 Sr/ 86 Sr ratio would be close to the range from 0.7033 to 0.7037 as the low-Sr isotopic ratio zone (L zone) in the northeastern Honshu, Japan. (author)

  2. Characterization of Rock Types at Meridiani Planum, Mars using MER 13-Filter Pancam Spectra

    Science.gov (United States)

    Nuding, D. L.; Cohen, B. A.

    2009-01-01

    The Mars Exploration Rover Opportunity has traversed more than 13 km across Meridiani Planum, finding evidence of ancient aqueous environments that, in the past, may have been suitable for life. Meridiani bedrock along the rover traverse is a mixture in composition and bulk mineralogy between a sulfate-rich sedimentary rock and hematite spherules ("blueberries"). On top of the bedrock, numerous loose rocks exist. These rocks consist of both local bedrock and "cobbles" of foreign origin. The cobbles provide a window into lithologic diversity and a chance to understand other types of martian rocks and meteorites. This study was also an attempt to establish a method to expand upon those of Mini-TES to remotely identify rocks of interest to make efficient use of the rover s current resources.

  3. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  4. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  5. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  6. Effect of diagenesis on pore pressures in fine-grained rocks in the Egersund Basin, Central North Sea

    OpenAIRE

    Kalani, Mohsen; Zadeh, Mohammad Koochak; Jahren, Jens; Mondol, Nazmul Haque; Faleide, Jan Inge

    2015-01-01

    - Pore pressure in fine-grained rocks is important with respect to drilling problems such as kicks, blowouts, borehole instability, stuck pipe and lost circulation. In this study, a succession of overpressured, fine-grained, sedimentary rocks located in the Egersund Basin, Central North Sea, was analysed with respect to mineralogical composition, source-rock maturation and log-derived petrophysical properties to highlight the effect of diagenetic processes on the pore pressure. Pe...

  7. Sorption of Sr and Cs on rocks and minerals. Pt. 1

    International Nuclear Information System (INIS)

    Torstenfelt, B.; Andersson, K.; Allard, B.

    1981-09-01

    The sorption of Sr 90 and Cs 137 on some common Swedish rocks (granite, gneiss, and diabase) and eleven different major rock-forming minerals (quartz, orthoclase, apatite, fluorite, biotite, muscovite, hematite, magnetite, hornblende, calcite, and serpentine) has been studied, using a batch technique. A comparison with the retention obtained in column experiments has been made. The water phase in all experiments has been an artificial groundwater with a composition corresponding to Swedish natural deep groundwaters. The influence of parameters, such as pH (4-11), contact time (1 day-6 months), nuclide concentration (normally 10 -7 M, variations up to 0.1 M has been made), liquid to solid ratio, particle size (three fractions between 0.045 and 0.500 mm) has been studied. An attempt to predict the distribution coefficient for rocks, using known data for the rock-forming minerals gave too low values in all cases. (Auth.)

  8. Assessment Rocks? The Assessment of Group Composing for Qualification

    Science.gov (United States)

    Thorpe, Vicki

    2012-01-01

    Ensembles such as rock and pop bands are places of exciting creativity and intense, enjoyable music making for young people. A recent review of New Zealand's secondary school qualification, the National Certificates of Educational Achievement (NCEA), has resulted in a new composition assessment of individuals' achievement in groups. An analysis of…

  9. Rock the Globe

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    Created in 2005, the Swiss rock band "Wind of Change" is now candidate for the Eurovision Song Contest 2011 with a new song " Night & Light " with the music video filmed at CERN.   With over 20 gigs under their belt and two albums already released, the five members of the band (Alex Büchi, vocals; Arthur Spierer, drums; David Gantner, bass; Romain Mage and Yannick Gaudy, guitar) continue to excite audiences. For their latest composition "Night & Light", the group filmed their music video in the Globe of Science and Innovation. Winning the Eurovision contest would be a springboard in their artistic career for these young musicians. The selection results will be available December 11, 2010.      

  10. Combining water-rock interaction experiments with reaction path and reactive transport modelling to predict reservoir rock evolution in an enhanced geothermal system

    Science.gov (United States)

    Kuesters, Tim; Mueller, Thomas; Renner, Joerg

    2016-04-01

    Reliably predicting the evolution of mechanical and chemical properties of reservoir rocks is crucial for efficient exploitation of enhanced geothermal systems (EGS). For example, dissolution and precipitation of individual rock forming minerals often result in significant volume changes, affecting the hydraulic rock properties and chemical composition of fluid and solid phases. Reactive transport models are typically used to evaluate and predict the effect of the internal feedback of these processes. However, a quantitative evaluation of chemo-mechanical interaction in polycrystalline environments is elusive due to poorly constrained kinetic data of complex mineral reactions. In addition, experimentally derived reaction rates are generally faster than reaction rates determined from natural systems, likely a consequence of the experimental design: a) determining the rate of a single process only, e.g. the dissolution of a mineral, and b) using powdered sample materials and thus providing an unrealistically high reaction surface and at the same time eliminating the restrictions on element transport faced in-situ for fairly dense rocks. In reality, multiple reactions are coupled during the alteration of a polymineralic rocks in the presence of a fluid and the rate determining process of the overall reactions is often difficult to identify. We present results of bulk rock-water interaction experiments quantifying alteration reactions between pure water and a granodiorite sample. The rock sample was chosen for its homogenous texture, small and uniform grain size (˜0.5 mm in diameter), and absence of pre-existing alteration features. The primary minerals are plagioclase (plg - 58 vol.%), quartz (qtz - 21 vol.%), K-feldspar (Kfs - 17 vol.%), biotite (bio - 3 vol.%) and white mica (wm - 1 vol.%). Three sets of batch experiments were conducted at 200 ° C to evaluate the effect of reactive surface area and different fluid path ways using (I) powders of the bulk rock with

  11. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  12. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  13. On the age of the Onverwacht Group, Swaziland sequence, South Africa. [radioactive dating of stratified igneous rocks

    Science.gov (United States)

    Jahn, B.-M.; Shih, C.-Y.

    1974-01-01

    Some rocks of the Onverwacht Group, South Africa, have been analyzed for Rb and Sr concentrations and Sr isotopic composition. These rocks include volcanic rocks, layered ultramafic differentiates and cherty sediments. Whole rock data indicate that the Rb-Sr isotopic systems in many samples were open and yield no reasonable isochron relationships. However, the data of mineral separates from a basaltic komatiite define a good isochron of 3.50 (plus or minus .2) b.y. with an initial Sr-87/Sr-86 ratio of 0.70048 plus or minus 5. The orthodox interpretation of this age is the time of the low grade metamorphism. It is reasonable to assume that the age of 3.50 b.y. might also represent the time of initial Onverwacht volcanism and deposition. The initial Sr-87/Sr-86 ratio obtained above is important to an understanding of the Sr isotopic composition of the Archean upper mantle.

  14. Hydrothermal Alteration in Submarine Basaltic Rocks from the Reykjanes Geothermal Field, Iceland. (Invited)

    Science.gov (United States)

    Zierenberg, R. A.; Schiffman, P.; Fowler, A. P.; Marks, N.; Fridleifsson, G.; Elders, W. A.

    2013-12-01

    The Iceland Deep Drilling Project (IDDP) is preparing to drill to 4-5 km in the Reykjanes Geothermal Field to sample geothermal fluids at supercritical temperature and pressure for power generation. The Reykjanes geothermal field is the on-land extension of the Reykjanes Ridge spreading center. The upper 1-2 kilometers drilled at Reykjanes are submarine basalts and basaltic sediments, hyalloclastites, and breccias, with an increasing proportion of basaltic intrusive rocks below 2 km depth. Geothermal fluids are evolved seawater with a composition similar to mid-ocean ridge hydrothermal systems. Zn- and Cu-rich sulfide scale, locally enriched in Au and Ag, are deposited in production pipes. The sulfide deposits are compositionally and isotopically similar to seafloor massive sulfides. In anticipation of deeper drilling, we have investigated the mineralogy and geochemistry of drill cuttings from a 3 km deep well (RN-17). The depth zoning of alteration minerals is similar to that described from other Icelandic geothermal fields, and is comparable to observed seafloor metamorphic gradients in ODP drill holes and ophiolites. Chlorite-epidote alteration occurs at depths >400 m and passes downhole through epidote-actinolite alteration and into amphibole facies (hornblende-calcic plagioclase) alteration below 2.5 km. Local zones of high temperature (>800°C), granoblastic-textured, pyroxene hornfels, are interpreted to form by contact metamorphism during dike/sill emplacement. Similar granoblasically altered basalts were recovered from the base of the sheeted dikes in IODP Hole 1256D. Downhole compositional variations of drill cuttings, collected every 50 m, suggest that rocks below ~ 2 km are little altered. Whole-rock oxygen isotope profiles are consistent with low water/rock ratios, but suggest that early stages of hydrothermal alteration included meteoric water-derived fluids. Strontium isotope profiles indicate more extensive exchange with seawater-derived fluids

  15. ROCK-CAD - computer aided geological modelling system

    International Nuclear Information System (INIS)

    Saksa, P.

    1995-12-01

    The study discusses surface and solid modelling methods, their use and interfacing with geodata. Application software named ROCK-CAD suitable for geological bedrock modelling has been developed with support from Teollisuuden Voima Oy (TVO). It has been utilized in the Finnish site characterization programme for spent nuclear fuel waste disposal during the 1980s and 1990s. The system is based on the solid modelling technique. It comprises also rich functionality for the particular geological modelling scheme. The ROCK-CAD system provides, among other things, varying graphical vertical and horizontal intersections and perspective illustrations. The specially developed features are the application of the boundary representation modelling method, parametric object generation language and the discipline approach. The ROCK-CAD system has been utilized in modelling spatial distribution of rock types and fracturing structures in TVO's site characterization. The Olkiluoto site at Eurajoki serves as an example case. The study comprises the description of the modelling process, models and illustration examples. The utilization of bedrock models in site characterization, in tentative repository siting as well as in groundwater flow simulation is depicted. The application software has improved the assessment of the sites studied, given a new basis for the documentation of interpretation and modelling work, substituted hand-drawing and enabled digital transfer to numerical analysis. Finally, aspects of presentation graphics in geological modelling are considered. (84 refs., 30 figs., 11 tabs.)

  16. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Skierszkan, E.K., E-mail: eskiersz@eos.ubc.ca [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4 (Canada); Mayer, K.U. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4 (Canada); Weis, D. [Pacific Centre for Isotopic and Geochemical Research (PCIGR), Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4 (Canada); Beckie, R.D. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver V6T 1Z4 (Canada)

    2016-04-15

    The stable isotope composition of molybdenum (Mo) and zinc (Zn) in mine wastes at the Antamina Copper–Zn–Mo mine, Peru, was characterized to investigate whether isotopic variation of these elements indicated metal attenuation processes in mine drainage. Waste rock and ore minerals were analyzed to identify the isotopic composition of Mo and Zn sources, namely molybdenites (MoS{sub 2}) and sphalerites (ZnS). Molybdenum and Zn stable isotope ratios are reported relative to the NIST-SRM-3134 and PCIGR-1 Zn standards, respectively. δ{sup 98}Mo among molybdenites ranged from − 0.6 to + 0.6‰ (n = 9) while sphalerites showed no δ{sup 66}Zn variations (0.11 ± 0.01‰, 2 SD, n = 5). Mine drainage samples from field waste rock weathering experiments were also analyzed to examine the extent of isotopic variability in the dissolved phase. Variations spanned 2.2‰ in δ{sup 98}Mo (− 0.1 to + 2.1‰) and 0.7‰ in δ{sup 66}Zn (− 0.4 to + 0.3‰) in mine drainage over a wide pH range (pH 2.2–8.6). Lighter δ{sup 66}Zn signatures were observed in alkaline pH conditions, which was consistent with Zn adsorption and/or hydrozincite (Zn{sub 5}(OH){sub 6}(CO{sub 3}){sub 2}) formation. However, in acidic mine drainage Zn isotopic compositions reflected the value of sphalerites. In addition, molybdenum isotope compositions in mine drainage were shifted towards heavier values (0.89 ± 1.25‰, 2 SD, n = 16), with some overlap, in comparison to molybdenites and waste rock (0.13 ± 0.82‰, 2 SD, n = 9). The cause of heavy Mo isotopic signatures in mine drainage was more difficult to resolve due to isotopic heterogeneity among ore minerals and a variety of possible overlapping processes including dissolution, adsorption and secondary mineral precipitation. This study shows that variation in metal isotope ratios are promising indicators of metal attenuation. Future characterization of isotopic fractionation associated to key environmental reactions will improve the power

  17. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru

    International Nuclear Information System (INIS)

    Skierszkan, E.K.; Mayer, K.U.; Weis, D.; Beckie, R.D.

    2016-01-01

    The stable isotope composition of molybdenum (Mo) and zinc (Zn) in mine wastes at the Antamina Copper–Zn–Mo mine, Peru, was characterized to investigate whether isotopic variation of these elements indicated metal attenuation processes in mine drainage. Waste rock and ore minerals were analyzed to identify the isotopic composition of Mo and Zn sources, namely molybdenites (MoS_2) and sphalerites (ZnS). Molybdenum and Zn stable isotope ratios are reported relative to the NIST-SRM-3134 and PCIGR-1 Zn standards, respectively. δ"9"8Mo among molybdenites ranged from − 0.6 to + 0.6‰ (n = 9) while sphalerites showed no δ"6"6Zn variations (0.11 ± 0.01‰, 2 SD, n = 5). Mine drainage samples from field waste rock weathering experiments were also analyzed to examine the extent of isotopic variability in the dissolved phase. Variations spanned 2.2‰ in δ"9"8Mo (− 0.1 to + 2.1‰) and 0.7‰ in δ"6"6Zn (− 0.4 to + 0.3‰) in mine drainage over a wide pH range (pH 2.2–8.6). Lighter δ"6"6Zn signatures were observed in alkaline pH conditions, which was consistent with Zn adsorption and/or hydrozincite (Zn_5(OH)_6(CO_3)_2) formation. However, in acidic mine drainage Zn isotopic compositions reflected the value of sphalerites. In addition, molybdenum isotope compositions in mine drainage were shifted towards heavier values (0.89 ± 1.25‰, 2 SD, n = 16), with some overlap, in comparison to molybdenites and waste rock (0.13 ± 0.82‰, 2 SD, n = 9). The cause of heavy Mo isotopic signatures in mine drainage was more difficult to resolve due to isotopic heterogeneity among ore minerals and a variety of possible overlapping processes including dissolution, adsorption and secondary mineral precipitation. This study shows that variation in metal isotope ratios are promising indicators of metal attenuation. Future characterization of isotopic fractionation associated to key environmental reactions will improve the power of Mo and Zn isotope ratios to track the fate

  18. Correlations between silicic volcanic rocks of the St Mary's Islands (southwestern India) and eastern Madagascar

    DEFF Research Database (Denmark)

    Melluso, Leone; Sheth, Hetu C.; Mahoney, John J.

    2009-01-01

    The St Mary's, Islands (southwestern India) expose silicic volcanic and sub-volcanic rocks (rhyolites and granophyric dacites) emplaced contemporaneously with the Cretaceous igneous province of Madagascar, roughly 88-90 Ma ago. I he St Mary's Islands rocks have phenocrysts of plagioclase...... and isotopic Compositions very close to those of rhyolites exposed between Vatomandry Ilaka and Mananjary in eastern Madagascar, and are distinctly different from rhyolites front other sectors of the Madagascan province. We therefore postulate that the St Mary's and the Vatomandry-Ilaka Mananjary silicic rock...

  19. Rb-Sr and Sm-Nd isotopic compositions and Petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (North of Hanich), east of Iran

    International Nuclear Information System (INIS)

    Malekzadeh Shafaroudi, A.; Karimpour, M. H.; Mazaheri, S. A.

    2010-01-01

    The Maherabad gold-rich porphyry copper prospect area is located in the eastern part of Lut block, east of Iran. This is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. Fifteen mineralization-related intrusive rocks range (Middle Eocene 39 Ma) in composition from diorite to monzonite have been distinguished. Monzonitic porphyries had major role in Cu-Au mineralization. The ore bearing porphyries are I-type, meta luminous, high-Kcalc-alkaline to shoshonite intrusive rocks which were formed in island arc setting. These rocks are characterized by average of SiO 2 > 59 wt %, Al 2 O 3 > 15 wt %, MgO 2 O> 3 wt %, Sr> 870 ppm, Y 55, moderate Light rare earth elements, relatively low heavy rare earth elements and enrichment LILE (Sr, Cs, Rb, K and Ba) relative to HFSE (Nb, Ta, Ti, Hf and Zr). They are chemically similar to some adakites, but their chemical signatures differ in some ways from normal adakites, including higher K 2 O contents and K 2 O/Na 2 O ratios and lower Mg, (La/Yb) N , (Ce/Yb) N and εNd in Maherabad rocks. Maherabad intrusive rocks are the first K-rich adakites that can be related with subduction zone. Partial melting of mantle hybridized by hydrous, silica-rich slab-derived melts or/and input of enriched mantle-derived ultra-potassic magmas during or prior to the formation and migration of adakitic melts could be explain their high K 2 O contents and K 2 O/Na 2r atios. Low Mg values and relatively low MgO, Cr and Ni contents imply limited interaction between adakite-like magma and mantle wedge peridotite. The initial 87 Sr/ 86 Sr and ( 143 Nd/ 144 Nd)i was recalculated to an age of 39 Ma (unpublished data). Initial 87 Sr/ 86 Sr ratios for hornblende monzonite porphyry are 0.7047-0.7048. The ( 143 Nd/ 144 Nd)i isotope composition are 0.512694-0.512713. Initial εNd isotope values 1.45-1.81. These values could be considered as representative of oceanic slab-derived magmas. Source modeling indicates that high-degree of

  20. Elastic and transport properties of steam-cured pozzolanic-lime rock composites upon CO2 injection

    Science.gov (United States)

    Emery, Dan; Vanorio, Tiziana

    2016-04-01

    Understanding the relationship between pozzolanic ash-lime reactions and the rock physics properties of the resulting rock microstructure is important for monitoring unrest conditions in volcanic-hydrothermal systems as well as devising concrete with enhanced performance. By mixing pozzolanic ash with lime, the ancient Romans incorporated these reactions in the production of concrete. Recently, it has been discovered that a fiber-reinforced, concrete-like rock is forming naturally in the depths of the Campi Flegrei volcanic-hydrothermal systems (Vanorio and Kanitpanyacharoen, 2015). We investigate the physico-chemical conditions contributing to undermine or enhance the laboratory measured properties of the subsurface rocks of volcanic-hydrothermal systems and, in turn, build upon those processes that the ancient Romans unwittingly exploited to create their famous concrete. We prepared samples by mixing the pozzolana volcanic ash, slaked lime, aggregates of Neapolitan Yellow tuff, and seawater from Campi Flegrei in the same ratios as the ancient Romans. To mimic the conditions of the caldera, we used mineral seawater from a well in the Campi Flegrei region rich in sulfate, bicarbonate, calcium, potassium, and magnesium ions. The samples were cured by steam. We measured baseline properties of porosity, permeability, P-wave velocity, and S-wave velocity of the samples. P and S-wave velocities were used to derive bulk, shear, and Young's moduli. Subsequently, half of the samples were injected with CO2-rich aqueous solution and the changes in their microstructure and physical properties measured. One sample was subjected to rapid temperature changes to determine how porosity and permeability changed as a function of the number of thermal shocks. Exposure of CO2 to the concrete-like rock samples destabilized fibrous mineral forming and decreased the samples' ability to deform without breaking. We show that steam- and sulfur-alkaline- rich environments affect both

  1. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  2. The volcanic rocks construction of the late paleozoic era and uranium mineralization in Beishan area of Gansu province

    International Nuclear Information System (INIS)

    An Zhengchang; Luo Xiaoqiang

    2010-01-01

    Late Paleozoic volcanic rocks in Beishan area are the favorable constructions of hydrothermal type and volcanic type deposit. From the distribution of volcanic rocks, the volcanic compositions, the volcanic facies, volcanic eruption method and rhythm, chemical and trace elements compositions, and so on, it discusses the characteristics of the Late Devonian volcanic construction in this area and its relationship with uranium mineralization, analyzes the role of volcanic ore-control mechanism, and summarizes uranium ore forming regularity of volcanic construction in Late Paleozoic. (authors)

  3. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures

    Directory of Open Access Journals (Sweden)

    Kaibo Nie

    2018-01-01

    Full Text Available In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.

  4. Permeability of volcanic rocks to gas and water

    Science.gov (United States)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  5. Historical volcanic eruptions in the Canary Islands, tephra composition, and insights into the crystal cargo of basaltic magmas

    Science.gov (United States)

    Longpre, M. A.; Muller, J.; Beaudry, P.; Andronikides, A.; Felpeto, A.

    2017-12-01

    Since the 16th century, at least 13 volcanic eruptions have occurred in the Canary Islands that formed monogenetic cinder cones and lava flow fields: 2 on Lanzarote, 4 on Tenerife, 6 on La Palma, and 1 on the submarine flank of El Hierro. Here we present a comprehensive new dataset of tephra composition for all 13 eruptions, comprising major and trace element data for bulk rocks and matrix glasses, as well as vesicularity and crystallinity measurements. In addition, we compile available volcanological and petrological information for specific eruptions, including estimates of lava flow area and volume. All lapilli samples show a vesicularity of 40-50 vol% and a vesicle-free crystallinity (crystals ≥ 250 µm) of 5-15 vol%. Modal mineralogy varies significantly between samples, typically consisting of olivine ± clinopyroxene ± Fe-Ti oxide ± plagioclase ± amphibole in different proportions. All but 2 tephras have basanite-tephrite bulk rock compositions. Lapilli from vents of the AD 1730-1736 Timanfaya eruption, Lanzarote, largely are basaltic, whereas the AD 1798 Chahorra eruption, Tenerife, produced phonotephrite tephra. These results are in agreement with published bulk lava flow data. Unsurprisingly, glass compositions are more evolved than bulk rocks and MgOglass is weakly positively correlated to MgObulk (MgOglass = 0.30*MgObulk + 2.11, R2 = 0.54). Both bulk rocks and glasses show strikingly similar multi-element diagram patterns, with strong enrichment relative to the bulk-silicate Earth and marked positive Nb and Ta and negative Pb anomalies — typical for ocean island basalts. Glass/bulk rock elemental ratios reveal systematic differences between samples that relate to their mineralogy; for example, Lanzarote tephras that lack significant clinopyroxene and Fe-Ti oxide crystals have higher Scglass/Scbulk and Vglass/Vbulk than Tenerife, La Palma and El Hierro samples that typically contain these minerals. Among all elements, K and P display the greatest

  6. Design of Rock Slope Reinforcement: An Himalayan Case Study

    Science.gov (United States)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  7. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars

    NARCIS (Netherlands)

    McLennan, S.M.; Anderson, R.B.; Bell III, J.F.; Bridges, J.C.; Calef III, F.; Campbell, J.L.; Clark, B.C.; Clegg, S.; Conrad, P.; Cousin, A.; Des Marais, D.J.; Dromart, G.; Dyar, M.D.; Edgar, L.A.; Ehlmann, B.L.; Fabre, C.; Forni, O.; Gasnault, O.; Gellert, R.; Gordon, S.; Grant, J.A.; Grotzinger, J.P.; Gupta, S.; Herkenhoff, K.E.; Hurowitz, J.A.; King, P.L.; Mouélic, S.L.; Leshin, L.A.; Léveillé, R.; Lewis, K.W.; Mangold, N.; Maurice, S.; Ming, D.W.; Morris, R.V.; Nachon, M.; Newsom, H.E.; Ollila, A.M.; Perrett, G.M.; Rice, M.S.; Schmidt, M.E.; Schwenzer, S.P.; Stack, K.; Stolper, E.M.; Sumner, D.Y.; Treiman, A.H.; VanBommel, S.; Vaniman, D.T.; Vasavada, A.; Wiens, R.C.; Yingst, R.A.; ten Kate, Inge Loes|info:eu-repo/dai/nl/292012217

    2014-01-01

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold,

  8. Garnet - two pyroxene rock from the Gridino complex, Russia: a record of the early metasomatic stage

    Science.gov (United States)

    Morgunova, Alena A.; Perchuk, Alexei L.

    2010-05-01

    The Gridino complex is one of the oldest high pressure complexes on the Earth. The most spectacular exposures occur in islands and in a 10-50 m wide belt along the shore of the White Sea in the Gridino area. The exotic blocks show wide range of compositions. In addition to predominating amphibolites and eclogites, there are also peridotites, zoisitites and sapphirine-bearing rocks. The peridotites are represented by garnet - two pyroxene rocks and orthopyroxenites. It this paper we present an intriguing results of the petrological study of the garnet- two pyroxene rock. The garnet- two pyroxene rock considered occurs as elliptical body 4×6 m in size within amphibole-biotite gneiss in the island Visokii. The rock consists of mosaic of coarse-grained primary garnet, clinopyroxene and orthopyroxene. Accessories are represented by magnetite, ilmenite, pyrite and zircon. Garnet contains inclusions of clinopyroxene, Mg-calcite and chlorite. The chlorite inclusions always intergrow with dendritic mineral enriched in REE (mainly Ce) situated on the wall of vacuole which shows the tendency of negative crystal shape. Similar chlorite inclusions are hosted by clino- and orthopyroxenes. The chlorite is of diabantite composition. The inclusions are often surrounded by the two systems of cracks - radial and concentric, which is really exotic phenomenon for crystalline rock. The primary minerals experienced different degree of the retrograde alteration expressed as amphibolization and/or growth of the orthopyroxene-amphibole-garnet symplectites. The retrogression is patchy in the central part of garnet- two pyroxene body, but intensifies towards the rims where primary minerals are absent. Mineral thermobarometry reveals HP rock equilibration at 670-750 оС and 14-20 kbar followed by subisothermal decompression down to 640-740 оС and 6-14 kbar. Specific composition of the chlorite and its association with REE phase in all rock-forming minerals suggests that anhydrous HP

  9. Neutron pole figures compared with magnetic preferred orientations of different rock types

    International Nuclear Information System (INIS)

    Hansen, Anke; Chadima, Martin; Cifelli, Francesca; Brokmeier, H.-G.Heinz-Guenter; Siemes, Heinrich

    2004-01-01

    Neutron diffraction is an excellent tool for pole figure measurement of rock samples. Due to high penetration depth of neutrons for most materials neutron diffraction represents an efficient tool to measure complete pole figures with reliable grain statistics even in coarse grained or inequi-granular materials. In the field of structural geology, the measurement of anisotropy of magnetic susceptibility is a standard technique to reveal the tectonic history of deformed rocks. The application of both techniques on still ongoing studies of Precambrian, Carboniferous and Quaternary rocks which are characterised by fundamental different tectonic evolutions and mineralogical compositions shows the wide field of relevance and importance of these methods in understanding tectonic processes in detail

  10. No Reprieve for Tasmanian Rock Art

    Directory of Open Access Journals (Sweden)

    Peter C. Sims

    2013-10-01

    Full Text Available The Australian State of Tasmania, at latitude 42 degrees south, became an island about 8,000 years ago when the sea rose to its present level, following the melting of polar and glacial ice that covered much of the land mass. After that time, the Tasmanian Aboriginal rock art developed independently of mainland Australia, with its form being basically linear with some naturalistic figures and a predominance of cupules. The petroglyphs with one lithophone site occur on various rock substrates varying in hardness from granite to sandstone. Many sites exist along the western coastline that borders the Southern Ocean where the landscape in some places has changed little since the arrival of Europeans in 1803. The significance of this Tasmanian Aboriginal cultural heritage along what is now known as the Tarkine Coast, named after an Aboriginal band that once inhabited this area, was recognised by the Australian Government in February 2013 when a 21,000 ha strip, 2 km wide, was inscribed on its National Heritage Register, being one of 98 special places listed in the country. However, politics and racism hamper its management. This paper is based on the results of 40 years of field recording of the Tasmanian Aboriginal rock art sites, many of which remain unpublished.

  11. Steady-state flow in a rock mass intersected by permeable fracture zones

    International Nuclear Information System (INIS)

    Lindbom, B.

    1986-12-01

    Level 1 of HYDROCOIN consists of seven well-defined test problems. This paper is concerned with Case 2, which is formulated as a generic groundwater flow situation often found in crystalline rock with highly permeable fracture zones in a less permeable rock mass. The case is two-dimensional and modelled with 8-noded, isoparametric, rectangular elements. According to the case definition, calculations of hydraulic head and particle tracking are performed. The computations are carried out with varying degree of discretisation in order to analyse possible impact on the result with respect to nodal density. Further calculations have been performed mainly devoted to mass balance deviations and how these are affected by permeability contrasts, varying degree of spatial discretisation and distortion of finite elements. The distribution of hydraulic head in the domain is less sensitive to differences in nodal density than the trajectories. The hydraulic heads show similar behaviour for three meshes with varying degrees of discretisation. The particle tracking seems to be more sensitive to the level of discretisation. The results obtained with a coarse and medium mesh indicate completely different solutions for one of the pathlines. The coarse mesh is too sparsely discretised for the specified problem. The local mass balance is evaluated for seven runs. The mass balance deviation seems to be considerably more sensitive to the level of discretisation than to both permeability contrasts and deformation of elements. The permeability contrasts between the rock mass and fracture zones vary from a factor of 1000 to 1 (homogeneous properties) with increments of a factor of 10. These calculations in fact give better mass balance with increasing permeability contrasts, contrary to what could be expected. (orig./HP)

  12. For Those About to Rock : Naislaulajat rock-genressä

    OpenAIRE

    Herranen, Linda

    2015-01-01

    For those about to rock – naislaulajat rock-genressä antaa lukijalleen kokonaisvaltaisen käsityksen naisista rock-genressä: rockin historiasta, sukupuolittuneisuudesta, seksismistä, suomalaisten naislaulajien menestyksestä. Työn aineisto on koottu aihepiirin kirjallisuudesta ja alalla toimiville naislaulajille teetettyjen kyselyiden tuloksista. Lisäksi avaan omia kokemuksiani ja ajatuksiani, jotta näkökulma naisista rock-genressä tulisi esille mahdollisimman monipuolisesti. Ajatus aihees...

  13. Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyte-rich streams

    DEFF Research Database (Denmark)

    Levi, Peter S.; Starnawski, Piotr; Poulsen, Britta

    2017-01-01

    Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms...... in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte-rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C......:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were...

  14. Proceedings of the 3. Canada-US rock mechanics symposium and 20. Canadian rock mechanics symposium : rock engineering 2009 : rock engineering in difficult conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This conference provided a forum for geologists, mining operators and engineers to discuss the application of rock mechanics in engineering designs. Members of the scientific and engineering communities discussed challenges and interdisciplinary elements involved in rock engineering. New geological models and methods of characterizing rock masses and ground conditions in underground engineering projects were discussed along with excavation and mining methods. Papers presented at the conference discussed the role of rock mechanics in forensic engineering. Geophysics, geomechanics, and risk-based approaches to rock engineering designs were reviewed. Issues related to high pressure and high flow water conditions were discussed, and new rock physics models designed to enhance hydrocarbon recovery were presented. The conference featured 84 presentations, of which 9 have been catalogued separately for inclusion in this database. tabs., figs.

  15. Net Acid Production, Acid Neutralizing Capacity, and Associated Mineralogical and Geochemical Characteristics of Animas River Watershed Igneous Rocks Near Silverton, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Choate, LaDonna; Stanton, Mark R.

    2008-01-01

    This report presents results from laboratory and field studies involving the net acid production (NAP), acid neutralizing capacity (ANC), and magnetic mineralogy of 27 samples collected in altered volcanic terrain in the upper Animas River watershed near Silverton, Colo., during the summer of 2005. Sampling focused mainly on the volumetrically important, Tertiary-age volcanic and plutonic rocks that host base- and precious-metal mineralization in the study area. These rocks were analyzed to determine their potential for neutralization of acid-rock drainage. Rocks in the study area have been subjected to a regional propylitic alteration event, which introduced calcite, chlorite (clinochlore), and epidote that have varying amounts and rates of acid neutralizing capacity (ANC). Locally, hydrothermal alteration has consumed any ANC and introduced minerals, mainly pyrite, that have a high net acid production (NAP). Laboratory studies included hydrogen pyroxide (H2O2) acid digestion and subsequent sodium hydroxide (NaOH) titration to determine NAP, and sulfuric acid (H2SO4) acid titration experiments to determine ANC. In addition to these environmental rock-property determinations, mineralogical, chemical, and petrographic characteristics of each sample were determined through semiquantitative X-ray diffractometry (Rietveld method), optical mineralogy, wavelength dispersive X-ray fluorescence, total carbon-carbonate, and inductively coupled plasma?mass spectrometric analysis. An ANC ranking was assigned to rock samples based on calculated ANC quantity in kilograms/ton (kg/t) calcium carbonate equivalent and ratios of ANC to NAP. Results show that talus near the southeast Silverton caldera margin, composed of andesite clasts of the Burns Member of the Silverton Volcanics, has the highest ANC (>100 kg/t calcium carbonate equivalent) with little to no NAP. The other units found to have moderate to high ANC include (a) andesite lavas and volcaniclastic rocks of the San Juan

  16. Anisotropy of strength and deformability of fractured rocks

    Directory of Open Access Journals (Sweden)

    Majid Noorian Bidgoli

    2014-04-01

    Full Text Available Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes containing many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a numerical modeling method. A series of realistic two-dimensional (2D discrete fracture network (DFN models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM, with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  17. Petrology of blueschist facies metamorphic rocks of the Meliata Unit

    Directory of Open Access Journals (Sweden)

    Faryad Shah Wali

    1997-06-01

    Full Text Available Meliata blueschists originated from basalts, limestones, pelites, psammitic and amphibolite facies basement rocks. Compositionally, the metabasalts have a geochemical signature mostly indicative of a transitional arc-MORB origin, but some mafic rocks having affinity with within plate basalts also present. The mafic blueschists consist of blue amphibole, epidote and albite, rarely also garnet, Na-pyroxene and chloritoid. Apart from phengite and quartz the metapelites and metapsammites contain one or more of the minerals: chloritoid, paragonite, glaucophane, albite, chlorite, occasionally also Na-pyroxene and garnet. Amphibolite facies rocks contain relic garnet, plagioclase and hornblende, the latter two replaced by albite and blue amphibole, respectively. The zoning patterns of blue amphibole, garnet and chloritoid suggest their formation during prograde stage of metamorphism. P-T conditions of meta-morphism are estimated to be about 350-460 oC and 10-12 kbar.

  18. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    International Nuclear Information System (INIS)

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-01-01

    Highlights: ► ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. ► ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. ► ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. ► ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. ► ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte-based regeneration therapy.

  19. Art Rocks with Rock Art!

    Science.gov (United States)

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  20. Geochemistry of the alkaline volcanicsubvolcanic rocks of the Fernando de Noronha Archipelago, southern Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Rosana Peporine Lopes

    Full Text Available The Fernando de Noronha Archipelago presents, on its main island, a centrally-located stratigraphic unit, the Remédios Formation (age around 8 - 12 Ma constituted by basal pyroclastic rocks intruded by dikes, plugs and domes of varied igneous rocks, capped by flows and pyroclastics of mafic to ultramafic rocks of the Quixaba Formation (age around 1 - 3 Ma, which is limited from the underlying unit by an extensive irregular erosion surface. A predominant sodic Remédios series (basanites, tephrites, tephriphonolites, essexite, phonolites can be separated from a moderately potassic Remédios sequence (alkali basalts, trachyandesites, trachytes, both alkaline series showing mostly continuous geochemical trends in variation diagrams for major as well as trace elements, indicating evolution by crystal fractionation (mainly, separation of mafic minerals, including apatites and titanites. There are textural and mineralogical evidences pointing to hybrid origin of some intermediate rocks (e.g., resorbed pyroxene phenocrysts in basaltic trachyandesites, and in some lamprophyres. The primitive Quixaba rocks are mostly melanephelinites and basanites, primitive undersaturated sodic types. Geology (erosion surface, stratigraphy (two distinct units separated by a large time interval, petrography (varied Remédios Formation, more uniform Quixaba unit and geochemistry indicate that the islands represent the activity of a protracted volcanic episode, fueled by intermittent melting of an enriched mantle, not related to asthenospheric plume activity.

  1. The Magma Chamber Simulator: Modeling the Impact of Wall Rock Composition on Mafic Magmas during Assimilation-Fractional Crystallization

    Science.gov (United States)

    Creamer, J. B.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.

    2012-12-01

    Although stoichiometric titration is often used to model the process of concurrent Assimilation and Fractional Crystallization (AFC) within a compositionally evolving magma body, a more complete treatment of the problem involves simultaneous and self-consistent determination of stable phase relationships and separately evolving temperatures of both Magma (M) and Wall Rock (WR) that interact as a composite M-WR system. Here we present results of M-WR systems undergoing AFC forward modeled with the Magma Chamber Simulator (MCS), which uses the phase modeling capabilities of MELTS (Ghiorso & Sack 1995) as the thermodynamic basis. Simulations begin with one of a variety of mafic magmas (e.g. HAB, MORB, AOB) intruding a set mass of Wall Rock (e.g. lherzolite, gabbro, diorite, granite, metapelite), and heat is exchanged as the M-WR system proceeds towards thermal equilibrium. Depending on initial conditions, the early part of the evolution can involve closed system FC while the WR heats up. The WR behaves as a closed system until it is heated beyond the solidus to critical limit for melt fraction extraction (fc), ranging between 0.08 and 0.12 depending on WR characteristics including composition and, rheology and stress field. Once fc is exceeded, a portion of the anatectic liquid is assimilated into the Magma. The MCS simultaneously calculates mass and composition of the mineral assemblage (Magma cumulates and WR residue) and melt (anatectic and Magma) at each T along the equilibration trajectory. Sensible and latent heat lost or gained plus mass gained by the Magma are accounted for by the MCS via governing Energy Constrained- Recharge Assimilation Fractional Crystallization (EC-RAFC) equations. In a comparison of two representative MCS results, consider a granitic WR intruded by HAB melt (51 wt. % SiO2) at liquidus T in shallow crust (0.1 GPa) with a WR/M ratio of 1.25, fc of 0.1 and a QFM oxygen buffer. In the first example, the WR begins at a temperature of 100o

  2. Characteristics of mesozoic magmatic rocks in western Zhejiang and their relation with uranium mineralization

    International Nuclear Information System (INIS)

    Zhou Jiazhi

    2000-01-01

    The author summarizes characteristics of Mesozoic (Yangshanian Period) acid-intermediate volcanics, sub-volcanics and basic intrusive from aspects of formation time of rock series, petrogenic sequence, chemical composition, rock -controlling factors and petrogenic environments. It is suggested that these rocks were originated from different source areas of crust and mantle. Based on the time-space relation between different types uranium deposits and magmatic rocks, the author proposes that: the earlier stage (Earlier Cretaceous) U-hematite ores were originated from acid volcanic magmatism of crustal source, but the later stage (Late Cretaceous) pitchblende-polymetallic sulfide and pitchblende-purple fluorite rich ores were derived from basic magmatism of mantle source. Finally, the author proposes prospecting criteria of the above two types of uranium deposits

  3. Chemistry and origin of deep ground water in crystalline rocks; Kemi och genes av djupa grundvatten i kristallint berg

    Energy Technology Data Exchange (ETDEWEB)

    Lagerblad, B [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1995-11-01

    This report discusses the interactions between water and crystalline rocks and its consequences for the chemical composition of the water. It also treats how flows of different types of water are modified by the rock, and the possible consequences for the ground water near a nuclear waste repository. The focus of the work is the changes in composition that ground water gets at deep levels in the rock. Data from Finnsjoen and Aespoe in Sweden show higher salinity in deep rock, which has been interpreted as a result of marine inflow of water during glaciation. Data from other, deeper boreholes in Finland, Canada, Russia, England and Sweden show that the increasing salinity is a rule and very high at great depths, higher than marine water can produce. Therefore, the deep waters from Finnsjoen and Aespoe are probably very old, and the high salinity a result from geological processes. Differing cation and isotopic composition than seawater also indicate geologic water. Differing theories on the origin of the ground water should be regarded in the safety analysis for a repository. 36 refs, 3 figs, 1 tab.

  4. Strains and stresses in the rock around and unlined hot water cavern

    Science.gov (United States)

    Rehbinder, Göran

    1984-07-01

    Hot water stored in an unlined rock cavern is an efficient energy storage. A research program has been carried out with a test plant at the city of Avesta, Sweden. The plant consists of a rock cavern, the volume of which is 15000 m3, which serves as an energy buffer in the district heating system of the city. The water is heated from a garbage incinerator located close to the cavern. During the first test period the temperature of the stored water has varied between 40°C and 95°C. The heating of the rock causes strains and stresses in the rock. The measurements show that the state in the rock does mainly respond to the average temperature and not to the fluctuations. The maximum thermal stress is 9 MPa occurring at the wall of the cavern. The heave of the ground is less than 5 mm. The development of stress and strain will continue after the first test period since thermal equilibrium was not reached during this period.

  5. High Temperature Versus Geomechanical Parameters of Selected Rocks – The Present State of Research

    Directory of Open Access Journals (Sweden)

    Anna Sygała

    2013-01-01

    Full Text Available This paper presents the current state of knowledge concerning the examination of the impact of increased temperatures on changes of geomechanical properties of rocks. Based on historical data, the shape of stress–strain characteristics that illustrate the process of the destruction of rock samples as a result of load impact under uniaxial compression in a testing machine, were discussed. The results from the studies on changes in the basic strength and elasticity parameters of rocks, such as the compressive strength and Young’s modulus were compared. On their basis, it was found that temperature has a significant effect on the change of geomechanical properties of rocks. The nature of these changes also depends on other factors (apart from temperature. They are, among others: the mineral composition of rock, the porosity and density. The research analysis showed that changes in the rock by heating it at various temperatures and then uniaxially loading it in a testing machine, are different for different rock types. Most of the important processes that cause changes in the values of the strength parameters of the examined rocks occured in the temperature range of 400 to 600 °C.

  6. A physico-chemical characterisation technique for determining the pore-water chemistry in argillaceous rocks

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1991-09-01

    A prerequisite for carrying out credible sorption studies is the definition of an aqueous phase composition which is in equilibrium with the solid phase. Experimental methods and data analysis procedures are described which enable an equilibrium water composition to be produced for argillaceous rocks which is not dependent on liquid to solid (L:S) ratios. Since a Valanginian marl formation is under consideration by Nagra as a potential rock for the disposal of low and short-lived medium level radioactive waste in Switzerland, samples of this material were chosen for this investigation. Aqueous phase and nickel ethylenediamine extraction experiments were carried out at different L:S ratios under controlled atmosphere conditions (P CO 2 =10 -2 bar, O 2 ≤ 5 ppm ). The results from these tests and petrographical examinations were combined to define the system in terms of the physico-chemical characteristics of the clay mineral component (CEC and cation occupancies) and the identities of highly soluble and solubility limited phases in the marl. The geochemical code PHREEQE was used in conjunction with the Gapon equations to calculate the pore water composition. This work clearly showed that pore water chemistries obtained from aqueous extracts alone may lead to an arbitrary water chemistry in argillaceous rock systems, particularly with respect to ionic composition and ionic strength, which may have important consequences for radionuclide speciation and sorption studies. (author) 11 figs., 12 tabs., 25 refs

  7. The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Lianchong Li

    2016-03-01

    Full Text Available To capture the hydraulic fractures in heterogeneous and layered rocks, a numerical code that can consider the coupled effects of fluid flow, damage, and stress field in rocks is presented. Based on the characteristics of a typical thin and inter-bedded sedimentary reservoir, China, a series of simulations on the hydraulic fracturing are performed. In the simulations, three points, i.e., (1 confining stresses, representing the effect of in situ stresses, (2 strength of the interfaces, and (3 material properties of the layers on either side of the interface, are crucial in fracturing across interfaces between two adjacent rock layers. Numerical results show that the hydrofracture propagation within a layered sequence of sedimentary rocks is controlled by changing in situ stresses, interface properties, and lithologies. The path of the hydraulic fracture is characterized by numerous deflections, branchings, and terminations. Four types of potential interaction, i.e., penetration, arrest, T-shaped branching, and offset, between a hydrofracture and an interface within the layered rocks are formed. Discontinuous composite fracture segments resulting from out-of-plane growth of fractures provide a less permeable path for fluids, gas, and oil than a continuous planar composite fracture, which are one of the sources of the high treating pressures and reduced fracture volume.

  8. Diffusion in the matrix of rocks from Olkiluoto. The effect of anion exclusion

    International Nuclear Information System (INIS)

    Valkiainen, M.; Aalto, H.; Olin, M.; Lindberg, A.; Siitari-Kauppi, M.

    1995-12-01

    Diffusion in the rock matrix is dependent on two basic factors: the effective diffusion conductivity of the rock and the rock-capacity factor. The aim of this ongoing research is to study both of these factors more closely by finding evidence and studying the significance of anion exclusion and surface diffusion. The material for the study was selected form the drill-core of the drill-hole OL-KR5 from Olkiluoto investigations site. Six rock-types were included in the study, three unaltered and three altered. The water-types selected can be divided to two groups: in one the ionic strength is varied, in the another the ionic type is varied. The diffusion measurements were carried out partly by the equilibration-leaching method, partly by the through-diffusion method. The measurements by the equilibration-leaching method were performed in the anaerobic cabinet and the through-diffusion measurement in laboratory room conditions. Radioactive isotopes 3 H, 35 S, 36 Cl and 22 Na were selected as tracers. This report contains results of the equilibration-leaching measurements and through- diffusion measurements using 3 H (HTO), 36 Cl (Cl-) and 35 S(SO 4 2- ) as tracers. The rock-types under study were also studied in the University of Helsinki, Department of Chemistry using polymethylmethacrylate labelled with 14 C revealing the pore structure. Also, results of specific surface area measurements made in BAM, Berlin are given. The comparison of results obtained by the gas diffusion method at the University of Jyvaeskylae to the results obtained by tritium are also appended. (12 refs., 20 figs., 10 tabs.)

  9. Microscopic study of rock for estimating long-term behavior

    International Nuclear Information System (INIS)

    Ichikawa, Yasuaki

    1997-03-01

    One must consider micro-structures of rock and rock mass in order to predict the long-term behavior for more than ten thousand years. First we observe the micro-crack distribution of granite which is commonly distributed in Japan, and is widely used for several structures. The creep under constant load and the relaxation under constant displacement are typical time dependent phenomena, and we performed a series of relaxation tests under microscope observation in laboratory. The specimen that is preserved in water is granite as mentioned above. The aim of this experiment is to observe the sequential propagation of micro-cracks and its affect to the macroscopic response of the rock material under relaxation state. Next, a viscoelastic homogenization method is applied for analyzing the behavior of granite that is composed of several kinds of minerals (i.e., a polycrystalline material). The homogenization method developed for analyzing mechanics of composite materials is a mathematical theory that can describe the macroscopic behavior accounting for the microscopic characteristics with periodic microstructures. In this study, it is applied to a polycrystalline rock which involves a few minerals and micro-cracks. Furthermore, it is required to apply the homogenization analysis for rock materials which show a nonlinear time dependent behavior, so we develop a new elasto-visco-plastic homogenization theory, and its validity is checked for some ground structures made by clay. (author)

  10. (Pop)kultura po rock and rollu. Uwagi o japońskiej muzyce eksperymentalnej

    OpenAIRE

    Brzostek, Dariusz

    2014-01-01

    The article discusses the history of Japanese experimental music as a confrontation between the traditional – even conservative – Japanese cultural values and the modern, or postmodern, artistic and social values of the experimental music influenced by jazz, rock and roll and American popular music. The early electronic works, post-jazz improvised music, free-form composition, avant-garde rock music, and electronic and electro-acoustic noise are music genres to which the rise of the Japanese ...

  11. Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: a petrological and microstructural study of mantle xenoliths from French Polynesia

    Science.gov (United States)

    Tommasi, Andréa; Godard, Marguerite; Coromina, Guilhem; Dautria, Jean-Marie; Barsczus, Hans

    2004-11-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we investigated the relationship between petrological processes and microstructure in mantle xenoliths from different hotspots tracks in South Pacific Superswell region: the Austral-Cook, Society, and Marquesas islands in French Polynesia. Olivine forsterite contents in the studied spinel peridotites vary continuously from Fo91 to Fo83. Dunites and wehrlites display the lowest forsterite contents. Their microstructure and high Ni contents preclude a cumulate origin, suggesting that these rocks result from melt/rock reactions involving olivine precipitation and pyroxene dissolution. In addition, lherzolites and wehrlites display evidence of late crystallization of clinopyroxene, which may result from a near-solidus melt-freezing reaction. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. These compositional changes, particularly iron enrichment in olivine, result in lower P- and S-waves velocities. Relative to normal lithospheric mantle, compositionally induced seismic anomalies may attain -2.2% for S-waves and -1% for P-waves. Smaller negative anomalies for P-waves are due to a higher sensitivity to modal composition. Conversely, crystal-preferred orientations (CPO) and seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO. Very weak, almost random olivine CPO is nevertheless rare, suggesting that CPO destruction is restricted to domains of

  12. Analysis of the Toxic Element Concentrations in the Mesozoic Siliceous Rocks in Terms of the Raw Material Importance

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    As part of an integrated system of environmental protection at every stage of the product life cycle such as: raw material extraction, its transportation and processing as well the subsequent use and development is required to carry out actions towards reducing or completely eliminating products that contain harmful substances to the environment. The purpose of the presented paper is an analysis of the toxic element concentrations in the extracted siliceous minerals at the initial stage of the raw material recognition. The research material is constituted by rocks collected from the Mesozoic bedrock from the Bełchatów lignite deposit. A group of the studied rocks is represented by diatomites, gaizes, opoka-rocks and light opoka-rocks, enriched with minerals from the group of SiO2. Most of the recognized petrographic sediments have a real possibility of potential applications in the building material industry, but it needs to carry out a detailed and thorough research. The studies of the chemical composition were determined by atomic absorption spectroscopy (AAS) using Philips PU 9100Xi Camera SX-100 spectrometer and an atomic emission spectroscopy with inductively coupled plasma (ICP AES) using PLASMA 40 spectrometer. There were carried out a chemical analyses and determined the content of some toxic elements: Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, Zr. in the studied sedimentary rocks. The analysis of the results draws attention to the high content of cadmium in the case of the studied sediments. The concentration of this element in the described rocks is an average of 0.22 mg/kg -the diatomites, 0.05 mg/kg -the gaizes, 0.4 mg/kg -the opoka-rocks, 2.23 mg/kg -the light opoka-rocks. It was moreover registered varied concentration of arsenic in diatomites, that is formed in the range of 0.05 - 9.6 mg/kg, an average of 6.3 mg/kg. The content of the other designated elements with toxic properties in the analysed groups of rocks does not exceed the limit values. An

  13. Research on supplying potential of uranium source from rocks in western provenance area of Hailaer basin

    International Nuclear Information System (INIS)

    Xia Yuliang; Liu Hanbin; Chinese Academy of Geological Sciences, Beijing

    2006-01-01

    Using U-Pb isotope composition evolution, this paper expounds the initial uranium content in volcanic rocks of provenance area of Xihulitu basin and in granites of provenance area of Kelulun sag, western Hailaer basin. The initial uranium content (U 0 ) in volcanic rocks of provenance area is higher, the average initial uranium content of volcanic rocks is 10.061 x 10 -6 , the average uranium variation coefficient (ΔU) is -49.57%; the average initial uranium content of granites is 18.381 x 10 -6 , the average uranium variation coefficient (ΔU) is -80%. The results indicate that rocks in provenance area could provide the pre-enrichment of uranium in deposited sandstone. U-Ra equilibrium coefficients of rocks indicate that there is obvious U-Ra disequilibrium phenomenon in volcanic rocks, and the time when granites provided uranium source occurred 16000 a ago. (authors)

  14. Study on evaluation method for heterogeneous sedimentary rocks based on forward model

    International Nuclear Information System (INIS)

    Masui, Yasuhiro; Kawada, Koji; Katoh, Arata; Tsuji, Takashi; Suwabe, Mizue

    2004-02-01

    It is very important to estimate the facies distribution of heterogeneous sedimentary rocks for geological disposal of high level radioactive waste. The heterogeneousness of sedimentary rocks is due to variable distribution of grain size and mineral composition. The objective of this study is to establish the evaluation method for heterogeneous sedimentary rocks based on forward model. This study consisted of geological study for Horonobe area and the development of soft wear for sedimentary model. Geological study was composed of following items. 1. The sedimentary system for Koetoi and Wakkanai formations in Horonobe area was compiled based on papers. 2. The cores of HDB-1 were observed mainly from sedimentological view. 3. The facies and compaction property of argillaceous rocks were studied based on physical logs and core analysis data of wells. 4. The structure maps, isochrone maps, isopach maps and restored geological sections were made. The soft wear for sedimentary model to show sedimentary system on a basin scale was developed. This soft wear estimates the facies distribution and hydraulic conductivity of sedimentary rocks on three dimensions scale by numerical simulation. (author)

  15. The Usability of Rock-Like Materials for Numerical Studies on Rocks

    Science.gov (United States)

    Zengin, Enes; Abiddin Erguler, Zeynal

    2017-04-01

    The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and

  16. Thermal conductivity of unsaturated clay-rocks

    Directory of Open Access Journals (Sweden)

    D. Jougnot

    2010-01-01

    Full Text Available The parameters used to describe the electrical conductivity of a porous material can be used to describe also its thermal conductivity. A new relationship is developed to connect the thermal conductivity of an unsaturated porous material to the thermal conductivity of the different phases of the composite, and two electrical parameters called the first and second Archie's exponents. A good agreement is obtained between the new model and thermal conductivity measurements performed using packs of glass beads and core samples of the Callovo-Oxfordian clay-rocks at different saturations of the water phase. We showed that the three model parameters optimised to fit the new model against experimental data (namely the thermal conductivity of the solid phase and the two Archie's exponents are consistent with independent estimates. We also observed that the anisotropy of the effective thermal conductivity of the Callovo-Oxfordian clay-rock was mainly due to the anisotropy of the thermal conductivity of the solid phase.

  17. New Data on the Composition of Ophiolite Complexes on Karaginskii Island (Eastern Kamchatka)

    Science.gov (United States)

    Skolotnev, S. G.; Tsukanov, N. V.; Sidorov, E. G.

    2018-03-01

    The geochemistry and composition of peridotite rock-forming minerals from blocks in the serpentinite mélange of Karaginskii Island have been studied. The composition features of the rock-forming minerals are indicative of the fact that they represent abyssal peridotites of the mid-oceanic ridges that did not undergo remelting under suprasubduction conditions. According to the geochemical data, these rocks were subject to metasomatic alterations under mantle conditions in the suprasubduction setting, which were caused by metasomatizing melts and/or fluids generated in the subduction zone.

  18. An Examination of the Space Weathering Patina of Lunar Rock 76015

    Science.gov (United States)

    Noble, S.; Chrisoffersen, R.; Rahman, Z.

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. Rocks have much longer surface lifetimes than an individual soil grain and thus record a longer history of exposure. By studying the weathering products which have built up on a rock surface, we can gain a deeper perspective on the weathering process and better assess the relative importance of various weathering components. The weathered coating, or patina, of the lunar rock 76015 has been previously studied under SEM and also by TEM using ultramicrotome sample preparation methods. However, to really understand the products involved in creating these coatings, it is helpful to examine the patina in cross section, something which is now possible though the use of Focused Ion Beam (FIB) sample prep techniques, which allows us to preserve intact the delicate stratigraphy of the patina coating and provides a unique cross-sectional view of the space weathering process. Several samples have been prepared from the rock and the coatings are found to be quite variable in thickness and composition from one sample to the next.

  19. Fine-grained sheet silicate rocks

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1977-09-01

    Considerable interest has been shown in the possibility of using shales as repositories for radioactive waste and a variety of other waste products, and it appears that over the next few years much money and effort will be expended to investigate and test a wide variety of shales. If shales are to be studied in detail by a large number of investigators, it is important that all concerned have the same concept of what constitutes a shale. The term shale and other terms for fine-grained rocks have been used for many years and have been continually redefined. Most definitions predate the development of modern instrumentation and are based on field observations and intuition; however, the main problem is the diversity of definitions. An attempt is made here to develop a simple, rational classification of fine-grained sediments, and it is hoped that this classification will eliminate some of the present ambiguity. In order that the classification be pertinent, mineral composition and textural data were compiled and evaluated. The data on unconsolidated and consolidated sediments were contrasted and the effects of burial diagenesis assessed. It was found necessary to introduce a new term, physil, to describe all sheet silicate minerals. In contrast to the term clay mineral, the term physil has no size connotation. A simple classification is proposed that is based on the percentage of physils and grain size. In Part II the fine-grained physil rocks are classified on the basis of physil type, non-physil minerals, and texture. Formations are listed which have the mineral and textural characteristics of the most important rock types volumetrically. Selected rock types, and the formations in which they can be found, are recommended for laboratory study to determine their suitability for the storage of high-level radioactive waste

  20. The Amazon-Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia and northern Chile

    Science.gov (United States)

    Tosdal, R.M.

    1996-01-01

    Middle Proterozoic rocks underlying the Andes in western Bolivia, western Argentina, and northern Chile and Early Proterozoic rocks of the Arequipa massif in southern Peru?? from the Arequipa-Antofalla craton. These rocks are discontinuously exposed beneath Mesozoic and Cenozoic rocks, but abundant crystalline clasts in Tertiary sedimentary rocks in the western altiplano allow indirect samples of the craton. Near Berenguela, western Bolivia, the Oligocene and Miocene Mauri Formation contains boulders of granodiorite augen gneiss (1171??20 Ma and 1158??12 Ma; U-Pb zircon), quartzose gneiss and granofels that are inferred to have arkosic protoliths (1100 Ma source region; U-Pb zircon), quartzofeldspathic and mafic orthogneisses that have amphibolite- and granulite-facies metamorphic mineral assemblages (???1080 Ma metamorphism; U-Pb zircon), and undeformed granitic rocks of Phanerozoic(?) age. The Middle Proterozoic crystalline rocks from Berenguela and elsewhere in western Bolivia and from the Middle Proterozoic Bele??n Schist in northern Chile generally have present-day low 206Pb/204Pb ( 15.57), and elevated 208Pb/204Pb (37.2 to 50.7) indicative of high time-averaged Th/U values. The Middle Proterozoic rocks in general have higher presentday 206Pb/204Pb values than those of the Early Proterozoic rocks of the Arequipa massif (206Pb/204Pb between 16.1 and 17.1) but lower than rocks of the southern Arequipa-Antofalla craton (206Pb/204Pb> 18.5), a difference inferred to reflect Grenvillian granulite metamorphism. The Pb isotopic compositions for the various Proterozoic rocks lie on common Pb isotopic growth curves, implying that Pb incorporated in rocks composing the Arequipa-Antofalla craton was extracted from a similar evolving Pb isotopic reservoir. Evidently, the craton has been a coherent terrane since the Middle Proterozoic. Moreover, the Pb isotopic compositions for the Arequipa-Antofalla craton overlap those of the Amazon craton, thereby supporting a link

  1. Characterization of deep-seated rock masses by means of borehole investigation

    International Nuclear Information System (INIS)

    1982-04-01

    Swedish State Power Board. The main objective of the programme was to test a method of measuring in-situ rock stresses in the deep, water-filled boreholes and to correlate measured rock stresses with the hydraulic and geological properties of the rock mass. The investigations consist of the following activities: - Coredrillin of two main boreholes with a depth of 500 m and 250 m respectively. - Rock stress measurements at 11 and 9 main levels in the boreholes respectively. At each level at least 3 complete measurements were made. - Logging of the cores with respect to rock type, fractures and fracture characteristics. - Water injection tests in the boreholes. The rock mass investigated is composed of a gneiss granite of Svecocarelian age (1500 Ma), with inclusions of younger pegmatites and greenstones of variable ages. The fracture density is as a mean 2 fractures per meter with a marked decrease in frequency with increased depth. The fractures are generally coated with calcite and chlorite as the dominating coating minerals. For the rock stress measurements, the method of Leeman and Hayes was chosen. The result show that there is a very high stress level in the rock mass, recordings of about 70 MPa were taken below a horizontal fracture zone at 320 m depth. In this lower rock masses the high stresses were also illustrated by intense disking of the hollow core which made measurements impossible in large sections of the boreholes. Water injection tests were performed, mainly as double-packer tests alon the entire boreholes. For the evaluation, both stationary and transient calculation theories were used and the results show a good agreement. The hyddraulic conductivities of the rock mass vary from below 10 -10 m/s up to 10 -7 m/s. The conductivity decreases with depth, though there are zones even at great depth with high conductivity. (Author)

  2. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated

  3. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    Science.gov (United States)

    Donaldson Hanna, K. L.; Greenhagen, B. T.; Patterson, W. R.; Pieters, C. M.; Mustard, J. F.; Bowles, N. E.; Paige, D. A.; Glotch, T. D.; Thompson, C.

    2017-02-01

    Currently, few thermal infrared measurements exist of fine particulate (samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar conditions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA's Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal infrared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particulate (sample as we systematically vary parameters that control the near-surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum (radiation is varied between 52 and 146 mW/cm2, and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sampling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

  4. Multivariate statistics application in development of blast fragmentation charts for different rock formations in quarries

    Directory of Open Access Journals (Sweden)

    Birol Elevli

    2012-12-01

    Full Text Available Rock fragmentation is considered to be one of the most important aspects of quarrying because of its direct effect on the costsof drilling, which include blasting, loading, hauling and crushing. Thus, it is essential to consider fragmentation size in blasting design.Fragmentation depends on many variables, such as rock properties, geological structures, and blasting parameters. Although empiricalmodels for the estimation of the size distribution of rock fragmentation have been developed by considering these parameters,no complete empirical prediction model for fragmentation exists since rock properties and geological structures vary from site to site.However, these models regard rock properties as constant. In this study, a step–wise multiple linear regression analysis has beencarried out to determine the degree of dominance of various influencing parameters on fragmentation and to develop a fragmentationprediction model. The results showed that the rock mass properties, burden width and specific charge are the main parameters affectingfragmentation. The relations among those parameters were used to develop guideline charts to determine blast layouts for desiredfragmentation on the basis of rock characteristics.

  5. Using Resistivity Measurements to Determine Anisotropy in Soil and Weathered Rock

    Directory of Open Access Journals (Sweden)

    S. Soto-Caban

    2013-08-01

    Full Text Available This study uses electrical resistivity measurements of soils and weathered rock to perform a fast and reliable evaluation of field anisotropy. Two test sites at New Concord, Ohio were used for the study. These sites are characterized by different landform and slightly east dipping limestone and siltstone formations of Pennsylvanian age. The measured resistivity ranged from 19 Ω∙m to 100 ��∙m, and varied with depth, landform, and season. The anisotropy was determined by a comparison of resistance values along the directions of strike and the dip. Measurements showed that the orientation of electrical anisotropy in the shallow ground may vary due to fluid connection, which is determined by the pore geometry in soil and rock, as well as by the direction of fluid movement. Results from this study indicated that a portable electrical resistivity meter is sensitive and reliable enough to be used for shallow ground fluid monitoring.

  6. Electron microprobe analyses of selected samples from deep rock disposal experiment No. 1

    International Nuclear Information System (INIS)

    Hlava, P.F.; Chambers, W.F.

    1976-04-01

    Deep Rock Disposal Experiment No. 1 was designed to provide information about the interaction between a molten, glass-based, nuclear waste simulant and rock material. Selected samples from this experiment were examined by optical microscopy and electron probe microanalysis. Analysis of the homogenized material in the convection cell that was created in the central portion of the melt region shows that an amount of rock equal to about one-half of the original amount of waste simulant was incorporated in the melt during the experiment. Stagnant melt at the sides of the cell formed a glass with large compositional gradients. A white band separated the convected and stagnant materials. The color of the band is attributed to light scattering by small crystallites formed during cooling. Four types of crystallites grew from the melt: two oxides, a Mg--Fe borate, and a silicate. Spinel (MgO, Cr 2 O 3 , FeO (Fe 2 O 3 ), and NiO) was the most common crystallite in the glass. The spinel crystallites found within the convection cell displayed skeletal morphology and oscillatory zoning which indicates growth at varying temperatures as they were carried along by convection. A single cluster of nonskeletal (Fe,Cr) 2 O 3 crystallites was found at the bottom of the melt zone where convection did not occur. Mg--Fe borate crystallites grew in clusters in the central portion of the convection cell after convection ceased. A silicate similar to Fe-rich diopside (CaMgSi 2 O 6 ) with unusual amounts of Ce 2 O 3 and other heavy metal oxides formed as larger crystallites in the stagnant melt at the side of the convection cell and as many very small crystallites in the white band

  7. Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil

    Directory of Open Access Journals (Sweden)

    GIANBOSCO TRAVERSA

    2001-03-01

    Full Text Available The Araxá complex (16 km² comprises carbonatites forming a central core and a complex network of concentric and radial dykes as well as small veins; additionally, it includes mica-rich rocks, phoscorites and lamprophyres. Fenites also occur and are represented by Proterozoic quartzites and schists of the Araxá Group. The petrographic study of 130 borehole samples indicates that the complex is basically made up by two rock-types, carbonatites and mica-rich rocks, and subordinately by a third unit of hybrid composition. Carbonatites range chemically in composition, the most abundant type being magnesiocarbonatites. Dolomite and calcite correspond to the chief constituents, but other carbonate phases, including the Ce-group RE minerals, are also recognized. Phosphates and oxides are widespread accessories whereas silicate minerals consist of olivine, clinopyroxene, mica and amphibole. Mica-rich rocks are represented by abundant glimmeritic rocks and scarce cumulitic phlogopite-, olivine- and diopside-bearing pyroxenites. Hybrid rocks mainly contain phlogopite and tetraferriphlogopite as cumulus and intercumulus phases, respectively; carbonate minerals may also be found. Chemical data indicate that the carbonatites are strongly enriched in REE and have lower contents of Nb, Zr, V, Cr, Ni and Rb compared to the mica-rich rocks. The higher K, Nb and Zr contents of the latter rocks are believed to be related to metasomatic processes (glimmeritization of the pyroxenites. Similar REE patterns for carbonatites and mica-rich rocks seem to suggest that they are related to a single parental magma, possibly of ijolitic composition. Steep LREE/HREE fractionation and high sigmaREE content of some carbonatite samples would be explained by hydrothermal and supergenic processes.O complexo de Araxá (16 km² é constituído por carbonatitos na forma de um núcleo central e de complexa rede de diques concêntricos e radiais, além de pequenos veios

  8. Rock Art

    Science.gov (United States)

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  9. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Emi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  10. Rock fragmentation control in opencast blasting

    Directory of Open Access Journals (Sweden)

    P.K. Singh

    2016-04-01

    Full Text Available The blasting operation plays a pivotal role in the overall economics of opencast mines. The blasting sub-system affects all the other associated sub-systems, i.e. loading, transport, crushing and milling operations. Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole, varying initiation practice in blast design and its effect on explosive energy release characteristic. This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India. The mines use draglines and shovel–dumper combination for removal of overburden. Despite its pivotal role in controlling the overall economics of a mining operation, the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance. Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance. Ninety one blasts were conducted with varying blast designs and charging patterns, and their impacts on the rock fragmentation were documented. A high-speed camera was deployed to record the detonation sequences of the blasts. The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.

  11. Experimental leaching of uranium from tuffaceous rocks

    International Nuclear Information System (INIS)

    Goodell, P.C.; Trentham, R.C.

    1980-07-01

    The premise to be tested in this work is that felsic volcanic rocks particularly ash-flow tuffs, can serve as source rocks for certain uranium deposits. The applicability of this idea to several geologic environments is investigated. A genetic model is developed dealing with the behavior of uranium during and subsequent to ash-flow tuff deposition. It is based upon previously described investigations, geologic logic, data presented here, and speculation. Ash-flow tuff sequences described in the literature show significant alkali element variation, particularly in thick tuff units. Some variation is attributed to initial magma variations, whereas additional change may be produced during cooling and degassing of the tuff. Uranium variations have been documented in tuff sequences which are assumed to represent magmatic compositions. Uranium may be released during the initial degassing, during hydrothermal alteration, and/or during later diagenesis. Experimental studies have been designed and carried out to simulate natural leaching conditions such as might occur during diagenesis. Synthetic ground waters have been pumped through pulverized uraniferous vitrophyres. Major and minor element contents have been determined. The most significant chemical changes take place quickly, within a matter of days. Several starting and product leachant solutions were analyzed fluorimetrically for uranium. They show significant increases in uranium contents, from less than 1 ppB at the start to greater than 10 ppB maximu. Such leachant solutions might be significant transport agents of uranium given geologic time. Leaching at low temperatures appears to involve a thin surface reaction and diffusion layer. Both dissolution and ion exchange influence the leachant composition. It is also concluded that glassy ash-flow tuffs may serve as uranium source rocks during low temperature diagenetic changes

  12. Geological Development of the Izu-Bonin Forearc Since the Eocene Based on Biostratigraphic, Rock Magnetic, and Sediment Provenance Observations from IODP Expedition 352 Drill Cores

    Science.gov (United States)

    Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.

  13. Inference of coastal submergence from the study of beach rock off Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rajamanickam, G.V.; Rao, K.M.; Rao, T.C.S.

    . and the respective weight percentages were used tocalculat~the size parameters following Folk (I974). The composition of the cementing material w.as examined by directly staining with alizarin red-S on a weB poJished and Hel etched rock surface and by X... Bacteria and on the action of denitrifying bacteria in tropical and temperate seas, pap. Totuga Lab Carnegie Inst., Wash Publ., p. 182. Emery, K.O. and Cox, D.C., (I 956) Beach rock in the Jawaliah Islands, Pacific Science, V. 10, pp', 383. Folk, R.L, (1974...

  14. Wisconsin Glaciation of the Sierra Nevada (79,000-15,000 yr B.P.) as Recorded by Rock Flour in Sediments of Owens Lake, California

    Science.gov (United States)

    Bischoff, James L.; Cummins, Kathleen

    2001-01-01

    Chemical analyses of the clay-sized fractions of 564 continuous sediment samples (200-yr resolution) from composite core OL90/92 allow quantification of an abundance of glacial rock flour. Rock flour produced during glacier advances is represented by clay-sized plagioclase, K-feldspar, and biotite in homogeneous internal composition. The abundance of rock flour is deemed proportional to the intensity of glacies advances. Age control for the composite section is provided by combining previously published radiocarbon dates on organics, U/Th dates on ostracode shells, and U/Th dates on saline minerals from nearby Searles Lake correlated to OL92 by pollen. The rock flour record displays three levels of variability: (1) a dominant one of about 20,000 yr related to summer insolation and precipitation; (2) an intermediate one of 3000-5000 yr, perhaps related to North Atlantic Heinrich events; and (3) a minor one of 1000-2000 yr, perhaps related to North Atlantic thermohaline-driven air-temperature variation.

  15. Compositional Differences between Felsic Volcanic Rocks from the ...

    African Journals Online (AJOL)

    Bheema

    characteristics of the volcanic units, we describe the compositional differences ...... Geology and mineral resources of Somalia and surrounding regions. ... zone (Ethiopia) Journal of Volcanological and Geothermal Research, 80: 267-280.

  16. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  17. Helium isotopes in rocks, waters and gases of the earth's crust

    International Nuclear Information System (INIS)

    Tolstikhin, L.H.

    1984-01-01

    In this chapter the distribution of helium isotopes in various samples (rocks, minerals, terrestrial fluids, gases etc.) is interpreted from the genetic point of view, namely what sources and processes provide the abundance of helium isotopes observed in a sample. The mixing of mantle, juvenile helium with pure radiogenic helium is the main process responsible for the helium isotope composition in any sample of the earth's crust, the share of each component (reflected in the 3 He/ 4 He ratio) depending on the history of the tectono-magnetic activity in the given region. A specific chemical composition of a rock or mineral, peculiarities of losses or trapping and a peculiar kind of distribution of radioactive elements can lead to unusual isotopic ratios of 3 He/ 4 He in radiogenic helium. Lastly, technogenic radioactive isotopes are widespread in nature; one of them, tritium ( 3 H), yields 3 He excess in terrestrial waters. (orig.)

  18. Spectral variations in rocks and soils containing ferric iron hydroxide and(or) sulfate minerals as seen by AVIRIS and laboratory spectroscopy

    Science.gov (United States)

    Rockwell, Barnaby W.

    2004-01-01

    with AVIRIS data, a laboratory experiment was performed in which spectra were acquired of a goethite-bearing rock while progressively decreasing the areal abundance of the rock with respect to a background of white, fine-grained quartz sand. This experiment found that, with decreasing material abundance, the crystal field absorption feature of goethite near 1.0 micron decreases in depth and narrows more from the long wavelength side of the feature than from the short wavelength side, as is the case in goethite reference spectra as grain size decreases from coarse to fine. In the Marysvale study area, goethite-bearing alluvium downgradient from source outcrops tends to be identified as finer-grained or thin coatings of goethite due to the minerals presence in lesser abundance. The goethite-bearing alluvium is a closer match to reference spectra of thin coatings of goethite even though the actual grain size of the contained goethite fragments is medium to coarse grained, the same on average as that from the source outcrops. Coarser-grained goethite most likely will be correctly identified in areas of greater goethite abundance proximal to jarosite-bearing source rock where the surface is relatively free of goethite-free soil components and vegetation that corrupt the goethite spectral response. When analysis of imaging spectroscopy data is performed using reference spectra of iron minerals of varying grain sizes and mixed compositions, the results are useful not only for purposes of mineral identification, but also for distinguishing goethite-bearing outcrop from alluvial surfaces with similar mineralogy, providing valuable information for geologic, geomorphologic, mineral exploration, and environmental assessment studies.

  19. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  20. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  1. Mites (Acari, Mesostigmata from rock cracks and crevices in rock labirynths in the Stołowe Mountains National Park (SW Poland

    Directory of Open Access Journals (Sweden)

    KAMCZYC JACEK

    2014-06-01

    Full Text Available The aim of this study was to recognize the species composition of soil mites of the order Mesostigmata in the soil/litter collected from rock cracks and crevices in Szczeliniec Wielki and Błędne Skały rock labirynths in the area of the Stołowe Mountains National Park (part of the Sudetes in SW Poland. Overall, 27 species were identified from 41 samples collected between September 2001 and August 2002. The most numerous species in this study were Veigaia nemorensis, Leptogamasus cristulifer, and Gamasellus montanus. Our study has also confirmed the occurrence or rare mite species, such as Veigaia mollis and Paragamasus insertus. Additionally, 5 mite species were recorded as new to the fauna of this Park: Vulgarogamasus remberti, Macrocheles tardus, Pachylaelaps vexillifer, Iphidosoma physogastris, and Dendrolaelaps (Punctodendrolaelaps eichhorni.

  2. Comparison of disposal concepts for rock salt and hard rock

    International Nuclear Information System (INIS)

    Papp, R.

    1998-01-01

    The study was carried out in the period 1994-1996. The goals were to prepare a draft on spent fuel disposal in hard rock and additionally a comparison with existing disposal concepts for rock salt. A cask for direct disposal of spent fuel and a repository for hard rock including a safeguards concept were conceptually designed. The results of the study confirm, that the early German decision to employ rock salt was reasonable. (orig.)

  3. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    Science.gov (United States)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method

  4. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  5. Rollerjaw Rock Crusher

    Science.gov (United States)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  6. Range sections as rock models for intensity rock scene segmentation

    CSIR Research Space (South Africa)

    Mkwelo, S

    2007-11-01

    Full Text Available This paper presents another approach to segmenting a scene of rocks on a conveyor belt for the purposes of measuring rock size. Rock size estimation instruments are used to monitor, optimize and control milling and crushing in the mining industry...

  7. EXPERIMENTAL STUDY OF DECOMPRESSION, PERMEABILITY AND HEALING OF SILICATE ROCKS IN FAULT ZONES

    Directory of Open Access Journals (Sweden)

    V. Ya. Medvedev

    2014-01-01

    Full Text Available The article presents results of petrophysical laboratory experiments in studies of decompression phenomena associated with consequences of abrupt displacements in fault zones. Decompression was studied in cases of controlled pressure drop that caused sharp changes of porosity and permeability parameters, and impacts of such decompression were analyzed. Healing of fractured-porous medium by newly formed phases was studied. After experiments with decompression, healing of fractures and pores in silicate rock samples (3×2×2 cm, 500 °C, 100 MPa took about 800–1000 hours, and strength of such rocks was restored to 0.6–0.7 of the original value. In nature, fracture healing is influenced by a variety of factors, such as size of discontinuities in rock masses, pressure and temperature conditions, pressure drop gradients, rock composition and saturation with fluid. Impacts of such factors are reviewed.

  8. Chemical compositions of lavas from Myoko volcano group

    International Nuclear Information System (INIS)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi; Hayatsu, Kenji.

    1995-01-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  9. Chemical compositions of lavas from Myoko volcano group

    Energy Technology Data Exchange (ETDEWEB)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science; Hayatsu, Kenji

    1995-08-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  10. Rock Glacier Response to Climate Change in the Argentinian Andes

    Science.gov (United States)

    Drewes, J.; Korup, O.; Moreiras, S.

    2017-12-01

    Rock glaciers are bodies of frozen debris and ice that move under the influence of gravity in permafrost areas. Rock glaciers may store a large amount of sediments and play an important role as prime movers of debris in the Andean sediment cascade. However, little is known about how much sediment and water rock glaciers may store at the mountain-belt scale, and the few existing estimates vary considerably. We address this question for the Argentinian Andes, for which a new glacial inventory containing more than 6500 rock glaciers gives us the opportunity to analyse their relevance within the sediment cascade. We examine the inventory for catchments in five sub-regions, i.e. the Desert Andes (22°-31°S); the Central Andes (31°-36°S); the Northern Andes of Patagonia (36°-45°S); the Southern Andes of Patagonia (45°-52°S); and Tierra del Fuego (52°-55°S), together with climate variables of the WorldClim datasets, and digital topographic data, to estimate how rock-glacier extents may change under different past and future climate scenarios. We observe for the northern Desert Andes that rock glacier toes are at 4000 to 5000 m a.s.l. and a mean annual temperature range of 3° and 8°C, though most rock glaciers are in areas with mean annual temperatures between -5 and 5°C, marking a distinct thermal niche. Rock glaciers are traditionally viewed as diagnostic of sporadic alpine permafrost and their toes are often near the annual mean 0°C isotherm. However, we find that only rock glaciers in the southern Desert Andes and Central Andes are located where annual mean temperature is -2°C. Future scenarios project an increase of > four degrees in these areas, which may further degrade ground ice and potentially change the rates at which rock glaciers advance. Where active rock glaciers become inactive their coarse material, which was formerly bound by ice, may be released into the sediment cascade, whereas accelerating or rapidly downwasting rock glaciers may either

  11. Research on petrologic, geochemical characteristics and genesis of volcanic rocks in Dachangsha basin

    International Nuclear Information System (INIS)

    Wei Sanyuan

    1999-01-01

    On the basis of research on petrologic, geochemical characteristics and isotope composition of volcanic rocks in Dachangsha basin, the author concludes that the volcanic rocks formed from magma of different genesis and depth are double-cycle effusive. It is proposed that the magma forming the intermediate-basic volcanics of the first cycle comes from the mixing of the partial melting of the deep crust and mantle, and the intermediate-acidic volcanics of the secondary cycle are derived from the remelting of the upper crust

  12. Preliminary Geochemical and Rock Magnetic Study of a Stalagmite From Quintana Roo, Northeastern Yucatan Peninsula

    Science.gov (United States)

    Urrutia-Fucugauchi, J.; Perez-Cruz, L.; Zhao, X.; Rebolledo-Vieyra, M.; Rodriguez, A.

    2012-04-01

    We present the preliminary results of geochemical, stable isotopes and rock magnetic studies of a stalagmite from a cave in eastern Quintana Roo, northern Yucatan peninsula. In the past years, there has been increased interest in understanding the paleoclimatic and paleoenvironmental evolution of the Yucatan peninsula and northern Central America, investigating the relationships between climate variations and the development of the Maya civilization. In particular, the variations in regional precipitation and occurrence of several drought periods, which might have been related to the collapse of the Classic Maya period. Stable isotope data on speleothems from different sites in Yucatan and Central America have provided evidence on changes in precipitation, which have affected the Maya region. The stalagmite is ~47 cm long and about 4-5 cm wide at its base. It was collected from the Hilariós Well cave in Tulum, Quintana Roo. Magnetic susceptibility and geochemical analyses have been completed as part of the initial characterization of the stalagmite, with measurements taken every centimeter. Geochemical analyses have been carried out for x-ray fluorescence, with a Niton XRF analyzer. Magnetic susceptibility was determined with a Bartington MS2 instrument using the high resolution surface probe. Additional rock magnetic analyses include magnetic hysteresis loops and isothermal remanent magnetization (IRM) acquisition, and saturation IRM demagnetization, which have been measured with a MicroMag instrument. Hysteresis loops are diamagnetic, with small varying low-coercivity ferromagnetic components. The elemental compositions of major oxides and trace elements vary with depth. Calcium is the major element and displays a pattern of small amplitude fluctuations with a trend to lower values at the bottom, which are also shown in other elements such as barium. Silica and elements such as titanium and strontium are positively correlated and show an apparent cyclic pattern

  13. Geochemistry and petrology of basaltic rocks from the Marshall Islands

    Science.gov (United States)

    Davis, Alice S.; Schwab, William C.; Haggerty, Janet A.

    1986-01-01

    A variety of volcanic rock was recovered from the flanks of seamounts, guyots, atolls, and islands in the Ratak chain of the Marshall Islands on the U.S. Geological Survey cruise L9-84-CP. The main objective of this cruise was to study the distribution and composition of ferromanganese oxide crusts. Preliminary results of managanese crust composition are reported by Schwab et al. (1985) and detailed studies are in preparation (Schwab et al., 1986). A total of seven seafloor edifices were studied using 12 khz, 3.5 khz and air gun seismic reflection, chain dredge and box corer. Bathymetry and ship track lines are presented by Schwab and Bailey (1985). Of the seven edifices surveyed two support atolls (Majuro and Taongi) and one is a tiny island (Jemo). Dredge locations and water depths are given in Table 1 and dredge locations are shown in Figure 1. Due to equipment failures depths of dredge hauls were limited to shallow depth for all except the first two sites occupied. Recovery consisted mostly of young, poorly-consolidated limestone of fore-reef slope deposit and minor volcanogenic breccia and loose talus. The breccia and pieces of talus are thickly encrusted with ferromanganese oxide, whereas the young limestone is only coated by a thin layer. Four of the seven sites surveyed yielded volcanic rock. The volcanic rock, volumetrically a minor part of each dredge haul, consists mostly of lapilli and cobble-size clasts in a calcareous matrix or as loose talus. Most clasts show evidence of reworking, being sub- to well rounded, sometimes with a thin ferromanganese crust of their own. This paper reports preliminary findings on the petrology and geochemistry of volcanic rock recovered.

  14. Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey)

    Science.gov (United States)

    Ersoy, Hakan; Yalçinalp, Bülent; Arslan, Mehmet; Babacan, Ali Erden; Çetiner, Gözde

    2016-11-01

    Turkey located in the Alpine-Himalayan Mountain Belt has 35% of the natural stone reserves of the world and has good quality marble, limestone, travertine and onyx reserves especially in the western regions of the country. The eastern Black Sea Region with a 1.4 million meters cubes reserve has a little role on the natural stone production in the country. For this reason, this paper deals with investigation on the potential of carbonate stone in the region and determination of the geological and geo-mechanical properties of these rocks in order to provide economic contribution to the national economy. While the study sites are selected among the all carbonate rock sites, the importance as well as the representative of the sites were carefully considered for the region. After representative samples were analyzed for major oxide and trace element compositions to find out petrochemical variations, the experimental program conducted on rock samples for determination of both physical and strength properties of the carbonate rocks. The results of the tests showed that there are significant variations in the geo-mechanical properties of the studied rock groups. The density values vary from 2.48 to 2.70 gr/cm3, water absorption by weight values range from 0.07 to 1.15% and the apparent porosity of the carbonate rocks are between 0.19 and 3.29%. However, the values of the UCS shows variation from 36 to 80 MPa. Tensile and bending strength values range from 3.2 to 7.5 MPa and 6.0-9.2 MPa respectively. Although the onyx samples have the lowest values of apparent porosity and water absorption by weight, these samples do not have the highest values of UCS values owing to occurrence of the micro-cracks. The UCS values of the rock samples were also found after cycling tests However, the limestone samples have less than 5% deterioration after freezing-thawing and wetting-drying tests, but travertine and onyx samples have more than 15% deterioration. Exception of the apparent

  15. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    Science.gov (United States)

    Wang, Xiaoyan

    2017-04-01

    influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.

  16. The human impact on natural rock reserves using basalt, anorthosite, and carbonates as raw materials in insulation products

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Clausen, Anders U.; Hansen, Peter B.

    2011-01-01

    lithosphere or subducted with oceanic crust and recycled through the mantle by plate tectonics. Insulation products have a chemical composition similar to average crustal rocks and participate in the natural rock cycle. However, these products need not accumulate in nature, inasmuch as old insulation......Typical crustal rocks such as basalt, limestone, and anorthosite are used in stone wool insulation products. The raw materials for stone wool production are not specific to any rare mineral source but depend upon the mixture of materials having the correct chemical composition, exemplified by 40 wt......% basalt, 20 wt% anorthosite, and 40 wt% cement-bonded renewable materials. This study provides an overview of the natural cycle of these resources, including their abundances in nature, and sets the consumption by the stone wool industry and other human activities in perspective. Basalt, anorthosite...

  17. Dynamic Mechanical Behavior of Dry and Water Saturated Igneous Rock with Acoustic Emission Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Guo

    2018-01-01

    Full Text Available The uniaxial cyclic loading tests have been conducted to study the mechanical behavior of dry and water saturated igneous rock with acoustic emission (AE monitoring. The igneous rock samples are dried, naturally immersed, and boiled to get specimens with different water contents for the testing. The mineral compositions and the microstructures of the dry and water saturated igneous rock are also presented. The dry specimens present higher strength, fewer strains, and rapid increase of AE count subjected to the cyclic loading, which reflects the hard and brittle behavior and strong burst proneness of igneous rock. The water saturated specimens have lower peak strength, more accumulated strains, and increase of AE count during the cyclic loading. The damage of the igneous rocks with different water contents has been identified by the Felicity Ratio Analysis. The cyclic loading and unloading increase the dislocation between the mineral aggregates and the water-rock interactions further break the adhesion of the clay minerals, which jointly promote the inner damage of the igneous rock. The results suggest that the groundwater can reduce the burst proneness of the igneous rock but increase the potential support failure of the surrounding rock in igneous invading area. In addition, the results inspire the fact that the water injection method is feasible for softening the igneous rock and for preventing the dynamic disasters within the roadways and working faces located in the igneous intrusion area.

  18. Application of proving-ring technology to measure thermally induced displacements in large boreholes in rock

    International Nuclear Information System (INIS)

    Patrick, W.C.; Reactor, N.L.; Butkovich, T.R.

    1984-03-01

    A strain-gauged proving-ring transducer was designed and deployed to measure small diametral displacements in 0.61-m diameter boreholes in rock. The rock surrounding the boreholes was previously heated by storage of spent nuclear fuel assemblies and measurements during post-retrieval cooling of the rock were made. To accomplish this, a transducer was designed to measure displacements in the range of 10 to 100 μm, to function in a time-varying temperature regime of 30 0 to 60 0 C at a relative humidity of 100%, to be of low stiffness, and to be easily and quickly installed. 7 references, 6 figures, 1 table

  19. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems

    Science.gov (United States)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj

    2015-12-01

    We present new major and trace element, high-precision Sr-Nd-Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975-1976 and 2012-2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain 14 wt.% of MgO and 4% wt.% of H2O and originated by partial melting ( 6%) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of 1250 °C and pressure of 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at 2.8 GPa and 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012-2013 approach steady-state REFC liquid

  20. Adakitica affinity rocks south-east of Manizales: petrogenetic features and geochemistry (Colombia)

    International Nuclear Information System (INIS)

    Toro Toro, Luz Mary; Alvaran Echeverri, Mauricio; Borrero Pena, Carlos Alberto

    2008-01-01

    To the southeast of Manizales city, in Gallinazo area, there are a series of aligned hills such as: Gallinazo, Amazonas, Sabinas, La Oliva and La Negra, corresponding to volcanic and sub-volcanic rocks of andesitic and dacitic composition respectively, geochemical data present characteristic of adakitic rocks. Both, volcanic and sub-volcanic rocks presents high SiO 2 concentration (63,87-70,15%), Al 2 O 3 (14,18-16,83%), low Y concentration (11,20-27 ppm) and Yb (0,94-1,93 ppm); strong enrichment in Light Rare Earth Elements(LREE) and highly incompatible elements (Rb, Ba), except for Sr which presents low contents and negative anomaly of Nb-Ta, characteristic that distinguish also the calcoalkaline magmas. Geochemical pattern of LREE and multielements show a strong fractionation ((La/ Yb)n>8) with typical low content of (Yb ≤ 1.8 ppm , Y ≤ 18 ppm). In this work authors propose SE Manizales adakita-like rocks were generated by subducted basaltic slab melting with some minimum peridotitic mantelic wedge contamination. Genesis and geochemical characteristics of these rocks open the possibility to find Au-Cu porphyry mineralizations and epithermal gold deposits in this area due to their highly oxidixing potential.

  1. In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction of Martian rock and soil compositions

    International Nuclear Information System (INIS)

    Fabre, C.; Cousin, A.; Wiens, R.C.; Ollila, A.; Gasnault, O.; Maurice, S.; Sautter, V.; Forni, O.; Lasue, J.; Tokar, R.; Vaniman, D.; Melikechi, N.

    2014-01-01

    Curiosity rover landed on August 6th, 2012 in Gale Crater, Mars and it possesses unique analytical capabilities to investigate the chemistry and mineralogy of the Martian soil. In particular, the LIBS technique is being used for the first time on another planet with the ChemCam instrument, and more than 75,000 spectra have been returned in the first year on Mars. Curiosity carries body-mounted calibration targets specially designed for the ChemCam instrument, some of which are homgeneous glasses and others that are fine-grained glass-ceramics. We present direct calibrations, using these onboard standards to infer elements and element ratios by ratioing relative peak areas. As the laser spot size is around 300 μm, the LIBS technique provides measurements of the silicate glass compositions representing homogeneous material and measurements of the ceramic targets that are comparable to fine-grained rock or soil. The laser energy and the auto-focus are controlled for all sequences used for calibration. The univariate calibration curves present relatively to very good correlation coefficients with low RSDs for major and ratio calibrations. Trace element calibration curves (Li, Sr, and Mn), down to several ppm, can be used as a rapid tool to draw attention to remarkable rocks and soils along the traverse. First comparisons to alpha-particle X-ray spectroscopy (APXS) data, on selected targets, show good agreement for most elements and for Mg# and Al/Si estimates. SiO 2 estimates using univariate cannot be yet used. Na 2 O and K 2 O estimates are relevant for high alkali contents, but probably under estimated due to the CCCT initial compositions. Very good results for CaO and Al 2 O 3 estimates and satisfactory results for FeO are obtained. - Highlights: • In situ LIBS univariate calibrations are done using the Curiosity onboard standards. • Major and minor element contents can be rapidly obtained. • Trace element contents can be used as a rapid tool along the

  2. Reexamination of the source material of acid igneous rocks, based on the selected Sr isotopic data

    International Nuclear Information System (INIS)

    Kagami, Hiroo; Shuto, Kenji; Gorai, Masao

    1975-01-01

    The relation between the ages and the initial strontium isotopic compositions obtained from acid igneous rocks by the whole-rock isochron method is re-examined, on the basis of the selected data. The points based on the data having high values of standard deviation (on the isochrons) show considerable scattering. This is probably ascribed to admixture of sialic materials, or secondary alteration and other geologic causes. The points based on the data having lower values of standard deviation (sigma value: 0.0001 - 0.0019), on the other hand, are evidently plotted within a narrow region just above the presumed Sr evolutional region of the source material of oceanic tholeiites. It is noteworthy that the former region meets the latter region at an earlier stage of the evolutional history of the earth (about 40 x 10 8 yrs. ago or older). It may be conceivable that the former region is the Sr evolutional region of the source material of acid igneous rocks. Considering from the inclination of the above Sr evolutional region, the source material of most of acid igneous rocks may possibly be a certain basic material, chemically similar to the continental tholeiitic basalts or basaltic andesites. On the other hand, the source material of a few acid igneous rocks with low initial strontium isotopic ratios may be a certain basic material resembling the oceanic tholeiites. Another possibility is that these acid igneous rocks and oceanic tholeiites may have been formed, under different physical conditions, directly from a certain common source material presumably of peridotitic composition. (auth.)

  3. Soil erosion and effluent particle size distribution under different initial conditions and rock fragment coverage

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Brovelli, A.; Heng, B. C. P.; Sander, G. C.; Parlange, J.-Y.

    2012-04-01

    It is well known that the presence of rock fragments on the soil surface and the soil's initial characteristics (moisture content, surface roughness, bulk density, etc.) are key factors influencing soil erosion dynamics and sediment delivery. In addition, the interaction of these factors increases the complexity of soil erosion patterns and makes predictions more difficult. The aim of this study was (i) to investigate the effect of soil initial conditions and rock fragment coverage on soil erosion yields and effluent particle size distribution and (ii) to evaluate to what extent the rock fragment coverage controls this relationship. Three laboratory flume experiments with constant precipitation rate of 74 mm/h on a loamy soil parcel with a 2% slope were performed. Experiments with duration of 2 h were conducted using the 6-m × 2-m EPFL erosion flume. During each experiment two conditions were considered, a bare soil and a rock fragment-protected (with 40% coverage) soil. The initial soil surface state was varied between the three experiments, from a freshly re-ploughed and almost dry condition to a compacted soil with a well-developed shield layer and high moisture content. Experiments were designed so that rain splash was the primary driver of soil erosion. Results showed that the amount of eroded mass was highly controlled by the initial soil conditions and whether the steady-state equilibrium was un-, partially- or fully- developed during the previous event. Additionally, results revealed that sediment yields and particle size composition in the initial part of an erosion event are more sensitive to the erosion history than the long-time behaviour. This latter appears to be mainly controlled by rainfall intensity. If steady-state was achieved for a previous event, then the next event consistently produced concentrations for each size class that peaked rapidly, and then declined gradually to steady-state equilibrium. If steady state was not obtained, then

  4. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Cloke, P.L.

    2000-01-01

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO 2 , 76.29; Al 2 O 3 , 12.55; FeO, 0.14; Fe 2 O 3 , 0.97; MgO, 0.13; CaO, 0.50; Na 2 O, 3.52; K 2 O, 4.83; TiO 2 , 0.11; and MnO, 0.07

  5. Abrasiveness and hardness of rocks of Cretaceous deposits of Chechen-Ingushetiya. Ob abrazivnosti i tverdosti gornykh porod melovykh otlozhenii Checheno-Ingushetii

    Energy Technology Data Exchange (ETDEWEB)

    Trofimenko, Yu.P.

    1981-01-01

    Presented are results of studies of the abrasiveness and hardness of core material taken from Upper Cretaceous deposits in the process of drilling deep boreholes in the areas of Chechen-Ingushetiya. Based on the studies it is established that the abrasiveness of rock is mainly influenced by the coarseness of the mineral grains in the rock, their mineralogical composition, and the composition of the cement. Given is a system of clasification of the investigated core material with respect to abrasiveness and hardness.

  6. Autogenous Tumbling Media Assessment to Clean Weathered Surfaces of Waste-Rock Particles from a Basalt Quarry

    Directory of Open Access Journals (Sweden)

    Baran Tufan

    2015-06-01

    Full Text Available In this study, the optimum feed composition in autogenous tumbling of basalt waste-rock particles to clean their weathered surface was determined. The weathered surfaces of basalt are generally cut out consequent to extraction of basalt columns in quarry operations. The inefficiently cut out portions of basalt cause formation of huge quarry waste dumps causing visual pollution on roadsides. Mixtures of different particle size fractions of basalt waste-rock particles were experimented to achieve the optimum feed material composition. The minimum loss of commercially available basalt particles and maximum clear surface was intended. The results were compared with respect to weight loss (% and reflectance values of used and generated samples.

  7. Elastic wave attenuation in rocks containing fluids

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1986-01-01

    The low-frequency limit of Biot's theory of fluid-saturated porous media predicts that the coefficients for viscous attenuation of shear waves and of the fast compressional wave are proportional to the fluid permeability. Although the observed attenuation is generally in qualitative agreement with the theory, the magnitude of the observed attenuation coefficient in rocks is often more than an order of magnitude higher than expected. This apparent dilemma can be resolved without invoking other attenuation mechanisms if the intrinsic permeability of the rock is inhomogeneous and varies widely in magnitude. A simple calculation of the overall behavior of a layered porous material using local-flow Biot theory shows that the effective permeability for attenuation is the mean of the constituent permeabilities while the effective permeability for fluid flow is the harmonic mean. When the range of variation in the local permeability is one or more orders of magnitude, this difference in averaging method can easily explain some of the observed discrepancies

  8. Fluid geochemistry associated associated to rocks: preliminary tests om minerals of granite rocks potentially hostess of radioactive waste repository

    International Nuclear Information System (INIS)

    Amorim, Lucas E.D.; Rios, Francisco J.; Oliveira, Lucilia A.R. de; Alves, James V.; Fuzikawa, Kazuo; Garcia, Luiz; Ribeiro, Yuri; Matos, Evandro C. de

    2009-01-01

    Fluid inclusions (FI) are micro cavities present on crystals and imprison the mineralizer fluids, and are formed during or posterior to the mineral formation. Those kind of studies are very important for orientation of the engineer barrier projects for this purpose, in order to avoid that the solutions present in the mineral FI can affect the repository walls. This work proposes the development of FI micro compositional studies in the the hostess minerals viewing the contribution for a better understanding of the solution composition present in the metamorphosis granitoid rocks. So, micro thermometric, microchemical and characterization of the material confined in the FI, and the hostess minerals. Great part of the found FI are present in the quartz and plagioclase crystals. The obtained data on the mineral compositions and their inclusions will allow to formulate hypothesis on the process which could occurs at the repository walls, decurrens from of the corrosive character (or not) of the fluids present in the FI, and propose measurements to avoid them

  9. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content.

    Science.gov (United States)

    Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles

    2014-04-23

    Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.

  10. Experimental studies on the effects of bolt parameters on the bearing characteristics of reinforced rock.

    Science.gov (United States)

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Zhang, Kai; Zhang, Minglei

    2016-01-01

    Roadways supported by bolts contain support structures that are built into the rock surrounding the roadway, referred to as reinforced rocks in this paper. Using physical model simulation, the paper investigates the bearing characteristics of the reinforced rock under different bolt parameters with incrementally increased load. The experimental results show that the stress at the measurement point inside the structure varies with the kinetic pressure. The stress increases slowly as the load is initially applied, displays accelerated growth in the middle of the loading application, and decreases or remains constant in the later stage of the loading application. The change in displacement of the surrounding rock exhibits the following characteristics: a slow increase when the load is first applied, accelerated growth in the middle stage, and violent growth in the later stage. There is a good correlation between the change in the measured stress and the change in the surrounding rock displacement. Increasing the density of the bolt support and the length and diameter of the bolt improves the load-bearing performance of the reinforced rock, including its strength, internal peak stress, and residual stress. Bolting improves the internal structure of the surrounding rocks, and the deterioration of the surrounding rock decreases with the distance between the bolt supports.

  11. Fluid and rock interaction in permeable volcanic rock

    International Nuclear Information System (INIS)

    Lindley, J.I.

    1985-01-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K 2 O as much as 130% of their original values at the expense of Na 2 O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta 18 O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta 18 of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals

  12. A Subsurface Soil Composition and Physical Properties Experiment to Address Mars Regolith Stratigraphy

    Science.gov (United States)

    Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.

    2004-01-01

    Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS

  13. Calculations of the Temperature Evolution of a Repository for Spent Fuel in Crystalline and Sedimentary Rocks

    International Nuclear Information System (INIS)

    Sato, R.; Sasaki, T.; Ando, K.; Smith, P.A.; Schneider, J.W.

    1998-08-01

    Thermal evolution is a factor influencing repository design, and must be considered in safety assessment, since many of the processes that affect the long-term safety are temperature dependent. This report presents calculations of the thermal evolution of a repository for spent nuclear fuel. The calculations are based on a provisional repository near-field design in which spent fuel is encapsulated in composite copper-steel canisters, which are emplaced centrally along the horizontal axes of repository tunnels, with the space around the canisters backfilled with bentonite. The temperature of these near-field components varies with time, due to the radiogenic heat produced by the spent fuel. The rate of heat production per canister depends on the initial composition of the fuel, its reactor history, the period of intermediate storage before final disposal and the loading of the canisters. The rate decreases with time, as shorter-lived radionuclides decay. The base-case calculation considers spent fuel that is assumed to generate 1000 W per canister, 40 years after unloading of the fuel from the reactor. The results of the base case calculation indicate that the temperatures at the bentonite/host rock interface, at the centre of the bentonite and at the bentonite/canister interface rise to 98 o C, 103 o C and 126 o C, respectively, before declining towards the ambient temperature of the host rock which, in the base case, is taken to be the crystalline basement of Northern Switzerland. In addition to the base case, parameter variations are examined that investigate the sensitivity of thermal evolution to alternative heat output, design specifications and to uncertainties in material properties. Key findings include (i), that an increase in heat generation to 1500 W per canister 40 years after unloading results in a significant increase of repository temperatures (e.g. at the bentonite/host rock interface, an increase of 22 o C is observed), (ii), that a decrease in

  14. Advances in elemental imaging of rocks using the AGLAE external microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Calligaro, T., E-mail: thomas.calligaro@culture.gouv.fr [Centre de Recherche et de Restauration des musees de France, CNRS UMR171, Palais du Louvre, 75001 Paris (France); Coquinot, Y.; Pichon, L.; Moignard, B. [Centre de Recherche et de Restauration des musees de France, CNRS UMR171, Palais du Louvre, 75001 Paris (France)

    2011-10-15

    Rocks are widely represented in cultural heritage materials. They constitute the major part of archaeological artefacts like stone carvings, tools and weapons, and are present in art works in various forms, such as precious stone inlays or paint pigments. The study of such geomaterials, which are usually constituted of a complex aggregate of mineral phases, aims at determining their exact nature, their provenance and at understanding their possible alteration. Since minerals are often composed of light elements, IBA techniques such as PIXE and PIGE, thanks to their ability to measure with high sensitivity elements down to lithium, should be well adapted to their analysis. However, the bulk composition classically obtained using macro-IBA on pelletized samples or using a broad beam hides the multi-phased nature of the rocks and considerably blurs the searched chemical fingerprint. In contrast, the small size of a nuclear microprobe allows imaging the chemical composition at a finer scale and, when implemented in air, appears ideally suited to analyse without sampling these often precious items. This paper illustrates chemical micro-imaging of rocks with examples performed with the AGLAE external nuclear microprobe: characterisation of microscopic inclusions in gems and detailed chemical mapping of rocks with special emphasis to lapis lazuli. Lapis lazuli is of particular interest in both archaeology and art history: after being employed in Asia since the 7th millennium BC to make carvings and beads, it was used in Medieval Europe as a precious blue painting pigment known as ultramarine. The chemical imaging of major and trace elements in lapis lazuli using external {mu}-PIXE has permitted to identify its mineral phases, to assign their trace elements and to evidence undetected elements. In combination with {mu}-XRD and {mu}-Raman spectrometry, this approach provides a clear mineralogical fingerprint useful to determine rock provenance and to authenticate artefacts

  15. Advances in elemental imaging of rocks using the AGLAE external microbeam

    International Nuclear Information System (INIS)

    Calligaro, T.; Coquinot, Y.; Pichon, L.; Moignard, B.

    2011-01-01

    Rocks are widely represented in cultural heritage materials. They constitute the major part of archaeological artefacts like stone carvings, tools and weapons, and are present in art works in various forms, such as precious stone inlays or paint pigments. The study of such geomaterials, which are usually constituted of a complex aggregate of mineral phases, aims at determining their exact nature, their provenance and at understanding their possible alteration. Since minerals are often composed of light elements, IBA techniques such as PIXE and PIGE, thanks to their ability to measure with high sensitivity elements down to lithium, should be well adapted to their analysis. However, the bulk composition classically obtained using macro-IBA on pelletized samples or using a broad beam hides the multi-phased nature of the rocks and considerably blurs the searched chemical fingerprint. In contrast, the small size of a nuclear microprobe allows imaging the chemical composition at a finer scale and, when implemented in air, appears ideally suited to analyse without sampling these often precious items. This paper illustrates chemical micro-imaging of rocks with examples performed with the AGLAE external nuclear microprobe: characterisation of microscopic inclusions in gems and detailed chemical mapping of rocks with special emphasis to lapis lazuli. Lapis lazuli is of particular interest in both archaeology and art history: after being employed in Asia since the 7th millennium BC to make carvings and beads, it was used in Medieval Europe as a precious blue painting pigment known as ultramarine. The chemical imaging of major and trace elements in lapis lazuli using external μ-PIXE has permitted to identify its mineral phases, to assign their trace elements and to evidence undetected elements. In combination with μ-XRD and μ-Raman spectrometry, this approach provides a clear mineralogical fingerprint useful to determine rock provenance and to authenticate artefacts of

  16. Geology and oil and gas assessment of the Mancos-Menefee Composite Total Petroleum System: Chapter 4 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    Science.gov (United States)

    Ridgley, J.L.; Condon, S.M.; Hatch, J.R.

    2013-01-01

    The Mancos-Menefee Composite Total Petroleum System (TPS) includes all genetically related hydrocarbons generated from organic-rich shales in the Cretaceous Mancos Shale and from carbonaceous shale, coal beds, and humate in the Cretaceous Menefee Formation of the Mesaverde Group. The system is called a composite total petroleum system because the exact source of the hydrocarbons in some of the reservoirs is not known. Reservoir rocks that contain hydrocarbons generated in Mancos and Menefee source beds are found in the Cretaceous Dakota Sandstone, at the base of the composite TPS, through the lower part of the Cliff House Sandstone of the Mesaverde Group, at the top. Source rocks in both the Mancos Shale and Menefee Formation entered the oil generation window in the late Eocene and continued to generate oil or gas into the late Miocene. Near the end of the Miocene in the San Juan Basin, subsidence ceased, hydrocarbon generation ceased, and the basin was uplifted and differentially eroded. Reservoirs are now underpressured.

  17. Petroleum source-rock potentials of the cretaceous transgressive-regressive sedimentary sequences of the Cauvery Basin

    Science.gov (United States)

    Chandra, Kuldeep; Philip, P. C.; Sridharan, P.; Chopra, V. S.; Rao, Brahmaji; Saha, P. K.

    The present work is an attempt to contribute to knowledge on the petroleum source-rock potentials of the marine claystones and shales of basins associated with passive continental margins where the source-rock developments are known to have been associated with the anoxic events in the Mesozoic era. Data on three key exploratory wells from three major depressions Ariyallur-Pondicherry, Thanjavur and Nagapattinam of the Cauvery Basin are described and discussed. The average total organic carbon contents of the transgressive Pre-Albian-Cinomanian and Coniacian/Santonian claystones/shales range from 1.44 and 1.16%, respectively. The transgressive/regressive Campanian/Maastrichtian claystones contain average total organic carbon varying from 0.62 to 1.19%. The kerogens in all the studied stratigraphic sequences are classified as type-III with Rock-Eval hydrogen indices varying from 30 to 275. The nearness of land masses to the depositional basin and the mainly clastic sedimentation resulted in accumulation and preservation of dominantly type-III kerogens. The Pre-Albian to Cinomanian sequences of peak transgressive zone deposited in deep marine environments have kerogens with a relatively greater proportion of type-II components with likely greater contribution of planktonic organic matters. The global anoxic event associated with the Albian-Cinomanian marine transgression, like in many other parts of the world, has pervaded the Cauvery Basin and favoured development of good source-rocks with type-III kerogens. The Coniacian-Campanian-Maastrichtian transgressive/regressive phase is identified to be relatively of lesser significance for development of good quality source-rocks.

  18. Depositional environment and source rock potential of Cenomanian and Turonian sedimentary rocks of the Tarfaya Basin, Southwest Morocco

    Energy Technology Data Exchange (ETDEWEB)

    Ghassal, B.I.; Littke, R.; Sachse, V.; Sindern, S.; Schwarzbauer, J.

    2016-07-01

    Detailed organic and inorganic geochemical analyses were used to assess the depositional environment and source rock potential of the Cenomanian and Turonian oil shale deposits in the Tarfaya Basin. This study is based on core samples from the Tarfaya Sondage-4 well that penetrated over 300m of Mid Cretaceous organic matter-rich deposits. A total of 242 samples were analyzed for total organic and inorganic carbon and selected samples for total sulfur and major elements as well as for organic petrology, Rock-Eval pyrolysis, Curie-Point-pyrolysis-gaschromatography-Mass-Spectrometry and molecular geochemistry of solvent extracts. Based on major elements the lower Cenomanian differs from the other intervals by higher silicate and lower carbonate contents. Moreover, the molecular geochemistry suggests anoxic bottom marine water conditions during the Cenomanian-Turonian Boundary Event (CTBE; Oceanic Anoxic Event 2: OAE2). As a proxy for the Sorg/Corg ratio, the ratio total thiophenes/total benzenes compounds was calculated from pyrolysate compositions. The results suggest that Sorg/ Corg is low in the lower Cenomanian, moderate in the upper Cenomanian, very high in the CTBE (CenomanianTuronian Boundary Event) and high in the Turonian samples. Rock-Eval data reveal that the lower Cenomanian is a moderately organic carbon-rich source rock with good potential to generate oil and gas upon thermal maturation. On the other hand, the samples from the upper Cenomanian to Turonian exhibit higher organic carbon content and can be classified as oil-prone source rocks. Based on Tmax data, all rocks are thermally immature. The microscopic investigations suggest dominance of submicroscopic organic matter in all samples and different contents of bituminite and alginite. The lower Cenomanian samples have little visible organic matter and no bituminite. The upper Cenomanian and CTBE samples are poor in bituminite and have rare visible organic matter, whereas the Turonian samples change

  19. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments

    Science.gov (United States)

    Rooney, A.D.; Selby, D.; Lewan, M.D.; Lillis, P.G.; Houzay, J.-P.

    2012-01-01

    elemental abundance data reveal limited transfer of Re and Os into the bitumen from a Type III kerogen in comparison to Type II-S kerogen (0.02% vs. 3.7%), suggesting that these metals are very tightly bound in Type III kerogen structure. The 187Os/188Os data from the pyrolysis generated Phosphoria bitumens display minor variation (4%) across the experimental temperatures, with values similar to that of the source rock. This indicates that the isotopic composition of the bitumen reflects the isotopic composition of the source rock at the time of petroleum generation. These data further support the premise that the Os isotopic composition of oils and bitumens can be used to fingerprint petroleum deposits to specific source rocks. Oil generated through the hydrous pyrolysis experiments does not contain appreciable quantities of Re or Os (~120 and ~3 ppt, respectively), in contrast to natural oils (2–50 ppb and 34–288 ppt for Re and Os, respectively), which may suggest that kinetic parameters are fundamental to the transfer of Re and Os from source rocks to oils. From this we hypothesise that, at the temperatures employed in hydrous pyrolysis, Re and Os are assimilated into the extracted rock as a result of cross-linking reactions.

  20. Disc cutter wear and rock texture in hard rock TBM tunneling

    International Nuclear Information System (INIS)

    Koizumi, Yu; Tsusaka, Kimikazu; Tanimoto, Chikaosa; Nakagawa, Shigeo; Fujita, Naoya

    2008-01-01

    Disc cutter wear in TBM tunneling is caused by initial fragmentation of a solid rock face (the primary fragmentation) and fragmentation of residual rock pieces between a cutterhead and the face (the secondary fragmentation). In two projects through sedimentary and granitic rocks, the authors investigated the relationships between the rate of cutter wear caused by the primary fragmentation, point load index and the grain size and contents of abrasive minerals. As a result, it was found that the tensile strength and the mineral contents of rocks significantly influenced the cutter wear in both projects and thus it is necessary to take into account of rock type. (author)

  1. The results of experimental studies of VLF–ULF electromagnetic emission by rock samples due to mechanical action

    OpenAIRE

    A. A. Panfilov

    2013-01-01

    The paper presents the results of laboratory experiments on electromagnetic emission excitation (electric component of electromagnetic field) by rock samples due to different forms of mechanical stress applications. It was shown that samples generate electric impulses with different spectra when the impact action, gradual loading or dynamic friction is applied. It was ascertained that level and spectral compositions of signals, generated by rock samples, cha...

  2. The neodymium stable isotope composition of the silicate Earth and chondrites

    Science.gov (United States)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  3. Rocks Can Wow? Yes, Rocks Can Wow!

    Science.gov (United States)

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  4. Geochemistry and Mineral Chemistry of Zeolites Bearing Basic Volcanic Rocks from the Boumehen-Roudehen Area, East of Tehran

    Directory of Open Access Journals (Sweden)

    Amir Ali Tabbakh Shabani

    2017-11-01

    Full Text Available Introduction The Upper Eocene basic volcanic rocks that have cropped out in Karaj formation in the Boumehen and Roudehen area in the east of Tehran are characterized by fibrous zeolites filling their vesicles, cavities and fractures creating amygdale texture. The study area is located structurally in the Central Alborz orogenic belt. The presence of large volumes of shoshonitic magma during the Middle to Late Eocene in southern–central Alborz implies that partial melting to produce shoshsonitic melts was not a local petrological event. Thus, their ages, formation processes, and interpretations are of regional tectonic significance. In this study, we present a detailed petrography, mineral chemistry, and whole-rock geochemistry of high-K (shoshonitic basic rocks to understand the petrogenesis and source region and to deduce the nature of the tectonomagmatic regime of the Alborz. Materials and methods In this study, we present new major and trace element data for a selection of 4 of the least altered samples by a combination of X-ray fluorescence (XRF and ICP-OES techniques at the Zarazma Mineral Studies Company. Mineral analyses were obtained by wavelength dispersive X-ray spectrometry on polished thin sections prepared from each rock sample described above for 12 elements using a Cameca SX-50 electron microprobe at the Istituto di Geologia e Geoingegneria Ambientale, C.N.R., University La Sapienza of Rome, Italy. Typical beam operating conditions were 15 kV and probe current of 15 nA. The accuracy of the analyses is 1% for major and 10% for minor elements. A total of 24 point analyses were collected. Results and Discussion The extent of alteration in the study rocks varies from slight to severe and shows porphyritic to glomeroporphyritic textures. Pyroxenes are generally subhedral to euhedral and occur as discrete crystals as well as aggregates. Olivine may occur only as relics filled with iddingsite, chlorite and calcite. Plagioclase is

  5. Radiometric analysis of Hazara phosphate rock and fertilizers in Pakistan

    International Nuclear Information System (INIS)

    Khan, K.; Khan, H.M.; Tufail, M.; Khatibeh, A.J.A.H.; Ahmad, N.

    1998-01-01

    Natural radioactivity due to 40 K, 226 Ra and 232 Th has been measured in phosphate rock samples, collected from various localities of Hazara division of Pakistan, and in locally prepared and imported fertilizer. For data acquisition and analysis, a high-purity germanium (HPGe) detector and a PC-based MCA were used. The 226 Ra content was very high and was found to vary from 307.7 Bq kg -1 to 617.5 Bq kg -1 . This can result in a significant radiation exposure if the rock and fertilizer are handled in places with poor ventilation that could lead to radon accumulation. These data can be used to determine the radioactivity being spread along with fertilizer on agricultural lands. (author)

  6. Effect of Micro-Structure on Fatigue Behavior of Intact Rocks under Completely Reversed Loading

    Directory of Open Access Journals (Sweden)

    Saeed Jamali Zavareh

    2017-01-01

    Full Text Available Rock formations and structures can be subjected to both static and dynamic loadings. Static loadings resulting from different sources such as gravity and tectonic forces and dynamic forces are intermittently transmitted via vibrations of the earth’s crust, through major earthquakes, rock bursts, rock blasting and drilling and also, traffic. Reaction of rocks to cyclic and repetitive stresses resulting from dynamic loads has been generally neglected with the exception of a few rather limited studies. In this study, , two crystalline quarry stones in Iran; (Natanz gabbro and Green onyx and one non-crystalline rock (Asmari limestone are used to evaluate the effect of micro-structure of intact rock on fatigue behavior. These rocks have different mineral compositions and formation conditions. A new apparatus based on rotating beam fatigue testing machine (R.R.Moore, which is commonly used for laboratory fatigue test in metals, is developed and fatigue behavior and existence of the endurance limit were evaluated for the mentioned rocks based on stress-life method. The obtained results in the variation of applied amplitude stress versus loading cycle number (S-N diagram followed common relationship in other materials. In addition, the endurance limit is perceived for all tested rocks. The results also illustrated that the endurance limits for all types of tested rocks in this study are ranged between 0.4 and 0.6 of their tensile strengths. The endurance limit to tensile strength fraction of green onyx and Natanz gabbro were approximated in a higher value compared to the Asmari limestone with non-crystalline micro-structure.

  7. Differences in composition of shallow-water marine benthic communities associated with two ophiolitic rock substrata

    Science.gov (United States)

    Bavestrello, Giorgio; Bo, Marzia; Betti, Federico; Canessa, Martina; Gaggero, Laura; Rindi, Fabio; Cattaneo-Vietti, Riccardo

    2018-01-01

    On marine rocky shores, several physical, chemical and biological processes operate to maintain the benthic assemblages' heterogeneity, but among the abiotic factors, the composition and texture of the rocky substrata have been only sporadically considered. However, biomineralogical studies have demonstrated an unsuspected ability of the benthic organisms to interact at different levels with rocky substrata. Therefore, the mineralogy of the substratum can affect the structure of benthic communities. To evaluate this hypothesis, the macrobenthic assemblages developed on two different ophiolitic rocks (serpentinites and metagabbros) in contact at a restricted stretch of the western Ligurian Riviera (western Mediterranean Sea), with identical environmental and climatic conditions, were analysed. Samplings were carried out at four bathymetric levels (+1m, 0m, -1m, and -3m respect to the mean sea level) and the analysis of the data evidenced differences in terms of species distribution and percent coverage. Algal communities growing on metagabbros were poorer in species richness and showed a much simpler structure when compared to the assemblages occurring on the serpentinites. The most widely distributed animal organism, the barnacle Chthamalus stellatus, was dominant on serpentinites, and virtually absent on metagabbros. Our results suggest a complex pattern of interactions between lithology and benthic organisms operating through processes of inhibition/facilitation related to the mineral properties of the substratum.

  8. Mitochondrial genome sequence of Egyptian swift Rock Pigeon (Columba livia breed Egyptian swift).

    Science.gov (United States)

    Li, Chun-Hong; Shi, Wei; Shi, Wan-Yu

    2015-06-01

    The Egyptian swift Rock Pigeon is a breed of fancy pigeon developed over many years of selective breeding. In this work, we report the complete mitochondrial genome sequence of Egyptian swift Rock Pigeon. The total length of the mitogenome was 17,239 bp and its overall base composition was estimated to be 30.2% for A, 24.0% for T, 31.9% for C and 13.9% for G, indicating an A-T (54.2%)-rich feature in the mitogenome. It contained the typical structure of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a non-coding control region (D-loop region). The complete mitochondrial genome sequence of Egyptian swift Rock Pigeon would serve as an important data set of the germplasm resources for further study.

  9. Development of artificial soft rock. Jinko nangan zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, K.; Nishioka, T. (The Tokyo Electric Power Co. Inc., Tokyo (Japan)); Nojiri, Y.; Kurihara, H.; Fukazawa, E. (Kajima Corp., Tokyo (Japan))

    1990-09-15

    When a part of the ground is replaced with artificial materials in the construction of important structures on soft rock foundations, it is desirable for the artificial materials to have the rigidity equivalent to that of the surrounding ground and to be stable in the long term. The article reports a success in the development and utilization of artificial soft rocks satisfying the above conditions by using a raw material produced locally at the construction site. The soft rock aimed at was mudstone belonging to the Neocene period, and the artificial material of soil-mortal system is selected as the equivalent having the same physical properties. Improvements in selection of solidification agents and cohesive soil were especially contrived: taht is, a new material for solidification was developed by mixing blast-furnace cement and gypsum; and the mudstone on the site was used as the cohesive soil by slurrying it to adjust its grain size to homogeneous composition. The artificial soft rock resulting from the above contrivance showed excellent flow, self-leveling, and filling properties at the stage of fresh mortar, and the physical properties after hardning was very similar to those of the natural ground. The long-term stability was also confirmed by the tests on hydration reaction and environmental factors. 2 figs., 1 tab.

  10. Rock Physics

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2017-01-01

    Rock physics is the discipline linking petrophysical properties as derived from borehole data to surface based geophysical exploration data. It can involve interpretation of both elastic wave propagation and electrical conductivity, but in this chapter focus is on elasticity. Rock physics is based...... on continuum mechanics, and the theory of elasticity developed for statics becomes the key to petrophysical interpretation of velocity of elastic waves. In practice, rock physics involves interpretation of well logs including vertical seismic profiling (VSP) and analysis of core samples. The results...

  11. Mineral and rock chemistry of Mata da Corda Kamafugitic Rocks (Minas Gerais State, Brazil)

    International Nuclear Information System (INIS)

    Albuquerque Sgarbi, Patricia B. de; Valenca, Joel G.

    1995-01-01

    The volcanic rocks of the Mata da Corda Formation (Upper Cretaceous) in Minas Gerais, Brazil, are mafic potassic to ultra potassic rocks of kamafugitic affinity containing essentially clinopyroxenes, perovskite, magnetite and occasionally olivine, phlogopite, melilite pseudomorphs and apatite. The felsic phases are kalsilite and/or leucite pseudomorphs. The rocks are classified as mafitites, leucitites and kalsilitites. The analysis of the available data of the rocks studied, based on the relevant aspects of the main proposals for the classification of alkaline mafic to ultramafic potassic rocks leads to the conclusion that Sahama's (1974) proposal to divide potassium rich alkaline rocks in two large families is the one to which the Mata da Corda rocks adapt best. According to this and the data in the literature on the mineralogy and mineral and rock chemistries of the other similar occurrences, these rocks may be interpreted as alkaline potassic to ultra potassic rocks of hamafugitic affinity. 11 figs., 5 tabs

  12. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    , known as colloids, transport radionuclides up to the ground surface? RNR Experiment: An exchangeable cell in a specially built probe makes it possible to conduct experiments on how radionuclides move. True: Tracer tests are supposed to increase our understanding of how radionuclides are transported and answer the question whether results obtained on one scale are also valid on another. LTDE: To what extent can radionuclides migrate out into micropores in the rock? And how long do they stay there? Matrix Fluid Chemistry Experiment: The water in the rock's pores can differ in terms of composition and changes from the water running in the fractures. Rex Project: Approximately one year after the repository has been closed, all oxygen will have been consumed by the minerals and bacteria in the rock. The bacteria in particular are responsible for this consumption. Microbe Project: Can subterranean microbes keep a deep repository for spent nuclear fuel oxygen-free and how do they influence radionuclide transport?

  13. Characterisation and geostatistical analysis of clay rocks in underground facilities using hyper-spectral images

    International Nuclear Information System (INIS)

    Becker, J.K.; Marschall, P.; Brunner, P.; Cholet, C.; Renard, P.; Buckley, S.; Kurz, T.

    2012-01-01

    Document available in extended abstract form only. Flow and transport processes in geological formations are controlled by the porosity and permeability which in turn are mainly controlled by the fabric and the mineralogical composition of the rock. For the assessment of transport processes in water-saturated Clay-stone formations, the relevant scales are ranging essentially from kilometers to nanometers. The spatial variability of the mineralogical composition is a key indicator for the separation of transport scales and for the derivation of the effective transport properties at a given scale. Various laboratory and in-situ techniques are available for characterizing the mineralogical composition of a rock on different scales. The imaging spectroscopy presented in this paper is a new site investigation method suitable for mapping the mineralogical composition of geological formations in 2D on a large range of scales. A combination of imaging spectrometry with other site characterization methods allows the inference of the spatial variability of the mineralogical composition in 3D over a wide range of scales with the help of advanced geostatistical methods. The method of image spectrometry utilizes the fact that the reflection of electromagnetic radiation from a surface is a function of the wavelength, the chemical-mineralogical surface properties, and physical parameters such as the grain size and surface roughness. In remote sensing applications using the sun as the light source, the reflectance is measured within the visible and infrared range, according to the atmospheric transmissibility. Many rock-forming minerals exhibit diagnostic absorption features within this range, which are caused by electronic and vibrational processes within the crystal lattice. The exact wavelength of an absorption feature is controlled by the type of ion, as well as the position of the ion within the lattice. Spectral signatures of minerals are described by a number of authors

  14. The results of experimental studies of VLF-ULF electromagnetic emission by rock samples due to mechanical action

    Science.gov (United States)

    Panfilov, A. A.

    2014-06-01

    The paper presents the results of laboratory experiments on electromagnetic emissions excitation (the electric component of electromagnetic fields) by rock samples due to different forms of mechanical stress applications. It was shown that samples generate electric impulses with different spectra when the impact action, gradual loading or dynamic friction is applied. It was ascertained that level and spectral compositions of signals, generated by rock samples, change with an increasing number of hits. It was found that strong electromagnetic signals, generated while rock samples were fracturing, were accompanied by repetitive weak but perceptible variations in the electric field intensity in short frequency ranges.

  15. Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition

    Science.gov (United States)

    Lamy, F.; Hebbeln, D.; Wefer, G.

    The regional patterns of texture and composition of modern continental slope and pelagic sediments off Chile between 25°S and 43°S reflect the latitudinal segmentation of geological, morphological, and climatic features of the continental hinterland. Grain-size characteristics are controlled by the grain-size of source rocks, the weathering regime, and mode of sediment input (eolian off northern Chile vs fluvial further south). Bulk-mineral assemblages reveal a low grade of maturity. Regional variations are governed by the source-rock composition of the different geological terranes and the relative source-rock contribution of the Coastal Range and Andes, as controlled by the continental hydrology. The relative abundance of clay minerals is also predominantly influenced by the source-rock composition and partly by continental smectite neoformation. Latitudinal variations of illite crystallinities along the Chilean continental slope (and west of the Peru-Chile trench) clearly reflect modifications of the weathering regime which correspond to the strong climatic zonation of Chile.

  16. Direct observations of rock moisture, a hidden component of the hydrologic cycle

    Science.gov (United States)

    Rempe, Daniella M.; Dietrich, William E.

    2018-03-01

    Recent theory and field observations suggest that a systematically varying weathering zone, that can be tens of meters thick, commonly develops in the bedrock underlying hillslopes. Weathering turns otherwise poorly conductive bedrock into a dynamic water storage reservoir. Infiltrating precipitation typically will pass through unsaturated weathered bedrock before reaching groundwater and running off to streams. This invisible and difficult to access unsaturated zone is virtually unexplored compared with the surface soil mantle. We have proposed the term “rock moisture” to describe the exchangeable water stored in the unsaturated zone in weathered bedrock, purposely choosing a term parallel to, but distinct from, soil moisture, because weathered bedrock is a distinctly different material that is distributed across landscapes independently of soil thickness. Here, we report a multiyear intensive campaign of quantifying rock moisture across a hillslope underlain by a thick weathered bedrock zone using repeat neutron probe measurements in a suite of boreholes. Rock moisture storage accumulates in the wet season, reaches a characteristic upper value, and rapidly passes any additional rainfall downward to groundwater. Hence, rock moisture storage mediates the initiation and magnitude of recharge and runoff. In the dry season, rock moisture storage is gradually depleted by trees for transpiration, leading to a common lower value at the end of the dry season. Up to 27% of the annual rainfall is seasonally stored as rock moisture. Significant rock moisture storage is likely common, and yet it is missing from hydrologic and land-surface models used to predict regional and global climate.

  17. Direct observations of rock moisture, a hidden component of the hydrologic cycle.

    Science.gov (United States)

    Rempe, Daniella M; Dietrich, William E

    2018-03-13

    Recent theory and field observations suggest that a systematically varying weathering zone, that can be tens of meters thick, commonly develops in the bedrock underlying hillslopes. Weathering turns otherwise poorly conductive bedrock into a dynamic water storage reservoir. Infiltrating precipitation typically will pass through unsaturated weathered bedrock before reaching groundwater and running off to streams. This invisible and difficult to access unsaturated zone is virtually unexplored compared with the surface soil mantle. We have proposed the term "rock moisture" to describe the exchangeable water stored in the unsaturated zone in weathered bedrock, purposely choosing a term parallel to, but distinct from, soil moisture, because weathered bedrock is a distinctly different material that is distributed across landscapes independently of soil thickness. Here, we report a multiyear intensive campaign of quantifying rock moisture across a hillslope underlain by a thick weathered bedrock zone using repeat neutron probe measurements in a suite of boreholes. Rock moisture storage accumulates in the wet season, reaches a characteristic upper value, and rapidly passes any additional rainfall downward to groundwater. Hence, rock moisture storage mediates the initiation and magnitude of recharge and runoff. In the dry season, rock moisture storage is gradually depleted by trees for transpiration, leading to a common lower value at the end of the dry season. Up to 27% of the annual rainfall is seasonally stored as rock moisture. Significant rock moisture storage is likely common, and yet it is missing from hydrologic and land-surface models used to predict regional and global climate.

  18. APXS of First Rocks Encountered by Curiosity in Gale Crater: Geochemical Diversity and Volatile Element (K and ZN) Enrichment

    Science.gov (United States)

    Schmidt, M. E.; King, P. L.; Gellert, R.; Elliott, B.; Thompson, L.; Berger, J.; Bridges, J.; Campbell, J. L; Grotzinger, J.; Hurowitz, J.; hide

    2013-01-01

    The Alpha Particle X-ray spectrometer (APXS) on the Curiosity rover in Gale Crater [1] is the 4th such instrument to have landed on Mars [2]. Along the rover's traverse down-section toward Glenelg (through sol 102), the APXS has examined four rocks and one soil [3]. Gale rocks are geochemically diverse and expand the range of Martian rock compositions to include high volatile and alkali contents (up to 3.0 wt% K2O) with high Fe and Mn (up to 29.2% FeO*).

  19. Geochronology of the basement rocks, Amazonas Territory, Venezuela and the tectonic evolution of the western Guiana Shield

    Energy Technology Data Exchange (ETDEWEB)

    Gaudette, H E; Olszewski, Jr, W J

    1985-01-01

    The Amazonas Territory of Venezuela is a large area of Precambrian basement rocks overlain in some locales by the supracrustal sedimentary and volcanic rocks of the Roraima Formation. The basement rocks are medium to high grade gneisses with both igneous and sedimentary protoliths, plutonic rocks ranging in composition from granite to tonalite, and meta-volcanic rocks. Rb-Sr whole rock, and U-Pb isotopic analyses of zircons indicate a period of medium to high grade metamorphism and intrusion from 1860 to 1760 Ma. Post-tectonic plutonic activity continued to 1550 Ma. The volcanic rocks of the Roraima Formation in Venezuela give an age of 1746 Ma comparable to volcanic rocks of the Roraima Formation in other parts of the Guiana Shield. The ages and distribution of the basement rocks suggest the presence of a tectonic zone, approximately coincident with the Venezuelan-Colombian border, representing an active orogenic boundary between distinct tectonic provinces. The rocks to the northeast of this zone are part of the Trans-Amazonian of the Guiana Shield, while to the southwest and in adjacent Brazil and Colombia, new younger continental crust has been developed and cratonized. We suggest a model of collision and subduction followed by a chan0140n tectonic style to extensional-vertical to produce the basement rocks of the western Guiana Shield in the Amazonas Territory. (Auth.). 20 refs.; 13 figs.; 2 tabs.

  20. Evidentiary requirements to identify potentially acceptable sites (PAS) in crystalline rock

    International Nuclear Information System (INIS)

    Comella, P.A.; Smith, B.H.

    1985-01-01

    This report contains information on the evidentiary requirements to identify potentially acceptable sites in crystalline rock for waste disposal. Topics addressed include: chronology, key regulatory assumptions, statutory framework for identifying potentially acceptable sites, application of 10 disqualifiers, consideration of favorable and potentially adverse conditions, a composite favorability analysis, and a proposed outline for PAS identification decision document

  1. Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole. Influence of hydraulic rock properties on the water saturation phase

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, J.

    1999-12-01

    The wetting process in deposition holes designed according to the KBS-3-concept has been simulated with finite element calculations of the thermo-hydro-mechanical processes in the buffer, backfill and surrounding rock. The buffer material has been modelled according to the preliminary material models developed for swelling clay. The properties of the rock have been varied in order to investigate the influence of the rock properties and the hydraulic conditions on the wetting processes. In the modelling of the test holes the permeability of the rock matrix, the water supply from the backfill, the water pressure in the surrounding rock, the permeability of the disturbed zone around the deposition hole, the water retention properties of the rock, and the transmissivity of two fractures intersecting the deposition hole have been varied. The calculations indicate that the wetting takes about 5 years if the water pressure in the rock is high and if the permeability of the rock is so high that the properties of the bentonite determine the wetting rate. However, it may take considerably more than 30 years if the rock is very tight and the water pressure in the rock is low. The calculations also show that the influence of the rock structure is rather large except for the influence of the transmissivity T of the fractures, which turned out to be insignificant for the values used in the calculations

  2. An Online Social Networking Approach to Reinforce Learning of Rocks and Minerals

    Science.gov (United States)

    Kennelly, Patrick

    2009-01-01

    Numerous and varied methods are used in introductory Earth science and geology classes to help students learn about rocks and minerals, such as classroom lectures, laboratory specimen identification, and field trips. This paper reports on a method using online social networking. The choice of this forum was based on two criteria. First, many…

  3. Mineralogy of metasomatic rocks and geochronology of the Olhovka porphyry-copper deposit, Chukotka, Russia

    Science.gov (United States)

    Rogacheva, Lyuba; Baksheev, Ivan

    2010-05-01

    The Olkhovka porphyry-copper deposit located on the border of foreland of the Okhotsk-Chukotka volcanic belt (OCVB) and a ledge composed of the Late Jurassic-Early Cretaceous Uda-Murgal arc (J3-K1) rocks is hosted by monzonite stock attributed to the Upper Cretaceous Kavralyan complex - K2) We estimated age of the Olkhovka monzonite by Rb-Sr and U-Pb methods. Rb-Sr age was determine om the basis of isotopic analysis of 8 monomineralic samples (potassium feldspar, plagioclase, amphibole, and dark mica). Isochron constructed on the basis of Rb-Sr data corresponds to the age of 78 + 2.6 Ma (MSWD=0.23). The Rb-Sr age is supported by U-Pb data derived from zircon of the same rock. One hundred and three single crystals of zircon were analyzed. Uranium content ranges from 52.66 ppm to 579.64 ppm; U/Th isotopic ratio varies from 0.567 to 1.746; age is 78.02+0.65 Ma (MSWD = 2.8). Monzonite is propylitized in variable degree. Propylite is composed of actinolite, chlorite, albite, quartz, and calcite. Propylite are cut by quartz-tourmaline veins. In addition, quartz-tourmaline metasomatic rock was identified in rhyolite ignimbrite out of the stock. Microscopically, tourmaline crystals of both types are oscilatory zoned that is caused by variable Fe content. Tourmalines of both assemblages can be classified as intermediate member of the schorl ("oxy-schorl")-dravite ("oxy-dravite") series. The Fetot/ (Fetot+Mg) varies from 0.31 to 0.95 in propylitic tourmaline and from 0.11 to 0.49, in quartz-tourmaline altered rocks from ignimbrite. Despite similar composition of both tourmalines, the major isomorphic substitutions in them are different. In propylite tourmaline, it is Fe → Al, whereas in the second case, it is Fe → Mg with certain effect of the Fe → Al type. Fe → Al isomorphic substitution is typical of porphyry style deposits (Baksheev et al., 2009 [1]). Therefore, we can conclude that quartz-tourmaline alteration in ignimbrite does not related to the formation of

  4. Rock History and Culture

    OpenAIRE

    Gonzalez, Éric

    2013-01-01

    Two ambitious works written by French-speaking scholars tackle rock music as a research object, from different but complementary perspectives. Both are a definite must-read for anyone interested in the contextualisation of rock music in western popular culture. In Une histoire musicale du rock (i.e. A Musical History of Rock), rock music is approached from the point of view of the people – musicians and industry – behind the music. Christophe Pirenne endeavours to examine that field from a m...

  5. Nagra technical report 14-02, Geological basics - Dossier VI - Barrier properties of proposed host rock sediments and neighbouring rock; SGT Etappe 2: Vorschlag weiter zu untersuchender geologischer Standortgebiete mit zugehörigen Standortarealen für die Oberflächenanlage -- Geologische Grundlagen -- Dossier VI -- Barriereneigenschaften der Wirt- und Rahmengesteine

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, A.; Deplazes, G.; Traber, D.; Marschall, P. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Mazurek, M.; Gimmi, T.; Maeder, U. [Institute of Geological Sciences, University of Berne, Berne (Switzerland)

    2014-12-15

    This dossier is the sixth of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. It discusses the barrier properties of the proposed host rock sediments and neighbouring rock layers. The mineralogical composition of the host rocks are discussed as are their pore densities and hydrological properties. Diffusion aspects are discussed. The aquifer systems in the proposed depository areas and their classification are looked at. The barrier properties of the host rocks and those of neighbouring sediments are discussed. Finally, modelling concepts and parameters for the transport of radionuclides in the rocks are discussed.

  6. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    Science.gov (United States)

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  7. Role of crustal assimilation and basement compositions in the petrogenesis of differentiated intraplate volcanic rocks: a case study from the Siebengebirge Volcanic Field, Germany

    Science.gov (United States)

    Schneider, K. P.; Kirchenbaur, M.; Fonseca, R. O. C.; Kasper, H. U.; Münker, C.; Froitzheim, N.

    2016-06-01

    The Siebengebirge Volcanic Field (SVF) in western Germany is part of the Cenozoic Central European Volcanic Province. Amongst these volcanic fields, the relatively small SVF comprises the entire range from silica-undersaturated mafic lavas to both silica-undersaturated and silica-saturated differentiated lavas. Owing to this circumstance, the SVF represents a valuable study area representative of intraplate volcanism in Europe. Compositions of the felsic lavas can shed some new light on differentiation of intraplate magmas and on the extent and composition of potential crustal assimilation processes. In this study, we provide detailed petrographic and geochemical data for various differentiated SVF lavas, including major and trace element concentrations as well as Sr-Nd-Hf-Pb isotope compositions. Samples include tephriphonolites, latites, and trachytes with SiO2 contents ranging between 53 and 66 wt%. If compared to previously published compositions of mafic SVF lavas, relatively unradiogenic 143Nd/144Nd and 176Hf/177Hf coupled with radiogenic 87Sr/86Sr and 207Pb/204Pb lead to the interpretation that the differentiated volcanic rocks have assimilated significant amounts of lower crustal mafic granulites like the ones found as xenoliths in the nearby Eifel volcanic field. These crustal contaminants should possess unradiogenic 143Nd/144Nd and 176Hf/177Hf, radiogenic 87Sr/86Sr, and highly radiogenic 207Pb/204Pb compositions requiring the presence of ancient components in the central European lower crust that are not sampled on the surface. Using energy-constrained assimilation-fractional crystallisation (EC-AFC) model calculations, differentiation of the SVF lithologies can be modelled by approximately 39-47 % fractional crystallisation and 6-15 % crustal assimilation. Notably, the transition from silica-undersaturated to silica-saturated compositions of many felsic lavas in the SVF that is difficult to account for in closed-system models is also well explained by

  8. Is there a geochemical link between volcanic and plutonic rocks in the Organ Mountains caldera?

    Science.gov (United States)

    Memeti, V.; Davidson, J.

    2013-12-01

    Results from separate volcanic and plutonic studies have led to inconsistent conclusions regarding the origins and thus links between volcanic and plutonic systems in continental arcs and the magmatic processes and time scales responsible for their compositional variations. Some have suggested that there is a geochemical and geochronological disconnect between volcanic and plutonic rocks and hence have questioned the existence of magma mush columns beneath active volcanoes. Investigating contemporary volcanic and plutonic rocks that are spatially connected is thus critical in exploring these issues. The ca. 36 Ma Organ Mountains caldera in New Mexico, USA, represents such a system exposing contemporaneous volcanic and plutonic rocks juxtaposed at the surface due to tilting during extensional tectonics along the Rio Grande Rift. Detailed geologic and structural mapping [1] and 40Ar/39Ar ages of both volcanics and plutons [2] demonstrate the spatial and temporal connection of both rock types with active magmatism over >2.5 myr. Three caldera-forming ignimbrites erupted within 600 kyr [2] from this system with a total erupted volume of 500-1,000 km3 as well as less voluminous pre- and post-caldera trachyte and andesite lavas. The ignimbrite sequence ranges from a crystal-poor, high-SiO2 rhyolite at the base to a more crystal-rich, low-SiO2 rhyolite at the top. Compositional zoning with quartz-monzonite at the base grading to syenite and alaskite at the top is also found in the Organ Needle pluton, the main intrusion, which is interpreted to be the source for the ignimbrites [1]. Other contemporaneous and slightly younger plutons have dioritic to leucogranitic compositions. We examined both volcanic and plutonic rocks with petrography and their textural variations with color cathodoluminescence, and used whole rock element and Sr, Nd and Pb isotope geochemistry to constrain magma compositions and origins. Electron microprobe analyses on feldspars have been completed to

  9. Ultrasonic constraint of the microfracture anisotropy of flysch rocks from the Podhale Synclinorium (Poland)

    Science.gov (United States)

    Kłopotowska, Agnieszka

    2018-01-01

    This paper attempts to show the relationship between joints observed in flysch formations in the field and microfracture fabrics invisible to the naked eye in hand specimens. Ultrasonic measurements demonstrate that the intensity and orientations of domains "memorised" by rock specimens are associated with the historical stresses within the rock mass rather than the rock lamination. The spatial orientations of these microfractures have been measured, and their dynamic-elastic properties have been found to correlate with the orientation of macroscopic joint sets measured in the field. The elastic properties measured vary because of sedimentary diagenetic processes that occured during the tectonic deformations of these flysch rocks in the Podhale Synclinorium of Poland. The structural discontinuities detected by ultrasonic measurements can be perceived as an incipient phase of the macroscopic joints already visible in the field and are attributed to the in situ residual tectonic stresses. Such historical stresses impart a hidden mechanical anisotropy to the entire flysch sequence. The microfractures will develop into macroscopic joints during future relaxation of the exposed rock mass. Understanding the nature and orientation of the invisible microfracture anisotropy that will become macroscopic in the future is vital for the safe and efficient engineering of any rock mass.

  10. Preparation of soda-lime glass using rock wool waste; Preparacao de vidros sodo-calcicos utilizando residuo de la de rocha

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, F.C.; Della, V.P. [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil); Ballmann, T.J.S.; Folgueras, M.V. [Universidade do Estado de Santa Catarina (UESC), Joinville, SC (Brazil); Junkes, J.A., E-mail: janajunkes@gmail.com [Centro Universitario Tiradentes, Maceio, AL (Brazil)

    2016-10-15

    Discarded by the mining industry during the maintenance stoppages of pelletizing furnaces, rock wool has in its composition SiO{sub 2} (56%), Na{sub 2} O (12%) and CaO (7%) propitious for obtaining soda-lime glasses. Under this focus, this work developed soda-lime glasses formulations, using as main raw-material rock wool waste in proportions from 50 to 100% by adjusting the chemical composition of the formulations with sand, sodium and calcium carbonates, as silica, soda and lime sources, respectively. In some formulations the sodium carbonate was replaced by sodium sulfate, which acts as a refining agent, improving homogenization and reducing the bubble formation during the melting. Initially, the raw-materials were evaluated by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and thermogravimetric analysis. The tests showed that the rock wool waste has potential to be used in soda-lime glasses production, however, the chemical composition must be corrected. After knowing the waste potential, seven mixtures were prepared and molten at 1550 °C for 1 to 2 h. It has been found that the maximum rock wool waste percentage that can be used is between 60 and 80%, and that the 2 h melting time resulted in more homogeneous glasses and fewer bubbles according to the addition of sodium sulfate which is efficient for bubbles removal. (author)

  11. The importance of stress percolation patterns in rocks and other polycrystalline materials.

    Science.gov (United States)

    Burnley, P C

    2013-01-01

    A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties.

  12. Frictional processes during flank motion at Mount Etna (Italy): experimental characterisation of slip on similar and dissimilar volcanic and sedimentary rocks.

    Science.gov (United States)

    Rozanski, Wojciech; Lavallee, Yan; Kendrick, Jackie; Castagna, Angela; Mitchell, Thomas; Heap, Michael; Vinciguerra, Sergio; Hirose, Takehiro; Dingwell, Donald

    2015-04-01

    The edifice of Mount Etna (Italy) is structurally unstable, exhibiting a near continuous ESE seaward sliding along a set of faults due to interplay between regional tectonics, gravity instability and magma intrusion. Continuous seismic and ground deformation monitoring reveals the resulting large-scale flank motion at variable rates. The mechanisms controlling this faulting kinetic remains, however, poorly constrained. Examination of the fault zones reveals a range of rock types along the different fault segments: fresh and altered basalt, clay and limestone. As lithological contrasts can jeopardise the structural stability of an edifice, we experimentally investigate the frictional properties of these rocks using low- to high-velocity-rotary shear tests on similar and dissimilar rocks to better understand episodes of slow flank motion as well as rapid and catastrophic sector collapse events. The first set of experiments was performed at velocities up to 1.2 m/s and at normal stresses of 1.5 MPa, commensurate with depths of the contacts seen in the Etna edifice. Friction experiments on clay gouge shows the strong rate-weakening dependence of slip in this material as well as the release of carbon dioxide. Friction experiments on solid rocks show a wider range of mechanical behaviour. At high velocity (>0.6 m/s) volcanic rocks tend to melt whereas the clay and limestone do not; rather they decarbonate, which prevents the rock from achieving the temperature required for melting. Experiments on dissimilar rocks clearly show that composition of host rocks affects the composition and viscosity of the resultant frictional melt, which can have a dramatic effect on shear stress leading to fault weakening or strengthening depending on the combination of host rock samples. A series of low- to moderate-slip velocity experiments is now being conducted to complement our dataset and provide a more complete rock friction model applicable to Mount Etna.

  13. Expected environment for waste packages in a salt repository

    International Nuclear Information System (INIS)

    Pederson, L.R.; Clark, D.E.; Hodges, F.N.; McVay, G.L.; Rai, D.

    1983-01-01

    This paper discusses results of recent efforts to define the very near-field (within approximately 2 m) environmental conditions to which waste packages will be exposed in a salt repository. These conditions must be considered in the experimental design for waste package materials testing, which includes corrosion of barrier materials and leaching of waste forms. Site-specific brine compositions have been determined, and standard brine compositions have been selected for testing purposes. Actual brine compositions will vary depending on origin, temperature, irradiation history, and contact with irradiated rock salt. Results of irradiating rock salt, synthetic brines, rock salt/brine mixtures, and reactions of irradiated rock salt with brine solutions are reported. 38 references, 3 figures, 2 tables

  14. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    Science.gov (United States)

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  15. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh

    2015-10-01

    melting of the upper mantle. Sulfide mineralization in the complex is confined to cumulate rocks in northern part of ophiolite column. The mineralization is olivine-rich clinopyroxene and wehrlite. Petrographic investigation of sulfides in host ultramafics indicated two sulfide generations. In the first generation, primary magmatic sulfides occurred as interstitial disseminations, generally as anhedral grains. In the second generation, sulfides formed as veinlets along host rock fractures. The primary sulfides include pyrrhotite, pentlandite, and secondary digenite and pyrite. The primary sulfide content increases with increasing size and amount of clinopyroxene in host rocks. Associated chromian spinels in host ultramafics display disseminated and massive textures. Discussion Generally, mineralization in ophiolites is controlled by two major steps: a partial melting of upper mantle rocks and b crystal fractionation in a magma chamber (Rajabzadeh and Moosavinasab, 2013. The chemical compositions of the analyzed minerals were then used in estimating the conditions in these two steps. The composition of chromian spinel corresponds to chromite of boninitic melts formed in supra-subduction zone environments. Boninitic melts are produced at high degrees of partial melting of mantle peridotites in the presence of water (Edwards et al., 2002. Silicates of the host rocks are mainly clinopyroxene (diopside and augite of the composition Wo47.50 En45.48 Fs3.4, olivine Fo92 and orthopyroxene (enstatite - bronzite of En85 to En88. The main host ultramafic rocks of sulfides are wehrlite and clinopyroxenite, indicating that the sulfide saturation occurred during magmatic evolution of these rocks. This suggests that sulfide mineralization will occur in the northern part the ophiolite. The sulfide grains are anhedral, amoeboidal in shape, and appeared as disseminated interstitial phases, indicating that they were trapped as liquid phases during increase in sulfur fugacity and decrease in

  16. Size fraction assaying of gold bearing rocks (for gold extraction) by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmed, K.; Dampare, S.B.; Addo, M.A.; Osae, S.; Adotey, D.K.; Adomako, D.

    2005-01-01

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite sample was determined as a function of particle size by using Instrumental Neutron Activation Analysis. The concentrations of gold for the corresponding particle sizes were 16.4 ± 0.17mg/kg for sizes <63μm; 161± 0.75 mg/kg for 63 - 125 μm, 0.53 + 0.03 mg/kg for 125 - 250 μm, 4.66± 0.07 mg/kg for 250 - 355 μm, 1.55 ± 0.06 for 355 - 425 μm, 0.80 ± 0.008 mg/kg for 425 -1000 μm, and 1.27 + 0.05 mg/kg for 1000-2000 μm. The average gold content in a 7.127 kg composite sample based on particle size found to be 3.08 mg/kg. (au)

  17. Ba-rich sanidine megacrysts in trachytic rocks of Eslamy volcano, NW Iran

    Science.gov (United States)

    Aßbichler, Donjá; Asadpour, Manijeh; Heuss-Aßbichler, Soraya; Kunzmann, Thomas

    2016-04-01

    The Eslamy volcano is located on a peninsula at the eastern coast of Urumieh lake, NW Iran. The complex stratovolcano with gentle slope flanks exposes a collapsed caldera in the central part. Specific features are different sanidine rich rocks that occur in form of ejecta and flows. According to the field observations they are products of one volcanic event. XRF measurements show they all have trachytic compositions. Typical for this locality are the large sanidine phenocrysts. In the trachytic flow the sanidine crystals reach average size of ~4 cm embedded in a greenish-blue matrix consisting mainly of crystallized feldspar and subordinate pyroxen. Occasionally feldspar megacrysts of approx. 10 cm were observed. Na content of the sanidine megacrysts varies between 0.05 - 0.5 pfu with higher concentrations in the cores. Furthermore they show oscillatory zoning patterns caused by variations of Ba content (0-0.04 pfu). The matrix of the trachytic flow consist mainly of interlocking sanidine crystals (0.05-0.45 pfu Na) partly with Ba-rich cores containing up to 0.06 pfu Ba. In contrast to the megacrysts they show slightly higher Fe contents (0.025-0.035 pfu). The volcanic ejecta with bombs of approx. 50 cm in size were found in one distinct layer within a pyroclastic horizon. The average diameter of the feldspar phenocrysts is much smaller (0.5-2 cm). Sanidine is the main phase of these rocks (up to 80 %). As mafic phase up to 30 % pyroxen (mainly diospide) ± biotite can be observed. Accessories are magnetite ± apatite ± titanite ± zircon. In contrast to the flow rocks the main phase of the matrix of the ejecta is always glass with higher Fe2O3 (total) contents (up to 6 wt.-%) indicating a fast cooling of the sample due to ejection. They are completely depleted in Ba. In two samples zoned feldspar relicts enclosed in glass show remolten rims. Similar to flow rocks the feldspar phenocrysts of all ejecta show a complex zoning pattern, e.g. three samples expose high

  18. Chemical composition and evolution of tourmaline-supergroup minerals from the Sb hydrothermal veins in Rožňava area, Western Carpathians, Slovakia

    Science.gov (United States)

    Bačík, Peter; Dikej, Jakub; Fridrichová, Jana; Miglierini, Marcel; Števko, Martin

    2017-09-01

    Tourmaline-supergroup minerals are common gangue minerals in Sb-hydrothermal veins on Betliar - Straková, Čučma - Gabriela and Rožňava - Peter-Pavol vein deposits in the Rožňava area, Slovakia. Tourmaline-supergroup minerals form relatively large prismatic to radial aggregates of parallel black to greyish-black crystals. Tourmaline-supergroup minerals from Betliar - Straková and Rožňava - Peter-Pavol are almost homogeneous with intermediate schorl-dravite composition. Čučma - Gabriela tourmaline have distinct zoning with massive core of the schorlitic-to-feruvitic shifting to schorlitic-to-dravitic composition, and dravitic to magnesio-foititic rim. The tourmaline composition is influenced by two main substitutions, namely Ca(Mg,Fe)Na-1Al-1 and X □AlNa-1(Mg,Fe)-1. Betliar - Straková and Rožňava - Peter-Pavol tourmaline-supergroup minerals exhibit only small extents of the X □AlNa-1(Mg,Fe)-1 substitution. This substitution shifts the composition to magnesio-foitite in Čučma - Gabriela tourmaline. The decrease of Al in the core of Čučma - Gabriela tourmaline crystals is caused by extensive Ca(Mg,Fe)Na-1Al-1 substitution. The unit-cell dimensions of all investigated tourmaline-supergroup minerals indicate an octahedral disorder with the Z (Fe3++Mg) proportion calculated from empirical equations varying between 0.85 and 0.87 apfu (atoms per formula unit). Based on Mössbauer spectra, the Z Fe3+ content varied between 0.25 apfu in Betliar - Straková tourmaline and 0.45 apfu in Čučma - Gabriela sample. Based on Fe/(Fe + Mg) ratio, Betliar - Straková tourmaline is slightly enriched in Fe compared to Rožňava - Peter-Pavol, suggesting the impact of the host-rock composition; first are grown in Fe-richer acidic metarhyolitic rocks, latter in metapelites. In Čučma - Gabriela, the variations in Fe/(Fe + Mg) are very likely reflecting the change in fluid composition. Magnesio-foitite is the product of second-stage crystallization forming rims and

  19. Descartes Mountains and Cayley Plains - Composition and provenance

    Science.gov (United States)

    Drake, M. J.; Taylor, G. J.; Goles, G. G.

    1974-01-01

    Trace element compositions of petrographically characterized 2-4 mm lithic fragments from Apollo 16 soil samples are used to calculate initial REE concentrations in liquids in equilibrium with lunar anorthosites and to discuss the provenance of the Cayley Formation. Lithic fragments may be subdivided into four groups: (1) ANT rocks, (2) K- and SiO2-rich mesostasis-bearing rocks, (3) poikiloblastic rocks, and (4) (spinel) troctolites. Model liquids in equilibrium with essentially monominerallic anorthosites have initial REE concentrations 5-8 times those of chondrites. The REE contents of K- and SiO2-rich mesostasis-bearing rocks and poikiloblastic rocks are dominated by the mesostasis phases. ANT rocks appear to be more abundant in the Descartes Mountains, while poikiloblastic rocks appear to be more abundant in the Cayley Plains. Poikiloblastic rocks have intermediate to high LIL-element concentrations yet the low gamma-ray activity of Mare Orientale implies low LIL-element concentrations. Consequently, it is unlikely that the Cayley Formation is Orientale ejecta. A local origin as ejecta from smaller impacts is a more plausible model for the deposition of the Cayley Formation.

  20. Experimental Research on Internal Behaviors of Caved Rocks under the Uniaxial Confined Compression

    Directory of Open Access Journals (Sweden)

    Yu-jiang Zhang

    2017-01-01

    Full Text Available As main composition of longwall gob, caved rocks’ behaviors and their impacts under compression crucially influence strata control, subsidence, associated resources extraction, and many other aspects. However, current researches are based on a whole sample, due to looseness of caved rocks and limitation of observation technology. In this paper, an experiment system was built to investigate internal behaviors of caved rocks’ sample, under the uniaxial confined compression, including movement and breakage behavior by the digital image processing technologies. The results show that the compression process of caved rocks could be divided into two stages by relative density. Boundary effect and changes of voids and contact pressure among caved rocks lead to different movement law in different position in sample’s interior. A stratification phenomenon of breakage was discovered, which presents breakage concentration in the middle of the sample. The nonlinear movement and shear dislocation induced by shifts among caved rocks are the reason of the breakage stratification phenomenon. This phenomenon would have an effect on the permeability and seepage research of similar medium.

  1. Dolomitization and sedimentary cyclicity of the Ordovician, Silurian, and Devonian rocks in South Estonia

    Directory of Open Access Journals (Sweden)

    Kallaste, Toivo

    2006-03-01

    Full Text Available The distribution and composition of dolomitized rocks and stoichiometry of dolomite in southern Estonia in the Ordovician, Silurian, and Devonian were studied on the background of the facies, sedimentary cyclicity (nine shallowing-up cycles, and evolution of the palaeobasins. The composition of rocks and lattice parameters of dolomite were investigated using the X-ray diffraction, X-ray fluorescence, titration and gravimetric analyses, and porosity measurements. The formation of dolostones is directly determined by the cyclic evolution of palaeobasins. Dolomitized rocks belong to the shallow-water inner shelf or tidal/lagoonal facies belt of regressive phases of sedimentary cycles. Sediments of the deep shelf/transitional environment and transgressive phases are not dolomitized. The most stoichiometric is secondary replacive dolomite of Silurian and upper Ordovician dolostones, formed during the early diagenesis of normal-marine (saline shallow-shelf calcitic sediments. The content of insoluble residue does not affect the stoichiometry. The changes in lattice parameters are induced by the Ca/Mg ratio in the dolomite lattice. The dolomite of the dolostones contacting limestone or containing calcite has an expanded lattice. The primary (syngenetic dolostone of the lagoonal or tidal flat belt has also an expanded lattice. No dolomitizing effect of the waters of the Devonian palaeobasin on the underlying rocks was revealed. The whole data set of the studied dolostones is consistent with the marine water environment in the palaeobasin at the corresponding time and shows no sign of the inflow of external fluids. It suggests that the microbial model of dolomite formation may characterize the Ordovician, Silurian, and Devonian in southern Estonia. The occurrence of dolostones between undolomitized rocks limits the time of dolomitization to the early diagenetic stage.

  2. Iron speciation and mineral characterization of upper Jurassic reservoir rocks in the Minhe Basin, NW China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiangxian; Zheng, Guodong, E-mail: gdzhbj@mail.iggcas.ac.cn; Xu, Wang [Chinese Academy of Sciences, Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics (China); Liang, Minliang [Chinese Academy of Geological Sciences, Institute of Geomechanics, Key Lab of Shale Oil and Gas Geological Survey (China); Fan, Qiaohui; Wu, Yingzhong; Ye, Conglin [Chinese Academy of Sciences, Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics (China); Shozugawa, Katsumi; Matsuo, Motoyuki [The University of Tokyo, Graduate School of Arts and Sciences (Japan)

    2016-12-15

    Six samples from a natural outcrop of reservoir rocks with oil seepage and two control samples from surrounding area in the Minhe Basin, northwestern China were selectively collected and analyzed for mineralogical composition as well as iron speciation using X-ray powder diffraction (XRD) and Mössbauer spectroscopy, respectively. Iron species revealed that: (1) the oil-bearing reservoir rocks were changed by water-rock-oil interactions; (2) even in the same site, there was a different performance between sandstone and mudstone during the oil and gas infusion to the reservoirs; and (3) this was evidence indicating the selective channels of hydrocarbon migration. In addition, these studies showed that the iron speciation by Mössbauer spectroscopy could be useful for the study of oil and gas reservoirs, especially the processes of the water-rock interactions within petroleum reservoirs.

  3. Rock magnetic signature of paleoenvironmental changes in the Izu Bonin rear arc over the last 1 Ma

    Science.gov (United States)

    Kars, Myriam; Vautravers, Maryline; Musgrave, Robert; Kodama, Kazuto

    2015-04-01

    During April and May 2014, IODP Expedition 350 drilled a 1806.5 m deep hole at Site U1437 in the Izu-Bonin rear arc, in order to understand, among other objectives, the compositional evolution of the arc since the Miocene and track the missing half of the subduction factory. The good recovery of mostly fine grained sediments at this site enables a high resolution paleontological and rock magnetic studies. Particularly, variations in magnetic properties and mineralogy are well documented. Natural remanent magnetization and magnetic susceptibility vary with a saw-tooth pattern. Routine rock magnetic measurements performed on about 400 samples in the first 120 meters of Hole U1437B showed that pseudo single domain to multidomain magnetite is the main carrier of the remanence. The origin of magnetite is likely detrital. The magnetic susceptibility variations depend on many factors (e.g. lithology, magnetic mineralogy, and also dilution by the carbonate matrix). The magnetic susceptibility is also used as a proxy, at first order, for magnetic minerals concentration. In order to highlight changes in magnetic minerals concentration, it's necessary to correct for the carbonate dilution effect. Onboard and onshore carbonate measurements by coulometry show that the carbonate content of the samples can be up to ~60%. About 70 samples were measured onshore. After correcting the susceptibility by the carbonate content measured on the same samples, it appears that the pattern of the magnetic susceptibility before and after correction is similar. Then the magnetic susceptibility variations do not result from carbonate dilution but reflect fluctuating influx of the detrital sediment component. The delta O18 variations obtained on foraminifers (N. dutertrei) show MIS 1 to MIS 25 over the studied interval covering the last 1 Ma (see Vautravers et al., this meeting). Rock magnetic properties, concentration and grain size variations of the magnetic minerals will be compared to

  4. Discrimination between sedimentary rocks from close-range visible and very-near-infrared images

    NARCIS (Netherlands)

    Pozo, Susana Del; Lindenbergh, R.C.; Rodríguez-Gonzálvez, Pablo; Blom, J.C.; González-Aguilera, Diego

    2015-01-01

    Variation in the mineral composition of rocks results in a change of their spectral response capable of being studied by imaging spectroscopy. This paper proposes the use of a low-cost handy sensor, a calibrated visible-very near infrared (VIS-VNIR) multispectral camera for the recognition of

  5. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    Science.gov (United States)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  6. Development of artificial soft rock

    International Nuclear Information System (INIS)

    Kishi, Kiyoshi

    1995-01-01

    When foundation base rocks are deeper than the level of installing structures or there exist weathered rocks and crushed rocks in a part of base rocks, often sound artificial base rocks are made by substituting the part with concrete. But in the construction of Kashiwazaki Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc., the foundation base rocks consist of mudstone, and the stiffness of concrete is large as compared with the surrounding base rocks. As the quality of the substituting material, the nearly same stiffness as that of the surrounding soft rocks and long term stability are suitable, and the excellent workability and economical efficiency are required, therefore, artificial soft rocks were developed. As the substituting material, the soil mortar that can obtain the physical property values in stable form, which are similar to those of Nishiyama mudstone, was selected. The mechanism of its hardening and the long term stability, and the manufacturing plant are reported. As for its application to the base rocks of Kashiwazaki Kariwa Nuclear Power Station, the verification test at the site and the application to the base rocks for No. 7 plant reactor building and other places are described. (K.I.)

  7. Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick

    Science.gov (United States)

    Li, Xibing; Wang, Shaofeng; Wang, Shanyong

    2018-01-01

    High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in

  8. In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction of Martian rock and soil compositions

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C. [GeoRessources lab, Université de Lorraine, Nancy (France); Cousin, A.; Wiens, R.C. [Los Alamos National Laboratory, Los Alamos, NM (United States); Ollila, A. [University of NM, Albuquerque (United States); Gasnault, O.; Maurice, S. [IRAP, Toulouse (France); Sautter, V. [Museum National d' Histoire Naturelle, Paris (France); Forni, O.; Lasue, J. [IRAP, Toulouse (France); Tokar, R.; Vaniman, D. [Planetary Science Institute, Tucson, AZ (United States); Melikechi, N. [Delaware State University (United States)

    2014-09-01

    Curiosity rover landed on August 6th, 2012 in Gale Crater, Mars and it possesses unique analytical capabilities to investigate the chemistry and mineralogy of the Martian soil. In particular, the LIBS technique is being used for the first time on another planet with the ChemCam instrument, and more than 75,000 spectra have been returned in the first year on Mars. Curiosity carries body-mounted calibration targets specially designed for the ChemCam instrument, some of which are homgeneous glasses and others that are fine-grained glass-ceramics. We present direct calibrations, using these onboard standards to infer elements and element ratios by ratioing relative peak areas. As the laser spot size is around 300 μm, the LIBS technique provides measurements of the silicate glass compositions representing homogeneous material and measurements of the ceramic targets that are comparable to fine-grained rock or soil. The laser energy and the auto-focus are controlled for all sequences used for calibration. The univariate calibration curves present relatively to very good correlation coefficients with low RSDs for major and ratio calibrations. Trace element calibration curves (Li, Sr, and Mn), down to several ppm, can be used as a rapid tool to draw attention to remarkable rocks and soils along the traverse. First comparisons to alpha-particle X-ray spectroscopy (APXS) data, on selected targets, show good agreement for most elements and for Mg# and Al/Si estimates. SiO{sub 2} estimates using univariate cannot be yet used. Na{sub 2}O and K{sub 2}O estimates are relevant for high alkali contents, but probably under estimated due to the CCCT initial compositions. Very good results for CaO and Al{sub 2}O{sub 3} estimates and satisfactory results for FeO are obtained. - Highlights: • In situ LIBS univariate calibrations are done using the Curiosity onboard standards. • Major and minor element contents can be rapidly obtained. • Trace element contents can be used as a

  9. 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia

    2018-06-01

    Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows generally strong velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected by the brittleness and/or ductility of the rocks, including zones of partial melting. From the elastic-plastic aspect, the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. We describe the related effects with a Burgers mechanical element for the shear modulus of the dry-rock frame. The Arrhenius equation combined to the octahedral stress criterion define the Burgers viscosity responsible of the brittle-ductile behaviour. The effects of permeability, partial saturation, varying porosity and mineral composition on the seismic properties is described by a generalization of the White mesoscopic-loss model to the case of a distribution of heterogeneities of those properties. White model involves the wave-induced fluid flow attenuation mechanism, by which seismic waves propagating through small-scale heterogeneities, induce pressure gradients between regions of dissimilar properties, where part of the energy of the fast P-wave is converted to slow P (Biot)-wave. We consider a range of variations of the radius and size of the patches and thin layers whose probability density function is defined by different distributions. The White models used here are that of spherical patches (for partial saturation) and thin layers (for permeability heterogeneities). The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average. Effective pressure effects are taken into account by using exponential functions. We then solve the 3D equation of motion in the space-time domain, by approximating the White complex bulk modulus with that of a set of Zener elements connected in series. The Burgers and generalized Zener models allows us to solve the equations with a direct grid

  10. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure.

    Science.gov (United States)

    Par, Matej; Spanovic, Nika; Bjelovucic, Ruza; Skenderovic, Hrvoje; Gamulin, Ozren; Tarle, Zrinka

    2018-06-17

    The aim of this work was to investigate the curing potential of an experimental resin composite series with the systematically varying amount of bioactive glass 45S5 by evaluating the degree of conversion, light transmittance and depth of cure. Resin composites based on a Bis-GMA/TEGDMA resin with a total filler load of 70 wt% and a variable amount of bioactive glass (0-40 wt%) were prepared. The photoinitiator system was camphorquinone and ethyl-4-(dimethylamino) benzoate. The degree of conversion and light transmittance were measured by Raman spectroscopy and UV-vis spectroscopy, respectively. The depth of cure was evaluated according to the classical ISO 4049 test. The initial introduction of bioactive glass into the experimental series diminished the light transmittance while the further increase in the bioactive glass amount up to 40 wt% caused minor variations with no clear trend. The curing potential of the experimental composites was similar to or better than that of commercial resin composites. However, unsilanized bioactive glass fillers demonstrated the tendency to diminish both the maximum attainable conversion and the curing efficiency at depth. Experimental composite materials containing bioactive glass showed a clinically acceptable degree of conversion and depth of cure. The degree of conversion and depth of cure were diminished by bioactive glass fillers in a dose-dependent manner, although light transmittance was similar among all of the experimental composites containing 5-40 wt% of bioactive glass. Reduced curing potential caused by the bioactive glass has possible consequences on mechanical properties and biocompatibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Relationship between fluvial clastic sediment and source rock abundance in Rapti river basin of central Nepal Himalayas

    International Nuclear Information System (INIS)

    Tamrakar Naresh Kazi; Shresth Madhusudan Bhakta

    2008-01-01

    Many tributaries from carbonate sedimentary, metamorphic and igneous rocks of the Lesser Himalayan and clastic sedimentary rocks of the Sub-Himalayan Ranges carry gravelly sediments to the Rapti River. River bar sediments were analyzed for composition and texture to evaluate downstream changes in properties, and to establish relationship between proportion of clasts and the abundance of rock types in the source areas. Percent quartzite clast or granite clast increases whereas that of carbonate, schist or slate decreases along downstream. The largest grain size decreases downstream, whereas fatness index and sphericity tend to increase. Despite of little diminish in relative abundance of rock types in source areas along the river, the relative proportion of corresponding clast type shows rapid reduction (e.g. slate or phyllite or carbonate clasts) or rapid enhancement (e.g. granite clast). The relationships of quartzite clast and schist clasts with their corresponding source rocks are statistically significant suggesting that these clasts can provide clue to source rock abundance. About 85 to 94% of the gravel clasts represent rock types of the Lesser Himalayan Range suggesting that this range has been contributing enormous amount of sediments.

  12. U-Pb zircon geochronology and Sm-Nd-Pb isotopic constraint for precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea

    International Nuclear Information System (INIS)

    Chang, Ho-Wan

    2003-01-01

    The Ryeongnam massif is composed of Precambrian gneisses, Paleozoic and Mesozoic sedimentary rocks and extensive Triassic-Jurassic plutonic rocks of felsic to mafic composition. In the northeast Ryeongnam massif, the oldest rocks belong to the Sobaegsan gneiss complex, which is composed of orthogneisses, paragneisses and mafic plutonic rocks. U-Pb zircon ages for the felsic and mafic intrusive bodies within the Sobaegsan gneiss complex are: the Icheon granite gneiss, 2357±43 and 2342±47 Ma; the Buncheon granite gneiss, 1963±5 Ma; the Pyeonghae granite gneiss, 1936±21 Ma; the Ogbang amphibolite, 1918±10 Ma; the Imwon leucogranite gneiss, 1826±20 Ma. The Hyeondong biotite schist, which is intruded by the Buncheon granite gneiss and the Ogbang amphibolite, yielded an age of 2271±44 Ma. The Nd-Sm-Pb isotopic data indicate that the felsic plutonic rocks are derived from an older Archean crust. The Nd T DM ages are Archean, and the εNd values are negative for the felsic rocks and positive for the amphibolite. Common Pb isotope compositions also indicate a crustal source for the felsic intrusives. The U-Pb ages of Precambrian rocks of the Ryeongnam massifs are similar to those in the Gyeonggi massif, and may have a similar crustal evolutionary history. The Precambrian rocks of South Korea could be related either to the North China block or to the South China block, as the isotope ages and patterns are not unique to either block. Similarly, a geologic correlation with Japan, although possible, is tenuous at present. (author)

  13. Determining magmatic series and oxygen fugacity of volcanic rocks in the east of Kamu, north of Isfahan, based on biotite chemistry

    Directory of Open Access Journals (Sweden)

    Mohammad Sayari

    2014-04-01

    Full Text Available Volcanic rocks of interest are situated in the middle part of the Urumieh-Dokhtar Magmatic Arc (UDMA. They are parts of a vast magmatic province located in the north of Bitlis-Zagros suture zone. Having a prevailing porphyritic texture, these rocks include phenocrysts of plagioclase, amphibole and biotite in a matrix composed of feldspar, quartz, opaque, glass and microlite and mineralogically show composition of dacite to andesite. Minerals are mostly fresh. Effects of alteration are limited to weak chloritization and saussuritization in some amphiboles and rim of plagioclases, respectively. All of the analyzed biotites in the Miocene-Pliocene volcanic rocks in the east of Kamu are of Mg-biotite. According to a widespread classification of micas to 6 general end-members, biotites of interest are averagely composed of 55.45% phlogopite, 15.90% talc, 12.72% Ti-phlogopite, 11.44% eastonite, 3.71% ferri-eastonite and 0.78% muscovite. Chemical composition of biotites indicates a calk-alkaline magmatic series for the magma from which biotites are crystallized. Estimation of the oxygen fugacity of magma, based on chemical composition and Fe3+ content of biotite, shows that the oxygen fugacity was limited to FMQ buffer in quality and was about 10-15 bar in quantity. This value accords the oxygen fugacity for intermediate-acidic volcanic rocks.

  14. Comparison of Magnetic and Moessbauer Results Obtained for Palaeozoic Rocks of Hornsund, Southern Spitsbergen, Arctic

    International Nuclear Information System (INIS)

    Szlachta, K.; Galazka-Friedman, J.; Michalski, K.; Brzozka, K.; Gorka, B.

    2008-01-01

    This analysis was performed as a part of the palaeomagnetic project focused on the reconstruction of the palaeogeographic position of the Svalbard Archipelago and adjacent crustal units (European Arctic) in the Palaeozoic and Mesozoic. Three rock formations | Cambrian, Devonian and Carboniferous were sampled in the area of Hornsund, southern Spitsbergen. The main aim of the presented study is to identify ferromagnetic minerals (sensu lato) - the carriers of the natural remanent magnetisation in the investigated rocks. A wide range of magnetic methods were used: the Lowrie tests, unblocking temperatures determinations and the measurement of coercivity spectra as well as the Moessbauer studies. In Devonian and Carboniferous samples all applied methods indicate the domination of the hematite natural remanent magnetisation carrier. In Cambrian rocks magnetic measurements reveal a mixture of ferromagnetic (sensu lato) minerals with varying coercivities and unblocking temperatures. The Moessbauer data improve the identification, suggesting that in Cambrian rocks the carrier of the dominating natural remanent magnetisation component is maghemite. (authors)

  15. Teaching the Rock Cycle with Ease.

    Science.gov (United States)

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  16. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    Energy Technology Data Exchange (ETDEWEB)

    Hardenby, Carljohan (Vattenfall Power Consultant AB (Sweden)); Sigurdsson, Oskar (HAskGeokonsult AB (Sweden))

    2010-12-15

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m2. As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories (&apos

  17. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    International Nuclear Information System (INIS)

    Hardenby, Carljohan; Sigurdsson, Oskar

    2010-12-01

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m 2 . As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories ('increased fracturing' and

  18. Recreating Rocks

    DEFF Research Database (Denmark)

    Posth, Nicole R

    2008-01-01

    Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers.......Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers....

  19. Hydrological characteristics of Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial to evaluate the hydrogeological characteristics of rock in Japan in order to assess the performance of geosphere. This report summarizes the hydrogeological characteristics of various rock types obtained from broad literature surveys and the fields experiments at the Kamaishi mine in northern Japan and at the Tono mine in central Japan. It is found that the hydraulic conductivity of rock mass ranges from 10 -9 m/s to 10 -8 m/s, whereas the hydraulic conductivity of fault zone ranges from 10 -9 m/s to 10 -3 m/s. It is also found that the hydraulic conductivity tends to decrease with depth. Therefore, the hydraulic conductivity of rock mass at the depth of a repository will be smaller than above values. From the investigations at outcrops and galleries throughout the country, fractures are observed as potential pathways in all rock types. All kinds of crystalline rocks and pre-Neogene sedimentary rocks are classified as fractured media where fracture flow is dominant. Among these rocks, granitic rock is considered the archetype fractured media. On the other hand, andesite, tuff and Neogene sedimentary rocks are considered as intermediate between fractured media and porous media where flow in fractures as well as in rock matrix are significant. (author)

  20. Applying the information received in the process of drilling for the estimation of the state of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Denissov, N Ya; Paushkin, G A; Zaytzev, A S

    1966-01-01

    In estimating rock foundations for construction, data on the condition of the degree of jointing and weathering are of major importance. For estimating the condition, (in particular, data on core recovery and the speed of boring) drill holes are used. In this paper it is shown that the data on core recovery during the boring of drill holes in regions with complex tectonics can give a wrong idea about the state of rock. However, data on the speed of clean boring may prove to be useful. In some cases low core recovery and its large crushing are caused by the influence of the heterogeneity of rock composition as well as by the influence of changes in the stressed state of rock during boring. The data on the speed of clean boring can be used in engineering geological practice to estimate the intensity and character of spreading rock jointing and to determine the depth of weathering penetration.

  1. Water Vapor Diffusion and Adsorption of Sandstones: Influence of Rock Texture and Composition

    Directory of Open Access Journals (Sweden)

    Martin Keppert

    2016-01-01

    Full Text Available The term sandstone is used for wide range of rocks containing quartz clasts which can be cemented by secondary precipitated quartz or calcite; moreover the space between clasts can be filled by matrix. These facts result in existence of numerous rocks having highly various properties. Sandstones have been used as construction materials due to their good accessibility and workability. Since most of sandstones are porous, water vapor can penetrate through sandstone constructions. The rate of water vapor diffusion, as well as the vapor sorption isotherm, was determined for range of sandstone types. The diffusion resistance factor was found to be dependent on the total porosity of sandstone but the sorption behavior was strongly influenced by nature of the particular sandstone; the specific surface area of stone and presence of clay matrix are determining its sorption isotherm. The published data enable estimating (i diffusion resistance factor of a sandstone via knowledge of its total porosity and (ii the sorption isotherm via knowledge of the stone’s nature and specific surface area. This approach can significantly reduce the time necessary to acquire vapor-related properties of a sandstone.

  2. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    Science.gov (United States)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  3. Rock Goes to School on Screen: A Model for Teaching Non-"Learned" Musics Derived from the Films "School of Rock" (2003) and "Rock School" (2005)

    Science.gov (United States)

    Webb, Michael

    2007-01-01

    What can be learned from two films with "rock" and "school" in their titles, about rock in school and about music and schooling more broadly? "School of Rock" (2003), a "family comedy," and "Rock School" (2005), a documentary, provoke a range of questions, ideological and otherwise, surrounding the inclusion of rock in formal instructional…

  4. Chalk: composition, diagenesis and physical properties

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2007-01-01

    Chalk is a sedimentary rock of unusually high homogeneity on the scale where physical properties are measured, but the properties fall in wide ranges. Chalk may thus be seen as the ideal starting point for a physical understanding of rocks in general. Properties as porosity, permeability, capillary...... involving clay, silica, and calcite are interlinked, but progress differently in different localities. This partly depends on primary sediment composition, including organic content, which may induce the formation of concretions by microbial action. The diagenetic processes also depend on water depth, rate...

  5. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    Science.gov (United States)

    Shervais, John W.; Vetter, Scott K.

    1993-05-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  6. Grinding into Soft, Powdery Rock

    Science.gov (United States)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars. Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements. In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  7. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon

    Science.gov (United States)

    Kemp, , A. I. S.; Hawkesworth, , C. J.; Foster, , G. L.; Paterson, , B. A.; Woodhead, , J. D.; Hergt, , J. M.; Gray, , C. M.; Whitehouse, M. J.

    2007-02-01

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust.

  8. Mineral chemistry of clinopyroxene: guidance on geo- thermobarometry and tectonomagmatic setting of Nabar volcanic rocks, South of Kashan

    Directory of Open Access Journals (Sweden)

    Rezvan Mehvari

    2017-02-01

    Full Text Available Introduction The Nabar area that is a part of the Urumieh- Dokhtar volcano- plutonic belt is located in the south of Kashan. Research works such as Emami (Emami, 1993 and Abbasi (Abbasi, 2012 have been done about the geology of this area. Rock units in the study area contain middle- upper Eocene intermediate to acidic lavas and pyroclastic rocks, green marl, shale and sandy marls of Oligo- Miocene, limestones of Qom formation, intrusive granitoids with Oligo- Miocene age and quaternary travertine and recent alluvium (Emami, 1993. The volcanic and sub volcanic rocks of this area are composed of andesite, trachyandesite, dacite, rhyolite and porphyric pyroxene diorite along with pyroclastic rocks. Materials and methods In order to achieve the aims of this work, at first field surveying and sampling were done. Then, thin and polished thin sections were prepared. Some of the samples were selected for microprobe analysis and clinopyroxene minerals were analyzed by using JEOL- JXA-8800 analyzer with a voltage of 20 Kv and a current of 12 nA in the Kanazava University of Japan and Cameca-Sx100 analyzer with a voltage of 15 Kv and a current of 15 nA in the Iranian mineral processing research center, Karaj. Discussion On the basis of petrographic investigations, porphyritic, porphyroid, fluidal, amygdaloidal and porphyry with microlitic groundmass are common textures of these rocks. Also plagioclase, clinopyroxene, amphibole, biotite, sanidine and quartz are essential minerals, opaque, zircon and apatite as accessory minerals are observed in the studied rocks. Clinopyroxenes are observed with corona texture that resulted during the uralitization process. On the basis of minerals’ chemistry, pyroxenes are Fe- Mg- Ca type in composition (Morimoto et al., 1988. These clinopyroxenes are augite. Investigations indicate that mineral composition of clinopyroxene can be effectively used to evaluation the P-T conditions during crystallization. Previous research

  9. THM-coupled modeling of selected processes in argillaceous rock relevant to rock mechanics

    International Nuclear Information System (INIS)

    Czaikowski, Oliver

    2012-01-01

    Scientific investigations in European countries other than Germany concentrate not only on granite formations (Switzerland, Sweden) but also on argillaceous rock formations (France, Switzerland, Belgium) to assess their suitability as host and barrier rock for the final storage of radioactive waste. In Germany, rock salt has been under thorough study as a host rock over the past few decades. According to a study by the German Federal Institute for Geosciences and Natural Resources, however, not only salt deposits but also argillaceous rock deposits are available at relevant depths and of extensions in space which make final storage of high-level radioactive waste basically possible in Germany. Equally qualified findings about the suitability/unsuitability of non-saline rock formations require fundamental studies to be conducted nationally because of the comparatively low level of knowledge. The article presents basic analyses of coupled mechanical and hydraulic properties of argillaceous rock formations as host rock for a repository. The interaction of various processes is explained on the basis of knowledge derived from laboratory studies, and open problems are deduced. For modeling coupled processes, a simplified analytical computation method is proposed and compared with the results of numerical simulations, and the limits to its application are outlined. (orig.)

  10. Sorption data bases for argillaceous rocks and bentonite for the provisional safety analyses for SGT-E2

    International Nuclear Information System (INIS)

    Baeyens, B.; Thoenen, T.; Bradbury, M. H.; Marques Fernandes, M.

    2014-11-01

    In Stage 1 of the Sectoral Plan for Deep Geological Repositories, four rock types have been identified as being suitable host rocks for a radioactive waste repository, namely, Opalinus Clay for a high-level (HLW) and a low- and intermediate-level (L/ILW) repository, and 'Brauner Dogger', Effingen Member and Helvetic Marls for a L/ILW repository. Sorption data bases (SDBs) for all of these host rocks are required for the provisional safety analyses, including all of the bounding porewater and mineralogical composition combinations. In addition, SDBs are needed for the rock formations lying below Opalinus Clay (lower confining units) and for the bentonite backfill in the HLW repository. In some previous work Bradbury et al. (2010) have described a methodology for developing sorption data bases for argillaceous rocks and compacted bentonite. The main factors influencing the sorption in such systems are the phyllosilicate mineral content, particular the 2:1 clay mineral content (illite/smectite/illite-smectite mixed layers) and the water chemistry which determines the radionuclide species in the aqueous phase. The source sorption data were taken predominantly from measurements on illite (or montmorillonite in the case of bentonite) and converted to the defined conditions in each system considered using a series of so called conversion factors to take into account differences in mineralogy, in pH and in radionuclide speciation. Finally, a Lab → Field conversion factor was applied to adapt sorption data measured in dispersed systems (batch experiments) to intact rock under in-situ conditions. This methodology to develop sorption data bases has been applied to the selected host rocks, lower confining units and compacted bentonite taking into account the mineralogical and porewater composition ranges defined. Confidence in the validity and correctness of this methodology has been built up through additional studies: (i) sorption values obtained in the manner

  11. Sorption data bases for argillaceous rocks and bentonite for the provisional safety analyses for SGT-E2

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, B.; Thoenen, T.; Bradbury, M. H.; Marques Fernandes, M.

    2014-11-15

    In Stage 1 of the Sectoral Plan for Deep Geological Repositories, four rock types have been identified as being suitable host rocks for a radioactive waste repository, namely, Opalinus Clay for a high-level (HLW) and a low- and intermediate-level (L/ILW) repository, and 'Brauner Dogger', Effingen Member and Helvetic Marls for a L/ILW repository. Sorption data bases (SDBs) for all of these host rocks are required for the provisional safety analyses, including all of the bounding porewater and mineralogical composition combinations. In addition, SDBs are needed for the rock formations lying below Opalinus Clay (lower confining units) and for the bentonite backfill in the HLW repository. In some previous work Bradbury et al. (2010) have described a methodology for developing sorption data bases for argillaceous rocks and compacted bentonite. The main factors influencing the sorption in such systems are the phyllosilicate mineral content, particular the 2:1 clay mineral content (illite/smectite/illite-smectite mixed layers) and the water chemistry which determines the radionuclide species in the aqueous phase. The source sorption data were taken predominantly from measurements on illite (or montmorillonite in the case of bentonite) and converted to the defined conditions in each system considered using a series of so called conversion factors to take into account differences in mineralogy, in pH and in radionuclide speciation. Finally, a Lab → Field conversion factor was applied to adapt sorption data measured in dispersed systems (batch experiments) to intact rock under in-situ conditions. This methodology to develop sorption data bases has been applied to the selected host rocks, lower confining units and compacted bentonite taking into account the mineralogical and porewater composition ranges defined. Confidence in the validity and correctness of this methodology has been built up through additional studies: (i) sorption values obtained in the manner

  12. Seismic response of rock joints and jointed rock mass

    International Nuclear Information System (INIS)

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs

  13. The influence of crushed rock salt particle gradation on compaction

    International Nuclear Information System (INIS)

    Ran, C.; Daemen, J.J.K.

    1994-01-01

    This paper presents results of laboratory compaction testing to determine the influence of particle size, size gradation and moisture-content on compaction of crushed rock salt. Included is a theoretical analysis of the optimum size gradation. The objective is to evaluate the relative densities that can be achieved with tamping techniques. Initial results indicate that compaction increases with maximum particle size and compaction energy, and varies significantly with article size gradation and water content

  14. Relative Dating and Classification of Minerals and Rocks Based on Statistical Calculations Related to Their Potential Energy Index

    OpenAIRE

    Labushev, Mikhail M.; Khokhlov, Alexander N.

    2012-01-01

    Index of proportionality of atomic weights of chemical elements is proposed for determining the relative age of minerals and rocks. Their chemical analysis results serve to be initial data for calculations. For rocks of different composition the index is considered to be classification value as well. Crystal lattice energy change in minerals and their associations can be measured by the index value change, thus contributing to the solution of important practical problems. There was determined...

  15. SAPHYR: the Swiss Atlas of PHYsical properties of Rocks

    Science.gov (United States)

    Wenning, Q. C.; Zappone, A. S.; Kissling, E.

    2015-12-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.

  16. Infilling Littleton Street Mine, Wallsall, with colliery spoil rock paste

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.T.; Braithwaite, P.A. [Ove Arup and Partners, Birmingham (United Kingdom)

    1993-12-31

    Describes the filling of an abandoned underground mine with low strength (12-20 kPa) paste made of coal mining waste. With a volume of 550,000 m{sup 3}, it was the largest mine to be filled with rock paste to date. The abandoned mine, flooded with underground water, consists of room and pillar workings at shallow depth of 35 to 60 m. Height of the underground mine cavity varies between 4 and 8 m. The process of infilling and tests and systems for monitoring infilling completeness and strength are described. Benefits of rock paste over other forms of infilling are discussed. Land reclamation work at the source sites is also described. Mineral waste source sites and specifications of the materials are given. After work completion, about 18 ha of derelict urban land were released for redevelopment. 6 refs.

  17. Successive hydrothermal events as indicated by oxygen isotope composition and petrography of greywacke basement rocks, Kawerau geothermal field, New Zealand

    International Nuclear Information System (INIS)

    Absar, A.; Blattner, P.

    1985-01-01

    Fifteen drillholes at the Kawerau geothermal field penetrated a sequence of Quaternary volcanic rocks overlying Mesozoic greywackes and argillites in the depth range of 650 to 1220 m below sea level. Maximum temperature in the basement is 250 to 303 deg. C. Twelve greywacke cores were modally analysed in order to determine their intensity of alteration, which in turn was compared with their oxygen isotope composition. It is concluded that Kawerau geothermal field has experienced at least three hydrothermal regimes. The earliest was characterised by fluids with low m CO 2 and δ 18 O, as indicated by the wairakite-prehnite mineral assemblage in greywacke depleted by 5 ppm. This regime was followed by a period of hydraulic fracturing the formation of a mineral assemblage with abundant calcite indicative of fluids with high dissolved CO 2 . Precipitation of minerals during these two early successive hydrothermal regimes resulted in sealing of fractures in the southern part of the field. These two mineral assemblages are indicated to have formed prior to faulting. The latest mineral assemblage comprising quartz-calcite-adularia-calc silicates on the other hand, is related to a series of NE trending faults which enabled geothermal fluids to move northeastward after circulation was precluded in the southern part. This suggests that future exploration for production from the greywacke basement should be in the north where mineralogy and δ 18 O composition of calcite indicate that much better permeability occurs

  18. Sorption of long-lived radionuclides in clay and rock

    International Nuclear Information System (INIS)

    Allard, B.; Kipatsi, H.; Rydberg, J.

    1977-10-01

    The mechanism of sorption of water soluble species in the natural environment has been discussed. The radiochemical and radiobiological properties of the elements in spent nuclear fuel have been briefly discussed, and 14 of the radioactive products have been selected for studies of the sorption behaviour in contact with natural rock and clay minerals. These 14 elements are Sr, Zr, Tc, I, Cs, Ce, Nd, Eu, Ra, Th, U, Np, Pu and Am. From data available concerning composition and equilibria in natural subsoil waters two standard water compositions have been suggested for the laboratory measurements. Suitable concentrations of the radionuclides and experimental temperatures have been proposed. A batch technique has been used for determination of distribution coefficients for powdered solid materials. Measurements have been performed for all of the 14 elements with granite and bentonite/quartz mixture (10:90) with variation of water composition, nuclide concentration and temperature. Moreover, the effect of variation of the particle size has been studied for granite with Sr, Cs and Am, as well as the sorption in powdered granodiorite, chlorite and silt and on fresh and old rock surfaces (granite). The presence of organic components in bentonite has been confirmed and a preliminary complex formation study with these organics has been performed. An estimation of the valencestate of the actinides U, Np and Pu has been suggested using reasonable assumptions regarding the hydrolysis of the actinides and the presence of Fe(IIE/Fe(IE in natural waters. Using measured or calculated distribution coefficients and considering the chemical properties of the natural water system, relevant retention factors of the radionuclides have been proposed. (author)

  19. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  20. Usage of energy- dispersial analysis in studying rocks melts

    Directory of Open Access Journals (Sweden)

    Kudelas Dušan

    2001-09-01

    Full Text Available EDS analysis of constituent minerals of nefelitic basanite from locality Konrádovce – lava stream of ceric basalt formation of upper Phocene-Pleistocene age was carried out using the electron microscope JEOL JSM-840 and the energy-dispersive microanalyser KEVEX DELTA+ with MIRROR QUANTEX+ software.Based on the results of EDS microanalysis, the primary rock can be, from the petrographic point of view, described as nefelitic basanite. The following substances were determined in the primer matter and porfiric phenocrysts:- isometric grainsof pyroxene-augite (point A1,- grainsof nepheline-kalsite (point A2,- cryptocrystallic glassy matter (point A3,- grainsof olivine (point A4,- microlite of basic plagioclase (point A5.The energy-dispersive analysis is fast and full spectrum is taken at the same time. In common, a required time is less than one minute. Results of the measurement donot depend significantly on the topography of sample and it is also possible to analyze a rough surface which makes easier the preparation of samples. A very important aspect of the mentioned method is the precision of obtained results in order to identify the chemical composition of analyzed point which, in a subsequent step, allows to determine the type of mineral. EDS is a convenient and powerful supplement of microscopic studies which are, sometime, unable to distinguish exactly the complete composition of the analyzed rocks.