WorldWideScience

Sample records for composition affect ecosystem

  1. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness

    NARCIS (Netherlands)

    Spaak, Jurg W.; Baert, Jan M.; Baird, Donald J.; Eisenhauer, Nico; Maltby, Lorraine; Pomati, Francesco; Radchuk, Viktoriia; Rohr, Jason R.; Brink, van den Paul J.; Laender, De Frederik

    2017-01-01

    There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community

  2. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  3. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    Science.gov (United States)

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in

  4. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition.

    OpenAIRE

    Allan Eric; Manning Pete; Alt Fabian; Binkenstein Julia; Blaser Stefan; Blüthgen Nico; Böhm Stefan; Grassein Fabrice; Hölzel Norbert; Klaus Valentin H.; Kleinebecker Till; Morrys Elisabeth Kathryn; Oelmann Yvonne; Prati Daniel; Renner Sven C.

    2015-01-01

    Abstract Global change, especially land?use intensification, affects human well?being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real?world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land?use intensity. We also int...

  5. Artificial Light at Night Affects Organism Flux across Ecosystem Boundaries and Drives Community Structure in the Recipient Ecosystem

    Directory of Open Access Journals (Sweden)

    Alessandro Manfrin

    2017-10-01

    Full Text Available Artificial light at night (ALAN is a widespread alteration of the natural environment that can affect the functioning of ecosystems. ALAN can change the movement patterns of freshwater animals that move into the adjacent riparian and terrestrial ecosystems, but the implications for local riparian consumers that rely on these subsidies are still unexplored. We conducted a 2-year field experiment to quantify changes of freshwater-terrestrial linkages by installing streetlights in a previously light-naïve riparian area adjacent to an agricultural drainage ditch. We compared the abundance and community composition of emerging aquatic insects, flying insects, and ground-dwelling arthropods with an unlit control site. Comparisons were made within and between years using two-way generalized least squares (GLS model and a BACI design (Before-After Control-Impact. Aquatic insect emergence, the proportion of flying insects that were aquatic in origin, and the total abundance of flying insects all increased in the ALAN-illuminated area. The abundance of several night-active ground-dwelling predators (Pachygnatha clercki, Trochosa sp., Opiliones increased under ALAN and their activity was extended into the day. Conversely, the abundance of nocturnal ground beetles (Carabidae decreased under ALAN. The changes in composition of riparian predator and scavenger communities suggest that the increase in aquatic-to-terrestrial subsidy flux may cascade through the riparian food web. The work is among the first studies to experimentally manipulate ALAN using a large-scale field experiment, and provides evidence that ALAN can affect processes that link adjacent ecosystems. Given the large number of streetlights that are installed along shorelines of freshwater bodies throughout the globe, the effects could be widespread and represent an underestimated source of impairment for both aquatic and riparian systems.

  6. Future stratospheric ozone depletion will affect a subarctic dwarf shrub ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Ulf

    1997-02-01

    The stratospheric ozone depletion and the concomitant increase in ultraviolet-B (UV-B, 280-320 nm) radiation is of global concern due to the effects of UV-B on living organisms. To investigate the effects of increased levels of UV-B, a field irradiation system was established at a subarctic dwarf shrub heath in Northern Sweden (68 deg N). An ozone depletion of 15% under clear sky conditions was simulated over a naturally growing ecosystem. The response of both individual components and processes was studied to reveal changes in ecosystem structure and function. Species with different life strategies (evergreen or deciduous) responded differently both in magnitude and direction. The evergreen species were more responsive to UV-B regarding shoot growth, which could be due to cumulative effects in long-lived tissues, since the retardation in relative growth increased over time of exposure. Leaves of evergreen species became thicker under enhanced UV-B, while leaves of deciduous species became thinner. Decomposition studies (laboratory and in situ) showed that indirect effects of UV-B, due to changes in leaf tissue chemistry affected microbial activity and slowed down the decomposition rate. More directly, UV-B decreased the abundance of some fungal species and hence the composition of species. However, no altered decomposition rate was found when decomposition progressed under high UV-B even if the microorganisms were fewer. This could be due to the increased direct photo degradation of litter that compensates for lower microbial activity. The decomposition rate is therefore strongly dependent on the interception of UV-B at the litter layer. This research has shown that ecosystem components and processes are affected in a number of ways and that there are indications of changes in species composition in a long-term perspective due to differences in responsiveness between the different species. 128 refs, 7 figs

  7. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    Science.gov (United States)

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  8. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    Science.gov (United States)

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  9. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    Directory of Open Access Journals (Sweden)

    Pablo Rodríguez-Lozano

    Full Text Available Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1 leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2 triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel, conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  10. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  11. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities.

    Science.gov (United States)

    Zaller, Johann G; Parth, Myriam; Szunyogh, Ilona; Semmelrock, Ines; Sochurek, Susanne; Pinheiro, Marcia; Frank, Thomas; Drapela, Thomas

    2013-05-13

    Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant

  12. Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties

    Science.gov (United States)

    Knoke, Thomas; Paul, Carola; Hildebrandt, Patrick; Calvas, Baltazar; Castro, Luz Maria; Härtl, Fabian; Döllerer, Martin; Hamer, Ute; Windhorst, David; Wiersma, Yolanda F.; Curatola Fernández, Giulia F.; Obermeier, Wolfgang A.; Adams, Julia; Breuer, Lutz; Mosandl, Reinhard; Beck, Erwin; Weber, Michael; Stimm, Bernd; Haber, Wolfgang; Fürst, Christine; Bendix, Jörg

    2016-01-01

    High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services. PMID:27292766

  13. Hexabromocyclododecane affects benthic-pelagic coupling in an experimental ecosystem

    International Nuclear Information System (INIS)

    Bradshaw, Clare; Näslund, Johan; Hansen, Joakim; Kozlowsky-Suzuki, Betina; Sundström, Bo; Gustafsson, Kerstin

    2015-01-01

    Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant and a recognized PBT chemical. However, little is known about its effects on coastal species, and even less on ecosystem effects. We investigated the dose–response effects of HBCDD over 8 months in 1000 L experimental mesocosms assembled from coastal Baltic Sea ecosystem components. HBCDD was added via spiked plankton material and a range of structural and functional endpoints were measured during the experiment. Increasing HBCDD concentration decreased the biomass of large Macoma balthica, resulting in a decreased recirculation of nutrients to the water. Changes in plankton communities were also observed, either due to direct toxic HBCDD effects or indirect via changes in benthic-pelagic coupling of nutrients. Such complex ecosystem responses can only be quantified and understood by using realistic experimental set-ups, and including knowledge of system-specific ecological interactions. This is the first study of HBCDD effects on ecosystem level. - Graphical abstract: HBCDD caused direct effects on the population structure of sediment-dwelling Macoma balthica and on the plankton community. Indirect HBCDD effects via reduced nutrient remineralization by M. balthica affected nutrient levels in the water, likely leading to additional changes in plankton community structure. Seasonal effects were large and affected the whole system including nutrient dynamics as well as plankton community structure. Display Omitted - Highlights: • HBCDD caused effects on benthic population structure and ecosystem function. • Large seasonal effects highlight the importance of using relevant experimental conditions. • A realistic exposure pathway was applied by using HBCDD enriched plankton material. • This is the first study of HBCDD effects on ecosystem level, coupling benthic and pelagic communities. - HBCDD has a dose-dependent effect on benthic-pelagic coupling.

  14. Integrating community assembly and biodiversity to better understand ecosystem function: the Community Assembly and the Functioning of Ecosystems (CAFE) approach.

    Science.gov (United States)

    Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R

    2018-02-01

    The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  15. Predicting ecosystem vulnerability to biodiversity loss from community composition.

    Science.gov (United States)

    Heilpern, Sebastian A; Weeks, Brian C; Naeem, Shahid

    2018-05-01

    Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change. © 2018 by the Ecological Society of America.

  16. Environmental controls on the carbon isotope composition of ecosystem-respired CO{sub 2} in contrasting forest ecosystems in Canada and the USA

    Energy Technology Data Exchange (ETDEWEB)

    Alstad, K.P. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Toledo Univ., Toledo, OH (United States). Dept. of Environmental Sciences; Flanagan, L.B. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Lai, C.T. [Utah Univ., Salt Lake City, UT (United States); San Diego State Univ., San Diego, CA (United States); Ehleringer, J.R. [Utah Univ., Salt Lake City, UT (United States)

    2007-10-15

    Eleven forest ecosystems in Canada and the United States were compared in order to test for differences among forest {delta}{sup 13} carbon (C) responses to seasonal variations in environmental conditions from May to October 2004. Carbon isotope composition of ecosystem-respired carbon dioxide (CO{sub 2}) was considered as a proxy for short-term changes in photosynthetic discrimination. The study compared coniferous and deciduous forests, as well as forests in boreal and coastal environments. It was hypothesized that the carbon isotope composition of ecosystem-respired CO{sub 2} varied in a manner consistent with results obtained in leaf-level studies. Results of the study showed that higher R{sup 2} values were obtained for coastal ecosystems. The relationships between {delta}{sup 13}C{sub R} and environmental conditions were consistent with results obtained from leaf-level studies. Vapour pressure deficits and soil temperatures were significant determinants of variations in {delta}{sup 13}C{sub R} in the boreal forest ecosystem. Variations in {delta}{sup 13}C{sub R} in the coastal forest ecosystem correlated with changes in photosynthetic photon flux (PPF). It was concluded that {delta}{sup 13}C{sub R} measurements can be used to assess yearly variations in ecosystem physiological responses to changing environmental conditions. 59 refs., 7 tabs., 6 figs.

  17. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class

    DEFF Research Database (Denmark)

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, by disrupting the intricate balance between specific bacterial groups within this ecosystem...... potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (n=12 per group) were dosed by oral gavage with either amoxicillin...... (AMX), cefataxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10-11 days. Bacterial composition, alpha diversity and cecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity...

  18. Sediment composition mediated land use effects on lowland streams ecosystems

    NARCIS (Netherlands)

    Dos Reis Oliveira, P.C.; Kraak, M.H.S.; van der Geest, H.G.; Naranjo, S.; Verdonschot, P.F.M

    2018-01-01

    Despite the widely acknowledged connection between terrestrial and aquatic ecosystems, the contribution of runoff to the sediment composition in lowland stream deposition zones and the subsequent effects on benthic invertebrates remain poorly understood. The aim of this study was therefore to

  19. Human Influences on Tree Diversity and Composition of a Coastal Forest Ecosystem: The Case of Ngumburuni Forest Reserve, Rufiji, Tanzania

    Directory of Open Access Journals (Sweden)

    J. Kimaro

    2013-01-01

    Full Text Available This paper reports on the findings of an ecological survey conducted in Ngumburuni Forest Reserve, a biodiversity rich forest reserve within the coastal forests of Tanzania. The main goal of this study was to determine the influence of uncontrolled anthropogenic activities on tree species diversity and composition within the forest ecosystem. It was revealed that economic activities including logging, charcoaling, and shifting cultivation were the most important disturbing activities affecting ecological functioning and biodiversity integrity of the forest. Further to this, we noted that the values of species diversity, composition, and regeneration potential within the undisturbed forest areas were significantly different from those in heavily disturbed areas. These observations confirm that the ongoing human activities have already caused size quality degradation of useful plants, enhanced species diversification impacts to the forest ecosystem, and possibly negatively affected the livelihoods of the adjacent local communities. Despite these disturbances, Ngumburuni forest reserve still holds important proportions of both endemic and threatened animal and plant species. The study suggests urgent implementation of several conservation measures in order to limit accessibility to the forest resources so as to safeguard the richness and abundance of useful biodiversity stocks in the reserve.

  20. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition.

    Science.gov (United States)

    Bradford, Mark A; Wood, Stephen A; Bardgett, Richard D; Black, Helaina I J; Bonkowski, Michael; Eggers, Till; Grayston, Susan J; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T Hefin

    2014-10-07

    Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding--and in management decisions--about how biodiversity is related to the provision of multiple ecosystem services.

  1. Plant species and functional group combinations affect green roof ecosystem functions.

    Science.gov (United States)

    Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa

    2010-03-12

    Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green

  2. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    NARCIS (Netherlands)

    Wagg, C.; Bender, S.F.; Widmer, D.; van der Heijden, Marcellus|info:eu-repo/dai/nl/240923901

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally

  3. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors

    International Nuclear Information System (INIS)

    Marek, Michal V.; Janous, Dalibor; Taufarova, Klara; Havrankova, Katerina; Pavelka, Marian; Kaplan, Veroslav; Markova, Irena

    2011-01-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. - Highlights: → Highest carbon sequestration potential in evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). → The final carbon gain of the grassland was negative (massive ecosystem respiration). → Climate is important factor of net primary productivity. → Carbon uptake is strongly affected by the ontogeny and a production strategy of ecosystem. - Identification of the apparent differences in the carbon storage by different ecosystem types.

  4. Neotropical Amphibian Declines Affect Stream Ecosystem Properties

    Science.gov (United States)

    Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.

    2005-05-01

    Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.

  5. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.

    Science.gov (United States)

    C.K. Keller; T.M. White; R. O' Brien; J.L. Smith

    2006-01-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...

  6. An experiment framework to identify community functional components driving ecosystem processes and services delivery.

    NARCIS (Netherlands)

    Dias, A.; Berg, M.P.; de Bello, F.; van Oosten, A.R.; Bila, K.; Moretti, M.

    2013-01-01

    There is a growing consensus that the distribution of species trait values in a community can greatly determine ecosystem processes and services delivery. Two distinct components of community trait composition are hypothesized to chiefly affect ecosystem processes: (i) the average trait value of the

  7. Atmo-metabolomics: a new measurement approach for investigating aerosol composition and ecosystem functioning.

    Science.gov (United States)

    Rivas-Ubach, A.; Liu, Y.; Sardans, J.; Tfaily, M. M.; Kim, Y. M.; Bourrianne, E.; Paša-Tolić, L.; Penuelas, J.; Guenther, A. B.

    2016-12-01

    Aerosols play crucial roles in the processes controlling the composition of the atmosphere and the functioning of ecosystems. Gaining a deeper understanding of the chemical composition of aerosols is one of the major challenges for atmospheric and climate scientists and is beginning to be recognized as important for ecological research. Better comprehension of aerosol chemistry can potentially provide valuable information on atmospheric processes such as oxidation of organics and the production of cloud condensation nuclei as well as provide an approximation of the general status of an ecosystem through the measurement of certain stress biomarkers. In this study, we describe an efficient aerosol sampling method, the metabolite extraction and the analytical procedures for the chemical characterization of aerosols, namely, the atmo-metabolome. We used mass spectrometry (MS) coupled to liquid chromatography (LC-MS), gas chromatography (GC-MS) and Fourier transform ion cyclotron resonance (FT-ICR-MS) to characterize the atmo-metabolome of two marked seasons; spring and summer. Our sampling and extraction methods demonstrated to be suitable for aerosol chemical characterization with any of the analytical platforms used in this study. The atmo-metabolome between spring and summer showed overall statistically differences. We identified several metabolites that can be attributed to pollen and other plant-related aerosols. Spring aerosols exhibit higher concentrations of metabolites linked to higher plant activity while summer samples had higher concentrations of metabolites that may reflect certain oxidative stresses in primary producers. Moreover, the elemental composition of aerosols showed clear different between seasons. Summer aerosols were generally higher in molecular weight and with higher O/C ratios, indicating higher oxidation levels and condensation of compounds relative to spring. Our method represents an advanced approach for characterizing the composition of

  8. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development.

    Science.gov (United States)

    Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A

    2015-03-01

    Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition

    OpenAIRE

    Allan, Eric; Manning, Pete; et al

    2015-01-01

    Global change, especially land-use intensification, affects human well-being by impacting the deliv-ery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is amajor component of global change effects on multifunctionality in real-world ecosystems, as inexperimental ones, remains unclear. Therefore, we assessed biodiversity, functional compositionand 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We alsointroduce five mu...

  10. Frequent Prescribed Burning as a Long-term Practice in Longleaf Pine Forests Does Not Affect Detrital Chemical Composition.

    Science.gov (United States)

    Coates, T Adam; Chow, Alex T; Hagan, Donald L; Wang, G Geoff; Bridges, William C; Dozier, James H

    2017-09-01

    The O horizon, or detrital layer, of forest soils is linked to long-term forest productivity and health. Fuel reduction techniques, such as prescribed fire, can alter the thickness and composition of this essential ecosystem component. Developing an understanding of the changes in the chemical composition of forest detritus due to prescribed fire is essential for forest managers and stakeholders seeking sustainable, resilient, and productive ecosystems. In this study, we evaluated fuel quantity, fuel structure, and detrital chemical composition in longleaf pine ( Miller) forests that have been frequently burned for the last 40 yr at the Tom Yawkey Wildlife Center in Georgetown, SC. Our results suggest that frequent prescribed fire reduces forest fuel quantity ( burned detritus. Our burning activities varied in the short term, consisting of annual dormant, annual growing, and biennial dormant season burns. Seasonal distinctions were present for fuel quantity and vertical fuel structure, but these differences were not noted for the benzene/phenol ratio. These results are significant as more managers consider burning existing longleaf stands while determining effective management practices for longleaf stands yet to be established. Managers of such stands can be confident that frequent, low-intensity, low-severity prescribed burns in longleaf pine forests do little to affect the long-term chemical composition of forest detritus. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Ecosystem services as a common language for coastal ecosystem-based management.

    Science.gov (United States)

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  12. Habitat structural effect on squamata fauna of the restinga ecosystem in northeastern Brazil.

    Science.gov (United States)

    Dias, Eduardo J R; Rocha, Carlos F D

    2014-03-01

    In this work, we surveyed data on richness and composition of squamatan reptiles and habitat structural effect in nine areas of restinga ecosystem in the State of Bahia, northeastern Brazil. The "restinga" ecosystems are coastal sand dune habitats on the coast of Brazil. Our main hypothesis is that the Squamata fauna composition along these restinga areas would be modulated by habitat structural. After 90 days of field sampling we recorded approximately 5% of reptile species known in Brazil. The composition of Squamata assemblages varied mainly based on the presence or absence of lizards of the genera Ameivula and Tropidurus. Our data showed that habitat structure consistently affected the composition of local Squamata fauna, especially lizards.

  13. Species effects on ecosystem processes are modified by faunal responses to habitat composition.

    Science.gov (United States)

    Bulling, Mark T; Solan, Martin; Dyson, Kirstie E; Hernandez-Milian, Gema; Luque, Patricia; Pierce, Graham J; Raffaelli, Dave; Paterson, David M; White, Piran C L

    2008-12-01

    Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.

  14. Land use history, ecosystem type and species composition drive water use efficiency in annual maize and perennial grasslands in a humid temperate climate

    Science.gov (United States)

    Gelfand, I.; Abraha, M.; Chen, J.; Shao, C.; Su, Y. J.; Hamilton, S. K.; Robertson, G. P.

    2015-12-01

    Water use efficiency (WUE), carbon gained per unit water lost, is a fundamental plant and ecosystem function that regulates plant productivity, global hydrology and carbon cycles. We examined ecosystem (E) and intrinsic (i) WUEs derived from eddy covariance (EC) measurements and plant carbon isotope discrimination, respectively, to study how WUE is affected by land-use history, ecosystem type, and plants community composition. We measured EWUE and iWUE of three perennial grasslands planted to mixed-prairie, switchgrass and brome grass as compared to a fields planted to corn. Each of studied ecosystems was replicated on two fields with contrasting land-use histories: one field was managed under the USDA Conservation Reserve Program (CRP, planted to bromgrass) and another was in conventional agriculture (AGR) corn/soybean rotation for few decades before start of the experiment. In 2009, all but one CRP field were converted to no-till soybean. In 2010, the converted CRP and AGR fields were planted to mixed-prairie (C3 and C4 grasses), switchgrass (C4 grass), and no-till corn (C4 grass). During 2009-2013, we measured carbon and water exchange over each field using an EC technique and sampled plant tissue for 13C isotopes analysis. Land-use history, ecosystem type, and species composition had large effects on EWUEs. Intrinsic WUE of individual C3 grass species, however, was similar across the study period, despite drought in 2012. Corn and brome grass had the highest and lowest overall mean EWUE, 4.1 and 2.2 g C kg-1 H2O, respectively. Restored prairie on former AGR land had a mean EWUE of 3.0 g C kg-1 H2O, significantly greater than on former CRP land with a EWUE of 2.5 g C kg-1 H2O. Land use history had no effect on interannual variability of EWUE of corn. Prairie and switchgrass established on former CRP land exhibited no change of EWUE, as well. Same ecosystems established on former AGR land, oppositely, increased their WUEs over the study period from ~ 2.5 g C kg-1

  15. A COMPARATIVE ANALYSIS OF SPECIES COMPOSITION OF GROUND BEETLES OF COASTAL AND ISLAND ECOSYSTEMS OF THE WESTERN CASPIAN

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2011-01-01

    Full Text Available For the first time studied the species composition of ground beetles of coastal and island ecosystems of the Western Caspian. The article provides a comparative analysis of species composition of ground beetles and adjacent areas.

  16. Affective evolutionary music composition with MetaCompose

    DEFF Research Database (Denmark)

    Scirea, Marco; Togelius, Julian; Eklund, Peter

    2017-01-01

    This paper describes the MetaCompose music generator, a compositional, extensible framework for affective music composition. In this context ‘affective’ refers to the music generator’s ability to express emotional information. The main purpose of MetaCompose is to create music in real-time that can...

  17. The influence of subsurface porosity and bedrock composition on ecosystem productivity and drought resilience in the Sierra Nevada Batholith, California

    Science.gov (United States)

    Riebe, C. S.; Callahan, R. P.; Goulden, M.; Pasquet, S.; Flinchum, B. A.; Taylor, N. J.; Holbrook, W. S.

    2017-12-01

    The availability of water and nutrients in soil and weathered rock influences the distribution of Earth's terrestrial life and regulates ecosystem vulnerability to land use and climate change. We explored these relationships by combining geochemical and geophysical measurements at three mid-elevation sites in the Sierra Nevada, California. Forest cover correlates strongly with bedrock composition across the sites, implying strong lithologic control on the ecosystem. We evaluated two hypotheses about bedrock-ecosystem connections: 1) that bedrock composition influences vegetation by moderating plant-essential nutrient supply; and 2) that bedrock composition influences the degree of subsurface weathering, which influences vegetation by controlling subsurface water-storage capacity. To quantify subsurface water-holding capacity, we used seismic refraction surveys to infer gradients in P and S-wave velocity structure, which reveal variations in porosity when coupled together in a Hertz-Mindlin rock-physics model. We combined the geophysical data on porosity with bedrock bulk geochemistry measured in previous work to evaluate the influence of water-holding capacity and nutrient supply on ecosystem productivity, which we quantified using remote sensing. Our results show that more than 80% of the variance in ecosystem productivity can be explained by differences in bedrock phosphorus concentration and subsurface porosity, with phosphorus content being the dominant explanatory variable. This suggests that bedrock composition exerts a strong bottom-up control on ecosystem productivity through its influence on nutrient supply and weathering susceptibility, which in turn influences porosity. We show that vegetation vulnerability to drought stress and mortality can be explained in part by variations in subsurface water-holding capacity and rock-derived nutrient supply.

  18. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.

    Science.gov (United States)

    Atkinson, Carla L; Capps, Krista A; Rugenski, Amanda T; Vanni, Michael J

    2017-11-01

    The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic

  19. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  20. Anthropogenic impacts on marine ecosystems in Antarctica.

    Science.gov (United States)

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.

  1. Anthropogenic pollutants affect ecosystem services of freshwater sediments. The need for a 'triad plus x' approach

    Energy Technology Data Exchange (ETDEWEB)

    Gerbersdorf, Sabine Ulrike; Wieprecht, Silke [Stuttgart Univ. (Germany). Dept. of Hydraulic Engineering and Water Resources Management; Hollert, Henner; Brinkmann, Markus [RWTH Aachen Univ. (Germany). Dept. of Ecosystem Analysis; Schuettrumpf, Holger [RWTH Aachen Univ. (Germany). Inst. of Hydraulic Engineering and Water Resources Management; Manz, Werner [Koblenz-Landau Univ., Koblenz (Germany). Inst. for Integrated Natural Sciences

    2011-09-15

    Purpose: Freshwater sediments and their attached microbial communities (biofilms) are essential features of rivers and lakes, providing valuable ecosystem services such as nutrient recycling or self-purification which extend beyond the aquatic environment. Anthropogenic pollutants, whether from the industrial era or as a result of our contemporary lifestyles, can negatively affect these functions with hitherto unknown consequences on ecology, the economy and human health. Thus far, the singular view of the involved disciplines such as ecotoxicology, environmental microbiology, hydrology and geomorphology has prevented a deeper understanding of this emerging issue. Main features: This paper discusses briefly the progressions and the state-of-the-art methods within the disciplines of concern related to contaminated sediments, ranging from ecotoxicological test systems, microbiological/molecular approaches to unravel changes of microbial ecosystems, up to the modelling of sediment transport and sorption/desorption of associated pollutants. The first bilateral research efforts on contaminated sediments include efforts to assess ecotoxicological sediment risk including sediment mobility (i.e. ecotoxicology and engineering), enhance bioremediation potential (i.e. microbiology and ecotoxicology) or to understand biostabilisation processes of sediments by microbial assemblages (i.e. microbiology and engineering). Conclusions and perspectives: In freshwater habitats, acute, chronic and mechanism-specific toxic effects on organisms, shifts in composition, structure and functionality of benthic microbial communities, as well as the obstruction of important ecosystem services by continuously discharged and long-deposited pollutants, should be related to the in situ sediment dynamics. To achieve an improved understanding of the ecology of freshwater sediments and the impairment of their important ecosystem functions by human-derived pollutants, we suggest a 'triad plus x

  2. Are land use and short time climate change effective on soil carbon compositions and their relationships with soil properties in alpine grassland ecosystems on Qinghai-Tibetan Plateau?

    Science.gov (United States)

    Zhao, Zhenzhen; Dong, Shikui; Jiang, Xiaoman; Zhao, Jinbo; Liu, Shiliang; Yang, Mingyue; Han, Yuhui; Sha, Wei

    2018-06-01

    Fencing and grass plantation are two key interventions to preserve the degraded grassland on the Qinghai-Tibetan Plateau (QTP). Climate warming and N deposition have substantially affected the alpine grassland ecosystems. However, molecular composition of soil organic carbon (SOC), the indicator of degradation of SOC, and its responses to climate change are still largely unclear. In this study, we conducted the experiments in three types of land use on the QTP: alpine meadow (AM), alpine steppe (AS), and cultivated grassland (CG) under 2°C climatic warming, 5 levels of nitrogen deposition rates at 8, 24, 40, 56, and 72kg N ha -1 year -1 , as well as a combination of climatic warming and N deposition (8kg N ha -1 year -1 ). Our findings indicate that all three types of land use were dominated by O-alkyl carbon. The alkyl/O-alkyl ratio, aromaticity and hydrophobicity index of the CG were larger than those of the AM and AS, and this difference was generally stable under different treatments. Most of the SOC in the alpine grasslands was derived from fresh plants, and the carbon in the CG was more stable than that in the AM and AS. The compositions of all the alpine ecosystems were stable under short-term climatic changes, suggesting the short-term climate warming and nitrogen deposition likely did not affect the molecular composition of the SOC in the restored grasslands. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure

    Science.gov (United States)

    Ferraro, Paul J.; Hanauer, Merlin M.

    2014-01-01

    To develop effective environmental policies, we must understand the mechanisms through which the policies affect social and environmental outcomes. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. We develop an approach to quantifying the mechanisms through which protected areas affect poverty. We focus on three mechanisms: changes in tourism and recreational services; changes in infrastructure in the form of road networks, health clinics, and schools; and changes in regulating and provisioning ecosystem services and foregone production activities that arise from land-use restrictions. The contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program have not yet been empirically estimated. Nearly two-thirds of the poverty reduction associated with the establishment of Costa Rican protected areas is causally attributable to opportunities afforded by tourism. Although protected areas reduced deforestation and increased regrowth, these land cover changes neither reduced nor exacerbated poverty, on average. Protected areas did not, on average, affect our measures of infrastructure and thus did not contribute to poverty reduction through this mechanism. We attribute the remaining poverty reduction to unobserved dimensions of our mechanisms or to other mechanisms. Our study empirically estimates previously unidentified contributions of ecotourism and other ecosystem services to poverty alleviation in the context of a real environmental program. We demonstrate that, with existing data and appropriate empirical methods, conservation scientists and policymakers can begin to elucidate the mechanisms through which ecosystem conservation programs affect human welfare. PMID:24567397

  4. Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions: a pyrolysis-GC/MS study

    NARCIS (Netherlands)

    Vancampenhout, K.; Wouters, K.; Vos, de B.; Buurman, P.; Swennen, R.; Deckers, J.

    2009-01-01

    Soil organic matter (SOM) is a key factor in ecosystem dynamics. A better understanding of the global relationship between environmental characteristics, ecosystems and SOM chemistry is vital in order to assess its specific influence on carbon cycles. This study compared the composition of extracted

  5. Global Ecosystem Restoration Index

    DEFF Research Database (Denmark)

    Fernandez, Miguel; Garcia, Monica; Fernandez, Nestor

    2015-01-01

    The Global ecosystem restoration index (GERI) is a composite index that integrates structural and functional aspects of the ecosystem restoration process. These elements are evaluated through a window that looks into a baseline for degraded ecosystems with the objective to assess restoration...

  6. Measurement of changes in marine benthic ecosystem function following physical disturbance by dredging

    OpenAIRE

    Wan Hussin, Wan Mohd Rauhan

    2012-01-01

    Measuring the impact of physical disturbance on macrofaunal communities and sediment composition is important given the increased demand for the exploitation and disturbance of marine ecosystems. The aim of the present investigation was to provide a comprehensive study about the extent to which the disturbance (especially aggregate dredging) may affect benthic ecosystem function. The first part of the thesis concerns a field investigation of the impacts of dredging on the be...

  7. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    Science.gov (United States)

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  8. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors.

    Science.gov (United States)

    Marek, Michal V; Janouš, Dalibor; Taufarová, Klára; Havránková, Kateřina; Pavelka, Marian; Kaplan, Věroslav; Marková, Irena

    2011-05-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  10. Large herbivores affect forest ecosystem functions by altering the structure of dung beetle communities

    Science.gov (United States)

    Iida, Taichi; Soga, Masashi; Koike, Shinsuke

    2018-04-01

    Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.

  11. Simulating changes in ecosystem structure and composition in response to climate change: a case study focused on tropical nitrogen-fixing trees (Invited)

    Science.gov (United States)

    Medvigy, D.; Levy, J.; Xu, X.; Batterman, S. A.; Hedin, L.

    2013-12-01

    Ecosystems, by definition, involve a community of organisms. These communities generally exhibit heterogeneity in their structure and composition as a result of local variations in climate, soil, topography, disturbance history, and other factors. Climate-driven shifts in ecosystems will likely include an internal re-organization of community structure and composition and as well as the introduction of novel species. In terms of vegetation, this ecosystem heterogeneity can occur at relatively small scales, sometimes of the order of tens of meters or even less. Because this heterogeneous landscape generally has a variable and nonlinear response to environmental perturbations, it is necessary to carefully aggregate the local competitive dynamics between individual plants to the large scales of tens or hundreds of kilometers represented in climate models. Accomplishing this aggregation in a computationally efficient way has proven to be an extremely challenging task. To meet this challenge, the Ecosystem Demography 2 (ED2) model statistically characterizes a distribution of local resource environments, and then simulates the competition between individuals of different sizes and species (or functional groupings). Within this framework, it is possible to explicitly simulate the impacts of climate change on ecosystem structure and composition, including both internal re-organization and the introduction of novel species or functional groups. This presentation will include several illustrative applications of the evolution of ecosystem structure and composition under climate change. One application pertains to the role of nitrogen-fixing species in tropical forests. Will increasing CO2 concentrations increase the demand for nutrients and perhaps give a competitive edge to nitrogen-fixing species? Will potentially warmer and drier conditions make some tropical forests more water-limited, reducing the demand for nitrogen, thereby giving a competitive advantage to non

  12. AVIRIS data and neural networks applied to an urban ecosystem

    Science.gov (United States)

    Ridd, Merrill K.; Ritter, Niles D.; Bryant, Nevin A.; Green, Robert O.

    1992-01-01

    Urbanization is expanding on every continent. Although urban/industrial areas occupy a small percentage of the total landscape of the earth, their influence extends far beyond their borders, affecting terrestrial, aquatic, and atmospheric systems globally. Yet little has been done to characterize urban ecosystems of their linkages to other systems horizontally or vertically. With remote sensing we now have the tools to characterize, monitor, and model urban landscapes world-wide. However, the remote sensing performed on cities so far has concentrated on land-use patterns as distinct from land-cover or composition. The popular Anderson system is entirely land-use oriented in urban areas. This paper begins with the premise that characterizing the biophysical composition of urban environments is fundamental to understanding urban/industrial ecosystems, and, in turn, supports the modeling of other systems interfacing with urban systems. Further, it is contended that remote sensing is a tool poised to provide the biophysical composition data to characterize urban landscapes.

  13. Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem.

    Science.gov (United States)

    Saitta, Alessandro; Anslan, Sten; Bahram, Mohammad; Brocca, Luca; Tedersoo, Leho

    2018-01-01

    Ecological and taxonomic knowledge is important for conservation and utilization of biodiversity. Biodiversity and ecology of fungi in Mediterranean ecosystems is poorly understood. Here, we examined the diversity and spatial distribution of fungi along an elevational gradient in a Mediterranean ecosystem, using DNA metabarcoding. This study provides novel information about diversity of all ecological and taxonomic groups of fungi along an elevational gradient in a Mediterranean ecosystem. Our analyses revealed that among all biotic and abiotic variables tested, host species identity is the main driver of the fungal richness and fungal community composition. Fungal richness was strongly associated with tree richness and peaked in Quercus-dominated habitats and Cistus-dominated habitats. The highest taxonomic richness of ectomycorrhizal fungi was observed under Quercus ilex, whereas the highest taxonomic richness of saprotrophs was found under Pinus. Our results suggest that the effect of plant diversity on fungal richness and community composition may override that of abiotic variables across environmental gradients.

  14. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    Science.gov (United States)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  15. Analysis of chemical factors affecting marine ecosystem around nuclear power plant

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Choi, Yoon Dong; Chun, Ki Jeong; Kim, Jin Kyu; Jung, Kyeong Chai; Lee, Yeong Keun; Park, Hyo Kook

    1994-06-01

    The ecological data of the coastal area of Youngkwang nuclear power plant from 1987 to 1993 were comprehensively analyzed, and various physical and chemical properties of sea water and sediments were measured. Major factors affecting phytoplankton standing crops were suspended substances, nitrate, and silicate. The contents of iron, chromium, copper, and sulfur in sediments sampled from the discharge channel were slightly higher than those in the other areas. In order to qantify the chemical impacts on marine ecosystem, it is desirable that a systematic survey be made through the whole year cycle to assure the consistency and confidence of the related data. (Author)

  16. Interfaces in aquatic ecosystems: Implications for transport and impact of anthropogenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Knulst, J.

    1996-11-01

    Mechanisms that govern transport, accumulation and toxicity of persistent pollutants at interfaces in aquatic ecosystems were the foci of this thesis. Specific attention was paid to humic substances, their occurrence, composition, and role in exchange processes across interfaces. It was concluded that: The composition of humic substances in aquatic surface microlayers is different from that of the subsurface water and terrestrial humic matter. Levels of dissolved organic carbon (DOC) in the aquatic surface microlayer reflect the DOC levels in the subsurface water. While the levels and enrichment of DOC in the microlayer generally show small variations, the levels and enrichment of particulate organic carbon (POC) vary to a great extent. Similarities exist between aquatic surface films, artificial semi-permeable and biological membranes regarding their structure and functioning. Acidification and liming of freshwater ecosystems affect DOC:POC ratio and humic composition of the surface film, thus influencing the partitioning of pollutants across aquatic interfaces. Properties of lake catchment areas extensively govern DOC:POC ratio both in the surface film and subsurface water. Increased UV-B irradiation changes the DOC:POC ratio in the surface film and thus affect transfer of matter across the interface. Transport of lipophilic, persistent organic pollutants across semi-permeable membranes is influenced by the solutes organic composition. 106 refs, 11 figs, 1 tab

  17. Effects of fire on major forest ecosystem processes: an overview.

    Science.gov (United States)

    Chen, Zhong

    2006-09-01

    Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem

  18. Water content differences have stronger effects than plant functional groups on soil bacteria in a steppe ecosystem.

    Directory of Open Access Journals (Sweden)

    Ximei Zhang

    Full Text Available Many investigations across natural and artificial plant diversity gradients have reported that both soil physicochemical factors and plant community composition affect soil microbial communities. To test the effect of plant diversity loss on soil bacterial communities, we conducted a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia (China. We found that the number and composition type of plant functional groups had no effect on bacterial diversity and community composition, or on the relative abundance of major taxa. In contrast, bacterial community patterns were significantly structured by soil water content differences among plots. Our results support researches that suggest that water availability is the key factor structuring soil bacterial communities in this semi-arid ecosystem.

  19. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    Science.gov (United States)

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the

  20. Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes.

    Science.gov (United States)

    Tamburini, Giovanni; De Simone, Serena; Sigura, Maurizia; Boscutti, Francesco; Marini, Lorenzo

    2016-08-31

    Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them. © 2016 The Author(s).

  1. Trade and the governance of ecosystem services

    International Nuclear Information System (INIS)

    Norgaard, Richard B.; Jin, Ling

    2008-01-01

    We work with a basic general equilibrium model of an economy with an industrial good and a rural good. Industrial good production results in pollution that affects the provision of ecosystem services and thereby the production of the rural good. The assignment of ecosystem rights to the industrial polluters or to the rural pollutees results in differential transaction costs that affect production possibilities between the two goods. Ecosystem rights are assigned to maximize social welfare. Over time, technological change and differences in income superiority affect the choice of the assignment of rights. Opening to trade affects the choice of the assignment of ecosystem rights depending on the nature of technological change, but the relative income superiority of goods no longer affects the assignment of ecosystem rights in a small economy. Thus, among other findings, we demonstrate that the phenomena known as the environmental Kuznets curve does not hold for the protection of ecosystem services in production, or production externalities generally, because trade separates consumption from production. (author)

  2. Trade and the governance of ecosystem services

    Energy Technology Data Exchange (ETDEWEB)

    Norgaard, Richard B.; Jin, Ling [Energy and Resources Group, University of California, Berkeley (United States)

    2008-07-15

    We work with a basic general equilibrium model of an economy with an industrial good and a rural good. Industrial good production results in pollution that affects the provision of ecosystem services and thereby the production of the rural good. The assignment of ecosystem rights to the industrial polluters or to the rural pollutees results in differential transaction costs that affect production possibilities between the two goods. Ecosystem rights are assigned to maximize social welfare. Over time, technological change and differences in income superiority affect the choice of the assignment of rights. Opening to trade affects the choice of the assignment of ecosystem rights depending on the nature of technological change, but the relative income superiority of goods no longer affects the assignment of ecosystem rights in a small economy. Thus, among other findings, we demonstrate that the phenomena known as the environmental Kuznets curve does not hold for the protection of ecosystem services in production, or production externalities generally, because trade separates consumption from production. (author)

  3. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class.

    Directory of Open Access Journals (Sweden)

    Monica Vera-Lise Tulstrup

    Full Text Available Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group were dosed by oral gavage with either amoxicillin (AMX, cefotaxime (CTX, vancomycin (VAN, metronidazole (MTZ, or water (CON daily for 10-11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in

  4. Animal factors affecting fatty acid composition of cow milk fat: A review

    African Journals Online (AJOL)

    , cow individuality, parity and stage of lactation) on fatty acid (FA) composition of milk fat. Genetic parameters affecting the composition of the FAs in milk are reviewed and the possibilities for altering milk fat composition are discussed.

  5. Factors affecting the tissues composition of pork belly.

    Science.gov (United States)

    Duziński, K; Knecht, D; Lisiak, D; Janiszewski, P

    2015-11-01

    Bellies derived from the commercial population of pig carcasses are diverse in terms of tissue composition. Knowledge of the factors influencing it and the expected results, permits quick and easy evaluation of raw material. The study was designed to determine the factors affecting the tissues composition of pork bellies and to estimate their lean meat content. The research population (n=140 pig carcasses) was divided into groups according to sex (gilts, barrows), half-carcass mass (meat content class: S (⩾60%), E (55% to 60%), U (50% to 55%), R (meat content affected the growth of the fat and skin mass in a linear way. No differences were observed between class S and E in terms of belly muscle mass. A 0.37% higher share of belly in the half-carcass was found for barrows (Pmeat content in bellies, suggesting they may be used directly in the production line.

  6. Restoration of Degraded Salt Affected Lands to Productive Forest Ecosystem

    Science.gov (United States)

    Singh, Yash; Singh, Gurbachan; Singh, Bajrang; Cerdà, Artemi

    2017-04-01

    Soil system determines the fluxes of energy and matter in the Earth and is the source of goods, services and resources to the humankind (Keesstra et al., 2012; Brevik et al., 2015; Keesstra et al., 2016). To restore and rehabilitate the soil system is a key strategy to recover the services the soils offers (Celentano et al., 2016; Galati et al., 2016; Parras-Alcantara et al., 2016). Transformation of degraded sodic lands in biodiversity rich productive forest ecosystem is a challenging task before the researchers all over the world. The soils of the degraded sites remain almost unfavorable for the normal growth, development and multiplication of organisms; all our attempts tend to alleviate the soil constraints. Land degradation due to presence of salts in the soil is an alarming threat to agricultural productivity and sustainability, particularly in arid and semiarid regions of the world (Tanji, 1990; Qadir et al., 2006). According to the FAO Land and Nutrition Management Service (2008), over 6% of the world's lands are affected by salinity, which accounts for more than 800 million ha in 100 countries. This is due to natural causes, extensive utilization of land (Egamberdieva et al., 2008), poor drainage systems and limited availability of irrigation water which causes salinization in many irrigated soils (Town et al., 2008).In India, about 6.73 million ha are salt affected which spread in 194 districts out of 584 districts in India and represents 2.1% of the geographical area of the country (Mandal et al., 2009).Out of these, 2.8 million ha are sodic in nature and primarily occurring in the Indo-Gangetic alluvial plains. These lands are degraded in structural, chemical, nutritional, hydrological and microbiological characteristics. The reclamation of salt affected soils with chemical amendments like gypsum and phospho-gypsum are in practice for the cultivation field crops under agricultural production. Forest development on such lands although takes considerable

  7. Drivers of plant species composition in siliceous spring ecosystems: groundwater chemistry, catchment traits or spatial factors?

    Directory of Open Access Journals (Sweden)

    Carl BEIERKUHNLEIN

    2009-08-01

    Full Text Available Spring water reflects the hydrochemistry of the aquifer in the associated catchments. On dense siliceous bedrock, the nearsurface groundwater flow is expected to be closely related to the biogeochemical processes of forest ecosystems, where the impact of land use is also low. We hypothesize that the plant species composition of springs mainly reflects hydrochemical conditions. Therefore, springs may serve as indicator systems for biogeochemical processes in complex forest ecosystems. To test this hypothesis, we investigate the influence of spring water chemical properties, catchment traits, and spatial position on plant species composition for 73 springs in forested catchments in central Germany, using non-metric multidimensional scaling (NMDS, Mantel tests, and path analyses. Partial Mantel tests and path analyses reveal that vegetation is more greatly influenced by spring water chemistry than by catchment traits. Consequently, the catchment's influence on vegetation is effective in an indirect way, via spring water. When considering spatial aspects (in particular altitude in addition, the explanatory power of catchment traits for spring water properties is reduced almost to zero. As vegetation shows the highest correlation with the acidity gradient, we assume that altitude acts as a sum parameter that incorporates various acidifying processes in the catchment. These processes are particularly related to altitude – through bedrock, climatic parameters and forest vegetation. The species composition of undisturbed springs is very sensitive in reflecting such conditions and may serve as an integrative tool for detecting complex ecological processes.

  8. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  9. Community size and composition of ammonia oxidizers and denitrifiers in an alluvial intertidal wetland ecosystem

    Directory of Open Access Journals (Sweden)

    Ziye eHu

    2014-07-01

    Full Text Available Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA are much higher than that of ammonia oxidizing bacteria (AOB. The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition.

  10. Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae.

    Directory of Open Access Journals (Sweden)

    Francesca Rossi

    Full Text Available Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands. Lugworms were deliberately excluded from 1× m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW. The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the

  11. Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae.

    Science.gov (United States)

    Rossi, Francesca; Gribsholt, Britta; Gazeau, Frederic; Di Santo, Valentina; Middelburg, Jack J

    2013-01-01

    Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1× m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this

  12. Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Schwartz, Charles C.; Fortin, Jennifer K.; Teisberg, Justin E.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2013-01-01

    The Greater Yellowstone Ecosystem (GYE) has experienced changes in the distribution and availability of grizzly bear (Ursus arctos) food resources in recent decades. The decline of ungulates, fish, and whitebark pine seeds (Pinus albicaulis) has prompted questions regarding their ability to adapt. We examined body composition and diet of grizzly bears using bioelectrical impedance and stable isotopes to determine if 1) we can detect a change in diet quality associated with the decline in either ungulates or whitebark pine, and 2) the combined decline in ungulates, fish, and pine seeds resulted in a change in grizzly bear carrying capacity in the GYE. We contrasted body fat and mass in grizzly bears with a potential competitor, the American black bear (Ursus americanus), to address these questions. Grizzly bears assimilated more meat into their diet and were in better body condition than black bears throughout the study period, indicating the decline in ungulate resources did not affect grizzly bears more than black bears. We also found no difference in autumn fat levels in grizzly bears in years of good or poor pine seed production, and stable isotope analyses revealed this was primarily a function of switching to meat resources during poor seed-producing years. This dietary plasticity was consistent over the course of our study. We did not detect an overall downward trend in either body mass or the fraction of meat assimilated into the diet by grizzly bears over the past decade, but we did detect a downward trend in percent body fat in adult female grizzly bears after 2006. Whether this decline is an artifact of small sample size or due to the population reaching the ecological carrying capacity of the Yellowstone ecosystem warrants further investigation.

  13. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  14. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    Science.gov (United States)

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  15. Risk and markets for ecosystem services.

    Science.gov (United States)

    Bendor, Todd K; Riggsbee, J Adam; Doyle, Martin

    2011-12-15

    Market-based environmental regulations (e.g., cap and trade, "payments for ecosystem services") are increasingly common. However, few detailed studies of operating ecosystem markets have lent understanding to how such policies affect incentive structures for improving environmental quality. The largest U.S. market stems from the Clean Water Act provisions requiring ecosystem restoration to offset aquatic ecosystems damaged during development. We describe and test how variations in the rules governing this ecosystem market shift risk between regulators and entrepreneurs to promote ecological restoration. We analyze extensive national scale data to assess how two critical aspects of market structure - (a) the geographic scale of markets and (b) policies dictating the release of credits - affect the willingness of entrepreneurs to enter specific markets and produce credits. We find no discernible relationship between policies attempting to ease market entry and either the number of individual producers or total credits produced. Rather, market entry is primarily related to regional geography (the prevalence of aquatic ecosystems) and regional economic growth. Any improvements to policies governing ecosystem markets require explicit evaluation of the interplay between policy and risk elements affecting both regulators and entrepreneurial credit providers. Our findings extend to emerging, regulated ecosystem markets, including proposed carbon offset mechanisms, biodiversity banking, and water quality trading programs.

  16. Legacies from extreme drought increase ecosystem sensitivity to future extremes

    Science.gov (United States)

    Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Wilcox, K. R.

    2016-12-01

    Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Although there is still much to be learned about how ecosystems will respond to an intensification of drought, even less is known about the factors that determine post-drought recovery of ecosystem function. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on the extent to which key plant populations, community structure and biogeochemical processes are affected. These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. We experimentally imposed two extreme growing season droughts in a central US grassland to assess the impacts of repeated droughts on ecosystem resistance (response) and resilience (recovery). We found that this grassland was not resistant to the first extreme drought due to reduced productivity and differential sensitivity of the co-dominant C4 grass (Andropogon gerardii) and C3 forb (Solidago canadensis) species. This differential sensitivity led to a reordering of species abundances within the plant community. Yet, despite this large shift in plant community composition, which persisted post-drought, the grassland was highly resilient post-drought, due to increased abundance of the dominant C4 grass. Because of this shift to increased C4 grass dominance, we expected that previously-droughted grassland would be more resistant to a second extreme drought. However, contrary to these expectations, previously droughted grassland was more sensitive to drought than grassland that had not experienced drought. Thus, our result suggest that legacies of drought (shift in community composition) may increase ecosystem sensitivity to future extreme events.

  17. The influence of Critical Zone structure on runoff paths, seasonal water storage, and ecosystem composition

    Science.gov (United States)

    Hahm, W. J.; Dietrich, W. E.; Rempe, D.; Dralle, D.; Dawson, T. E.; Lovill, S.; Bryk, A.

    2017-12-01

    Understanding how subsurface water storage mediates water availability to ecosystems is crucial for elucidating linkages between water, energy, and carbon cycles from local to global scales. Earth's Critical Zone (the CZ, which extends from the top of the vegetation canopy downward to fresh bedrock) includes fractured and weathered rock layers that store and release water, thereby contributing to ecosystem water supplies, and yet are not typically represented in land-atmosphere models. To investigate CZ structural controls on water storage dynamics, we intensively studied field sites in a Mediterranean climate where winter rains arrive months before peak solar energy availability, resulting in strong summertime ecosystem reliance on stored subsurface water. Intra-hillslope and catchment-wide observations of CZ water storage capacity across a lithologic boundary in the Franciscan Formation of the Northern California Coast Ranges reveal large differences in the thickness of the CZ and water storage capacity that result in a stark contrast in plant community composition and stream behavior. Where the CZ is thick, rock moisture storage supports forest transpiration and slow groundwater release sustains baseflow and salmon populations. Where the CZ is thin, limited water storage is used by an oak savanna ecosystem, and streams run dry in summer due to negligible hillslope drainage. At both sites, wet season precipitation replenishes the dynamic storage deficit generated during the summer dry season, with excess winter rains exiting the watersheds via storm runoff as perched groundwater fracture flow at the thick-CZ site and saturation overland flow at the thin-CZ site. Annual replenishment of subsurface water storage even in severe drought years may lead to ecosystem resilience to climatic perturbations: during the 2011-2015 drought there was not widespread forest die-off in the study area.

  18. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.

    Science.gov (United States)

    Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan

    2018-01-01

    The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An Indicator for ecosystem externalities in fishing

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars; Andersen, Ken Haste; Vestergaard, Niels

    Ecosystem externalities arise when one use of an ecosystem affects its other uses through the production functions of the ecosystem.We use simulations from a size-spectrum ecosystem model to investigate the ecosystem externality created by fishing of multiple species. The model is based upon...

  20. Elasticity in ecosystem services: exploring the variable relationship between ecosystems and human well-being

    Directory of Open Access Journals (Sweden)

    Tim M. Daw

    2016-06-01

    Full Text Available Although ecosystem services are increasingly recognized as benefits people obtain from nature, we still have a poor understanding of how they actually enhance multidimensional human well-being, and how well-being is affected by ecosystem change. We develop a concept of "ecosystem service elasticity" (ES elasticity that describes the sensitivity of human well-being to changes in ecosystems. ES Elasticity is a result of complex social and ecological dynamics and is context dependent, individually variable, and likely to demonstrate nonlinear dynamics such as thresholds and hysteresis. We present a conceptual framework that unpacks the chain of causality from ecosystem stocks through flows, goods, value, and shares to contribute to the well-being of different people. This framework builds on previous conceptualizations, but places multidimensional well-being of different people as the final element. This ultimately disaggregated approach emphasizes how different people access benefits and how benefits match their needs or aspirations. Applying this framework to case studies of individual coastal ecosystem services in East Africa illustrates a wide range of social and ecological factors that can affect ES elasticity. For example, food web and habitat dynamics affect the sensitivity of different fisheries ecosystem services to ecological change. Meanwhile high cultural significance, or lack of alternatives enhance ES elasticity, while social mechanisms that prevent access can reduce elasticity. Mapping out how chains are interlinked illustrates how different types of value and the well-being of different people are linked to each other and to common ecological stocks. We suggest that examining chains for individual ecosystem services can suggest potential interventions aimed at poverty alleviation and sustainable ecosystems while mapping out of interlinkages between chains can help to identify possible ecosystem service trade-offs and winners and

  1. Towards ecosystem-based management

    NARCIS (Netherlands)

    Tam, Jamie C.; Link, Jason S.; Rossberg, Axel G.; Rogers, Stuart I.; Levin, Philip S.; Rochet, Marie-Joelle; Bundy, Alida; Belgrano, Andrea; Libralato, Simone; Tomczak, Maciej; Wolfshaar, van de K.E.; Pranovi, Fabio; Gorokhova, Elena; Large, Scott I.; Niquil, Nathalie; Greenstreet, Simon P.R.; Druon, Jean-Noel; Lesutiene, Jurate; Johansen, Marie; Preciado, Izaskun; Patricio, Joana; Palialexis, Andreas; Tett, Paul; Johansen, Geir O.; Houle, Jennifer; Rindorf, Anna

    2017-01-01

    Modern approaches to Ecosystem-Based Management and sustainable use of marine resources must account for the myriad of pressures (interspecies, human and environmental) affecting marine ecosystems. The network of feeding interactions between co-existing species and populations (food webs) are an

  2. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  3. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  4. Evaluation Of Batu Bumbun Sanctuary Ecosystem And Management Strategy Affected By Climate Change In Mahakam Watershed Kutai Kartanegara Indonesia

    Directory of Open Access Journals (Sweden)

    Lariman

    2015-08-01

    Full Text Available Batu Bumbun Sanctuary Middle Mahakam Lake is very important for the fishermen community and Mahakam Irrawaddy Dolphin life concerned to its function as the source of fish and as the feeding ground of Irrawaddy Dolphin Orcaella brevirostris. The changes in the forest function and the climate such as rainfall and water surfaces are predicted to have caused suppression in the ecosystem of Batu Bumbun Sanctuary. The aim of this study is to evaluate the current ecosystem changes of Batu Bumbun Sanctuary and suggest a suitable management strategy as a way to conserve its function. The research was conducted during the dry season April June and rainy season November December 2014 by using survey methods. The measured parameters were including water quality DO pH temperature TSS TDS alkalinity and clarity vegetation composition rainfall water surface elevation and sediment. The data of fish community were analysed by using Shanon-Wiener index. The result showed that 1 The current condition of Batu Bumbun biophysical ecosystem has been experiencing a heavy degradation showed by a high fluctuation of the water surface in two extreme seasons such as the flood in rainy seasons and silt up in the dry season. 2 The vegetation composition in the riverbanks was composed of five species including Bungur Lagerstroemia speciosa Rambai Punai Chaetocarpus Castano carpus Kendikara Dillenia excelsa Kademba Mytragina speciosa and Rengas Gluta renghas. The dominant tree species was Putat Barringtonia asiatica and Perupuk Lophopetalum javanicum. 3 Batu Bumbun Sanctuary has been experiencing a heavy siltation caused by silt material that piles up the weeds during the rainy season. Since 1985 Batu Bumbun was predicted to have rates of silting around 8 cmyear. From those result it can be concluded that Batu Bumbun has been experiencing a heavy degradation showed by a high fluctuation of water surface vegetation composition and heavy siltation. Then the most suitable

  5. Remote sensing of Essential Biodiversity Variables: new measurements linking ecosystem structure, function and composition

    Science.gov (United States)

    Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.

    2017-12-01

    Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.

  6. Regional zooplankton dispersal provides spatial insurance for ecosystem function.

    Science.gov (United States)

    Symons, Celia C; Arnott, Shelley E

    2013-05-01

    Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change - Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time-since-disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon-Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl-a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics. © 2012 Blackwell Publishing Ltd.

  7. Degradation of mangroves adversely affected ecosystem and rural inhabitant in the Sindh's coastal area

    International Nuclear Information System (INIS)

    Naqvi, S.R.; Inam, Z.

    2005-01-01

    Mangroves the ecological treasure of Sindh, are facing a steady decline due to in active Government policies and lack of interest of local people. Mangroves provide important breeding Zone of to the marine biodiversity because of the reduction of silt flows, the area of active growth of delta, has been reduced from an original estimate of 2600 sq km to about 260 sq km. Similarly, the area of Mangroves from 345,000 hectares, the area is now only 205000 hectares. Pakistani Mangroves rank 6th among the mangroves spread in 92 countries. Mangroves forests act as inter face b/w land and sea. It provides nutrients to marine fisheries and is vital healthy Ecosystem. During past 50 years, nearly 100,000 hectares have been destroyed. The destruction is quite high from 1975 to 1992. It is due to water shortage in the river Indus. Degradation of mangroves adversely affected ecosystem and rural inhabitant in the coastal area. Thus to find root causes of degradation and its effects this study was made. (author)

  8. [Multi-scenario simulation and prediction of ecosystem services as affected by urban expansion: A case study in coastal area of Tianjin, North China].

    Science.gov (United States)

    Huang, Huan-Chun; Yun, Ying-Xia; Miao, Zhan-Tang; Hao, Cui; Li, Hong-yuan

    2013-03-01

    Based on the modified Logistic-CA model, and taking the coastal area of Tianjin as a case, this paper simulated the spatial evolution patterns of ecosystem services as affected by the urban expansion in 2011-2020 under the scenarios of historical extrapolation, endogenous development, and exogenous development. Overall, the total ecosystem services of the study area under the three scenarios were generally the same, and the functional region with the lowest level ecosystem services had the identical spatial pattern. However, the spatial evolution patterns of the ecosystem services of the study area under the three scenarios had a great difference. The functional regions with lower-level ecosystem services grew in a cross-shaped pattern, with the Tanggu downtown as a center, and finally formed a full connectivity area along the Haihe River and coastal zone.

  9. Magnesium Affects Poly(3-hydroxybutyrate-co-4-hydroxybutyrate Content and Composition by Affecting Glucose Uptake in Delftia acidovorans

    Directory of Open Access Journals (Sweden)

    Lee, W. H.

    2007-01-01

    Full Text Available Precise control of polyhydroxyalkanoate (PHA composition is necessary in order to synthesize polymers with specific properties. Among the various types of PHA that have been identified, those that contain 4-hydroxybutyrate (4HB monomers are especially useful in the medical and pharmaceutical fields as absorbable biomaterial. In this study, we have investigated the effect of magnesium concentration on the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate [P(3HB-co-4HB] by Delftia acidovorans DS-17. Our results show that, magnesium affects the copolymer content and composition by affecting glucose uptake from the culture medium. Higher concentrations of magnesium resulted in lower molar fractions of 3HB in the copolymer and reduced uptake of glucose. The results show for the first time that magnesium may be used to achieve fine control of biologically synthesized PHA copolymer composition.

  10. Changes in canopy structure and ant assemblages affect soil ecosystem variables as a foundation species declines

    DEFF Research Database (Denmark)

    Kendrick, Joseph A.; Ribbons, Relena Rose; Classen, Aimee Taylor

    2015-01-01

    in ant species composition would interact to alter soil ecosystem variables. In the Harvard Forest Hemlock Removal Experiment (HF-HeRE), established in 2003, T. canadensis in large plots were killed in place or logged and removed to mimic adelgid infestation or salvage harvesting, respectively. In 2006...... (richness and abundance) of ants increases rapidly as T. canadensis is lost from the stands. Because ants live and forage at the litter-soil interface, we hypothesized that environmental changes caused by hemlock loss (e.g., increased light and warmth at the forest floor, increased soil pH) and shifts......, we built ant exclosure subplots within all of the canopy manipulation plots to examine direct and interactive effects of canopy change and ant assemblage composition on soil and litter variables. Throughout HF-HeRE, T. canadensis was colonized by the adelgid in 2009, and the infested trees are now...

  11. Effects of air pollution on ecosystems and biological diversity in the eastern United States.

    Science.gov (United States)

    Lovett, Gary M; Tear, Timothy H; Evers, David C; Findlay, Stuart E G; Cosby, B Jack; Dunscomb, Judy K; Driscoll, Charles T; Weathers, Kathleen C

    2009-04-01

    Conservation organizations have most often focused on land-use change, climate change, and invasive species as prime threats to biodiversity conservation. Although air pollution is an acknowledged widespread problem, it is rarely considered in conservation planning or management. In this synthesis, the state of scientific knowledge on the effects of air pollution on plants and animals in the Northeastern and Mid-Atlantic regions of the United States is summarized. Four air pollutants (sulfur, nitrogen, ozone, and mercury) and eight ecosystem types ranging from estuaries to alpine tundra are considered. Effects of air pollution were identified, with varying levels of certainty, in all the ecosystem types examined. None of these ecosystem types is free of the impacts of air pollution, and most are affected by multiple pollutants. In aquatic ecosystems, effects of acidity, nitrogen, and mercury on organisms and biogeochemical processes are well documented. Air pollution causes or contributes to acidification of lakes, eutrophication of estuaries and coastal waters, and mercury bioaccumulation in aquatic food webs. In terrestrial ecosystems, the effects of air pollution on biogeochemical cycling are also very well documented, but the effects on most organisms and the interaction of air pollution with other stressors are less well understood. Nevertheless, there is strong evidence for effects of nitrogen deposition on plants in grasslands, alpine areas, and bogs, and for nitrogen effects on forest mycorrhizae. Soil acidification is widespread in forest ecosystems across the eastern United States and is likely to affect the composition and function of forests in acid-sensitive areas over the long term. Ozone is known to cause reductions in photosynthesis in many terrestrial plant species. For the most part, the effects of these pollutants are chronic, not acute, at the exposure levels common in the eastern United States. Mortality is often observed only at experimentally

  12. Matrix intensification alters avian functional group composition in adjacent rainforest fragments.

    Directory of Open Access Journals (Sweden)

    Justus P Deikumah

    Full Text Available Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.

  13. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    Directory of Open Access Journals (Sweden)

    Diego Santana Assis

    Full Text Available The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates; sugarcane (3; and pasture (3. At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart. Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  14. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    Science.gov (United States)

    Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  15. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.

    Science.gov (United States)

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem

  16. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest

    Science.gov (United States)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633

  17. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest.

    Science.gov (United States)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.

  18. Nutrients affecting brain composition and behavior

    Science.gov (United States)

    Wurtman, R. J.

    1987-01-01

    This review examines the changes in brain composition and in various brain functions, including behavior, that can follow the ingestion of particular foods or nutrients. It details those that are best understood: the increases in serotonin, catecholamine, or acetylcholine synthesis that can occur subsequent to food-induced increases in brain levels of tryptophan, tyrosine, or choline; it also discusses the various processes that must intervene between the mouth and the synapse, so to speak, in order for a nutrient to affect neurotransmission, and it speculates as to additional brain chemicals that may ultimately be found to be affected by changes in the availability of their nutrient precursors. Because the brain chemicals best known to be nutrient dependent overlap with those thought to underlie the actions of most of the drugs used to treat psychiatric diseases, knowledge of this dependence may help the psychiatrist to understand some of the pathologic processes occurring in his/her patients, particularly those with appetitive symptoms. At the very least, such knowledge should provide the psychiatrist with objective criteria for judging when to take seriously assertions that particular foods or nutrients do indeed affect behavior (e.g., in hyperactive children). If the food can be shown to alter neurotransmitter release, it may be behaviorally-active; however, if it lacks a discernible neurochemical effect, the likelihood that it really alters behavior is small.

  19. Biofilm formation affects surface properties of novel bioactive glass-containing composites.

    Science.gov (United States)

    Hyun, Hong-Keun; Salehi, Satin; Ferracane, Jack L

    2015-12-01

    This study investigated the effects of bacterial biofilm on the surface properties of novel bioactive glass (BAG)-containing composites of different initial surface roughness. BAG (65 mol% Si; 4% P; 31% Ca) and BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B) were synthesized by the sol-gel method and micronized (size ∼0.1-10 μm). Composites with 72wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG, BAG-F, or silanized silica. Specimens (n=10/group) were light-cured and divided into 4 subgroups of different surface roughness by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. Surface roughness (SR), gloss, and Knoop microhardness were measured before and after incubating in media with or without a Streptococcus mutans (UA 159) biofilm for 2 weeks. Results were analyzed with ANOVA/Tukey's test (α=0.05). The SR of the BAG-containing composites with the smoothest surfaces (2400/4000 grit) increased in media or bacteria; the SR of the roughest composites (600 grit) decreased. The gloss of the smoothest BAG-containing composites decreased in bacteria and media-only, but more in media-alone. The microhardness of all of the composites decreased with exposure to media or bacteria, with BAG-containing composites affected more than the control. Exposure to bacterial biofilm and its media produced enhanced roughness and reduced gloss and surface microhardness of highly polished dental composites containing a bioactive glass additive, which could affect further biofilm formation, as well as the esthetics, of restorations made from such a material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Science.gov (United States)

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  1. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations

    Science.gov (United States)

    García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián

    2015-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late

  2. Ecosystem development in roadside grasslands: Biotic control, plant-soil interactions, and dispersal limitations

    Science.gov (United States)

    Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.

    2011-01-01

    Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late

  3. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann

    2015-11-01

    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge

  4. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems.

    Science.gov (United States)

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  5. Solidago canadensis invasion affects soil N-fixing bacterial communities in heterogeneous landscapes in urban ecosystems in East China.

    Science.gov (United States)

    Wang, Congyan; Jiang, Kun; Zhou, Jiawei; Wu, Bingde

    2018-03-12

    Soil nitrogen-fixing bacterial communities (SNB) can increase the level of available soil N via biological N-fixation to facilitate successful invasion of several invasive plant species (IPS). Meanwhile, landscape heterogeneity can greatly enhance regional invasibility and increase the chances of successful invasion of IPS. Thus, it is important to understand the soil micro-ecological mechanisms driving the successful invasion of IPS in heterogeneous landscapes. This study performed cross-site comparisons, via metagenomics, to comprehensively analyze the effects of Solidago canadensis invasion on SNB in heterogeneous landscapes in urban ecosystems. Rhizospheric soil samples of S. canadensis were obtained from nine urban ecosystems [Three replicate quadrats (including uninvaded sites and invaded sites) for each type of urban ecosystem]. S. canadensis invasion did not significantly affect soil physicochemical properties, the taxonomic diversity of plant communities, or the diversity and richness of SNB. However, some SNB taxa (i.e., f_Micromonosporaceae, f_Oscillatoriaceae, and f_Bacillaceae) changed significantly with S. canadensis invasion. Thus, S. canadensis invasion may alter the community structure, rather than the diversity and richness of SNB, to facilitate its invasion process. Of the nine urban ecosystems, the diversity and richness of SNB was highest in farmland wasteland. Accordingly, the community invasibility of farmland wasteland may be higher than that of the other types of urban ecosystem. In brief, landscape heterogeneity, rather than S. canadensis invasion, was the strongest controlling factor for the diversity and richness of SNB. One possible reason may be the differences in soil electrical conductivity and the taxonomic diversity of plant communities in the nine urban ecosystems, which can cause notable shifts in the diversity and richness of SNB. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Invertebrates, ecosystem services and climate change.

    Science.gov (United States)

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  7. Soil ecosystem functioning under climate change: plant species and community effects

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  8. Diversity, Adaptability and Ecosystem Resilience

    Science.gov (United States)

    Keribin, Rozenn; Friend, Andrew

    2013-04-01

    Our ability to predict climate change and anticipate its impacts depends on Earth System Models (ESMs) and their ability to account for the high number of interacting components of the Earth System and to gauge both their influence on the climate and the feedbacks they induce. The land carbon cycle is a component of ESMs that is still poorly constrained. Since the 1990s dynamic global vegetation models (DGVMs) have become the main tool through which we understand the interactions between plant ecosystems and the climate. While DGVMs have made it clear the impacts of climate change on vegetation could be dramatic, predicting the dieback of rainforests and massive carbon losses from various ecosystems, they are highly variable both in their composition and their predictions. Their treatment of plant diversity and competition in particular vary widely and are based on highly-simplified relationships that do not account for the multiple levels of diversity and adaptability found in real plant ecosystems. The aim of this GREENCYCLES II project is to extend an individual-based DGVM to treat the diversity of physiologies found in plant communities and evaluate their effect if any on the ecosystem's transient dynamics and resilience. In the context of the InterSectoral Impacts Model Intercomparison Project (ISI-MIP), an initiative coordinated by a team at the Potsdam Institute for Climate Impact Research (PIK) that aims to provide fast-track global impact assessments for the IPCC's Fifth Assessment Report, we compare 6 vegetation models including 4 DGVMs under different climate change scenarios and analyse how the very different treatments of plant diversity and interactions from one model to the next affect the models' results. We then investigate a new, more mechanistic method of incorporating plant diversity into the DGVM "Hybrid" based on ecological tradeoffs mediated by plant traits and individual-based competition for light.

  9. Biodiversity and ecosystem functioning in dynamic landscapes

    Science.gov (United States)

    Brose, Ulrich; Hillebrand, Helmut

    2016-01-01

    The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships

  10. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems

    Science.gov (United States)

    Alistair M. S. Smith; Crystal A. Kolden; Wade T. Tinkham; Alan F. Talhelm; John D. Marshall; Andrew T. Hudak; Luigi Boschetti; Michael J. Falkowski; Jonathan A. Greenberg; John W. Anderson; Andrew Kliskey; Lilian Alessa; Robert F. Keefe; James R. Gosz

    2014-01-01

    Climate change is altering the species composition, structure, and function of vegetation in natural terrestrial ecosystems. These changes can also impact the essential ecosystem goods and services derived from these ecosystems. Following disturbances, remote-sensing datasets have been used to monitor the disturbance and describe antecedent conditions as a means of...

  11. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    Science.gov (United States)

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  12. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    Science.gov (United States)

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  13. Elemental composition changes in citrus affected by the CVC disease

    International Nuclear Information System (INIS)

    Nadai Fernandes de, A.A.; Tagliaferro, F.S.; Turra, C.; Franca de, E.J.; Bacchi, M.A.

    2008-01-01

    The citrus variegated chlorosis (CVC) disease results in serious economical losses for the Brazilian citriculture. The influence of CVC disease on the elemental composition of citrus plants was investigated. Leaves of sweet orange varieties Hamlin, Pera Rio and Valencia were collected from healthy and CVC-affected trees for chemical characterization by instrumental neutron activation analysis (INAA). Significant differences between healthy and CVC-affected leaves were identified for Ca, Ce, Co, Eu, Fe, K, La, Na, Nd, Rb, Sc and Sm. Rare earth elements presented consistently higher mass fractions in the healthy leaves. (author)

  14. Ecosystem functional response across precipitation extremes in a sagebrush steppe.

    Science.gov (United States)

    Tredennick, Andrew T; Kleinhesselink, Andrew R; Taylor, J Bret; Adler, Peter B

    2018-01-01

    Precipitation is predicted to become more variable in the western United States, meaning years of above and below average precipitation will become more common. Periods of extreme precipitation are major drivers of interannual variability in ecosystem functioning in water limited communities, but how ecosystems respond to these extremes over the long-term may shift with precipitation means and variances. Long-term changes in ecosystem functional response could reflect compensatory changes in species composition or species reaching physiological thresholds at extreme precipitation levels. We conducted a five year precipitation manipulation experiment in a sagebrush steppe ecosystem in Idaho, United States. We used drought and irrigation treatments (approximately 50% decrease/increase) to investigate whether ecosystem functional response remains consistent under sustained high or low precipitation. We recorded data on aboveground net primary productivity (ANPP), species abundance, and soil moisture. We fit a generalized linear mixed effects model to determine if the relationship between ANPP and soil moisture differed among treatments. We used nonmetric multidimensional scaling to quantify community composition over the five years. Ecosystem functional response, defined as the relationship between soil moisture and ANPP, was similar among irrigation and control treatments, but the drought treatment had a greater slope than the control treatment. However, all estimates for the effect of soil moisture on ANPP overlapped zero, indicating the relationship is weak and uncertain regardless of treatment. There was also large spatial variation in ANPP within-years, which contributes to the uncertainty of the soil moisture effect. Plant community composition was remarkably stable over the course of the experiment and did not differ among treatments. Despite some evidence that ecosystem functional response became more sensitive under sustained drought conditions, the response

  15. How lichens impact on terrestrial community and ecosystem properties.

    Science.gov (United States)

    Asplund, Johan; Wardle, David A

    2017-08-01

    understanding how the high intraspecific trait variation that characterizes many lichens impacts on community assembly processes and ecosystem functioning, how multiple species mixtures of lichens affect the key community- and ecosystem-level processes that they drive, the extent to which lichens in early succession influence vascular plant succession and ecosystem development in the longer term, and how global change drivers may impact on ecosystem functioning through altering the functional composition of lichen communities. © 2016 Cambridge Philosophical Society.

  16. Biodiversity conservation in an anthropized landscape: Trees, not patch size drive, bird community composition in a low-input agro-ecosystem.

    Science.gov (United States)

    Mellink, Eric; Riojas-López, Mónica E; Cárdenas-García, Melinda

    2017-01-01

    One of the most typical agro-ecosystems in the Llanos de Ojuelos, a semi-arid region of central Mexico, is that of fruit-production orchards of nopales (prickly pear cacti). This perennial habitat with complex vertical structure provides refuge and food for at least 112 species of birds throughout the year. Nopal orchards vary in their internal structure, size and shrub/tree composition, yet these factors have unknown effects on the animals that use them. To further understand the conservation potential of this agro-ecosystem, we evaluated the effects of patch-size and the presence of trees on bird community composition, as well as several habitat variables, through an information-theoretical modelling approach. Community composition was obtained through a year of census transects in 12 orchards. The presence of trees in the orchards was the major driver of bird communities followed by seasonality; bird communities are independent of patch size, except for small orchard patches that benefit black-chin sparrows, which are considered a sensitive species. At least 55 species of six trophic guilds (insectivores, granivores, carnivores, nectivores, omnivores, and frugivores) used the orchards. Orchards provide adequate habitat and food resources for several sensitive species of resident and migratory sparrows. The attributes that make orchards important for birds: trees, shrubs, herb seeds, and open patches can be managed to maintain native biodiversity in highly anthropized regions with an urgent need to find convergence between production and biological conservation.

  17. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  18. The meaning of functional trait composition of food webs for ecosystem functioning.

    Science.gov (United States)

    Gravel, Dominique; Albouy, Camille; Thuiller, Wilfried

    2016-05-19

    There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. © 2016 The Author(s).

  19. Climate change alters seedling emergence and establishment in an old-field ecosystem.

    Directory of Open Access Journals (Sweden)

    Aimée T Classen

    2010-10-01

    Full Text Available Ecological succession drives large-scale changes in ecosystem composition over time, but the mechanisms whereby climatic change might alter succession remain unresolved. Here, we asked if the effects of atmospheric and climatic change would alter tree seedling emergence and establishment in an old-field ecosystem, recognizing that small shifts in rates of seedling emergence and establishment of different species may have long-term repercussions on the transition of fields to forests in the future.We introduced seeds from three early successional tree species into constructed old-field plant communities that had been subjected for 4 years to altered temperature, precipitation, and atmospheric CO(2 regimes in an experimental facility. Our experiment revealed that different combinations of atmospheric CO(2 concentration, air temperature, and soil moisture altered seedling emergence and establishment. Treatments directly and indirectly affected soil moisture, which was the best predictor of seedling establishment, though treatment effects differed among species.The observed impacts, coupled with variations in the timing of seed arrival, are demonstrated as predictors of seedling emergence and establishment in ecosystems under global change.

  20. Analysis of the changes in forest ecosystem functions, structure and composition in the Black Sea region of Turkey

    Institute of Scientific and Technical Information of China (English)

    Sedat Kele(s); (I)dris Durusoy; Günay Çakir

    2017-01-01

    We used geographical information system to analyze changes in forest ecosystem functions, structure and composition in a typical department of forest man-agement area consisting of four forest management plan-ning units in Turkey. To assess these effects over a 25 year period we compiled data from three forest management plans that were made in 1986, 2001 and 2011. Temporal changes in forest ecosystem functions were estimated based on the three pillars of forest sustainability: eco-nomics, ecology and socio-culture. We assessed a few indicators such as land-use and forest cover, forest types, tree species, development stage, stand age classes, crown closure, growing stock and its increment, and timber bio-mass. The results of the case study suggested a shift in forest values away from economic values toward ecologi-cal and socio-cultural values over last two planning peri-ods. Forest ecosystem structure improved, due mainly to increasing forest area, decreasing non-forest areas (espe-cially in settlement and agricultural areas), forestation on forest openings, rehabilitation of degraded forests, con-version of even-aged forests to uneven-aged forests and conversion of coppice forests to high forests with greater growing stock increments. There were also favorable changes in forest management planning approaches.

  1. Environmental metabolomics with data science for investigating ecosystem homeostasis.

    Science.gov (United States)

    Kikuchi, Jun; Ito, Kengo; Date, Yasuhiro

    2018-02-01

    A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches. Copyright © 2017. Published by Elsevier B.V.

  2. Ecosystem and Community Responses to Rainfall Manipulations in Shrublands Depends on Dominant Vegetation Cover

    Science.gov (United States)

    Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.

    2014-12-01

    Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this

  3. Increased sensitivity to climate change in disturbed ecosystems

    DEFF Research Database (Denmark)

    Kroël-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel

    2015-01-01

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relatio......Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports...... this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem...

  4. Regional Approach for Managing for Resilience Linking Ecosystem Services and Livelihood Strategies for Agro-Pastoral Communities in the Mongolian Steppe Ecosystem

    Science.gov (United States)

    Ojima, D. S.; Togtohyn, C.; Qi, J.; Galvin, K.

    2011-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau are affecting ecosystem services and agro-pastoral livelihoods in Mongolia and China. Recently, evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which then affect social-ecological systems. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces. The analysis incorporates information of the socio-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia and China to the fertile northeast China plain. Sustainability of agro-pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate landscape management provides a potential framework to link ecosystem services across space and time more effectively to meet the needs of agro-pastoral land use, herd quality, and herder's living standards. Under appropriate adaptation strategies agro-pastoralists will have the opportunity to utilize seasonal resources and enhance their ability to process and manufacture products from the available ecosystem services in these dynamic social

  5. Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa.

    Science.gov (United States)

    Quansah, Emmanuel; Mauder, Matthias; Balogun, Ahmed A; Amekudzi, Leonard K; Hingerl, Luitpold; Bliefernicht, Jan; Kunstmann, Harald

    2015-12-01

    The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO 2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics. Over the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO 2 , mostly by virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites. These differences were influenced by albedo, LAI, EWUE, PPFD and climatology during the period of study. These results suggest that land use characteristics affect plant physiological processes that lead to flux exchanges over the Sudanian Savanna ecosystems. It affects the diurnal, seasonal and annual changes in NEE and its composite signals, GPP and RE. GPP and NEE were generally related as NEE scaled with photosynthesis with higher CO 2 assimilation leading to higher GPP. However, CO 2 effluxes over the study period suggest that besides biomass regrowth, other processes, most likely from the soil might have also contributed to the enhancement of ecosystem respiration.

  6. Regional Approach for Linking Ecosystem Services and Livelihood Strategies Under Climate Change of Pastoral Communities in the Mongolian Steppe Ecosystem

    Science.gov (United States)

    Ojima, D. S.; Galvin, K.; Togtohyn, C.

    2012-12-01

    Dramatic changes due to climate and land use dynamics in the Mongolian Plateau affecting ecosystem services and agro-pastoral systems in Mongolia. Recently, market forces and development strategies are affecting land and water resources of the pastoral communities which are being further stressed due to climatic changes. Evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the social-economic forces. The analysis incorporates information about the social-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia. Our research indicate that sustainability of pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate integrated analysis of landscape management and livelihood strategies provides a framework which links ecosystem services to critical resource assets. Analysis of the available livelihood assets provides insights to the adaptive capacity of various agents in a region or in a community. Sustainable development pathways which enable the development of these adaptive capacity elements will lead to more effective adaptive management strategies for pastoral land use and herder's living standards. Pastoralists will have the

  7. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Nicholas A J Graham

    Full Text Available Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  8. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    Science.gov (United States)

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  9. How climate affects ecosystems: A Canadian perspective on what we know

    International Nuclear Information System (INIS)

    Rowe, S.; Rizzo, B.

    1990-01-01

    The effects of climate change on ecosystems is discussed from the Canadian perspective. After a brief definition of terms, the implications of ecosystem theory are elaborated on. Impact models generated from altered climatic regimes can be categorized into two methodological streams: correlation modelling and dynamic modelling. Correlation modelling characterizes change on the basis of transfer functions linking climatic parameters and indices to specific ecological units. Correlation models can be applied at the species level or at the broader ecosystem level. Dynamic models are based on life history characteristics from birth to death, tracking such details as plant abundance, height and leaf area. Such models are most useful at the local rather than global scale. In Canada a number of broad scale correlation models have been attempted. These include the potential impacts of climatic change in the Praire provinces and Northwest Territories, a study relating the growing degree day isolines to ecological boundaries established in the ecoclimatic regions of Canada map, and the incorporation of nine climatic parameters in a correlation exercise, again using the ecoclimatic regions map. 14 refs

  10. Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5

    Science.gov (United States)

    Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty

    2013-01-01

    Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.

  11. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals

    International Nuclear Information System (INIS)

    Balčiauskas, Linas; Skipitytė, Raminta; Jasiulionis, Marius; Trakimas, Giedrius; Balčiauskienė, Laima; Remeikis, Vidmantas

    2016-01-01

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ"1"3C and δ"1"5N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ"1"3C and δ"1"5N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ"1"5N (16.31 ± 3.01‰ and 17.86 ± 2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ"1"5N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ"1"3C values, age-dependent differences were not registered. δ"1"5N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. - Highlights: • Cormorants transport nutrients from water to land ecosystems and pollute biogenically. • We studied stable isotope composition of small mammal hair in 3 cormorant colonies. • δ"1"3C and δ"1"5N were measured using elemental analyzer–isotope ratio mass spectrometer. • δ"1"3C and δ"1"5N values were higher in rodents inhabiting

  12. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals

    Energy Technology Data Exchange (ETDEWEB)

    Balčiauskas, Linas, E-mail: linasbal@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Skipitytė, Raminta, E-mail: raminta.skipityte@ftmc.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius (Lithuania); Jasiulionis, Marius, E-mail: mjasiulionis@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Trakimas, Giedrius, E-mail: giedrius.trakimas@gf.vu.lt [Center for Ecology and Environmental Research, Vilnius University, Vilnius (Lithuania); Institute of Life Sciences and Technology, Daugavpils University, Parades Str. 1a, Daugavpils, LV-5401 (Latvia); Balčiauskienė, Laima, E-mail: laiba@ekoi.lt [Nature Research Centre, Akademijos 2, LT-08412 Vilnius (Lithuania); Remeikis, Vidmantas, E-mail: vidrem@fi.lt [Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius (Lithuania)

    2016-09-15

    Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ{sup 13}C and δ{sup 15}N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ{sup 13}C and δ{sup 15}N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ{sup 15}N (16.31 ± 3.01‰ and 17.86 ± 2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ{sup 15}N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ{sup 13}C values, age-dependent differences were not registered. δ{sup 15}N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories. - Highlights: • Cormorants transport nutrients from water to land ecosystems and pollute biogenically. • We studied stable isotope composition of small mammal hair in 3 cormorant colonies. • δ{sup 13}C and δ{sup 15}N were measured using elemental analyzer–isotope ratio mass spectrometer. • δ{sup 13}C and

  13. Soil-based ecosystem services

    DEFF Research Database (Denmark)

    Ghaley, Bhim Bahadur; Porter, John Roy; Sandhu, Harpinder S.

    2014-01-01

    Among the soil-based ecosystem services (ES), nutrient cycling and carbon sequestration have direct influence on the biogeochemical cycles and greenhouse gas emissions affecting provision of other ES that support human existence. We reviewed methods to assess the two key ES by identifying...... their strengths and weaknesses and have made suggestions for using appropriate methods for better understanding of the ecosystem functions for the provision of ES. Relevant papers for the review were chosen on the basis of (i) diversity of studies on the two key ES in different ecosystems, (ii) methodologies...... applied and (iii) detailed descriptions of the trial locations in terms of vegetation, soil type, location and climatic information. We concluded that (i) elemental stoichiometrical ratios could be a potential approach to assess the health of ecosystems in terms of provision of the two ES discussed, (ii...

  14. The role of recurrent disturbances for ecosystem multifunctionality.

    Science.gov (United States)

    Villnäs, Anna; Norkko, Joanna; Hietanen, Susanna; Josefson, Alf B; Lukkari, Kaarina; Norkko, Alf

    2013-10-01

    Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.

  15. Agar composition affects in vitro screening of biocontrol activity of antagonistic microorganisms

    NARCIS (Netherlands)

    Bosmans, Lien; De Bruijn, I.; de Mot, Rene; Readers, Hans; Lievens, Bart

    2016-01-01

    Agar-based screening assays are the method of choice when evaluating antagonistic potential of bacterial biocontrol-candidates against pathogens.Weshowed thatwhen using the samemedium, but different agar compositions, the activity of a bacterial antagonist against Agrobacteriumwas strongly affected.

  16. Sandwich Structured Composites for Aeronautics: Methods of Manufacturing Affecting Some Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Krzyżak

    2016-01-01

    Full Text Available Sandwich panels are composites which consist of two thin laminate outer skins and lightweight (e.g., honeycomb thick core structure. Owing to the core structure, such composites are distinguished by stiffness. Despite the thickness of the core, sandwich composites are light and have a relatively high flexural strength. These composites have a spatial structure, which affects good thermal insulator properties. Sandwich panels are used in aeronautics, road vehicles, ships, and civil engineering. The mechanical properties of these composites are directly dependent on the properties of sandwich components and method of manufacturing. The paper presents some aspects of technology and its influence on mechanical properties of sandwich structure polymer composites. The sandwiches described in the paper were made by three different methods: hand lay-up, press method, and autoclave use. The samples of sandwiches were tested for failure caused by impact load. Sandwiches prepared in the same way were used for structural analysis of adhesive layer between panels and core. The results of research showed that the method of manufacturing, more precisely the pressure while forming sandwich panels, influences some mechanical properties of sandwich structured polymer composites such as flexural strength, impact strength, and compressive strength.

  17. Ecosystem Services in Environmental Science Literacy

    Science.gov (United States)

    Ruppert, John Robert

    2015-01-01

    Human beings depend on a set of benefits that emerge from functioning ecosystems, termed Ecosystem Services (ES), and make decisions in everyday life that affect these ES. Recent advancements in science have led to an increasingly sophisticated understanding of ES and how they can be used to inform environmental decision-making. Following suit, US…

  18. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    OpenAIRE

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mini...

  19. Environmental Impacts of the Use of Ecosystem Services: Case Study of Birdwatching

    Science.gov (United States)

    Kronenberg, Jakub

    2014-09-01

    The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the `ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services.

  20. Fire and drought affect plant communities and the greenhouse gas balance in a Mediterranean shrubland

    Science.gov (United States)

    Moreno, José M.; Parra, Antonio; Dannenmann, Michael; Ramírez, David A.; Diaz-Pines, Eugenio; Tejedor, Javier; Kitzler, Barbara; Karhu, Kristina; Resco, Victor; Povoas, Luciano

    2010-05-01

    Predicted changes in the seasonality and amount of rainfall under a changing climate have the potential to dramatically alter ecosystem function and species composition. Moreover, in fire-prone ecosystems, the joint effects of fire and increasing aridity may create irreversible changes to the services these ecosystems provide. To understand the effects of increasing drought and fire in a Mediterranean shrubland, we implemented an automated rainfall manipulation system, with rain-out shelters which automatically fold and unfold when conditions are rainy and dry, respectively. In January 2009, we implemented five different treatments, where annual precipitation was reduced by diminishing summer rainfall from the long-term historical average, up to a 40% reduction, following IPCC scenarios. In September 2009, we uninstalled all the shelters to burn the different plots, and reinstalled the shelters immediately afterwards. In this talk, we will present the preliminary results of an integrated experiment which aims at understanding the concomitant effects of fire and different drought intensities on the species composition and greenhouse gas balance (CO2, N2O and CH4) of a Mediterranean shrubland. We observed that plant growth was more severely affected by drought in the more shallow-rooted, malacophyllous shrub (from 116 to -7.2 mg/g/d in Cistus ladanifer), than in a deeper-rooted heather (from 5.5 to 66.9 mg/g/day in Erica arborea). This growth response was mediated by species-specific differences in hydraulics, leaf morphology and photosynthetic gas exchange of each species. Analyses of changes in species composition after fire are currently undergoing. The precipitation reduction treatments exerted drought stress on CH4 oxidizing microorganisms and thus reduced the CH4 sink strength of the ecosystem during the pre-fire period. Furthermore, the net CH4 uptake at the soil-atmosphere interface was reduced by the fire for a period of at least one month. Pedosphere

  1. The need for simultaneous evaluation of ecosystem services and land use change

    Science.gov (United States)

    Euliss, Ned H.; Smith, Loren M.; Liu, Shu-Guang; Feng, Min; Mushet, David M.; Auch, Roger F.; Loveland, Thomas R.

    2010-01-01

    We are living in a period of massive global change. This rate of change may be almost without precedent in geologic history (1). Even the most remote areas of the planet are influenced by human activities. Modern landscapes have been highly modified to accommodate a growing human population that the United Nations has forecast to peak at 9.1 billion by 2050. Over this past century, reliance on services from ecosystems has increased significantly and, over past decades, sustainability of our modern, intensively managed ecosystems has been a topic of serious international concern (1). Numerous papers addressing a particular land-use change effect on specific ecosystem services have recently been published. For example, there is currently great interest in increasing biofuel production to achieve energy inde- pendence goals and recent papers have independently focused attention on impacts of land-use change on single ecosystem services such as carbon sequestration (2) and many others (e.g., water availability, biodiversity, pollination). However, land-use change clearly affects myriad ecosystem services simultaneously. Hence, a broader perspective and context is needed to evaluate and understand interrelated affects on multiple ecosystem services, especially as we strive for the goal of sustainably managing global ecosystems. Similarly, land uses affect ecosystem services synergistically; single land-use evaluations may be misleading because the overall impact on an ecosystem is not evaluated. A more holistic approach would provide a means and framework to characterize how land-use change affects provisioning of goods and services of complete ecosystems.

  2. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  3. Mangrove ecosystems under climate change

    Science.gov (United States)

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  4. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Science.gov (United States)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  5. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems

    Directory of Open Access Journals (Sweden)

    Jeda Palmer

    2017-05-01

    Full Text Available Soil organic carbon (SOC is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity. Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were

  6. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems.

    Science.gov (United States)

    Palmer, Jeda; Thorburn, Peter J; Biggs, Jody S; Dominati, Estelle J; Probert, Merv E; Meier, Elizabeth A; Huth, Neil I; Dodd, Mike; Snow, Val; Larsen, Joshua R; Parton, William J

    2017-01-01

    Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food. However, increased SOC may increase the environmental footprint of some agro-ecosystems, for example by increasing nitrous oxide emissions. Given this uncertainty, progress is needed in quantifying the impact of increased SOC concentration on agro-ecosystems. Increased SOC concentration affects both N cycling and soil physical properties (i.e., water holding capacity). Thus, the aim of this study was to quantify the contribution, both positive and negative, of increased SOC concentration on ecosystem services provided by wheat agro-ecosystems. We used the Agricultural Production Systems sIMulator (APSIM) to represent the effect of increased SOC concentration on N cycling and soil physical properties, and used model outputs as proxies for multiple ecosystem services from wheat production agro-ecosystems at seven locations around the world. Under increased SOC, we found that N cycling had a larger effect on a range of ecosystem services (food provision, filtering of N, and nitrous oxide regulation) than soil physical properties. We predicted that food provision in these agro-ecosystems could be significantly increased by increased SOC concentration when N supply is limiting. Conversely, we predicted no significant benefit to food production from increasing SOC when soil N supply (from fertiliser and soil N stocks) is not limiting. The effect of increasing SOC on N cycling also led to significantly higher nitrous oxide emissions, although the relative increase was small. We also found that N losses via deep drainage were minimally

  7. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis.

    Science.gov (United States)

    Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil

    2018-03-01

    Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.

  8. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems

    Science.gov (United States)

    Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, Y.; Billet, M.F.; Canario, J.; Cory, R.M.; Deshpande, B.N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, Milla; Walter Anthony, K.M.; Wickland, Kimberly P.

    2015-01-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery

  9. Occurrence of perchloroethylene in surface water and fish in a river ecosystem affected by groundwater contamination.

    Science.gov (United States)

    Wittlingerová, Zdena; Macháčková, Jiřina; Petruželková, Anna; Zimová, Magdalena

    2016-03-01

    Long-term monitoring of the content of perchloroethylene (PCE) in a river ecosystem affected by groundwater contamination was performed at a site in the Czech Republic. The quality of surface water was monitored quarterly between 1994 and 2013, and fish were collected from the affected ecosystem to analyse the content of PCE in their tissue in 1998, 2011 and 2012. Concentrations of PCE (9-140 μg/kg) in the tissue of fish collected from the contaminated part of the river were elevated compared to the part of the river unaffected by the contamination (ND to 5 μg/kg PCE). The quality of surface water has improved as a result of groundwater remediation during the evaluated period. Before the remedial action, PCE concentrations ranged from 30 to 95 μg/L (1994-1997). Following commencement of remedial activities in September 1997, a decrease in the content of PCE in the surface water to 7.3 μg/L (1998) and further to 1 μg/L (2011) and 1.1 μg/L (2012) led to a progressive decrease in the average concentration of PCE in the fish muscle tissue from 79 μg/kg (1998) to 24 (2011) and 30 μg/kg (2012), respectively. It was determined that the bioconcentration of PCE does not have a linear dependence because the decrease in contamination in the fish muscle tissue is not directly proportional to the decrease in contamination in the river water. The observed average bioconcentration factors were 24 and 28 for the lower concentrations of PCE and 11 for the higher concentrations of PCE in the river. In terms of age, length and weight of the collected fish, weight had the greatest significance for bioconcentration, followed by the length, with age being evaluated as a less significant factor.

  10. Ecosystem-atmosphere interactions in the Arctic

    DEFF Research Database (Denmark)

    López-Blanco, Efrén

    The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing on-going warming in recent decades, which is affecting the C cycling and the feedback interactions between its...... of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim...... of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale. In Paper I we found a compensatory response...

  11. How does whole ecosystem warming of a peatland affect methane production and consumption?

    Science.gov (United States)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout

  12. Understanding and Managing the Effects of Climate Change on Ecosystem Services in the Rocky Mountains

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2017-08-01

    Full Text Available Public lands in the US Rocky Mountains provide critical ecosystem services, especially to rural communities that rely on these lands for fuel, food, water, and recreation. Climate change will likely affect the ability of these lands to provide ecosystem services. We describe 2 efforts to assess climate change vulnerabilities and develop adaptation options on federal lands in the Rocky Mountains. We specifically focus on aspects that affect community economic security and livelihood security, including water quality and quantity, timber, livestock grazing, and recreation. Headwaters of the Rocky Mountains serve as the primary source of water for large populations, and these headwaters are located primarily on public land. Thus, federal agencies will play a key role in helping to protect water quantity and quality by promoting watershed function and water conservation. Although increased temperatures and atmospheric concentration of CO2 have the potential to increase timber and forage production in the Rocky Mountains, those gains may be offset by wildfires, droughts, insect outbreaks, non-native species, and altered species composition. Our assessment identified ways in which federal land managers can help sustain forest and range productivity, primarily by increasing ecosystem resilience and minimizing current stressors, such as invasive species. Climate change will likely increase recreation participation. However, recreation managers will need more flexibility to adjust practices, provide recreation opportunities, and sustain economic benefits to communities. Federal agencies are now transitioning from the planning phase of climate change adaptation to implementation to ensure that ecosystem services will continue to be provided from federal lands in a changing climate.

  13. Ecosystem response to removal of exotic riparian shrubs and a transition to upland vegetation

    Science.gov (United States)

    Reynolds, Lindsay V.; Cooper, David J.

    2011-01-01

    Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation

  14. How sulfate-rich mine drainage affected aquatic ecosystem degradation in northeastern China, and potential ecological risk.

    Science.gov (United States)

    Zhao, Qian; Guo, Fen; Zhang, Yuan; Ma, Shuqin; Jia, Xiaobo; Meng, Wei

    2017-12-31

    Mining activity is an increasingly important stressor for freshwater ecosystems. However, the mechanism on how sulfate-rich mine drainage affects freshwater ecosystems is largely unknown, and its potential ecological risk has not been assessed so far. During 2009-2016, water and macroinvertebrate samples from 405 sample sites were collected along the mine drainage gradient from circum-neutral to alkaline waters in Hun-Tai River, Northeastern China. Results of linear regressions showed that sulfate-rich mine drainage was significantly positively correlated with the constituents typically derived from rock weathering (Ca 2+ , Mg 2+ and HCO 3 - +CO 3 2- ); the diversity of intolerant stream macroinvertebrates exhibited a steep decline along the gradient of sulfate-rich mine drainage. Meanwhile, stressor-response relationships between sulfate-rich mine drainage and macroinvertebrate communities were explored by two complementary statistical approaches in tandem (Threshold Indicator Taxa Analysis and the field-based method developed by USEPA). Results revealed that once stream sulfate concentrations in mine drainage exceeded 35mg/L, significant decline in the abundance of intolerant macroinvertebrate taxa occurred. An assessment of ecological risk posed by sulfate-rich mine drainage was conducted based on a tiered approach consisting of simple deterministic method (Hazard Quotient, HQ) to probabilistic method (Joint Probability Curve, JPC). Results indicated that sulfate-rich mine drainage posed a potential risk, and 64.62-84.88% of surface waters in Hun-Tai River exist serious risk while 5% threshold (HC 05 ) and 1% threshold (HC 01 ) were set up to protect macroinvertebrates, respectively. This study provided us a better understanding on the impacts of sulfate-rich mine drainage on freshwater ecosystems, and it would be helpful for future catchment management to protect streams from mining activity. Copyright © 2017. Published by Elsevier B.V.

  15. Small diversity effects on ocean primary production under environmental change in a diversity-resolving ocean ecosystem model

    DEFF Research Database (Denmark)

    Prowe, Friederike; Pahlow, M.; Dutkiewicz, S.

    2013-01-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic diversity. Diversity, however, can affect functions such as primary production and their sensitivity to environmental changes. Using a global ocean ecosystem model...... the diversity effects on ecosystem functioning captured in ocean ecosystem models....

  16. How important is diversity for capturing environmental-change responses in ecosystem models?

    DEFF Research Database (Denmark)

    Prowe, Friederike; Pahlow, M.; Dutkiewicz, S.

    2014-01-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic plankton diversity. Diversity, however, may affect functions such as primary production and their sensitivity to environmental changes. Here we use a global ocean...... ecosystem model that explicitly resolves phytoplankton diversity by defining subtypes within four phytoplankton functional types (PFTs). We investigate the model's ability to capture diversity effects on primary production under environmental change. An idealized scenario with a sudden reduction in vertical...... in the model, for example via trade-offs or different PFTs, thus determines the diversity effects on ecosystem functioning captured in ocean ecosystem models....

  17. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Science.gov (United States)

    2010-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a new...

  18. Effects of red-backed salamanders on ecosystem functions.

    Directory of Open Access Journals (Sweden)

    Daniel J Hocking

    Full Text Available Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp. likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2 plots and small-scale enclosures (2 m(2 where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2. In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders. Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  19. Effects of red-backed salamanders on ecosystem functions.

    Science.gov (United States)

    Hocking, Daniel J; Babbitt, Kimberly J

    2014-01-01

    Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp.) likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus) on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m(2) plots) and small-scale enclosures (2 m(2)) where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m(-2)). In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders). Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types.

  20. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services

    Science.gov (United States)

    Rupert Seidl; Thomas A. Spies; David L. Peterson; Scott L. Stephens; Jeffrey A. Hicke

    2015-01-01

    Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resiliencebased stewardship is advocated to address these changes in ecosystem management,...

  1. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile river watershed of Uganda?

    Directory of Open Access Journals (Sweden)

    Peter O Alele

    Full Text Available Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE. Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted

  2. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.

    Science.gov (United States)

    Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James

    2017-07-19

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  3. Indicators of ecosystem function identify alternate states in the sagebrush steppe.

    Science.gov (United States)

    Kachergis, Emily; Rocca, Monique E; Fernandez-Gimenez, Maria E

    2011-10-01

    Models of ecosystem change that incorporate nonlinear dynamics and thresholds, such as state-and-transition models (STMs), are increasingly popular tools for land management decision-making. However, few models are based on systematic collection and documentation of ecological data, and of these, most rely solely on structural indicators (species composition) to identify states and transitions. As STMs are adopted as an assessment framework throughout the United States, finding effective and efficient ways to create data-driven models that integrate ecosystem function and structure is vital. This study aims to (1) evaluate the utility of functional indicators (indicators of rangeland health, IRH) as proxies for more difficult ecosystem function measurements and (2) create a data-driven STM for the sagebrush steppe of Colorado, USA, that incorporates both ecosystem structure and function. We sampled soils, plant communities, and IRH at 41 plots with similar clayey soils but different site histories to identify potential states and infer the effects of management practices and disturbances on transitions. We found that many IRH were correlated with quantitative measures of functional indicators, suggesting that the IRH can be used to approximate ecosystem function. In addition to a reference state that functions as expected for this soil type, we identified four biotically and functionally distinct potential states, consistent with the theoretical concept of alternate states. Three potential states were related to management practices (chemical and mechanical shrub treatments and seeding history) while one was related only to ecosystem processes (erosion). IRH and potential states were also related to environmental variation (slope, soil texture), suggesting that there are environmental factors within areas with similar soils that affect ecosystem dynamics and should be noted within STMs. Our approach generated an objective, data-driven model of ecosystem dynamics

  4. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  5. Effects of resource chemistry on the composition and function of stream hyporheic biofilms.

    Science.gov (United States)

    Hall, E.K.; Besemer, K.; Kohl, L.; Preiler, C.; Reidel, K.; Schneider, T.; Wanek, W.; Battin, T.J.

    2012-01-01

    Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.

  6. Effects of resource chemistry on the composition and function of hyporheic stream biofilms

    Directory of Open Access Journals (Sweden)

    Edward eHall

    2012-02-01

    Full Text Available Stream ecosystems process large quantities of dissolved organic matter as it moves from the headwaters to the sea. Interstitial sediments in the hyporheic zone are centers of high biogeochemical reactivity due to their high levels of microbial biomass and activity. However, the interaction between organic matter and microbial dynamics of these systems remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown interstitial biofilms. Specifically, we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of beta-proteobacter origin. We use this model system to link microbial form, (community composition and proteome, with function, (enzyme activity, in an attempt to develop a better understanding of the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.

  7. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge

    Science.gov (United States)

    Hooper, D.U.; Chapin, F. S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; Schmid, B.; SetSlS, H.; Symstad, A.J.; Vandermeer, J.; Wardle, D.A.

    2005-01-01

    Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1) Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts

  8. Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning.

    Directory of Open Access Journals (Sweden)

    Anna Villnäs

    Full Text Available Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential, gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH(4(+ and dissolved Si. Although effluxes of PO(4(3- were not altered significantly, changes were observed in sediment PO(4(3- sorption capability. The duration of hypoxia (i.e. number of days of stress explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the

  9. Identification, Classification, Mapping of Model and Secondary Steppe Ecosystems Within the Orenburg-Kazakhstan Cross-Border Region

    Directory of Open Access Journals (Sweden)

    Yakovlev Ilya Gennadyevich

    2014-09-01

    Full Text Available The article deals with the current issues of modern steppe management in the Orenburg-Kazakhstan cross-border region. The authors use the data of their own field research over the period of 2009-2014 aimed at detection and classification of model and secondary steppe ecosystems in the region. For the last 6 years it has been revealed that some steppe and fallow lands have different squares. The detected lands are multiple-aged and differ according to their qualitative composition depending on aged-specific (time for completion of agricultural activity, soil-lithogenous and floristic features.The authors detected sites of anthropogenic influence on steppe ecosystems as well as the factors that have favorable affect on restoration of natural ecosystems. The article also reveals the centers of restoration of traditional steppe fauna within the Orenburg-Kazakhstan region and the distribution area of marmot, little bustard, bustard, saiga antelope. The authors carried out the comparative analysis of agro-ecological situation in the region for a few last years as well as over long period of time according to archival and polling data.

  10. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    Science.gov (United States)

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  11. The flux of organic matter through a peatland ecosystem: The role of cellulose, lignin, and their control of the ecosystem oxidation state

    Science.gov (United States)

    Worrall, Fred; Moody, Catherine S.; Clay, Gareth D.; Burt, Tim P.; Rose, Rob

    2017-07-01

    This study used thermogravimetric analysis (TGA) to study the transit of organic C through a peatland ecosystem. The biomass, litter, peat soil profile, particulate organic matter (POM), and dissolved organic matter (DOM) fluxes were sampled from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and carbon budget for the catchment were known. The study showed that although TGA traces showed distinct differences between organic matter reservoirs and fluxes, the traces could not readily be associated with particular functionalities or elemental properties. The TGA trace shows that polysaccharides are preferentially removed by humification and degradation with residual peat being dominated by lignin compositions. The DOM is derived from the degradation of lignin while the POM is derived from erosion of the peat profile. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 92 to 95% polysaccharide carbon. The composition of the organic matter lost from the peat ecosystem means that the oxidative ratio (OR) of the ecosystem experienced by the atmosphere was between 0.96 and 0.99: currently, the Intergovernmental Panel on Climate Change uses an OR value of 1.1 for all ecosystems.

  12. Working group 7: Ecosystems

    International Nuclear Information System (INIS)

    Verheyen, R.

    1976-01-01

    The purpose of this article is to evaluate the environmental impact of nuclear power plants. The effects of ionizing radiations, of the thermal and chemical pollution on aquatic ecosystems as well as on terrestrial ecosystems have been estimated. After a general survey of such effects and their interaction, practical conclusions in regard to determined areas such as Meuse-Escaut marine and the coast have been drawn. The contamination effects of food chains have been evaluted under deliberately pessimistic conditions with regard to the choice of the radionuclide as well as of concentration factors. Following the biodegradation conditions of the surface waters, criteria for the quality of the aquatic ecosystems have been established. Finally, attention has been paid on certain factors affecting the site selection especially within the frame of the nature conservation. The effects of cooling towers have been also considered. (G.C.)

  13. Disentangling drought-induced variation in ecosystem and soil respiration using stable carbon isotopes.

    Science.gov (United States)

    Unger, Stephan; Máguas, Cristina; Pereira, João S; Aires, Luis M; David, Teresa S; Werner, Christiane

    2010-08-01

    Combining C flux measurements with information on their isotopic composition can yield a process-based understanding of ecosystem C dynamics. We studied the variations in both respiratory fluxes and their stable C isotopic compositions (delta(13)C) for all major components (trees, understory, roots and soil microorganisms) in a Mediterranean oak savannah during a period with increasing drought. We found large drought-induced and diurnal dynamics in isotopic compositions of soil, root and foliage respiration (delta(13)C(res)). Soil respiration was the largest contributor to ecosystem respiration (R (eco)), exhibiting a depleted isotopic signature and no marked variations with increasing drought, similar to ecosystem respired delta(13)CO(2), providing evidence for a stable C-source and minor influence of recent photosynthate from plants. Short-term and diurnal variations in delta(13)C(res) of foliage and roots (up to 8 and 4 per thousand, respectively) were in agreement with: (1) recent hypotheses on post-photosynthetic fractionation processes, (2) substrate changes with decreasing assimilation rates in combination with increased respiratory demand, and (3) decreased phosphoenolpyruvate carboxylase activity in drying roots, while altered photosynthetic discrimination was not responsible for the observed changes in delta(13)C(res). We applied a flux-based and an isotopic flux-based mass balance, yielding good agreement at the soil scale, while the isotopic mass balance at the ecosystem scale was not conserved. This was mainly caused by uncertainties in Keeling plot intercepts at the ecosystem scale due to small CO(2) gradients and large differences in delta(13)C(res) of the different component fluxes. Overall, stable isotopes provided valuable new insights into the drought-related variations of ecosystem C dynamics, encouraging future studies but also highlighting the need of improved methodology to disentangle short-term dynamics of isotopic composition of R (eco).

  14. Effects of ship-induced waves on aquatic ecosystems.

    Science.gov (United States)

    Gabel, Friederike; Lorenz, Stefan; Stoll, Stefan

    2017-12-01

    Most larger water bodies worldwide are used for navigation, and the intensity of commercial and recreational navigation is expected to further increase. Navigation profoundly affects aquatic ecosystems. To facilitate navigation, rivers are trained and developed, and the direct effects of navigation include chemical and biological impacts (e.g., inputs of toxic substances and dispersal of non-native species, respectively). Furthermore, propagating ships create hydrodynamic alterations, often simply summarized as waves. Although ship-induced waves are recognized as influential stressors, knowledge on their effects is poorly synthesized. We present here a review on the effects of ship-induced waves on the structure, function and services of aquatic ecosystems based on more than 200 peer reviewed publications and technical reports. Ship-induced waves act at multiple organizational levels and different spatial and temporal scales. All the abiotic and biotic components of aquatic ecosystems are affected, from the sediment and nutrient budget to the planktonic, benthic and fish communities. We highlight how the effects of ship-induced waves cascade through ecosystems and how different effects interact and feed back into the ecosystem finally leading to altered ecosystem services and human health effects. Based on this synthesis of wave effects, we discuss strategies for mitigation. This may help to develop scientifically based and target-oriented management plans for navigational waters that optimize abiotic and biotic integrity and their ecosystem services and uses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reviewing ecosystems affected by the fallout from the Chernobyl reactor accident with respect to the resulting population exposure

    International Nuclear Information System (INIS)

    Fielitz, U.

    1999-01-01

    The research project is intended to yield information on the current radiological situation resulting from the Chernobyl fallout. Environmental materials of particular interest are game, mushrooms, berries, and forest stands in the most heavily affected forest ecosystem of the Bavarian forest area called Bayerischer Wald. This area has been intensively monitored in the period from 1988 until 1994, so that the development up to the current radiological situation can be analysed. Activities under the research project will encompass: Measurement of the radioactive contamination of specimens of the game population in the Bodenmais forest area of 7 500 hectares. Measurement of seasonal variations of the radiocesium activity in various indicator plants of the food chain of the game population. Soil sampling and radioactivity measurement at 2 cm depth intervals. The measuring work will be carried out in two areas which have been earmarked for monitoring over the last eight years (B1 and B2). The measured results will be compared with earlier data, and long-term space and time-dependent information on the transfer of radiocesium in the forest ecosystem under review will be derived. (orig./CB) [de

  16. Community Composition and Transcriptional Activity of Ammonia-Oxidizing Prokaryotes of Seagrass Thalassia hemprichii in Coral Reef Ecosystems

    Directory of Open Access Journals (Sweden)

    Juan Ling

    2018-01-01

    Full Text Available Seagrasses in coral reef ecosystems play important ecological roles by enhancing coral reef resilience under ocean acidification. However, seagrass primary productivity is typically constrained by limited nitrogen availability. Ammonia oxidation is an important process conducted by ammonia-oxidizing archaea (AOA and bacteria (AOB, yet little information is available concerning the community structure and potential activity of seagrass AOA and AOB. Therefore, this study investigated the variations in the abundance, diversity and transcriptional activity of AOA and AOB at the DNA and transcript level from four sample types: the leaf, root, rhizosphere sediment and bulk sediment of seagrass Thalassia hemprichii in three coral reef ecosystems. DNA and complementary DNA (cDNA were used to prepare clone libraries and DNA and cDNA quantitative PCR (qPCR assays, targeting the ammonia monooxygenase-subunit (amoA genes as biomarkers. Our results indicated that the closest relatives of the obtained archaeal and bacterial amoA gene sequences recovered from DNA and cDNA libraries mainly originated from the marine environment. Moreover, all the obtained AOB sequences belong to the Nitrosomonadales cluster. Nearly all the AOA communities exhibited higher diversity than the AOB communities at the DNA level, but the qPCR data demonstrated that the abundances of AOB communities were higher than that of AOA communities based on both DNA and RNA transcripts. Collectively, most of the samples shared greater community composition similarity with samples from the same location rather than sample type. Furthermore, the abundance of archaeal amoA gene in rhizosphere sediments showed significant relationships with the ammonium concentration of sediments and the nitrogen content of plant tissue (leaf and root at the DNA level (P < 0.05. Conversely, no such relationships were found for the AOB communities. This work provides new insight into the nitrogen cycle

  17. Stream biofilm responses to flow intermittency: from cells to ecosystems

    Directory of Open Access Journals (Sweden)

    Sergi eSabater

    2016-03-01

    Full Text Available Temporary streams are characterized by the alternation of dry and wet hydrological phases, creating both a harsh environment for the biota as well as a high diversity of opportunities for adaptation. These systems are eminently microbial-based during several of these hydrological phases, and those growing on all solid substrata (biofilms accordingly change their physical structure and community composition. Biofilms experience large decreases on cell densities and biomass, both of bacteria and algae, during dryness. Algal and bacterial communities show remarkable decreases in their diversity, at least locally (at the habitat scale. Biofilms also respond with significant physiological plasticity to each of the hydrological changes. The decreasing humidity of the substrata through the drying process, and the changing quantity and quality of organic matter and nutrients available in the stream during that process, causes unequal responses on the biofilm bacteria and algae. Biofilm algae are affected faster than bacteria by the hydric stress, and as a result the ecosystem respiration resists longer than gross primary production to the increasing duration of flow intermittency. This response implies enhancing ecosystem heterotrophy, a pattern that can be exacerbated in temporary streams suffering of longer dry periods under global change.

  18. Ecosystem services: Urban parks under a magnifying glass.

    Science.gov (United States)

    Mexia, Teresa; Vieira, Joana; Príncipe, Adriana; Anjos, Andreia; Silva, Patrícia; Lopes, Nuno; Freitas, Catarina; Santos-Reis, Margarida; Correia, Otília; Branquinho, Cristina; Pinho, Pedro

    2018-01-01

    Urban areas' population has grown during the last century and it is expected that over 60% of the world population will live in cities by 2050. Urban parks provide several ecosystem services that are valuable to the well-being of city-dwellers and they are also considered a nature-based solution to tackle multiple environmental problems in cities. However, the type and amount of ecosystem services provided will vary with each park vegetation type, even within same the park. Our main goal was to quantify the trade-offs in ecosystem services associated to different vegetation types, using a spatially detailed approach. Rather than relying solely on general vegetation typologies, we took a more ecologically oriented approach, by explicitly considering different units of vegetation structure and composition. This was demonstrated in a large park (44ha) located in the city of Almada (Lisbon metropolitan area, Portugal), where six vegetation units were mapped in detail and six ecosystem services were evaluated: carbon sequestration, seed dispersal, erosion prevention, water purification, air purification and habitat quality. The results showed that, when looking at the park in detail, some ecosystem services varied greatly with vegetation type. Carbon sequestration was positively influenced by tree density, independently of species composition. Seed dispersal potential was higher in lawns, and mixed forest provided the highest amount of habitat quality. Air purification service was slightly higher in mixed forest, but was high in all vegetation types, probably due to low background pollution, and both water purification and erosion prevention were high in all vegetation types. Knowing the type, location, and amount of ecosystem services provided by each vegetation type can help to improve management options based on ecosystem services trade-offs and looking for win-win situations. The trade-offs are, for example, very clear for carbon: tree planting will boost carbon

  19. An indicator for ecosystem externalities in fishing

    DEFF Research Database (Denmark)

    Ravn-Jonsen, Lars; Andersen, Ken Haste; Vestergaard, Niels

    2016-01-01

    Ecosystem externalities arise when one use of an ecosystem affects its other uses through the production functions of the ecosystem. We use simulations with a size-spectrum ecosystem model to investigate the ecosystem externality created by fishing of multiple species. The model is based upon...... general ecological principles and is calibrated to the North Sea. Two fleets are considered: a "forage fish" fleet targeting species that mature at small sizes and a "large fish" fleet targeting large piscivorous species. Based on the marginal analysis of the present value of the rent, we develop...... a benefit indicator that explicitly divides the consequences of fishing into internal and external benefits. This analysis demonstrates that the forage fish fleet has a notable economic impact on the large fish fleet, but the reverse is not true. The impact can be either negative or positive, which entails...

  20. How disturbances and management practices affect bird communities in a Carpathian river ecosystem?

    Science.gov (United States)

    Lacko, Jozef; Topercer, Ján; Súľovský, Marek

    2018-04-01

    We studied how interactions between disturbances, succession, human alterations and other habitat and landscape attributes affect bird community patterns in a lower reach of a large West Carpathian river Váh with complex disturbance and alteration histories. Breeding-bird communities, their habitats (54 variables) and surrounding landscapes (11 metrics) were sampled using standardized point counts with limited distances at 40 riparian sites divided among two transects along a 12.9 km river stretch. The most frequent and abundant birds were generalists typically associated with forest edge habitats, such as Parus major, Sylvia atricapilla, Fringilla coelebs, Oriolus oriolus, Phylloscopus collybita, Sturnus vulgaris, Turdus merula and Luscinia megarhynchos. Abundances show significant increase at the lower transect responding apparently to greater size and heterogeneity of riparian habitats and more abundant food supply linked to more diverse and intense human influences in a suburban zone. Both indirect (NMDS) and direct ordination (CCA) revealed remarkably large number of evenly important factors underlying riparian bird-habitat interactions. It suggests considerable environmental heterogeneity and complexity of these interactions as a likely outcome of long and complex disturbance and alteration histories of the area. Yet structure and relative importance of first two gradients (longitudinal and lateral linkages) remains simple and stable, complying well with predictions of river continuum concept and stream ecosystem theory. Of the nine statistically significant variables most strongly correlated with first two CCA axes, percentages of Helianthus tuberosus, footpaths, fields, Calystegia sepium and steep banks uphold our hypotheses predicting significant effects of invasive species, visitor disturbances, agricultural land use and unaltered river banks/bed on bird community composition and structure. A small but significant contribution of patch size standard

  1. Ethnic and locational differences in ecosystem service values

    DEFF Research Database (Denmark)

    Cuni Sanchez, Aida; Pfeifer, Marion; Marchant, Rob

    2016-01-01

    location. Preferred plant species for food, fodder, medicine resources, poles and firewood followed the same pattern. Our results showed that ethnicity and location affect ecosystem services' identification and importance ranking. This should be taken into account by decision-makers, e.g. as restricted......Understanding cultural preferences toward different ecosystem services is of great importance for conservation and development planning. While cultural preferences toward plant species have been long studied in the field of plant utilisation, the effects of ethnicity on ecosystem services...... identification and valuation has received little attention. We assessed the effects of ethnicity toward different ecosystem services at three similar forest islands in northern Kenya inhabited by Samburu and Boran pastoralists. Twelve focus groups were organised in each mountain, to evaluate the ecosystem...

  2. Ecological role of the giant root-rat (Tachyoryctes macrocephalus) in the Afroalpine ecosystem.

    Science.gov (United States)

    Šklíba, Jan; Vlasatá, Tereza; Lövy, Matěj; Hrouzková, Ema; Meheretu, Yonas; Sillero-Zubiri, Claudio; Šumbera, Radim

    2017-07-01

    Rodents with prevailing subterranean activity usually play an important role in the ecosystems of which they are a part due to the combined effect of herbivory and soil perturbation. This is the case for the giant root-rat Tachyoryctes macrocephalus endemic to the Afroalpine ecosystem of the Bale Mountains, Ethiopia. We studied the impact of root-rats on various ecosystem features within a 3.5-ha study locality dominated by Alchemilla pasture, which represents an optimal habitat for this species, in 2 periods of a year. The root-rats altered plant species composition, reducing the dominant forb, Alchemilla abyssinica, while enhancing Salvia merjame and a few other species, and reduced vegetation cover, but not the fresh plant biomass. Where burrows were abandoned by root-rats, other rodents took them over and A. abyssinica increased again. Root-rat burrowing created small-scale heterogeneity in soil compactness due to the backfilling of some unused burrow segments. Less compacted soil tended to be rich in nutrients, including carbon, nitrogen and phosphorus, which likely affected the plant growth on sites where the vegetation has been reduced as a result of root-rat foraging and burrowing. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. Optimal advanced credit releases in ecosystem service markets.

    Science.gov (United States)

    BenDor, Todd K; Guo, Tianshu; Yates, Andrew J

    2014-03-01

    Ecosystem service markets are popular policy tools for ecosystem protection. Advanced credit releases are an important factor affecting the supply side of ecosystem markets. Under an advanced credit release policy, regulators give ecosystem suppliers a fraction of the total ecosystem credits generated by a restoration project before it is verified that the project actually achieves the required ecological thresholds. In spite of their prominent role in ecosystem markets, there is virtually no regulatory or research literature on the proper design of advanced credit release policies. Using U.S. aquatic ecosystem markets as an example, we develop a principal-agent model of the behavior of regulators and wetland/stream mitigation bankers to determine and explore the optimal degree of advance credit release. The model highlights the tension between regulators' desire to induce market participation, while at the same time ensuring that bankers successfully complete ecological restoration. Our findings suggest several simple guidelines for strengthening advanced credit release policy.

  4. Green infrastructure and ecosystem services – is the devil in the detail?

    Science.gov (United States)

    Cameron, Ross W. F.; Blanuša, Tijana

    2016-01-01

    Background Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level, little consideration is given to the composition of the plant communities, yet this is what ultimately defines the extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more fully in identifying those plants that promote various services. Scope Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. Conclusions Although research is in its infancy, data are being generated that relate plant traits to specific services, thereby helping identify genotypes that optimize service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few ‘functional’ genotypes. Therefore, further information is required on how to design plant communities where the plants identified (1) provide more than a single benefit (multifunctionality), (B) complement each other in maximizing the range of benefits that can be delivered in one location, and (3) continue to maintain public acceptance through diversity. The identification/development of functional

  5. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    Science.gov (United States)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  6. Identification and ranking of environmental threats with ecosystem vulnerability distributions.

    Science.gov (United States)

    Zijp, Michiel C; Huijbregts, Mark A J; Schipper, Aafke M; Mulder, Christian; Posthuma, Leo

    2017-08-24

    Responses of ecosystems to human-induced stress vary in space and time, because both stressors and ecosystem vulnerabilities vary in space and time. Presently, ecosystem impact assessments mainly take into account variation in stressors, without considering variation in ecosystem vulnerability. We developed a method to address ecosystem vulnerability variation by quantifying ecosystem vulnerability distributions (EVDs) based on monitoring data of local species compositions and environmental conditions. The method incorporates spatial variation of both abiotic and biotic variables to quantify variation in responses among species and ecosystems. We show that EVDs can be derived based on a selection of locations, existing monitoring data and a selected impact boundary, and can be used in stressor identification and ranking for a region. A case study on Ohio's freshwater ecosystems, with freshwater fish as target species group, showed that physical habitat impairment and nutrient loads ranked highest as current stressors, with species losses higher than 5% for at least 6% of the locations. EVDs complement existing approaches of stressor assessment and management, which typically account only for variability in stressors, by accounting for variation in the vulnerability of the responding ecosystems.

  7. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  8. The Short Term Effects of Fire Severity on Composition and Diversity of Soil Seed Bank in Zagros Forest Ecosystem, Servan County

    Directory of Open Access Journals (Sweden)

    M. Heydari

    2014-12-01

    Full Text Available In most ecosystems, disturbance is an important agent of variation in community structure and composition. Determining the diversity and composition of soil seed bank is essential for designing conservation and restoration programs because it can markedly contribute to future plant communities. Despite the important role of soil seed banks in the composition of different plant communities, and thus in their conservation, the floristic studies in Zagros forests have only focused on aboveground vegetation. In this study, the characteristics of soil seed banks were examined in three conditions after one year of fire high severity burned, low severity burned and control (not burned in Shirvanchardavol city in northeast of Ilam Province. The result of DCA showed that different fire severities and their effects on site conditions have been reflected clearly in the composition of the soil seed bank. The results also indicated that soil seed bank composition between control and high severity burned spots was specifically different. The shanon diversity, Margalef richness and evenness indices differed significantly between three treatments and the highest diversity was observed at low severity. In this regard the proportion of annual forbs tended to decrease with increasing severity of fire. In soil seed bank, Therophytes were the dominant life form of low severity burned and control spots and Hemichryptophytes were dominant in high severity burned spots.

  9. Invasive aquarium fish transform ecosystem nutrient dynamics

    Science.gov (United States)

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems. PMID:23966642

  10. Composition and Structure of Forest Fire Refugia: What Are the Ecosystem Legacies across Burned Landscapes?

    Directory of Open Access Journals (Sweden)

    Garrett W. Meigs

    2018-05-01

    Full Text Available Locations within forest fires that remain unburned or burn at low severity—known as fire refugia—are important components of contemporary burn mosaics, but their composition and structure at regional scales are poorly understood. Focusing on recent, large wildfires across the US Pacific Northwest (Oregon and Washington, our research objectives are to (1 classify fire refugia and burn severity based on relativized spectral change in Landsat time series; (2 quantify the pre-fire composition and structure of mapped fire refugia; (3 in forested areas, assess the relative abundance of fire refugia and other burn severity classes across forest composition and structure types. We analyzed a random sample of 99 recent fires in forest-dominated landscapes from 2004 to 2015 that collectively encompassed 612,629 ha. Across the region, fire refugia extent was substantial but variable from year to year, with an annual mean of 38% of fire extent and range of 15–60%. Overall, 85% of total fire extent was forested, with the other 15% being non-forest. In comparison, 31% of fire refugia extent was non-forest prior to the most recent fire, highlighting that mapped refugia do not necessarily contain tree-based ecosystem legacies. The most prevalent non-forest cover types in refugia were vegetated: shrub (40%, herbaceous (33%, and crops (18%. In forested areas, the relative abundance of fire refugia varied widely among pre-fire forest types (20–70% and structural conditions (23–55%. Consistent with fire regime theory, fire refugia and high burn severity areas were inversely proportional. Our findings underscore that researchers, managers, and other stakeholders should interpret burn severity maps through the lens of pre-fire land cover, especially given the increasing importance of fire and fire refugia under global change.

  11. Novel urban ecosystems, biodiversity, and conservation

    International Nuclear Information System (INIS)

    Kowarik, Ingo

    2011-01-01

    With increasing urbanization the importance of cities for biodiversity conservation grows. This paper reviews the ways in which biodiversity is affected by urbanization and discusses the consequences of different conservation approaches. Cities can be richer in plant species, including in native species, than rural areas. Alien species can lead to both homogenization and differentiation among urban regions. Urban habitats can harbor self-sustaining populations of rare and endangered native species, but cannot replace the complete functionality of (semi-)natural remnants. While many conservation approaches tend to focus on such relict habitats and native species in urban settings, this paper argues for a paradigm shift towards considering the whole range of urban ecosystems. Although conservation attitudes may be challenged by the novelty of some urban ecosystems, which are often linked to high numbers of nonnative species, it is promising to consider their associated ecosystem services, social benefits, and possible contribution to biodiversity conservation. - Highlights: → This paper reviews biotic responses to urbanization and urban conservation approaches. → Cities may be rich in both native and nonnative species. → Urban habitats cannot replace the functionality of natural remnants. → However, even novel urban habitats may harbour rare and endangered species. → Conservation approaches should consider the perspective of novel urban ecosystems. - This paper reviews the ways in which biodiversity is affected by urbanization and argues for expanding urban conservation approaches.

  12. Novel urban ecosystems, biodiversity, and conservation

    Energy Technology Data Exchange (ETDEWEB)

    Kowarik, Ingo, E-mail: kowarik@tu-berlin.de [Department of Ecology, Technische Universitaet Berlin, Rothenburgstr. 12, D 12165 Berlin (Germany)

    2011-08-15

    With increasing urbanization the importance of cities for biodiversity conservation grows. This paper reviews the ways in which biodiversity is affected by urbanization and discusses the consequences of different conservation approaches. Cities can be richer in plant species, including in native species, than rural areas. Alien species can lead to both homogenization and differentiation among urban regions. Urban habitats can harbor self-sustaining populations of rare and endangered native species, but cannot replace the complete functionality of (semi-)natural remnants. While many conservation approaches tend to focus on such relict habitats and native species in urban settings, this paper argues for a paradigm shift towards considering the whole range of urban ecosystems. Although conservation attitudes may be challenged by the novelty of some urban ecosystems, which are often linked to high numbers of nonnative species, it is promising to consider their associated ecosystem services, social benefits, and possible contribution to biodiversity conservation. - Highlights: > This paper reviews biotic responses to urbanization and urban conservation approaches. > Cities may be rich in both native and nonnative species. > Urban habitats cannot replace the functionality of natural remnants. > However, even novel urban habitats may harbour rare and endangered species. > Conservation approaches should consider the perspective of novel urban ecosystems. - This paper reviews the ways in which biodiversity is affected by urbanization and argues for expanding urban conservation approaches.

  13. Factors affecting marginal integrity of class II bulk-fill composite resin restorations

    Science.gov (United States)

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda

    2017-01-01

    Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (Pcomposite resin type and margin location (Pcomposite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins. PMID:28748051

  14. Impact of fire disturbances in a Mediterranean maquis ecosystem

    Science.gov (United States)

    Bacciu, Valentina; Arca, Bachisio; Pellizzaro, Grazia; Salis, Michele; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Spano, Donatella

    2010-05-01

    Fire is an integral part of Mediterranean ecosystems, and for thousands of years it played an important ecological role in determining the evolution of the vegetation types in these areas. Mediterranean ecosystems are, in fact, mainly characterized by fire-prone vegetation. At small time scale, individual fires can affect both the fuel dynamics and the biological systems at different levels (individual, species, population), inducing changes in the spatial pattern of vegetation structure and composition, due to the increase of resource availability, such as water and light, and the reduction of plant competition. In this context, we conducted a comparison between the species composition and plant and substrate cover in maquis communities of different ages in several burned and unburned areas. The aim of this study was to assess the effect of fire on vegetation richness and diversity, and to better understand the consequential structural evolution of the vegetation complexes. The experimental area was located in the North West of Sardinia Island. The sampling scheme was constituted by eight sampling sites. In each site, species composition and plant height were determined by the point intercept method along two linear transects orthogonally disposed. Five plots (2x2 m) were displaced along the two transects, and in each plot digital photos were collected at about two meters above the plants. The photos were analyzed in order to calculate the area covered by each species. Substrate cover (e.g. the percent cover of stones, leaf litter, bare soil) was also recorded. Substrate and vegetation data were analyzed using both the cluster and principal component analysis, with the aim to detect vegetation and substrate differences among plots and sites. In addition, several ecological indices as the species richness and the floristic diversity were evaluated. Experimental results confirmed that fire controls the species composition and the substrate covers, contributing to

  15. Arctic ecosystem responses to a warming climate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.

    sheet, loss of multiannual sea-ice and significant advances in snowmelt days. The biotic components of the arctic ecosystem have also been affected by the rapid changes in climate, for instance resulting in the collapse of the collared lemming cycle, advances in spring flowering and changes in the intra...... biotic interactions. Hence, through the use of up-to-date multivariate statistical tools, this Ph.D. study has been concerned with analyzing how the observed rapid climate changes are affecting the arctic ecosystems. The primary tool has been the implementation of structural equation modeling (SEM) which....... Additionally, the study demonstrated that climate effects had distinct direct and indirect effects on different trophic levels, indicating cascading effects of climate through the trophic system. Results suggest that the Arctic is being significantly affected by the observed climate changes and depending...

  16. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  17. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Science.gov (United States)

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  18. Influence of wildfires on atmospheric composition and carbon uptake of forest ecosystems in Central Siberia: the establishing of a long-term post-fire monitoring system

    Science.gov (United States)

    Panov, Alexey; Chi, Xuguang; Winderlich, Jan; Prokushkin, Anatoly; Bryukhanov, Alexander; Korets, Mikhail; Ponomarev, Evgenii; Timokhina, Anastasya; Andreae, Meinrat O.; Heimann, Martin

    2014-05-01

    Calculations of direct emissions of greenhouse gases from boreal wildfires remain uncertain due to problems with emission factors, available carbon, and imprecise estimates of burned areas. Even more varied and sparse are accurate in situ calculations of temporal changes in boreal forest carbon dynamics following fire. Linking simultaneous instrumental atmospheric observations, GIS-based estimates of burned areas, and ecosystem carbon uptake calculations is vital to fill this knowledge gap. Since 2006 the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a research platform for large-scale climatic observations is operational in Central Siberia (60°48'N, 89°21'E). The data of ongoing greenhouse gases measurements at the tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over central Northern Eurasia. We present our contribution to reducing uncertainties in estimates of fire influence on atmospheric composition and post-fire ecosystem carbon uptake deduced from the large-scale fires that happened in 2012 in the tall tower footprint area. The burned areas were estimated from Landsat ETM 5,8 satellite images, while fires were detected from Terra/Aqua MODIS satellite data. The magnitude of ecological change caused by fires ("burn severity") was measured and mapped with a Normalized Burn Ratio (NBR) index and further calibrated by a complementary field based Composite Burn Index (CBI). Measures of fire radiative power (FRP) index provided information on fire heat release intensity and on the amount and completeness of biomass combustion. Based on the analyzed GIS data, the system of study plots was established in the 5 dominating ecosystem types for a long-term post-fire monitoring. On the plots the comprehensive estimation of ecosystem parameters and carbon pools and their mapping was organized with a laser-based field instrumentation system. The work was supported financially by ISTC Project # 2757p

  19. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    Science.gov (United States)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; hide

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  20. Groundwater Ecosystems Vary with Land Use across a Mixed Agricultural Landscape.

    Science.gov (United States)

    Korbel, K L; Hancock, P J; Serov, P; Lim, R P; Hose, G C

    2013-01-01

    Changes in surface land use may threaten groundwater quality and ecosystem integrity, particularly in shallow aquifers where links between groundwater and surface activities are most intimate. In this study we examine the response of groundwater ecosystem to agricultural land uses in the shallow alluvial aquifer of the Gwydir River valley, New South Wales, Australia. We compared groundwater quality and microbial and stygofauna assemblages among sites under irrigated cropping, non-irrigated cropping and grazing land uses. Stygofauna abundance and richness was greatest at irrigated sites, with the composition of the assemblage suggestive of disturbance. Microbial assemblages and water quality also varied with land use. Our study demonstrates significant differences in the composition of groundwater ecosystems in areas with different surface land use, and highlights the utility of groundwater biota for biomonitoring, particularly in agricultural landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. How forest management affects ecosystem services, including timber production and economic return

    DEFF Research Database (Denmark)

    Duncker, Philipp S.; Raulund-Rasmussen, Karsten; Gundersen, Per

    2012-01-01

    and services. By use of virtual but realistic datasets, we quantified, for multiple services, the effects of five forest management alternatives that form an intensity gradient. Our virtual forest management units represented Central European forest ecosystems in the submontane vegetation zone under a humid......–temperate climate with acidic soils. In this zone the European beech (Fagus sylvatica L.) is the dominant tree species. In order to assess the effects on ecosystem services, the untouched natural forest reserve served as a reference. Wherever possible, response functions were deduced to couple the various services...... via stand-level data to demonstrate trade-offs between the services. Management units comprised all development phases in the sense of a "normal forest". It was clearly illustrated that maximizing the rates of biomass production and carbon sequestration may conflict with protection of authentic...

  2. Variability in the contents of pork meat nutrients and how it may affect food composition databases.

    Science.gov (United States)

    Reig, Milagro; Aristoy, M-Concepción; Toldrá, Fidel

    2013-10-01

    Pork meat is generally recognised as a food with relevant nutritional properties because of its content in high biological value proteins, group B vitamins, minerals especially heme iron, trace elements and other bioactive compounds. But pork meat also contributes to the intake of fat, saturated fatty acids, cholesterol, and other substances that, in inappropriate amounts, may result in negative physiologically effects. However, there are relevant factors affecting the content of many of these substances and somehow such variability should be taken into consideration. So, genetics, age and even type of muscle have a relevant influence on the amount of fat and the contents in heme iron. Also the composition in fatty acids of triacylglycerols is very sensitive to the contents of cereals in the feed; for instance, polyunsaturated fatty acids may range from 10% to 22% in pork meat. The content of other nutrients, like vitamins E and A, are also depending on the type of feed. Some bioactive substances like coenzyme Q10, taurine, glutamine, creatine, creatinine, carnosine and anserine show a large dependence on the type of muscle. This manuscript describes the main factors affecting the composition of pork meat nutrients and how these changes may affect the general food composition databases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Taking the pulse of mountains: Ecosystem responses to climatic variability

    Science.gov (United States)

    Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.

    2003-01-01

    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change

  4. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid......-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas...

  5. Gulf of Mexico Ecosystem Status Report

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Mexico is one of the most ecologically and economically valuable marine ecosystems in the world and is affected by a variety of natural and anthropogenic...

  6. Divergent composition but similar function of soil food webs of individual plants

    DEFF Research Database (Denmark)

    Bezemer, T M; Fountain, M T; Barea, J M

    2010-01-01

    food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed...... that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants...... and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community....

  7. Ecosystem-based management and the wealth of ecosystems

    OpenAIRE

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K.; Fenichel, Eli P.

    2017-01-01

    Ecosystems store vast quantities of wealth, but difficulties measuring wealth held in ecosystems prevent its inclusion in accounting systems. Ecosystem-based management endeavors to manage ecosystems holistically. However, ecosystem-based management lacks headline indicators to evaluate performance. We unify the inclusive wealth and ecosystem-based management paradigms, allowing apples-to-apples comparisons between the wealth of the ecosystem and other forms of wealth, while providing a headl...

  8. Linking above and belowground responses to global change at community and ecosystem scales.

    Energy Technology Data Exchange (ETDEWEB)

    Antoninka, Anita [Northern Arizona University; Wolf, Julie [Northern Arizona University; Bowker, Matt [Northern Arizona University; Classen, Aimee T [ORNL; JohnsonPhD, Dr Nancy C [Northern Arizona University

    2009-01-01

    Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among above- and belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of soil organisms, arbuscular mycorrhizal (AM) fungi, and to study community and ecosystem responses to CO2 and N enrichment. After two growing seasons, biomass responses of plant communities were recorded, and soil community responses were measured using microscopy, phospholipid fatty acids (PLFA) and community-level physiological profiles (CLPP). Ecosystem responses were examined by measuring net primary production (NPP), evapotranspiration, total soil organic matter (SOM), and extractable mineral N. Structural equation modeling was used to examine the causal relationships among treatments and response variables. We found that while CO2 and N tended to directly impact ecosystem functions (evapotranspiration and NPP, respectively), AM fungi indirectly impacted ecosystem functions by strongly influencing the composition of plant and soil communities. For example, the presence of AM fungi had a strong influence on other root and soil fungi and soil bacteria. We found that the mycotrophic status of the dominant plant species in the mesocosms determined whether the presence of AM fungi increased or decreased NPP. Mycotrophic grasses dominated the mesocosm communities during the first growing season, and thus, the mycorrhizal treatments had the highest NPP. In contrast, non-mycotrophic forbs were dominant during the second growing season and thus, the mycorrhizal treatments had the lowest NPP. The composition of the plant community strongly influenced soil N; and the composition of the soil organisms strongly influenced SOM accumulation in the mesocosms. These results show how linkages between above- and belowground communities

  9. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  10. Green infrastructure and ecosystem services - is the devil in the detail?

    Science.gov (United States)

    Cameron, Ross W F; Blanuša, Tijana

    2016-09-01

    Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level, little consideration is given to the composition of the plant communities, yet this is what ultimately defines the extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more fully in identifying those plants that promote various services. Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. Although research is in its infancy, data are being generated that relate plant traits to specific services, thereby helping identify genotypes that optimize service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few 'functional' genotypes. Therefore, further information is required on how to design plant communities where the plants identified (1) provide more than a single benefit (multifunctionality), (B) complement each other in maximizing the range of benefits that can be delivered in one location, and (3) continue to maintain public acceptance through diversity. The identification/development of functional landscape plants is an exciting and

  11. Rehabilitation of saline ecosystems through cultivation of salt tolerant plants

    International Nuclear Information System (INIS)

    Abdul, R.; Mahmood, K.

    2012-01-01

    In Pakistan, salt-affected regions have been drastically disturbed by unchecked activities of local populations. Removal of deep-rooted perennials and overgrazing destroy the native vegetation leading to rapid desertification. Shallow-rooted agricultural crops are grown on marginal soils on limited area that is not enough with respect to the spread of salinity problem. Sustainable restoration of these ecosystems requires a large scale integration of perennial plants (trees, shrubs and herbs) back in to farming systems. However, selenization processes continue because the available options for cultivation of perennial plants prove less profitable than agricultural crops. This study relates to resort the salt-affected lands for plant production and develop a technology for sustainable saline ecosystem. Plants, having salt tolerance potential, have been identified and introduced on salt-affected wastelands to develop a sustainable ecosystem with increased productivity. The biomass so produced can be used directly as forage, fuel, and even as food or feed. In addition, fish aquaculture, and some value-added products make this ecosystem more sustainable. This technology is practically demonstrated at Biosaline Research Station of Nuclear Institute for Agriculture and Biology (NIAB), Pakka Anna, Faisalabad, Pakistan. The marginally saline soils and wastelands ameliorated as a result of growing salt tolerant perennials can also be used for growing salt tolerant cultivars of conventional crops like wheat, barley and mustard. So, through proper management the saline ecosystem can become economical and profitable. (author)

  12. Management intensity at field and landscape levels affects the structure of generalist predator communities.

    Science.gov (United States)

    Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara

    2014-07-01

    Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.

  13. Global change impacts on mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  14. Stormwater management and ecosystem services: a review

    Science.gov (United States)

    Prudencio, Liana; Null, Sarah E.

    2018-03-01

    Researchers and water managers have turned to green stormwater infrastructure, such as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to reduce flooding, augment surface water supplies, recharge groundwater, and improve water quality. It is increasingly clear that green stormwater infrastructure not only controls stormwater volume and timing, but also promotes ecosystem services, which are the benefits that ecosystems provide to humans. Yet there has been little synthesis focused on understanding how green stormwater management affects ecosystem services. The objectives of this paper are to review and synthesize published literature on ecosystem services and green stormwater infrastructure and identify gaps in research and understanding, establishing a foundation for research at the intersection of ecosystems services and green stormwater management. We reviewed 170 publications on stormwater management and ecosystem services, and summarized the state-of-the-science categorized by the four types of ecosystem services. Major findings show that: (1) most research was conducted at the parcel-scale and should expand to larger scales to more closely understand green stormwater infrastructure impacts, (2) nearly a third of papers developed frameworks for implementing green stormwater infrastructure and highlighted barriers, (3) papers discussed ecosystem services, but less than 40% quantified ecosystem services, (4) no geographic trends emerged, indicating interest in applying green stormwater infrastructure across different contexts, (5) studies increasingly integrate engineering, physical science, and social science approaches for holistic understanding, and (6) standardizing green stormwater infrastructure terminology would provide a more cohesive field of study than the diverse and often redundant terminology currently in use. We recommend that future research provide metrics and quantify ecosystem services, integrate disciplines to

  15. Ecosystem carbon and radiative fluxes: a global synthesis based on the FLUXNET network.

    Science.gov (United States)

    Cescatti, A.

    2009-04-01

    Solar radiation is the most important environmental factor driving the temporal and spatial variability of the gross primary productivity (GPP) in terrestrial ecosystems. At the ecosystem scale, the light use efficiency (LUE) depends not only on radiation quantity but also on radiation "quality" both in terms of spectral composition and angular distribution. The day-to-day variations in LUE are largely determined by changes in the ratio of diffuse to total radiation. The relative importance of the concurrent variation in total incoming radiation and in LUE is essential to estimate the sign and the magnitude of the GPP sensitivity to radiation. Despite the scientific relevance of this issue, a global assessment on the sensitivity of GPP to the variations of Phar is still missing. Such an analysis is needed to improve our understanding of the current and future impacts of aerosols and cloud cover on the spatio-temporal variability of GPP. The current availability of ecosystem carbon fluxes, together with separate measurements of incoming direct and diffuse Phar at a large number of flux sites, offers the unique opportunity to extend the previous investigation, both in terms of ecosystem, spatial and climate coverage, and to address questions about the internal (e.g. leaf area index, canopy structure) and external (e.g. cloudiness, covarying meteorology) factors affecting the ecosystem sensitivity to radiation geometry. For this purpose half-hourly measurements of carbon fluxes and radiation have been analyzed at about 220 flux sites for a total of about 660 site-years. This analysis demonstrates that the sensitivity of GPP to incoming radiation varies across the different plant functional types and is correlated with the leaf area index and the local climatology. In particular, the sensitivity of GPP to changes in incoming diffuse light maximizes for the broadleaved forests of the Northern Hemisphere.

  16. Seasonality and Management Affect Land Surface Temperature Differences Between Loblolly Pine and Switchgrass Ecosystems in Central Virginia

    Science.gov (United States)

    Ahlswede, B.; Thomas, R. Q.; O'Halloran, T. L.; Rady, J.; LeMoine, J.

    2017-12-01

    Changes in land-use and land management can have biogeochemical and biophysical effects on local and global climate. While managed ecosystems provide known food and fiber benefits, their influence on climate is less well quantified. In the southeastern United States, there are numerous types of intensely managed ecosystems but pine plantations and switchgrass fields represent two biogeochemical and biophysical extremes; a tall, low albedo forest with trees harvested after multiple decades vs. a short, higher albedo C4 grass field that is harvested annually. Despite the wide spread use of these ecosystems for timber and bioenergy, a quantitative, empirical evaluation of the net influence of these ecosystems on climate is lacking because it requires measuring both the greenhouse gas and energy balance of the ecosystems while controlling for the background weather and soil environment. To address this need, we established a pair of eddy flux towers in these ecosystems that are co-located (1.5 km apart) in Central Virginia and measured the radiative energy, non-radiative energy and carbon fluxes, along with associated biometeorology variables; the paired site has run since April 2016. During the first 1.5 years (two growing seasons), we found strong seasonality in the difference in surface temperature between the two ecosystems. In the growing seasons, both sites had similar surface temperature despite higher net radiation in pine. Following harvest of the switchgrass in September, the switchgrass temperatures increased relative to pine. In the winter, the pine ecosystem was warmer. We evaluate the drivers of these intra-annual dynamics and compare the climate influence of these biophysical differences to the differences in carbon fluxes between the sites using a suite of established climate regulation services metrics. Overall, our results show tradeoffs exist between the biogeochemical and biophysical climate services in managed ecosystems in the southeastern United

  17. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    Science.gov (United States)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  18. Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery

    International Nuclear Information System (INIS)

    Steckbauer, A; Duarte, C M; Vaquer-Sunyer, R; Carstensen, J; Conley, D J

    2011-01-01

    Coastal hypoxia is increasing in the global coastal zone, where it is recognized as a major threat to biota. Managerial efforts to prevent hypoxia and achieve recovery of ecosystems already affected by hypoxia are largely based on nutrient reduction plans. However, these managerial efforts need to be informed by predictions on the thresholds of hypoxia (i.e. the oxygen levels required to conserve biodiversity) as well as the timescales for the recovery of ecosystems already affected by hypoxia. The thresholds for hypoxia in coastal ecosystems are higher than previously thought and are not static, but regulated by local and global processes, being particularly sensitive to warming. The examination of recovery processes in a number of coastal areas managed for reducing nutrient inputs and, thus, hypoxia (Northern Adriatic; Black Sea; Baltic Sea; Delaware Bay; and Danish Coastal Areas) reveals that recovery timescales following the return to normal oxygen conditions are much longer than those of loss following the onset of hypoxia, and typically involve decadal timescales. The extended lag time for ecosystem recovery from hypoxia results in non-linear pathways of recovery due to hysteresis and the shift in baselines, affecting the oxygen thresholds for hypoxia through time.

  19. Microbial Community Dynamics in Soil Depth Profiles Over 120,000 Years of Ecosystem Development

    Directory of Open Access Journals (Sweden)

    Stephanie Turner

    2017-05-01

    Full Text Available Along a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR and community composition (pyrosequencing as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand. Additionally, in a microcosm incubation experiment the effects of particular soil properties, i.e., soil age, soil organic matter fraction (mineral-associated vs. particulate, O2 status, and carbon and phosphorus additions, on microbial abundances (quantitative PCR and community patterns (T-RFLP were analyzed. The archaeal to bacterial abundance ratio not only increased with soil depth but also with soil age along the chronosequence, coinciding with mineralogical changes and increasing phosphorus limitation. Results of the incubation experiment indicated that archaeal abundances were less impacted by the tested soil parameters compared to Bacteria suggesting that Archaea may better cope with mineral-induced substrate restrictions in subsoils and older soils. Instead, archaeal communities showed a soil age-related compositional shift with the Bathyarchaeota, that were frequently detected in nutrient-poor, low-energy environments, being dominant at the oldest site. However, bacterial communities remained stable with ongoing soil development. In contrast to the abundances, the archaeal compositional shift was associated with the mineralogical gradient. Our study revealed, that archaeal and bacterial communities in whole soil profiles are differently affected by long-term soil development with archaeal communities probably being better adapted to

  20. Will ecosystem management supply woodland caribou habitat in northwestern Ontario?

    Directory of Open Access Journals (Sweden)

    David L. Euler

    1998-03-01

    Full Text Available Ecosystem management is emerging as an important concept in managing forests. Although the basic conceptual idea is not new, important defining principles are developing that elucidate some of the specific attributes of ecosystem management. These principles include: the maintenance of all ecosystems in the managed forest, rhe emulation of natural disturbance patterns on rhe landscape and the insurance that structure and function of forested ecosystems are conserved. Forest management has an impact on woodland caribou (Rangifer tarandus caribou, although the presence of wolves (Canis lupus and moose (Alces alces in the same northern ecosystems also affects the caribou-forestry interacrion. Specific management for caribou as a featured species has been proposed, based on managing large landscape blocks. Ecosystem management would also produce habitat in a manner that might accomplish the goal of conserving woodland caribou as well as maintaining other important ecosystem functions.

  1. Physical, chemical, and mineralogical data from surficial deposits, groundwater levels, and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada

    Science.gov (United States)

    Goldstein, Harland L.; Breit, George N.; Yount, James C.; Reynolds, Richard L.; Reheis, Marith C.; Skipp, Gary L.; Fisher, Eric M.; Lamothe, Paul J.

    2011-01-01

    This report presents data and describes the methods used to determine the physical attributes, as well as the chemical and mineralogical composition of surficial deposits; groundwater levels; and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada. The results support studies that examine (1) the interaction between groundwater and the ground surface, and the transport of solutes through the unsaturated zone; (2) the potential for the accumulation of metals and metalloids in surface crusts; (3) emission of dust from metal-rich salt crust; and (4) the effects of metal-rich dusts on human and ecosystem health. The evaporation of shallow (travel as atmospheric dust and affect human and ecosystem health at local to regional scales.

  2. Environmental Factors and Ecosystems Associated with Canine Visceral Leishmaniasis in Northeastern Brazil.

    Science.gov (United States)

    da Costa, Andréa Pereira; Costa, Francisco Borges; Soares, Herbert Sousa; Ramirez, Diego Garcia; de Carvalho Araújo, Andreina; da Silva Ferreira, Juliana Isabel Giuli; Tonhosolo, Renata; Dias, Ricardo Augusto; Gennari, Solange Maria; Marcili, Arlei

    2015-12-01

    Environment influences the composition, distribution, and behavior of the vectors and mammalian hosts involved in the transmission of visceral leishmaniasis (VL), affecting the epidemiology of the disease. In Brazil, the urbanization process and canine cases of VL are indicators for local health authorities. This study aimed to investigate the occurrence of the canine visceral leishmaniasis (CVL) in Maranhão State, Brazil. Blood samples collected from 960 dogs from six municipalities and six different ecosystems (Baixada Maranhense, Mangue, Mata dos Cocais, Amazônia, Cerrado, and Restinga) to serological tests (enzyme-linked immunosorbent assay [ELISA], indirect fluorescence antibody test [IFAT], and chromatographic immunoassay methods [Dual Path Platform technology, DPP(®)]) and parasitological diagnosis. From serological tests, 11.14% (107) of the dogs were positive for CVL, with 59.16% (568), 14.5% (148), and 131% (126) positives to ELISA, DPP, and IFAT tests, respectively. Only seven animals (0.73%) were positive in a parasitological test. We also performed parasite isolation and phylogenetic characterization. All isolates of dogs obtained from Maranhão were grouped in a single branch with Leishmania infantum chagasi from Brazil. The ecosystem Amazonia presented the highest positivity rates to CVL in serological and parasitological tests. Brazilian biomes/ecosystems suffer large degradation and may favor, depending on climatic conditions, the installation of new diseases. In the case of VL, dogs are reservoirs of parasites and sentinels for human infection.

  3. How natural capital delivers ecosystem services

    NARCIS (Netherlands)

    Smith, A.C.; Harrison, P.A.; Pérez Soba, M.; Archaux, F.; Blicharska, M.; Egoh, B.N.; Erős, T.; Fabrega Domenech, N.; György, I.; Haines-Young, R.; Li, S.; Lommelen, E.; Meiresonne, L.; Miguel Ayala, L.; Mononen, L.; Simpson, G.; Stange, E.; Turkelboom, F.; Uiterwijk, M.; Veerkamp, C.J.; Wyllie de Echeverria, V.

    2017-01-01

    There is no unified evidence base to help decision-makers understand how the multiple components of natural capital interact to deliver ecosystem services. We systematically reviewed 780 papers, recording how natural capital attributes (29 biotic attributes and 11 abiotic factors) affect the

  4. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata

    Directory of Open Access Journals (Sweden)

    Yang Haishui

    2012-04-01

    Full Text Available Abstract Background Arbuscular mycorrhizal fungi (AMF can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. Results We defined 305 ITS virtual taxa (ITS-VTs among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. Conclusion The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity

  5. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata.

    Science.gov (United States)

    Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin

    2012-04-12

    Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic

  6. Biological invasions in forest ecosystems

    Science.gov (United States)

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  7. Soil Microbial Activity Responses to Fire in a Semi-arid Savannah Ecosystem Pre- and Post-Monsoon Season

    Science.gov (United States)

    Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.

    2017-12-01

    Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.

  8. Habitat modification drives benthic trophic diversity in an intertidal soft-bottom ecosystem

    NARCIS (Netherlands)

    van der Zee, E.M.; Tielens, E.; Holthuijsen, S.; Donadi, S.; Eriksson, B.K.; van der Veer, H.W.; Piersma, T.; Olff, H.; van der Heide, T.

    2015-01-01

    In intertidal soft-bottom ecosystems, ecosystem engineers such as reef-building bivalves, can strongly affect the associated benthic community by providing structure and stabilizing the sediment. Although several engineering species have declined dramatically in the past centuries, the consequences

  9. The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function

    DEFF Research Database (Denmark)

    Traving, Sachia J.; Rowe, Owen; Jakobsen, Nina M.

    2017-01-01

    Increased river loads are projected as one of the major consequences of climate change in the northern hemisphere, leading to elevated inputs of riverine dissolved organic matter (DOM) and inorganic nutrients to coastal ecosystems. The objective of this study was to investigate the effects of ele...... supply to the Baltic Sea will be efficiently mineralized by microbes. This will have consequences for bacterioplankton and phytoplankton community composition and function, and significantly affect nutrient biogeochemistry....

  10. Mammalian engineers drive soil microbial communities and ecosystem functions across a disturbance gradient.

    Science.gov (United States)

    Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A

    2016-11-01

    The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative

  11. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function.

    Science.gov (United States)

    Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric

    2017-03-01

    One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The Southern Ocean ecosystem under multiple climate change stresses--an integrated circumpolar assessment.

    Science.gov (United States)

    Gutt, Julian; Bertler, Nancy; Bracegirdle, Thomas J; Buschmann, Alexander; Comiso, Josefino; Hosie, Graham; Isla, Enrique; Schloss, Irene R; Smith, Craig R; Tournadre, Jean; Xavier, José C

    2015-04-01

    A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with a potential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one or more climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to changes, and together cover almost 86% of the SO ecosystem. © 2014 John Wiley & Sons Ltd.

  13. Technology Transfer Offices: Addressing Imperfections in Entrepreneurial Ecosystems: The Norwegian Context

    OpenAIRE

    Balasingham, Janagan; Olsen, Andreas Hajanirina Fiderana

    2014-01-01

    This research focuses on the creation and nurturing of University spin-offs and how the entrepreneurial ecosystem affects TTO s value creation process. We have conducted unstructured literature reviews on both TTOs and entrepreneurial ecosystems, ultimately resulting in a critique on Roberts and Malone s (1996) support-selectivity typology, where we argue that entrepreneurial ecosystems are complex and unique phenomenons, and that the handling of these important external factors cannot be eas...

  14. Assessing how green space types affect ecosystem services delivery in Porto, Portugal

    Science.gov (United States)

    Marisa Graça; Paulo Alves; João Gonçalves; David J. Nowak; Robert Hoehn; Paulo Farinha-Marques; Mario Cunha

    2018-01-01

    Significant advances have been made in identifying, quantifying and valuing multiple urban ecosystem services (UES), yet this knowledge remains poorly implemented in urban planning and management. One of the reasons for this low implementation is the insufficient thematic and spatial detail in UES research to provide guidance for urban planners and managers....

  15. Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China.

    Directory of Open Access Journals (Sweden)

    Xinyue Zhang

    Full Text Available More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer microbes may differ in their ability/strategy to efficiently use soil organic carbon (SOC within different phases of the year, understanding seasonal microbial process will increase our knowledge of biogeochemical cycling from the aspect of decomposition rates and corresponding nutrient dynamics. In this study, we measured soil microbial biomass, community composition and potential SOC mineralization rates in winter and summer, from six temperate ecosystems in northern China. Our results showed a clear pattern of increased microbial biomass C to nitrogen (N ratio in most winter soils. Concurrently, a shift in soil microbial community composition occurred with higher fungal to bacterial biomass ratio and gram negative (G- to gram positive (G+ bacterial biomass ratio in winter than in summer. Furthermore, potential SOC mineralization rate was higher in winter than in summer. Our study demonstrated a distinct transition of microbial community structure and function from winter to summer in temperate snow-covered ecosystems. Microbial N immobilization in winter may not be the major contributor for plant growth in the following spring.

  16. Multicompartment Ecosystem Mass Balances as a Tool for Understanding and Managing the Biogeochemical Cycles of Human Ecosystems

    Directory of Open Access Journals (Sweden)

    Lawrence A. Baker

    2001-01-01

    Full Text Available Nitrogen remains a ubiquitous pollutant in surface and groundwater throughout the United States, despite 30 years of pollution control efforts. A detailed multicompartment N balance for the Central Arizona-Phoenix ecosystem is used to illustrate how an ecosystem-level approach can be used to develop improved N management strategies. The N balance is used to demonstrate how nitrate in pumped groundwater used for crop irrigation could be used to reduce inputs of commercial fertilizer and decrease N leaching to aquifers. Effectively managing N pollution also will require an understanding of the complex factors that control the N balance, including targeted regulations, individual human behavior, land-use conversion, and other ecosystem management practices that affect the N balance. These sometimes countervailing factors are illustrated with several scenarios of wastewater treatment technology and population growth in the Phoenix area. Management of N eventually must be coupled to management of other elements, notably carbon, phosphorus, and salts. We postulate that an ecosystem framework for pollution management will result in strategies that are more effective, fairer, and less expensive than current approaches.

  17. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan.

    Science.gov (United States)

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-06-09

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  18. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Hwey-Lian Hsieh

    2015-06-01

    Full Text Available The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  19. Towards Understanding of IoT Ecosystems in the Healthcare Sector

    OpenAIRE

    Pesonen, Ari; Sulin, Jussi

    2016-01-01

    This study aimed to outline an ecosystem to IoT based health/elderly care solutions and to the needs of both single actors and the whole ecosystem. Moreover, the aim was to understand the relations and dynamics between different actors in this ecosystem. The research questions for this study were: 1. How do industry professionals perceive the current state of health care? 2. How do the digitalization and IoT affect the health sector, and what advancements are needed to speed up the proces...

  20. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  1. Declining resilience of ecosystem functions under biodiversity loss.

    Science.gov (United States)

    Oliver, Tom H; Isaac, Nick J B; August, Tom A; Woodcock, Ben A; Roy, David B; Bullock, James M

    2015-12-08

    The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions--specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.

  2. Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services.

    Science.gov (United States)

    Rudman, Seth M; Kreitzman, Maayan; Chan, Kai M A; Schluter, Dolph

    2017-06-01

    Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Changes in rainfall patterns in Mediterranean ecosystems: the MIND project

    Directory of Open Access Journals (Sweden)

    Papale D

    2007-12-01

    Full Text Available Will Mediterranean terrestrial ecosystems be affected by the expected changes in precipitation regimes? If so, by how much and in which direction? These questions are at the basis of the research performed in context of the EU MIND project, whose key objectives were: i to investigate the potential effects of increasing drought on Mediterranean terrestrial ecosystems at the process, ecosystem and regional scales and ii to assess ecosystem vulnerability to changes in rainfall patterns. A network of experimental study sites has been created in Portugal, Spain, France and Italy, where field manipulations alter the amount of water available to the ecosystem. The most up-to-date methods of ecophysiology, micrometeorology, soil ecology and remote sensing have been used to elucidate the mechanisms that regulate the response of vegetation and soil to changes in water availability. This information is providing the basis for the implementation and validation of simulation models capable of predicting the drought response of Mediterranean terrestrial ecosystems, and their vulnerability to future climate change, on a larger scale. The out-coming results are elucidating how water availability affects plant ecophysiological processes, the dynamics of soil carbon and the overall exchange of mass and energy between the land and the atmosphere. This paper focuses on some of the important, yet preliminary, results on C and energy fluxes that have been obtained at the large scale troughfall manipulation experiment (Tolfa, Italy, in a forest dominated by Arbutus unedo L.

  4. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    Science.gov (United States)

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  5. Impact of global climate change and fire on the occurrence and function of understorey legumes in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Reverchon, Frederique; Xu, Zhihong; Blumfield, Timothy J.; Chen, Chengrong; Abdullah, Kadum M. [Griffith Univ., Nathan, QLD (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2012-02-15

    The objective of this review was to provide a better understanding of how global climate change and fire influence the occurrence of understorey legumes and thereby biological nitrogen (N) fixation rates in forest ecosystems. Legumes are interesting models since they represent an interface between the soil, plant, and microbial compartments, and are directly linked to nutrient cycles through their ability to fix N. As such, they are likely to be affected by environmental changes. Biological N fixation has been shown to increase under enriched CO{sub 2} conditions, but is constrained by the availability of phosphorus and water. Climate change can also influence the species composition of legumes and their symbionts through warming, altered rainfall patterns, or changes in soil physicochemistry, which could modify the effectiveness of the symbiosis. Additionally, global climate change may increase the occurrence and intensity of forest wildfires thereby further influencing the distribution of legumes. The establishment of leguminous species is generally favored by fire, as is N{sub 2} fixation. This fixed N could therefore replenish the N lost through volatilization during the fire. However, fire may also generate shifts in the associated microbial community which could affect the outcome of the symbiosis. Understorey legumes are important functional species, and even when they cannot reasonably be expected to reestablish the nutrient balance in forest soils, they may be used as indicators to monitor nutrient fluxes and the response of forest ecosystems to changing environmental conditions. This would be helpful to accurately model ecosystem N budgets, and since N is often a limiting factor to plant growth and a major constraint on C storage in ecosystems, would allow us to assess more precisely the potential of these forests for C sequestration. (orig.)

  6. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    Science.gov (United States)

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  7. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  8. Mixing of water masses caused by a drifting iceberg affects bacterial activity, community composition and substrate utilization capability in the Southern Ocean.

    Science.gov (United States)

    Dinasquet, Julie; Richert, Inga; Logares, Ramiro; Yager, Patricia; Bertilsson, Stefan; Riemann, Lasse

    2017-06-01

    The number of icebergs produced from ice-shelf disintegration has increased over the past decade in Antarctica. These drifting icebergs mix the water column, influence stratification and nutrient condition, and can affect local productivity and food web composition. Data on whether icebergs affect bacterioplankton function and composition are scarce, however. We assessed the influence of iceberg drift on bacterial community composition and on their ability to exploit carbon substrates during summer in the coastal Southern Ocean. An elevated bacterial production and a different community composition were observed in iceberg-influenced waters relative to the undisturbed water column nearby. These major differences were confirmed in short-term incubations with bromodeoxyuridine followed by CARD-FISH. Furthermore, one-week bottle incubations amended with inorganic nutrients and carbon substrates (a mix of substrates, glutamine, N-acetylglucosamine, or pyruvate) revealed contrasting capacity of bacterioplankton to utilize specific carbon substrates in the iceberg-influenced waters compared with the undisturbed site. Our study demonstrates that the hydrographical perturbations introduced by a drifting iceberg can affect activity, composition, and substrate utilization capability of marine bacterioplankton. Consequently, in a context of global warming, increased frequency of drifting icebergs in polar regions holds the potential to affect carbon and nutrient biogeochemistry at local and possibly regional scales. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems

    NARCIS (Netherlands)

    van de Waal, D.B.; Verschoor, A.M.; Verspagen, J.M.H.; van Donk, E.; Huisman, J.

    2010-01-01

    Advances in ecological stoichiometry, a rapidly expanding research field investigating the elemental composition of organisms and their environment, have shed new light on the impacts of climate change on freshwater and marine ecosystems. Current changes in the Earth's climate alter the availability

  10. Conceptual Framework of Ecosystem Services in Landscape Planning, Malaysia

    Directory of Open Access Journals (Sweden)

    Lee Bak Yeo

    2016-09-01

    Full Text Available This paper presents the concept of ecosystem services and its trend, scale and gradient, through reviewing articles, books and internet sources. Result shows that evaluation of ecosystem services in small towns within urban-rural gradient in developing countries still not being scrutinized explicitly, especially trade-offs’ concern. Environmental damages in the developing countries are burgeoning. As land conversion from natural capital to built capital is also keep on rising for temporal economic interests. Therefore, it has induced changes in ecological functions and affected the ecosystem services supply. In the context of Peninsular Malaysia, ungoverned built capitals and flaw of policy further contribute to fallacious decision making. And yet, there is still no specific framework or initiatives directly deals with ecosystem and biodiversity. A conceptual framework has been proposed to assess and value ecosystem services through integration of InVEST model (Integrated Valuation of Ecosystem Services and Tradeoffs and bundle of ecosystem services. The framework allows stakeholders to have an insight of the pros and cons about the landscape changes, be it in ecological, economic or social-cultural perspectives. Therefore, it may help to ameliorate the trade-offs and enhance the synergies of ecosystem services that eventually can contribute to attaining human well-being, and to promote sustainable growth.

  11. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular

  12. Model of plutonium dynamics in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Gardner, R.H.; Dahlman, R.C.

    1980-01-01

    A linear compartment model with donor-controlled flows between compartments was designed to describe and simulate the behavior of plutonium ( 239 240 Pu) in a contaminated forest ecosystem at Oak Ridge, TN. At steady states predicted by the model, less than 0.25% of the plutonium in the ecosystem resides in biota. Soil is the major repository of plutonium in the forest, and exchanges of plutonium between soil and litter or soil and tree roots were dominant transfers affecting the ecosystem distribution of plutonium. Variation in predicted steady-state amounts of plutonium in the forest, given variability in the model parameters, indicates that our ability to develop models of plutonium transport in ecosystems should improve with greater precision in data from natural environments and a better understanding of sources of variation in plutonium data

  13. Temperature and metal exposure affect membrane fatty acid composition and transcription of desaturases and elongases in fathead minnow muscle and brain.

    Science.gov (United States)

    Fadhlaoui, Mariem; Pierron, Fabien; Couture, Patrice

    2018-02-01

    In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. 'One physical system': Tansley's ecosystem as Earth's critical zone.

    Science.gov (United States)

    Richter, Daniel deB; Billings, Sharon A

    2015-05-01

    Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    Science.gov (United States)

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Thiacloprid affects trophic interaction between gammarids and mayflies

    International Nuclear Information System (INIS)

    Englert, D.; Bundschuh, M.; Schulz, R.

    2012-01-01

    Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator–prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption of Gammarus fossarum (Amphipoda) were assessed over 96 h (n = 13–17) in conjunction with its predation on Baetis rhodani (Ephemeroptera) nymphs. The predation by Gammarus increased significantly at 0.50–1.00 μg/L. Simultaneously, its leaf consumption decreased with increasing thiacloprid concentration. As a consequence of the increased predation at 1.00 μg/L, gammarids' dry weight rose significantly by 15% compared to the control. At 4.00 μg/L, the reduced leaf consumption was not compensated by an increase in predation causing a significantly reduced dry weight of Gammarus (∼20%). These results may finally suggest that thiacloprid adversely affects trophic interactions, potentially translating into alterations in ecosystem functions, like leaf litter breakdown and aquatic-terrestrial subsidies. - Highlights: ► Field relevant thiacloprid concentrations affected gammarid and mayfly interaction. ► Gammarus leaf consumption and predation success is adversely affected. ► Gammarus growth increased due to higher predation at 1.0 μg thiacloprid/L. ► The study's results are discussed in the context of ecosystem functions. - Field relevant thiacloprid concentrations affect species interactions, which may translate to alterations in ecosystem functions.

  17. Implications of floristic and environmental variation for carbon cycle dynamics in boreal forest ecosystems of central Canada

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zicheng; Apps, M.J.; Bhatti, J.S. [Canadan Forest Service, Edmonton (Canada). Northern Forestry Centre

    2002-06-01

    Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43,530 kg-C/ha) than either Populus (25,500 kg-C/ha) or Pinus (19,400 kg-C/ha). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic-matter decomposition, which in turn affect the ecosystem C-dynamics. During forest succession after a stand-replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C-transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.

  18. Ecosystem-based management and the wealth of ecosystems

    Science.gov (United States)

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K.; Fenichel, Eli P.

    2017-01-01

    We merge inclusive wealth theory with ecosystem-based management (EBM) to address two challenges in the science of sustainable management of ecosystems. First, we generalize natural capital theory to approximate realized shadow prices for multiple interacting natural capital stocks (species) making up an ecosystem. These prices enable ecosystem components to be better included in wealth-based sustainability measures. We show that ecosystems are best envisioned as portfolios of assets, where the portfolio’s performance depends on the performance of the underlying assets influenced by their interactions. Second, changes in ecosystem wealth provide an attractive headline index for EBM, regardless of whether ecosystem wealth is ultimately included in a broader wealth index. We apply our approach to the Baltic Sea ecosystem, focusing on the interacting community of three commercially important fish species: cod, herring, and sprat. Our results incorporate supporting services embodied in the shadow price of a species through its trophic interactions. Prey fish have greater shadow prices than expected based on market value, and predatory fish have lower shadow prices than expected based on market value. These results are because correctly measured shadow prices reflect interdependence and limits to substitution. We project that ecosystem wealth in the Baltic Sea fishery ecosystem generally increases conditional on the EBM-inspired multispecies maximum sustainable yield management beginning in 2017, whereas continuing the current single-species management generally results in declining wealth. PMID:28588145

  19. Ecosystem-based management and the wealth of ecosystems.

    Science.gov (United States)

    Yun, Seong Do; Hutniczak, Barbara; Abbott, Joshua K; Fenichel, Eli P

    2017-06-20

    We merge inclusive wealth theory with ecosystem-based management (EBM) to address two challenges in the science of sustainable management of ecosystems. First, we generalize natural capital theory to approximate realized shadow prices for multiple interacting natural capital stocks (species) making up an ecosystem. These prices enable ecosystem components to be better included in wealth-based sustainability measures. We show that ecosystems are best envisioned as portfolios of assets, where the portfolio's performance depends on the performance of the underlying assets influenced by their interactions. Second, changes in ecosystem wealth provide an attractive headline index for EBM, regardless of whether ecosystem wealth is ultimately included in a broader wealth index. We apply our approach to the Baltic Sea ecosystem, focusing on the interacting community of three commercially important fish species: cod, herring, and sprat. Our results incorporate supporting services embodied in the shadow price of a species through its trophic interactions. Prey fish have greater shadow prices than expected based on market value, and predatory fish have lower shadow prices than expected based on market value. These results are because correctly measured shadow prices reflect interdependence and limits to substitution. We project that ecosystem wealth in the Baltic Sea fishery ecosystem generally increases conditional on the EBM-inspired multispecies maximum sustainable yield management beginning in 2017, whereas continuing the current single-species management generally results in declining wealth.

  20. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices

    International Nuclear Information System (INIS)

    Escobedo, Francisco J.; Kroeger, Timm; Wagner, John E.

    2011-01-01

    The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals. - Environmental managers should analyze ecosystem services and disservices when developing urban forest management alternatives for mitigating urban pollution.

  1. Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem.

    Directory of Open Access Journals (Sweden)

    Guo-Chun Ding

    Full Text Available Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem.

  2. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Carleton R., E-mail: cbern@usgs.gov [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Chadwick, Oliver A. [Department of Geography University of California, Santa Barbara, CA 93106-4060 (United States); Kendall, Carol [U.S. Geological Survey, Menlo Park, CA (United States); Pribil, Michael J. [U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States)

    2015-05-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ{sup 34}S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ{sup 34}S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ{sup 34}S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls

  3. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    International Nuclear Information System (INIS)

    Bern, Carleton R.; Chadwick, Oliver A.; Kendall, Carol; Pribil, Michael J.

    2015-01-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ 34 S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ 34 S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ 34 S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over

  4. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  5. Provision of ecosystem services by human-made structures in a highly impacted estuary

    International Nuclear Information System (INIS)

    Layman, Craig A; Jud, Zachary R; Archer, Stephanie K; Riera, David

    2014-01-01

    Water filtration is one of the most important ecosystem services provided by sessile organisms in coastal ecosystems. As a consequence of increased coastal development, human-made shoreline structures (e.g., docks and bulkheads) are now common, providing extensive surface area for colonization by filter feeders. We estimate that in a highly urbanized sub-tropical estuary, water filtration capacity supported by filter feeding assemblages on dock pilings accounts for 11.7 million liters of water h −1 , or ∼30% of the filtration provided by all natural oyster reef throughout the estuary. Assemblage composition, and thus filtration capacity, varied as a function of piling type, suggesting that the choice of building material has critical implications for ecosystem function. A more thorough depiction of the function of coastal ecosystems necessitates quantification of the extensive ecosystem services associated with human-made structures. (paper)

  6. A multi-criteria, ecosystem-service value method used to assess catchment suitability for potential wetland reconstruction in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Turner, Katrine Grace; Bøcher, Peder Klith

    2017-01-01

    Wetlands provide a range of ecosystem services such as drought resistance, flood resistance, nutrient deposition, biodiversity, etc. This study presents a new multi-criteria, ecosystems service value-driven method to drive the optimal placement of restored wetlands in terms of maximizing selected...... for potential wetland reconstruction (i.e. restoration)? Five key ecosystem services indicators produced or affected by wetlands in Denmark were mapped (recreational potential, biodiversity, nitrogen mitigation potential, inverse land rent, and flash-flood risk). These services were compared to current...... ecosystem services which a wetland can provide or affect. We aim to answer two questions: 1) which of the ecosystem services indicators defines the placement of wetlands today? 2) Based on the ecosystem services indicator assessment, what are the recommendations for future selection of catchments...

  7. Effects of sulphuric acid and acidifying ammonium deposition on water quality and vegetation of simulated soft water ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Schuurkes, J.A.A.R.; Heck, I.C.C; Hesen, P.L.G.M.; Leuven, R.S.E.W.; Roelofs, J.G.M.

    1986-11-01

    In a greenhouse, seven identical mini-ecosystems, simulating soft water ponds, were exposed to different types of artificial rain water. The effects of rain water containing H/sub 2/SO/sub 4/ and nitrate, and rain water containing ammonium sulphate on water quality and vegetation were studied and compared. Causal relations were established between rain water quality, water chemistry and changes in floristic composition. Ammonium sulphate deposition, particularly, strongly affected water quality and vegetation development. Although ammonium sulphate deposition was only slightly acid, due to nitrification it acted as an important acid source, causing acidification to pH 3.8. Under acidified conditions, ammonium sulphate deposition led to a luxuriant growth of Juncus bulbosus and Agrostis canina. In the mini-ecosystems, H/sub 2/SO/sub 4/ deposition with a pH of 3.5 only decreased the pH of the water to 5.1 within 1 yr, the acidification of water appeared to be coupled with changes in alkalinity, sulphate, Al, Cd, Ca, Mg, K and inorganic-N. It is concluded that in NH/sub 3/-affected regions in The Netherlands, the high atmospheric deposition of ammonium sulphate probably contributes to a large extent in the acidification, eutrophication and floristic changes of oligotrophic soft waters. 10 references.

  8. Effects of sulphuric acid and acidifying ammonium deposition on water quality and vegetation of simulated soft water ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Schuurkes, J.A.; Heck, I.C.; Hesen, P.L.; Leuven, R.S.; Roelofs, J.G.

    1986-11-01

    In a greenhouse, seven identical mini-ecosystems, simulating soft water ponds, were exposed to different types of artificial rain water. The effects of rain water containing H/sub 2/SO/sub 4/ and nitrate, and rain water containing ammonium sulfate on water quality and vegetation were studied and compared. Causal relations were established between rain water quality, water chemistry and changes in floristic composition. Ammonium sulfate deposition, particularly, strongly affected water quality and vegetation development. Although ammonium sulfate deposition was only slightly acid, due to nitrification it acted as an important acid source, causing acidification to pH = 3.8. Under acidified conditions, ammonium sulfate deposition lead to a luxuriant growth of Juncus bulbosus and Agrostis canina. In the mini-ecosystems, H/sub 2/SO/sub 4/ deposition with a pH of 3.5 only decreased the pH of the water to 5.1 within 1 yr. The acidification of water appeared to be coupled with changes in alkalinity, sulfate, Al, Cd, Ca, Mg, K and inorganic-N. It is concluded that in NH/sub 3/-affected regions in The Netherlands, the high atmospheric deposition of ammonium sulfate probably contributes to a large extent in the acidification, eutrophication and floristic changes of oligotrophic soft waters. 10 refs.

  9. Remnant trees affect species composition but not structure of tropical second-growth forest.

    Science.gov (United States)

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  10. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  11. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    Science.gov (United States)

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire

  12. Microbial community composition affects soil fungistasis.

    Science.gov (United States)

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J A; Kowalchuk, George A; van Veen, Johannes A

    2003-02-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.

  13. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    Science.gov (United States)

    Guyette, Richard; Stambaugh, Michael C; Dey, Daniel; Muzika, Rose Marie

    2017-01-01

    The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI). The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1) the water needed by plants to produce carbon bonds (fuel) and 2) the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture). These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1) precipitation insensitive, 2) precipitation unstable, and 3) precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  14. The theory, direction, and magnitude of ecosystem fire probability as constrained by precipitation and temperature.

    Directory of Open Access Journals (Sweden)

    Richard Guyette

    Full Text Available The effects of climate on wildland fire confronts society across a range of different ecosystems. Water and temperature affect the combustion dynamics, irrespective of whether those are associated with carbon fueled motors or ecosystems, but through different chemical, physical, and biological processes. We use an ecosystem combustion equation developed with the physical chemistry of atmospheric variables to estimate and simulate fire probability and mean fire interval (MFI. The calibration of ecosystem fire probability with basic combustion chemistry and physics offers a quantitative method to address wildland fire in addition to the well-studied forcing factors such as topography, ignition, and vegetation. We develop a graphic analysis tool for estimating climate forced fire probability with temperature and precipitation based on an empirical assessment of combustion theory and fire prediction in ecosystems. Climate-affected fire probability for any period, past or future, is estimated with given temperature and precipitation. A graphic analyses of wildland fire dynamics driven by climate supports a dialectic in hydrologic processes that affect ecosystem combustion: 1 the water needed by plants to produce carbon bonds (fuel and 2 the inhibition of successful reactant collisions by water molecules (humidity and fuel moisture. These two postulates enable a classification scheme for ecosystems into three or more climate categories using their position relative to change points defined by precipitation in combustion dynamics equations. Three classifications of combustion dynamics in ecosystems fire probability include: 1 precipitation insensitive, 2 precipitation unstable, and 3 precipitation sensitive. All three classifications interact in different ways with variable levels of temperature.

  15. Climate change, cranes, and temperate floodplain ecosystems

    Science.gov (United States)

    King, Sammy L.

    2010-01-01

    Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.

  16. Seasonal and inter-annual dynamics in the stable oxygen isotope compositions of water pools in a temperate humid grassland ecosystem: results from MIBA sampling and MuSICA modelling

    Science.gov (United States)

    Hirl, Regina; Schnyder, Hans; Auerswald, Karl; Vetter, Sylvia; Ostler, Ulrike; Schleip, Inga; Wingate, Lisa; Ogée, Jérôme

    2015-04-01

    The oxygen isotope composition (δ18O) of water in terrestrial ecosystems usually shows strong and dynamic variations within and between the various compartments. These variations originate from changes in the δ18O of water inputs (e.g. rain or water vapour) and from 18O fractionation phenomena in the soil-plant-atmosphere continuum. Investigations of δ18O in ecosystem water pools and of their main drivers can help us understand water relations at plant, canopy or ecosystem scale and interpret δ18O signals in plant and animal tissues as paleo-climate proxies. During the vegetation periods of 2006 to 2012, soil, leaf and stem water as well as atmospheric humidity, rain water and groundwater were sampled at bi-weekly intervals in a temperate humid pasture of the Grünschwaige Grassland Research Station near Munich (Germany). The sampling was performed following standardised MIBA (Moisture Isotopes in the Biosphere and Atmosphere) protocols. Leaf water samples were prepared from a mixture of co-dominant species in the plant community in order to obtain a canopy-scale leaf water δ18O signal. All samples were then analysed for their δ18O compositions. The measured δ18O of leaf, stem and soil water were then compared with the δ18O signatures simulated by the process-based isotope-enabled ecosystem model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere). MuSICA integrates current mechanistic understanding of processes in the soil-plant-atmosphere continuum. Hence, the comparison of modelled and measured data allows the identification of gaps in current knowledge and of questions to be tackled in the future. Soil and plant characteristics for model parameterisation were derived from investigations at the experimental site and supplemented by values from the literature. Eddy-covariance measurements of ecosystem CO2 (GPP, NEE) and energy (H, LE) fluxes and soil temperature data were used for model evaluation. The

  17. Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe

    Science.gov (United States)

    Wang, Yunbo; Jiang, Qi; Yang, Zhiming; Sun, Wei; Wang, Deli

    2015-01-01

    A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation. PMID:26010888

  18. Landscape-scale processes influence riparian plant composition along a regulated river

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.

    2018-01-01

    Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.

  19. Effect of Groundwater Abstraction on Fen Ecosystems

    DEFF Research Database (Denmark)

    Johansen, Ole; Pedersen, Morten Lauge; Jensen, Jacob Birk

    2011-01-01

    within a distance of 1.5 km to a planned well field. In the river valley the interaction between groundwater and surface water is strongly affected by low permeable sediments. These sediments reduce the direct discharge to the river and have a large impact on the functioning and presence of the rich fen......Quantifying the effects of groundwater abstraction on fen ecosystems located in discharge areas can be complicated. The water level in fens is close to the terrain surface most of the year and it is controlled by a relatively constant groundwater exfiltration. It is difficult to measure...... the exfiltration fluxes and thus water level data is typically used to evaluate if the ecosystem is affected. The paper presents collected data and analysis from a case study, where the hydrological effect of groundwater abstraction on rich fens and springs in a Danish river valley has been studied. The natural...

  20. Future directions of ecosystem science

    Science.gov (United States)

    Baron, Jill S.; Galvin, Kathleen A.

    1990-01-01

    Scientific knowledge about ecosystem structure and function has expanded greatly during the past few decades. Terrestrial and aquatic nutrient cycling, ecosystem energetics, population dynamics, belowground processes, and food webs have been studied at the plot, stand, watershed, and landscape levels at many locations around the globe. Ideas about terrestrial-atmospheric interactions and human interference in these processes have changed dramatically. There is new appreciation of the need to incorporate into ecosystem studies the interactions between human populations and the ecosystem, not only because humans affect ecosystem processes, but because these systems support human populations (Glantz 1988, Holden 1988, Parry et al. 1988, WCED 1987). Recent advances in ecosystem science are due, in part, to technological improvements in computing power, new laboratory and field physical and chemical analytical techniques, and satellite imagery for remote sensing of Earth's structure and dynamics. Modeling and geographic information systems have provided the capability for integrating multiple data sets with process simulations to generate hypotheses about regional ecosystem function. Concurrent with these scientific developments has been a growing concern about the links between the health of the environment and world-wide industrial, land, and resource-management practices. Environmental damage at the local level was widely recognized in the 1960s, prompting the environmental movement of that decade. Regional environmental problems with multiple effects and politically difficult solutions have been perceived more recently; the issue of acidic deposition provides an example of such a second-generation concern (Clark and Holling 1985). Today there is a growing awareness of global-scale environmental degradation brought about by the combined actions of all peoples on Earth (Clark 1989, Woodmansee et al. 1988). The three levels of environmental concern--local, regional

  1. Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach

    NARCIS (Netherlands)

    Embling, C.B.; Illian, J.; Armstrong, E.; van der Kooij, J.; Sharples, J.; Camphuysen, K.C.J.; Scott, B.E.

    2012-01-01

    1. Spatial management of marine ecosystems requires detailed knowledge of spatio-temporal mechanisms linking physical and biological processes. Tidal currents, the main driver of ecosystem dynamics in temperate coastal ecosystems, influence predator foraging ecology by affecting prey distribution

  2. Arsenic species in ecosystems affected by arsenic-rich spring water near an abandoned mine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.T. [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of); Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, H.O., E-mail: dunee@kbsi.re.k [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, C. [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Woo, N.C., E-mail: ncwoo@yonsei.ac.k [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of)

    2009-12-15

    The objectives of this study were to quantitatively estimate the distribution of arsenic with its speciation and to identify potential pathways for transformation of arsenic species from samples of water, sediments, and plants in the ecosystem affected by the Cheongog Spring, where As(V) concentration reached levels up to 0.270 mg L{sup -1}. After flowing about 100 m downstream, the arsenic level showed a marked reduction to 0.044 mg L{sup -1} (about 84% removal) without noticeable changes in major water chemistry. The field study and laboratory hydroponic experiments with the dominant emergent plants along the creek (water dropwort and thunbergian smartweed) indicated that arsenic distribution, reduction, and speciation appear to be controlled by, (i) sorption onto stream sediments in exchangeable fractions, (ii) bioaccumulation by and possible release from emergent plants, and (iii) transformation of As(V) to As(III) and organic species through biological activities. - Biogeochemical reactions with emergent plants and sediments control the fate of arsenic along creeks originating from a high-As Spring.

  3. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.

    Science.gov (United States)

    Risse-Buhl, Ute; Anlanger, Christine; Kalla, Katalin; Neu, Thomas R; Noss, Christian; Lorke, Andreas; Weitere, Markus

    2017-12-15

    Previous laboratory and on-site experiments have highlighted the importance of hydrodynamics in shaping biofilm composition and architecture. In how far responses to hydrodynamics can be found in natural flows under the complex interplay of environmental factors is still unknown. In this study we investigated the effect of near streambed turbulence in terms of turbulent kinetic energy (TKE) on the composition and architecture of biofilms matured in two mountainous streams differing in dissolved nutrient concentrations. Over both streams, TKE significantly explained 7% and 8% of the variability in biofilm composition and architecture, respectively. However, effects were more pronounced in the nutrient richer stream, where TKE significantly explained 12% and 3% of the variability in biofilm composition and architecture, respectively. While at lower nutrient concentrations seasonally varying factors such as stoichiometry of dissolved nutrients (N/P ratio) and light were more important and explained 41% and 6% of the variability in biofilm composition and architecture, respectively. Specific biofilm features such as elongated ripples and streamers, which were observed in response to the uniform and unidirectional flow in experimental settings, were not observed. Microbial biovolume and surface area covered by the biofilm canopy increased with TKE, while biofilm thickness and porosity where not affected or decreased. These findings indicate that under natural flows where near bed flow velocities and turbulence intensities fluctuate with time and space, biofilms became more compact. They spread uniformly on the mineral surface as a film of densely packed coccoid cells appearing like cobblestone pavement. The compact growth of biofilms seemed to be advantageous for resisting hydrodynamic shear forces in order to avoid displacement. Thus, near streambed turbulence can be considered as important factor shaping the composition and architecture of biofilms grown under natural

  4. Conceptualizing the role of sediment in sustaining ecosystem services: Sediment-ecosystem regional assessment (SEcoRA).

    Science.gov (United States)

    Apitz, Sabine E

    2012-01-15

    There is a growing trend to include a consideration of ecosystem services, the benefits that people obtain from ecosystems, within decision frameworks. Not more than a decade ago, sediment management efforts were largely site-specific and held little attention except in terms of managing contaminant inputs and addressing sediments as a nuisance at commercial ports and harbors. Sediments figure extensively in the Millennium Ecosystem Assessment; however, contaminated sediment is not the dominant concern. Rather, the focus is on land and water use and management on the landscape scale, which can profoundly affect soil and sediment quality, quantity and fate. Habitat change and loss, due to changes in sediment inputs, whether reductions (resulting in the loss of beaches, storm protection, nutrient inputs, etc.) or increases (resulting in lake, reservoir and wetland infilling, coral reef smothering, etc.); eutrophication and reductions in nutrient inputs, and disturbance due to development and fishing practices are considered major drivers, with significant consequences for biodiversity and the provision and resilience of ecosystem functions and services. As a mobile connecting medium between various parts of the ecosystem via the hydrocycle, sediments both contaminated and uncontaminated, play both positive and negative roles in the viability and sustainability of social, economic, and ecological objectives. How these roles are interpreted depends upon whether sediment status (defined in terms of sediment quality, quantity, location and transport) is appropriate to the needs of a given endpoint; understanding and managing the dynamic interactions of sediment status on a diverse range of endpoints at the landscape or watershed scale should be the focus of sediment management. This paper seeks to provide a language and conceptual framework upon which sediment-ecosystem regional assessments (SEcoRAs) can be developed in support of that goal. Copyright © 2011 Elsevier B

  5. Southern Nevada ecosystem stressors [Chapter 2

    Science.gov (United States)

    Burton K. Pendleton; Jeanne C. Chambers; Mathew L. Brooks; Steven M. Ostoja

    2013-01-01

    Southern Nevada ecosystems and their associated resources are subject to a number of global and regional/local stressors that are affecting the sustainability of the region. Global stressors include elevated carbon dioxide (CO2) concentrations and associated changes in temperature and precipitation patterns and amounts, solar radiation, and nutrient cycles (Smith and...

  6. Non-market forest ecosystem services and decision support in Nordic countries

    DEFF Research Database (Denmark)

    Filyushkina, Anna; Strange, Niels; Löf, Magnus

    2016-01-01

    The need to integrate non-market ecosystem services into decision-making is widely acknowledged. Despite the exponentially growing body of literature, trade-offs between services are still poorly understood. We conducted a systematic review of published literature in the Nordic countries (Denmark......, Norway, Sweden and Finland) on the integration of non-market forest ecosystem services into decision-making. The aim of the review was two-fold: (1) to provide an overview of coverage of biophysical and socio-economic assessments of non-market ecosystem services in relation to forest management; (2......) to determine the extent of the integration of biophysical and socio-economic models of these services into decision support models. Our findings reveal the need for wider coverage of non-market ecosystem services and evidence-based modelling of how forest management regimes affect ecosystem services...

  7. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    Science.gov (United States)

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Science.gov (United States)

    Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N

    2014-01-01

    The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  9. Effect of industrial pollution on behaviour of radionuclides in forest ecosystems; Forests ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Outola, I. (STUK-Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-06-15

    To investigate how and to what extent industrial pollution affects the behaviour of radionuclides in forest ecosystems, studies were conducted in the vicinity of two Cu-Ni smelters: one in a pine forest at Harjavalta, Finland, and the other in a spruce forest at Monchegorsk, Russia. Industrial pollution had significant effects on the distribution of radionuclides in soil horizons. With the increase in pollution towards the smelter, radionuclides were accumulated more in the litter layer because the conversion of litter into organic material was diminished due to inhibited microbial activity. As a result, the organic layer contained less radionuclides towards the smelter. The effect of industrial pollution on soil-to-plant transfer was complex. The effect varied with radionuclide, plant species and also on forest type. For 137Cs, soil-to-plant transfer decreased significantly as industrial pollution increased in pine forest, whereas the decrease was less pronounced in spruce forest. Root uptake of 239,240Pu by plants is extremely small, and plant contamination by resuspended soil is an important factor in considering the soil-to-plant transfer of this radionuclide. In spruce forest, more plutonium was transferred into plants when pollution load increased due to resuspension of litter particles, which contained higher concentrations of plutonium in the vicinity of the smelter. Soil-to-plant transfer of plutonium was much less affected in pine forests contaminated with industrial pollution. This research clearly indicates the sensitivity of the northern forest ecosystem to inorganic pollutants. Prediction of the soil-to-plant transfer of radionuclides in industrially polluted forest ecosystems requires detailed information on the total deposition, vertical distribution of radionuclides in soil, soil microbiological factors, other soil parameters as well as the rooting depths of the plants. (LN)

  10. Zooplankton Distribution and Species Composition Along an Oxygen Gradient in Puget Sound, WA

    Science.gov (United States)

    Keister, J. E.; Essington, T.; Li, L.; Horne, J. K.; Sato, M.; Parker-Stetter, S. L.; Moriarty, P.

    2016-02-01

    Low dissolved oxygen (hypoxia) is one of the most pronounced, pervasive, and significant disturbances in marine ecosystems, yet our understanding of its effects is incomplete, particularly with respect to impacts on lower trophic levels. As part of a study of how hypoxia affects predator-prey relationships and energy flow through marine food webs, we are studying relationships between ocean chemistry and zooplankton in Puget Sound, Washington—a deep, seasonally hypoxic fjord in the Pacific Northwest that supports a productive and diverse pelagic community. From summer through fall in two years that differed in the timing and intensity of hypoxia, we conducted multi-frequency bioacoustic surveys, CTD casts, and depth-stratified zooplankton sampling to examine changes in distribution and species composition of animals in relation to oxygen concentrations. We exploited a natural gradient in oxygen along the axis of the fjord by sampling at moderately hypoxic and normoxic sites with otherwise similar hydrography and species composition to disentangle the effects of oxygen from changes in other environmental factors. Our results support the hypothesis that zooplankton species composition and vertical distributions are altered by hypoxia, but only when examined at the species and life-stage level. Relatively few taxa showed clear responses to hypoxia, and bioacoustic backscatter data (which was dominated by adult euphausiids and amphipods) indicated that those taxa were not affected by the levels of hypoxia we observed. Examination of net tow data revealed more subtle changes, including behavioral avoidance of low oxygen by some copepods and young euphausiid life stages. Overall, the high species diversity and relatively low susceptibility of many zooplankton to hypoxia in Puget Sound may confer ecosystem resilience to near-future projected changes in this region.

  11. ESTIMAP: A GIS-BASED MODEL TO MAP ECOSYSTEM SERVICES IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    G. Zulian

    2014-04-01

    Full Text Available Policies of the European Union which affect the use or protection of natural resources increasingly need spatial data on the supply, the flow and the demand of ecosystem services. The model ESTIMAP was developed to this purpose. ESTIMAP departs from land cover and land use maps to which it adds other spatial information with the objective to map various ecosystem services. This study introduces the ESTIMAP map as tool to support the mapping and modelling of ecosystem services at European scale. Examples are provided for three regulating ecosystem services, air quality regulation, coastal protection, and pollination and one cultural ecosystem services, recreation. 

  12. Fractionation of Nitrogen Isotopes by Plants with Different Types of Mycorrhiza in Mountain Tundra Ecosystems

    Science.gov (United States)

    Buzin, Igor; Makarov, Mikhail; Maslov, Mikhail; Tiunov, Alexei

    2017-04-01

    We studied nitrogen concentration and nitrogen isotope composition in plants from four mountain tundra ecosystems in the Khibiny Mountains. The ecosystems consisted of a toposequence beginning with the shrub-lichen heath (SLH) on the ridge and upper slope, followed by the Betula nana dominated shrub heath (SH) on the middle slope, the cereal meadow (CM) on the lower slope and the sedge meadow (SM) at the bottom of the slope. The inorganic nitrogen concentration of the soils from the studied ecosystems were significantly different; the SLH soil was found to contain the minimum concentration of N-NH4+ and N-NO3- , while in the soils of the meadow ecosystems these concentrations were much higher. The concentration of nitrogen in leaves of the dominant plant species in all of the ecosystems is directly connected with the concentration of inorganic nitrogen in the soils, regardless of the plant's mycorrhizal symbiosis type. However, such a correlation is not apparent in the case of plant roots, especially for plant roots with ectomycorrhiza and ericoid mycorrhiza. The majority of plant species with these types of mycorrhiza in the SH and particularly in the CM were enriched in 15N in comparison with the SLH (such plants were not found within the SM). This could be due to several reasons: 1) the decreasing role of mycorrhiza in nitrogen consumption and therefore in the fractionation of isotopes in the relatively-N-enriched ecosystems; 2) the use of relatively-15N-enriched forms of nitrogen for plant nutrition in meadow ecosystems. This heavier nitrogen isotope composition in plant roots with ectomycorrhiza and ericoid mycorrhiza in ecosystems with available nitrogen enriched soils doesn't correspond to the classical idea of mycorrhiza decreasing participation in nitrogen plant nutrition. The analysis of the isotope composition of separate labile forms of nitrogen makes it possible to explain the phenomenon. Not all arbuscular mycorrhizal species within the sedge meadow

  13. The false promises of coal exploitation: How mining affects herdsmen well-being in the grassland ecosystems of Inner Mongolia

    International Nuclear Information System (INIS)

    Dai, G.S.; Ulgiati, S.; Zhang, Y.S.; Yu, B.H.; Kang, M.Y.; Jin, Y.; Dong, X.B.; Zhang, X.S.

    2014-01-01

    The grasslands of Inner Mongolia are not only the source of the necessary resources for the survival and development of herdsmen, but also represent a significant green ecological barrier in North China. Coal-mining production is important in maintaining GDP growth in Inner Mongolia. However, over-exploitation has created serious problems, such as pollution of the environment and significant decreases in grassland ecosystem services, in addition to impacting the well-being of herdsmen and other humans. Based on questionnaires survey performed among 864 herdsmen addressing the relationship between coal exploitation in grasslands and human well-being in Xilinguole League in Inner Mongolia, we found that (1) coal resource exploitation in these grasslands does not benefit the herdsmen by increasing their income; (2) the rapid development of this resource has not obviously materially improved the life of the herdsmen; and (3) these activities have increased the risks that herdsman will have to endure in the future. Overall, coal resource exploitation in grasslands has more negative than positive effects on the well-being of herdsmen. We propose the conservation of coal resources and improvement of ecological compensation should be carried out without blindly pursuing economic growth, instead of focusing on economic development and structural adjustments. - Highlights: • Evaluation of the human well-being of the Xilinguole grassland, Inner Mongolia, China. • Impact of mining affects herdsmen well-being in grassland ecosystem. • Quantity of questionnaires survey. • Addressing the relationship between coal exploitation in grasslands and human well-being

  14. Survey of SSC12 regions affecting fatty acid composition of intramuscular fat using high density SNP data

    Directory of Open Access Journals (Sweden)

    María eMuñoz

    2012-01-01

    Full Text Available Fatty acid composition is a critical aspect of pork because it affects sensorial and technological aspects of meat quality and it is relevant for human health. Previous studies identified significant QTLs in porcine chromosome 12 for fatty acid profile of backfat and intramuscular fat. In the present study, 374 SNPs mapped in SSC12 from the 60K Porcine SNP Beadchip were used. We have combined linkage and association analyses with expression data analysis in order to identify regions of SSC12 that could affect fatty acid composition of intramuscular fat in longissimus muscle. The QTL scan showed a region around the 60 cM position that significantly affects palmitic fatty acid and two related fatty acid indexes. The Iberian QTL allele increased the palmitic content (+2.6% of mean trait. This QTL does not match any of those reported in the previous study on fatty acid composition of backfat, suggesting different genetic control acting at both tissues. The SNP association analyses showed significant associations with linolenic and palmitic acids besides several indexes. Among the polymorphisms that affect palmitic fatty acid and match the QTL region at 60 cM, there were three that mapped in the Phosphatidylcholine Transfer Protein (PCTP gene and one in the Acetyl-CoA Carboxylase  gene (ACACA. Interestingly one of the PCTP SNPs also affected significantly unsaturated and double bound indexes and the ratio between polyunsaturated/monounsaturated fatty acids. Differential expression was assessed on longissimus muscle conditional on the genotype of the QTL and on the most significant SNPs, according to the results obtained in the former analyses. Results from the microarray expression analyses, validated by RT-qPCR, showed that PCTP expression levels significantly vary depending on the QTL as well as on the own PCTP genotype. The results obtained with the different approaches point out the PCTP gene as a powerful candidate underlying the QTL for

  15. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach

    Science.gov (United States)

    Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert

    2018-06-01

    To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.

  16. Preface: Ecosystem services, ecosystem health and human communities

    Science.gov (United States)

    Plag, Hans-Peter

    2018-04-01

    This special issue contains a collection of manuscripts that were originally intended to be included in the special issue on "Physics and Economics of Ecosystem Services Flows" (Volume 101, guest editors H. Su, J. Dong and S. Nagarajan) and "Biogeochemical Processes in the Changing Wetland Environment" (Volume 103, guest editors J. Bai, L. Huang and H. Gao). All of them are addressing issues related to ecosystem services in different settings. Ecosystem services are of high value for both the ecosystems and human communities, and understanding the impacts of environmental processes and human activities on ecosystems is of fundamental importance for the preservation of these services.

  17. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    DEFF Research Database (Denmark)

    Liu, Y.; Melillo, J.; Niu, S.

    2011-01-01

    a coordinated approach that combines long-term, large-scale global change experiments with process studies and modeling. Long-term global change manipulative experiments, especially in high-priority ecosystems such as tropical forests and high-latitude regions, are essential to maximize information gain......Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation...... to be the most effective strategy to gain the best information on long-term ecosystem dynamics in response to global change....

  18. Assessing climate change effects on mountain ecosystems using integrated models: A case study

    Science.gov (United States)

    Fagre, Daniel B.; Running, Steven W.; Keane, Robert E.; Peterson, David L.

    2005-01-01

    Mountain systems are characterized by strong environmental gradients, rugged topography and extreme spatial heterogeneity in ecosystem structure and composition. Consequently, most mountainous areas have relatively high rates of endemism and biodiversity, and function as species refugia in many areas of the world. Mountains have long been recognized as critical entities in regional climatic and hydrological dynamics but their importance as terrestrial carbon stores has only been recently underscored (Schimel et al. 2002; this volume). Mountain ecosystems, therefore, are globally important as well as unusually complex. These ecosystems challenge our ability to understand their dynamics and predict their response to climatic variability and global-scale environmental change.

  19. Assessing climate-sensitive ecosystems in the southeastern United States

    Science.gov (United States)

    Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew J.; White, Rickie; Collazo, Jaime

    2016-08-11

    Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing

  20. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe.

    Science.gov (United States)

    Delgado-Baquerizo, Manuel; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Singh, Brajesh K; Maestre, Fernando T

    2017-10-01

    The relationship between soil microbial communities and the resistance of multiple ecosystem functions linked to C, N and P cycling (multifunctionality resistance) to global change has never been assessed globally in natural ecosystems. We collected soils from 59 dryland ecosystems worldwide to investigate the importance of microbial communities as predictor of multifunctionality resistance to climate change and nitrogen fertilisation. Multifunctionality had a lower resistance to wetting-drying cycles than to warming or N deposition. Multifunctionality resistance was regulated by changes in microbial composition (relative abundance of phylotypes) but not by richness, total abundance of fungi and bacteria or the fungal: bacterial ratio. Our results suggest that positive effects of particular microbial taxa on multifunctionality resistance could potentially be controlled by altering soil pH. Together, our work demonstrates strong links between microbial community composition and multifunctionality resistance in dryland soils from six continents, and provides insights into the importance of microbial community composition for buffering effects of global change in drylands worldwide. © 2017 John Wiley & Sons Ltd/CNRS.

  1. Wildland Fire Research: Water Supply and Ecosystem Protection

    Science.gov (United States)

    Research is critical to better understand how fires affect water quality and supply and the overall health of an ecosystem. This information can be used to protect the safety of drinking water and assess the vulnerability of water supplies.

  2. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Directory of Open Access Journals (Sweden)

    Eric Robert Johnston

    2016-04-01

    Full Text Available How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity. Collectively

  3. Predicting wading bird and aquatic faunal responses to ecosystem restoration scenarios

    Science.gov (United States)

    Beerens, James M.; Trexler, Joel C.; Catano, Christopher P.

    2017-01-01

    In large-scale conservation decisions, scenario planning identifies key uncertainties of ecosystem function linked to ecological drivers affected by management, incorporates ecological feedbacks, and scales up to answer questions robust to alternative futures. Wetland restoration planning requires an understanding of how proposed changes in surface hydrology, water storage, and landscape connectivity affect aquatic animal composition, productivity, and food-web function. In the Florida Everglades, reintroduction of historical hydrologic patterns is expected to increase productivity of all trophic levels. Highly mobile indicator species such as wading birds integrate secondary productivity from aquatic prey (small fishes and crayfish) over the landscape. To evaluate how fish, crayfish, and wading birds may respond to alternative hydrologic restoration plans, we compared predicted small fish density, crayfish density and biomass, and wading bird occurrence for existing conditions to four restoration scenarios that varied water storage and removal of levees and canals (i.e. decompartmentalization). Densities of small fish and occurrence of wading birds are predicted to increase throughout most of the Everglades under all restoration options because of increased flows and connectivity. Full decompartmentalization goes furthest toward recreating hypothesized historical patterns of fish density by draining excess water ponded by levees and hydrating areas that are currently drier than in the past. In contrast, crayfish density declined and species composition shifted under all restoration options because of lengthened hydroperiods (i.e. time of inundation). Under full decompartmentalization, the distribution of increased prey available for wading birds shifted south, closer to historical locations of nesting activity in Everglades National Park.

  4. Arbuscular mycorrhizal fungal community composition affected by original elevation rather than translocation along an altitudinal gradient on the Qinghai-Tibet Plateau

    Science.gov (United States)

    Yang, Wei; Zheng, Yong; Gao, Cheng; Duan, Ji-Chuang; Wang, Shi-Ping; Guo, Liang-Dong

    2016-11-01

    Elucidating arbuscular mycorrhizal (AM) fungal responses to elevation changes is critical to improve understanding of microbial function in ecosystems under global asymmetrical climate change scenarios. Here we examined AM fungal community in a two-year reciprocal translocation of vegetation-intact soil blocks along an altitudinal gradient (3,200 m to 3,800 m) in an alpine meadow on the Qinghai-Tibet Plateau. AM fungal spore density was significantly higher at lower elevation than at higher elevation regardless of translocation, except that this parameter was significantly increased by upward translocation from original 3,200 m to 3,400 m and 3,600 m. Seventy-three operational taxonomic units (OTUs) of AM fungi were recovered using 454-pyrosequencing of 18S rDNA sequences at a 97% sequence similarity. Original elevation, downward translocation and upward translocation did not significantly affect AM fungal OTU richness. However, with increasing altitude the OTU richness of Acaulosporaceae and Ambisporaceae increased, but the OTU richness of Gigasporaceae and Glomeraceae decreased generally. The AM fungal community composition was significantly structured by original elevation but not by downward translocation and upward translocation. Our findings highlight that compared with the short-term reciprocal translocation, original elevation is a stronger determinant in shaping AM fungal community in the Qinghai-Tibet alpine meadow.

  5. Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity.

    Science.gov (United States)

    Aranguren-Riaño, Nelson J; Guisande, Cástor; Shurin, Jonathan B; Jones, Natalie T; Barreiro, Aldo; Duque, Santiago R

    2018-04-16

    Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.

  6. Non-linear interactions determine the impact of sea-level rise on estuarine benthic biodiversity and ecosystem processes.

    Science.gov (United States)

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.

  7. Integrating Food-Water-Energy Research through a Socio-Ecosystem Approach

    Directory of Open Access Journals (Sweden)

    Manuel Maass

    2017-08-01

    Full Text Available The nexus approach helps in recognizing the link between water, energy, and food production systems, emphasizing the need to manage them in a more integrated way. The socio-ecosystem (SES approach, however, goes beyond that, by incorporating the regulation and supporting services in the management equation. Changes in ecosystem integrity affect the delivery of ecosystem services to society, which affects local people's well-being, creating a feedback mechanism regarding management strategies. The SES approach makes explicit the “human-bio-physical” nature of our interaction with ecosystems, highlighting the need for a more integrated and interconnected social-ecological research perspective. In addition, the SES approach makes more explicit the multi-scale character of the ecological processes that structure and maintain social-ecological systems. Water dynamics have an important role in shaping ecosystem's structure and functioning, as well as determining the systems capacity for delivering provisioning services. The tropical dry-deciduous forest (TDF, is particularly useful in studying water-food-energy trade-off interactions. Recently, a category 5 hurricane landed in the study area (Mexico's Pacific coast, triggering various social and ecological problems. This event is challenging the current forest management strategies in the region. The extreme hydrometeorological event created an excellent opportunity to test and promote the SES approach for more integrated food-water-energy research. By using the SES approach within our long-term socio-ecological research project, it was easier to identify opportunities for tackling trade-offs between maintaining the transformation of the system and a more sustainable alternative: promoting the maintenance of the ecosystem's integrity and its capacity to deliver provisioning and regulating services.

  8. Diversity and composition of sediment bacteria in subtropical coastal wetlands of North Stradbroke Island, Queensland, Australia

    Science.gov (United States)

    Chuvochina, Maria; Sampayo, Eugenia; Welti, Nina; Hayes, Matthew; Lu, Yang; Lovelock, Catherine; Lockington, David

    2013-04-01

    Coastal wetlands provide a wide variety of important ecosystem services but continue to suffer disturbance, degradation and deforestation. Sediment bacteria are responsible for major nutrient transformation and recycling in these ecosystems. Insight into microbial community composition and the factors that determine them may improve our understanding of biogeochemical processes, food web dynamics, biodegradation processes and, thus, help to develop the management strategies for preserving the ecosystem health and services. Characterizing shifts in community taxa along environmental gradients has been shown to provide a useful tool for determining the major drivers affecting community structure and function. North Stradbroke Island (NSI) in Southern Queensland presents considerable habitat diversity including variety of groundwater dependent ecosystems such as lakes, swamps, sedge-like salt marshes and mangroves. Ecological responses of continuous groundwater extraction for municipal purposes and sand mining operations on NSI are still need to be assessed in order to protect its unique environment. Changes in coastal hydrology due to either climate change or human activity may directly affect microbial populations and, thus, biogeochemical cycles of nutrients. These may result in altering/losing some ecosystem services provided by coastal wetlands. In this study we examine microbial diversity and determine environmental controls on bacterial community structure along a natural transition from freshwater forested wetland (melaleuca woodland), sedge-like salt marsh and into mangroves located at NSI. The study area is characterized by significant groundwater flow, nutrient limitation and sharp transition from one ecosystem type to another. Sediment cores (0-5 cm and 20-25 cm depth) were collected from three representative sites of each zone (mangroves - salt marsh - freshwater wetland) along the salinity gradient in August 2012. Subsamples were set aside for use in

  9. Development of a concept for non-monetary assessment of urban ecosystem services at the site level.

    Science.gov (United States)

    Wurster, Daniel; Artmann, Martina

    2014-05-01

    Determining the performance of ecosystem services at the city or regional level cannot accurately take into account the fine differences between green or gray structures. The supply of regulating ecosystem services in, for instance, parks can differ as parks vary in their land cover composition. A comprehensive ecosystem service assessment approach also needs to reflect land use to consider the demands placed on ecosystem services, which are mostly neglected by current research yet important for urban planning. For instance, if a sealed surface is no longer used, it could be unsealed to improve ecosystem service supply. Because of these scientific shortcomings, this article argues for a conceptual framework for the non-monetary assessment of urban ecosystem services at the site scale. This paper introduces a standardized method for selecting representative sites and evaluating their supply of and demand on ecosystem services. The conceptual design is supplemented by examples of Salzburg, Austria.

  10. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of

  11. Applied Ecosystem Analysis - Background : EDT the Ecosystem Diagnosis and Treatment Method.

    Energy Technology Data Exchange (ETDEWEB)

    Mobrand, Lars E.

    1996-05-01

    This volume consists of eight separate reports. We present them as background to the Ecosystem Diagnosis and Treatment (EDT) methodology. They are a selection from publications, white papers, and presentations prepared over the past two years. Some of the papers are previously published, others are currently being prepared for publication. In the early to mid 1980`s the concern for failure of both natural and hatchery production of Columbia river salmon populations was widespread. The concept of supplementation was proposed as an alternative solution that would integrate artificial propagation with natural production. In response to the growing expectations placed upon the supplementation tool, a project called Regional Assessment of Supplementation Project (RASP) was initiated in 1990. The charge of RASP was to define supplementation and to develop guidelines for when, where and how it would be the appropriate solution to salmon enhancement in the Columbia basin. The RASP developed a definition of supplementation and a set of guidelines for planning salmon enhancement efforts which required consideration of all factors affecting salmon populations, including environmental, genetic, and ecological variables. The results of RASP led to a conclusion that salmon issues needed to be addressed in a manner that was consistent with an ecosystem approach. If the limitations and potentials of supplementation or any other management tool were to be fully understood it would have to be within the context of a broadly integrated approach - thus the Ecosystem Diagnosis and Treatment (EDT) method was born.

  12. Applied Ecosystem Analysis - Background EDT - The Ecosystem Diagnosis and Treatment Method

    International Nuclear Information System (INIS)

    Mobrand, L.E.; Lichatowich, J.A.; Howard, D.A.; Vogel, T.S.

    1996-05-01

    This volume consists of eight separate reports. We present them as background to the Ecosystem Diagnosis and Treatment (EDT) methodology. They are a selection from publications, white papers, and presentations prepared over the past two years. Some of the papers are previously published, others are currently being prepared for publication. In the early to mid 1980's the concern for failure of both natural and hatchery production of Columbia river salmon populations was widespread. The concept of supplementation was proposed as an alternative solution that would integrate artificial propagation with natural production. In response to the growing expectations placed upon the supplementation tool, a project called Regional Assessment of Supplementation Project (RASP) was initiated in 1990. The charge of RASP was to define supplementation and to develop guidelines for when, where and how it would be the appropriate solution to salmon enhancement in the Columbia basin. The RASP developed a definition of supplementation and a set of guidelines for planning salmon enhancement efforts which required consideration of all factors affecting salmon populations, including environmental, genetic, and ecological variables. The results of RASP led to a conclusion that salmon issues needed to be addressed in a manner that was consistent with an ecosystem approach. If the limitations and potentials of supplementation or any other management tool were to be fully understood it would have to be within the context of a broadly integrated approach - thus the Ecosystem Diagnosis and Treatment (EDT) method was born

  13. Direct and terrestrial vegetation-mediated effects of environmental change on aquatic ecosystem processes

    Science.gov (United States)

    Becky A. Ball; John S. Kominoski; Heather E. Adams; Stuart E. Jones; Evan S. Kane; Terrance D. Loecke; Wendy M. Mahaney; Jason P. Martina; Chelse M. Prather; Todd M.P. Robinson; Christopher T. Solomon

    2010-01-01

    Global environmental changes have direct effects on aquatic ecosystems, as well as indirect effects through alterations of adjacent terrestrial ecosystem structure and functioning. For example, shifts in terrestrial vegetation communities resulting from global changes can affect the quantity and quality of water, organic matter, and nutrient inputs to aquatic...

  14. Climate change affects carbon allocation to the soil in shrublands

    NARCIS (Netherlands)

    Gorissen, A.; Tietema, A.; Joosten, N.N.; Estiarte, M.; Peñuelas, J.; Sowerby, A.; Emmett, B.; Beier, J.C.

    2004-01-01

    Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes

  15. Restoring rocky intertidal communities: Lessons from a benthic macroalgal ecosystem engineer

    International Nuclear Information System (INIS)

    Bellgrove, Alecia; McKenzie, Prudence F.; Cameron, Hayley; Pocklington, Jacqueline B.

    2017-01-01

    As coastal population growth increases globally, effective waste management practices are required to protect biodiversity. Water authorities are under increasing pressure to reduce the impact of sewage effluent discharged into the coastal environment and restore disturbed ecosystems. We review the role of benthic macroalgae as ecosystem engineers and focus particularly on the temperate Australasian fucoid Hormosira banksii as a case study for rocky intertidal restoration efforts. Research focussing on the roles of ecosystem engineers is lagging behind restoration research of ecosystem engineers. As such, management decisions are being made without a sound understanding of the ecology of ecosystem engineers. For successful restoration of rocky intertidal shores it is important that we assess the thresholds of engineering traits (discussed herein) and the environmental conditions under which they are important. - Highlights: • Fucoid algae can be important ecosystem engineers in rocky reef ecosystems • Sewage-effluent disposal negatively affects fucoids and associated communities • Restoring fucoid populations can improve biodiversity of degraded systems • Clarifying the roles of fucoids in ecosystem function can improve restoration efforts • Thresholds of engineering traits and associated environmental conditions important

  16. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate.

    NARCIS (Netherlands)

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, Rik; Mooij, W.M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly

  17. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate

    NARCIS (Netherlands)

    Weijerman, Mariska; Fulton, Elizabeth A.; Kaplan, Isaac C.; Gorton, Rebecca; Leemans, R.; Mooij, W.M.; Brainard, Russell E.

    2015-01-01

    Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly

  18. Ecological Diversity of Soil Fauna as Ecosystem Engineers in Small-Holder Cocoa Plantation in South Konawe

    OpenAIRE

    Laode Muhammad Harjoni Kilowasid; Tati Suryati Syamsudin; Franciscus Xaverius Susilo; Endah Sulistyawati

    2012-01-01

    Taxa diversity within soil fauna functional groups can affected ecosystem functioning such as ecosystem engineers,which influence decomposition and nutrient cycling. The objective of this study is to describe ecological diversityvariation within soil fauna as ecosystem engineers in soil ecosystem of cocoa (Theobroma cacao L.) plantation.Sampling was conducted during one year period from five different ages of plantation. Soil fauna removed from soilcore using hand sorting methods. A total of ...

  19. Legumes affect alpine tundra community composition via multiple biotic interactions

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Aksenova, A.A.; Makarov, M.I.; Onipchenko, V.G.; Logvinenko, O.A.; Braak, ter C.J.F.; Cornelissen, J.H.C.

    2012-01-01

    The soil engineering function of legumes in natural ecosystems is paramount but associated solely with soil nitrogen (N) subsidies, ignoring concomitant biotic interactions such as competitive or inhibitory effects and exchange between mycorrhizas and rhizobia. We aim to (1) disentangle legume

  20. Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the Central Baltic Sea

    DEFF Research Database (Denmark)

    Moellmann, C; Diekmann, Rabea; Muller-Karulis, B

    2009-01-01

    the Baltic Sea, the largest brackish water body in the world ocean, and its ecosystems are strongly affected by atmospheric and anthropogenic drivers. Here, we present results of an analysis of the state and development of the Central Baltic Sea ecosystem integrating hydroclimatic, nutrient, phyto......Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure...

  1. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    Science.gov (United States)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  2. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches

    Science.gov (United States)

    Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T.

    2011-01-01

    Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.

  3. Improving ecosystem service frameworks to address wicked problems

    Directory of Open Access Journals (Sweden)

    Kathryn K. Davies

    2015-06-01

    Full Text Available Complex problems often result from the multiple interactions between human activities and ecosystems. The interconnected nature of ecological and social systems should be considered if these "wicked problems" are to be addressed. Ecosystem service approaches provide an opportunity to link ecosystem function with social values, but in practice the essential role that social dynamics play in the delivery of outcomes remains largely unexplored. Social factors such as management regimes, power relationships, skills, and values, can dramatically affect the definition and delivery of ecosystem services. Input from a diverse group of stakeholders improves the capacity of ecosystem service approaches to address wicked problems by acknowledging diverse sets of values and accounting for conflicting world views. Participatory modeling can incorporate both social and ecological dynamics into decision making that involves stakeholders, but is itself a complex social undertaking that may not yield precise or predictable outcomes. We explore the efficacy of different types of participatory modeling in relation to the integration of social values into ecosystem services frameworks and the generation of four important elements of social capital needed to address wicked problems: enhancing social learning and capacity building; increasing transparency; mediating power; and building trust. Our findings indicate that mediated modeling, group mapping, and mental/conceptual modeling are likely to generate elements of social capital that can improve ecosystem service frameworks. Participatory simulation, system dynamic modeling, and Bayesian belief networks, if utilized in isolation, were found to have a low likelihood of generating the social capital needed to improve ecosystem services frameworks. Scenario planning, companion modeling, group model building, and participatory mapping all generate a moderate to high level of social capital elements that improve the

  4. Decreased carbon limitation of litter respiration in a mortality-affected pinon-juniper woodland

    Science.gov (United States)

    Erin Berryman; John D. Marshall; Thom Rahn; Marcie Litvak; John Butnor

    2013-01-01

    Microbial respiration depends on microclimatic variables and carbon (C) substrate availability, all of which are altered when ecosystems experience major disturbance. Widespread tree mortality, currently affecting pinon-juniper ecosystems in southwestern North America, may affect C substrate availability in several ways, for example, via litterfall pulses and loss of...

  5. Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

    Directory of Open Access Journals (Sweden)

    H. A. Torbert

    2012-01-01

    Full Text Available Increasing global atmospheric carbon dioxide (CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C and nitrogen (N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L. Willd (Huisache. Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient, 690, and 980 μmol mol−1. Elevated CO2 increased both C and N inputs from plant growth which would result in higher soil C from litter fall, root turnover, and excretions. Results from the incubation indicated an initial (20 days decrease in N mineralization which resulted in no change in C mineralization. However, after 40 and 60 days, an increase in both C and N mineralization was observed. These increases would indicate that increases in soil C storage may not occur in grass ecosystems that are invaded with Acacia over the long term.

  6. Global warming considerations in northern Boreal forest ecosystems

    International Nuclear Information System (INIS)

    Slaughter, C.W.

    1993-01-01

    The northern boreal forests of circumpolar lands are of special significance to questions of global climate change. Throughout its range, these forests are characterized by a relatively few tree species, although they may exhibit great spatial heterogeneity. Their ecosystems are simpler than temperate systems, and ecosystem processes are strongly affected by interactions between water, the landscape, and the biota. Northern boreal forest vegetation patterns are strongly influenced by forest fires, and distribution of forest generally coincides with occurrence of permafrost. Boreal forest landscapes are extremely sensitive to thermal disruption; global warming may result in lasting thermal and physical degradation of soils, altered rates and patterns of vegetation succession, and damage to engineered structures. A change in fire severity and frequency is also a significant concern. The total carbon pool of boreal forests and their associated peatlands is significant on a global scale; this carbon may amount to 10-20% of the global carbon pool. A change in latitudinal or elevational treeline has been suggested as a probable consequence of global warming. More subtle aspects of boreal forest ecosystems which may be affected by global warming include the depth of the active soil layer, the hydrologic cycle, and biological attributes of boreal stream systems. 48 refs., 2 figs

  7. Assessment of vulnerability of forest ecosystems to climate change and adaptation planning in Nepal

    Science.gov (United States)

    Matin, M. A.; Chitale, V. S.

    2016-12-01

    Understanding ecosystem level vulnerability of forests and dependence of local communities on these ecosystems is a first step towards developing effective adaptation strategies. As forests are important components of livelihoods system for a large percentage of the population in the Himalayan region, they offer an important basis for creating and safeguarding more climate-resilient communities. Increased frequency, duration, and/or severity of drought and heat stress, changes in winter ecology, and pest and fire outbreaksunder climate change scenarios could fundamentally alter the composition, productivity and biogeography of forests affecting the potential ecosystem services offered and forest-based livelihoods. Hence, forest ecosystem vulnerability assessment to climate change and the development of a knowledgebase to identify and support relevant adaptation strategies is identified as an urgent need. Climate change vulnerability is measured as a function of exposure, sensitivity and the adaptive capacity of the system towards climate variability and extreme events. Effective adaptation to climate change depends on the availability of two important prerequisites: a) information on what, where, and how to adapt, and b) availability of resources to implement the adaptation measures. In the present study, we introduce the concept of two way multitier approach, which can support effective identification and implementation of adaptation measures in Nepal and the framework can be replicated in other countries in the HKH region. The assessment of overall vulnerability of forests comprises of two components: 1) understanding the relationship between exposure and sensitivity and positive feedback from adaptive capacity of forests; 2) quantifying the dependence of local communities on these ecosystems. We use climate datasets from Bioclim and biophysical products from MODIS, alongwith field datasets. We report that most of the forests along the high altitude areas and few

  8. Ecosystem Services

    Science.gov (United States)

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  9. Studies on growth and age of bivalves from temperate and tropical estuarine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    Comparison of growth progression and age composition of Abra alba and Nuculana minuta from temperate estuarine ecosystem with Meretrix casta and Paphia malabarica from tropical estuarine environment, revealed that the annual growth rate in tropical...

  10. Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems

    NARCIS (Netherlands)

    Melaas, E.; Richardson, A.; Friedl, M.; Dragoni, D.; Gough, C.; Herbst, M.; Montagnani, L.; Moors, E.J.

    2013-01-01

    Vegetation phenology is sensitive to climate change and variability, and is a first order control on the carbon budget of forest ecosystems. Robust representation of phenology is therefore needed to support model-based projections of how climate change will affect ecosystem function. A variety of

  11. Dynamics of radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Steiner, M.

    2004-01-01

    The unique physiology and the layered structure of forest ecosystems result in dynamic transport and transfer processes which greatly differ from those in agricultural ecosystems. Radionuclides are retained in the upper organic horizons of forest soil for several decades and remain highly available for uptake by fungi and green plants. Contamination levels of mushrooms and game may therefore by far exceed those of agricultural produce. The efficient cycling of nutrients and radionuclides, which is characteristic for ecosystems poor in nutrients, can largely be attributed to forest soil with its complex and multi-layered structure and fungal activity. Fungi directly affect dynamic processes, playing a key role in the mobilization, uptake and translocation of nutrients and radionuclides. Fungal fruit bodies may be highly contaminated foodstuff and fodder. They are most likely the cause of the surprising trend of increasing contamination of wild boar which has been observed in the last few years in Germany. This paper is intended to give a qualitative survey of dynamic transport processes in forests and their relevance for radiation exposure to man. (orig.)

  12. Changes in Soil Organic Matter Abundance, Molecular Composition, and Diversity in an Arid Ecosystem in Response to Long-term Elevated CO2 Manipulation.

    Science.gov (United States)

    Hess, N. J.; Tfaily, M.; Evans, R. D.; Koyama, A.

    2017-12-01

    Little is known about how soils in arid ecosystems will respond to rising atmospheric CO2 concentration yet arid and semi-arid ecosystems cover more than 40% of Earth's land surface. Previous work in the Mojave Desert (Evans et al., 2014 Nature Climate Change) reported higher soil organic carbon (SOC) and total nitrogen (N) concentrations following 10 years exposure to elevated atmospheric CO2 at the Nevada Desert Free-Air-Carbon dioxide-Enrichment (FACE) Facility (NDFF). In this study, we investigated potential mechanisms that resulted in increased SOC and total N accumulation and stabilization using high resolution mass spectrometry at the NDFF site. Samples were collected from soil profiles to 1 m in depth with a 0.2 m a increment under the dominant evergreen shrub Larrea tridentata. The differences in the molecular composition and diversity of soil organic matter (SOM) were more evident in surface soils and declined with depth, and were consistent with higher SOC and total N concentrations under elevated than ambient CO2. Our molecular analysis also suggested increased root exudation and/or microbial necromass from stabilization of labile C and N contributed to SOM and N stocks. Increased microbial activity and metabolism under elevated CO2 compared to ambient plots suggested that elevated CO2 altered microbial carbon (C) use patterns, reflecting changes in the quality and quantity of SOC inputs. We found that plant-derived compounds were primary substrates for microbial activity under elevated CO2 and microbial products were the main constituents of stabilized SOM. Our results suggest that arid ecosystems are a potential large C sink under elevated CO2, give the extensive coverage of the land surface, and that labile compounds are transformed to stable SOM via microbial processes. Arid systems are limited by water, and thus may have a different C storage potential under changing climates than other ecosystems that are limited by nitrogen or phosphorus.

  13. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    International Nuclear Information System (INIS)

    Rozema, Jelte; Notten, Martje J.M.; Aerts, Rien; Gestel, Cornelis A.M. van; Hobbelen, Peter H.F.; Hamers, Timo H.M.

    2008-01-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded

  14. NEW DATA ABOUT COMPOSITION, GEOGRAPHIC DISTRIBUTION AND POSSIBLE WAYS OF FORMING OF DARKLING BEETLES FAUNA (COLEOPTERA: TENEBRIONIDAE IN PERI-CASPIAN AND ISLAND CASPIAN ECOSYSTEMS. PART 1

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2014-01-01

    Full Text Available Abstract. Aim is study of biological diversity of the Caspian coasts and islands ecosystems, the composition, especially geographical distribution and possible ways of forming of darkling beetles fauna (Coleoptera: Tenebrionidae.Methods. We used the traditional methods of collecting (hand collecting, soil traps, light traps, processing and material definition. List discussed tenebrionid fauna is composed using Abdurakhmanov and Medvedev (1994, Abdurakhmanov and Nabozhenko (2011.Results. The paper includes a comparative analysis of darkling beetles (341 species of 17 regions of 5 Caspian countries. Diversity of Tenebrionidae of the Caspian islands Chechen (32 species, Tyuleniy (29 species, Nordovyi (24 species, Kulaly (16 species is discussed for the first time. Faunistic base of discussed ecosystems includes species with turanian (sensu lato, 204 species, steppe (42 species, caucasian (30 species, including subendemics of the Caucasus, mediterranean (19 species, western asian (17 species biogeographic complexes with background of widespread euro-siberian, transpalearctic, paleotropical species. Сonnections and relations of regional and island faunas are discussed.Main conclusions. Results of the study will be a step in the determination of age of the islands through the biological diversity and the coastal level regime of the Caspian Sea, as well as possible changes in the population structure of darkling beetles (Coleoptera: Tenebrionidae on island ecosystems.

  15. Body condition, diet and ecosystem function of red deer (Cervus elaphus in a fenced nature reserve

    Directory of Open Access Journals (Sweden)

    Camilla Fløjgaard

    2017-07-01

    Full Text Available Body condition, as a sign of animal welfare, is of management concern in rewilding projects where fenced animals are subject to winter starvation, which may conflict with animal welfare legislation. Investigating the relationship between body condition, age, sex, diet quality and diet composition is therefore relevant to increase understanding of herbivores' ecosystem function and to inform management. In this study, we focused on red deer, Cervus elaphus, in a fenced nature reserve in Denmark, where the deer are managed as ecosystem engineers to contribute to biodiversity conservation. We measured body mass and body size of 91 culled red deer, and determined diet composition using DNA metabarcoding and diet quality using fecal nitrogen on 246 fecal samples. We found that body condition was predicted by age and diet composition, but not diet quality. We also found that individuals of different body condition had different diets, i.e., the fecal samples of red deer in poorer body condition contained significantly more Ericaceae sequences than red deer in good body condition. This may imply that certain functions of red deer in ecosystems, such as regeneration of heather by grazing, may depend on variation in body condition within the population. Our findings call for the need to consider the consequences of management practices, including culling or supplemental feeding, on the outcomes of habitat restoration, and more broadly underline the importance of preserving the overall breath of herbivore ecosystem functions for effective biodiversity conservation.

  16. What is Novel About Novel Ecosystems: Managing Change in an Ever-Changing World

    Science.gov (United States)

    Truitt, Amy M.; Granek, Elise F.; Duveneck, Matthew J.; Goldsmith, Kaitlin A.; Jordan, Meredith P.; Yazzie, Kimberly C.

    2015-06-01

    Influenced by natural climatic, geological, and evolutionary changes, landscapes and the ecosystems within are continuously changing. In addition to these natural pressures, anthropogenic drivers have increasingly influenced ecosystems. Whether affected by natural or anthropogenic processes, ecosystems, ecological communities, and ecosystem functioning are dynamic and can lead to "novel" or "emerging" ecosystems. Current literature identifies several definitions of these ecosystems but lacks an unambiguous definition and framework for categorizing what constitutes a novel ecosystem and for informing decisions around best management practices. Here we explore the various definitions used for novel ecosystems, present an unambiguous definition, and propose a framework for identifying the most appropriate management option. We identify and discuss three approaches for managing novel ecosystems: managing against, tolerating, and managing for these systems, and we provide real-world examples of each approach. We suggest that this framework will allow managers to make thoughtful decisions about which strategy is most appropriate for each unique situation, to determine whether the strategy is working, and to facilitate decision-making when it is time to modify the management approach.

  17. Global meta-analysis of leaf area index in wetlands indicates uncertainties in understanding of their ecosystem function

    Science.gov (United States)

    Dronova, I.; Taddeo, S.; Foster, K.

    2017-12-01

    Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more

  18. Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments

    Science.gov (United States)

    Band, Larry

    2010-05-01

    significant increase in population in the Southern Appalachians, with new building of second homes in steep headwaters, requiring significant expansion in high altitude roads, in contrast with traditional valley bottom development. With additional increases in hydrologic extremes (heavy precipitation and drought), and progressive changes in forest composition there has been increases in hazard from flash flooding, landslide activity and degraded water quality. The evaluation of integrated watershed impacts of the expected changes in climate and land management requires an interdisciplinary approach including direct feedbacks between ecological, hydrological, geomorphic and atmospheric processes within the framework of an adapting social system. Advances in this type of interdisciplinary research require a network of ecohydrologic observatories generating long term, multi-dimensional data, and a science community working across the interface of multiple fields. Adding individual and institutional behavior as an input or interactive component of watershed ecosystems remains a challenge that spans ecological, hydrological and social science.

  19. Concentrations, Deposition, and Effects of Nitrogenous Pollutants in Selected California Ecosystems

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2001-01-01

    Full Text Available Atmospheric deposition of nitrogen (N in California ecosystems is ecologically significant and highly variable, ranging from about 1 to 45 kg/ha/year. The lowest ambient concentrations and deposition values are found in the eastern and northern parts of the Sierra Nevada Mountains and the highest in parts of the San Bernardino and San Gabriel Mountains that are most exposed to the Los Angeles air pollution plume. In the Sierra Nevada Mountains, N is deposited mostly in precipitation, although dry deposition may also provide substantial amounts of N. On the western slopes of the Sierra Nevada, the majority of airborne N is in reduced forms as ammonia (NH3 and particulate ammonium (NH4+ from agricultural activities in the California Central Valley. In southern California, most of the N air pollution is in oxidized forms as nitrogen oxides (NOx, nitric acid (HNO3, and particulate nitrate (NO3– resulting from fossil fuel combustion and subsequent complex photochemical reactions. In southern California, dry deposition of gases and particles provides most (up to 95% of the atmospheric N to forests and other ecosystems. In the mixed-conifer forest zone, elevated deposition of N may initially benefit growth of vegetation, but chronic effects may be expressed as deterioration of forest health and sustainability. HNO3 vapor alone has a potential for toxic effects causing damage of foliar surfaces of pines and oaks. In addition, dry deposition of predominantly HNO3 has lead to changes in vegetation composition and contamination of ground- and stream water where terrestrial N loading is high. Long-term, complex interactions between N deposition and other environmental stresses such as elevated ozone (O3, drought, insect infestations, fire suppression, or intensive land management practices may affect water quality and sustainability of California forests and other ecosystems.

  20. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems – the effect of drought

    Directory of Open Access Journals (Sweden)

    T. S. David

    2007-09-01

    Full Text Available Droughts reduce gross primary production (GPP and ecosystem respiration (Reco, contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean, droughts result from reductions in annual rainfall and changes in rain seasonality. We compared carbon fluxes measured by the eddy covariance technique in three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like with ca.~21% tree crown cover, a grassland dominated by herbaceous annuals and a coppiced short-rotation eucalyptus plantation. During the experimental period (2003–2006 the eucalyptus plantation was always the strongest sink for carbon: net ecosystem exchange rate (NEE between −861 and −399 g C m−2 year−1. The oak woodland and the grassland were much weaker sinks for carbon: NEE varied in the oak woodland between −140 and −28 g C m−2 year−1 and in the grassland between −190 and +49 g C m−2 year−1. The eucalyptus stand had higher GPP and a lower proportion of GPP spent in respiration than the other systems. The higher GPP resulted from high leaf area duration (LAD, as a surrogate for the photosynthetic photon flux density absorbed by the canopy. The eucalyptus had also higher rain use efficiency (GPP per unit of rain volume and light use efficiency (the daily GPP per unit incident photosynthetic photon flux density than the other two ecosystems. The effects of a severe drought could be evaluated during the hydrological-year (i.e., from October to September of 2004–2005. Between October 2004 and June 2005 the precipitation was only 40% of the long-term average. In 2004–2005 all ecosystems had GPP lower than in wetter years and carbon sequestration was strongly restricted (less negative NEE. The grassland was a net source of carbon dioxide (+49 g C m−2 year−1. In the oak woodland a large proportion of GPP resulted from carbon assimilated by its annual vegetation

  1. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  2. Farmers’ Awareness of Ecosystem Services and the Associated Policy Implications

    Directory of Open Access Journals (Sweden)

    Fangfang Xun

    2017-09-01

    Full Text Available This study analyzes the primary factors influencing farmers’ awareness of ecosystem services. This study, through questionnaires, conducts research on farmers’ awareness of and demand for ecosystem service functions. The research encapsulates 156 households from 21 groups of villagers in the Guangxi Karst Ecological Immigration District in China. The results of the factors influencing farmers’ awareness of ecosystem services, analyzed using a regression model, show that: (1 Farmers are concerned with ecosystem service functions that directly benefit them; however, they do not sufficiently understand the ecosystem’s ecological security maintenance or cultural landscape functions; (2 Farmers’ awareness of ecosystem service functions is not consistent with their corresponding demand, including the ecosystem’s leisure and entertainment, social security, disaster prevention and water purification services; (3 Education level, land area cultivated by the household, proportion of the household’s income from agriculture and immigration status directly affect farmers’ awareness of ecosystem services; (4 Farmers’ personal characteristics, family characteristics and subjective attitudes have different effects on the level of ecological service cognition. Understanding farmers’ awareness of ecosystem services, and the influencing factors can help policymakers and development managers plan local development and policies, and enable harmonious development of the human-earth system in immigration regions of China.

  3. Multi-scale habitat modification by coexisting ecosystem engineers drives spatial separation of macrobenthic functional groups

    NARCIS (Netherlands)

    Donadi, S.; van der Heide, T.; Piersma, T.; van der Zee, E.M.; Weerman, E.J.; van de Koppel, J.; Olff, H.; Devine, C.; Hernawan, U. E.; Boers, M.; Planthof, L.; Eriksson, B.K.

    2015-01-01

    By changing habitat conditions, ecosystem engineers increase niche diversity and have profound effects on the distribution and abundances of other organisms. Although many ecosystems contain several engineering species, it is still unclear how the coexistence of multiple engineers affects the

  4. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  5. Nitrogen Dynamics in European Forest Ecosystems: Considerations regarding Anthropogenic Nitrogen Depositions

    OpenAIRE

    Agren, G.I.; Kauppi, P.

    1983-01-01

    This study deals with the nutrient cycle of forest ecosystems over large geographic regions in Europe as affected by nitrogen deposition. The view is taken that the nitrogen cycle of a forest ecosystem has a maximum capacity for circulating nitrogen. Two different cases are defined: case (1) in which the nutrient cycle functions below its maximum capacity, and case (2) in which the circulation operates at the maximum level.

  6. Stable calcium isotope composition of a pedogenic carbonate in forested ecosystem: the case of the needle fibre calcite (NFC).

    Science.gov (United States)

    Milliere, Laure; Verrecchia, Eric; Gussone, Nikolaus

    2014-05-01

    Calcium (Ca), carbon (C) and oxygen (O) are important elements in terrestrial environment, as their biogeochemical cycles are directly related to the storage of atmospheric carbon. Nevertheless, contrarily to C and O, Ca isotope composition has been only poorly studied in the terrestrial carbonates. Needle Fibre Calcite (NFC) is one of the most common pedogenic carbonates, unless its origin is still under debate. Recent studies explain its formation by precipitation inside fungal hyphae. Due to this possible biogenic origin, NFC can be considered as a potential bridge between the biochemistry (precipitation inside organic structure) and geochemistry (pedogenic carbonate related to soil conditions) of the Ca. Thus, the study of the Ca isotope composition of NFC seem to be of first interest in order to shed light on the behaviour of Ca in terrestrial environment, especially when precipitation of secondary carbonates is involved. The sampling site is situated in the Swiss Jura Mountains and has been chosen due to a previous complete study of the C and O isotope composition of NFC in relation to the ecosystem, which represent a good precondition for the understanding of the NFC Ca isotope signatures in this context. In this study, the implication of the fungi in the origin of NFC is investigated, by comparing the Ca isotope composition of NFC and a purely physicochemical calcite cement (LCC), both precipitated in the same environment. The δ44Ca signature of NFC and LCC crystals were used to determine possible differences of the precipitation rate during their formation. NFC and LCC have similar δ18O composition and are supposed to precipitate at the same temperature (Milliere et al., 2011a). Thus the study of Ca isotope composition of NFC seems to demonstrate that the elongated shape of the calcite needle can be explained by different precipitation processes than the rhombohedric calcite crystals precipitated in the same environment; and more precisely, the specific

  7. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    Science.gov (United States)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  8. Floral resources and habitat affect the composition of hummingbirds at the local scale in tropical mountaintops

    Directory of Open Access Journals (Sweden)

    LC Rodrigues

    Full Text Available Hummingbird communities tend to respond to variation in resources, having a positive relationship between abundance and diversity of food resources and the abundance and/or diversity of hummingbirds. Here we examined the influence of floral resource availability, as well as seasonality and type of habitat on the composition of hummingbird species. The study was carried out in two habitats of eastern Brazilian mountaintops. A gradient representative of the structure of hummingbird community, based on species composition, was obtained by the ordination of samples using the method of non-metric multidimensional scaling. The composition of hummingbird species was influenced by the type of habitat and floral resource availability, but not by seasonality. Hummingbird communities differ between habitats mainly due to the relative abundance of hummingbird species. The variation in composition of hummingbird species with the variation in floral resource availability may be related to differences in feeding habits of hummingbirds. Hummingbird species with the longest bills visited higher proportions of ornithophilous species, while hummingbirds with shorter bills visited higher proportions of non-ornithophilous species. The results demonstrate that at local-scale the composition of hummingbird species is affected by the type of habitat and floral resources availability, but not by seasonality.

  9. Floral resources and habitat affect the composition of hummingbirds at the local scale in tropical mountaintops.

    Science.gov (United States)

    Rodrigues, L C; Rodrigues, M

    2015-01-01

    Hummingbird communities tend to respond to variation in resources, having a positive relationship between abundance and diversity of food resources and the abundance and/or diversity of hummingbirds. Here we examined the influence of floral resource availability, as well as seasonality and type of habitat on the composition of hummingbird species. The study was carried out in two habitats of eastern Brazilian mountaintops. A gradient representative of the structure of hummingbird community, based on species composition, was obtained by the ordination of samples using the method of non-metric multidimensional scaling. The composition of hummingbird species was influenced by the type of habitat and floral resource availability, but not by seasonality. Hummingbird communities differ between habitats mainly due to the relative abundance of hummingbird species. The variation in composition of hummingbird species with the variation in floral resource availability may be related to differences in feeding habits of hummingbirds. Hummingbird species with the longest bills visited higher proportions of ornithophilous species, while hummingbirds with shorter bills visited higher proportions of non-ornithophilous species. The results demonstrate that at local-scale the composition of hummingbird species is affected by the type of habitat and floral resources availability, but not by seasonality.

  10. Management type affects composition and facilitative processes in altoandine dry grassland

    Science.gov (United States)

    Catorci, Andrea; Cesaretti, Sabrina; Velasquez, Jose Luis; Burrascano, Sabina; Zeballos, Horacio

    2013-10-01

    We performed our study in the Dry Puna of the southern Peruvian Andes. Through a comparative approach we aimed to assess the effects of the two management systems, low grazing pressure by wild camelids vs. high grazing pressure by domestic livestock and periodic burning. Our general hypothesis was that the traditional high disturbance regime affects the dry Puna species diversity and composition through modifications of the magnitude of plant-plant-interactions and changes of the community structure due to shifts in species dominance. In 40 plots of 10 × 10 m, the cover value of each species was recorded and the species richness, floristic diversity, and community similarity of each treatment were compared. For each disturbance regime, differences of soil features (organic matter, carbon/nitrogen ratio, and potassium content) were tested. To evaluate plant-plant interactions, 4 linear transect divided into 500 plots of 10 × 10 cm were laid out and co-occurrence analysis was performed. We found that different disturbance regimes were associated with differences in the floristic composition, and that the high disturbance condition had lower species diversity and evenness. A decrease of tall species such as Festuca orthophylla and increase of dwarf and spiny Tetraglochin cristatum shrubs was observed as well. In addition, different disturbance intensities caused differences in the functional composition of the plant communities, since species with avoidance strategies are selected by high grazing pressure. High disturbance intensity was also associated to differences of soil features and to different clumped spatial structure of the dry Puna. Our results indicate also that: positive interactions are often species-specific mainly depending on the features of nurse and beneficiary species; the importance of positive interaction is higher at low grazing pressure than at high disturbance intensity; the magnitude and direction of the herbivory-mediated facilitation

  11. Quantifying effects of biodiversity on ecosystem functioning across times and places†

    Science.gov (United States)

    Isbell, Forest; Cowles, Jane; Dee, Laura E.; Loreau, Michel; Reich, Peter B.; Gonzalez, Andrew; Hector, Andy; Schmid, Bernhard

    2018-01-01

    Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments. PMID:29493062

  12. Studies on Interpretive Structural Model for Forest Ecosystem Management Decision-Making

    Science.gov (United States)

    Liu, Suqing; Gao, Xiumei; Zen, Qunying; Zhou, Yuanman; Huang, Yuequn; Han, Weidong; Li, Linfeng; Li, Jiping; Pu, Yingshan

    Characterized by their openness, complexity and large scale, forest ecosystems interweave themselves with social system, economic system and other natural ecosystems, thus complicating both their researches and management decision-making. According to the theories of sustainable development, hierarchy-competence levels, cybernetics and feedback, 25 factors have been chosen from human society, economy and nature that affect forest ecosystem management so that they are systematically analyzed via developing an interpretive structural model (ISM) to reveal their relationships and positions in the forest ecosystem management. The ISM consists of 7 layers with the 3 objectives for ecosystem management being the top layer (the seventh layer). The ratio between agricultural production value and industrial production value as the bases of management decision-making in forest ecosystems becomes the first layer at the bottom because it has great impacts on the values of society and the development trends of forestry, while the factors of climatic environments, intensive management extent, management measures, input-output ratio as well as landscape and productivity are arranged from the second to sixth layers respectively.

  13. A compartment model of plutonium dynamics in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Gardner, R.H.; Dahlman, R.C.

    1978-01-01

    A linear compartment donor-controlled model was designed to describe and simulate the behaviour of plutonium ( 239 , 240 Pu) in a contaminated deciduous forest ecosystem at Oak Ridge, Tennessee. At steady states predicted by the model, less than 0.25% of the Pu in the ecosystem resides in forest biota. Soil is the major repository of Pu in the forest, and reciprocal exchanges of Pu between soil and litter or soil and tree roots were dominant transfers affecting the ecosystem distribution of Pu. Variation in predicted steady state amounts of Pu in the forest, given variability in the model parameters, indicated that ones ability to develop reliable models of Pu transport in ecosystems will improve with greater precision in data from natural environments and a better understanding of sources of variation in Pu data. (author)

  14. Climate Extremes and Land-Use Change: Effects on Ecosystem Processes and Services

    Science.gov (United States)

    Bahn, Michael; Erb, Karlheinz; Hasibeder, Roland; Mayr, Stefan; Niedertscheider, Maria; Oberhuber, Walter; Tappeiner, Ulrike; Tasser, Erich; Viovy, Nicolas; Wieser, Gerhard

    2016-04-01

    Extreme climatic events, in particular droughts and heatwaves, have significant impacts on ecosystem carbon and water cycles and a range of related ecosystem services. It is expected that in the coming decades the return intervals and severities of extreme droughts will increase substantially and may result in the passing of thresholds of ecosystem functioning, potentially causing legacy effects, which are so far poorly understood. Observational evidence suggests that different land cover types (forest, grassland) are differently influenced by extreme drought, but there is a lack of knowledge whether and how future, increasingly severe climate extremes will affect their concurrent and lagged responses, as well as land-use decisions determining future shifts in land cover. The ClimLUC project aims to understand how extreme summer drought affects carbon and water dynamics of mountain ecosystems under different land uses, and to analyse implications for ecosystem service provisioning. Overall, we hypothesize that land-use change alters the effects of extreme summer drought on ecosystem processes and the related services, grassland responding more rapidly and strongly but being more resilient to extreme drought than forest. To address the aims and hypotheses, we will 1) test experimentally how (a) a managed, (b) an abandoned mountain grassland and (c) an adjacent subalpine forest respond to a progressive extreme drought and will analyse threshold responses of carbon and water dynamics and their implications for ecosystem services (timber and fodder production, carbon sequestration, water provisioning); 2) quantify carry-over effects of the extreme event on ecosystem processes and services; 3) project and attribute future carbon and water cycle responses to extreme drought and related socio-economic changes, based on a process-based dynamic general vegetation model; 4) analyse the interrelation between land-use changes and the occurrence and severity of past and future

  15. Shifts in tree functional composition amplify the response of forest biomass to climate.

    Science.gov (United States)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W

    2018-04-05

    Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  16. Shifts in tree functional composition amplify the response of forest biomass to climate

    Science.gov (United States)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.

    2018-04-01

    Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  17. Interactive effects of climate change and biodiversity loss on ecosystem functioning.

    Science.gov (United States)

    Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F

    2018-05-01

    Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.

  18. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes.

    Science.gov (United States)

    Creed, Irena F; Bergström, Ann-Kristin; Trick, Charles G; Grimm, Nancy B; Hessen, Dag O; Karlsson, Jan; Kidd, Karen A; Kritzberg, Emma; McKnight, Diane M; Freeman, Erika C; Senar, Oscar E; Andersson, Agneta; Ask, Jenny; Berggren, Martin; Cherif, Mehdi; Giesler, Reiner; Hotchkiss, Erin R; Kortelainen, Pirkko; Palta, Monica M; Vrede, Tobias; Weyhenmeyer, Gesa A

    2018-03-15

    Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans. © 2018 John Wiley & Sons Ltd.

  19. Measuring Entrepreneurial Ecosystems

    OpenAIRE

    Stam, F.C.

    2017-01-01

    How can entrepreneurial ecosystems and productive entrepreneurship can be traced empirically and how is entrepreneurship related to entrepreneurial ecosystems. The analyses in this chapter show the value of taking a systems view on the context of entrepreneurship. We measure entrepreneurial ecosystem elements and use these to compose an entrepreneurial ecosystem index. Next, we measure the output of entrepreneurial ecosystems with different indicators of high-growth firms. We use the 12 provi...

  20. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    OpenAIRE

    P. Stief

    2013-01-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal–microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal–microbe interactions in the benthos of aquatic ecosystems: (i) e...

  1. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    Science.gov (United States)

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-10-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  2. Mapping tsunami impacts on land cover and related ecosystem service supply in Phang Nga, Thailand

    Science.gov (United States)

    Kaiser, G.; Burkhard, B.; Römer, H.; Sangkaew, S.; Graterol, R.; Haitook, T.; Sterr, H.; Sakuna-Schwartz, D.

    2013-12-01

    The 2004 Indian Ocean tsunami caused damages to coastal ecosystems and thus affected the livelihoods of the coastal communities who depend on services provided by these ecosystems. The paper presents a case study on evaluating and mapping the spatial and temporal impacts of the tsunami on land use and land cover (LULC) and related ecosystem service supply in the Phang Nga province, Thailand. The method includes local stakeholder interviews, field investigations, remote-sensing techniques, and GIS. Results provide an ecosystem services matrix with capacity scores for 18 LULC classes and 17 ecosystem functions and services as well as pre-/post-tsunami and recovery maps indicating changes in the ecosystem service supply capacities in the study area. Local stakeholder interviews revealed that mangroves, casuarina forest, mixed beach forest, coral reefs, tidal inlets, as well as wetlands (peat swamp forest) have the highest capacity to supply ecosystem services, while e.g. plantations have a lower capacity. The remote-sensing based damage and recovery analysis showed a loss of the ecosystem service supply capacities in almost all LULC classes for most of the services due to the tsunami. A fast recovery of LULC and related ecosystem service supply capacities within one year could be observed for e.g. beaches, while mangroves or casuarina forest needed several years to recover. Applying multi-temporal mapping the spatial variations of recovery could be visualised. While some patches of coastal forest were fully recovered after 3 yr, other patches were still affected and thus had a reduced capacity to supply ecosystem services. The ecosystem services maps can be used to quantify ecological values and their spatial distribution in the framework of a tsunami risk assessment. Beyond that they are considered to be a useful tool for spatial analysis in coastal risk management in Phang Nga.

  3. Soil microbial community successional patterns during forest ecosystem restoration.

    Science.gov (United States)

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  4. Integrating the provision of ecosystem services and trawl fisheries for the management of the marine environment.

    Science.gov (United States)

    Muntadas, Alba; de Juan, Silvia; Demestre, Montserrat

    2015-02-15

    The species interaction and their biological traits (BT) determine the function of benthic communities and, hence, the delivery of ecosystem services. Therefore, disturbance of benthic communities by trawling may compromise ecosystem service delivery, including fisheries' catches. In this work, we explore 1) the impact of trawling activities on benthic functional components (after the BTA approach) and 2) how trawling impact may affect the ecosystem services delivered by benthic communities. To this aim, we assessed the provision of ecosystem services by adopting the concept of Ecosystem Service Providers (ESP), i.e. ecological units that perform ecosystem functions that will ultimately deliver ecosystem services. We studied thirteen sites subjected to different levels of fishing effort in the Mediterranean. From a range of environmental variables included in the study, we found ESPs to be mainly affected by fishing effort and grain size. Our results suggested that habitat type has significant effects on the distribution of ESPs and this natural variability influences ESP response to trawling at a specific site. In order to summarize the complex relationships between human uses, ecosystem components and the demand for ecosystem services in trawling grounds, we adapted a DPSIR (Drivers-Pressures-State Change-Impact-Response) framework to the study area, emphasizing the role of society as Drivers of change and actors demanding management Responses. This integrative framework aims to inform managers about the interactions between all the elements involved in the management of trawling grounds, highlighting the need for an integrated approach in order to ensure ecosystem service provision. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Mapping Ecosystem Services

    OpenAIRE

    Georgiev,Teodor; Burkhard,Benjamin; Maes,Joachim

    2017-01-01

    Ecosystem services are the contributions of ecosystem structure and function (in combination with other inputs) to human well-being. That means, humankind is strongly dependent on well-functioning ecosystems and natural capital that are the base for a constant flow of ecosystem services from nature to society. Therefore ecosystem services have the potential to become a major tool for policy and decision making on global, national, regional and local scales. Possible applications are manifold:...

  6. Ecotone analysis: assessing the impact of vehicle transit on saltmarsh crab population and ecosystem.

    Science.gov (United States)

    Trave, Claudia; Sheaves, Marcus

    2014-01-01

    The frequent transit of vehicles (recreational or not) through saltpans and saltmarsh fields has been recorded as one of the major causes of physical and ecological damage for these environments. While several studies have been carried out to assess the consequence of this anthropogenic activity on the different local plant species, little is known on its long-term impact on the faunal community. Invertebrates, such as crabs, provide several essential ecological services, and their presence and abundance are tightly connected to that of the saltmarsh plants. Decrease of vegetative cover due to vehicle transit is likely to cause alterations in the morphology and the composition of the saltmarsh ecosystem. In this study we evaluate presence and distribution of the main crustacean species in several impacted sites in Townsville area (Queensland, Australia), to determine possible correlation between vehicle tracks alterations and crab distribution, as well as investigate any possible habitat shift in the mid- and long-term. Results indicate that reduction of plant cover affects species composition and distribution, with different effects based on the unique characteristics of each crab species analysed, resulting in an overall alteration of the assemblage structure.

  7. Environmental Impacts—Marine Ecosystems

    DEFF Research Database (Denmark)

    Brander, Keith; Ottersen, Geir; Bakker, J.P.

    2016-01-01

    This chapter presents a review of what is known about the impacts of climate change on the biota (plankton, benthos, fish, seabirds and marine mammals) of the North Sea. Examples show how the changing North Sea environment is affecting biological processes and organisation at all scales, including...... the physiology, reproduction, growth, survival, behaviour and transport of individuals; the distribution, dynamics and evolution of populations; and the trophic structure and coupling of ecosystems. These complex responses can be detected because there are detailed long-term biological and environmental records...

  8. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems.

    Science.gov (United States)

    Tamura, Mioko; Suseela, Vidya; Simpson, Myrna; Powell, Brian; Tharayil, Nishanth

    2017-10-01

    the higher surface area of soil minerals at this site. The plant biomarkers were lower in the aggregate fractions of the P. lobata-invaded soils, compared with noninvaded pine stands, potentially suggesting a microbial co-metabolism of pine-derived compounds. These results highlight the complex interactions among litter chemistry, soil biota, and minerals in mediating soil C storage in unmanaged ecosystems; these interactions are particularly important under global changes that may alter plant species composition and hence the quantity and chemistry of litter inputs in terrestrial ecosystems. © 2017 John Wiley & Sons Ltd.

  9. Setting limits: Using air pollution thresholds to protect and restore US ecosystems

    Science.gov (United States)

    Fenn, Mark E.; Lambert, Kathleen F.; Blett, Tamara F.; Burns, Douglas A.; Pardo, Linda H.; Lovett, Gary M.; Haeuber, Richard A.; Evers, David C.; Driscoll, Charles T.; Jeffries, Dean S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage.

  10. Influence of benthic macrofauna community shifts on ecosystem functioning in shallow estuaries

    Directory of Open Access Journals (Sweden)

    Erik eKristensen

    2014-09-01

    Full Text Available We identify how ecosystem functioning in shallow estuaries is affected by shifts in benthic fauna communities. We use the shallow estuary, Odense Fjord, Denmark, as a case study to test our hypotheses that (1 shifts in benthic fauna composition and species functional traits affect biogeochemical cycling with cascading effects on ecological functioning, which may (2 modulate pelagic primary productivity with feedbacks to the benthic system. Odense Fjord is suitable because it experienced dramatic shifts in benthic fauna community structure from 1998 to 2008. We focused on infaunal species with emphasis on three dominating burrow-dwelling polychaetes: the native Nereis (Hediste diversicolor and Arenicola marina, and the invasive Marenzelleria viridis. The impact of functional traits in the form of particle reworking and ventilation on biogeochemical cycles, i.e. sediment metabolism and nutrient dynamics, was determined from literature data. Historical records of summer nutrient levels in the water column of the inner Odense Fjord show elevated concentrations of NH4+ and NO3- (DIN during the years 2004-2006, exactly when the N. diversicolor population declined and A. marina and M. viridis populations expanded dramatically. In support of our first hypothesis, we show that excess NH4+ delivery from the benthic system during the A. marina and M. viridis expansion period enriched the overlying water in DIN and stimulated phytoplankton concentration. The altered benthic-pelagic coupling and stimulated pelagic production may, in support of our second hypothesis, have feedback to the benthic system by changing the deposition of organic material. We therefore advice to identify the exact functional traits of the species involved in a community shift before studying its impact on ecosystem functioning. We also suggest studying benthic community shifts in shallow environments to obtain knowledge about the drivers and controls before exploring deep

  11. Environmental effects of ash application in forest ecosystems

    DEFF Research Database (Denmark)

    Hansen, Mette

    of ashes being produced and the export of nutrients from the forests. This PhD project aims at investigating how ash application in forest ecosystems affects soil and soil solution properties and whether ash application can be used in a Danish context without environmental harm but with positive effects...

  12. Land use related silica dynamics in terrestrial ecosystems.

    OpenAIRE

    Clymans, Wim

    2012-01-01

    Silicon (Si) provides the base component for well-balanced food-webs in aquatic systems. Here, together with nitrogen and phosphorous Si determines phytoplankton composition, and plays a major role in eutrophication problems and carbon sequestration. Rivers are the primary source of Si for the oceans, and is ultimately derived from mineral weathering. However there is growing evidence illustrating the importance of biological Si cycling in terrestrial ecosystems. Riverine Si fluxes will be af...

  13. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem

    Science.gov (United States)

    Alena K. Oliver; Mac A. Callaham; Ari Jumpponen

    2015-01-01

    Prescribed fire is an important management tool to reduce fuel loads, to remove non-fire adapted species and to sustain fire-adapted taxa in many forested ecosystems of the southeastern USA. Yet, the long-term effects of recurring prescribed fires on soil fungi and their communities in these ecosystems remain unclear. We Illumina MiSeq sequenced and analyzed fungal...

  14. Two-dimensional NMR spectroscopy as a tool to link soil organic matter composition to ecosystem processes

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2014-05-01

    obtained 2D spectra resolve overlaps observed in 1D 13C spectra, so that hundreds of distinct CH moieties can be observed and many individual molecular fragments can be identified. For instance, in the aromatic spectral region, signals originating from various lignin monomers and unsaturated compounds can be resolved. This yields a detailed chemical fingerprint of the SOM samples, and valuable insights on molecular structures. We observed differences in the respective aromatic region of the 2D spectra of the litter layers and the fibric and humic horizons, in relation with humification processes. We were also able to relate the cross-peak complexity and abundance patterns of identifiable molecular moieties to variability in the temperature response of organic matter degradation, as assessed by Q10. To conclude, solution-state 2D NMR spectroscopy is a highly promising new tool to characterize SOM composition at the molecular level, which opens completely new possibilities to link SOM molecular composition to ecosystem processes, and their responses to environmental changes.

  15. Vulnerability of the global terrestrial ecosystems to climate change.

    Science.gov (United States)

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Effects of a large scale nitrogen and phosphorous fertilization on the ecosystem functioning of a Mediterranean tree-grass ecosystem

    Science.gov (United States)

    Migliavacca, Mirco; El Madany, Tarek; Perez-Priego, Oscar; Carrara, Arnaud; Hammer, Tiana; Henkel, Kathin; Kolle, Olaf; Luo, Yunpeng; Moreno, Gerardo; Morris, Kendalynn; Nair, Richard; Schrumpf, Marion; Wutzler, Thomas; Reichstein, Markus

    2017-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. In this contribution we will present results from an ecosystem scale nutrient manipulation experiment on a Mediterranean tree-grass ecosystem (Majadas del Tietar, Spain). Specifically, we will show how ecosystem functioning (e.g. light use efficiency, water use efficiency - WUE, albedo) changes as consequence of N and NP fertilization. A cluster of eddy covariance (EC) flux towers has been set up beside a long-term EC site (Control site) to measured high temporal resolution C and water fluxes between the ecosystem and the atmosphere. The sites were selected in a way to have similar pre-treatment conditions. Two out of three EC footprint areas (18 Ha) were fertilized with N and NP at the beginning of 2015 and 2016. To interpret the variations in C and water fluxes measured with the EC systems we monitored spatial and temporal variations in phenology, plant traits, species richness, and tree transpiration by using sap-flow meters, digital repeat photography, as well as soil sampling. The results show a consistent increase ( 15% compared to the Control site) in net ecosystem production (NEP) observed both in the N and the NP treatments. An increase of evapotranspiration (ET) of about 15% and 10% is observed in the N and NP site, respectively, indicating an increase of WUE in the NP treatment. The partitioning of the NEP into its gross components, the gross primary production (GPP) and the total ecosystem respiration (TER), show that the fertilization stimulated more GPP rather than TER, increasing therefore the capability of the ecosystem to act as carbon sink. The effects of fertilization are pronounced in spring and autumn and negligible in summer. This indicates that grass reacted much more than trees to N and NP addition. An increase of greenness and also an earlier green-up of grass in the N and NP sites

  17. Ecosystem Jenga!

    Science.gov (United States)

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  18. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  19. Biogeochemistry of a submerged groundwater seep ecosystem in Lake Huron near karst region of Alpena, MI

    Science.gov (United States)

    Kinsman-Costello, L. E.; Dick, G.; Sheik, C.; Burton, G. A.; Sheldon, N. D.

    2015-12-01

    Submerged groundwater seeps in Lake Huron establish ecosystems with distinctive geochemical conditions. In the Middle Island Sinkhole (MIS), a 23-m deep seep, groundwater seepage establishes low O2 (< 4 mg L-1), high sulfate (6 mM) conditions, in which a purple cyanobacteria-dominated mat thrives. The mat is capable of anoxygenic photosynthesis, oxygenic photosynthesis, and chemosynthesis. Within the top 3 cm of the mat-water interface, hydrogen sulfide concentrations increase to 1-7 mM. Little is known about the structure and function of microbes within organic-rich, high-sulfide sediments beneath the mat. Using pore water and sediment geochemical characterization along with microbial community analysis, we elucidated relationships between microbial community structure and ecosystem function along vertical gradients. In sediment pore waters, biologically reactive solutes (SO42-, NH4+, PO43-, and CH4) displayed steep vertical gradients, reflecting biological and geochemical functioning. In contrast, more conservative ions (Ca+2, Mg+2, Na+, and Cl-), did not change significantly with depth in MIS sediments, indicating groundwater influence in the sediment profile. MIS sediments contained more organic matter than typical Lake Huron sediments, and were generally higher in nutrients, metals, and sulfur (acid volatile sulfide). Using the Illumina MiSeq platform we detected 14,127 unique operational taxonomic units across sediment and surface mat samples. Microbial community composition in the MIS was distinctly different from non-groundwater affected areas at similar depth nearby in Lake Huron (ANOSIM, R= 0.74, p=0.002). MIS sediment communities were more diverse that MIS surface mat communities and changed with depth into sediments. MIS sediment community composition was related to several geochemical variables, including organic matter and multiple indicators of phosphorus availability. Elucidating the structure and function of microbial consortia in MIS, a highly

  20. Chemical composition and biological activities of the essential oil from Artemisia herba-alba growing wild in Tunisia.

    Science.gov (United States)

    Amri, Ismail; De Martino, Laura; Marandino, Aurelio; Lamia, Hamrouni; Mohsen, Hanana; Scandolera, Elia; De Feo, Vincenzo; Mancini, Emilia

    2013-03-01

    Aromatic plants can interfere in the Mediterranean ecosystem, mainly by the introduction in the environment of volatile compounds. For this reason, we studied the chemical composition and the possible phytotoxic and antimicrobial activities of the essential oil extracted from leaves of Tunisian Artemisia herba-alba Asso. The chemical composition of the essential oil, obtained by hydrodistillation, was analyzed by GC and GC-MS. In all, 24 compounds were identified. The main components were camphor (39.1%), chrysanthenone (15.0%) and cis-thujone (7.8%). The essential oil was evaluated for its in vitro phytotoxic activity against germination and initial radical growth of Raphanus sativus L., Lepidium sativum L., Sinapis arvensis L., Triticum durum L. and Phalaris canariensis L. seeds. The radicle elongation of the five seeds was affected to different extents by the oil, while germination was not affected. The oil, when tested against eight selected bacterial strains, showed low antimicrobial activity. The chemical composition of the oil of A. herba-alba can help in the chemosystematics of this complex genus. However, the recorded biological activities seem to be neither ecologically nor medicinally significant.

  1. The provision of ecosystem services in response to global change: Evidences and applications.

    Science.gov (United States)

    Lafortezza, Raffaele; Chen, Jiquan

    2016-05-01

    As a consequence of the global increase in economic and societal prosperity, ecosystems and natural resources have been substantially exploited, degraded, or even destroyed in the last century. To prevent further deprivation of the quality of ecosystems, the ecosystem services concept has become a central issue in environmental studies. A growing number of environmental agencies and organizations worldwide are now embracing integrated approaches to plan and manage ecosystems, sharing a goal to maintain the long-term provision of ecosystem services for sustainability. A daunting challenge in this process is to move from general pronouncements about the tremendous benefits that ecosystems provide to society to defensible assessments of their services. In other words, we must move beyond the scientific evidences of the ecosystem services concept to its practical applications. In this work, we discuss the theoretical foundations and applications of ecosystem services with a focus on the assessment of ecosystem service trade-offs and synergies at various spatial and temporal scales. Here, we offer examples of the main factors related to land use management that may affect the provision of ecosystem services and provide direction for future research on ecosystem services and related nature-based solutions. We also provide a briefing on the major topics covered in this Special Issue, which focuses on the provision of ecosystem services in the context of global change. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mobility of radiocaesium in boreal forest ecosystems: Influence of precipitation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Steinnes, E. [Department of Chemistry, Norwegian University of Science and Technology (Norway); Gjelsvik, R.; Skuterud, L.; Thoerring, H. [Norwegian Radiation Protection Authority (Norway)

    2014-07-01

    Mobility and plant uptake of Cs in soils is generally limited by the presence of clay minerals in the soil. However, cations supplied by precipitation may substantially influence the mobility of radiocaesium in natural surface soil and subsequent transfer to food chains. The chemical composition of precipitation shows substantial variation among different areas in Norway for two main reasons. At sites close to the coast the atmospheric supply of marine cations and anions is many-fold greater than in regions shielded from marine influence by mountains. The southernmost part of the country has been, and still is, substantially affected by soil acidification due to long-range atmospheric transport of acidifying substances from areas elsewhere in Europe. This may explain a much higher greater uptake of {sup 137}Cs from the Chernobyl accident in moose in this region than elsewhere (Steinnes et al., 2009), in spite of the fact that some areas farther north received substantially greater fallout. Similarly a much greater transfer of {sup 137}Cs to natural birch forest vegetation is evident from the more acidified soils in the south than in comparable ecosystems elsewhere in the country (Thoerring et al., 2012). Repeated recordings of activity levels in natural surface soils showed faster leaching of Chernobyl {sup 137}Cs relative to inland areas not only in the south but also in coastal areas farther north (Gjelsvik and Steinnes, 2013), indicating that the amounts of marine cations in precipitation also has an appreciable effect on the Cs leaching. The geographical leaching differences still became less prominent with time. Recent lysimeter experiments with undisturbed soil columns obtained from an area receiving high radiocaesium deposition from the Chernobyl accident, applying precipitation with ionic composition characteristic of the different regions mentioned above, did not change the current depth distribution of {sup 137}Cs. However, acidic precipitation increased

  3. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    Science.gov (United States)

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. [Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review].

    Science.gov (United States)

    Yang, Kun; Deng, Xi; Li, Xue-Ling; Wen, Ping

    2011-05-01

    Hydroelectric cascade exploitation, one of the major ways for exploiting water resources and developing hydropower, not only satisfies the needs of various national economic sectors, but also promotes the socio-economic sustainable development of river basin. unavoidable anthropogenic impacts on the entire basin ecosystem. Based on the process of hydroelectric cascade exploitation and the ecological characteristics of river basins, this paper reviewed the major impacts of hydroelectric cascade exploitation on dam-area ecosystems, river reservoirs micro-climate, riparian ecosystems, river aquatic ecosystems, wetlands, and river landscapes. Some prospects for future research were offered, e.g., strengthening the research of chain reactions and cumulative effects of ecological factors affected by hydroelectric cascade exploitation, intensifying the study of positive and negative ecological effects under the dam networks and their joint operations, and improving the research of successional development and stability of basin ecosystems at different temporal and spatial scales.

  5. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    Science.gov (United States)

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  6. Marine biodiversity–ecosystem functions under uncertain environmental futures

    Science.gov (United States)

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  7. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    Science.gov (United States)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  8. Effects of past burning frequency on plant species structure and composition in dry dipterocarp forest

    Science.gov (United States)

    Wanthongchai, Dr.; Bauhus, Prof.; Goldammer, Prof.

    2009-04-01

    Anthropogenic burning in dry dipterocarp forests (DDF) has become a common phenomenon throughout Thailand. It is feared that too frequent fires may affect vegetation structure and composition and thus impact on ecosystem productivity. The aim of this study was to quantify the effects of prescribed fires on sites with different past burning regimes on vegetation structure and composition in the Huay Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Fire frequency was determined from satellite images and ranged from frequent, infrequent, rare and unburned with fire occurrences of 7, 2, 1 and 0 out of the past 10 years, respectively. The pre-burn fuel loads, the overstorey and understorey vegetation structure and composition were determined to investigate the effects of the contrasting past burning regimes. The burning experiment was carried out, applying a three-strip head-fire burning technique. The vegetation structure and composition were sampled again one year after the fire to assess the fire impacts. Aboveground fine fuel loads increased with the length of fire-free interval. The woody plant structures of the frequently burned stand differed from those of the other less frequently burned stands. The species composition of the overstorey on the frequently burned site, in particular that of small sized trees (4.5-10 cm dbh), also differed significantly from that of the other sites. Whilst the ground vegetation including shrubs and herbs did not differ between the past burning regimes, frequent burning obviously promoted the proliferation of graminoid vegetation. There was no clear evidence showing that the prescribed fires affected the mortality of trees (dbh> 4.5 cm) on the sites of the different past burning regimes. The effects of prescribed burning on the understorey vegetation structures varied between the past burning regimes and the understorey vegetation type. Therefore, it is recommended that the DDF at HKK should be subjected to a prescribed fire frequency

  9. Strategic ecosystems of Colombia

    International Nuclear Information System (INIS)

    Marquez Calle German

    2002-01-01

    The author relates the ecosystems in Colombia, he makes a relationship between ecosystems and population, utility of the ecosystems, transformation of the ecosystems and poverty and he shows a methodology of identification of strategic ecosystems

  10. How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem.

    Science.gov (United States)

    Francos, Marcos; Pereira, Paulo; Mataix-Solera, Jorge; Arcenegui, Victoria; Alcañiz, Meritxell; Úbeda, Xavier

    2018-01-15

    Forest management practices in Mediterranean ecosystems are frequently employed to reduce both the risk and severity of wildfires. However, these pre-fire treatments may influence the effects of wildfire events on soil properties. The aim of this study is to examine the short-term effects of a wildfire that broke out in 2015 on the soil properties of three sites: two exposed to management practices in different years - 2005 (site M05B) and 2015 (site M15B) - and one that did not undergo any management (NMB) and to compare their properties with those recorded in a plot (Control) unaffected by the 2015 wildfire. We analyzed aggregate stability (AS), soil organic matter (SOM) content, total nitrogen (TN), carbon/nitrogen ratio (C/N), inorganic carbon (IC), pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), microbial biomass carbon (C mic ) and basal soil respiration (BSR). In the managed plots, a clear-cutting operation was conducted, whereby part of the vegetation was cut and left covering the soil surface. The AS values recorded at the Control site were significantly higher than those recorded at M05B, whereas the TN and SOM values at NMB were significantly higher than those recorded at M05B. IC was significantly higher at M05B than at the other plots. There were no significant differences in C/N ratio between the analyzed sites. Soil pH at M05B was significantly higher than the value recorded at the Control plot. Extractable Ca was significantly higher at NMB than at both M05B and the Control, while extractable Mg was significantly lower at M05B than at NMB. Extractable K was significantly lower at the Control than at the three fire-affected plots. C mic was significantly higher at NMB than at the Control. BSR, BSR/C and BSR/C mic values at the fire-affected sites were significantly lower than those recorded at the Control. No significant differences were identified in C mic /C. Overall, a comparison of the

  11. Tree spatial structure, host composition and resource availability influence mirid density or black pod prevalence in cacao agroforests in Cameroon.

    Science.gov (United States)

    Gidoin, Cynthia; Babin, Régis; Bagny Beilhe, Leïla; Cilas, Christian; ten Hoopen, Gerben Martijn; Bieng, Marie Ange Ngo

    2014-01-01

    Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao) agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests and diseases at the

  12. Trophic signatures of seabirds suggest shifts in oceanic ecosystems

    Science.gov (United States)

    Gagne, Tyler O.; Hyrenbach, K. David; Hagemann, Molly E.; Van Houtan, Kyle S.

    2018-01-01

    Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level–based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher–trophic level to lower–trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems. PMID:29457134

  13. Sensitivity of euphotic zone properties to CDOM variations in marine ecosystem models

    OpenAIRE

    Urtizberea, Agurtzane; Dupont, Nicolas; Rosland, Rune; Aksnes, Dag L.

    2013-01-01

    In marine ecosystem models, the underwater light intensity is commonly characterized by the shading of phytoplankton in addition to a background light attenuation coefficient. Colour dissolved organic matter (CDOM) is an important component of the background light attenuation, and we investigate how variation in CDOM attenuation affects euphotic zone properties in a general marine ecosystem model. Our results suggest that euphotic zone properties are highly sensitive to CDOM variations occurr...

  14. Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina

    Science.gov (United States)

    Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal

    2016-01-01

    Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...

  15. Determining preferences for ecosystem benefits in Great Lakes Areas of Concern from photographs posted to social media

    Science.gov (United States)

    Relative valuation of potentially affected ecosystem benefits can increase the legitimacy and social acceptance of ecosystem restoration projects. As an alternative or supplement to traditional methods of deriving beneficiary preference, we downloaded from social media and classi...

  16. Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition.In-situ canopy CO(2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2 exchange (NEE and increased ecosystem respiration (ER; but had no significant impacts on gross ecosystem productivity (GEP. N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland.Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.

  17. Urban Forest Ecosystem Service Optimization, Tradeoffs, and Disparities

    Science.gov (United States)

    Bodnaruk, E.; Kroll, C. N.; Endreny, T. A.; Hirabayashi, S.; Yang, Y.

    2014-12-01

    Urban land area and the proportion of humanity living in cities is growing, leading to increased urban air pollution, temperature, and stormwater runoff. These changes can exacerbate respiratory and heat-related illnesses and affect ecosystem functioning. Urban trees can help mitigate these threats by removing air pollutants, mitigating urban heat island effects, and infiltrating and filtering stormwater. The urban environment is highly heterogeneous, and there is no tool to determine optimal locations to plant or protect trees. Using spatially explicit land cover, weather, and demographic data within biophysical ecosystem service models, this research expands upon the iTree urban forest tools to produce a new decision support tool (iTree-DST) that will explore the development and impacts of optimal tree planting. It will also heighten awareness of environmental justice by incorporating the Atkinson Index to quantify disparities in health risks and ecosystem services across vulnerable and susceptible populations. The study area is Baltimore City, a location whose urban forest and environmental justice concerns have been studied extensively. The iTree-DST is run at the US Census block group level and utilizes a local gradient approach to calculate the change in ecosystem services with changing tree cover across the study area. Empirical fits provide ecosystem service gradients for possible tree cover scenarios, greatly increasing the speed and efficiency of the optimization procedure. Initial results include an evaluation of the performance of the gradient method, optimal planting schemes for individual ecosystem services, and an analysis of tradeoffs and synergies between competing objectives.

  18. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    Science.gov (United States)

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  19. Dietary Resveratrol Does Not Affect Life Span, Body Composition, Stress Response, and Longevity-Related Gene Expression in Drosophila melanogaster.

    Science.gov (United States)

    Staats, Stefanie; Wagner, Anika E; Kowalewski, Bianca; Rieck, Florian T; Soukup, Sebastian T; Kulling, Sabine E; Rimbach, Gerald

    2018-01-11

    In this study, we tested the effect of the stilbene resveratrol on life span, body composition, locomotor activity, stress response, and the expression of genes encoding proteins centrally involved in ageing pathways in the model organism Drosophila melanogaster . Male and female w 1118 D. melanogaster were fed diets based on sucrose, corn meal, and yeast. Flies either received a control diet or a diet supplemented with 500 µmol/L resveratrol. Dietary resveratrol did not affect mean, median, and maximal life span of male and female flies. Furthermore, body composition remained largely unchanged following the resveratrol supplementation. Locomotor activity, as determined by the climbing index, was not significantly different between control and resveratrol-supplemented flies. Resveratrol-fed flies did not exhibit an improved stress response towards hydrogen peroxide as compared to controls. Resveratrol did not change mRNA steady levels of antioxidant ( catalase , glutathione-S-transferase , NADH dehydrogenase , glutathione peroxidase , superoxide dismutase 2 ) and longevity-related genes, including sirtuin 2 , spargel , and I'm Not Dead Yet . Collectively, present data suggest that resveratrol does not affect life span, body composition, locomotor activity, stress response, and longevity-associated gene expression in w 1118 D. melanogaster .

  20. Dietary Resveratrol Does Not Affect Life Span, Body Composition, Stress Response, and Longevity-Related Gene Expression in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stefanie Staats

    2018-01-01

    Full Text Available In this study, we tested the effect of the stilbene resveratrol on life span, body composition, locomotor activity, stress response, and the expression of genes encoding proteins centrally involved in ageing pathways in the model organism Drosophila melanogaster. Male and female w1118 D. melanogaster were fed diets based on sucrose, corn meal, and yeast. Flies either received a control diet or a diet supplemented with 500 µmol/L resveratrol. Dietary resveratrol did not affect mean, median, and maximal life span of male and female flies. Furthermore, body composition remained largely unchanged following the resveratrol supplementation. Locomotor activity, as determined by the climbing index, was not significantly different between control and resveratrol-supplemented flies. Resveratrol-fed flies did not exhibit an improved stress response towards hydrogen peroxide as compared to controls. Resveratrol did not change mRNA steady levels of antioxidant (catalase, glutathione-S-transferase, NADH dehydrogenase, glutathione peroxidase, superoxide dismutase 2 and longevity-related genes, including sirtuin 2, spargel, and I’m Not Dead Yet. Collectively, present data suggest that resveratrol does not affect life span, body composition, locomotor activity, stress response, and longevity-associated gene expression in w1118 D. melanogaster.

  1. Transformation of Digital Ecosystems

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Hedman, Jonas

    2014-01-01

    the Digital Ecosystem Technology Transformation (DETT) framework for explaining technology-based transformation of digital ecosystems by integrating theories of business and technology ecosystems. The framework depicts ecosystem transformation as distributed and emergent from micro-, meso-, and macro- level......In digital ecosystems, the fusion relation between business and technology means that the decision of technical compatibility of the offering is also the decision of how to position the firm relative to the coopetive relations that characterize business ecosystems. In this article we develop...... coopetition. The DETT framework consists an alternative to the existing explanations of digital ecosystem transformation as the rational management of one central actor balancing ecosystem tensions. We illustrate the use of the framework by a case study of transformation in the digital payment ecosystem...

  2. Structure and composition of historical longleaf pine ccosystems in Mississippi, USA

    Science.gov (United States)

    Brice B. Hanberry; Keith Coursey; John S. Kush

    2018-01-01

    Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We identified composition in De Soto National Forest and Pearl River...

  3. Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition.

    Science.gov (United States)

    McLaughlin, Daniel L; Cohen, Matthew J

    2013-10-01

    Wetlands provide numerous ecosystem services, from habitat provision to pollutant removal, floodwater storage, and microclimate regulation. Delivery of particular services relies on specific ecological functions, and thus to varying degree on wetland ecological condition, commonly quantified as departure from minimally impacted reference sites. Condition assessments are widely adopted as regulatory indicators of ecosystem function, and for some services (e.g., habitat) links between condition and function are often direct. For others, however, links are more tenuous, and using condition alone to enumerate ecosystem value (e.g., for compensatory mitigation) may underestimate important services. Hydrologic function affects many services cited in support of wetland protection both directly (floodwater retention, microclimate regulation) and indirectly (biogeochemical cycling, pollutant removal). We investigated links between condition and hydrologic function to test the hypothesis, embedded in regulatory assessment of wetland value, that condition predicts function. Condition was assessed using rapid and intensive approaches, including Florida's official wetland assessment tool, in 11 isolated forested wetlands in north Florida (USA) spanning a land use intensity gradient. Hydrologic function was assessed using hydrologic regime (mean, variance, and rates of change of water depth), and measurements of groundwater exchange and evapotranspiration (ET). Despite a wide range in condition, no systematic variation in hydrologic regime was observed; indeed reference sites spanned the full range of variation. In contrast, ET was affected by land use, with higher rates in intensive (agriculture and urban) landscapes in response to higher leaf area. ET determines latent heat exchange, which regulates microclimate, a valuable service in urban heat islands. Higher ET also indicates higher productivity and thus carbon cycling. Groundwater exchange regularly reversed flow direction

  4. Predicting richness effects on ecosystem function in natural communities

    DEFF Research Database (Denmark)

    Dangles, Olivier; Crespo-Pérez, Verónica; Andino, Patricio

    2011-01-01

    rates in the field, although water discharge may also play a role locally. We also examined the relative contribution of the three most abundant shredders on decomposition rates by manipulating shredder richness and community composition in a field experiment. Transgressive overyielding was detected....... Despite the increased complexity of experimental and theoretical studies on the biodiversity-ecosystem functioning (B-EF) relationship, a major challenge is to demonstrate whether the observed importance of biodiversity in controlled experimental systems also persists in nature. Due...... to their structural simplicity and their low levels of human impacts, extreme species-poor ecosystems may provide new insights into B-EF relationships in natural systems. We address this issue using shredder invertebrate communities and organic matter decomposition rates in 24 high-altitude (3200-3900 m) Neotropical...

  5. The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence.

    Science.gov (United States)

    Tredennick, Andrew T; Adler, Peter B; Adler, Frederick R

    2017-08-01

    Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability. © 2017 John Wiley & Sons Ltd/CNRS.

  6. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  7. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics.

    Science.gov (United States)

    Atkinson, Carla L; Vaughn, Caryn C; Forshay, Kenneth J; Cooper, Joshua T

    2013-06-01

    Nutrient cycling is a key process linking organisms in ecosystems. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high-biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in three rivers (Kiamichi, Little, and Mountain Fork Rivers, south-central United States). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with -26% higher relative abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms. These results corroborated the results of our excretion experiments; our path analysis indicated that mussel excretion has a strong influence on stream water column N:P. Due to the high N:P of mussel excretion, strict N-limitation was alleviated, and the system switched to being co-limited by both N and P. This shows that translocation of nutrients by mussel aggregations is important to nutrient dynamics and algal species composition in these rivers. Our study highlights the

  8. Evaluation of Environmental Quality Productive Ecosystem Guayas (Ecuador).

    Science.gov (United States)

    Pozo, Wilson; Pardo, Francisco; Sanfeliu, Teófilo; Carrera, Gloria; Jordan, Manuel; Bech, Jaume; Roca, Núria

    2015-04-01

    Natural resources are deteriorating very rapidly in the Gulf of Guayaquil and the area of influence in the Guayas Basin due to human activity. Specific problems are generated by the mismanagement of the aquaculture industry affecting the traditional agricultural sectors: rice, banana, sugarcane, cocoa, coffee, and soya also studied, and by human and industrial settlements. The development of industrial activities such as aquaculture (shrimp building for shrimp farming in ponds) and agriculture, have increasingly contributed to the generation of waste, degrading and potentially toxic elements in high concentrations, which can have adverse effects on organisms in the ecosystems, in the health of the population and damage the ecological and environmental balance. The productive Guayas ecosystem, consists of three interrelated ecosystems, the Gulf of Guayaquil, the Guayas River estuary and the Guayas Basin buffer. The objective of this study was to evaluate the environmental quality of the productive Guayas ecosystem (Ecuador), through operational and specific objectives: 1) Draw up the transition coastal zone in the Gulf of Guayaquil, 2) Set temporal spatial variability of soil salinity in wetlands rice, Lower Guayas Basin, 3) evaluate the heavy metals in wetland rice in the Lower Basin of Guayas. The physical and chemical parameters of the soils have been studied. These are indicators of environmental quality. The multivariate statistical method showed the relations of similarities and dissimilarities between variables and parameter studies as stable. Moreover, the boundaries of coastal transition areas, temporal spatial variability of soil salinity and heavy metals in rice cultivation in the Lower Basin of Guayas were researched. The sequential studies included and discussed represent a broad framework of fundamental issues that has been valued as a basic component of the productive Guayas ecosystem. They are determinants of the environmental quality of the Guayas

  9. Ecosystem regime shifts disrupt trophic structure.

    Science.gov (United States)

    Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K

    2018-01-01

    Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological

  10. Species richness accelerates marine ecosystem restoration in the Coral Triangle.

    Science.gov (United States)

    Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R

    2017-11-07

    Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.

  11. BOREAS TGB-3 Plant Species Composition Data over the NSA Fen

    Science.gov (United States)

    Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.

  12. Impacts of land use/cover change on ecosystem services for Xiamen

    Science.gov (United States)

    Shi, L.; Cui, S.

    2009-12-01

    Based on remote sensing images of Xiamen in 1987, 1997 and 2007, the process of ecosystem service alteration resulting from land use/cover change was quantitatively analyzed through RS and GIS techniques. Consulting relative researches, an integrated assessment model was built to evaluating regional ecosystem services of Xiamen. The results showed that the total ecosystem service value of Xiamen was increased by 14.67%, from 3271.5 million to 3751.39 RMB. The relative change rate of supplying service, regulation service, cultural service and supporting service were 97.8%, -25.1%, 165.0% and -44.7% respectively, which indicated that land use/ cover change had positive effects on supplying and cultural service, whereas it had negatively affected both regulation service and supporting service. Land use/cover types of Xiamen in 1987, 1997 and 2007 Ecosystem values of Xiamen in 1987, 1997 and 2007 10 thousand RMB

  13. Public preferences for ecosystem services on exurban landscapes: A case study from the Mid-Atlantic, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Duke

    2016-07-01

    Full Text Available This paper reports data from a residential landscape preference study conducted in Delaware, USA. The researchers constructed an ecologically designed exurban residential landscape, which delivered 20 new environmental and human-related impacts, including 7 that delivered ecosystem services. Ecosystem services included impacts such as improved flood control and enhanced plant diversity. Using pictures before and after the intervention, an intercept survey of 105 non-neighboring residents estimated whether the 20 impacts positively, negatively, or did not affect the respondents’ household wellbeing. The public found that most landscape-intervention impacts had a positive effect on their quality of life, especially those impacts involving ecosystem services. All but one ecosystem service were found to be strong amenities and the other (moving indoor activities outside was an amenity. However, the landscape intervention delivered one clear disamenity: increased undesirable wildlife. Respondents also identified what impacts were the most important in affecting their welfare: undesirable wildlife (negative; flood control (positive; and water quality (positive. Ecosystem services accounted for 41.6% of the public’s importance rating, while undesirable wildlife was 12.9%. A planning process seeking more ecosystem services from residential landscapes should focus on all the most important drivers of preference, if it is to be accepted by residents.

  14. Ecosystem Approach To Flood Disaster Risk Reduction

    Directory of Open Access Journals (Sweden)

    RK Kamble

    2013-12-01

    Full Text Available India is one of the ten worst disaster prone countries of the world. The country is prone to disasters due to number of factors; both natural and anthropogenic, including adverse geo-climatic conditions, topographical features, environmental degradation, population growth, urbanisation, industrlisation, non-scientific development practices etc. The factors either in original or by accelerating the intensity and frequency of disasters are responsible for heavy toll of human lives and disrupting the life support systems in the country. India has 40 million hectares of the flood-prone area, on an average, flood affect an area of around 7.5 million hectares per year. Knowledge of environmental systems and processes are key factors in the management of disasters, particularly the hydro-metrological ones. Management of flood risk and disaster is a multi-dimensional affair that calls for interdisciplinary approach. Ecosystem based disaster risk reduction builds on ecosystem management principles, strategies and tools in order to maximise ecosystem services for risk reduction. This perspective takes into account the integration of social and ecological systems, placing people at the centre of decision making. The present paper has been attempted to demonstrate how ecosystem-based approach can help in flood disaster risk reduction. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 70-82 DOI: http://dx.doi.org/10.3126/ije.v2i1.9209

  15. Fishing for ecosystem services.

    Science.gov (United States)

    Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C

    2016-12-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships. Published by Elsevier Ltd.

  16. Considerations of Socio-Economic and Global Change Effects on Eurasian Steppes Ecosystem and Land-Atmosphere Interactions

    Science.gov (United States)

    Ojima, D. S.; Chuluun, T.; Temirbekov, S. S.; Mahowald, N.; Hicke, J.

    2004-12-01

    Dramatic changes occurred in pastoral systems of Eurasia ranging from Mongolia, China and Central Asia for the past decades. Recently, evaluation of the pastoral systems has been conducted in the region. Pastoral systems, where humans depend on livestock, exist largely in arid or semi-arid ecosystems where climate is highly variable. Interaction between ecosystems and nomadic land use systems co-shaped them in mutual adaptive ways for hundreds of years, thus making both the Mongolian rangeland ecosystem and nomadic pastoral system resilient and sustainable. Current changes in environmental conditions are affecting land-atmosphere interactions. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which affect regional climate. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. This set of drivers is orthogonal to the above described climate drivers. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces.

  17. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  18. Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems

    NARCIS (Netherlands)

    Didden, W.; Römbke, J.

    2001-01-01

    This review article surveys the available data on enchytraeid sensitivity toward chemical stress, and the effects of chemical stress on enchytraeid communities in terrestrial ecosystems. The factors affecting bioavailability of stressors to enchytraeids and the nature of direct and indirect effects

  19. State of the Crown of the continent ecosystem : Flathead/Castle Transboundary Bioregion (draft)

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, E.; Peck, B.; Stewart, A.; Stewart, C.

    1999-01-01

    This state of the ecosystem report describes the ecological composition of the Flathead/Castle Transboundary bioregion, including human activity. The ecosystem (which does not follow political boundaries) extends from western Alberta, eastern British Columbia and Montana. The region encompasses 5088 square km. and occupies two watersheds of the greater Crown of the Continent Ecosystem. Ecological components of the North Fork of the Flathead and of the Castle Drainage including such ecological processes as fire and disease, vegetation, species, wildlife, the aquatic environment, and a century of human activity in the two regions are described. Forestry practices, petroleum extraction, mining, recreational activities, land development, ranching practices, and road development in the two regions are reviewed, along with ecosystem-wide trends. The advantages of ecosystem based management integrated with human based management practices was demonstrated by describing the Rocky Mountain Grizzly Bear Planning Committee`s work . The Committee consists of representatives of wildlife agencies of Montana, BC, Alberta and Canadian and US federal government agencies who share responsibility for jointly mapping grizzly habitat, grizzly mortality sinks, pooling data on mortalities to ensure that the regional grizzly bear population is managed as one population regardless of political boundaries. 221 refs., tabs., figs.

  20. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    Science.gov (United States)

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  1. 5G and Telemedicine: A Business Ecosystem Relationship within CONASENSE Paradigm

    DEFF Research Database (Denmark)

    Anwar, Sadia; Kumar, Ambuj

    2018-01-01

    Abstract—The use of smartphones has been increasing rapidly and it is expected that in future most people will have a smartphone capable of high speed Internet connection. The capability of smartphones with high definition display, computation power and multitude of sensors made it an excellent...... candidate for telemedicine application. Telemedicine’s applications and high data medical information generally require high definition visuals and lower latency connection, in addition mobility and reliability. The next generation of wireless communication standard, known as 5G, will provide data speed...... a composite business ecosystem. We also discuss the research challenges concerning 5G and telemedicine. Keywords—5G, Telemedicines, Wireless Communications, Business Modeling, Business Ecosystems....

  2. Impact of Non-Native Birds on Native Ecosystems: A Global Analysis.

    Science.gov (United States)

    Martin-Albarracin, Valeria L; Amico, Guillermo C; Simberloff, Daniel; Nuñez, Martin A

    2015-01-01

    Introduction and naturalization of non-native species is one of the most important threats to global biodiversity. Birds have been widely introduced worldwide, but their impacts on populations, communities, and ecosystems have not received as much attention as those of other groups. This work is a global synthesis of the impact of nonnative birds on native ecosystems to determine (1) what groups, impacts, and locations have been best studied; (2) which taxonomic groups and which impacts have greatest effects on ecosystems, (3) how important are bird impacts at the community and ecosystem levels, and (4) what are the known benefits of nonnative birds to natural ecosystems. We conducted an extensive literature search that yielded 148 articles covering 39 species belonging to 18 families -18% of all known naturalized species. Studies were classified according to where they were conducted: Africa, Asia, Australasia, Europe, North America, South America, Islands of the Indian, of the Pacific, and of the Atlantic Ocean. Seven types of impact on native ecosystems were evaluated: competition, disease transmission, chemical, physical, or structural impact on ecosystem, grazing/ herbivory/ browsing, hybridization, predation, and interaction with other non-native species. Hybridization and disease transmission were the most important impacts, affecting the population and community levels. Ecosystem-level impacts, such as structural and chemical impacts were detected. Seven species were found to have positive impacts aside from negative ones. We provide suggestions for future studies focused on mechanisms of impact, regions, and understudied taxonomic groups.

  3. Regionalizing indicators for marine ecosystems: Bering Sea–Aleutian Island seabirds, climate, and competitors

    Science.gov (United States)

    Sydeman, William J.; Thompson, Sarah Ann; Piatt, John F.; García-Reyes, Marisol; Zador, Stephani; Williams, Jeffrey C.; Romano, Marc; Renner, Heather

    2017-01-01

    Seabirds are thought to be reliable, real-time indicators of forage fish availability and the climatic and biotic factors affecting pelagic food webs in marine ecosystems. In this study, we tested the hypothesis that temporal trends and interannual variability in seabird indicators reflect simultaneously occurring bottom-up (climatic) and competitor (pink salmon) forcing of food webs. To test this hypothesis, we derived multivariate seabird indicators for the Bering Sea–Aleutian Island (BSAI) ecosystem and related them to physical and biological conditions known to affect pelagic food webs in the ecosystem. We examined covariance in the breeding biology of congeneric pelagic gulls (kittiwakes Rissa tridactyla and R. brevirostris) andauks (murres Uria aalge and U. lomvia), all of whichare abundant and well-studiedinthe BSAI. At the large ecosystem scale, kittiwake and murre breeding success and phenology (hatch dates) covaried among congeners, so data could be combined using multivariate techniques, but patterns of responsedifferedsubstantially betweenthe genera.Whiledata fromall sites (n = 5)inthe ecosystemcould be combined, the south eastern Bering Sea shelf colonies (St. George, St. Paul, and Cape Peirce) provided the strongest loadings on indicators, and hence had the strongest influence on modes of variability. The kittiwake breeding success mode of variability, dominated by biennial variation, was significantly related to both climatic factors and potential competitor interactions. The murre indicator mode was interannual and only weakly related to the climatic factors measured. The kittiwake phenology indicator mode of variability showed multi-year periods (“stanzas”) of late or early breeding, while the murre phenology indicator showed a trend towards earlier timing. Ocean climate relationships with the kittiwake breeding success indicator suggestthat early-season (winter–spring) environmental conditions and the abundance of pink salmon affect the

  4. Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability.

    Science.gov (United States)

    Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas

    2015-01-01

    The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2)  day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics

  5. Determining preferences for ecosystem benefits in Great Lakes Areas of Concern from photographs posted to social media (presentation)

    Science.gov (United States)

    Relative valuation of potentially affected ecosystem benefits can increase the legitimacy and social acceptance of ecosystem restoration projects. As an alternative or supplement to traditional methods of deriving beneficiary preference, we downloaded from social media and classi...

  6. Seal carrion is a predictable resource for coastal ecosystems

    Science.gov (United States)

    Quaggiotto, Maria-Martina; Barton, Philip S.; Morris, Christopher D.; Moss, Simon E. W.; Pomeroy, Patrick P.; McCafferty, Dominic J.; Bailey, David M.

    2018-04-01

    The timing, magnitude, and spatial distribution of resource inputs can have large effects on dependent organisms. Few studies have examined the predictability of such resources and no standard ecological measure of predictability exists. We examined the potential predictability of carrion resources provided by one of the UK's largest grey seal (Halichoerus grypus) colonies, on the Isle of May, Scotland. We used aerial (11 years) and ground surveys (3 years) to quantify the variability in time, space, quantity (kg), and quality (MJ) of seal carrion during the seal pupping season. We then compared the potential predictability of seal carrion to other periodic changes in food availability in nature. An average of 6893 kg of carrion •yr-1 corresponding to 110.5 × 103 MJ yr-1 was released for potential scavengers as placentae and dead animals. A fifth of the total biomass from dead seals was consumed by the end of the pupping season, mostly by avian scavengers. The spatial distribution of carcasses was similar across years, and 28% of the area containing >10 carcasses ha-1 was shared among all years. Relative standard errors (RSE) in space, time, quantity, and quality of carrion were all below 34%. This is similar to other allochthonous-dependent ecosystems, such as those affected by migratory salmon, and indicates high predictability of seal carrion as a resource. Our study illustrates how to quantify predictability in carrion, which is of general relevance to ecosystems that are dependent on this resource. We also highlight the importance of carrion to marine coastal ecosystems, where it sustains avian scavengers thus affecting ecosystem structure and function.

  7. Exploring industry specific social welfare maximizing rates of water pollution abatement in linked terrestrial and marine ecosystems

    NARCIS (Netherlands)

    Roebeling, P.C.; Hendrix, E.M.T.; Grieken, van M.E.

    2009-01-01

    Marine ecosystems are severely affected by water pollution originating from coastal catchments, while these ecosystems are of vital importance from an environmental as well as an economic perspective. To warrant sustainable economic development of coastal regions, we need to balance the marginal

  8. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.

    Science.gov (United States)

    Levine, Naomi M; Zhang, Ke; Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L; Lewis, Simon L; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J W; Erwin, Terry L; Feldpausch, Ted R; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R

    2016-01-19

    Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.

  9. Tree diversity does not always improve resistance of forest ecosystems to drought.

    Science.gov (United States)

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur

    2014-10-14

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.

  10. Impacts of climate change and sea level rise to Danish near shore ecosystems

    International Nuclear Information System (INIS)

    Vestergaard, P.

    2001-01-01

    Salt marshes and sand dunes are important types of coastal, terrestrial nature, which like other terrestrial ecosystems will be sensible to the future changes in climate, which have been predicted. Due to the processes acting in their morphogenesis and in the development and composition of their ecosystems, they will not least be influenced by sea level rise. Especially a strong impact of a sea level rise of about 50 cm (midrange of the projected global sea level rise) for the next century can be expected on Danish salt marshes, considering their limited vertical range (50-100 cm). (LN)

  11. The Coupling of Ecosystem Productivity and Water Availability in Dryland Regions

    Science.gov (United States)

    Scott, R. L.; Biederman, J. A.; Barron-Gafford, G.

    2014-12-01

    Land cover and climatic change will alter biosphere-atmosphere exchanges of water vapor and carbon dioxide depending, in part, on feedbacks between biotic activity and water availability. Eddy covariance observations allow us to estimate ecosystem-scale productivity and respiration, and these datasets are now becoming sufficiently mature to advance understanding of these ecohydrological interactions. Here we use a network of sites in semiarid western North America representing gradients of water availability and functional plant type. We examine how precipitation (P) controls evapotranspiration (ET), net ecosystem production (NEP), and its component fluxes of ecosystem respiration (Reco) and gross ecosystem production (GEP). Despite the high variability in seasonal and annual precipitation timing and amounts that we expect to influence ecosystem function, we find persistent overall relationships between P or ET and the fluxes of NEP, Reco and GEP across the network, indicating a commonality and resilience in ecosystem soil and plant response to water availability. But we also observe several important site differences such as prior seasonal legacy effects on subsequent fluxes which vary depending on dominant plant functional type. For example, multiyear droughts, episodic cool-season droughts, and hard winter freezes seem to affect the herbaceous species differently than the woody ones. Nevertheless, the overall, strong coupling between hydrologic and ecologic processes at these sites bolsters our ability to predict the response of dryland ecosystems to future precipitation change.

  12. Linking ecosystem characteristics to final ecosystem services for public policy

    Science.gov (United States)

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. PMID:25394857

  13. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.

    Science.gov (United States)

    Powell, Jeff R; Rillig, Matthias C

    2018-03-30

    Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    Science.gov (United States)

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  15. Hierarchical Synthesis of Coastal Ecosystem Health Indicators at Karimunjawa National Marine Park

    Science.gov (United States)

    Danu Prasetya, Johan; Ambariyanto; Supriharyono; Purwanti, Frida

    2018-02-01

    The coastal ecosystem of Karimunjawa National Marine Park (KNMP) is facing various pressures, including from human activity. Monitoring the health condition of coastal ecosystems periodically is needed as an evaluation of the ecosystem condition. Systematic and consistent indicators are needed in monitoring of coastal ecosystem health. This paper presents hierarchical synthesis of coastal ecosystem health indicators using Analytic Hierarchy Process (AHP) method. Hierarchical synthesis is obtained from process of weighting by paired comparison based on expert judgments. The variables of coastal ecosystem health indicators in this synthesis consist of 3 level of variable, i.e. main variable, sub-variable and operational variable. As a result of assessment, coastal ecosystem health indicators consist of 3 main variables, i.e. State of Ecosystem, Pressure and Management. Main variables State of Ecosystem and Management obtain the same value i.e. 0.400, while Pressure value was 0.200. Each main variable consist of several sub-variable, i.e. coral reef, reef fish, mangrove and seagrass for State of Ecosystem; fisheries and marine tourism activity for Pressure; planning and regulation, institutional and also infrastructure and financing for Management. The highest value of sub-variable of main variable State of Ecosystem, Pressure and Management were coral reef (0.186); marine tourism pressure (0.133) and institutional (0.171), respectively. The highest value of operational variable of main variable State of Ecosystem, Pressure and Management were percent of coral cover (0.058), marine tourism pressure (0.133) and presence of zonation plan, regulation also socialization of monitoring program (0.53), respectively. Potential pressure from marine tourism activity is the variable that most affect the health of the ecosystem. The results of this research suggest that there is a need to develop stronger conservation strategies to facing with pressures from marine tourism

  16. Linear compartment model of plutonium dynamics in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Gardner, R.H.; Dahlman, R.C.

    1977-01-01

    Systems ecology techniques have been useful in simulating the fate and dynamics of radionuclides in forest ecosystems. The applications of systems models in this context are twofold: projection of the time-dependent distribution of radioisotopes among various ecosystems components, and manipulation of the modeled system to determine the sensitivity of components to variation in transfer coefficients and, thereby, identify critical fluxes affecting system behavior. The present paper describes a systems model that projects the possible fate of plutonium in a deciduous forest ecosystem. The isotopes of interest are 239 Pu and 240 Pu which have physical half lives of 2.44 x 10 4 and 6540 years, respectively. These isotopes are indistinguishable by alpha spectrometry hence 239 Pu is used to refer to both

  17. Towards ecosystem accounting

    NARCIS (Netherlands)

    Duku, C.; Rathjens, H.; Zwart, S.J.; Hein, L.

    2015-01-01

    Ecosystem accounting is an emerging field that aims to provide a consistent approach to analysing environment-economy interactions. One of the specific features of ecosystem accounting is the distinction between the capacity and the flow of ecosystem services. Ecohydrological modelling to support

  18. The Ecosystem of Startups as a Component of the Innovation Ecosystem

    Directory of Open Access Journals (Sweden)

    Sytnik Natalia I.

    2017-08-01

    Full Text Available The article analyzes the current theoretical perceptions of the ecosystem of startups and presents the author’s own vision of this entity. It has been proposed to consider the ecosystem of startups as a subsystem of the innovation ecosystem, which aims at creating innovative products and services by startup companies. The ecosystem of startups is an open dynamic system in which the backbone subject is a startup company at various stages of the life cycle. The sustenance subjects in an ecosystem are the organizations, associations and individuals that cause impacts, to varying degrees, on the establishing or development of startups. The activities of the subjects are carried out in the following directions: public regulation, financing, training, information, and infrastructure support for startups. The ecosystem consists of a number of economic, material-and-technical, market, and socio-cultural factors that directly or indirectly influence the actions of the subjects. The vital activity of the ecosystem of startups is maintained by the active interaction of the subjects, connected by a network of internal links with the environment and between themselves.

  19. Management of fire affected areas. Beyond the environmental question

    Science.gov (United States)

    Pereira, Paulo

    2016-04-01

    Fire is considered a natural element of the ecosystems. With exception of the polar areas, fire visited with more or less frequency all the earth biomes, determining the ecosystems characteristics, to the point that several species are fire-dependent to survive and are very resilient to their impact. Fire was a fundamental element for human evolution, which allowed us to cook, manipulation of metals, hunt, protect from predators and clear fields for agriculture. In some extension, we are only humans because of fire. In the last millennium fire was used to shape the landscape as we know today. One good example of this is the Mediterranean environment, a landscape where the ecology is not understood without the presence of fire. Until the end of the first half of the last century, fire was used frequently by farmers to landscape management. However, due to rural abandonment, change of life styles, disconnection with rural environment and lack of understanding of fire role in the ecosystems. The perception of fire changed and nowadays is understood by the population as a threat to the ecosystems, rather than a tool that helped to manage the landscape and help us in our evolution. This change of vision promoted the idea that fire has negative impacts in the ecosystems and should be banned from the nature. Something that is impossible. All these perceptions facilitated the implementation of fire-suppression policies, which today are recognized by science as one of the causes of the occurrence of frequent high-severity wildfires, with important impacts on the ecosystems, economy and society. However, most of the ecosystems can regenerate sooner or later, depending of the fire severity and the ecosystem affected. Thus, fire is not an ecological, but social and economic problem, due to lives loss and the temporary destruction of ecosystems, which local communities depend on. In this context, when we are managing fire affected areas, it goes much beyond environmental

  20. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.

    Science.gov (United States)

    Keys, Patrick W; Wang-Erlandsson, Lan; Gordon, Line J

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized

  1. Composition and Diversity of Soil Arthropods of Rajegwesi Meru Betiri National Park

    Directory of Open Access Journals (Sweden)

    Hasan Zayadi

    2013-09-01

    Full Text Available Meru Betiri National Park (MBNP is one of the nature conservation area that has the potential of flora, fauna, and ecosystems that could develop as a nature-based tourism attraction. The existence of certain indicator species was related to estimation of stress level and disturbance on ecosystem stability for making strategic decisions about the restoration in this area. One of the important indicator species at forest ecosystem were soil arthropods. Aim this research were analyzed composition and diversity of soil arthropods at Rajegwesi, MBNP areas. The methods in this research used pitfall trap, measurement of distribution structure and soil arthropods composition based on the Shannon - Wiener index, Morisita similarity index and Importance Value Index (IVI. The number of families and individuals of soil arthropods found in the coastal area of Rajegwesi consists of 10 order with 21 families (702 individual. The number of individuals of the order Hymenoptera, Coleoptera, Collembola and Araneida was more widely found. Soil arthropods diversity index on each land use indicated that soil arthropod diversity in these areas were moderate. Soil arthropod community of orchards and forest had a similarity of species composition, whereas soil arthropod community of savanna had a similarity of species composition with paddy fields.

  2. Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.

    Science.gov (United States)

    O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F

    2017-08-31

    In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.

  3. Ecological Diversity of Soil Fauna as Ecosystem Engineers in Small-Holder Cocoa Plantation in South Konawe

    Directory of Open Access Journals (Sweden)

    Laode Muhammad Harjoni Kilowasid

    2012-05-01

    Full Text Available Taxa diversity within soil fauna functional groups can affected ecosystem functioning such as ecosystem engineers,which influence decomposition and nutrient cycling. The objective of this study is to describe ecological diversityvariation within soil fauna as ecosystem engineers in soil ecosystem of cocoa (Theobroma cacao L. plantation.Sampling was conducted during one year period from five different ages of plantation. Soil fauna removed from soilcore using hand sorting methods. A total of 39 genera of soil fauna as ecosystem engineers were found during thesestudies. Thirty five genera belong to the group of Formicidae (ants, three genera of Isoptera (termites, and onegenera of Oligochaeta (earthworms. Ecological diversity variation within ecosystem engineers was detected withSimpson indices for dominance and evenness. The highest diversity of ecosystem engineers was in the young ageof plantation. This study reinforces the importance biotic interaction which contributed to the distribution andabundance within soil fauna community as ecosystem engineers in small-holder cocoa plantation.

  4. Compositional stability of boreal understorey vegetation after overstorey harvesting across a riparian ecotone

    Science.gov (United States)

    Rebecca L. MacDonald; Han Y.H. Chen; Samuel F. Bartels; Brian J. Palik; Ellie E. Prepas; Frank Gilliam

    2015-01-01

    Questions: Understanding factors that contribute to the stability of an ecosystem following harvesting is central to predicting responses of boreal ecosystems to increasing human disturbances.While the response of understorey vegetation to harvesting is well understood for upland sites, little is known about compositional stability of riparian understorey vegetation....

  5. Biodiversity, ecosystem functions and services in environmental risk assessment: introduction to the special issue.

    Science.gov (United States)

    Schäfer, Ralf B

    2012-01-15

    This Special Issue focuses on the questions if and how biodiversity, ecosystem functions and resulting services could be incorporated into the Ecological Risk Assessment (ERA). Therefore, three articles provide a framework for the integration of ecosystem services into ERA of soils, sediments and pesticides. Further articles demonstrate ways how stakeholders can be integrated into an ecosystem service-based ERA for soils and describe how the current monitoring could be adapted to new assessment endpoints that are directly linked to ecosystem services. Case studies show that the current ERA may not be protective for biodiversity, ecosystem functions and resulting services and that both pesticides and salinity currently adversely affect ecosystem functions in the field. Moreover, ecological models can be used for prediction of new protection goals and could finally support their implementation into the ERA. Overall, the Special Issue stresses the urgent need to enhance current procedures of ERA if biodiversity, ecosystem functions and resulting services are to be protected. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Science.gov (United States)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  7. Ecosystems and climate interactions in the boreal zone of northern Eurasia

    International Nuclear Information System (INIS)

    Vygodskaya, N N; Groisman, P Ya; Tchebakova, N M; Kurbatova, J A; Panfyorov, O; Parfenova, E I; Sogachev, A F

    2007-01-01

    The climate system and terrestrial ecosystems interact as they change. In northern Eurasia these interactions are especially strong, span all spatial and timescales, and thus have become the subject of an international program: the Northern Eurasia Earth Science Partnership Initiative (NEESPI). Without trying to cover all areas of these interactions, this paper introduces three examples of the principal micrometeorological, mesometeorological and subcontinental feedbacks that control climate-terrestrial ecosystem interactions in the boreal zone of northern Eurasia. Positive and negative feedbacks of forest paludification, of windthrow, and of climate-forced displacement of vegetation zones are presented. Moreover the interplay of different scale feedbacks, the multi-faceted nature of ecosystems-climate interactions and their potential to affect the global Earth system are shown. It is concluded that, without a synergetic modeling approach that integrates all major feedbacks and relationships between terrestrial ecosystems and climate, reliable projections of environmental change in northern Eurasia are impossible, which will also bring into question the accuracy of global change projections

  8. Climate change affects carbon allocation to the soil in shrublands

    DEFF Research Database (Denmark)

    Gorissen, A.; Tietema, A.; Joosten, N.N.

    2004-01-01

    , resulting from imposed manipulations, on carbon dynamics in shrubland ecosystems was examined. We performed a C-14-labeling experiment to probe changes in net carbon uptake and allocation to the roots and soil compartments as affected by a higher temperature during, the year and a drought period...... than or equal to 0.10. Drought clearly reduced carbon flow from the roots to the soil compartments. The fraction of the C-14 fixed by the plants and allocated into the soluble carbon fraction in the soil and to soil microbial biomass in Denmark and the UK decreased by more than 60%. The effects......Climate change may affect ecosystem functioning through increased temperatures or changes in precipitation patterns. Temperature and water availability are important drivers for ecosystem processes such as photosynthesis, carbon translocation, and organic matter decomposition. These climate changes...

  9. Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Kathleen A. Dwire

    2018-04-01

    Full Text Available Riparian areas, wetlands, and groundwater-dependent ecosystems, which are found at all elevations throughout the Blue Mountains, comprise a small portion of the landscape but have high conservation value because they provide habitat for diverse flora and fauna. The effects of climate change on these special habitats may be especially profound, due to altered snowpack and hydrologic regimes predicted to occur in the near future. The functionality of many riparian areas is currently compromised by water diversions and livestock grazing, which reduces their resilience to additional stresses that a warmer climate may bring. Areas associated with springs and small streams will probably experience near-term changes, and some riparian areas and wetlands may decrease in size over time. A warmer climate and reduced soil moisture could lead to a transition from riparian hardwood species to more drought tolerant conifers and shrubs. Increased frequency and spatial extent of wildfire spreading from upland forests could also affect riparian species composition. The specific effects of climate change will vary, depending on local hydrology (especially groundwater, topography, streamside microclimates, and current conditions and land use. Keywords: Climate change, Groundwater-dependent ecosystems, Riparian areas, Springs, Wetlands

  10. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    2010-09-01

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  11. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    2011-02-01

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  12. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  13. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    Science.gov (United States)

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  14. Complex effects of ecosystem engineer loss on benthic ecosystem response to detrital macroalgae

    NARCIS (Netherlands)

    Rossi, F.; Gribsholt, B.; Gazeau, F.; Di Santo, V.; Middelburg, J.J.

    2013-01-01

    Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies

  15. Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae

    NARCIS (Netherlands)

    Rossi, F.; Gribsholt, B.; Gazeau, F.; Di Santo, V.; Middelburg, J.J.

    2013-01-01

    Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies

  16. Sexually transmitted bacteria affect female cloacal assemblages in a wild bird

    Science.gov (United States)

    White, Joël; Mirleau, Pascal; Danchin, Etienne; Mulard, Hervé; Hatch, Scott A.; Heeb, Phillipp; Wagner, Richard H.

    2010-01-01

    Sexual transmission is an important mode of disease propagation, yet its mechanisms remain largely unknown in wild populations. Birds comprise an important model for studying sexually transmitted microbes because their cloaca provides a potential for both gastrointestinal pathogens and endosymbionts to become incorporated into ejaculates. We experimentally demonstrate in a wild population of kittiwakes (Rissa tridactyla) that bacteria are transmitted during copulation and affect the composition and diversity of female bacterial communities. We used an anti-insemination device attached to males in combination with a molecular technique (automated ribosomal intergenic spacer analysis) that describes bacterial communities. After inseminations were experimentally blocked, the cloacal communities of mates became increasingly dissimilar. Moreover, female cloacal diversity decreased and the extinction of mate-shared bacteria increased, indicating that female cloacal assemblages revert to their pre-copulatory state and that the cloaca comprises a resilient microbial ecosystem.

  17. Amino acid composition of soybean seeds as affected by climatic variables

    Directory of Open Access Journals (Sweden)

    Constanza Soledad Carrera

    2011-12-01

    Full Text Available The objective of this work was to perform a quantitative analysis of the amino acid composition of soybean seeds as affected by climatic variables during seed filling. Amino acids were determined from seed samples taken at harvest in 31 multi-environment field trials carried out in Argentina. Total amino acids ranged from 31.69 to 49.14%, and total essential and nonessential amino acids varied from 12.83 to 19.02% and from 18.86 to 31.15%, respectively. Variance components expressed as the percentage of total variation showed that the environment was the most important source of variation for all traits, followed by the genotype x environment interaction. Significant explanatory linear regressions were detected for amino acid content regarding: average daily mean air temperature and cumulative solar radiation, during seed filling; precipitation minus potential evapotranspiration, during the whole reproductive period; and the combinations of these climatic variables. Each amino acid behaves differently according to environmental conditions, indicating compensatory effects among them.

  18. How well do ecosystem indicators communicate the effects of anthropogenic eutrophication?

    NARCIS (Netherlands)

    McQuatters-Gollop, A.; Gilbert, A.J.; Mee, L.; Vermaat, J.E.; Artioli, Y.; Humborg, C.; Wulff, F.

    2009-01-01

    Anthropogenic eutrophication affects the Mediterranean, Black, North and Baltic Seas to various extents. Responses to nutrient loading and methods of monitoring relevant indicators vary regionally, hindering interpretation of ecosystem state changes and preventing a straightforward pan-European

  19. Trade-off analysis of ecosystem service provision in nature networks

    DEFF Research Database (Denmark)

    Vogdrup-Schmidt, Mathias; Strange, Niels; Olsen, Søren Bøye

    2017-01-01

    We propose a spatial multi-criteria decision analysis approach as a value-focused decision support tool for evaluating land use change decisions affecting multiple ecosystem services. In an empirical case study concerned with creating a robust and interconnected network of natural areas in a Danish...... municipality, we first conduct a biophysical and economic baseline mapping of ecosystem services. We then construct a spatially explicit multi-criteria decision analysis model which is utilized to identify candidate areas for inclusion in the network. We define a base scenario for future land use in the area......, where all criteria have equal weight, and assess the outcome in terms of welfare economic benefits of ecosystem services and opportunity cost of reducing forest and agricultural production. As weights in multi-criteria analysis is innately a subjective task, we conduct a sensitivity analysis using four...

  20. Isotope Investigations of Nitrogen Compounds in Different Aquatic Ecosystems in Cyprus, Russia and Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Voropaev, A.; Voerkelius, S.; Eichinger, L. [Hydroisotop GmbH, Schweitenkirchen (Germany); Grinenko, V. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2013-07-15

    The isotope analyses of nitrogen compounds is a powerful tool for the investigation of anrthropogenic influence on the nitrogen cycle in terrestrial and aquatic ecosystems. The isotopic composition of nitrogen and oxygen in nitrates from different groundwater aquifers in Cyprus reflects anthropogenic inputs of nitrogen mainly from industrial fertilizer application in agriculture. Significant denitrification as identified at many sampling sites is an important process, which reduces nitrate concentrations in groundwater. In surface water ecosystems anthropogenic influences and natural environmental changes are detected by the isotopic composition of nitrogen in suspended organic material and in bottom sediments. In the oligotrophic fresh water of Lake Galich in Russia the waste water outflow is a reason for the local increase of {delta}{sup 15}N values in bottom sediments, where the nitrogen and carbon isotopic compositions of unpolluted sediments are very homogeneous. In the Neva estuary in russia the lateral destribution of {delta}{sup 15}N values in upper layers of bottom sediments reflects changes in the mixing pattern of marine and continental organic matter caused by a flood protection dam building in the Dneprovsko-Bugsky estuary in Ukraine - probably the increasing influence of anthropogenic {sup 15}N enriched nutrient load. (author)

  1. Linking ecosystem characteristics to final ecosystem services for public policy.

    Science.gov (United States)

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  2. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices.

    Science.gov (United States)

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-02-22

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Setting limits: Using air pollution thresholds to protect and restore U.S. ecosystems

    Science.gov (United States)

    Fenn, M.E.; Lambert, K.F.; Blett, T.F.; Burns, Douglas A.; Pardo, L.H.; Lovett, Gary M.; Haeuber, R. A.; Evers, D.C.; Driscoll, C.T.; Jeffries, D.S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage. Based on the results of a comprehensive review of air pollution thresholds, we conclude: ??? Ecosystem services such as air and water purification, decomposition and detoxification of waste materials, climate regulation, regeneration of soil fertility, production and biodiversity maintenance, as well as crop, timber and fish supplies are impacted by deposition of nitrogen, sulfur, mercury and other pollutants. The consequences of these changes may be difficult or impossible to reverse as impacts cascade throughout affected ecosystems. ??? The effects of too much nitrogen are common across the U.S. and include altered plant and lichen communities, enhanced growth of invasive species, eutrophication and acidification of lands and waters, and habitat deterioration for native species, including endangered species. ??? Lake, stream and soil acidification is widespread across the eastern United States. Up to 65% of lakes within sensitive areas receive acid deposition that exceeds critical loads. ??? Mercury contamination adversely affects fish in many inland and coastal waters. Fish consumption advisories for mercury exist in all 50

  4. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises.

    Directory of Open Access Journals (Sweden)

    Nibedita Mukherjee

    Full Text Available The valuation of ecosystem services is a complex process as it includes several dimensions (ecological, socio-cultural and economic and not all of these can be quantified in monetary units. The aim of this paper is to conduct an ecosystem services valuation study for mangroves ecosystems, the results of which can be used to inform governance and management of mangroves. We used an expert-based participatory approach (the Delphi technique to identify, categorize and rank the various ecosystem services provided by mangrove ecosystems at a global scale. Subsequently we looked for evidence in the existing ecosystem services literature for monetary valuations of these ecosystem service categories throughout the biogeographic distribution of mangroves. We then compared the relative ranking of ecosystem service categories between the monetary valuations and the expert based analysis. The experts identified 16 ecosystem service categories, six of which are not adequately represented in the literature. There was no significant correlation between the expert based valuation (the Delphi technique and the economic valuation, indicating that the scope of valuation of ecosystem services needs to be broadened. Acknowledging this diversity in different valuation approaches, and developing methodological frameworks that foster the pluralism of values in ecosystem services research, are crucial for maintaining the credibility of ecosystem services valuation. To conclude, we use the findings of our dual approach to valuation to make recommendations on how to assess and manage the ecosystem services provided by mangrove ecosystems.

  5. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises.

    Science.gov (United States)

    Mukherjee, Nibedita; Sutherland, William J; Dicks, Lynn; Hugé, Jean; Koedam, Nico; Dahdouh-Guebas, Farid

    2014-01-01

    The valuation of ecosystem services is a complex process as it includes several dimensions (ecological, socio-cultural and economic) and not all of these can be quantified in monetary units. The aim of this paper is to conduct an ecosystem services valuation study for mangroves ecosystems, the results of which can be used to inform governance and management of mangroves. We used an expert-based participatory approach (the Delphi technique) to identify, categorize and rank the various ecosystem services provided by mangrove ecosystems at a global scale. Subsequently we looked for evidence in the existing ecosystem services literature for monetary valuations of these ecosystem service categories throughout the biogeographic distribution of mangroves. We then compared the relative ranking of ecosystem service categories between the monetary valuations and the expert based analysis. The experts identified 16 ecosystem service categories, six of which are not adequately represented in the literature. There was no significant correlation between the expert based valuation (the Delphi technique) and the economic valuation, indicating that the scope of valuation of ecosystem services needs to be broadened. Acknowledging this diversity in different valuation approaches, and developing methodological frameworks that foster the pluralism of values in ecosystem services research, are crucial for maintaining the credibility of ecosystem services valuation. To conclude, we use the findings of our dual approach to valuation to make recommendations on how to assess and manage the ecosystem services provided by mangrove ecosystems.

  6. Plant community mediation of ecosystem responses to global change factors

    Science.gov (United States)

    Churchill, A. C.

    2017-12-01

    Human alteration of the numerous environmental drivers affecting ecosystem processes is unprecedented in the last century, including changes in climate regimes and rapid increases in the availability of biologically active nitrogen (N). Plant communities may offer stabilizing or amplifying feedbacks mediating potential ecosystem responses to these alterations, and my research seeks to examine the conditions associated with when plant feedbacks are important for ecosystem change. My dissertation research focused on the unintended consequences of N deposition into natural landscapes, including alpine ecosystems which are particularly susceptible to adverse environmental impacts. In particular, I examined alpine plant and soil responses to N deposition 1) across multiple spatial scales throughout the Southern Rocky Mountains, 2) among diverse plant communities associated with unique environmental conditions common in the alpine of this region, and 3) among ecosystem pools of N contributing to stabilization of N inputs within those communities. I found that communities responded to inputs of N differently, often associated with traits of dominant plant species but these responses were intimately linked with the abiotic conditions of each independent community. Even so, statistical models predicting metrics of N processing in the alpine were improved by encompassing both abiotic and biotic components of the main community types.

  7. Re-introducing environmental change drivers in biodiversity-ecosystem functioning research

    Science.gov (United States)

    De Laender, Frederik; Rohr, Jason R.; Ashauer, Roman; Baird, Donald J.; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J.; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J.

    2016-01-01

    For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly re-introducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next, we show how this reintroduction improves experimental control over community composition and structure, which helps to obtain mechanistic insight about how multiple aspects of biodiversity relate to function, and how biodiversity and function relate in food-webs. We also highlight challenges for the proposed re-introduction, and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. PMID:27742415

  8. THE ECONOMIC APPROACH OF ECOSYSTEM SERVICES PROVIDED BY PROTECTED AREAS

    Directory of Open Access Journals (Sweden)

    Cirnu Maria

    2015-07-01

    Full Text Available As practice shows us, at the present time ecosystem services are recognized by humanity, but unfortunately are undervalued compared to their full potential. Most of planet's ecosystems are degradated by anthropic activity of humankind. It is almost impossible to say that there are no areas affected by human activity, however, the Protected Areas are a good opportunity, so the assessing of ecosystem services in Protected Areas can be a solution to the problem of economic growth. At present, there are few consistent informations on economic value of ecosystem services in Romania, on the basis of which can be adopted some sustainable financing policies of activities in Protected Areas. The premise from which we start is that a proper management of natural capital will allow biodiversity conservation and human well-being if it find appropriate economic instruments. For this reason, studies of economic research on the contribution of those ecosystem services to the communities welfare may constitute credible means for decision-makers, demonstrating the Protected Areas importance. This paper, based on the study of international and national literature, examines the state of knowledge on the economic and environmental valences of ecosystem services. The growing interest of researchers regarding the economic valuation of ecosystem services related to Protected Areas is visible through the many studies carried out at international level. Although national scientific research relating to ecosystem services is at the beginning, concerns researchers economists and ecologists have been directed toward this recess, of ecosystem services. The reason for we should assign an economic value to ecosystem services is to ensure that their value is included actively in decision-making and is not ignored because "is still available". Briefly, the paper start with an overview of the main definition of ecosystem services. From the point of economic value view, the paper

  9. Disruption of ecosystem processes in western North America by invasive species

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Dukes

    2004-09-01

    Full Text Available Many ecosystems of western North America have been dramatically changed by non-native species. Here, we review ecological impacts of 56 plant, animal, fungus, and protist species that were brought to this region by humans. We discuss characteristics of invasive species that can lead to major ecosystem impacts, and explore how invasive species alter many different attributes of ecosystems. Specifically, we include examples of invasive species that affect geomorphology, fire regimes, hydrology, microclimate, atmospheric composition, nutrient cycling, and productivity. Finally, we review the direct consequences of biological invasions for some native species. We summarize examples from this paper in Appendix 1. Our examples illustrate how, as invasive species have become dominant across large areas of western North America's grassland, shrubland, dune, riparian, and estuarine ecosystems, the properties and functioning of these systems have changed. To date, some systems in this region, such as its forests, remain relatively unaffected by invasive species. However, recent attacks of forest pathogens highlight the potential vulnerability of these ecosystemsMuchos ecosistemas de Norteamérica occidental han cambiado dramáticamente a causa del efecto producido por especies no autóctonas. Aquí se muestra una revisión del impacto ecológico producido por 56 especies diferentes de plantas, animales y hongos, y especies de protistas que fueron traídos a esta región por humanos. Discutimos las características de las especies invasoras que pueden producir un gran impacto en el ecosistema, y exploramos cómo las especies invasoras pueden alterar de forma muy diferente los atributos de un ecosistema. Específicamente, incluimos ejemplos de especies invasoras que afectan a la geomorfología, a los regímenes del fuego, a la hidrología, al microclima, a la composición atmosférica, al ciclo de nutrientes, y a la productividad. Finalmente, revisamos las

  10. The effects of acid perturbation on a controlled ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kollig, H.P.; Hall, T.L.

    1982-02-01

    Duplicate, 8-compartment, continuous-flow microcosms were used to study the effects of acid addition on community function, algal community structure, and degradation of a plasticizer, diethyl phthalate. Inputs of HCl decreased the alkalinity (measured as CaCO/sub 3/) from 25 to 8 mgl/sup -1/, creating diurnal H/sup +/ activity curves that indicated that the ecosystem was being severely stressed. Removal of excess acid was accompanied by a return to a normal diurnal pH cycle. Nutrient concentrations and 0/sub 2/ production did not give a definite indication of stress resulting from the addition of acid. Algal community structure and total biomass were not affected by acid inputs. Also, degradation rates of diethyl phtalate by the aquatic bacteria were similar for the control and the acid-stressed systems. These studies indicate that acid inputs can significantly disrupt normal ecosystem function, such as diurnal pH cycling, without having a measurable impact on other parameters usually monitored in aquatic ecosystems.

  11. Climate change and wildfire effects in aridland riparian ecosystems: An examination of current and future conditions

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch

    2017-01-01

    Aridland riparian ecosystems are limited, the climate is changing, and further hydrological change is likely in the American Southwest. To protect riparian ecosystems and organisms, we need to understand how they are affected by disturbance processes and stressors such as fire, drought, and non-native plant invasions. Riparian vegetation is critically important as...

  12. Dietary conjugated linoleic acids affect tissue lipid composition but not de novo lipogenesis in finishing pigs

    OpenAIRE

    Bee , Giuseppe

    2001-01-01

    International audience; Dietary conjugated linoleic acids (CLA) have been reported to profoundly affect lipid metabolism and to act as repartitioning agents. Currently, little is known about their effect on the fatty acid profile of tissue lipids in pigs. In the present study we determined the lipid composition of the backfat inner (BFI) and outer layer (BFO), omental fat (OF) and intramuscular fat (IMF) of the longissimus dorsi muscle in 24 Swiss Large White pigs fed diets supplemented eithe...

  13. Effects of acid deposition on ecosystems: Advances in the state of the science

    Science.gov (United States)

    Burns, Douglas A.; Fenn, Mark E.; Baron, Jill S.

    2011-01-01

    Chapter 2 focused on the environmental results of the ARP, presenting data from national monitoring networks on SO2 and NOx emissions, air quality, atmospheric deposition, surface water chemistry, and visibility. This chapter expands on this information by examining the most recent research into how ecosystems respond to acid deposition, especially the processes that control the recovery of ecosystems as acid deposition decreases. In Chapter 2, two general trends were discussed regarding the current recovery status of affected ecosystems: (1) these ecosystems are trending generally towards recovery, but improvements in ecosystem condition shown by surface water chemistry monitoring data thus far have been less than the improvements in deposition; and (2) ecosystem impacts and trends vary widely by geographic region, but the evidence of improvement is strongest and most evident in the Northeast. These trends are not uniform across the United States, however, and in some regions (e.g., central Appalachian Mountain region), trends in improved water quality are generally not evident. Despite the strong link in many areas between reduced emissions and reduced acidity of atmospheric deposition, the link is less clear between reduced acidity and recovery of the biological communities that live in aquatic and terrestrial ecosystems that have experienced deleterious effects from acid deposition. The recovery of these communities is proceeding at a slower pace than, for example, the improvements in stream and lake ANC would indicate. The goal of this chapter is to synthesize the science in a weightof-evidence manner to provide policy makers with tangible evidence and likely causative factors regarding ecosystem status and recovery patterns to date. This chapter serves as an update to the 2005 NAPAP RTC (NSTC, 2005), with an emphasis on scientific studies and monitoring since 2003, which was the last year for consideration of research results in the 2005 report. Several

  14. Examining equity: a multidimensional framework for assessing equity in payments for ecosystem services

    OpenAIRE

    McDermott, Melanie; Mahanty, Sango; Schreckenberg, Kathrin

    2012-01-01

    Concern over social equity dominates current debates about payments for ecosystem services and reduced deforestation and forest degradation (REDD+). Yet, despite the apprehension that these initiatives may undermine equity, the term is generally left undefined. This paper presents a systematic framework for the analysis of equity that can be used to examine how local equity is affected as the global value of ecosystem services changes. Our framework identifies three dimensions that form the c...

  15. Analysis and design of software ecosystem architectures – Towards the 4S telemedicine ecosystem

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius; Kyng, Morten

    2014-01-01

    performed a descriptive, revelatory case study of the Danish telemedicine ecosystem and for ii), we experimentally designed, implemented, and evaluated the architecture of 4S. Results We contribute in three areas. First, we define the software ecosystem architecture concept that captures organization......, and application stove-pipes that inhibit the adoption of telemedical solutions. To which extent can a software ecosystem approach to telemedicine alleviate this? Objective In this article, we define the concept of software ecosystem architecture as the structure(s) of a software ecosystem comprising elements...... experience in creating and evolving the 4S telemedicine ecosystem. Conclusion The concept of software ecosystem architecture can be used analytically and constructively in respectively the analysis and design of software ecosystems....

  16. Coastal livelihood transitions under globalization with implications for trans-ecosystem interactions.

    Science.gov (United States)

    Kramer, Daniel B; Stevens, Kara; Williams, Nicholas E; Sistla, Seeta A; Roddy, Adam B; Urquhart, Gerald R

    2017-01-01

    Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.

  17. Coastal livelihood transitions under globalization with implications for trans-ecosystem interactions.

    Directory of Open Access Journals (Sweden)

    Daniel B Kramer

    Full Text Available Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.

  18. Microbial Fingerprints of Community Structure Correlate with Changes in Ecosystem Function Induced by Perturbing the Redox Environment

    Science.gov (United States)

    Mills, A. L.; Ford, R. M.; Vallino, J. J.; Herman, J. S.; Hornberger, G. M.

    2001-12-01

    Restoration of high-quality groundwater has been an elusive engineering goal. Consequently, natural microbially-mediated reactions are increasingly relied upon to degrade organic contaminants, including hydrocarbons and many synthetic compounds. Of concern is how the introduction of an organic chemical contaminant affects the indigenous microbial communities, the geochemistry of the aquifer, and the function of the ecosystem. The presence of functional redundancy in microbial communities suggests that recovery of the community after a disturbance such as a contamination event could easily result in a community that is similar in function to that which existed prior to the contamination, but which is compositionally quite different. To investigate the relationship between community structure and function we observed the response of a diverse microbial community obtained from raw sewage to a dynamic redox environment using an aerobic/anaerobic/aerobic cycle. To evaluate changes in community function CO2, pH, ammonium and nitrate levels were monitored. A phylogenetically-based DNA technique (tRFLP) was used to assess changes in microbial community structure. Principal component analysis of the tRFLP data revealed significant changes in the composition of the microbial community that correlated well with changes in community function. Results from our experiments will be discussed in the context of a metabolic model based the biogeochemistry of the system. The governing philosophy of this thermodynamically constrained metabolic model is that living systems synthesize and allocate cellular machinery in such a way as to "optimally" utilize available resources in the environment. The robustness of this optimization-based approach provides a powerful tool for studying relationships between microbial diversity and ecosystem function.

  19. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water level regimes

    Science.gov (United States)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-02-01

    Peatlands are carbon (C) storage ecosystems sustained by a high water level (WL). High WL creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WL drawdown caused by land-use and/or climate change. Aerobic decomposers are directly affected by WL drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WL drawdown on aerobic decomposer activity in plant litter. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen, phosphorus and sulphur. Our study sites represented a three-stage chronosequence from pristine (undrained) to short-term (years) and long-term (decades) WL drawdown conditions under two nutrient regimes. The litter types included reflected the prevalent vegetation, i.e., Sphagnum mosses, graminoids, shrubs and trees. WL drawdown had a direct and positive effect on microbial activity. Enzyme allocation shifted towards C acquisition, which caused an increase in the rate of decomposition. However, litter type overruled the direct effects of WL drawdown and was the main factor shaping microbial activity patterns. Our results imply that changes in plant community composition in response to persistent WL drawdown will strongly affect the C dynamics of peatlands.

  20. The contribution of ecosystem services to place utility as a determinant of migration decision-making

    Science.gov (United States)

    Adams, Helen; Adger, W. Neil

    2013-03-01

    Environment migration research has sought to provide an account of how environmental risks and resources affect migration and mobility. Part of that effort has focused on the role of the environment in providing secure livelihoods through provisioning ecosystem services. However, many of the models of environment migration linkages fail to acknowledge the importance of social and psychological factors in the decision to migrate. Here, we seek to provide a more comprehensive model of migration decision-making under environmental change by investigating the attachment people form to place, and the role of the environment in creating that attachment. We hypothesize that environmental factors enter the migration decision-making process through their contribution to place utility, defined as a function of both affective and instrumental bonds to location, and that ecosystem services, the aspects of ecosystems that create wellbeing, contribute to both components of place utility. We test these ideas in four rural highland settlements in Peru sampled along an altitudinal gradient. We find that non-economic ecosystem services are important in creating place attachment and that ecological place attachment exists independently of use of provisioning ecosystem services. Individuals’ attitudes to ecosystem services vary with the type of ecosystem services available at a location and the degree of rurality. While social and economic factors are the dominant drivers of migration in these locations, a loss of non-provisioning ecosystem services leads to a decrease in place utility and commitment to place, determining factors in the decision to migrate. The findings suggest that policy interventions encouraging migration as an adaptation to environmental change will have limited success if they only focus on provisioning services. A much wider set of individuals will experience a decrease in place utility, and migration will be unable to alleviate that decrease since the factors

  1. The contribution of ecosystem services to place utility as a determinant of migration decision-making

    International Nuclear Information System (INIS)

    Adams, Helen; Neil Adger, W

    2013-01-01

    Environment migration research has sought to provide an account of how environmental risks and resources affect migration and mobility. Part of that effort has focused on the role of the environment in providing secure livelihoods through provisioning ecosystem services. However, many of the models of environment migration linkages fail to acknowledge the importance of social and psychological factors in the decision to migrate. Here, we seek to provide a more comprehensive model of migration decision-making under environmental change by investigating the attachment people form to place, and the role of the environment in creating that attachment. We hypothesize that environmental factors enter the migration decision-making process through their contribution to place utility, defined as a function of both affective and instrumental bonds to location, and that ecosystem services, the aspects of ecosystems that create wellbeing, contribute to both components of place utility. We test these ideas in four rural highland settlements in Peru sampled along an altitudinal gradient. We find that non-economic ecosystem services are important in creating place attachment and that ecological place attachment exists independently of use of provisioning ecosystem services. Individuals’ attitudes to ecosystem services vary with the type of ecosystem services available at a location and the degree of rurality. While social and economic factors are the dominant drivers of migration in these locations, a loss of non-provisioning ecosystem services leads to a decrease in place utility and commitment to place, determining factors in the decision to migrate. The findings suggest that policy interventions encouraging migration as an adaptation to environmental change will have limited success if they only focus on provisioning services. A much wider set of individuals will experience a decrease in place utility, and migration will be unable to alleviate that decrease since the factors

  2. [Urban ecosystem services: A review].

    Science.gov (United States)

    Mao, Qi-zheng; Huang, Gan-lin; Wu, Jian-guo

    2015-04-01

    Maintaining and improving ecosystem services in urban areas and human well-being are essential for sustainable development and therefore constitute an important topic in urban ecology. Here we reviewed studies on ecosystem services in urban areas. Based on the concept and classification of urban ecosystem services, we summarized characteristics of urban ecosystem services, including the human domination, high demand of ecosystem services in urban areas, spatial heterogeneity and temporal dynamics of ecosystem services supply and demand in urban areas, multi-services of urban green infrastructures, the socio-economic dimension of ecosystem services supply and ecosystem disservices in urban areas. Among different urban ecosystem services, the regulating service and cultural service are particularly indispensable to benefit human health. We pointed out that tradeoffs among different types of ecosystem services mostly occur between supportive service and cultural service, as well as regulating service and cultural service. In particular, we emphasized the relationship between landscape design (i.e. green infrastructure) and ecosystem services supply. Finally, we discussed current gaps to link urban ecosystem services studies to landscape design and management and pointed out several directions for future research in urban ecosystem services.

  3. Biological availability of energy related effluent material in the coastal ecosystem

    International Nuclear Information System (INIS)

    Gibson, C.I.; Abel, K.H.; Ahlstrom, S.W.; Crecelius, E.A.; Schmidt, R.L.; Thatcher, T.O.; Wildung, R.E.

    1977-01-01

    In order to make the predictions necessary to forecast the ecological consequences of an energy-related technology, there must be an understanding of: the biogeochemical processes involved in the natural system; the manner in which an energy technology affects these processes and how, in turn, this affects the ecosystem as a whole. Direct biological effects such as lethality, behavioral changes, and physiological changes, are being studied under the program previously discussed. The biological availability and impact studies are investigating: the chemical, physical, and biological processes that occur in the natural marine ecosystem; how energy effluents affect these processes; and the factors involved in regulating the bioavailability of effluent material. This past year's effort has centered on defining the quantities and forms of metals and radioisotopes in nuclear power plant effluent streams, the chemical forms present in bioassay systems, the chemical and microbial processes controlling the forms of metals available from the sediments, and the uptake and control of copper in shrimp. In addition, several sites in Sequim Bay have been monitored for potential use in field verification studies

  4. Aspects of the carbon cycle in terrestrial ecosystems of Northeastern Smaaland

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Lund Univ., Geobiosphere Science Centre (Sweden). Physical Geography and Ecosystems Analysis

    2006-02-15

    Boreal and temperate ecosystems of the northern hemisphere are important for the future development of global climate. In this study, the carbon cycle has been studied in a pine forest, a meadow, a spruce forest and two deciduous forests in the Simpevarp investigation area in southern Sweden (57 deg 5 min N, 34 deg 55 min E). Ground respiration and ground Gross Primary Production (GPP) has been measured three times during spring 2004 with the closed chamber technique. Soil temperature, soil moisture and Photosynthetically Active Radiation (PAR) were also measured. An exponential regression with ground respiration against soil temperature was used to extrapolate respiration over spring 2004. A logarithmic regression with ground GPP against PAR was used to extrapolate GPP in meadow over spring 2004. Ground respiration is affected by soil temperature in all ecosystems but pine, but still it only explains a small part of the variation in respiration and this indicates that other abiotic factors also have an influence. Soil moisture affects respiration in spruce and one of the deciduous ecosystems. A comparison between measured and extrapolated ground respiration indicated that soil temperature could be used to extrapolate ground respiration. PAR is the main factor influencing GPP in all ecosystems but pine, still it could not be used to extrapolate GPP in meadow since too few measurements were done and they were from different periods of spring. Soil moisture did not have any significant effect on GPP. A Dynamic Global Vegetation Model, a DGVM called LPJ-GUESS, was downscaled to the Simpevarp investigation area. The downscaled DGVM was evaluated against measured respiration and soil organic acids for all five ecosystems. In meadow, it was evaluated against Net Primary Production, NPP. For the forest ecosystems, it was evaluated against tree layer carbon pools. The evaluation indicated that the DGVM is reasonably well downscaled to the Simpevarp investigation area and

  5. Aspects of the carbon cycle in terrestrial ecosystems of Northeastern Smaaland

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-02-01

    Boreal and temperate ecosystems of the northern hemisphere are important for the future development of global climate. In this study, the carbon cycle has been studied in a pine forest, a meadow, a spruce forest and two deciduous forests in the Simpevarp investigation area in southern Sweden (57 deg 5 min N, 34 deg 55 min E). Ground respiration and ground Gross Primary Production (GPP) has been measured three times during spring 2004 with the closed chamber technique. Soil temperature, soil moisture and Photosynthetically Active Radiation (PAR) were also measured. An exponential regression with ground respiration against soil temperature was used to extrapolate respiration over spring 2004. A logarithmic regression with ground GPP against PAR was used to extrapolate GPP in meadow over spring 2004. Ground respiration is affected by soil temperature in all ecosystems but pine, but still it only explains a small part of the variation in respiration and this indicates that other abiotic factors also have an influence. Soil moisture affects respiration in spruce and one of the deciduous ecosystems. A comparison between measured and extrapolated ground respiration indicated that soil temperature could be used to extrapolate ground respiration. PAR is the main factor influencing GPP in all ecosystems but pine, still it could not be used to extrapolate GPP in meadow since too few measurements were done and they were from different periods of spring. Soil moisture did not have any significant effect on GPP. A Dynamic Global Vegetation Model, a DGVM called LPJ-GUESS, was downscaled to the Simpevarp investigation area. The downscaled DGVM was evaluated against measured respiration and soil organic acids for all five ecosystems. In meadow, it was evaluated against Net Primary Production, NPP. For the forest ecosystems, it was evaluated against tree layer carbon pools. The evaluation indicated that the DGVM is reasonably well downscaled to the Simpevarp investigation area and

  6. Temporal scales, ecosystem dynamics, stakeholders and the valuation of ecosystems services

    NARCIS (Netherlands)

    Hein, Lars; Koppen, van C.S.A.K.; Ierland, van Ekko C.; Leidekker, Jakob

    2016-01-01

    Temporal dimensions are highly relevant to the analysis of ecosystem services and their economic value. In this paper, we provide a framework that can be used for analyzing temporal dimensions of ecosystem services, we present a case study including an analysis of the supply of three ecosystem

  7. Ecosystem Health Disorders - changing perspectives in clinical medicine and nutrition.

    Science.gov (United States)

    Wahlqvist, Mark L

    2014-01-01

    The inseparability of people from their ecosystem without biological change is increasingly clear. The discrete species concept is becoming more an approximation as the interconnectedness of all things, animate and inanimate, becomes more apparent. Yet this was evident even to our earliest Homo Sapiens sapiens ancestors as they hunted and gathered from one locality to another and migrated across the globe. During a rather short 150-200,000 years of ancestral history, we have changed the aeons-old planet and our ecology with dubious sustainability. As we have changed the ecosystems of which we are a part, with their opportunities for shelter, rest, ambulation, discourse, food, recreation and their sensory inputs, we have changed our shared biology and our health prospects. The rate of ecosystem change has increased quantitatively and qualitatively and so will that of our health patterns, depending on our resilience and how linear, non-linear or fractal-like the linkage. Our health-associated ecosystem trajectories are uncertain. The interfaces between us and our environment are blurred, but comprise time, biorhythms, prokaryotic organisms, sensory (auditory, visual, tactile, taste and smell), conjoint movement, endocrine with various external hormonal through food and contaminants, the reflection of soil and rock composition in the microbes, plants, insects and animals that we eat (our biogeology) and much more. We have sought ways to optimise our health through highly anthropocentric means, which have proven inadequate. Accumulated ecosystem change may now overwhelm our health. On these accounts, more integrative approaches and partnerships for health care practice are required.

  8. Adaptive management in the context of barriers in European freshwater ecosystems

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Tummers, Jeroen S.; Lucas, Martyn C.

    2017-01-01

    Many natural habitats have been modified to accommodate for the presence of humans and their needs. Infrastructures e such as hydroelectric dams, weirs, culverts and bridges e are now a common occurrence in streams and rivers across the world. As a result, freshwater ecosystems have been altered...... extensively, affecting both biological and geomorphological components of the habitats. Many fish species rely on these freshwater ecosystems to complete their lifecycles, and the presence of barriers has been shown to reduce their ability to migrate and sustain healthy populations. In the long run, barriers...... may have severe repercussions on population densities and dynamics of aquatic animal species. There is currently an urgent need to address these issues with adequate conservation approaches. Adaptive management provides a relevant approach to managing barriers in freshwater ecosystems as it addresses...

  9. VARIATIONS IN MATERNAL DIETARY FATTY ACID COMPOSITION AFFECTS THE NEURODEVELOPMENT OF RAT PUPS.

    Directory of Open Access Journals (Sweden)

    2017-01-01

    Full Text Available Fatty acids are part of the structural matrix of cellular and subcellular membranes. Alterations in tissue fatty acid composition can affect nerve tissue function by altering membrane thickness or by changing properties of the lipid phase. In this study, the appearance of specific neurodevelopment responses was observed on rap pups whose dams were fed on varied dietary fatty acid composition. Three dietary treatments of corn oil, fish oil and reference meals were administered on these groups of pregnant dams. From postnatal day 5 to 30, littered pups were assessed daily for the appearance of neurodevelopmental reflexes based on the Smart- Dobbing method. The neurodevelopmental attributes of Righting reflex, Cliff avoidance, Negative geotaxis, Auditory startle, Vibrissa placing, Free-fall righting and Visual placing was observed in experimental pups between day 5 and 30. Tests were conducted between 1200 and 1400h. A 30 seconds time limit was employed in testing of the cliff-avoidance and negative-geotaxis appearance. The time appearance of auditory-startle and vibrissa-placing responses were significantly delayed (P and lt;0.05 in pups of dietary fish oil and ndash; fed dams than those of corn oil fed dams. The delay in auditory-startle response may be due to negative myelination of the auditory brainstem pathway.

  10. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China

    CERN Document Server

    Zhu, Xianjin; Wang, Qiufeng; Hu, Zhongmin; Han, Shijie; Yan, Junhua; Wang, Yanfen; Zhao, Liang

    2014-01-01

    We selected four sites of ChinaFLUX representing four major ecosystem types in China-Changbaishan temperate broad-leaved Korean pine mixed forest (CBS), Dinghushan subtropical evergreen broadleaved forest (DHS), Inner Mongolia temperate steppe (NM), and Haibei alpine shrub-meadow (HBGC)-to study the seasonal dynamics of ecosystem water use efficiency (WUE = GPP/ET, where GPP is gross primary productivity and ET is evapotranspiration) and factors affecting it. Our seasonal dynamics results indicated single-peak variation of WUE in CBS, NM, and HBGC, which were affected by air temperature (Ta) and leaf area index (LAI), through their effects on the partitioning of evapotranspiration (ET) into transpiration (T) (i.e., T/ET). In DHS, WUE was higher at the beginning and the end of the year, and minimum in summer. Ta and soil water content affected the seasonal dynamics of WUE through their effects on GPP/T. Our results indicate that seasonal dynamics of WUE were different because factors affecting the seasonal dyn...

  11. Projecting supply and demand of hydrologic ecosystem services under future climate conditions

    Science.gov (United States)

    Chiang, Li-Chi; Huang, Tao; Lee, Tsung-Yu

    2014-05-01

    Ecosystems provide essential goods and services, such as food, clean water, water purification, soil conservation and cultural services for human being. In a watershed, these water-related ecosystem goods and services can directly or indirectly benefit both local people and downstream beneficiaries through a reservoir. Water quality and quantity in a reservoir are of importance for agricultural, industrial and domestic uses. Under the impacts of climate and land use changes, both ecosystem service supply and demand will be affected by changes in precipitation patterns, temperature, urbanization and agricultural activities. However, the linkage between ecosystem service provisioning (ESP) and ecosystem service beneficiary (ESB), and scales of supply and demand of ecosystem services are not clear yet. Therefore, to investigate water-related ecosystem service supply under climate and land use change, we took the Xindian river watershed (303 km2) as a case study, where the Feitsui Reservoir provides hydro-power and daily domestic water use of 3,450,000 m3 for 3.46 million people in Taipei, Taiwan. We integrated a hydrological model (Soil and Water Assessment Tool, SWAT) and a land use change model (Conversion of Land Use and its Effects, CLUE-s) with future climate change scenarios derived from General Circulation Models (GCMs), to assess the changes in ecosystem service supply and demand at different hydrologic scales. The results will provide useful information for decision-making on future land use management and climate change adaptation strategies in the watersheds. Keywords: climate change, land use change, ecosystem service, watershed, scale

  12. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  13. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    Science.gov (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  14. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity.

    Science.gov (United States)

    Langenheder, Silke; Bulling, Mark T; Solan, Martin; Prosser, James I

    2010-05-26

    species interact with complex natural environments will be required in order to make reliable predictions about how altered levels of biodiversity will most likely affect ecosystem functioning.

  15. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity.

    Directory of Open Access Journals (Sweden)

    Silke Langenheder

    ecosystem functioning relationships, suggests that detailed knowledge of how individual species interact with complex natural environments will be required in order to make reliable predictions about how altered levels of biodiversity will most likely affect ecosystem functioning.

  16. Combined effects of local habitat, anthropogenic stress, and dispersal on stream ecosystems: a mesocosm experiment.

    Science.gov (United States)

    Turunen, Jarno; Louhi, Pauliina; Mykrä, Heikki; Aroviita, Jukka; Putkonen, Emmi; Huusko, Ari; Muotka, Timo

    2018-06-06

    The effects of anthropogenic stressors on community structure and ecosystem functioning can be strongly influenced by local habitat structure and dispersal from source communities. Catchment land uses increase the input of fine sediments into stream channels, clogging the interstitial spaces of benthic habitats. Aquatic macrophytes enhance habitat heterogeneity and mediate important ecosystem functions, being thus a key component of habitat structure in many streams. Therefore, the recovery of macrophytes following in-stream habitat modification may be prerequisite for successful stream restoration. Restoration success is also affected by dispersal of organisms from the source community, with potentially strongest responses in relatively isolated headwater sites that receive limited amount of dispersing individuals. We used a factorial design in a set of stream mesocosms to study the independent and combined effects of an anthropogenic stressor (sand sedimentation), local habitat (macrophytes, i.e. moss transplants) and enhanced dispersal (two levels: high vs. low) on organic matter retention, algal accrual rate, leaf decomposition and macroinvertebrate community structure. Overall, all responses were simple additive effects with no interactions between treatments. Sand reduced algal accumulation, total invertebrate density and density of a few individual taxa. Mosses reduced algal accrual rate and algae-grazing invertebrates, but enhanced organic matter retention and detritus- and filter-feeders. Mosses also reduced macroinvertebrate diversity by increasing the dominance by a few taxa. Mosses also reduced leaf-mass loss, possibly because the organic matter retained by mosses provided an additional food source for leaf-shredding invertebrates and thus reduced shredder aggregation into leaf packs. The effect of mosses on macroinvertebrate communities and ecosystem functioning was distinct irrespective of the level of dispersal, suggesting strong environmental

  17. Design and Development of a Spectral Library for Different Vegetation and Landcover Types for Arctic, Antarctic and Chihuahua Desert Ecosystem

    Science.gov (United States)

    Matharasi, K.; Goswami, S.; Gamon, J.; Vargas, S.; Marin, R.; Lin, D.; Tweedie, C. E.

    2008-12-01

    All objects on the Earth's surface absorb and reflect portions of the electromagnetic spectrum. Depending on the composition of the material, every material has its characteristic spectral profile. The characteristic spectral profile for vegetation is often used to study how vegetation patterns at large spatial scales affect ecosystem structure and function. Analysis of spectroscopic data from the laboratory, and from various other platforms like aircraft or spacecraft, requires a knowledge base that consists of different characteristic spectral profiles for known different materials. This study reports on establishment of an online and searchable spectral library for a range of plant species and landcover types in the Arctic, Anatarctic and Chihuahuan desert ecosystems. Field data were collected from Arctic Alaska, the Antarctic Peninsula and the Chihuahuan desert in the visible to near infrared (IR) range using a handheld portable spectrometer. The data have been archived in a database created using postgre sql with have been made publicly available on a plone web-interface. This poster describes the data collected in more detail and offers instruction to users who wish to make use of this free online resource.

  18. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    Science.gov (United States)

    Yiqi Luo; Jerry Melillo; Shuli Niu; Claus Beier; James S. Clark; Aime E.T. Classen; Eric Dividson; Jeffrey S. Dukes; R. Dave Evans; Christopher B. Field; Claudia I. Czimczik; Michael Keller; Bruce A. Kimball; Lara M. Kueppers; Richard J. Norby; Shannon L. Pelini; Elise Pendall; Edward Rastetter; Johan Six; Melinda Smith; Mark G. Tjoelker; Margaret S. Torn

    2011-01-01

    Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes...

  19. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    Science.gov (United States)

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  20. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

    Science.gov (United States)

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.