WorldWideScience

Sample records for composites nano structure

  1. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  2. Structural, Magnetic, and Transport Properties of Polymer-Nano ferrite Composites

    International Nuclear Information System (INIS)

    Imam, N.G.G.

    2013-01-01

    In this work, a series of (x) BaTiO 3 / (1-x) Ni 0.5 Zn 0.5 Fe 2 O 4 nano composite samples were prepared using citrate auto combustion and the samples were classified into three groups.In first group: A series of (x) BaTiO 3 / (1-x) Ni 0.5 Zn 0.5 Fe 2 O 4 ; 0.0≤ x ≤ 1.0 were prepared by double sintering technique and citrate auto combustion method in comparison study due to different characterization analysis. The comparison reveals that from X-ray diffraction; all the samples from the two methods formed in single phase in both; cubic spinel structure NiZnFe 2 O 4 (NZF) ferrite and perovskite tetragonal structure BaTiO 3 (BTO).In group two, in another compassion, multiferroic hybrid nano composites based on different polymers as a matrix for the prepared magnetoelectric biferroic nano composite system 0.5 BaTiO 3 / 0.5Ni 0.5 Zn 0.5 Fe 2 O 4 that has been prepared by citrate auto combustion method. Four different polymers namely poly aniline (PANI), polyvinyl acetate (PVAc), Polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG), with fixed ration (1:1) with respect to the dispersed magnetoelectric nano composite.In group three, the nano composites materials with formula (1-y) [0.5 BaTiO 3 / 0.5 Ni 0.5 Zn 0.5 Fe 2 O 4 ] / (y) (PEG); 0.0 ≤y ≤+ 1.0, have been prepared at room temperature by weight mixing and cold pressing. Physical properties of nano composite materials consisting different ratios of polyethylene glycol were investigated. With the variation of y content, typical magnetic hysteresis loops of nano composites have been observed in the nano composites at room temperature. When PEG content increase, the saturation magnetization decrease. Meanwhile, the coercive force tends to stable. Additionally, the dielectric constant (ε ' ) and dielectric loss factor (ε '' ) of nano composites materials shift toward higher frequency. The value of (ε ' ) decreased with increasing frequency, which indicates that the major contribution

  3. Some Fundamental Aspects of Mechanics of Nano composite Materials and Structural Members

    International Nuclear Information System (INIS)

    Guz, A.N.; Rushchitsky, J.J.

    2013-01-01

    This paper is devoted to formulation and analysis of fundamental aspects of mechanics of nano composite materials and structural members. These aspects most likely do not exhaust all of the possible fundamental characteristics of mechanics of nano composite materials and structural members, but, nevertheless, they permit to form the skeleton of direction of mechanics in hand. The proposed nine aspects are described and commented briefly.

  4. Studies on structural properties of clay magnesium ferrite nano composite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Singh, Mandeep [Department of Chemistry, Punjab Agricultural University, Ludhiana-141004 (India); Jeet, Kiran, E-mail: kiranjeet@pau.edu; Kaur, Rajdeep [Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana-141004 (India)

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  5. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  6. Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nano structures

    International Nuclear Information System (INIS)

    Favre-Nicolin, V.; Proietti, M.G.; Leclere, C.; Renevier, H.; Katcho, N.A.; Richard, M.I.

    2012-01-01

    The aim of this paper is to illustrate the use of Multi-Wavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) spectroscopy for the study of structural properties of semiconductor nano-structures. We give a brief introduction on the basic principles of these techniques providing a detailed bibliography. Then we focus on the data reduction and analysis and we give specific examples of their application on three different kinds of semiconductor nano-structures: Ge/Si nano-islands, AlN capped GaN/AlN Quantum Dots and AlGaN/AlN Nano-wires. We show that the combination of MAD and DAFS is a very powerful tool to solve the structural problem of these materials of high technological impact. In particular, the effects of composition and strain on diffraction are disentangled and composition can be determined in a reliable way, even at the interface between nano-structure and substrate. We show the great possibilities of this method and give the reader the basic tools to undertake its use. (authors)

  7. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  8. PREFACE: International Conference on Structural Nano Composites (NANOSTRUC 2012)

    Science.gov (United States)

    Njuguna, James

    2012-09-01

    Dear Colleagues It is a great pleasure to welcome you to NanoStruc2012 at Cranfield University. The purpose of the 2012 International Conference on Structural Nano Composites (NanoStruc2012) is to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NanoStruc brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas. The conference is split in 7 panel sessions, Metallic Nanocomposites and Coatings, Silica based Nanocomposites, safty of Nanomaterials, Carboin based Nanocomposites, Multscale Modelling, Bio materials and Application of Nanomaterials. All accepted Papers will be published in the IOP Conference Series: Materials Science and Engineering (MSE), and included in the NanoStruc online digital library. The abstracts will be indexed in Scopus, Compedex, Inspec, INIS (International Nuclear Information System), Chemical Abstracts, NASA Astrophysics Data System and Polymer Library. Before ending this message, I would like to acknowledge the hard work, professional skills and efficiency of the team which ensured the general organisation. As a conclusion, I would like to Welcome you to the Nanostruc2012 and wish you a stimulating Conference and a wonderful time. On behalf of the scientific committee, Signature James Njuguna Conference Chair The PDF of this preface also contains committee listings and associates logos.

  9. LDPE/HDPE/Clay Nano composites: Effects of Compatibilizer on the Structure and Dielectric Response

    International Nuclear Information System (INIS)

    David, Z.E.; Ngo, A.D.

    2013-01-01

    PE/clay nano composites were prepared by mixing a commercially available premixed polyethylene/O-MMT master batch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA) as the compatibilizer using a corotating twin-screw extruder. In this study, the effect of nano clay and compatibilizer on the structure and dielectric response of PE/clay nano composites has been investigated. The microstructure of PE/clay nano composites was characterized using wide-angle X-ray diffraction (WAXD) and a scanning electron microscope (SEM). Thermal properties were examined using differential scanning calorimetry (DSC). The dielectric response of neat PE was compared with that of PE/clay nano composite with and without the compatibilizer. The XRD and SEM results showed that the PE/O-MMT nano composite with the PE-MA compatibilizer was better dispersed. In the nano composite materials, two relaxation modes are detected in the dielectric losses. The first relaxation is due to a Maxwell-Wagner-Sillars interfacial polarization, and the second relaxation can be related to dipolar polarization. A relationship between the degree of dispersion and the relaxation rate f m ax of Maxwell-Wagner-Sillars was found and discussed.

  10. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  11. Structural and Magnetic Properties of Type-M Barium Ferrite - Thermoplastic Natural Rubber Nano composites

    International Nuclear Information System (INIS)

    Nurhidayaty Mokhtar

    2012-01-01

    Structural and magnetic properties of type-M barium ferrite (BaFe 12 O 19 ) nanoparticles (∼ 20 nm) embedded in non-magnetic thermoplastic natural rubber (TPNR) matrices were investigated. The TPNR matrices were prepared from high density polyethylene (HDPE) and natural rubber (NR) in the weight ratios of 80:20 and 60:40, respectively, with 10 wt % of NR in the form of liquid natural rubber (LNR) which act as a comparabilities. BaFe 12 O 19 - filled nano composites with 2 - 12 wt % BaFe 12 O 19 ferrite were prepared using a melt- blending technique. Magnetic hysteresis was measured using a vibrating sample magnetometer (VSM) in a maximum field of 10 kOe at room temperature (25 degree Celsius). The saturation magnetisation (MS), remanence (MR) and coercivity (Hc) were derived from the hysteresis loops. The results show that the structural and magnetic properties of nano composites depend on both the ferrite content and the composition of the natural rubber or plastic in the nano composites. All the nano composites exhibit an exchange bias-like phenomenon resulting from the exchange coupling of spins at the interface between the core ferrimagnetic region and the disordered surface region of the nanoparticles. (author)

  12. VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Azmer, Mohamad Izzat [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Zubair, E-mail: zubairtarar@qu.edu.qa [Center for Advanced Materials (CAM), Qatar University, P. O. Box 2713, Doha (Qatar); Sulaiman, Khaulah, E-mail: khaulah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Touati, Farid [Department of Electrical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha (Qatar); Bawazeer, Tahani M. [Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah (Saudi Arabia); Alsoufi, Mohammad S. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah (Saudi Arabia)

    2017-03-31

    Highlights: • VOPcPhO:P3HT micro-structures with nano-porous surface morphology have been formed. • Multidimensional structures have been formed by electro-spraying technique. • The electro-sprayed films are very promising for the humidity sensors. - Abstract: In this paper, composite micro-structures of Vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine) (VOPcPhO) and Poly (3-hexylthiophene-2,5-diyl) (P3HT) complex with nano-porous surface morphology have been developed by electro-spraying technique. The structural and morphological characteristics of the VOPcPhO:P3HT composite films have been studied by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The multidimensional VOPcPhO:P3HT micro-structures formed by electro-spraying with nano-porous surface morphology are very promising for the humidity sensors due to the pore sizes in the range of micro to nano-meters scale. The performance of the VOPcPhO:P3HT electro-sprayed sensor is superior in term of sensitivity, hysteresis and response/recovery times as compared to the spin-coated one. The electro-sprayed humidity sensor exhibits ∼3 times and 0.19 times lower hysteresis in capacitive and resistive mode, respectively, as compared to the spin-coated humidity sensor.

  13. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  14. 3-dimensional free standing micro-structures by proton beam writing of Su 8-silver nanoParticle polymeric composite

    Science.gov (United States)

    Igbenehi, H.; Jiguet, S.

    2012-09-01

    Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.

  15. Effects of heat treatment on optical absorption properties of Ni-P/AAO nano-array composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Fan; Wang, Feng-Hua; Guo, Dong-Lai; Huang, Sheng-You; Zou, Xian-Wu [Wuhan University, Department of Physics, Wuhan (China); Sang, Jian-Ping [Wuhan University, Department of Physics, Wuhan (China); Jianghan University, Department of Physics, Wuhan (China)

    2009-11-15

    Ni-P/AAO nano-array composite structure assemblies with Ni and P grown in the pores of anodic aluminum oxide (AAO) membranes were prepared by electroless deposition. The results of SEM, TEM and SAED show that as-deposited Ni-P nanowires have an amorphous structure and a few nanocrystallites form after annealing. The optical absorption spectra reveal that, as the annealing temperature increases, the absorption band edge of the Ni-P/AAO composite structure is obviously blue shifted, which is attributed to a decrease of the internal pressure after heat treatment. Meanwhile, the annealed Ni-P/AAO nano-array composite structure exhibits the absorption behavior of a direct band gap semiconductor. Details of this behavior are discussed together with the implications for potential device applications. (orig.)

  16. Strain distributions in nano-onions with uniform and non-uniform compositions

    International Nuclear Information System (INIS)

    Duan, H L; Karihaloo, B L; Wang, J; Yi, X

    2006-01-01

    Nano-onions are ellipsoidal or spherical particles consisting of a core surrounded by concentric shells of nanometre size. Nano-onions produced by self-assembly and colloidal techniques have different structures and compositions, and thus differ in the state of strains. The mismatch of the thermal expansion coefficients and lattice constants between neighbouring shells induces stress/strain fields in the core and shells, which in turn affect their physical/mechanical properties and/or the properties of the composites containing them. In this paper, the strains in embedded and free-standing nano-onions with uniform and non-uniform compositions are studied in detail. It is found that the strains in the nano-onions can be modified by adjusting their compositions and structures. The results are useful for the band structure engineering of semiconductor nano-onions

  17. Study on Carbon Nano composite Counter electrode for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Chen, Y.; Zhang, H.; Lin, J.

    2012-01-01

    Carbon nano composite electrodes were prepared by adding carbon nano tubes (CNTs) into carbon black as counter electrodes of dye-sensitized solar cells (DSSCs). The morphology and structure of carbon nano composite electrodes were studied by scanning electron microscopy. The influence of CNTs on the electrochemical performance of carbon nano composite electrodes is investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Carbon nano composite electrodes with CNTs exhibit a highly interconnected network structure with high electrical conductivity and good catalytic activity. The influence of different CNTs content in carbon nano composite electrodes on the open-circuit voltage, short-circuit current, and filling factor of DSSCs is also investigated. DSSCs with 10% CNTs content exhibit the best photovoltaic performance in our experiments.

  18. Synthesis of Metal Polymer Nano composites Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Mostafa, R.S.S.

    2012-01-01

    we prepared a series of CdS/PVA and Ag/PVA nano composites via facile and novel synthetic steps. Our synthetic route is simpler; it does not need expensive oxidizing agents, surfactants, templates and complicated apparatus. The present work contains five chapters in addition to the list of figures, tables, abbreviations and references. The first two chapters are concerned with the introduction and reviews of previous studies. Chapter 3 describes the preparation methodology, experimental setup and techniques used in the CdS/PVA and Ag/PVA nano composites processing and analysis. CdS and Ag nanoparticles with different particle sizes were prepared via chemical method and gamma irradiation method. Several techniques were used to detect the structural changes of the nano composites due to interaction between CdS or Ag ions and PVA. These are: UV-Visible spectrophotometer, Transmission Electron microscope (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectrophotometer, and thermogravimetric analysis. Chapter 4 includes the obtained results and their discussions: Ultraviolet/Visible spectroscopy (UV/VIS) investigated that the as-prepared nano composites have improved optical properties. Such incremented optical properties were attributed to the nano scale dispersion (nm). The improvement in the optical properties is considered to be dependent on, Cd 2+ :S 2- molar ratio, Ag concentration, Pva content and irradiation dose. The calculated band gap energies for CdS/PVA nano composites are higher than that of bulk of CdS indicating the strong quantum confinement. The increases in band gap energy have been attributed to the crystalline size dependent properties. Transmission electron microscope images illustrated that the nano structured CdS/PVA films were found to be dispersed spherical nanoparticles with good structural homogeneity and polydispersity at either lower concentration of CdCl 2 and/or irradiation dose. Nano rod structure of CdS accompanied

  19. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: Kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Beherei, Hanan H. [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Physics Dept., Faculty of Science, El-Taif University (Saudi Arabia); El Bassyouni, Gehan T. [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Medical Physics Dept., Faculty of Medicine, El-Taif University (Saudi Arabia); El Mahallawy, Nahed [Design and Production Engineering Department, Faculty of Engineering, Ain Shams University on secondment to the German University in Cairo (Egypt)

    2013-10-15

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO{sub 2} powders were prepared via sol–gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO{sub 2} were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO{sub 2} or SiO{sub 2}/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. - Graphical abstract: Nano-structures of (a) HA, (b) ZnO and (c) SiO{sub 2} powders. Highlights: • The nano-structured composites containing different ratios of HA, ZnO and SiO{sub 2} were prepared. • ZnO helps improve the mechanical properties of HA composites. • SiO{sub 2} helps improve the bioactivity of HA composites.

  20. Structure-phase composition and nano hardness of chrome-fullerite-chrome films irradiated by boron ions

    International Nuclear Information System (INIS)

    Baran, L.V.

    2015-01-01

    By methods of atomic force microscopy, X-ray diffraction and nano indentation the research of change of structure phase composition and nano hardness of the chrome - fullerite - chrome films, subjected to implantation by B + ions (E = 80 keV, F = 5*10 17 ions/cm 2 ) are submitted. It is established, that as a result of Boron ion implantation of the chrome - fullerite - chrome films, chrome and fullerite inter fusion on sues, that is the solid-phase interaction and as a result of which forms the heterophase with increased nano hardness. (authors)

  1. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  2. Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method

    International Nuclear Information System (INIS)

    Narasimha Murthy, I.; Venkata Rao, D.; Babu Rao, J.

    2012-01-01

    Highlights: ► Nano structured fly ash has been produced by 30 h milling time. ► Al–fly ash nano composites were produced by ultrasonic cavitation route. ► A homogeneous distribution of nano fly ash particles was observed in the matrix. ► No additional contamination in the nano composites from the atmosphere. ► Presence of nano fly ash leads to improvement in the strength of the composites. -- Abstract: In this paper an attempt has been made to modify the micro sized fly ash into nano structured fly ash using high energy ball mill. Ball milling was carried out for the total duration of 30 h. The sample was taken out after every 5 h of milling for characterizing. The nano structured fly ash was characterized for its crystallite size and lattice strain by using X-ray diffractometer. It was found that a steady decrease in the crystallite size and increased lattice strain was observed with milling time; the crystallite size at 30 h milling time was found to be 23 nm. The fresh fly ash particles are mostly spherical in shape; whereas the shape of the 30 h milled fly ash particles is irregular and the surface morphology is rough. Al–fly ash nano composites were produced by ultrasonic cavitation route successfully. Scanning electron microscopy images of nano composites reveal a homogeneous distribution of the nano fly ash particles in the AA 2024 matrix. Energy dispersive spectroscopy analysis of nano composites reveals that the fabricated nano composite did not contain any additional contamination from the atmosphere. As the amount of nano fly ash is increasing the hardness of the composite also increasing. The nano fly ash addition leads to improvement in the compression strength of the composites.

  3. Template-assisted growth of nano structured functional materials

    International Nuclear Information System (INIS)

    Ying, K.K.; Nur Ubaidah Saidin; Khuan, N.I.; Suhaila Hani Ilias; Foo, C.T.

    2012-01-01

    Template-assisted growth is an important nano electrochemical deposition technique for synthesizing one-dimensional (1-D) nano structures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodization of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nano structures in the form of nano wires using PAA templates as scaffolds. Axial heterostructure and homogeneous nano wires formed by engineering materials configuration via composition and/ or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to alucidate the microstructures, morphologies and chemical compositions of the nano wires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nano structures have useful applications as critical components in nano sensor devices and various areas of nano technology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals. (Author)

  4. Preparation, Characterization, and Modeling of Carbon Nano fiber/Epoxy Nano composites

    International Nuclear Information System (INIS)

    Sun, L.H.; Yang, Z.G.; Ounaies, Z.; Whalen, C.A.; Gao, X.L.

    2011-01-01

    There is a lack of systematic investigations on both mechanical and electrical properties of carbon nano fiber (CNF)-reinforced epoxy matrix nano composites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nano composites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nano composites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nano composite with a 1.0 wt % CNFs. The alternate-current (AC) electrical properties of the CNF/epoxy nano composites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt % (0.058 vol %) CNFs and by ten orders of magnitude for nano composites with CNF volume fractions higher than 1.0 wt % (0.578 vol %). The percolation threshold (i.e., the critical CNF volume fraction) is found to be at 0.057 vol %.

  5. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    Science.gov (United States)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  6. Effect of antimicrobial agents on cellulose acetate nano composites properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Francisco J.; Bruna, Julio E.; Galotto, Maria J.; Guarda, Abel; Sepulveda, Hugo, E-mail: francisco.rodriguez.m@usach.cl [Center for the Development of Nanoscience and Nanotechnology (CEDENNA). Universidad de Santiago de Chile. Faculty of Technology. Department of Food Science and Technology. Food Packaging Laboratory. Santiago (Chile)

    2011-07-01

    Nano composites based on cellulose acetate, Cloisite 30B, triethyl citrate and thymol or cinnamaldehyde were prepared using a dissolution casting technique. The effect of thymol and cinnamaldehyde on the cellulose acetate nano composite properties was evaluated by XRD and DSC. Important changes on the thermal properties and morphological structure were observed according to thymol and cinnamaldehyde content. (author)

  7. Effect of antimicrobial agents on cellulose acetate nano composites properties

    International Nuclear Information System (INIS)

    Rodriguez, Francisco J.; Bruna, Julio E.; Galotto, Maria J.; Guarda, Abel; Sepulveda, Hugo

    2011-01-01

    Nano composites based on cellulose acetate, Cloisite 30B, triethyl citrate and thymol or cinnamaldehyde were prepared using a dissolution casting technique. The effect of thymol and cinnamaldehyde on the cellulose acetate nano composite properties was evaluated by XRD and DSC. Important changes on the thermal properties and morphological structure were observed according to thymol and cinnamaldehyde content. (author)

  8. Significantly Elevated Dielectric and Energy Storage Traits in Boron Nitride Filled Polymer Nano-composites with Topological Structure

    Science.gov (United States)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Li, Shichun; Peng, Cheng

    2018-03-01

    Interface induced polarization has a prominent influence on dielectric properties of 0-3 type polymer based composites containing Si-based semi-conductors. The disadvantages of composites were higher dielectric loss, lower breakdown strength and energy storage density, although higher permittivity was achieved. In this work, dielectric, conductive, breakdown and energy storage properties of four nano-composites have been researched. Based on the cooperation of fluoropolymer/alpha-SiC layer and fluoropolymer/hexagonal-BN layer, it was confirmed constructing the heterogeneous layer-by-layer composite structure rather than homogeneous mono-layer structure could significantly reduce dielectric loss, promote breakdown strength and increase energy storage density. The former worked for a larger dielectric response and the latter layer acted as a robust barrier of charge carrier transfer. The best nano-composite could possess a permittivity of 43@100 Hz ( 3.3 times of polymer), loss of 0.07@100 Hz ( 37% of polymer), discharged energy density of 2.23 J/cm3@249 kV/cm ( 10 times of polymer) and discharged energy efficiency of 54%@249 kV/cm ( 5 times of polymer). This work might enlighten a facile route to achieve the promising high energy storage composite dielectrics by constructing the layer-by-layer topological structure.

  9. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    Science.gov (United States)

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P nano-ionomer, mean: 6.14 +/- 2.12 MPa; P Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  10. Polymer/Layered Silicate Nano composites

    International Nuclear Information System (INIS)

    Bakhit, M.E.E.H.

    2012-01-01

    Polymer–clay nano composites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeabilities that are achieved in many cases. Polymer-clay nano composites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. Polymer/clay nano composites have their origin in the pioneering research conducted at Toyota Central Research Laboratories and the first historical record goes back to 1987. The matrix was nylon-6 and the filler MMT. Because of its many advantages such as high mechanical properties, good gas barrier, flame retardation, etc. polymer/clay nano composites have been intensely investigated and is currently the subject of many research programs. Nano composite materials are commercially important and several types of products with different shapes and applications including food packaging films and containers, engine parts, dental materials, etc. are now available in markets. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or prepolymers from solution, in-situ polymerization, melt intercalation etc. In this study, new nano composite materials were produced from the components of rubber (Nbr, SBR and EPDM) as the polymeric matrix and organically modified quaternary alkylammonium montmorillonite in different contents (3, 5, 7, and 10 phr) as the filler by using an extruder then, the rubber nano composite sheets were irradiated at a dose of 0, 50, 75, 100 and 150 KGy using Electron beam Irradiation technique as a crosslinking agent. These new materials can be characterized by using various analytical techniques including X-ray diffractometer XRD, Thermogravimetric analyzer TGA, scanning electron microscope (SEM), transmission electron microscope (TEM),Fourier transform

  11. Effect of Amount of 3-Methacryloxy Propyl Thrimethoxysilane Coupling Agent and Nano Filling Structure on Physic-Mechanical Properties of Dental Resin Composite

    Directory of Open Access Journals (Sweden)

    Farbod Tondnevis

    2017-07-01

    Full Text Available Many researchers in the field of dental polymeric base nano composite investigated the effect filling morphology and filling material content on mechanical and physical properties of construction after setting reaction. Our present study concentrated on the effect of ϒ metacryloxy propyloxt tri metoxy silane (ϒ MPS content as coupling agent (orgnic material on physical and mechanical performance of nano composite material. It was shown that despite of contraction after setting reaction, all this properties improved and efficient silanization can efficiently affect structural integrity of dental filling nano composite

  12. Functionalized Multi walled Carbon Nano tubes-Reinforced Viny lester/Epoxy Blend Based Nano composites: Enhanced Mechanical, Thermal, and Electrical Properties

    International Nuclear Information System (INIS)

    Praharaj, A. P.; Behera, D.; Bastia, T. K.; Rout, A. K.

    2015-01-01

    This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nano composites consisting of Vinyl ester resin/epoxy (VER/EP) blend (40:60 w/w) reinforced with amine functionalized multi walled carbon nano tubes (f-MWCNTs). Five different sets of VER/EP nano composites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA) and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nano composites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nano composites with nano filler (f-MWCNTs) addition compared to the virgin blend (0 wt. nano filler loading). The properties are best observed in case of 5 wt.% nano filler loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nano filler particles. Thus the above nano composites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.

  13. Gamma radiation effects on nano composites of Ag nanoparticles in Zn O matrices

    International Nuclear Information System (INIS)

    Villasenor C, L. S.

    2015-01-01

    The study of gamma radiation effects in nano composites of silver nanoparticles in a Zn O matrix has been performed in this work. First, silver nanoparticles (AgNPs) were synthesized by colloidal methods, with two different mean average sizes, 48 nm and 24 nm respectively. These nanoparticles were characterized by transmission electron microscopy (Tem) and UV-Vis spectroscopy (UV-Vis). Then, with the synthesized AgNPs, nano composites in a matrix of Zn O were prepared. The first nano composite was prepared with the 48 nm AgNPs at 9.5 weight % of silver (Ag) and the second nano composite with the 24 nm nanoparticles at 1.0 weight % of Ag. Both nano composites were analyzed by scanning electron microscopy (Sem). The formation of the Zn O phase in the nano composite was corroborated through X-ray diffraction analysis. It was observed that the presence of AgNPs during the formation of the AgNPs/Zn O nano composite modified the size and morphology of the structures obtained compared to those of the pure Zn O without nanoparticles, however both exhibit a radial structure. Then, the nano composite at 9.5 weight % of Ag was irradiated with gamma rays at doses of 1, 20 and 50 kGy. Samples were analyzed by Sem and the Bet technique, before and after being irradiated, in order to determine the effect of gamma radiation in the morphology, porosity and surface area of the studied material. Even when there are changes in porosity and Surface area, this difference is not very significant for some applications, however it will have to be considered during the design of a specific application of the nano composites. On the other hand, no morphology modifications were identified on the samples irradiated at the studied doses, with the electron microscopy techniques used. (Author)

  14. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite

    International Nuclear Information System (INIS)

    Mesquita, Joao Paulo de; Teixeira, Ivo F.; Donnici, Claudio L.; Pereira, Fabiano V.

    2011-01-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  15. Preparation and Photocatalytic Performance of Bamboo-Charcoal-Supported Nano-ZnO Composites

    Directory of Open Access Journals (Sweden)

    Yunlong ZHOU

    2018-02-01

    Full Text Available Nano-ZnO/bamboo charcoal composites were prepared by precipitation with bamboo charcoal as support. Nano-ZnO/bamboo charcoal composites were characterized by XRD, SEM and EDS. Photocatalytic degradation processes of methyl orange were studied. The results indicate that the structure of nano-ZnO is of the wurtzite type and the grain size is about 19-54 nm. The best preparation temperature for these composites is 500℃. The composites have better photocatalytic degradation ability than pure ZnO under UV irradiation. Photocatalytic degradation of methyl orange with the composites obeys first-order kinetics, and the composites can be recycled.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17397

  16. Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite

    International Nuclear Information System (INIS)

    Miura, Kei-ichiro; Anada, Takahisa; Honda, Yoshitomo; Shiwaku, Yukari; Kawai, Tadashi; Echigo, Seishi; Takahashi, Tetsu; Suzuki, Osamu

    2013-01-01

    The present study was designed to investigate the physicochemical and bioactive properties of a nano-submicro sized octacalcium phosphate (OCP)-dispersed gelatin (Gel) composite (nano-submicro OCP/Gel) used as a bone substitute material in various bone defects. Well-grown, synthesized OCP was mechanically ground from 100 to 300 μm-sieved granules to particles that were approximately 500 nm in size. Then, 50 wt% of the nano-submicro OCP was mixed with porcine skin-derived acid extracted gelatin. The mixture was molded and lyophilized and then subjected to dehydrothermal crosslinking. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that the structure of OCP was retained even after mechanical grinding to a nano-submicro scale level as well as inclusion in the Gel matrix. The bioactivity of nano-submicro OCP/Gel was examined by immersing the composite in simulated body fluid (SBF) for 7 days and by implanting it in rat critical-sized calvaria defects for 8 weeks. The nano-submicro OCP tended to convert to low crystalline hydroxyapatite (HA) in SBF as assessed by XRD. The nano-submicro OCP/Gel exhibited osteoconductivity in vivo, yielding new bone formation that was closely associated with the implanted composite. These results suggest that the nano-submicro OCP/Gel composite exhibits similar osteoconductivity as observed in other OCP-based materials previously reported and could be used as a bone substitute material for repairing various defects in bone.

  17. Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Kei-ichiro [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai (Japan); Anada, Takahisa; Honda, Yoshitomo [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Shiwaku, Yukari [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai (Japan); Kawai, Tadashi; Echigo, Seishi; Takahashi, Tetsu [Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai (Japan); Suzuki, Osamu, E-mail: suzuki-o@m.tohoku.ac.jp [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan)

    2013-10-01

    The present study was designed to investigate the physicochemical and bioactive properties of a nano-submicro sized octacalcium phosphate (OCP)-dispersed gelatin (Gel) composite (nano-submicro OCP/Gel) used as a bone substitute material in various bone defects. Well-grown, synthesized OCP was mechanically ground from 100 to 300 μm-sieved granules to particles that were approximately 500 nm in size. Then, 50 wt% of the nano-submicro OCP was mixed with porcine skin-derived acid extracted gelatin. The mixture was molded and lyophilized and then subjected to dehydrothermal crosslinking. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that the structure of OCP was retained even after mechanical grinding to a nano-submicro scale level as well as inclusion in the Gel matrix. The bioactivity of nano-submicro OCP/Gel was examined by immersing the composite in simulated body fluid (SBF) for 7 days and by implanting it in rat critical-sized calvaria defects for 8 weeks. The nano-submicro OCP tended to convert to low crystalline hydroxyapatite (HA) in SBF as assessed by XRD. The nano-submicro OCP/Gel exhibited osteoconductivity in vivo, yielding new bone formation that was closely associated with the implanted composite. These results suggest that the nano-submicro OCP/Gel composite exhibits similar osteoconductivity as observed in other OCP-based materials previously reported and could be used as a bone substitute material for repairing various defects in bone.

  18. UV resistibility of a nano-ZnO/glass fibre reinforced epoxy composite

    International Nuclear Information System (INIS)

    Wong, Tsz-ting; Lau, Kin-tak; Tam, Wai-yin; Leng, Jinsong; Etches, Julie A.

    2014-01-01

    Highlights: • A GFRE composite with UV resistibility is introduced. • The bonding behaviour and UV resistibility of the composite were studied upon the addition of nano-ZnO particles. • The solvent effect in the dispersion of nano-ZnO particles was also studied. • The nano-ZnO/GFRE composite shows effective UV absorption with enhanced bonding behaviour. - Abstract: The harmfulness of ultraviolet (UV) radiation (UVR) to human health and polymer degradation has been the focus recently in all engineering industries. A polymer-based composite filled with nano-ZnO particles can enhance its UV resistibility. It has been found that the use of appropriate amount of nano-ZnO/Isopropyl alcohol solvent to prepare a UV resistant nano-ZnO/glass fibre reinforced epoxy (ZGFRE) composite can effectively block the UV transmission with negligible influence on the crystal structure of its resin system. This paper aims at investigating the interfacial bonding behaviour and UV resistibility of a ZGFRE composite. The solvent effect in relation to the dispersion properties of ZnO in the composite is also discussed. XRD results indicated that 20 wt% Isopropyl alcohol was an effective solvent for filling nano-ZnO particles into an epoxy. SEM examination also showed that the bonding behaviour between glass fibre and matrix was enhanced after filling 20 wt% nano-ZnO particles with 20 wt% Isopropyl alcohol into the composite. Samples filled with 20 wt% nano-ZnO/Isopropyl alcohol and 40 wt% nano-ZnO/Isopropyl alcohol has full absorption of UVA (315–400 nm), UVB (280–315 nm) and a part of UVC (190–280 nm)

  19. From zinc selenate to zinc selenide nano structures synthesized by reduction process

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Eng, S.T.; Ahmad, Z.A.; Ishak Mat; Yussof Wahab

    2009-01-01

    One-dimensional nano structure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nano scale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nano structured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nano structures (nanoparticles, nano wires, nano rods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nano structures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N 2 H 4 .2H 2 O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 degree Celsius for 1 hour under argon flow to form one-dimensional nano structures. The SEM and TEM images show the formation of nano composite-like structure, which some small nano bar and nano pellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases. (author)

  20. High performance nano-composite technology development

    International Nuclear Information System (INIS)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D.; Kim, E. K.; Jung, S. Y.; Ryu, H. J.; Hwang, S. S.; Kim, J. K.; Hong, S. M.; Chea, Y. B.; Choi, C. H.; Kim, S. D.; Cho, B. G.; Lee, S. H.

    1999-06-01

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  1. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  2. Study of Ion Transport Behaviour in (PVA-NH4I):SIO2 Nano Composite Polymer Electrolyte

    Science.gov (United States)

    Tripathi, Mridula; Trivedi, Shivangi; Upadhyay, Ruby; Singh, Markandey; Pandey, N. D.; Pandey, Kamlesh

    2013-07-01

    Development and characterization of Poly vinyl alcohol (PVA) based nano composite polymer electrolytes comprising of (PVA-NH4I):SiO2 is reported. Sol-gel derived silica powder of nano dimension has been used as ceramic filler for development of nano composite electrolyte. Formation of nano composites, change in the structural and microscopic properties of the system have been investigated by X-ray differaction, SEM and conductivity.

  3. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  4. Preparation and performance of ZnO/Polyaniline nano-composite for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.P.; Chang, X.C.; Wang, Z.M.; Han, K.F.; Zhu, H. [Beijing Univ. of Chemical Technology, Beijing (China). School of Science

    2010-07-01

    Supercapacitors combine the advantages of traditional capacitors and batteries. In this study, a zinc oxide (ZnO-PANI) nano-composite material was fabricated in order to investigate its behaviour in a supercapacitor application. The ZnO nano-powder was synthesized using the sol-gel method. An inverted emulsion polymerization method was then used to prepare the ZnO/PANI nanocomposite. X-ray diffraction (XRD) analyses demonstrated that the prepared ZnO had a hexagonal structure. The ZnO/PANI composite electrode was prepared. Electrochemical impedance spectroscopy (EIS) analyses indicated that the nano-composite material functioned well as an electrode. The highest capacitance rating achieved by the electrode was 31.82 F per g. 6 refs., 4 figs.

  5. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.

    2011-01-01

    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  6. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, I.S., E-mail: ibayer1@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Steele, A.; Martorana, P.J. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Loth, E. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, VA 22904 (United States)

    2010-11-15

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D{sub 5}), dodecamethylcyclohexasiloxane (D{sub 6}) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155{sup o} and low contact angle hysteresis (<8{sup o}). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  7. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    International Nuclear Information System (INIS)

    Bayer, I.S.; Steele, A.; Martorana, P.J.; Loth, E.

    2010-01-01

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D 5 ), dodecamethylcyclohexasiloxane (D 6 ) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155 o and low contact angle hysteresis ( o ). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  8. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    Science.gov (United States)

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. CO oxidation on Alsbnd Au nano-composite systems

    Science.gov (United States)

    Rajesh, C.; Majumder, C.

    2018-03-01

    Using first principles method we report the CO oxidation behaviour of Alsbnd Au nano-composites in three different size ranges: Al6Au8, Al13Au42 and a periodic slab of Alsbnd Au(1 1 1) surface. The clusters prefer enclosed structures with alternating arrangement of Al and Au atoms, maximising Auδ-sbnd Alδ+ bonds. Charge distribution analysis suggests the charge transfer from Al to Au atoms, corroborated by the red shift in the density of states spectrum. Further, CO oxidation on these nano-composite systems was investigated through both Eley - Rideal and Langmuir Hinshelwood mechanism. While, these clusters interact with O2 non-dissociatively with an elongation of the Osbnd O bond, further interaction with CO led to formation of CO2 spontaneously. On contrary, the CO2 evolution by co-adsorption of O2 and CO molecules has a transition state barrier. On the basis of the results it is inferred that nano-composite material of Alsbnd Au shows significant promise toward effective oxidative catalysis.

  10. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    Science.gov (United States)

    Yavari, Fazel

    In this dissertation we have developed graphene-based nano-devices for applications in integrated circuits and gas sensors; as well as graphene-based nano-composites for applications in structures and thermal management. First, we have studied the bandgap of graphene for semiconductor applications. Graphene as a zero-bandgap material cannot be used in the semiconductor industry unless an effective method is developed to open the bandgap in this material. We have demonstrated that a bandgap of 0.206 eV can be opened in graphene by adsorption of water vapor molecules on its surface. Water molecules break the molecular symmetries of graphene resulting in a significant bandgap opening. We also illustrate that the lack of bandgap in graphene can be used to our advantage by making sensors that are able to detect low concentrations of gas molecules mixed in air. We have shown that 1-2 layers of graphene synthesized by chemical vapor deposition enables detection of trace amounts of NO 2 and NH3 in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time is inversely proportional to the gas concentration. Heating the film expels chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of ~100 parts-per-billion (ppb) for NO2 and ~500 ppb for NH3 obtained using this device are markedly superior to commercially available NO2 and NH3 detectors. This sensor is fabricated using individual graphene sheets that are exquisitely sensitive to the chemical environment. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. To overcome these problems we have developed a gas sensor based on a porous 3D network of graphene sheets called graphene foam

  11. SiO2@FeSO4 nano composite: A recoverable nano-catalyst for eco-friendly synthesis oximes of carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Mostafa Karimkoshteh

    2016-01-01

    Full Text Available Various aldoximes and ketoximes synthesis of corresponding aldehydes and ketones in the presence of SiO2@FeSO4 nano composite as recoverable nano catalyst and NH2OH·HCl. The SiO2@FeSO4 nano composite system was carried out between 10 to 15 min in oil bath (70-80 °C under solvent-free condition in excellent yields in addition this protocol can be used for industrial scales. This method offers some advantages in term of clean reaction conditions, easy work-up procedure, short reaction time, applied to convert α-diketones to α-diketoximes (as longer than other carbonyl compounds, α,β-unsaturated aldehydes and ketones to corresponding oximes and suppression of any side product. So we think that NH2OH•HCl/SiO2@FeSO4 nano composite system could be considered a new and useful addition to the present methodologies in this area. Structure of products and nano composite elucidation was carried out by 1H NMR, 13C NMR, FT-IR, scanning electron microscopy (SEM.

  12. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  13. Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite

    Directory of Open Access Journals (Sweden)

    Samuel Ranti Oke

    2018-04-01

    Full Text Available This research optimized spark plasma sintering (SPS process parameters in terms of sintering temperature, holding time and heating rate for the development of a nano-structured duplex stainless steel (SAF 2205 grade reinforced with titanium nitride (TiN. The mixed powders were sintered using an automated spark plasma sintering machine (model HHPD-25, FCT GmbH, Germany. Characterization was performed using X-ray diffraction and scanning electron microscopy. Density and hardness of the composites were investigated. The XRD result showed the formation of FeN0.068. SEM/EDS revealed the presence of nano ranged particles of TiN segregated at the grain boundaries of the duplex matrix. A decrease in hardness and densification was observed when sintering temperature and heating rate were 1200 °C and 150 °C/min respectively. The optimum properties were obtained in composites sintered at 1150 °C for 15 min and 100 °C/min. The composite grades irrespective of the process parameters exhibited similar shrinkage behavior, which is characterized by three distinctive peaks, which is an indication of good densification phenomena. Keywords: Spark plasma sintering, Duplex stainless steel (SAF 2205, Titanium nitride (TiN, Microstructure, Density, Hardness

  14. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite

    Science.gov (United States)

    Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.

    2017-01-01

    In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.

  15. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu

    2017-10-01

    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  16. Thermodynamic and structural properties of ball-milled mixtures composed of nano-structural graphite and alkali(-earth) metal hydride

    International Nuclear Information System (INIS)

    Miyaoka, Hiroki; Ichikawa, Takayuki; Fujii, Hironobu

    2007-01-01

    Hydrogen desorption properties of mechanically milled materials composed of nano-structural hydrogenated-graphite (C nano H x ) and alkali(-earth) metal hydride (MH; M = Na, Mg and Ca) were investigated from the thermodynamic and structural points of view. The hydrogen desorption temperature for all the C nano H x and MH composites was obviously lower than that of the corresponding each hydride. In addition, the desorption of hydrocarbons from C nano H x was significantly suppressed by making composite of C nano H x with MH, even though C nano H x itself thermally desorbs a considerably large amount of hydrocarbons. These results indicate that an interaction exists between C nano H x and MH, and hydrogen in both the phases is destabilized by a close contact between polar C-H groups in C nano H x and the MH solid phase. Moreover, a new type of chemical bonding between the nano-structural carbon (C nano ) and the Li, Ca, or Mg metal atoms may be formed after hydrogen desorption. Thus, the above metal-C-H system would be recognized as a new family of H-storage materials

  17. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  18. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders

    International Nuclear Information System (INIS)

    Khattab, R.M.; Wahsh, M.M.S.; Khalil, N.M.

    2015-01-01

    According to the wide applications in the field of chemical and engineering industries, forsterite (Mg_2SiO_4)/spinel (MgAl_2O_4) ceramic compositions were the matter of interest of several research works during the last three decades. This work aims at preparation and characterization of improved ceramic bodies based on forsterite and spinel nano powders through controlling the forsterite and spinel contents in the prepared mixes. These prepared ceramic compositions have been investigated through measuring the densification parameters, cold crushing strength as well as volume resistively. Nano spinel was added from 0 to 30 mass% on expense of nano forsterite matrix and fired at 1550 °C for 2 h. The phase composition of the fired samples was examined using x-ray diffraction (XRD) technique. The microstructure of some selected samples was shown using scanning electron microscope (SEM). A pronounced improvement in the sintering, mechanical properties and volume resistively were achieved with increasing of nano spinel addition up to 15 mass%. This is due to the improvement in the matrix of the prepared forsterite/spinel bodies as a result of well distribution of spinel in the forsterite matrix as depicted by SEM analysis. - Highlights: • Ceramic compositions based on nano forsterite/nano-MgAl_2O_4 spinel were synthesized. • CCS was improved (333.78 MPa) through 15 mass% of nano-MgAl_2O_4 spinel addition. • Volume resistivity was enhanced to 203*10"1"3 Ohm cm with 15 mass% of spinel addition. • Beyond 15 mass% spinel, CCS and volume resistivity were decreased.

  19. Synthesis of Poly aniline-Montmorillonite Nano composites Using H2O2 as the Oxidant

    International Nuclear Information System (INIS)

    Binitha, N.; Binitha, N.; Suraja, V.; Zahira Yaakob; Sugunan, S.

    2011-01-01

    Poly aniline montmorillonite nano composite was prepared using H 2 O 2 as the oxidant. The catalytic environment of montmorillonite favours polymerization. Intercalation and composite formation was proven from various techniques such as XRD, FTIR, DRS and thermal analysis. XRD patterns give the dimension of the intercalated PANI, from the shift of 2θ values, which is in the nano range. FTIR showed that PANI composite formation occurred without affecting the basic clay layer structure. Thus the successful development of an alternative cheap route for poly aniline-montmorillonite nano composite was well established. (author)

  20. Influence of Compatibilizer and Processing Conditions on Morphology, Mechanical Properties, and Deformation Mechanism of PP/Clay Nano composite

    International Nuclear Information System (INIS)

    Akbari, B.; Bagheri, R.

    2012-01-01

    Polypropylene/montmorillonite nano composite was prepared by melt intercalation method using a twin-screw extruder with starve feeding system in this paper. The effects of compatibilizer, extruder rotor speed and feeding rate on properties of nano composite were investigated. Structure, tensile, and impact properties and deformation mechanism of the compounds were studied. For investigation of structure and deformation mechanisms, X-ray diffraction (XRD) and transmission optical microscopy (TOM) techniques were utilized, respectively. The results illustrate that introduction of the compatibilizer and also variation of the processing conditions affect structure and mechanical properties of nano composite.

  1. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Saba, N., E-mail: naheedchem@gmail.com [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Paridah, M.T. [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abdan, K. [Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang Selangor (Malaysia); Ibrahim, N.A. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-12-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  2. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    International Nuclear Information System (INIS)

    Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A.

    2016-01-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  3. Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation

    International Nuclear Information System (INIS)

    Batra, Uma; Kapoor, Seema; Sharma, J. D.

    2011-01-01

    Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work--fluoridated bioglass (Cao-P 2 O 5 -Na 2 O 3 -CaF 2 ) and unfluoridated bioglass (Cao-P 2 O 5 -Na 2 O 3 ) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm, respectively. The pellets were sintered at four different temperatures i.e. 1000 deg. C, 1150 deg. C, 1250 deg. C and 1350 deg. C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with α-TCP (tricalcium phosphate) and β-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 deg. C and 1150 deg. C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 deg. C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 deg. C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 deg. C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the

  4. Facile fabrication and characterization of poly(tetrafluoroethylene)@polypyrrole/nano-silver composite membranes with conducting and antibacterial property

    Science.gov (United States)

    Shi, Zhiquan; Zhou, Hui; Qing, Xutang; Dai, Tingyang; Lu, Yun

    2012-06-01

    Porous poly(tetrafluoroethylene) (PTFE) membranes play an important role in air purification and separation engineering. To achieve the bi-functionality of conducting and antibacterial property, two kinds of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes have been prepared. One involves hydrophobic polypyrrole/nano-silver composite with hollow capsule nanostructures immobilized on the surface of the PTFE membranes. The other is a type of composite membranes with polypyrrole/nano-silver composite wholly packed on the fibrils of the expand PTFE membrane to form core/shell coaxial cable structures. The structure and morphology of the two kinds of composite membranes have been characterized by FTIR, UV-vis, XRD, TGA and SEM measurements. Possible formation mechanisms of the hollow capsules and the core/shell nanocable structures have been discussed in detail. The antibacterial effects of composite membranes are also briefly investigated.

  5. Thermal Properties, Structure and Morphology of Graphene Reinforced Polyethylene Terephthalate/ Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Inuwa, I.M.; Hassan, A.; Shamsudin, S.A.

    2014-01-01

    In this work the thermal properties, structure and morphology of a blend of polyethylene terephthalate (PET) and polypropylene (PP) reinforced with graphene nano platelets (GNP) were investigated. A blend of PET/ PP (70/ 30 weight percent) compatibilized with styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (10 phr) were fabricated by melt extrusion process in a twin screw extruder. The effective thermal conductivity of the nano composites increased as a function of the GNP concentration. More than 80 % increase in effective thermal conductivity was observed for the 7 phr reinforced sample compared to the neat blend. This observation was attributed to the development interconnected GNP sheets which formed heat conductive bridges that are suitable for maximum heat transfer. However, in the case of thermal stability which is a function of dispersibility of GNP in polymer matrix, the maximum increase was observed at 3 phr GNP loading which could be attributed to the uniform dispersion of GNPs in the matrix. It is explained that the GNP nano fillers migrated to the surface of matrix forming an effective oxygen barrier due to char formation. Morphological studies revealed uniform dispersion graphene in the polymer matrix at 3 phr GNP loading along with isolated instances of exfoliation of the graphene layers. (author)

  6. Nano ZnO/amine composites antimicrobial additives to acrylic paints

    Directory of Open Access Journals (Sweden)

    H.B. Kamal

    2015-12-01

    Full Text Available Nano ZnO has been widely used as an antimicrobial agent not only for food packaging purposes but also in many coating processes. The present work is meant to enhance such functions through the preparation of sustainable and safe conduct of nano ZnO composites with amine derivatives that are characterized by their antimicrobial and anti-fouling functional activities. The results obtained revealed a more comprehensive approach to the antimicrobial function based on the reported active oxide species role. The oxide/amine composites and the acrylic emulsion paint were characterized chemically and structurally through FT-IR, TGA and TEM supported by biological assessment of each ZnO/amine composite action. Results of the study concluded that equilibrium between the nano ZnO particles size, their dispersion form, and amine ability to stabilize the actively produced oxygen species responsible for the antimicrobial function, should all be accounted for when persistence of antimicrobial agent efficiency is regarded.

  7. Preparation and Characterization of Graphene-Based Magnetic Hybrid Nano composite

    International Nuclear Information System (INIS)

    Jashiela Wani Jusin; Madzlan Aziz

    2016-01-01

    Graphene-based magnetic hybrid nano composite has the advantage of exhibiting better performance as platform or supporting materials to develop novel properties of composite by increasing selectivity of the targeted adsorbate. The hybrid nano material was prepared by mixing and hydrolysing iron (II) and iron (III) salt precursors in the presence of GO dispersion through coprecipitation method followed by in situ chemical reduction of GO. The effect of weight loading ratio of Fe to GO (4:1, 2.5:1, 1:1 and 1:4) on structural properties of the hybrid nano materials was investigated. The presence of characteristic peaks in FTIR spectra indicated that GO has been successfully oxidized from graphite while the decrease in oxygenated functional groups and peaks intensity evidenced the formation of hybrid nano materials through the subsequent reduction process. The presence of characteristic peaks in XRD pattern denoted that magnetite nanoparticles disappeared at higher loading of GO. TEM micrograph showed that the best distribution of iron oxide particles on the surface of hybrid nano material occurred when the loading ratio of Fe to GO was fixed at 2:5 to 1. The reduced graphene oxide (RGO) sheets in the hybrid materials showed less wrinkled sheet like structure compared to GO due to exfoliation and reduction process during the synthesis. The layered morphology of GO degrades at higher concentrations of iron oxide. (author)

  8. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    Science.gov (United States)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  9. Fabrication of Nano-CeO2 and Application of Nano-CeO2 in Fe Matrix Composites

    International Nuclear Information System (INIS)

    Tiebao, W.; Chunxiang, C.; Xiaodong, W.; Guobin, L.

    2010-01-01

    It is expatiated that nano-CeO2 is fabricated by the direct sedimentation method. The components and particles diameter of nano-CeO2 powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-CeO2 with Al in Fe matrix composites are researched, which shows that the reaction is generated between CeO2 and Al in the composite, that is, 3CeO2+4Al - 2Al2O3+3[Ce], which obtains Al2O3 and active [Ce] during the sintering process. The active [Ce] can improve the performance of CeO2/Fe matrix composites. The suitable amount of CeO2 is about 0.05% in CeO2/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-CeO2/Fe matrix composites are more than those in no-added nano-CeO2 composites, which can explain that adding nano-CeO2 into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-CeO2 to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-CeO2.

  10. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.

    Science.gov (United States)

    Sahoo, Bichitra Nanda; Balasubramanian, Kandasubramanian

    2014-12-15

    We have elucidated a cost effective fabrication technique to produce superhydrophobic polyvinylidene fluoride (PVDF/DMF/candle soot particle and PVDF/DMF/camphor soot particle composite) porous materials. The water repellent dry composite was formed by the interaction of non-solvent (methanol) into PVDF/carbon soot particles suspension in N,N-dimethylformamide (DMF). It is seen that longer quenching time effectively changes the surface morphology of dry composites. The nano broccoli like hierarchical microstructure with micro or nano scaled roughen surface was obtained for PVDF/DMF/camphor soot particle, which reveals water contact angle of 172° with roll off angle of 2°. However, composite coating of PVDF/DMF/candle soot particle shows nano cauliflower like hierarchical, which illustrates water contact angle of 169° with roll off angle of 3°. To elucidate the enhancement of water repellent property of PVDF composites, we further divulge the evolution mechanism of nano cauliflower and nano broccoli structure. In order to evaluate the water contact angle of PVDF composites, surface diffusion of water inside the pores is investigated. Furthermore, the addition of small amount of carbon soot particles in composite not only provides the crystallization of PVDF, but also leads to dramatical amendment of surface morphology which increases the surface texture and roughness for superhydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  12. A critical review of nanotechnologies for composite aerospace structures

    Science.gov (United States)

    Kostopoulos, Vassilis; Masouras, Athanasios; Baltopoulos, Athanasios; Vavouliotis, Antonios; Sotiriadis, George; Pambaguian, Laurent

    2017-03-01

    The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.

  13. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    Science.gov (United States)

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  14. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    Science.gov (United States)

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  15. Preparation and characterization of PVC /ENR/CNTs Nano composites

    International Nuclear Information System (INIS)

    Ratnam, C.T.; Nur Azrini Ramlee; Keong, C.C.

    2011-01-01

    Poly (vinyl chloride), PVC/ epoxidized natural rubber blend, ENR/ carbon nano tubes, CNTs were prepared by using melt and solution blending methods. Addition of 2 phr of CNTs found to cause a drop in the tensile strength, Ts of the 50/ 50 PVC/ ENR blend. The nano composites prepared by the melt blending method exhibited higher values of Ts compared to the nano composites prepared by solution blending. Melt blending found to be an efficient method to prepare PVC/ ENR/ CNTs nano composites. (author)

  16. SeZnSb alloy and its nano tubes, graphene composites properties

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Singh

    2013-04-01

    Full Text Available Composite can alter the individual element physical property, could be useful to define the specific use of the material. Therefore, work demonstrates the synthesis of a new composition Se96-Zn2-Sb2 and its composites with 0.05% multi-walled carbon nano tubes and 0.05% bilayer graphene, in the glassy form. The diffused amorphous structure of the multi walled carbon nano tubes and bilayer gaphene in the Se96-Zn2-Sb2 alloy have been analyzed by using the Raman, X-ray photoluminescence spectroscopy, Furrier transmission infrared spectra, photoluminescence, UV/visible absorption spectroscopic measurements. The diffused prime Raman bands (G and D have been appeared for the multi walled carbon nano tubes and graphene composites, while the X-ray photoluminescence core energy levels peak shifts have been observed for the composite materials. Subsequently the photoluminescence property at room temperature and a drastic enhancement (upto 80% in infrared transmission percentage has been obtained for the bilayer graphene composite, along with optical energy band gaps for these materials have been evaluated 1.37, 1.39 and 1.41 eV.

  17. Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shafaei, Mostafa; Ziaie, Farhood; Hajiloo, Nahid [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School

    2016-12-15

    The goal of this study is to compare the thermoluminescence properties of nano and micro structure hydroxyapatite. Nano structure hydroxyapatite was synthesized via hydrolysis method, while the micro structure one was from Merck Company. X-ray diffraction and fourier transform infrared spectroscopy were used to determine the crystal structure and chemical composition of the hydroxyapatite samples. Particles sizes of each sample were estimated using Scherer equation and transmission electron microscopy system. Thermoluminescence properties of the samples were investigated under gamma irradiation. The glow curves of micro and nano structure samples show a peak at 150 C and 200 C, respectively. Thermoluminescence responses of both the samples were linear in the range of 25 - 1 000 Gy where, nano structure sample show a greater slope and stronger linearity in comparison to the micro sample. The results show that the thermoluminescence response of micro sample faded rapidly in comparison to the nano sample due to the existence of the peak at higher temperature.

  18. Properties of the chalcogenide–carbon nano tubes and graphene composite materials

    International Nuclear Information System (INIS)

    Singh, Abhay Kumar; Kim, JunHo; Park, Jong Tae; Sangunni, K.S.

    2015-01-01

    Highlights: • Chalcogenides. • Melt quenched. • Composite materials. • Multi walled carbon nano tubes. • Bilayer graphene. - Abstract: Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se 55 Te 25 Ge 20, Se 55 Te 25 Ge 20 + 0.025% multi walled carbon nano tubes and Se 55 Te 25 Ge 20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se 55 Te 25 Ge 20 ) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids

  19. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Directory of Open Access Journals (Sweden)

    R. Udaiyakumar

    2018-06-01

    Full Text Available With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor. Keywords: Nanoparticles, Nano-composite, Dispersion, Birefringence, Beat length

  20. Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomin Cai

    2017-07-01

    Full Text Available The cooperative effects between the PANI (polyaniline/nano-NiO (nano nickel oxide composite electrode material and redox electrolytes (potassium iodide, KI for supercapacitor applications was firstly discussed in this article, providing a novel method to prepare nano-NiO by using β-cyelodextrin (β-CD as the template agent. The experimental results revealed that the composite electrode processed a high specific capacitance (2122.75 F·g−1 at 0.1 A·g−1 in 0.05 M KI electrolyte solution, superior energy density (64.05 Wh·kg−1 at 0.2 A·g−1 in the two-electrode system and excellent cycle performance (86% capacitance retention after 1000 cycles at 1.5 A·g−1. All those ultra-high electrical performances owe to the KI active material in the electrolyte and the PANI coated nano-NiO structure.

  1. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  2. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    Science.gov (United States)

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  3. Radiation Processing of Active Biodegradable Green Nano Composite Materials for Packaging Purposes

    Energy Technology Data Exchange (ETDEWEB)

    AbdEl-Rehim, Hassan A.; Hegazy, El-Sayed A.; Raafat, Ahmed [National Center for Radiation Research and Technology NCRRT, Atomic Energy Authority, Cairo, Egypt P. O. Box 29, Nasr City, Cairo (Egypt)

    2011-07-01

    Clean and green reduction process of silver ions and graphene (GO) into nanosilver metal and graphene (GR) nanosheets respectively was achieved via gamma irradiation. The efficiency of gamma radiation to reduce silver ions and graphene oxide (GO) was investigated using UV-vis spectroscopy. Effects of gaseous atmosphere type, dispersion pH value, capping agent type and irradiation dose on GR nano-sheets formation were investigated. The presence of capping agent such as sodium carboxymethyl cellulose (CMC) or cellulose acetate is proven to be crucial. The obtained GR nanosheets and nanosilver metals are characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) as well as thermo-gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). Effectiveness, simplicity, reproducibility, and low energy consumption are the merits of using the Gamma radiation technique. Furthermore, the capping agent is eco-friendly and the dispersion is stable for months at room temperature. This approach can open up large-scale production of GR nanosheets and nanosilver metals. The prepared Nano-silver can be mixed with different natural polymer like CA to form Nano-composite films. The excellent physical properties of CA did not affect by addling Ag. The ionizing radiation has un-significant effect on the properties of CA-Ag nano composites films The CA-Ag nano composites posses biological activity towards different microorganisms. On other hand graphene or graphene oxide dispersions might be of interesting for producing biological active packaging films. Go as nanofillers has used for fabrication of a biocomposite with chitosan. The significantly improved in Chitosan /Go nano composites physical properties, including mechanical property, electrical conductivity, and structural stability, was demonstrated. Properties of the CA-Ag and Chitosan /Go nano composites suggest

  4. Radiation Processing of Active Biodegradable Green Nano Composite Materials for Packaging Purposes

    International Nuclear Information System (INIS)

    AbdEl-Rehim, Hassan A.; Hegazy, El-Sayed A.; Raafat, Ahmed

    2011-01-01

    Clean and green reduction process of silver ions and graphene (GO) into nanosilver metal and graphene (GR) nanosheets respectively was achieved via gamma irradiation. The efficiency of gamma radiation to reduce silver ions and graphene oxide (GO) was investigated using UV-vis spectroscopy. Effects of gaseous atmosphere type, dispersion pH value, capping agent type and irradiation dose on GR nano-sheets formation were investigated. The presence of capping agent such as sodium carboxymethyl cellulose (CMC) or cellulose acetate is proven to be crucial. The obtained GR nanosheets and nanosilver metals are characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) as well as thermo-gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). Effectiveness, simplicity, reproducibility, and low energy consumption are the merits of using the Gamma radiation technique. Furthermore, the capping agent is eco-friendly and the dispersion is stable for months at room temperature. This approach can open up large-scale production of GR nanosheets and nanosilver metals. The prepared Nano-silver can be mixed with different natural polymer like CA to form Nano-composite films. The excellent physical properties of CA did not affect by addling Ag. The ionizing radiation has un-significant effect on the properties of CA-Ag nano composites films The CA-Ag nano composites posses biological activity towards different microorganisms. On other hand graphene or graphene oxide dispersions might be of interesting for producing biological active packaging films. Go as nanofillers has used for fabrication of a biocomposite with chitosan. The significantly improved in Chitosan /Go nano composites physical properties, including mechanical property, electrical conductivity, and structural stability, was demonstrated. Properties of the CA-Ag and Chitosan /Go nano composites suggest

  5. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  6. Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles

    International Nuclear Information System (INIS)

    Gao, Zhifang; Zhao, Lei

    2015-01-01

    Highlights: • Nano-fillers were synthesized by a simple urea process. • Ternary filler system with synthesized nano-hybrid fillers was investigated. • Using of nano-hybrid filler for prevent nanofiller aggregation was presented. - Abstract: Nano-AlN particles, AlN/graphene nano-hybrids (AlN/GE) and AlN/carbon nanotubes nano-hybrids (AlN/CNTs) were prepared. The structures, morphologies of synthesized nano-materials were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the morphologies of the synthesized nano-materials were obviously different. In addition, the thermal conductivity of epoxy composites could be effectively improved by adding the produced nano-fillers. Especially, the epoxy composite with AlN/GE nano-hybrids had the highest enhancement in thermal conductivity comparison to the pure epoxy. Moreover, the density of epoxy composites with the synthesized nano-fillers was decreased and the corresponding thermal stability was enhanced

  7. Preparation and Photocatalytic Activity of Nitrogen-doped Nano TiO2/Tourmaline Composites

    Directory of Open Access Journals (Sweden)

    LIU Xin-wei

    2016-06-01

    Full Text Available Using Ti(OC4H94 as precursor, CO(NH22 as nitrogen source, tourmaline as support, the nitrogen-doped nano TiO2/tourmaline composites were synthesized by sol-gel method with ultrasound assisted.The structure and performance of composites were characterized by XRD, FT-IR, UV-Vis DRS, SEM, EDS.The effects of calcining temperature, nitrogen-doped content, tourmaline amount, catalyst system on the photocatalytic activity of nitrogen-doped nano TiO2/tourmaline composites were studied.The results show that the photocatalytic activity of nitrogen-doped nano TiO2/tourmaline composites calcined under 500℃, the nitrogen doped amount of 5% (mole fraction, tourmaline added in an amount of 10% (mass fraction, catalyst dosage of 3g/L, under 500W UV light irradiation conditions, the photocatalytic degradation effect of TNT(10mg/L is the best, and has a good recycling performance.

  8. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  9. Comparison between properties of polyurethane nano composites prepared by two different methods

    International Nuclear Information System (INIS)

    Barmar, M.; Barikani, M.; Fereidoonnia, M.

    2009-01-01

    In this work, a thermoplastic polyurethane elastomer model based on polytetramethylene glycol. toluene diisocyanate and 1,4-butanediol was selected and synthesized. According to this model two types of polyurethane nano composites were prepared by in situ polymerization and melt intercalation procedures. The organo-modified nano clay was used in nano composites samples in 0.4 weight percent level. The prepared nano composites were studied by WAXD, tensile and thermal analysis. Thermal properties of the nano composites were higher than those of pure polyurethane elastomers. Nano composites prepared via melt intercalation method showed a lower tensile strength and hardness than those prepared through in situ polymerization method

  10. Achievement report for fiscal 1998. Research and development of nano-structural materials for ceramic bearing application (the second year); 1998 nendo seika hokokusho. Ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is made on ceramic bearing using high-performance and low-cost nano-structural materials, and its application is performed to high-quality bearings suitable for energy conservation in automobiles and industrial machines, and bearings for office automation devices, electronics, and aeronautic and maritime development. To achieve these goals, raw material synthesizing technologies, forming technologies, structural control technologies, processing technologies and mass production technologies shall be established. Fiscal 1998 had the following achievements: establishment of nano-structure controlled ceramic material powder synthesizing technology (nano-lamination type composite powder made by using the beads mill co-precipitation method, nano-lamination type composite powder made by using the New Mymill co-precipitation method, nano-lamination type composite powder made by using the controlled liquid phase method, composite nano-structured gel, and nano-powder synthesis); near net forming technology for spherical ceramics; high-speed processing technology for ultra smooth surface; evaluation of rolling fatigue properties of ceramic bearings; and analysis and evaluation of nano-structured materials. Since this alumina-based ceramic bearing can be produced at reduced cost with performance comparable to silicon nitride based bearing, investigations and discussions are being given on the application thereof. (NEDO)

  11. Structural and magnetic characteristics of PVA/CoFe{sub 2}O{sub 4} nano-composites prepared via mechanical alloying method

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir

    2016-08-15

    Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. The results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.

  12. Electroless Ni-P/Nano-SiO2 Composite Plating on Dual Phase Magnesium-Lithium Alloy

    Science.gov (United States)

    Zou, Y.; Zhang, Z. W.; Zhang, M. L.

    The application of Mg-Li alloys is restricted in practice due to mainly poor corrosion resistance and wear resistance. Electroless nickel plating is one of the common and effective ways to protect alloys from corrosion. In this study, nano-SiO2 particles with Ni-P matrix have been successfully co-deposited onto dual phase Mg-8Li base alloy through electroless plating, generating homogeneously Ni-P/nano-SiO2 composite coating. The morphology, elemental composition and structures of coatings were investigated. Coating performances were evaluated using hardness tests and electrochemical analysis. The results indicate that the Ni-P/nano-SiO2 composite coating can significantly improve the wear and corrosion resistance.

  13. The Properties of Nano Silver (Ag-Geopolymer as Antibacterial Composite for Functional Surface Materials

    Directory of Open Access Journals (Sweden)

    Armayani. M

    2017-01-01

    Full Text Available The purpose of this research was to produce and characterize nano silver (Ag-geopolymer composite for functional surface materials. Geopolymer matrix was synthesized through alkali activation of metakaolin and nano silver was added into geopolymers paste with a mass of 0, 0.5 g, 1 g, 1.5 g and 2 g keeping the mass of metakaolin constant. The mixture was cured at 70°C/1 hour and stored for 7 days before conducting any measurements. The structure of the resulting composite was examined by using Rigaku Mini Flex II x-ray diffraction (XRD. Scanning Electron Microscopy (SEM coupled with Energy Dispersive Spectroscopy (EDS was used to examine the morphology of the composite surface as well as the capability of the composite to isolate the growth of bacteria. The thermal properties of composites in terms of their working temperature and enthalpy were examined by using Perkin Elmer Differential Scanning Calorimetry (DSC. The heat resistance of composite was observed through calcination at 750°C for 18 hours. The results indicate that the resulting composites were able resist up 750°C. SEM examinations showed that nano Ag-geopolymer composites were effectively restraining the growth of bacteria. It is suggested that nano Ag-geopolymer composites are suitable for functional surface applications such as floor and wall, kitchen ware utensils, hospital instruments, art and decoration materials.

  14. Eco-nano composite films containing copper as potential antimicrobial active packaging

    Energy Technology Data Exchange (ETDEWEB)

    Bruna, Julio E.; Gonzalez, Valeska; Rodriguez, Francisco; Guarda, Abel; Galotto, Maria Jose, E-mail: julio.bruna@usach.cl [Center for the Development of Nanoscience and Nanotechnology, Packaging Laboratory, University of Santiago de Chile. Santiago (Chile)

    2011-07-01

    The antimicrobial efficiency of Cellulose Acetate/MMTCu and Chitosan/MMTCu nano composites against Escherichia Coli 0157:H7 n/t has been studied in the present work. The MMT modified with copper were obtained using cation interchange in solution and the nano composites films were prepared using casting solution technique, being the biodegradable polymer (Cellulose Acetate or Chitosan) the main component and the montmorillonite modified with copper, the minority component. Characterization of MMTCu and the nano composites (CA/MMTCu and Ch/MMTCu), were carried out using XRD, AA, TGA, DSC and microbiological analysis. The nano composites showed to be more stable at higher temperature, resulting from the incorporation of MMTCu into the polymer. On the other hand, the results indicated that the antibacterial effect of nano composite increased with the proportion of MMTCu added. (author)

  15. Eco-nano composite films containing copper as potential antimicrobial active packaging

    International Nuclear Information System (INIS)

    Bruna, Julio E.; Gonzalez, Valeska; Rodriguez, Francisco; Guarda, Abel; Galotto, Maria Jose

    2011-01-01

    The antimicrobial efficiency of Cellulose Acetate/MMTCu and Chitosan/MMTCu nano composites against Escherichia Coli 0157:H7 n/t has been studied in the present work. The MMT modified with copper were obtained using cation interchange in solution and the nano composites films were prepared using casting solution technique, being the biodegradable polymer (Cellulose Acetate or Chitosan) the main component and the montmorillonite modified with copper, the minority component. Characterization of MMTCu and the nano composites (CA/MMTCu and Ch/MMTCu), were carried out using XRD, AA, TGA, DSC and microbiological analysis. The nano composites showed to be more stable at higher temperature, resulting from the incorporation of MMTCu into the polymer. On the other hand, the results indicated that the antibacterial effect of nano composite increased with the proportion of MMTCu added. (author)

  16. Electrochemical synthesis, structure and phase composition of nano structured amorphous thin layers of NiW and Ni-Mo

    International Nuclear Information System (INIS)

    Vitina, I.; Lubane, M.; Belmane, V.; Rubene, V.; Krumina, A.

    2006-01-01

    Full text: Nano structured Ni-W thin layers containing W 6-37 wt.% were electrodeposited on a copper substratum. The W content in the layer changes, and it is determined by the electrolyte pH in the range 8.0-9.6 and the cathode current density in the range 1.0-10.0 A/dm 2 . The atomic composition and thermal stability of structure of the electrodeposited thin layers depend for the most part on the conditions of the electrodeposition and less on the W content in the layer. Cracking of the Ni-W layers electrodeposited at the electrolyte pH 8.5 and containing 34-37 wt.% W and 8.5 wt.% W was observed. The cracking increases at heating at 400 deg C for 50 h. On the contrary, no cracking of the Ni-W layer electrodeposited at the electrolyte pH 9.0 and containing 25 wt.% W was observed. The atomic composition of the layer remains practically unchanged at heating at 400 deg C for 50 h. The layer binds oxygen up to 7 wt.%. According to X-ray diffraction, in spite of the W content 35-37 wt.% in the layer, nano structured layers rather than amorphous layers were obtained which at heating at 400 deg C depending on the W content crystallises as Ni or intermetallic compounds Ni x W y if the W content is approx. 25 wt.%. Amorphous Ni-Mo alloys containing 35-52 wt.% Mo was electrodeposited on copper substratum at the cathode current densities of 0.5-1.5 A/dm2 and the electrolyte pH 6.8-8.6. Formation of thin layer (∼1-2μm) of X-ray amorphous Ni-Mo alloy, the Mo content, the characteristics of structure depend on the electrodeposition process, the electrolyte pH, and the cathode current density. The Ni-Mo layer deposited at the electrolyte pH above 8.6 and below average 6.8 had a nanocrystalline structure rather than characteristics of amorphous structure. Ni- W and Ni-Mo alloys were electrodeposited from citrate electrolyte not containing ammonium ions

  17. Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process

    Science.gov (United States)

    Bamdad Barari; Thomas K. Ellingham; Issam I. Ghamhia; Krishna M. Pillai; Rani El-Hajjar; Lih-Sheng Turng; Ronald Sabo

    2016-01-01

    Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised...

  18. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Directory of Open Access Journals (Sweden)

    R. Senthilkumar

    2015-01-01

    Full Text Available Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014 alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  19. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  20. Nano structures for Medical Diagnostics Md

    International Nuclear Information System (INIS)

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  1. Bonding performance of self-adhesive flowable composites to enamel, dentin and a nano-hybrid composite.

    Science.gov (United States)

    Peterson, Jana; Rizk, Marta; Hoch, Monika; Wiegand, Annette

    2018-04-01

    This study aimed to analyze bond strengths of self-adhesive flowable composites on enamel, dentin and nano-hybrid composite. Enamel, dentin and nano-hybrid composite (Venus Diamond, Heraeus Kulzer, Germany) specimens were prepared. Three self-adhesive composites (Constic, DMG, Germany; Fusio Liquid Dentin, Pentron Clinical, USA; Vertise Flow, Kerr Dental, Italy) or a conventional flowable composite (Venus Diamond Flow, Heraeus Kulzer, Germany, etch&rinse technique) were applied to enamel and dentin. Nano-hybrid composite specimens were initially aged by thermal cycling (5000 cycles, 5-55 °C). Surfaces were left untreated or pretreated by mechanical roughening, Al 2 O 3 air abrasion or silica coating/silanization. In half of the composite specimens, an adhesive (Optibond FL, Kerr Dental, Italy) was used prior to the application of the flowable composites. Following thermal cycling (5000 cycles, 5-55 °C) of all specimens, shear bond strengths (SBS) and failure modes were analyzed (each subgroup n = 16). Statistical analysis was performed by ANOVAs/Bonferroni post hoc tests, Weibull statistics and χ 2 -tests (p composites on enamel and dentin were significantly lower (enamel: composite (enamel: 13.0 ± 5.1, dentin: 11.2 ± 6.3), and merely adhesive failures could be observed. On the nano-hybrid composite, SBS were significantly related to the pretreatment. Adhesive application improved SBS of the conventional, but not of the self-adhesive composites. The self-adhesive composite groups showed less cohesive failures than the reference group; the occurence of cohesive failures increased after surface pretreatment. Bonding of self-adhesive flowable composites to enamel and dentin is lower than bonding to a nano-hybrid composite.

  2. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    Science.gov (United States)

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (Porthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  3. Carbon Nano tube Composites for Electronic Packaging Applications: A Review

    International Nuclear Information System (INIS)

    Aryasomayajula, L.; Wolter, K.J.

    2013-01-01

    Composite engineering comprises of metal matrix composites. They have high strength-weight ratio, better stiffness, economical production, and ease of availability of raw materials. The discovery of carbon nano tubes has opened new possibilities to face challenges better. Carbon Nano tubes are known for their high mechanical strength, excellent thermal and electrical properties. Recent research has made progress in fabricating carbon nano tube metal matrix and polymer-based composites. The methods of fabrication of these composites, their properties and possible applications restricted to the field of electronic packaging have been discussed in this paper. Experimental and theoretical calculations have shown improved mechanical and physical properties like tensile stress, toughness, and improved electrical and thermal properties. They have also demonstrated the ease of production of the composites and their adaptability as one can tailor their properties as per the requirement. This paper reviews work reported on fabricating and characterizing carbon- nano tube-based metal matrix and polymer composites. The focus of this paper is mainly to review the importance of these composites in the field of electronics packaging.

  4. Preparation of composite micro/nano structure on the silicon surface by reactive ion etching: Enhanced anti-reflective and hydrophobic properties

    Science.gov (United States)

    Zeng, Yu; Fan, Xiaoli; Chen, Jiajia; He, Siyu; Yi, Zao; Ye, Xin; Yi, Yougen

    2018-05-01

    A silicon substrate with micro-pyramid structure (black silicon) is prepared by wet chemical etching and then subjected to reactive ion etching (RIE) in the mixed gas condition of SF6, CHF3 and He. We systematically study the impacts of flow rates of SF6, CHF3 and He, the etching pressure and the etching time on the surface morphology and reflectivity through various characterizations. Meanwhile, we explore and obtain the optimal combination of parameters for the preparation of composite structure that match the RIE process based on the basis of micro-pyramid silicon substrate. The composite sample prepared under the optimum parameters exhibits excellent anti-reflective performance, hydrophobic, self-cleaning and anti-corrosive properties. Based on the above characteristics, the composite micro/nano structure can be applied to solar cells, photodetectors, LEDs, outdoor devices and other important fields.

  5. Evaluation of the acquirement of nano composites of polypropylene and a bentonite organophilized by different methodologies

    International Nuclear Information System (INIS)

    Paiva, Lucilene B. de; Morales, Ana R.; Branciforti, Marcia C.; Bretas, Rosario E.S.

    2009-01-01

    This work describes the organophilization of an argentinean sodium bentonite with a quaternary ammo nium salt, by two methodologies: cation exchange in aqueous dispersion and intercalation in semi-solid medium. The modified samples were used in the preparation of nano composites, with polypropylene as a matrix and polypropylene-graft-maleic anhydride as a coupling agent, through melt intercalation by using a twin-screw micro extruder. The organophilic bentonites were characterized by the swelling capacity test in water and in xylene and by X-ray diffraction, and the nano composites were characterized by X-ray diffraction and transmission electronic microscopy. The results showed that were obtained nano composites with structures partially intercalated and exfoliated. (author)

  6. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  7. Performance enhancement of quantum dot-sensitized solar cells based on polymer nano-composite catalyst

    International Nuclear Information System (INIS)

    Seo, Hyunwoong; Gopi, Chandu V.V.M.; Kim, Hee-Je; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2017-01-01

    Highlights: •We studied polymer nano-composite containing TiO 2 nano-particles as a catalyst. •Polymer nano-composite was applied for quantum dot-sensitized solar cells. •Polymer nano-composite catalyst was considerably improved with TiO 2 nano-particles. •Polymer nano-composite showed higher photovoltaic performance than conventional Au. -- Abstract: Polymer nano-composite composed of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) and TiO 2 nano-particles was deposited on fluorine-doped tin oxide substrate and applied as an alternative to Au counter electrode of quantum dot-sensitized solar cell (QDSC). It became surface-richer with the increase in nano-particle amount so that catalytic reaction was increased by widened catalytic interface. Electrochemical impedance spectroscopy and cyclic voltammetry clearly demonstrated the enhancement of polymer nano-composite counter electrode. A QDSC based on polymer nano-composite counter electrode showed 0.56 V of V OC , 12.24 mA cm −2 of J SC , 0.57 of FF, and 3.87% of efficiency and this photovoltaic performance was higher than that of QDSC based on Au counter electrode (3.75%).

  8. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    Energy Technology Data Exchange (ETDEWEB)

    Parali, Levent, E-mail: levent.parali@cbu.edu.tr [Department of Electronics and Automation, Celal Bayar University, Manisa (Turkey); Şabikoğlu, İsrafil [Department of Physics, Celal Bayar University, Manisa (Turkey); Kurbanov, Mirza A. [Institute of Physics, Academy of Sciences of Azerbaijan, Baku (Azerbaijan)

    2014-11-01

    Highlights: • We prepared hybrid structured piezocomposites. • We examine thermostimulated depolarization of piezocomposites. • We examine frequency characteristic of piezocomposites with SiO{sub 2} and BaTiO{sub 3}. • The piezocomposites can be used in acoustic applications at 5 Hz–40 kHz. - Abstract: A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO{sub 3}, SiO{sub 2} to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO{sub 3} or SiO{sub 2}), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT–PVDF) and the hybrid structure (PZT–PVDF–BaTiO{sub 3}) composite are compared. The d{sub 33} value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d{sub 33} value and the coupling factor of the hybrid structure (PZT–HDPE–SiO{sub 2}) have exhibited about 68 and 52% increase according to microstructure composite (PZT–HDPE), respectively.

  9. Digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing

    Science.gov (United States)

    Jiang, Wei; He, Xiaoning; Liu, Hongzhong; Yin, Lei; Shi, Yongsheng; Ding, Yucheng

    2014-11-01

    In this article, we report on the digital selective fabrication of micro/nano-composite structured TiO2 nanorod arrays by laser direct writing. The pattern of TiO2 nanorod arrays can be easily designed and fabricated by laser scanning technology integrated with a computer-aided design system, which allows a high degree of freedom corresponding to the various pattern design demands. The approach basically involves the hydrothermal growth of TiO2 nanorod arrays on a transparent conductive substrate, the micropattern of TiO2 nanorod arrays and surface fluorination treatment. With these micro/nano-composite TiO2 nanorod array based films, we have demonstrated superhydrophilic patterned TiO2 nanorod arrays with rapid water spreading ability and superhydrophobic patterned TiO2 nanorod arrays with an excellent droplet bouncing effect and a good self-cleaning performance. The dynamic behaviours of the water droplets observed on the patterned TiO2 nanorod arrays were demonstrated by experiments and simulated by a finite element method. The approaches we will show are expected to provide potential applications in fields such as self-cleaning, surface protection, anticrawling and microfluidic manipulation.

  10. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2013-12-01

    Full Text Available Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2 nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM. The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05. There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001. L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  11. Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalized multi-walled carbon nanotubes nano-composite

    International Nuclear Information System (INIS)

    Xu Jun; Yao Pei; Li Xuan; He Fei

    2008-01-01

    Water-soluble and conducting sulfonated polyaniline (SPAN)/phenylamine groups contained MWNTs (p-MWNTs) nano-composite were synthesized by in situ oxidation polymerization followed by sulfonation and hydrolysis. TEM, Raman spectroscopy, FTIR, XPS, TGA and standard four-probe methods were employed to characterize morphology, chemical structure and performance of the nano-composite. The results show that phenylamine groups are grafted on the surface of p-MWNTs via amide bond and oxidized phenylamine groups initiate polyaniline polymerized on the surface of p-MWNTs. SPAN chains covalently attached to p-MWNTs render p-MWNTs compatibility with SPAN matrix and lead to SPAN/p-MWNTs nano-composite highly soluble and stable in water. Improved thermal stability illuminate existence of a new phase in the nano-composite where there is chemical interaction between p-MWNTs and SPAN coatings. Owing to incorporation of p-MWNTs conductivity of the nano-composite at room temperature is increased by about two orders of magnitude over neat SPAN

  12. BACTERICIDE IMPACT OF POLYMER-STABILIZED MULTI-FUNCTIONAL NANO-COMPOSITES

    Directory of Open Access Journals (Sweden)

    Graskova I.A.

    2012-08-01

    Full Text Available Synthesis on the basis of natural matrices in order to acquire products with the desired properties is one of the promising trends of modern science. Using polysaccharides as a matrix allowed to generate derivatives with diverse structures and new properties. Growing interest towards anti-microbe effect of selenium-containing nano-composites is induced by the phenomenon of antibiotic-resistance of contemporary pathogenic microorganisms.Clavibacter genus bacteria are the most significant and widely spread among gram-positive bacteria. Bacteria cells are static pleimorphous rods, normally singular, sometimes coupled or joined in short chains, strict anaerobes in need of certain growth factors, non-sporogenous. Clavibacter michiganensis subsp. sepedonicus cause potato ring rot. At the tuber slice the damage is shaped as a ring; growing bacteria are accumulated in the conducting vessels causing their occlusion and therefore gradual withering of leaves and stem. This disease is distributed at all the continents including Australia. Harvest loss through ring rot damage may reach 10-45%.Our work was aimed at the study of complex interaction between microbe cultivar and selenium-based nanocomposites. Bacterial strain Аs1405 was acquired from the All-Russia collection of microorganisms, IMBP RAS. This genus is not included in the classification of pathogenic microorganisms by pathogenic groups of Sanitary-Epidemiological Rules SP 1.3.2322-08. The present study was focused on characteristics of the acquired strain.Fluorescent and electronic-scanning microscope was used to acquire photographs of bacterial cells. Pathogen was identified by PCR-analysis, which confirmed the presence of DNA of desired size. The extracted DNA was sequenced with the sequenced sequence added to Gen Bank under the number HQ394204. Cellulolytic and phytotoxic activity of this strain was determined.Chemistry Institute named A.E. Favorsky provided water-soluble nano-composites

  13. Fabrication and thermomechanical properties of nano-SiC/carbon nano-tubes composites

    International Nuclear Information System (INIS)

    Lanfant, Briac

    2014-01-01

    Ceramic carbides materials such as SiC, due to their refractory nature and their low neutron absorption are believed to be promising candidates for high temperature nuclear or aerospace applications. However, SiC brittleness has limited its structural application. In this context this work examines in a first part the possibilities to perform dense nano-structured SiC matrix by SPS without the use of sintering additive. Indeed a reduction of grain size (below 100 nm) accompanied by a high final density seem to be the solutions to counteract the brittleness and thus to improve mechanical properties. Dense (95%) and nano-structured (grain size around 100 nm) SiC samples were obtained thanks to the realization of an effective dispersion technique and the study on the sintering parameters effect. High hardness (2200 Hv) and decent fracture toughness (3.0 MPa.m1/2) were achieved. This first work also showed the preponderant influence of recurrent pollutants (oxygen and carbon) found in SiC powders on the final microstructure and mechanical properties of sintered samples. The oxygen as silica or silicon oxycarbide seems to promote densification mechanisms while free carbon (3.5 %wt) causes lower grain size and densification state. Mechanical properties with carbon are also negatively impacted (950 Hv and 2.4 MPa.m1/2). Such degradation is due by the specific localization of carbon structure between the grains. In return of the expected mechanical properties improvement by reducing the grain size, the thermal conductivity is drastically decrease of due to the phonon scattering at the grain boundaries. With the aim of reducing this effect, a second study was initiated by introducing multi-walled carbon nano-tubes (MWCNTs) into the SiC matrix. The MWCNTs by exhibiting a high toughness could also help to enhance the mechanical properties. Green bodies with different amounts of well dispersed MWCNTs (0 %wt to 5 %wt) were realized. Like free carbon, MWCNTs are located between

  14. Nano-modification to improve the ductility of cementitious composites

    International Nuclear Information System (INIS)

    Yeşilmen, Seda; Al-Najjar, Yazin; Balav, Mohammad Hatam; Şahmaran, Mustafa; Yıldırım, Gürkan; Lachemi, Mohamed

    2015-01-01

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO 3 was more effective compared to nano-silica. However, the crystal structure of CaCO 3 played a very important role in the range of expected improvements

  15. Fracture surface analysis on nano-SiO{sub 2}/epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Rongguo [Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Hunan 411105 (China)], E-mail: zhaorongguo@xtu.edu.cn; Luo Wenbo [Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Hunan 411105 (China)

    2008-06-15

    Fracture surface morphologies of nano-SiO{sub 2}/epoxy composite with different weight percentage of SiO{sub 2} are investigated using scanning electron microscopy. Two types of curing agent, dimethylbenzanthracene (DMBA) and methyltetrahydrophthalic anhydride (MeTHPA), are individually used for preparing the composites. It is found that the fracture surface morphology of the composite cured by DMBA shows as radial striations, which suggests a rapid brittle fracture mode, while the fracture surface morphology of the composite cured by MeTHPA shows as regularly spaced 'rib' markings, which indicates a stick-slip motion during the fracture process. Furthermore, the uniaxial tensile behavior under constant loading rate and ambient temperature are investigated. It is shown that the elastic modulus of the composite cured by DMBA firstly increases, and then decreases with the mass fraction of nano-SiO{sub 2} particles, but the elongation of the composite cured by MeTHPA is reversed with increasing fraction of nano-SiO{sub 2} particles. For nano-SiO{sub 2}/epoxy composite cured with MeTHPA that possesses a suitable fraction of nano-SiO{sub 2}, an excellent synthetic mechanical property on elastic modulus and elongation is obtained.

  16. Preparation of polymer-organo clay nano composites through the spray drying process

    International Nuclear Information System (INIS)

    Bernardo, Paulo R.A.; Pessan, Luiz A.; Carvalho, Antonio J.F. de; Vidotti, Suel E.

    2011-01-01

    The objective of the work was the study and preparation of polymer nano composites with montmorillonite organo clays (MMT) through the spray drying process. A new technique was proposed and tested to obtaining polymer nano composites, based on the use of the spray drying process to produce a nano composite with high clay content. The process consisted of the following stages: clay intercalation in water solution, with after addition of polyvinyl alcohol (PVOH) and a hydro soluble polyester ionomer (GEROLPS20) as exfoliation agents; spray drying the mixture obtained; incorporation powder in EVOH, PET e PP matrix. The effects of exfoliation agent on morphological and thermal properties of the nano composites were studied by XRD, transmission electron microscopy (TEM) and TGA. The results demonstrate that the process of spray drying is an innovative way to obtain a nano composite with high clay content. (author)

  17. Porous quasi three-dimensional nano-Mn3O4 + PbO2 composite as supercapacitor electrode material

    International Nuclear Information System (INIS)

    Dan Yuanyuan; Lin Haibo; Liu Xiaolei; Lu Haiyan; Zhao Jingzhe; Shi Zhan; Guo Yupeng

    2012-01-01

    Highlights: ► We prepare nano-PbO 2 + Mn 3 O 4 composite material by composite deposition method. ► The nano-PbO 2 + Mn 3 O 4 composite has porous quasi three-dimensional structure. ► Maximum electrochemically effective area (R F ) of the composite is 72. ► The composite shows high specific capacitance up to ∼340 F g −1 . ► A general knowledge of the pesudocapacitance behavior of the composite is acquired. - Abstract: Nano-Mn 3 O 4 + PbO 2 composite electrode materials with different compositions are prepared by anodic composite electrodeposition in Pb 2+ plating solution containing suspended nano-Mn 3 O 4 particles (40–60 nm). The particles are synthesized via one-step homogeneous precipitation at low temperature. The composite materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) analyses. The results indicate that the composite composed of γ-Mn 3 O 4 and β-PbO 2 is porous and quasi three-dimensional (3D), and its maximum electrochemically effective area ratio (R F ) is 72. The capacitance performance of the composite is determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge–discharge test. The composite shows a high specific capacitance up to 338 F g −1 .

  18. Novel Composite Powders with Uniform TiB2 Nano-Particle Distribution for 3D Printing

    Directory of Open Access Journals (Sweden)

    Mengxing Chen

    2017-03-01

    Full Text Available It is reported that the ductility and strength of a metal matrix composite could be concurrently improved if the reinforcing particles were of the size of nanometers and distributed uniformly. In this paper, we revealed that gas atomization solidification could effectively disperse TiB2 nanoparticles in the Al alloy matrix due to its fast cooling rate and the coherent orientation relationship between TiB2 particles and α-Al. Besides, nano-TiB2 led to refined equiaxed grain structures. Furthermore, the composite powders with uniformly embedded nano-TiB2 showed improved laser absorptivity. The novel composite powders are well suited for selective laser melting.

  19. A novel approach in preparing polymer/nano-CaCO3 composites

    Institute of Scientific and Technical Information of China (English)

    Zhengying LIU; Runze YU; Mingbo YANG; Jianmin FENG; Wei YANG; Bo YIN

    2008-01-01

    An novel compounding process using nano-CaCO3 aqueous suspension for preparing polymer/ nano-CaCO3 composites with nanoparticles dispersed at the nanoscale is reported. The process is called the mild mixing method. In this method, the pre-dispersed nano-particle suspensions are blended with melting polymers in a weak shearing field using an extruder, followed by removing the water from the vent. The four typical poly-meric nanocomposites were prepared by mild mixing method. The dispersion of nano-CaCO3 in the matrix of the polymer at the nanoscale was confirmed by scanning electron microscopy (SEM). The molecular weights of polycarbonate (PC) and its nanocomposite showed that the degradation had not occurred during the mild mixing processing. The mechanical properties of the composite with 1.5 wt-% nano-CaCO3 improve slightly. It proved that this approach is suitable for the preparation of nano-composites based on both polar and non-polar polymers.

  20. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  1. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  2. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Science.gov (United States)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  3. Oxidation Behavior of AlN/h-BN Nano Composites at High Temperature

    International Nuclear Information System (INIS)

    Jin Haiyun; Huang Yinmao; Feng Dawei; He Bo; Yang Jianfeng

    2011-01-01

    Both AlN/ nano h-BN composites and AlN/ micro h-BN composites were fabricated. The high temperature oxidation behaviors were investigated at 1000deg. C and 1300deg. C using a cycle-oxidation method. The results showed that there were little changes of both nano composites and monolithic AlN ceramic at temperature of 1000deg. C. And at 1300deg. C, the oxidation dynamics curve of composites could be divided into two courses: a slowly weight increase and a rapid weight decrease, but the oxidation behavior of nano composites was better than micro composites. It was due to that the uniform distribution of oxidation production (Al 18 B 4 O 33 ) surround the AlN grains in nano composites and the oxidation proceeding was retarded. The XRD analysis and SEM observations showed that there was no BN remained in the composites surface after 1300deg. C oxidation and the micropores remain due to the vaporizing of B 2 O 3 oxidized by BN.

  4. Investigation on Nano composite Membrane of Multi walled Carbon Nano tube Reinforced Polycarbonate Blend for Gas Separation

    International Nuclear Information System (INIS)

    Kausar, A.

    2016-01-01

    Carbon nano tube has been explored as a nano filler in high performance polymeric membrane for gas separation. In this regard, nano composite membrane of polycarbonate (PC), poly(vinylidene fluoride-co-hexafluoropropylene) (PVFHFP), and multi walled carbon nano tube (MWCNT) was fabricated via phase inversion technique. Poly (ethylene glycol) (PEG) was employed for the compatibilization of the blend system. Two series of PC/PVFHFP/PEG were developed using purified P-MWCNT and acid functional A-MWCNT nano filler. Scanning and transmission electron micrographs have shown fine nano tube dispersion and wetting by matrix, compared with the purified system. Tensile strength and Young s modulus of PC/PVFHFP/PEG/MWCNT-A 1-5 were found to be in the range of 63.6-72.5 MPa and 110.6-122.1 MPa, respectively. The nano composite revealed 51% increase in Young s modulus and 28% increase in tensile stress relative to the pristine blend. The A-MWCNT was also effective in enhancing the perm selectivity αCO 2 /N 2 (31.2-39.9) of nano composite membrane relative to the blend membrane (21.6). The permeability ρCO 2 of blend was 125.6 barrer; however, the functional series had enhancedρCO 2 values ranging from 142.8 to 186.6 barrer. Moreover, A-MWCNT loading improved the gas diffusivity of PC/PVFHFP/PEG/MWCNT-A 1-5; however, filler content did not significantly influence the CO 2 and N 2 solubility.

  5. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    International Nuclear Information System (INIS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-01-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm"2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  6. BACTERICIDE IMPACT OF POLYMER-STABILIZED MULTI-FUNCTIONAL NANO-COMPOSITES

    OpenAIRE

    Graskova I.A.; М.А. Zhivet’yev; G.B. Borovskii; B.G. Sukhov

    2012-01-01

    Synthesis on the basis of natural matrices in order to acquire products with the desired properties is one of the promising trends of modern science. Using polysaccharides as a matrix allowed to generate derivatives with diverse structures and new properties. Growing interest towards anti-microbe effect of selenium-containing nano-composites is induced by the phenomenon of antibiotic-resistance of contemporary pathogenic microorganisms.Clavibacter genus bacteria are the most significant and w...

  7. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  8. Perovskite structures in the formation of nano-rods in REBa2Cu3O7-δ films self-organization to perovskite structures

    International Nuclear Information System (INIS)

    Mukaida, Masashi; Kai, Hideki; Shingai, Yuki

    2009-01-01

    Cubic perovskite structure has been found to play an important role for the nano-rod formation in REBa 2 Cu 3 O 7-δ films. BaWO 4 , with a sheelite structure, and BaNb 2 O 6 , with a tungsten bronze structure, were doped into REBa 2 Cu 3 O 7-δ targets. Laser-deposited, these materials form nano-rods in REBa 2 Cu 3 O 7-δ films accompanied by Ln elements, resulting in the composition of a pseudo-cubic perovskite structure. This was confirmed by selected area electron diffraction patterns (SADP) and composition mapping using energy-dispersive X-ray spectroscopy scanning transmission electron microscope (EDS-STEM) analysis. BaWO 4 with a sheelite structure, and BaNb 2 O 6 with a tungsten bronze structure, doped into targets no longer retain their structures, but can form pseudo-cubic perovskite structures in laser-deposited REBa 2 Cu 3 O 7-δ films. The perovskite crystal structure is thought to be important for nano-rod formation in the laser deposited REBa 2 Cu 3 O 7-δ film. (author)

  9. Editorial Nano structures for Medicine and Pharmaceuticals

    International Nuclear Information System (INIS)

    Xing-Jie, L.; Kumar, A.; Donglu, S.; Daxiang, C.

    2012-01-01

    The rapid developments in nano structured materials and nano technology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of bio markers, cancer diagnosis, cancer therapy, and imaging. This field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, for controlling shape and size at nanometer scale to develop highly advanced materials for biomedical application and even to design better pharmaceutical products. In recent years, novel nano structure with multi functionalities has been focused on the use of nano structures toward solving problems of biology and medicine. The main scope of this special issue is to demonstrate the latest achievement of nano technology and its application in nano medicine particularly in new approaches for drug delivery such as targeted drug delivery system, nano structure for drug storage, nano materials for tissue engineering, medical diagnosis and treatment, and generation of new kinds of materials from biological sources. Therefore, many critical issues in nano structured materials, particularly their applications in biomedicine, must be addressed before clinical applications. This special issue devotes several review and research articles encompassing various aspects of nano materials for medicine and pharmaceuticals.

  10. Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhi [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng Qingling, E-mail: biomater@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yu Bo; Li Songjian [Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China)

    2011-04-08

    To meet the challenges of designing an injectable scaffold and regenerating bone with complex three-dimensional (3D) structures, a biomimetic and injectable hydrogel scaffold based on nano-hydroxyapatite (HA), collagen (Col) and chitosan (Chi) is synthesized. The chitosan/nano-hydroxyapatite/collagen (Chi/HA/Col) solution rapidly forms a stable gel at body temperature. It shows some features of natural bone both in main composition and microstructure. The Chi/HA/Col system can be expected as a candidate for workable systemic minimally invasive scaffolds with surface properties similar to physiological bone based on scanning electron microscopic (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) results.

  11. Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite

    International Nuclear Information System (INIS)

    Huang Zhi; Feng Qingling; Yu Bo; Li Songjian

    2011-01-01

    To meet the challenges of designing an injectable scaffold and regenerating bone with complex three-dimensional (3D) structures, a biomimetic and injectable hydrogel scaffold based on nano-hydroxyapatite (HA), collagen (Col) and chitosan (Chi) is synthesized. The chitosan/nano-hydroxyapatite/collagen (Chi/HA/Col) solution rapidly forms a stable gel at body temperature. It shows some features of natural bone both in main composition and microstructure. The Chi/HA/Col system can be expected as a candidate for workable systemic minimally invasive scaffolds with surface properties similar to physiological bone based on scanning electron microscopic (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) results.

  12. Thermal and mechanical properties of palm oil-based polyurethane acrylate/ clay nano composites prepared by in-situ intercalative method and electron beam radiation

    International Nuclear Information System (INIS)

    Salih, A.M.; Mansor Ahmad; Nor Azowa Ibrahim; Rida Tajau; Wan Mohd Zin Wan Yunus

    2013-01-01

    Full-text: Palm oil based-polyurethane acrylate (POBUA)/ clay nano composites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4 ' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5 % wt), and then subjected to polycondensation reaction with MDI. Nano composites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nano clay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Angstrom, while the structure morphology of the nano composites was investigated by TEM and SEM. The nano composites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nano composites was significantly increased by incorporation of nano clay into the polymer matrix. DSC results reveal that the T g was shifted to higher values, gradually with increasing the amount of filler in the nano composites. Tensile strength and Young's modulus of the nano composites showed remarkable improvement compared to the neat POBUA. (author)

  13. Polyurethane/organo clay nano composite materials via in-situ polymerization

    International Nuclear Information System (INIS)

    Rehab, A.; Agag, T; Akelah, A.; Shalaby, N.

    2005-01-01

    Polyurethane/organo clay nano composites have been synthesized via in situ polymerization. The organo clay firstly prepared by intercalation of lyamine or amino lauric acid into montmorillonite-clay (MMT) through ion exchange process. The syntheses of polyurethane/organo clay hybrid films containing different ratio of clay were carried out by swelling the organo clay, into diol and diamine or into different kinds of diols, followed by addition of diisocyanate. The nano composites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and x-ray diffraction. X-ray analysis showed that the d-spacing increased to more than 44A since there is no peaks corresponding to do spacing in organo clay with all the ratios (1, 5, 10, 20%). Also, SEM results confirm the dispersion of nanometer silicate layers in the polyurethane matrix. This indicated that the clay was completely exfoliated and homogeneous dispersion in the polyurethane matrix. Also, it was found that the presence of organo clay leads to improvement the mechanical properties. Since, the tensile strength increased with increasing the organo clay contents to 20% by the ratio 194% in compared to the 1H: with 0% organo clay. Also, the elongation is a decreases with increasing the organo clay contents. The results shown the tensile strength of PU/SMA/ALA-MMT nano composites is high by 6-7 times than the corresponding to PU/Tvr-MMT

  14. A nano lamella NbTi–NiTi composite with high strength

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiang [Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Applied Physics of Jiangxi Academy of Sciences, Nanchang 330029 (China); State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); Jiang, Daqiang [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); School of Mechanical and Chemical Engineering, The University of Western Australia, WA 6009 (Australia); Hao, Shijie; Yu, Cun; Zhang, Junsong [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); Ren, Yang [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lu, Deping; Xie, Shifang [Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Applied Physics of Jiangxi Academy of Sciences, Nanchang 330029 (China); Cui, Lishan, E-mail: lishancui63@126.com [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China)

    2015-05-01

    A hypereutectic Nb{sub 60}Ti{sub 24}Ni{sub 16} (at%) alloy was prepared by vacuum induction melting, and a nano lamellae NbTi–NiTi composite was obtained by hot-forging and wire-drawing of the ingot. Microscopic analysis showed that NbTi and NiTi nano lamellae distributed alternatively in the composite, and aligned along the wire axial direction, with a high volume fraction (~70%) of NbTi nano lamellae. In situ synchrotron X-ray diffraction analysis revealed that stress induced martensitic transformation occurred upon loading, which would effectively weaken the stress concentration at the interface and avoid the introduction of defects into the nano reinforced phase. Then the embedded NbTi nano lamellae exhibited a high elastic strain up to 2.72%, 1.5 times as high as that of the Nb nanowires embedded in a conventional plastic matrix, and the corresponding stress carried by NbTi was evaluated as 2.53 GPa. The high volume fraction of NbTi nano lamellae improved the translation of high strength from the nano reinforced phase into bulk properties of the composite, with a platform stress of ~1.7 GPa and a fracture strength of ~1.9 GPa.

  15. Development of Novel Nano Polymer Composite Material for Solar Energy Conversion

    International Nuclear Information System (INIS)

    Sheha, E.; Elrasasi, T.Y.; El mansy, M.K.; Abdallah, B.

    2014-01-01

    PVA: Co 5 (OH) 8 (NO 3 ) 2 •2H 2 O polymer composite has been produced by casting of aqueous solution of mixed composite component. The nano polymer composites were characterized using structure techniques; XRD, SEM, FT-IR and TGA. The results indicated the formation composite without PVA degree of crystallinity variation. The measurements of electrical conductivity for the composites illustrated domination of ion conduction with activation energy (0.65-0.90) eV. The optical absorption illustrated an absorption peak around (530-540) nm which suggest electronic direct transition via energy gap width (1.90-2.16) eV. The electrochemical illustrated electrochemical band gap (1.97-3.26) eV

  16. Structural Characteristics of Bimetallic Catalysts Supported on Nano-Ceria

    Directory of Open Access Journals (Sweden)

    J. F. Bozeman

    2011-01-01

    Full Text Available Cu-Pt bimetal catalysts supported on nanocrystalline CeO2 (nano-ceria are synthesized via the low-cost sol-gel approach followed by impregnation processing. The average particle size of the catalytic composites is 63 nm. Ceria nanopowders sequentially impregnated in copper solution and then in Pt solution transformed into Pt-skin-structured Cu-Pt/ceria nanocomposite, based on the surface elemental and bulk compositional analyses. The ceria supporter has a fluorite structure, but the structure of Cu and Pt catalytic contents, not detected by X-ray diffraction spectroscopy due to the low loading level, is yet conclusive. The bimetallic catalytic nanocomposites may potentially serve as sulfur-tolerant anode in solid oxide fuel cells.

  17. Self-sensing and thermal energy experimental characterization of multifunctional cement-matrix composites with carbon nano-inclusions

    Science.gov (United States)

    D'Alessandro, A.; Pisello, A. L.; Sambuco, Sara; Ubertini, F.; Asdrubali, F.; Materazzi, A. L.; Cotana, F.

    2016-04-01

    The recent progress of Nanotechnology allowed the development of new smart materials in several fields of engineering. In particular, innovative construction materials with multifunctional enhanced properties can be produced. The paper presents an experimental characterization on cement-matrix pastes doped with Carbon Nanotubes, Carbon Nano-fibers, Carbon Black and Graphene Nano-platelets. Both electro-mechanical and thermo-physical investigations have been carried out. The conductive nano-inclusions provide the cementitious matrix with piezo-resistive properties allowing the detection of external strain and stress changes. Thereby, traditional building materials, such as concrete and cementitious materials in general, would be capable of self-monitoring the state of deformation they are subject to, giving rise to diffuse sensing systems of structural integrity. Besides supplying self-sensing abilities, carbon nano-fillers may change mechanical, physical and thermal properties of cementitious composites. The experimental tests of the research have been mainly concentrated on the thermal conductivity and the optical properties of the different nano-modified materials, in order to make a critical comparison between them. The aim of the work is the characterization of an innovative multifunctional composite capable of combining self-monitoring properties with proper mechanical and thermal-energy efficiency characteristics. The potential applications of these nano-modified materials cover a wide range of possibilities, such as structural elements, floors, geothermal piles, radiant systems and more.

  18. Preparation and characterization of nano hydroxyapatite/polymeric composites materials. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); El-Rashidy, Zenab M. [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); Salama, Aida A. [Biophysics Dept., Faulty of Science, El-Azhar Univ., Cairo (Egypt)

    2011-10-17

    Highlights: {yields} The formation and coating of CHA increased by increasing polymer content. {yields} The size of the prepared CHA was within nano-range scale. {yields} The composites had homogeneity and CHA formed within the polymeric matrix. - Abstract: The present study is focused on preparation of nano composite materials and the effect of citric acid on their different properties. The formation of nano HA and its interaction with chitosan (C), gelatin (G) polymers and citric acid (CA) materials were studied. The Fourier Transformed Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), and scanning electron microscope (SEM) were used to characterize these composite materials. The compressive strength (CS) was also measured to know the reinforcement of the prepared composites. The results show that carboxylic and amino groups play crucial role for HA formation on chitosan-gelatin polymeric matrix in the presence of citric acid (CA). The formation of nano HA particles and its average size of crystallite is increased with increase of CG content and decreased with addition of CA. Also, the HA formation and binding strength between its particles are improved into the composites especially with CA. The nano-composites containing the best ratio of nHA (70%) with CA (0.2 M) are promising for medical applications in the future.

  19. Nuclear magnetic resonance applied to the study of polymeric nano composites

    International Nuclear Information System (INIS)

    Tavares, Maria Ines Bruno

    2011-01-01

    Polymers and nanoparticles based nano composites were prepared by intercalation by solution. The obtained nano composites were characterized mainly by the nuclear magnetic spectroscopy (NMR), applying the analysis of carbon-13 (polymeric matrix), silicon-29 (nanoparticle), and by determination of spin-lattice relaxation of the hydrogen nucleus (T 1 H) (polymeric matrix). The NMR have presented a promising technique in the characterization of the nano charge dispersion in the studied polymeric matrixes.

  20. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization

    International Nuclear Information System (INIS)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A.; Medeiros, Eliton S. de; Rosa, Morsyleide F.

    2011-01-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about ∼10 -1 S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  1. The Degradation of Mechanical Properties in Halloysite Nano clay-Polyester Nano composites Exposed in Seawater Environment

    International Nuclear Information System (INIS)

    Saharudin, M.S.; Saharudin, M. Sh.; Wei, J.; Shyha, I.; Inam, F.

    2016-01-01

    Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nano composites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nano clay-polyester nano composites. Results confirmed that the addition of halloysite nano clay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nano clay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m"2 to 0.48 kJ/m"2 (32% decrease). Interestingly, the fracture toughnessκ_1C increased with the addition of halloysite nano clay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nano clay-matrix interface influenced by seawater absorption and agglomeration of halloysite nano clay.

  2. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    Science.gov (United States)

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites

  3. Preparation and Characterization of Pyrotechnics Binder-Coated Nano-Aluminum Composite Particles

    Science.gov (United States)

    Ye, Mingquan; Zhang, Shuting; Liu, Songsong; Han, Aijun; Chen, Xin

    2017-07-01

    The aim of this article is to protect the activity of nano-aluminum (Al) particles in solid rocket propellants and pyrotechnics. The morphology, structure, active aluminum content, and thermal and catalytic properties of the coated samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and oxidation-reduction titration methods. The results indicated that nano-Al particles could be effectively coated with phenolic resin (PF), fluororubber (Viton B), and shellac through a solvent/nonsolvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 5-15 nm. Analysis of the active Al content revealed that Viton B coating had a much better protective effect. The TG-DSC results showed that the energy amount and energy release rate of PF-, Viton B-, and shellac-coated Al particles were larger than those of the raw nano-Al particles. The catalytic effects of coated Al particles on the thermal decomposition of ammonium perchlorate (AP) were better than those of raw nano-Al particles, and the effect of shellac-coated Al particles was significantly better than that of Viton B-coated Al particles.

  4. Study of thermal properties and the dispersion state of nano composites epoxy/clay

    International Nuclear Information System (INIS)

    Paz, Juliana D.; Bertholdi, Jonas; Toledo, Tais C.; Folgueras, Marilena V.; Pezzin, Sergio H.; Coelho, Luiz A.F.

    2011-01-01

    This work investigates an exfoliation/intercalation of nano clays in an epoxy resin by means of x-rays diffraction, scanning electronic microscopy, thermal gravimetric analysis and dilatometric analysis. A comparison of two techniques for preparing nano composites is addressed: mechanical stirring and sonication. X-rays analysis showed that an exfoliation/intercalation is occurring in some samples. TG analysis indicated and increase in thermal stability of the nano composites compared to the neat resin. Finally, dilatometric analysis indicates and increase in Tg for nano composites compared to the neat resin. (author)

  5. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  6. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  7. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-01

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ˜25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m-1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g-1 at a current density of 2.2 A g-1), energy density (68.6 W h kg-1) and power density (1319 W kg-1) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ˜96% after 1000 charge-discharge cycles.

  8. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites.

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-20

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ∼25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m(-1) at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g(-1) at a current density of 2.2 A g(-1)), energy density (68.6 W h kg(-1)) and power density (1319 W kg(-1)) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge-discharge cycles.

  9. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    International Nuclear Information System (INIS)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kuila, Tapas; Kim, Nam Hoon; Lee, Joong Hee

    2015-01-01

    Co 9 S 8 /reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co 9 S 8 nano-rods on the RGO surfaces. The average crystal size of the Co 9 S 8 nano rods grown on the RGO sheets were ∼25–36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co 9 S 8 /RGO composite was recorded as 1690 S m −1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co 9 S 8 /RGO composites. The Co 9 S 8 /RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g −1 at a current density of 2.2 A g −1 ), energy density (68.6 W h kg −1 ) and power density (1319 W kg −1 ) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge–discharge cycles. (paper)

  10. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications.

    Science.gov (United States)

    Noorbakhsh-Soltani, S M; Zerafat, M M; Sabbaghi, S

    2018-06-01

    Environmental concerns have led to extensive research for replacing polymer-based food packaging with bio-nano-composites. In this study, incorporation of nano-cellulose into gelatin and starch matrices is investigated for this purpose. Chitosan is used to improve mechanical, anti-fungal and waterproof properties. Experiments are designed and analyzed using response surface methodology. Nano-Cellulose is synthesized via acid hydrolysis and incorporated in base matrices through wet processing. Also, tensile strength test, food preservation, transparency in visible and UV and water contact angle are performed on the nano-composite films. DSC/TGA and air permeability tests are also performed on the optimal films. The results show that increasing nano-cellulose composition to 10% leads to increase the tensile strength at break to 8121 MN/m 2 and decrease the elongation at break. Also, increasing chitosan composition from 5% to 30% can enhance food preservation up to 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method

    Science.gov (United States)

    Pal, Arpan; Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta

    2018-03-01

    In the present study, the effects of WC nano-particles content on the microstructure, hardness, wear, and friction behavior of aluminum matrix composites are investigated. Al-WC nano composites with varying wt% of WC (0, 1, 1.5, and 2) are fabricated using ultrasonic cavitation assisted stir-cast method. The microstructure of the nano-composite samples is analyzed using optical microscopy and scanning electron microscopy. Elemental composition is determined by energy dispersive x-ray analysis. Vicker’s microhardness test is performed in different locations on the composite sample surface with a load of 50 gf and 10s dwell time. Wear and friction of the composites under dry sliding is studied using a pin-on-disk tribotester for varying normal load (10–40 N) and sliding speed (0.1–0.4 m/s). Uniform distribution of nano-WC is observed over composite surface without noticeable clustering. Reinforcement of nano-WC particles improves wear resistance and frictional behavior of the composite. Hardness is seen to increase with increase in wt% of nano-particles. Wear behavior of composites depends on formation of layers over the surface mixed with oxidized debris and counter-face particles. Wear mechanism changes from adhesion to abrasion with increase in wt% of hard nano particles.

  12. An Overview on the Improvement of Mechanical Properties of Ceramics Nano composites

    International Nuclear Information System (INIS)

    Silvestre, J.; Brito, J. D.; Silvestre, N.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMC_s have been greatly improved in the last decade. CMC_s are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide) are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMC_s can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMC_s are now changing from classical reinforcement (e.g., microscale fibres) to new types of reinforcement at nano scale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMC_s: Ceramics Nano composites (CNC_s)

  13. Effect of graphene oxide nano filler on dynamic behaviour of GFRP composites

    Science.gov (United States)

    Pujar, Nagabhushan V.; Nanjundaradhya, N. V.; Sharma, Ramesh S.

    2018-04-01

    Nano fillers like Alumina oxide, Titanium oxide, Carbon nano tube, Nano clay have been used to improve the mechanical and damping properties of fiber reinforced polymer composites. In the recent years Graphene oxide nano filler is receiving considerable attention for its outstanding properties. Literature available shows that Graphene oxide nano filler can be used to improve the mechanical properties. The use of Graphene oxide in vibration attenuation by enhancing the passive damping in fiber reinforced polymer composite has not been fully explored. The objective of this work is to investigate the dynamic behaviour of Glass fiber-reinforced composite embedded with Graphene oxide nano filler. Graphene oxide is dispersed in epoxy resin with various concentration (0.1%, 0.5% and 1%wt) using ultra-sonification process. Composite laminates were made using the traditional hand-lay-up followed by vacuum bag process. Experimental modal analysis using traditional `strike method' is used to evaluate modal parameters using FFT analyzer and Data Acquisition System. Experiments were carried out for two different fiber orientations viz 0 ➙ & 45 ➙ and two boundary conditions (Free-Free and Cantilever). The modal parameters such as natural frequency, mode shape, damping ratio were studied. This research work demonstrates the vibration damping behaviour with incorporation of Graphene oxide and provides a basic understanding of the damping characteristics in design and manufacture of high performance composites.

  14. Adaptive, tolerant and efficient composite structures

    CERN Document Server

    Sinapius, Michael

    2013-01-01

    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances.  Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along ...

  15. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  16. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2

    International Nuclear Information System (INIS)

    Pu Hongting; Liu Lu; Chang Zhihong; Yuan Junjie

    2009-01-01

    Organic/inorganic composite membranes based on polybenzimidazole (PBI) and nano-SiO 2 were prepared in this work. However, the preparation of PBI/SiO 2 composite membrane is not easy since PBI is insoluble in water, while nano-SiO 2 is hydrophilic due to the hydrophilicity of nano-SiO 2 and water-insolubility of PBI. Thus, a solvent-exchange method was employed to prepare the composite membrane. The morphology of the composite membranes was studied by scanning electron microscopy (SEM). It was revealed that inorganic particles were dispersed homogenously in the PBI matrix. The thermal stability of the composite membrane is higher than that of pure PBI, both for doped and undoped membranes. PBI/SiO 2 composite membranes with up to 15 wt% SiO 2 exhibited improved mechanical properties compared with PBI membranes. The proton conductivity of the composite membranes containing phosphoric acid was studied. The nano-SiO 2 in the composite membranes enhanced the ability to trap phosphoric acid, which improved the proton conductivity of the composite membranes. The membrane with 15 wt% of inorganic material is oxidatively stable and has a proton conductivity of 3.9 x 10 -3 S/cm at 180 deg. C.

  17. Stress development in particulate, nano-composite and polymeric coatings

    Science.gov (United States)

    Jindal, Karan

    2009-12-01

    The main goal of this research is to study the stress, structural and mechanical property development during the drying of particulate coatings, nano-composite coatings and VOC compliant refinish clearcoats. The results obtained during this research establish the mechanism for the stress development during drying in various coating systems. Coating stress was measured using a controlled environment stress apparatus based on cantilever deflection principle. The stress evolution in alumina coatings made of 0.4 mum size alumina particles was studied and the effect of a lateral drying was investigated. The stress does not develop until the later stages of drying. A peak stress was observed during drying and the peak stress originates due to the formation of pendular rings between the particles. Silica nanocomposite coatings were fabricated from suspension of nano sized silicon dioxide particles (20 nm) and polyvinyl alcohol (PVA) polymer. The stress in silica nano-composite goes through maximum as the amount of polymer in the coating increases. The highest final stress was found to be ˜ 110MPa at a PVA content of 60 wt%. Observations from SEM, nitrogen gas adsorption, camera imaging, and nano-indentation were also studied to correlate the coatings properties during drying to measured stress. A model VOC compliant two component (2K) acrylic-polyol refinish clearcoat was prepared to study the effects of a new additive on drying, curing, rheology and stress development at room temperature. Most of the drying of the low VOC coatings occurred before appreciable (20%) crosslinking. Tensile stress developed in the same timeframe as drying and then relaxed over a longer time scale. Model low VOC coatings prepared with the additive had higher peak stresses than those without the additive. In addition, rheological data showed that the additive resulted in greater viscosity buildup during drying.

  18. SYNTHESIS AND CORROSION PROTECTION BEHAVIOR OF EPOXYTiO2-MICACEOUS IRON OXIDE NANO - COMPOSITE COATING ON St-37

    Directory of Open Access Journals (Sweden)

    M. R. Khorram

    2016-03-01

    Full Text Available The micro layers micaceous iron oxide and nano-TiO 2 were incorporated into the epoxy resin by mechanical mixing and sonication process. Optical micrographs showed that the number and diameter size of nanoparticle agglomerates were decreased by sonication. The structure and composition of the nanocomposite was determined using transmission electron microscopy which showed the presence of dispersed nano-TiO 2 in the polymer matrix. The anticorrosive properties of the synthesized nano-composites coating were investigated using salt spray, electrochemical impedance spectroscopy and polarization measurement. The EIS results showed that coating resistance increased by addition of micaceous iron oxide micro layers and nano-TiO 2 particles to the epoxy coatings. It was observed that higher corrosion protection of nanocomposite coatings obtained by the addition of 3 %wt micaceous iron oxide and 4%wt nano-TiO 2 into epoxy resin.

  19. Aqueous degradation kinetics of pharmaceutical drug diclofenac by photo catalysis using nano structured titania–zirconia composite catalyst

    International Nuclear Information System (INIS)

    Das, L.; Barodia, S. K.; Sengupta, S.; Basu, J. K.

    2015-01-01

    Diclofenac is an anti-inflammatory pharmaceutical drug and its presence in a trace amount in waste water makes severe environmental pollution. The degradation of diclofenac was investigated by a photo catalytic process in presence of ultra violet irradiation at room temperature using titania and titania-zirconia nano composite catalysts in a batch reactor. The composite catalyst was prepared by sol-gel method and characterized by X-ray diffraction, transmission electron microscopy as well as BET surface area analyzer. The effect of various process parameters such as catalyst loading, initial concentration of diclofenac and p H of the experimental solution was observed on the degradation of diclofenac. The titania-zirconia nano composites exhibited reasonably higher photo catalytic activity than that of anatase form of titania without zirconia. The maximum removal of diclofenac of about 92.41% was achieved using Zr/Ti mass ratio of 11.8 wt% composite catalyst. A rate equation was proposed for the degradation of diclofenac using the composite catalyst. The values of rate constant (kc) and adsorption equilibrium constant (K1) were found to vary with the catalyst content in the reaction mixture.

  20. Polymer-layered silicate nano composite by UV-radiation curing: an original synthesis

    International Nuclear Information System (INIS)

    Keller, L.; Decker, C.; Zahouily, K.; Miehe-Brendle, J.; Le Meins, J.M.

    2004-01-01

    Full text.Because of the many hopes which they raise, the nano composite materials are the subject of an increasing number of scientific publications. Indeed, the intimate association of a polymer matrix and silicate nano-platelets leads to the formation of materials having mechanical and barriers properties improved (fire, gas, humidity...). A literature survey shows that these materials are generally produced by a thermal polymerization, which presents two major disadvantages: the use of organic solvents and a great consumption of energy. To overcome such limitations, photo initiated polymerization was chosen to synthesize nano composite materials. By this technology, called UV radiation curing, a solvent-free resin is transformed within seconds into a solid polymer upon exposure to UV-radiation at ambient temperature. The principal objective of this study was to develop photopolymerizable systems with clay particles having a layer structure (phyllosilicates). The clay mineral was made organophilic by treatment with an alkylammonium salt to allow the acrylate resin to penetrate into the expanded galleries. A morphological characterization of the materials obtained was carried out by X-rays diffraction and electronic microscopy transmission. The polymerization of the various resins under the UV exposure was followed in situ by using the real-time infrared spectroscopy (RT-FTIR) and attenuated total reflection (ATR). The results obtained show that the presence of the organo clay does not modify much the polymerization kinetics. The nano composite material thus obtained is transparent, insoluble in the organic solvents and presents improved mechanical properties, compared to the neat resin and the micro composite, for a load factor ranging between 2 and 5%wt. The addition of nanoparticles also makes it possible to reduce efficiently the brightness of coatings UV and finally confers to this material barriers properties higher than that of the photo crosslinked

  1. Polyaniline nanowires on TiO2 nano/microfiber hierarchical nano/microstructures: Preparation and their photocatalytic properties

    International Nuclear Information System (INIS)

    Yu Qiaozhen; Wang Mang; Chen Hongzheng; Dai Zhengwei

    2011-01-01

    Highlights: → We fabricate PANI nanowire-on-TiO 2 nano/microfiber hierarchical nano/microstructure composite fiber films by electrospinning, calcinations and in situ polymerization. → PANI/TiO 2 composite fiber film exhibits high photocatalytic activity for the degradation of dye MB. → The photocatalytic activity and reusability of PANI/TiO 2 composite fiber film were lower than those of pure TiO 2 fiber film. - Abstract: TiO 2 /PANI composite fiber films were fabricated by electrospinning, calcinations and in situ polymerization. The morphology and structure of the resulting composites were analyzed by scanning electron micrograph, transmission electron micrograph, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that this composite fiber film has a PANI nanowire-on-TiO 2 nano/microfiber hierarchical nano/microstructure. The surface morphology of this hierarchical nano/microstructure was related to the structure of TiO 2 nano/microfiber film, the time and temperature of in situ polymerization. Its photocatalytic property on methylene blue (MB) was studied, and the results showed that TiO 2 /PANI composite fiber film with this hierarchical nano/microstructure exhibited high photocatalytic activity for the degradation of MB under natural light. But both its photocatalytic activity and reusability were lower than those of pure TiO 2 fiber film. To improve the stability and reusability of TiO 2 /PANI composite fiber film, a direct chemical bonding of PANI chains onto TiO 2 surface, such as, the surface-initiated graft polymerization, is a useful method.

  2. Tuning the nano/micro-structure and properties of melt-processed ternary composites of polypropylene/ethylene vinyl acetate blend and nanoclay: The influence of kinetic and thermodynamic parameters

    CSIR Research Space (South Africa)

    Mofokeng, Tladi G

    2017-09-01

    Full Text Available The present study reports the dependence of the nano/micro-structure and properties of polypropylene (PP)/ethylene vinyl acetate (EVA)/nanoclay ternary composites on the kinetics and thermodynamics of the melt-mixing process. The size of dispersed...

  3. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    Science.gov (United States)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  4. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong, E-mail: cchen19@tigers.lsu.edu; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W. [Louisiana State University and LSU AgCenter, Department of Biological and Agricultural Engineering (United States); Gimble, Jeffrey M., E-mail: Jeffrey.Gimble@pbrc.edu [Tulane University School of Medicine, Center for Stem Cell Research & Regenerative Medicine (United States); Hayes, Daniel J., E-mail: danielhayes@lsu.edu [Louisiana State University and LSU AgCenter, Department of Biological and Agricultural Engineering (United States)

    2015-04-15

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell–particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  5. Adaptive, tolerant and efficient composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Martin; Sinapius, Michael (eds.) [German Aerospace Center DLR, Braunschweig (Germany). Inst. of Composite Structures and Adaptive Systems

    2013-07-01

    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances. Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along the complete process chain. The book provides basics as well as inspiring ideas for engineers working in the field of adaptive, tolerant and robust composite structures.

  6. Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac.

    Science.gov (United States)

    Li, Xingyi; Zhang, Zhaoliang; Chen, Hao

    2013-05-01

    In this paper, a fast forming nano-composite hydrogel was developed for potential application in ocular drug delivery. The optical transmission (OT) as well as rheological properties of nano-composite hydrogel was characterized. The developed nano-composite hydrogel given a high diclofenac micelles loading and provided a sustained release manner of diclofenac within 6h. The developed nano-composite hydrogel formulation was administrated into the eye as flowable solution, quickly forming a hydrogel that is able to resist of the blinking and flushing of tear, yet resulting in the prolonged residence time of pre-corneal. In vivo eye irritation test suggested that the developed nano-composite hydrogel was none-eye irritation might be suitable for various ocular applications. In vivo pharmacokinetic study indicated that the developed nano-composite hydrogel could significantly increase the bioavailability of diclofenac and maintain the concentration of diclofenac in aqueous humor above MEC at least 24h after administration as compared with that of the commercial diclofenac sodium eye drops, which might be able to reduce the frequency of administration for patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Structure property relationship of biological nano composites studies by combination of in-situ synchrotron scattering and mechanical tests

    International Nuclear Information System (INIS)

    Martinschitz, K.

    2005-06-01

    Biological materials represent hierarchical nano fibre composites with complicated morphology and architecture varying on the nm level. The mechanical response of those materials is influenced by many parameters like chemical composition and crystal structure of constituents, preferred orientation, internal morphology with specific sizes of features etc. In-situ wide-angle x-ray scattering (WAXS) combined with mechanical tests provide a unique means to evaluate structural changes in biological materials at specific stages of tensile experiments. In this way it is possible to identify distinct architectural/compositional elements responsible for specific mechanical characteristics of the biological materials. In this thesis, structure-property relationship is analyzed using in-situ WAXS in the tissues of Picea abies, coir fibre, bacterial cellulose and cellulose II based composites. The experiments were performed at the beamline ID01 of European synchrotron radiation facility in Grenoble, France. The tissues were strained in a tensile stage, while the structural changes were monitored using WAXS. Complex straining procedures were applied including cyclic straining. One of the main goals was to understand the stiffness recovery and strain hardening effects in the tissues. The results demonstrate that, in all cellulosics, the orientation of the cellulose crystallites is only the function of the external strain while the stiffness depends on the specific stage of the tensile experiment. Whenever the strain is increased, the tissues exhibit stiffness equal or larger than the initial one. The recovery of the mechanical function is attributed to the molecular mechanistic effects operating between the crystalline domains of the cellulose. (author)

  8. One-Dimensional SnO2 Nano structures: Synthesis and Applications

    International Nuclear Information System (INIS)

    Pan, J.; Shen, H.; Mathur, S.; Pan, J.

    2012-01-01

    Nano scale semiconducting materials such as quantum dots (0-dimensional) and one-dimensional (1D) structures, like nano wires, nano belts, and nano tubes, have gained tremendous attention within the past decade. Among the variety of 1D nano structures, tin oxide (SnO 2 ) semiconducting nano structures are particularly interesting because of their promising applications in optoelectronic and electronic devices due to both good conductivity and transparence in the visible region. This article provides a comprehensive review of the recent research activities that focus on the rational synthesis and unique applications of 1D SnO 2 nano structures and their optical and electrical properties. We begin with the rational design and synthesis of 1D SnO 2 nano structures, such as nano tubes, nano wires, nano belts, and some heterogeneous nano structures, and then highlight a range of applications (e.g., gas sensor, lithium-ion batteries, and nano photonics) associated with them. Finally, the review is concluded with some perspectives with respect to future research on 1D SnO 2 nano structures

  9. Seawater Durability of Nano-Montmorillonite Modified Single-Lap Joining Epoxy Composite Laminates

    OpenAIRE

    ULUS, Hasan; KAYBAL, Halil Burak; DEMİR, Okan; TATAR, Ahmet Caner; SENYURT, Muhammed Ali; AVCI, Ahmet

    2018-01-01

    The objective of this study was to investigate of nano-montmorillonite modified epoxy composite single-lap bonded joints, after being exposed to seawater immersion in order to understand the effect of seawater environment on their performance. To prepare the nano adhesives, nano montmorillonite (2 wt %) was incorporated into epoxy resin. Composite bonded specimens which manufactured with VARIM (Vacuum Assisted Resin Infusion Method) were prepared accordance with ASTM D5868-01 and immersed in ...

  10. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  11. Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants

    Directory of Open Access Journals (Sweden)

    D. Chaitanya Kumar Rao

    2016-08-01

    Full Text Available Nano-catalysts containing copper–cobalt oxides (Cu–Co–O have been synthesized by the citric acid (CA complexing method. Copper (II nitrate and Cobalt (II nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, CuCo-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of CuCo-I nano-catalyst.

  12. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  13. Preparation and characterization of reduced graphene oxide/copper composites incorporated with nano-SiO2 particles

    International Nuclear Information System (INIS)

    Zhang, Xinjiang; Dong, Pengyu; Zhang, Benguo; Tang, Shengyang; Yang, Zirun; Chen, Yong; Yang, Wenchao

    2016-01-01

    Reduced graphene oxide/copper (rGO/Cu) composites incorporated with nano-SiO 2 particles were successfully fabricated using the raw materials of GO dispersion, hydrophilic nano-SiO 2 and electrolytic Cu powder. The as-prepared composites were characterized by X-ray diffraction, field-emission scanning electron microscope and energy dispersive spectroscopy. Microstructural observation of the composite powders indicated that the graphene oxide (GO) was effectively reduced by N 2 H 4 ·H 2 O addition in the composite slurry, and the nano-SiO 2 particles and rGO sheets were randomly and completely mixed with Cu particles. The as-sintered composites exhibited the small rGO agglomerations in the Cu matrix, and the more nano-SiO 2 additions led to the agglomerations increase. The mechanical property testing revealed that rGO/Cu composites with nano-SiO 2 incorporation exhibited the higher hardness and strength, compared with the rGO/Cu composite and as-cast pure Cu. However, the strengthening in the composites with higher SiO 2 content accompanied with the expense of compressive ductility. Microstructural formation and strengthening mechanism of the composites are also discussed in details. - Highlights: • Nano-SiO 2 incorporated rGO/Cu composites were successfully fabricated. • The more nano-SiO 2 additions led to the agglomerations increase in the composites. • The nano-SiO 2 incorporated composites exhibited the better hardness and strength. • The formation and strengthening mechanism of the composite was discussed in detail.

  14. Fabrication of a nano-structured PbO2 electrode by using printing technology: surface characterization and application

    International Nuclear Information System (INIS)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S.

    2014-01-01

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO 2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO 2 preparation demonstrated that nano-PbO 2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO 2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO 2 particles. Gravure printing of nano-PbO 2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO 2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO 2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO 2 should pave the way to promising applications in electrochemical and sensor fields.

  15. Chemically designed Pt/PPy nano-composite for effective LPG gas sensor.

    Science.gov (United States)

    Gaikwad, Namrata; Bhanoth, Sreenu; More, Priyesh V; Jain, G H; Khanna, P K

    2014-03-07

    Simultaneous in situ reduction of hexachloroplatinic acid by the amine group in the pyrrole monomer and oxidation of pyrrole to form polypyrrole (PPy) was examined. The reactions were performed at various temperatures to understand the degree of reduction of platinum precursor as well as doping of polypyrrole with Pt(II) chloro-complex. Spectroscopic images revealed different morphologies for the Pt/PPy nano-composite prepared at various temperatures. The as-prepared Pt/PPy nano-composite samples were tested for their ability to sense liquefied petroleum gas (LPG) which resulted in excellent sensing at relatively low temperature. The porous nature and ohmic contact between the PPy and platinum nanoparticles makes the as-prepared Pt/PPy nano-composite highly useful for sensors as well as electronic applications.

  16. Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jongho Choi; Kyungwon Park; Hyekyung Lee; Youngmin Kim; Jaesuk Lee; Yungeun Sung [Kwangju Inst. of Science and Technology, Dept. of Materials Science and Engineering, Gwangju (Korea)

    2003-08-15

    Nano-composites comprised of PtRu alloy nanoparticles and an electronically conducting polymer for the anode electrode in direct methanol fuel cell (DMFC) were prepared. Two conducting polymers of poly(N-vinyl carbazole) and poly(9-(4-vinyl-phenyl)carbazole) were used for the nano-composite electrodes. Structural analyses were carried out using Fourier transform nuclear magnetic resonance spectroscopy, AC impedance spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Electrocatalytic activities were investigated by voltammetry and chronoamperometry in a 2 M CH{sub 3}OH/{sub 0.5} M H{sub 2}SO{sub 4} solution and the data compared with a carbon-supported PtRu electrode. XRD patterns indicated good alloy formation and nano-composite formation was confirmed by TEM. Electrochemical measurements and DMFC unit-cell tests indicate that the nano-composites could be useful in a DMFC, but its performance would be slightly lower than that of a carbon-supported electrode. The interfacial property between the PtRu-polymer nano-composite anode and the polymer electrolyte was good, as evidenced by scanning electron microscopy. For better performance in a DMFC, a higher electric conductivity of the polymer and a lower catalyst loss are needed in nano-composite electrodes. (Author)

  17. Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions

    International Nuclear Information System (INIS)

    Benea, Lidia; Başa, Sorin-Bogdan; Dănăilă, Eliza; Caron, Nadège; Raquet, Olivier; Ponthiaux, Pierre; Celis, Jean-Pierre

    2015-01-01

    Highlights: • The friction and wear properties of Ni/nano-WC composite were studied. • Nano-WC reinforcement decreased friction coefficient in dry and wet conditions. • Nano-WC reinforcement fraction was seen to be 12 wt.%. • Nanohardness increased by 27% compared to nickel without WC reinforcements. • Ennoblement of OCP corresponding to the Ni/nano-WC composite coating. - Abstract: The fretting and wear behaviors of Ni/nano-WC composite coatings were studied by considering the effect of fretting frequency of 1 Hz during 10,000 cycles, at different applied loads in dry or wet conditions. The studies were performed on a ball-on-disk tribometer and the results were compared with pure Ni coating. The nanohardness of pure Ni and Ni/nano-WC composite coatings was tested by nanoindentation technique. To evaluate the wet wear (tribocorrosion) behavior the open circuit potential (OCP) was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors (PWRs). The results show that Ni/nano-WC composite coatings exhibited a low friction coefficient, high nanohardness and wear resistance compared with pure Ni coatings under similar experimental conditions. Ni/nano-WC composite coatings were obtained on stainless steel support by electrochemical codeposition of nano-sized WC particles (diameter size of ∼60 nm) with nickel, from a standard nickel Watts plating bath. The surface morphology and the composition of the coatings were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) respectively

  18. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    International Nuclear Information System (INIS)

    Wang, Hua-Jie; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying

    2013-01-01

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug

  19. Cooperative cytotoxic activity of Zn and Cu in bovine serum albumin-conjugated ZnS/CuS nano-composites in PC12 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Yu, Xue-Hong; Wang, Cai-Feng; Cao, Ying, E-mail: caoying1130@sina.com [Henan Normal University, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, College of Chemistry and Chemical Engineering (China)

    2013-11-15

    Series of self-assembled and mono-dispersed bovine serum albumin (BSA)-conjugated ZnS/CuS nano-composites with different Zn/Cu ratios had been successfully synthesized by a combination method of the biomimetic synthesis and ion-exchange strategy under the gentle conditions. High-resolution transmission electron microscopy observation, Fourier transform infrared spectra and zeta potential analysis demonstrated that BSA-conjugated ZnS/CuS nano-composites with well dispersity had the hierarchical structure and BSA was a key factor to control the morphology and surface electro-negativity of final products. The real-time monitoring by atomic absorption spectroscopy and powder X-ray diffraction revealed that the Zn/Cu ratio of nano-composites could be controlled by adjusting the ion-exchange time. In addition, the metabolic and morphological assays indicated that the metabolic proliferation and spread of rat pheochromocytoma (PC12) cells could be inhibited by nano-composites, with the high anti-cancer activity at a low concentration (4 ppm). What were more important, Zn and Cu in nano-composites exhibited a positive cooperativity at inhibiting cancer cell functions. The microscope observation and biochemical marker analysis clearly revealed that the nano-composites-included lipid peroxidation and disintegration of membrane led to the death of PC12 cells. Summarily, the present study substantiated the potential of BSA-conjugated ZnS/CuS nano-composites as anti-cancer drug.

  20. Characterization of nano-composite PVD coatings for wear-resistant applications

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    Various methodologies for the characterization of nano-composite coatings are discussed, which consist TiC nano-particles distributed in an amorphous hydrocarbon (a-C:H) matrix. Complications that arise from the influence of coating roughness and underlying substrate on the properties are evaluated

  1. Functional properties of extruded nano composites based on cassava starch, polyvinyl alcohol and montmorillonite

    International Nuclear Information System (INIS)

    Debiagi, Flavia; Matsuda, Daniel K.M.; Marengo, Vitor A.; Vercelheze, Ana Elisa S.; Mali, Suzana

    2011-01-01

    The objectives of this work were to produce biodegradable trays based on cassava starch (native or modified by acid), sugarcane fibers and nano clay (sodium montmorillonite) and also to characterize the produced trays according to their density, tensile strength, X-ray diffraction and biodegradability. The trays were obtained by thermoforming into a hydraulic press coupled to a Teflon mold (18 x 23 cm) at 130 degree C/ 20 min and 100 bars of pressure. The peak related to the nano clay (2 = 7.1 o ) were not observed in XRD patterns of the trays, suggesting the formation of an exfoliated structure in the nano composite. The addition of modified starch increased tensile strength and density of the samples, and the addition of fibers and nano clays decreased the tensile strength of native and modified starch trays. The weight loss of trays was not affected by the starch type, however the addition of fibers increased the biodegradation and the addition of nano clays decreased. (author)

  2. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  3. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  4. Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites

    International Nuclear Information System (INIS)

    Jung, Jinwoo; Kim, Jaewoo; Uhm, Young Rang; Jeon, Jae-Kyun; Lee, Sol; Lee, Hi Min; Rhee, Chang Kyu

    2010-01-01

    The thermal properties of micro-sized boron nitride (BN) and nano-sized BN dispersed high density polyethylene (HDPE) composites were investigated by means of differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Nano-BN powder was prepared by using a ball mill process before it was mixed in HDPE. To enhance the dispersivity of nano-BN in the polymer matrix, the surfaces of the nano-particles were treated with low density polyethylene (LDPE) which was dissolved in the cyclohexane solvent. The average particle sizes of micro-BN powder and LDPE coated nano-BN powder were ∼10 μm and ∼100 nm respectively. Dispersion and distribution of 5 wt% and 20 wt% of micro-BN and nano-BN respectively mixed in HDPE were observed by using the scanning electron microscope (SEM). According to the thermal analyses of pure HDPE, micro-BN/HDPE, and nano-BN/HDPE, 20 wt% nano-BN/HDPE composite shows the lowest enthalpy of fusion (ΔH m ) and better thermal conductive characteristics compared to the others.

  5. Nano-hydroxyapatite/poly ε-caprolactone composite 3D scaffolds for mastoid obliteration

    International Nuclear Information System (INIS)

    Kim, S E; Yun, H S; Hyun, Y T; Shin, J W; Song, J J

    2009-01-01

    The aim of this study is to evaluate the use of our nano-HA/PCL composite 3D scaffolds as graft materials for mastoid cavity obliteration in an animal model. Nano-HA particles were synthesized by chemical precipitation technique and mixed them with PCL solution to make composite paste. 3D scaffolds were fabricated by a paste extruding deposition process. The nano-HA/PCL 3D scaffolds showed good in vivo bone regeneration behaviour in a rabbit model after 4 and 8 week implantation. To characterize the 3D scaffolds as a grafting material for mastoid obliteration, mastoid cavities were introduced in rats and implanted the scaffolds. After two week implantation, histological examination showed good tissue ingrowth and new bone formation behaviour. It can be argued that our nano-HA/PCL composite 3D scaffold is a promising alternative material for mastoid obliteration.

  6. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite; Preparacao e caracterizacao de nanocristais de celulose funcionalizados com CMA utilizados na preparacao de nanocomposito de quitosana reticulado

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Joao Paulo de; Teixeira, Ivo F; Donnici, Claudio L; Pereira, Fabiano V [Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG (Brazil)

    2011-07-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  7. Development of SBR-Nano clay Composites with Epoxidized Natural Rubber as Compatibilizer

    International Nuclear Information System (INIS)

    Rajasekar, R.; Das, Ch.K.; Gert Heinrich, G.; Das, A.

    2009-01-01

    The significant factor that determines the improvement of properties in rubber by the incorporation of nano clay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nano clay will not contribute for the good dispersion of nano filler in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nano clay in the matrix polymer. Epoxidized natural rubber and organically modified nano clay composites (EC) were prepared by solution mixing. The nano clay employed in this study is Cloisite 20A. The obtained nano composites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nano clay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nano clay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.

  8. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film

    International Nuclear Information System (INIS)

    Yang Changjun; Gong Chuqing; Peng Tianyou; Deng Kejian; Zan Ling

    2010-01-01

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO 2 nano-composite film was prepared by embedding VC modified nano-TiO 2 photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO 2 nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO 2 film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO 2 nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO 2 film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO 2 is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti IV -VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  9. Fe{sub 2}O{sub 3}-Poly-pyrrole hybrid nano-composite materials for super-capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mallouki, M.; Tran-Van, F.; Sarrazin, C.; Chevrot, C. [Cergy-Pontoise Univ., Lab. de Physicochimie des Polymeres et des Interfaces (LPPI), EA 2528 95 (France); Fauvarque, J.F. [CNAM, Lab. d' Electrochimie Industrielle, 75 - Paris (France); Simon, P. [Universite Paul Sabatier, CIRIMAT-LCMIE, UMR 5085, 31 - Toulouse (France); De, A. [Saha Institute of Nuclear Physics, Calcutta (India)

    2004-07-01

    Fe{sub 2}O{sub 3}-Poly-pyrrole hybrid nano-composite materials chemically synthesized from colloid particles of iron oxide in aqueous solution have been processed to realize electrode materials for super-capacitor applications. The performances have been evaluated by cyclic voltammetry and galvano-static techniques in a three-electrode cell. The capacitance of Fe{sub 2}O{sub 3}-PPy hybrid nano-composite doped with para-toluene-sulfonate reaches 47 mAh/g in PC/NEt{sub 4}BF{sub 4} with a good stability during cycling (loss of 3% after 1000 cycles). Transmission Electronic Microscopy indicates a porous nano-structure with spherical particles in a range of 400-500 nm which ensures a good accessibility of the electrolyte in the bulk of the electro-active hybrid material. Preliminary studies with room temperature ionic liquid show promising results since the specific capacitance reaches 427 F/g in 1- ethyl-3-methyl-imidazolium bis((tri-fluoro-methyl)sulfonyl)amide (EMITFSI). (authors)

  10. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    Science.gov (United States)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  11. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  12. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  13. From Nano Structure to Systems: Fabrication and Characterization

    International Nuclear Information System (INIS)

    Uda Hashim

    2011-01-01

    Currently, the interest in nano technology research has been grown rapidly. With the latest technology, it is possible to arrange atoms into structures that are only a few nanometers in size. Dimension for nano structure is between 0.1 and 100nm where the actual size of 1nm is equal to 10-9 m or just about a few atoms thick. In other word, a nano structure is an object which it size is about four atom diameters or 1/50000 of a human hair. Due to the connecting of a patterned silicon substrate with biomolecules and the small size and large surface-to-volume ratio, it opens much new possibility for assembling nano structures.The ultimate goal is to fabricate devices that have every atom in the right place. Such technology would give the opportunity to minimize the size of a device and to reduce the material, energy and time necessary to perform its task. Potential applications include electrical circuits, mechanical devices and medical instruments. There are two most important nano structures that are extensively studied and researched in various organizations which are nano wire and nano gap. Nano wires is a new class of nano structure that have attracted attention and great research interest in the last few years because of their potential applications in nano technology such as nano electronic, nano mechanical and biomedical engineering. Fabrication of Nano wires is one of the great challenges today. Conventional lithography methods are not capable to produce Nano wires and even with advance nano lithography sizes below 100 nm may not easily be achieved. Nano wire can be produced in two approaches, which are top down and bottom-up method. Very small nano wires which can be produced by using top-down nano fabrication methods are Scanning Electron Microscope (SEM) based Electron Beam Lithography (EBL) method, and Spacer Patterning Lithography (SPL) method. The top-down nano fabrication method based on EBL was the design of the Nano wires Pattern Design (NPD). The

  14. Magnetic nanoparticles based nano-composites: synthesis, contribution of the fillers dispersion and the chains conformation on the reinforcement properties

    International Nuclear Information System (INIS)

    Robbes, Anne-Sophie

    2011-01-01

    The mechanical properties of polymeric nano-composite films can be considerably enhanced by the inclusion of inorganic nanoparticles due to two main effects: (i) the local structure of fillers dispersion and (ii) the potential modification of the chains conformation and dynamics in the vicinity of the filler/polymer interface. However, the precise mechanisms which permit to correlate these contributions at nano-metric scale to the macroscopic mechanical properties of the materials are actually poorly described. In such a context, we have synthesized model nano-composites based on magnetic nanoparticles of maghemite γ-Fe 2 O 3 (naked or grafted with a polystyrene (PS) corona by radical controlled polymerization) dispersed in a PS matrix, that we have characterized by combining small angle scattering (X-Ray and neutron) and transmission electronic microscopy. By playing on different parameters such as the particle size, the concentration, or the size ratio between the grafted chains and the ones of the matrix in the case of the grafted fillers, we have obtained nano-composite films a large panel of controlled and reproducible controlled filler structures, going from individual nanoparticles or fractal aggregates up to the formation of a connected network of fillers. By applying an external magnetic field during the film processing, we succeeded in aligning the different structures along the direction of the field and we obtained materials with remarkable anisotropic reinforcement properties. The conformation of the chains of the matrix, experimentally determined thanks to the specific properties of neutron contrast of the system, is not affected by the presence of the fillers, whatever their confinement, the dispersion the fillers or their chemical state surface. The alignment of the fillers along the magnetic field has allowed us to describe precisely the evolution of the reinforcement modulus of the materials with the structural reorganization of the fillers and

  15. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  16. Fabrication of a nano-structured PbO{sub 2} electrode by using printing technology: surface characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, K.; Muthuraman, G.; Cho, G.; Moon, I. S. [Sunchon National University, Suncheon (Korea, Republic of)

    2014-08-15

    This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO{sub 2} electrode and its application to a cerium redox transfer process. The new method of nano-size PbO{sub 2} preparation demonstrated that nano-PbO{sub 2} could be obtained in less time and at less cost at room temperature. The prepared nano-PbO{sub 2} screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO{sub 2} particles. Gravure printing of nano-PbO{sub 2} on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO{sub 2} powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO{sub 2} electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO{sub 2} should pave the way to promising applications in electrochemical and sensor fields.

  17. Development of nano-composite membranes to improve alkaline fuel cell performance

    CSIR Research Space (South Africa)

    Nonjola, P

    2011-09-01

    Full Text Available The work presented here describes modification of commercially available polysulfone (PSU) as well as the formation of nano-composite membrane i.e. TiO2 nano particles incorporated into anion exchange polymer matrix....

  18. Action of colloidal silica films on different nano-composites

    Directory of Open Access Journals (Sweden)

    S. Abdalla

    Full Text Available Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA, polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer. Keywords: Dielectric break down, Polymers, Nano-composite, Colloidal silica

  19. Mechanical and microstructure of reinforced hydroxyapatite/calcium silicate nano-composites materials

    International Nuclear Information System (INIS)

    Beheri, Hanan H.; Mohamed, Khaled R.; El-Bassyouni, Gehan T.

    2013-01-01

    Highlights: ► Nano sized of HA and CS powders were prepared. ► Mechanical of HACS composites enhanced with content of CS. ► The apatite formation onto the composites is proved. -- Abstract: In this study, the nano sized hydroxyapatite (HA) and calcium silicate (CS) powders prepared by both chemical precipitation and sol–gel methods respectively. Biphasic nano-composites materials containing different ratios of HA and CS were fabricated and assessed using X-ray diffraction (XRD), Fourier transmission infrared reflectance (FT-IR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The effect of variation of ratios between HA and CS on mechanical properties, microstructure and in vitro study was studied. The results proved that the mechanical properties were enhanced with increasing the CS ratio in the composite. In vitro study proved the formation and nucleation of apatite onto composites surfaces which contain low content of CS after one week of immersion. Finally, it is concluded that the HACS composites containing high HA content at the expense of CS content will be promising for bone substitute’s applications, especially in load bearing sites.

  20. Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available In fiber-reinforced polymer pressure-retaining structures, such as pipes and vessels, micro-level failure commonly causes fluid permeation due to matrix cracking. This study explores the effect of nano-reinforcements on matrix cracking in filament-wound basalt fiber/epoxy composite structures. The microstructure and mechanical properties of bulk epoxy nanocomposites and hybrid fiber-reinforced composite pipes modified with acrylic tri-block-copolymer and organophilic layered silicate clay were investigated. In cured epoxy, the tri-block-copolymer phase separated into disordered spherical micelle inclusions; an exfoliated and intercalated structure was observed for the nano-clay. Block-copolymer addition significantly enhanced epoxy fracture toughness by a mechanism of particle cavitation and matrix shear yielding, whereas toughness remained unchanged in nano-clay filled nanocomposites due to the occurrence of lower energy resistance phenomena such as crack deflection and branching.Tensile stiffness increased with nano-clay content, while it decreased slightly for block-copolymer modified epoxy. Composite pipes modified with either the organic and inorganic nanoparticles exhibited moderate improvements in leakage failure strain (i.e. matrix cracking strain; however, reductions in functional and structural failure strength were observed.

  1. Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Ibrahim, I. D.; Jamiru, T.; Sadiku, E. R.; Agwuncha, S. Ch.; Kupolati, W. K.

    2016-01-01

    The use of plant fibers, polymer, and nanoparticles for composite has gained global attention, especially in the packaging, automobile, aviation, building, and construction industries. Nano composites materials are currently in use as a replacement for traditional materials due to their superior properties, such as high strength-to-weight ratio, cost effectiveness, and environmental friendliness. Sisal fiber (SF) was treated with 5% NaOH for 2 hours at 70"°C. A mixed blend of sisal fiber and recycled polypropylene (rPP) was produced at four different fiber loadings: 10, 20, 30, and 40 wt.%, while nano clay was added at 1, 3, and 5 wt.%. Maleic anhydride grafted polypropylene (MAPP) was used as the compatibilizer for all composites prepared except the untreated sisal fibers. The characterization results showed that the fiber treatment, addition of MAPP, and nano clay improved the mechanical properties and thermal stability and reduced water absorption of the SF/rPP nano composites. The tensile strength, tensile modulus, and impact strength increased by 32.80, 37.62, and 5.48%, respectively, when compared to the untreated SF/rPP composites. Water absorption was reduced due to the treatment of fiber and the incorporation of MAPP and nano clay.

  2. Graphene/Gold Nano composites-Based Thin Films as an Enhanced Sensing Platform for Voltammetric Detection of Cr(VI) Ions

    International Nuclear Information System (INIS)

    Santhosh, Ch.; Saranya, M.; Ramachandran, R.; Felix, S.; Velmurugan, V.; Grace, A.N.

    2014-01-01

    A highly sensitive and selective Cr(VI) sensor with graphene-based nano composites film as an enhanced sensing platform is reported. The detection of chromium species is a challenging task because of the different possible oxidation states in which the element can occur. The sensing film was developed by homogeneously distributing Au nanoparticles (AuNPs) onto the two-dimensional (2D) graphene nano sheet matrix by electrochemical method. Such nano structured composite film platforms combine the advantages of AuNPs and graph ene nano sheets because of the synergistic effect between them. This effect greatly facilitates the electron-transfer processes and the sensing behavior for Cr(VI) detection, leading to a remarkably improved sensitivity and selectivity. The interference from other heavy metal ions is studied in detail. Such sensing elements are very promising for practical environmental monitoring applications.

  3. New active control nano-system to use in composites structure

    International Nuclear Information System (INIS)

    Arche, M R

    2012-01-01

    The present abstract, is a brief description about our project (NEDEA). We considered this project as very important, because it reunites in his development, several basic technologies: electronics, communications, software and new materials, all very interesting in the European industry. The project is developed in the CSIC (Spanish Researcher Center). We are involved. Across the project, in the development of nano-sensors, specialized in detecting defects, difficulties or problems in structures of composed materials. These materials are being used, and in the future more, in applications where a high degree of security is necessary. Some fields in the system usage are Aeronautical and military applications whit a necessary high security degree. The development proposed, is based in nano-sensors and active devices. They are installed into the material structure. The information from sensors is transmitted by optical fibers, to a radio transmitter, equally installed into the material. An external receptor picks up those data and transmits them to an external device. This external device presents/displays all the information across an interface GUI, in real time, to the supervisor. He can see than is happening in the material, in real time. Alarms can be programmed, by the supervisor. Is possible a tracking for the problem. All the devices and software are in develop in our laboratories. We think that this development will be used by the industry of materials, and that gradually, it will have other applications in the transport area (like new vehicles, wagons of train and metro, etc.).

  4. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    Science.gov (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  6. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    Science.gov (United States)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  7. Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Saggar, Richa; Tatarko, P.; Grasso, S.; Saunders, T.; Dlouhý, Ivo; Reece, M. J.

    2016-01-01

    Roč. 42, č. 6 (2016), s. 7533-7542 ISSN 0272-8842 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Alumina * Graphene nano-sheets * Nano-composites * Mechanical properties * Machinability Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.986, year: 2016

  8. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-Filled Composites

    OpenAIRE

    Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam

    2013-01-01

    Objectives: The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel...

  9. Preparation and characterization of Nano-graphite/TiO_2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant

    International Nuclear Information System (INIS)

    Li, Dong; Jia, Jialin; Zhang, Yuhang; Wang, Na; Guo, Xiaolei; Yu, Xiujuan

    2016-01-01

    Graphical abstract: The chemical-coupling Nano-graphite(G)/TiO_2 composite was successfully prepared via a modified sol-gel method and then was fabricated as a photoelectrode by the hot-press approach. Nano-G/TiO_2 photoelectrode displayed high PEC activity and stability, which was attributed to Nano-G as suitable electronic conductors to promote charge collection and charge transport as well as the synergetic effect between PC and EC reactions. - Highlights: • Nano-G/TiO_2 photoelectrode was prepared by the sol-gel and hot-press methods. • Nano-G/TiO_2 photoelectrode exhibited high charges separation performance. • Nano-G/TiO_2 photoelectrode displayed excellent PEC activity. • Contribution of active species for degradation of RhB was investigated. • Enhanced PEC mechanism of Nano-G/TiO_2 photoelectrode was proposed. - Abstract: Nano-graphite(Nano-G)/TiO_2 composite photoelectrode was fabricated via sol-gel reaction, followed by the hot-press approach. The morphology, structure and light absorption capability of composite was characterized by various characterizations. The photoelectrochemical property and photoelectrocatalytic(PEC) activity of photoelectrode were also investigated. Results revealed that anatase TiO_2 nanoparticles with an average diameter of 10 nm were dispersed uniformly on the thickness of 2–3 nm Nano-G, and Ti−O−C bond was formed. The absorption edge of Nano-G/TiO_2 photoelectrode was red-shifted towards low energy region and the enhanced visible light absorption was obtained. The charge transfer resistance of Nano-G/TiO_2 photoelectrode was significantly decreased after the addition of Nano-G. And its transient photoinduced current was 10.5 times the value achieved using TiO_2 electrode. Nano-G/TiO_2 photoelectrode displayed greatly enhanced PEC activity of 99.2% towards the degradation of phenol, which was much higher than the 29.1% and 58.3% degradation seen on TiO_2 and Nano-G electrode, respectively. The highly efficient

  10. Gamma radiation effects on nano composites of Ag nanoparticles in Zn O matrices; Efectos de la radiacion gamma en nanocompositos de nanoparticulas de Ag en matrices de ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Villasenor C, L. S.

    2015-07-01

    The study of gamma radiation effects in nano composites of silver nanoparticles in a Zn O matrix has been performed in this work. First, silver nanoparticles (AgNPs) were synthesized by colloidal methods, with two different mean average sizes, 48 nm and 24 nm respectively. These nanoparticles were characterized by transmission electron microscopy (Tem) and UV-Vis spectroscopy (UV-Vis). Then, with the synthesized AgNPs, nano composites in a matrix of Zn O were prepared. The first nano composite was prepared with the 48 nm AgNPs at 9.5 weight % of silver (Ag) and the second nano composite with the 24 nm nanoparticles at 1.0 weight % of Ag. Both nano composites were analyzed by scanning electron microscopy (Sem). The formation of the Zn O phase in the nano composite was corroborated through X-ray diffraction analysis. It was observed that the presence of AgNPs during the formation of the AgNPs/Zn O nano composite modified the size and morphology of the structures obtained compared to those of the pure Zn O without nanoparticles, however both exhibit a radial structure. Then, the nano composite at 9.5 weight % of Ag was irradiated with gamma rays at doses of 1, 20 and 50 kGy. Samples were analyzed by Sem and the Bet technique, before and after being irradiated, in order to determine the effect of gamma radiation in the morphology, porosity and surface area of the studied material. Even when there are changes in porosity and Surface area, this difference is not very significant for some applications, however it will have to be considered during the design of a specific application of the nano composites. On the other hand, no morphology modifications were identified on the samples irradiated at the studied doses, with the electron microscopy techniques used. (Author)

  11. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.

    Science.gov (United States)

    Liu, Hongyuan; Guo, Min; Zhang, Yan

    2014-01-01

    Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.

  12. Synthesis and characterization of nano silver ferrite composite

    International Nuclear Information System (INIS)

    Murthy, Y.L.N.; Kondala Rao, T.; Kasi viswanath, I.V.; Singh, Rajendra

    2010-01-01

    We report the synthesis of nano sized silver ferrite composite having the empirical formula AgFeO 2 by a co-precipitation method. The resulting powders are thin platelets, transparent and a rich ruby red in color in transmission. The X-ray diffraction (XRD) powder data consisted of only nine reflections, and the analysis showed the unit cell to be rhombohedral. The powders showed extensive XRD line broadening and the sizes of the crystals are calculated to be in the range 4-36.5 nm. The morphology of the silver ferrite composite studied using scanning electron microscope showed nano sized particles. The particle size is found to increase with increase in annealing temperature. The magnetic behavior, measured using a vibrating sample magnetometer, indicated a change from paramagnetic to ferromagnetic with increase in particle size.

  13. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  14. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Science.gov (United States)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  15. Poly (lactic acid organoclay nano composites for paper coating applications

    Directory of Open Access Journals (Sweden)

    Tatcha Sonjui

    2014-10-01

    Full Text Available Poly(lactic acid or PLA is a well-known biodegradable polymer derived from renewable resources such as corn strach, tapioca strach, and sugar cane. PLA is the most extensively utilized biodegradable polyester with potential to replace conventional petrochemical-based polymers. However, PLA has some drawbacks, such as brittleness and poor gas barrier properties. Nano composite polymers have experience and increasing interest due to their characteristics, especially in mechanical and thermal properties. The objectives of this research were to prepare PLA formulations using three different PLAs. The formulas giving high gloss coating film were selected to prepare nano composite film by incorporated with different amount of various types of organoclays. The physical properties of the PLA coating films were studied and it was found that the PLA 7000D with 0.1%w/w of Cloisite 30B provided decent viscosity for coating process. In addition, the nano composite coating films showed good physical properties such as high gloss, good adhesion, and good hardness. There is a possibility of using the obtained formulation as a paper coating film.

  16. Development and characterization of nano structured hard coatings for high performance tools by using PVD technique

    International Nuclear Information System (INIS)

    Irfan, M.; Alam, S.; Hassan, Z.; Iftikhar, F.; Khadim, S.

    2006-01-01

    No doubt hard coatings nave major applications in high performance cutting tools in order to improve tribological and mechanical properties of these tools since last years. The actual top development in this regard is the development of PVD based AlTiN coatings and their supplementation with nano. layers. In present these nano coatings are replaced by nano composites along with an additional development of Multilayer Nano structured coatings. This PVD based nano structured coating development optimized by process parameters, crystalline structure and deposition in multilayer. These coating are definitely produced by combination of ARC and Sputtering with filtration of arc droplets. It is studied that the properties like oxidation resistance, wear resistance and resistance against chemical reaction may be obtained by alloying additions of different elements. This paper presents different development stages and Process parameters for- producing high performance Nanostructure coatings and including adhesion test by using Kalomax system for determination of adhesion strength of these coatings and coating thickness measurements by using image analyzer system. Results and conclusions are showing the optimum values for better coatings for different applications. (author)

  17. Two-year clinical comparison of a flowable-type nano-hybrid composite and a paste-type composite in posterior restoration.

    Science.gov (United States)

    Hirata-Tsuchiya, Shizu; Yoshii, Shinji; Ichimaru-Suematsu, Miki; Washio, Ayako; Saito, Noriko; Urata, Mariko; Hanada, Kaori; Morotomi, Takahiko; Kitamura, Chiaki

    2017-08-01

    The purpose of the present study was to compare the clinical efficacy between a flowable-type nano-hybrid composite and a paste-type composite for posterior restoration. Of 62 posterior teeth in 33 patients (mean age: 34.1 years), 31 were filled with a paste-type composite (Heliomolar [HM] group), and another 31 with a flowable nano-hybrid composite (MI FIL [MI] group). Clinical efficacy was evaluated at 2 years after the restoration. There were no differences for retention, surface texture deterioration, anatomical form change, deterioration of marginal adaptation, and secondary caries, while a statistical difference was found for marginal discoloration, which was significantly greater in the HM group (P < 0.05). Furthermore, color matching in the MI group was superior to that in the HM group immediately after the restoration throughout the study period. The present 2-year clinical evaluation of different composites showed that the flowable nano-hybrid composite could be an effective esthetic material for posterior restoration. © 2016 John Wiley & Sons Australia, Ltd.

  18. Experimental and numerical characterization of scalable cellulose nano-fiber composite

    Science.gov (United States)

    Barari, Bamdad

    Fiber-reinforced polymer composites have been used in recent years as an alternative to the conventional materials because of their low weight, high mechanical properties and low processing temperatures. Most polymer composites are traditionally made using reinforcing fibers such as carbon or glass fibers. However, there has been recent interest in making these reinforcing fibers from natural resources. The plant-derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties at the nano-scale that are much superior to the mechanical properties of the traditional natural fibers (such as jute, hemp, kenaf, etc) used in the natural-fiber based polymer composites. Because CNF is bio-based and biodegradable, it is an attractive 'green' alternative for use in automotive, aerospace, and other engineering applications. However, efforts to produce CNF based nano-composites, with successful scaling-up of the remarkable nanoscale properties of CNF, have not met with much success and form an active area of research. The main goals of this research are to characterize the scalable CNF based nano composites using experimental methods and to develop effective models for flow of polymeric resin in the CNF-based porous media used during the proposed manufacture of CNF nano-composites. In the CNF composite characterization section, scalable isotropic and anisotropic CNF composites were made from a porous CNF preforms created using a freeze drying process. Formation of the fibers during freeze-drying process can change the micro skeleton of the final preform structure as non-aligned or isotropic and aligned or anisotropic CNF. Liquid Composite Molding (LCM) processes form a set of liquid molding technologies that are used quite commonly for making the conventional polymer composites. An improvised vacuum-driven LCM process was used to make the CNF-based nanocomposites from CNF preforms using a 'green' epoxy resin with high bio-content. Under the topic of

  19. Marginal and internal fit of nano-composite CAD/CAM restorations

    Directory of Open Access Journals (Sweden)

    So-Hyun Park

    2016-02-01

    Full Text Available Objectives The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. Materials and Methods A full veneer crown and an mesio-occluso-distal (MOD inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU and experimental nano-composite CAD/CAM blocks (EB under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. Results Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000. In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001. Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000. Conclusions The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations.

  20. Evaluation of shear bond strength of orthodontic brackets bonded with nano-filled composites.

    Science.gov (United States)

    Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam

    2013-09-01

    The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel) were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was also evaluated using a stereomicroscope. AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91±2.13) and Filtek TM Supreme XT (6.04±2.01). Statistical analysis revealed a significant difference between groups II and III (P 0.05). Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.

  1. Multi-physics damage sensing in nano-engineered structural composites

    International Nuclear Information System (INIS)

    De Villoria, Roberto Guzman; Yamamoto, Namiko; Miravete, Antonio; Wardle, Brian L

    2011-01-01

    Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced composites containing electrically conductive aligned carbon nanotubes (CNTs) are ohmically heated via simple electrical contacts, and damage is visualized via thermographic imaging. Damage, in the form of cracks and other discontinuities, usefully increases resistance to both electrical and thermal transport in these materials, which enables tomographic full-field damage assessment in many cases. Characteristics of the technique include the ability for real-time measurement of the damage state during loading, low-power operation (e.g. 15 deg. C rise at 1 W), and beyond state-of-the-art spatial resolution for sensing damage in composites. The enhanced thermographic technique is a novel and practical approach for in situ monitoring to ascertain structural health and to prevent structural failures in engineered structures such as aerospace and automotive vehicles and wind turbine blades, among others.

  2. Nano ZnO embedded in Chitosan matrix for vibration sensor application

    Science.gov (United States)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2015-06-01

    Biopolymer Chitosan is embedded with various concentration of ZnO nano particle and such a bio-nano composite electret has been fabricated by casting method. The morphological, structural, optical and electrical characterization of the bio-nano composite electret film have been carried out. Isolation and piezoelectric measurements of bio-nano composite have also been carried out indicating the possibility of using it as a mechanical sensor element.

  3. Tribological behavior of Nano-Al2O3 and PEEK reinforced PTFE composites

    Science.gov (United States)

    Wang, Banghan; Lv, Qiujuan; Hou, Genliang

    2017-01-01

    The Nano-Al2O3 and PEEK particles synergetic filled PTFE composites were prepared by mechanical blending-molding-sintering method. The tribological behavior of composites with different volume fraction of fillers was tested on different test conditions by a MMW-1A block-on-ring friction and wear tester. The transfer film on counterpart 5A06 Aluminum alloy ring was inspected and anslyzed with scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The results demonstrated that the lowest friction coefficient was gained when the PTFE composite was filled with only 10% PEEK. The friction coefficient decreases gradually with the increasing content of PEEK. The special wear rate of 10% PEEK/PTFE were decreased clearly with filled different contents of nano-Al2O3 particles. The special wear rate of the sample with 5% nano-Al2O3 and 10% PEEK had the lowest volume wear rate. The sliding speed effect significantly on the tribological behavior of nano-Al2O3/PEEK/PTFE composites.

  4. Nano-ZnO Doping Induced Changes in Structure, Mechanical and Optical Properties of PVA Films

    International Nuclear Information System (INIS)

    Abdel-Galil, A.; BalboulM, R.; Ali, H.E.

    2015-01-01

    Zinc oxide ( ZnO ) nanoparticles ( NPs) were synthesized using t he co-precipitation method. Transmission electron microscope (TEM) was used to confirm the nanoparticle size of the ZnO powder sample. ZnO NPs (with different ratios) were dispersed into polyvinyl alcohol (PVA) matrix to get ZnO/PVA nano composites using the blending method. The structure of Pva polymer and ZnO/PVA nano composites was identified by X - ray diffraction (XRD). Thermogravimetric analysis (TGA) of PVA and ZnO/PVA nano composites has been carried out before and after γ- irradiation with different doses . The TGA , DTG thermo grams and the degradation activation energy have been studied. The results indicated the enhancement in thermal stability of PVA polymer as an effect of ZnO NPs. Irradiation doses lead to a change in the degradation activation energy as a result of the degradation and cross- linking processes of the PVA polymer. Moreover, the mechanical performance of PVA polymer has been improved by adding ZnO NPs and by γ- irradiation. The optical band gap of the PVA film was investigated with different ratios of ZnO NPs. The band gap de creased with increasing the ZnO NPs ratio. The effect of γ-irradiation, with different doses on the optical band gap of ZnO/PVA nano composites also has been studied

  5. Nano-modified cement composites and its applicability as concrete repair material

    Science.gov (United States)

    Manzur, Tanvir

    Nanotechnology or Nano-science, considered the forth industrial revolution, has received considerable attention in the past decade. The physical properties of a nano-scaled material are entirely different than that of bulk materials. With the emerging nanotechnology, one can build material block atom by atom. Therefore, through nanotechnology it is possible to enhance and control the physical properties of materials to a great extent. Composites such as concrete materials have very high strength and Young's modulus but relatively low toughness and ductility due to their covalent bonding between atoms and lacking of slip systems in the crystal structures. However, the strength and life of concrete structures are determined by the microstructure and mass transfer at nano scale. Cementitious composites are amenable to manipulation through nanotechnology due to the physical behavior and size of hydration products. Carbon nanotubes (CNT) are nearly ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. So there is a great potential to utilize CNT in producing new cement based composite materials. It is evident from the review of past literature that mechanical properties of nanotubes reinforced cementitious composites have been highly variable. Some researches yielded improvement in performance of CNT-cement composites as compared to plain cement samples, while other resulted in inconsequential changes in mechanical properties. Even in some cases considerable less strengths and modulus were obtained. Another major difficulty of producing CNT reinforced cementitious composites is the attainment of homogeneous dispersion of nanotubes into cement but no standard procedures to mix CNT within the cement is available. CNT attract more water to adhere to their surface due to their high aspect ratio which eventually results in less workability of the cement mix. Therefore, it is extremely important to develop a suitable mixing technique and an

  6. Performance evaluation on solar still integrated with nano-composite phase change materials

    International Nuclear Information System (INIS)

    Rajasekhar, G.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the performance evaluation of single slope solar still integrated with nano-composite phase change materials and compare with the experimental results of with and without phase change materials. A solar still with 1 m"2 surface area is developed with non-selective coating of absorber sheet with the provision of thermal energy storage materials. The solar still is tested on typical days with and without thermal energy storage materials. It is found that from the experimental studies that nano-materials (Al_2O_3) dispersed in paraffin wax is giving better cumulative yield of distillate than paraffin wax alone and without paraffin wax thermal storage. The daily efficiency of the solar still is computed for solar still with nano-composite phase change materials is 45% and solar still paraffin wax alone thermal storage is 40% and solar still without any thermal storage is 38%. It is concluded from the experimental studies; solar still integrated with nano-composite phase change materials gives better performance than with and without phase change material alone. (authors)

  7. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Huang, Jun; Rodrigue, Denis

    2015-01-01

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  8. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  9. Effect of organo clay addition on thermal properties of poly lactide/ polycaprolactone (PLA/ PCL) nano composites

    International Nuclear Information System (INIS)

    Siti Zulaiha Hairaldin; Wan Md Zin Wan Yunus; Norazoma Ibrahim

    2010-01-01

    In this study, melt blending technique was applied to prepare poly lactide/polycaprolactone (PLA/ PCL) nano composites with various blends. Montmorillonite (MMT) was used as an addition to the matrix. In this study, melt blending technique was applied to prepare poly lactide/polycaprolactone (PLA/ PCL) nano composites. Montmorillonite (MMT) was used as an addition to the matrix with various percentages. The other one is modified clay prepared by modifying the nature of montmorillonite with octadecylamine (ODA) to improve the characteristic of PLA/ PCL blends. X-ray diffraction (XRD) results indicated intercalation of the PLA/ PCL into silicate nano size interlayers galleries of the nano composites. The presence of modified clays in nano composite was confirmed by FTIR spectrum. TGA and DTG results show addition of MMT and modified clay ODA-MMT improved the thermal stability of the PLA/ PCL blends. (author)

  10. Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis

    Science.gov (United States)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu

    2017-02-01

    A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.

  11. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Tatarko, Peter; Grasso, S.; Hu, Ch.; Boccaccini, A. R.; Dlouhý, Ivo; Reece, M.J.

    2013-01-01

    Roč. 14, č. 5 (2013), Art.N. 055007 ISSN 1468-6996 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : silica * graphene/graphene-oxide nano platelets * nano composites * mechanical properties * sintering Subject RIV: JI - Composite Materials Impact factor: 2.613, year: 2013

  12. Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route

    Directory of Open Access Journals (Sweden)

    MARIJA KORAC

    2007-11-01

    Full Text Available This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM coupled with energy dispersive spectroscopy (EDS, differenttial thermal and thermogravimetric (DTA–TGA analysis and X-ray diffraction (XRD analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by a homogenous distribution of Al2O3 in a copper matrix. The powders were cold pressed at a pressure of 500 MPa and sintered in a hydrogen atmosphere under isothermal conditions in the temperature range from 800 to 900 °C for up to 120 min. Characterization of the Cu–Al2O3 sintered system included determination of the density, relative volume change, electrical and mechanical properties, examination of the microstructure by SEM and focused ion beam (FIB analysis, as well as by EDS. The obtained nano-composite, the structure of which was, with certain changes, presserved in the final structure, provided a sintered material with a homogenеous distribution of dispersoid in a copper matrix, with exceptional effects of reinforcement and an excellent combination of mechanical and electrical properties.

  13. Preparation and characterization of poly(lactic acid)/ zinc-aluminium layered double hydroxide nano composites

    International Nuclear Information System (INIS)

    Eili Mahboobeh; Wan Mohd Zin Wan Yunus; Zobir Hossein; Mansor Ahmad; Norazowa Ibrahim

    2009-01-01

    Full text: Poly (lactic acid)/ stearate - zinc aluminum layered double hydroxide/ (PLA/ SZnAl LDH) nano composites were prepared via solution intercalation process using a modified ZnAl LDH. The anionic clay Zn 3 Al-NO 3 -LDH was prepared by a co-precipitation method and then modified with stearate ions by ion exchange process. Stearate-ZnAl LDH particles were then homogeneously dispersed in PLA matrix by a solution casting method. The pristine and modified ZnAl LDH was characterized by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy which suggested that the modification was successful. The XRD analysis showed that during modification of LDH, the basal spacing increased from 8.83 Angstrom to 40.1 Angstrom. The PLA/ ZnAl LDH nano composites were characterized by tensile testing and XRD. The obtained nano composites showed dramatic enhancements in elongation at break as compared to those of the pure PLA. XRD results indicated that the materials formed are nano composites. (author)

  14. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites.

    Science.gov (United States)

    Geven, Mike A; Barbieri, Davide; Yuan, Huipin; de Bruijn, Joost D; Grijpma, Dirk W

    2015-01-01

    Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with varying amounts of nano-hydroxyapatite and subsequent photo-crosslinking. The incorporation of the nano-hydroxyapatite into the composites was examined by thermogravimetric analysis, scanning electron microscopy and gel content measurements. The mechanical properties were investigated by tensile testing and trouser tearing experiments. Our results show that nano-hydroxyapatite particles can readily be incorporated into photo-crosslinked poly(trimethylene carbonate) networks. Compared to the networks without nano-hydroxyapatite, incorporation of 36.3 wt.% of the apatite resulted in an increase of the E modulus, yield strength and tensile strength from 2.2 MPa to 51 MPa, 0.5 to 1.4 N/mm2 and from 1.3 to 3.9 N/mm2, respectively. We found that composites containing 12.4 wt.% nano-hydroxyapatite had the highest values of strain at break, toughness and average tear propagation strength (376% , 777 N/mm2 and 3.1 N/mm2, respectively).

  15. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    Science.gov (United States)

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  16. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film

    Energy Technology Data Exchange (ETDEWEB)

    Yang Changjun; Gong Chuqing; Peng Tianyou [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Deng Kejian [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zan Ling, E-mail: irlab@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2010-06-15

    A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO{sub 2} nano-composite film was prepared by embedding VC modified nano-TiO{sub 2} photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO{sub 2} nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO{sub 2} film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO{sub 2} nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO{sub 2} film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO{sub 2} is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti{sup IV}-VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.

  17. On the PEEK composites reinforced by surface-modified nano-silica

    International Nuclear Information System (INIS)

    Lai, Y.H.; Kuo, M.C.; Huang, J.C.; Chen, M.

    2007-01-01

    The nano-sized silica fillers reinforced poly(ether ether ketone) (PEEK) composites were fabricated by means of compression molding technique. The nano-sized silica, measuring 30 nm in size, was firstly modified by surface pretreatment with stearic acid. The performances and properties of the resulting PEEK/SiO 2 nanocomposites were examined in terms of tensile loading, hardness, dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modified nano-silica was seen to disperse more uniformly than the unmodified counterpart. The XRD patterns of the modified silica reinforced PEEK composites reveal a systematic shift toward higher angles, suggesting the smaller d-spacing of the PEEK crystallites. The coefficient of thermal expansion (CTE) becomes lowered when the content of the nano-silica increases. Furthermore, the CTE of the modified silica filled PEEK nanocomposites shows the higher CTE values. A logic model is proposed. The increment of the dynamic modulus for the PEEK nanocomposites is up to 40% at elevated temperatures from 100 to 250 deg. C, indicating the apparent improvement of elevated temperature mechanical properties

  18. Applications and Nano toxicity of Carbon Nano tubes and Graphene in Biomedicine Caitlin Fisher

    International Nuclear Information System (INIS)

    Rider, A.E.; Han, Z.J.; Kumar, S.; Levchenko, L.; Ostrikov, K.K.

    2012-01-01

    Owing to their unique mechanical, electrical, optical, and thermal properties, carbon nano structures including carbon nano tubes and graphenes show great promise for advancing the fields of biology and medicine. Many reports have demonstrated the promise of these carbon nano structures and their hybrid structures (composites with polymers, ceramics, and metal nanoparticles, etc.) for a variety of biomedical areas ranging from bio sensing, drug delivery, and diagnostics, to cancer treatment, tissue engineering, and bio terrorism prevention. However, the issue of the safety and toxicity of these carbon nano structures, which is vital to their use as diagnostic and therapeutic tools in biomedical fields, has not been completely resolved. This paper aims to provide a summary of the features of carbon nano tube and graphene-based materials and current research progress in biomedical applications. We also highlight the current opinions within the scientific community on the toxicity and safety of these carbon structures

  19. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-filled Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the shear bond strength (SBS of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI was also evaluated using a stereomicroscope. Results: AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91± 2.13 and Filtek TM Supreme XT (6.04± 2.01. Statistical analysis revealed a significant difference between groups II and III (P 0.05. Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Conclusion: Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.

  20. Polyurethane/nano-hydroxyapatite composite films as osteogenic platforms.

    Science.gov (United States)

    Jackson, Bailey K; Bow, Austin J; Kannarpady, Ganesh; Biris, Alexandru S; Anderson, David E; Dhar, Madhu; Bourdo, Shawn E

    2018-05-02

    A wide variety of biomaterials are utilized in tissue engineering to promote cell proliferations in vitro or tissue growth in vivo. The combination of cells, extracellular matrices, and biocompatible materials may make it possible to grow functional living tissues ranging from bone to nerve cells. In bone regeneration, polymeric scaffolds can be enhanced by the addition of bioactive materials. To this end, this study designed several ratios of polyurethane (PU) and nano-hydroxyapatite (nHA) composites (PU-nHA ratios: 100/0, 90/10, 80/20, 70/30, 60/40 w/w). The physical and mechanical properties of these composites and their relative cellular compatibility in vitro were determined. The chemical composition and crystallinity of the composites were confirmed using X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Atomic force microscopy, nano-indentation, and contact angle measurements were used to evaluate surface properties. The results showed a significant increase in surface roughness and a decrease in contact angle when the nHA concentration increased above 20%, resulting in a significant increase in hydrophilicity. These surface property changes influenced cellular behavior when MC 3T3-E1 cells were seeded on the composites. All composites were cytocompatible. There was a linear increase in cell proliferation on the 80/20 and 70/30 composites only, whereas subjective evaluation demonstrated noticeable clusters or nodules of cells (considered hallmarks of osteogenic differentiation) in the absence of any osteogenic inducers only on the 90/10 and 80/20 composites. Cellular data suggests that the 80/20 composite was an optimal environment for cell adhesion, proliferation, and, potentially, osteogenic differentiation in vitro.

  1. A review on mechanical properties of magnesium based nano composites

    Science.gov (United States)

    Tarafder, Nilanjan; Prasad, M. Lakshmi Vara

    2018-04-01

    A review was done on Magnesium (Mg) based composite materials reinforced with different nano particles such as TiO2, Cu, Y2O3, SiC, ZrO2 and Al2O3. TiO2 and Al2O3 nanoparticles were synthesised by melt deposition process. Cu, Y2O3, SiC and ZrO2 nanoparticles were synthesised by powder metallurgy process. Composite microstructural characteristics shows that the nano-size reinforcements are uniformly distributed in the composite matrix and also minimum porosity with solid interfacial integrity. The mechanical properties showed yield strength improvement by 0.2 percentage and Ultimate tensile strength (UTS) was also improved for all the nano-particles. But UTS was adversely affected with TiO2 reinforcement while ductility was increased. With Cu reinforcement elastic modulus, hardness and fracture resistance increased and improved the co-efficient of thermal expansion (CTE) of Mg based matrix. By Y2O3 reinforcement hardness, fracture resistance was improved and ductility reached maximum by 0.22 volume percentage of Y2O3 and decreased with succeeding increase in Y2O3 reinforcement. The readings exposed that mechanical properties were gathered from the composite comprising 2.0 weight percentage of Y2O3. Ductility and fracture resistance increased with ZrO2 reinforcement in Mg matrix. Using Al2O3 as reinforcement in Mg composite matrix hardness, elastic modulus and ductility was increased but porosity reduced with well interfacial integrity. Dissipation of energy in the form of damping capacity was resolved by classical vibration theory. The result showed that an increasing up to 0.4 volume percentage alumina content increases the damping capacity up to 34 percent. In another sample, addition of 2 weight percentage nano-Al2O3 particles showed big possibility in reducing CTE from 27.9-25.9×10-6 K-1 in Magnesium, tensile and yield strength amplified by 40MPa. In another test, Mg/1.1Al2O3 nanocomposite was manufactured by solidification process followed by hot extrusion

  2. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    Science.gov (United States)

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  3. Lifetime Prediction of Nano-Silica based Glass Fibre/Epoxy composite by Time Temperature Superposition Principle

    Science.gov (United States)

    Anand, Abhijeet; Banerjee, Poulami; Prusty, Rajesh Kumar; Ray, Bankin Chandra

    2018-03-01

    The incorporation of nano fillers in Fibre reinforced polymer (FRP) composites has been a source of experimentation for researchers. Addition of nano fillers has been found to improve mechanical, thermal as well as electrical properties of Glass fibre reinforced polymer (GFRP) composites. The in-plane mechanical properties of GFRP composite are mainly controlled by fibers and therefore exhibit good values. However, composite exhibits poor through-thickness properties, in which the matrix and interface are the dominant factors. Therefore, it is conducive to modify the matrix through dispersion of nano fillers. Creep is defined as the plastic deformation experienced by a material for a temperature at constant stress over a prolonged period of time. Determination of Master Curve using time-temperature superposition principle is conducive for predicting the lifetime of materials involved in naval and structural applications. This is because such materials remain in service for a prolonged time period before failure which is difficult to be kept marked. However, the failure analysis can be extrapolated from its behaviour in a shorter time at an elevated temperature as is done in master creep analysis. The present research work dealt with time-temperature analysis of 0.1% SiO2-based GFRP composites fabricated through hand-layup method. Composition of 0.1% for SiO2nano fillers with respect to the weight of the fibers was observed to provide optimized flexural properties. Time and temperature dependence of flexural properties of GFRP composites with and without nano SiO2 was determined by conducting 3-point bend flexural creep tests over a range of temperature. Stepwise isothermal creep tests from room temperature (30°C) to the glass transition temperature Tg (120°C) were performed with an alternative creep/relaxation period of 1 hour at each temperature. A constant stress of 40MPa was applied during the creep tests. The time-temperature superposition principle was

  4. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    Science.gov (United States)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  5. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Tan, Guolin; Zhou, Kechao; Huang, Suping; Zhao, Yanzhong; Li, Zhiyou; Huang, Boyun

    2008-06-01

    This study was aimed to evaluate the biocompatibility of Hydroxyapatite/High density polyethylene (HA/ HDPE) nano-composites artificial ossicle. The percentage of S-period cells were detected by flow cytometry after L929 cells being incubated with extraction of the HA/HDPE nano-composites; the titanium materials for clinical application served as the contrast. In addition, both materials were implanted in animals and the histopathological evaluations were conducted. There were no statistically significant differences between the two groups (P >0.05). The results demonstrated that the HA/HDPE nano-composite artificial ossicle made by our laboratory is of a good biocompatibility and clinical application outlook.

  6. Deformation behavior of an electrodeposited nano-Ni/amorphous Fe78Si9B13 laminated composite sheet

    Directory of Open Access Journals (Sweden)

    Zhang Kaifeng

    2015-01-01

    Full Text Available A nano-Ni/amorphous Fe78Si9B13 composite sheet was prepared in the form of three-ply (Ni-Fe78Si9B13-Ni laminated structure by an electrodeposition method. The average grain size of Ni layers is about 50 nm. The interface of laminated composite was investigated with SEM equipped with energy dispersive scanning (EDS and line analysis technique. The laminated composite has a good interfacial bonding between amorphous layer and nano-Ni layers due to the mutual diffusion of atoms in Fe78Si9B13 and Ni layers during the process of electrodeposition. A maximum elongation of 115.5% was obtained when the volume fraction of nano-Ni layers (VNi was 0.77, which is greatly higher than that of monolithic amorphous Fe78Si9B13 ribbon (36.3% tested under the same conditions. Bulging tests were carried out to evaluate plastic forming properties of the Fe78Si9B13/Ni laminated composite. Under the condition of 450 °C, 4.0 MPa and 30 min, a good bulging part with the relative bulging height (RBH of 0.4 was obtained.

  7. Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites

    International Nuclear Information System (INIS)

    Xie Lei; Ziegmann, Gerhard

    2011-01-01

    Research highlights: → PP/CNFs and PP/TiO 2 composites with relative high loading fractions (10, 20, 30 and 35 wt%) were fabricated by inner melt mixing process. Micro tensile test samples were formed by injection molding combined with variotherm process for all composites. → The morphological properties of all nano composites were characterized by WXRD, whose results imply the adding nano fillers did not change the crystal form of PP, but the crystallites size and distance between lattices of crystals were changed with various nano fillers and loading fractions. → DSC analysis show that due to the nucleating function of nano fillers, the peak temperature of crystallization was increased and the peak temperature of crystallization melting was decreased by adding the nanofillers. → The flow ability of nano composites was tested by high pressure single capillary rheometer and the results demonstrate that nano fillers increased the viscosity of PP matrix. → Based on these significant information and analysis foundation of the nano filled composites, the micro weld line samples were formed by injection molding process and characterized by tensile test method. From the achieved results, it can be found that in general, for functional nano filled polymer composites, the mechanical property of micro weld lines were obviously influenced by nano fillers' shape and loading fractions. → The E modulus of micro weld line was increased due to loading CNFs in PP matrix, while the elongation of the micro tensile samples with weld line is considerably decreased comparing with those of unfilled PP samples. The detrimental tensile strength of micro weld lines were observed when CNFs contents increasing, except for at a 10 wt%. → For TiO 2 nano particles filled PP, due to the poor dispersion of nano particles, at low loading fraction of 10 wt%, the E modulus and tensile strength of micro weld lines were decreased by filling nano particles, but when the loading fraction

  8. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  9. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    International Nuclear Information System (INIS)

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  10. Radiation effect on characterization and physical properties of polymer nano composites

    International Nuclear Information System (INIS)

    Tawfik, E.K.M.

    2013-01-01

    Polymeric materials are of interest in scientific and technological research, because they can be tailored to meet specific requirement for a verity of applications, this is mainly due to their light weight, good mechanical strength, and optical properties.From which, Poly Vinyl Alcohol (PVA) is one of the most important polymeric materials, because it has many applications in industry and is of relatively low cost in manufacture. It is well documented that electrical and optical properties of polymers can be improved to a desired limit through suitable doping. In this concern, and since Ag + is a fast conducting ion in a number of crystalline and amorphous materials, its incorporation within a polymeric system may be expected to enhance its electrical and optical properties. In the present study the PVA/Ag nano composite with different contents of inorganic phase of (2, 3, 4, 5, 6, 7, and 8) wt % were prepared by reduction of Ag + ions in PVA solution using gamma irradiation with different dose of (15, 25, 50, 75, 100) kGy. The Ag particle size was found to be around 14.0 nm based on the UV-Vis spectroscopy and Dynamic Light Scattering (DLS) measurements. Also, the structural studies of the synthesized PVA/Ag nano composites have been carried out through FTIR, and XRD studies. Further, the dependence of the optical and electrical properties of PVA on the concentration of the embedded nano-Ag was reported. As well, the effects of γ- irradiation have been studied applying UV-Vis spectroscopy and electrical characteristics measurements, respectively.

  11. Flow-induced crystallization of a nano composite of poly(butylene adipate-co-terephthalate)/montmorillonite

    International Nuclear Information System (INIS)

    Bonel, Alan B.; Rego, Bruna T.; Beatrice, Cesar A.G.; Marini, Juliano; Bretas, Rosario E.S.

    2011-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) with 5wt% of an organically modified montmorillonite with polar surfactant was prepared by melt blending in a co-rotational twin-screw extruder at 160 degree C. 100rpm and 1 kg/h. Both pure polymer and nano composite were characterized by wide measurements. The study of the flow-induced crystallization was also done by rheological measurements, monitoring the viscosity as a function of time. The nano clay's lamellas were intercalated in the polymer m loss moduli of the nano composite, at low frequencies, showed that the particles of the nano clay were well dispersed and distributed thru the PBAT matrix. Finally, the presence of the nano clay's particles reduced the induction tim crystals growth, due to the strong interactions with the PBAT chains. (author)

  12. Effects of nano-SiO{sub 2} particles on surface tracking characteristics of silicone rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue [Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-08

    Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistance to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.

  13. Nano-engineered composites: interlayer carbon nanotubes effect

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Glaucio, E-mail: carleyone@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Geraldo, Viviany; Oliveira, Sergio de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Avila, Antonio Ferreira [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica

    2013-11-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with Almost-Equal-To 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  14. Nano-engineered composites: interlayer carbon nanotubes effect

    International Nuclear Information System (INIS)

    Carley, Glaucio; Geraldo, Viviany; Oliveira, Sergio de; Avila, Antonio Ferreira

    2013-01-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with ≈ 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  15. Functional properties of extruded nano composites based on cassava starch, polyvinyl alcohol and montmorillonite

    International Nuclear Information System (INIS)

    Debiagi, Flavia; Mali, Suzana

    2011-01-01

    The objectives of this work were to produce expanded nano composites (foams) based on starch, PVA and sodium montmorillonite and characterize them according to their expansion index (EI), density, water absorption capacity (WSC), mechanical properties and X-ray diffraction. The nano composites were prepared in a single-screw extruder using different starch contents (97.6 - 55.2 g/100 g formulation), PVA (0 - 40 g/100 g formulation), unmodified nano clay - Closite - Na (0 - 4. 8 g/100 g formulation) and glycerol (20 g/100 g formulation) as plasticizer. The addition of montmorillonite and PVA resulted in an increase of EI and a decrease of density of the samples, and reduced WSC and increased the mechanical strength of the foams. Through the analysis of X-ray diffraction can be observed that the addition of montmorillonite led to production of intercalated nano composites in all samples. (author)

  16. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Characterization of dispersion of a nano composites PP/TiO2 non modified

    International Nuclear Information System (INIS)

    Soares, Igor L.; Tavares, Maria I.B.; Silva, Vanessa A. da; Legramanti, Cintia; Luetkmeyer, Leandro

    2011-01-01

    Polymeric nano composites are composite materials where an inorganic particle, which has a dimension in the nanometer range, is dispersed in a polymer matrix. Nano composites, using polypropylene (PP) as matrix polymer and titanium dioxide (TiO 2 ) as filler, have great versatility in marketing applications, this factor is inherent in the PP and the inherent ability photo degraded TiO 2 particles. This combination can lead to a widely used material and a degradation time after discharge reduced, there by becoming, a residue of low environmental impact. This study aimed to evaluate the dispersion and particle distribution of TiO 2 , non modified, in PP matrix, using the process of preparation by melt extrusion pathway and characterization of the materials obtained: on the molecular dynamics, using low field NMR solid state, measures the relaxation time spin-network (T 1 H); morphology using XRD technique, and thermal analysis technique with the TGA of pure PP and nano composites PP/TiO 2 . (author)

  18. Hybrid Nano composite Membranes for PEMFC Applications

    International Nuclear Information System (INIS)

    Niepceron, F.

    2008-03-01

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm 2 , in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  19. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  20. Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles

    International Nuclear Information System (INIS)

    Zhang Zhaozhu; Su Fenghua; Wang Kun; Jiang Wei; Men Xuehu; Liu Weimin

    2005-01-01

    The carbon fabric composites filled with the particulates of polyfluo-150 wax (PFW), nano-particles of ZnO (nano-ZnO), and nano-particles of SiC (nano-SiC), respectively, were prepared by dip-coating of the carbon fabric in a phenolic resin containing the particulates to be incorporated and the successive curing. The friction and wear behaviors of the carbon fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration are evaluated on a Xuanwu-III high-temperature friction and wear tester. The morphologies of the worn surfaces of the filled carbon fabric composites and the counterpart steel pins are analyzed by means of scanning electron microscopy. The effect of the fillers on the adhesion strength of the adhesive is evaluated using a DY35 universal materials tester. It is found that the fillers PFW, nano-ZnO, and nano-SiC contribute to significantly increasing anti-wear abilities of the carbon fabric composites, however, nano-SiC increase the friction coefficient of the carbon fabric composites. The wear rates of the composites at elevated temperature above 180 deg. C are much larger than that below 180 deg. C, which attribute to the degradation and decomposition of the adhesive resin at an excessively elevated temperature. That the interface bonding strength among the carbon fabric, the adhesive, and the particles is significantly increased after solidification and with the transferred film of the varied features largely account for the increased wear-resistance of the filled carbon fabric composites as compared with the unfilled one

  1. Advanced vectorial simulation of VCSELs with nano structures invited paper

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2009-01-01

    The single-mode properties and design issues of three vertical-cavity surface-emitting laser (VCSEL) structures incorporating nano structures are rigorously investigated. Nano structuring enables to deliver selective pumping or loss to the fundamental mode as well as stabilizing the output...... polarization state. Comparison of three vectorial simulation methods reveals that the modal expansion method is suitable for treating the nano structured VCSEL designs....

  2. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  3. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis

    Directory of Open Access Journals (Sweden)

    M. Nishihara

    2018-03-01

    Full Text Available In this study, organic-inorganic composite electrolyte membranes are developed for a novel water-absorbing porous electrolyte water electrolysis cell. As the materials of the composite electrolyte membrane, 80 wt% of a proton-conducting nano zeolite (H-MFI as an electrolyte and 20 wt% of poly(vinyl alcohol (PVA as a cross-linkable matrix are used. The nano zeolite is prepared by a milling process. The nano zeolite-PVA composite membrane precursors are prepared by spraying onto a substrate, followed by cross-linking. The resulting nano zeolite-cross-linked PVA composite films are then evaluated for their properties such as proton conductivity as electrolyte membranes for the water-absorbing porous electrolyte water electrolysis cell. It is confirmed that conventional materials such as zeolites and PVA can be used for the water electrolysis as an electrolyte.

  4. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chu, Xiaobing [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Cai, Yurong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Tong, Peijian [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic.

  5. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    International Nuclear Information System (INIS)

    Yu, Juhong; Chu, Xiaobing; Cai, Yurong; Tong, Peijian; Yao, Juming

    2014-01-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic

  6. Natural Rosin-based Phosphate Diester Surfactant Assisted One-step Synthesis of 3D Flowerlikeβ-Ni(OH)2/γ-Ni(OH)2 Composite Nano-microspheres

    Institute of Scientific and Technical Information of China (English)

    BoShi Wu; Juan Li; ChunRui Han; Feng Xu

    2018-01-01

    Self-assembled uniform 3Dflowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres with hollow interiors were successfully synthesized via a facile aqueous-ethanol mixed solvothermal method, using nickel sulfate as a precursor, urea as a precipitant, and dehydroabietic based phosphate diester sodium (DDPDS) as a surfactant. The prepared 3D flowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres were tested as supercapacitors in a two-electrode cell with 6 mol/L KOH electrolyte. In addition, the influence of DDPDS concentration on the morphology and size of 3Dflowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres was studied at 180℃. X-ray diffraction (XRD), scanning electron microscopy (SEM), BET(Brunauer, Emmett and Teller)techniques, and equity default swap (EDS) were used to characterize the structure, morphology, and size of the as-prepared samples. Moreover, a possible formation mechanism of the 3Dflowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres was proposed based on the effects of DDPDS concentrationand reaction time. The surfactant micelles were used as soft templates to induce the self-assembly of nanosheets. The crystallinity of the 3D flowerlikeβ-Ni(OH)2/g-Ni(OH)2composite nano-microspheres improved with the increase of DDPDS concentration, and the morphology and size of synthetic nano-microspheres could be controlled.

  7. Fabrication of 3D nano-structures using reverse imprint lithography

    Science.gov (United States)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  8. Fabrication of 3D nano-structures using reverse imprint lithography

    International Nuclear Information System (INIS)

    Han, Kang-Soo; Cho, Joong-Yeon; Lee, Heon; Hong, Sung-Hoon; Kim, Kang-In; Choi, Kyung-woo

    2013-01-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED. (paper)

  9. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods

    Science.gov (United States)

    Azadi, Mahboobeh; Zolfaghari, Mehrdad; Rezanezhad, Saeid; Azadi, Mohammad

    2018-05-01

    This study has been presented with mechanical properties of aluminum matrix composites, reinforced by SiO2 nano-particles. The stir casting method was employed to produce various aluminum matrix composites. Different composites by varying the SiO2 nano-particle content (including 0.5 and 1 weight percents) and two dispersion methods (including ball-milling and pre-heating) were made. Then, the density, the hardness, the compression strength, the wear resistance and the microstructure of nano-composites have been studied in this research. Besides, the distribution of nano-particles in the aluminum matrix for all composites has been also evaluated by the field emission scanning electron microscopy (FESEM). Obtained results showed that the density, the elongation and the ultimate compressive strength of various nano-composites decreased by the presence of SiO2 nano-particles; however, the hardness, the wear resistance, the yield strength and the elastic modulus of composites increased by auditioning of nano-particles to the aluminum alloy. FESEM images indicated better wetting of the SiO2 reinforcement in the aluminum matrix, prepared by the pre-heating dispersion method, comparing to ball-milling. When SiO2 nano-particles were added to the aluminum alloy, the morphology of the Si phase and intermetallic phases changed, which enhanced mechanical properties. In addition, the wear mechanism plus the friction coefficient value were changed for various nano-composites with respect to the aluminum alloy.

  10. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation.

    Science.gov (United States)

    Vergara, José; Favieres, Cristina; Magén, César; de Teresa, José María; Ibarra, Manuel Ricardo; Madurga, Vicente

    2017-12-05

    We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  11. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation

    Directory of Open Access Journals (Sweden)

    José Vergara

    2017-12-01

    Full Text Available We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM. Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.

  12. Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties

    International Nuclear Information System (INIS)

    Zenou, M; Kotler, Z; Sa’ar, A

    2016-01-01

    We study the electrical properties of aluminum structures printed by the laser forward transfer of molten, femtoliter droplets in air. The resulting printed material is an aluminum/aluminum-oxide nano-composite. By controlling the printing conditions, and thereby the droplet volume, its jetting velocity and duration, it is possible to tune the electrical resistivity to a large extent. The material resistivity depends on the degree of oxidation which takes place during jetting and on the formation of electrical contact points as molten droplets impact the substrate. Evidence for these processes is provided by FIB cross sections of printed structures. (paper)

  13. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    Science.gov (United States)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  14. Fabrication of Surface Level Cu/Si Cp Nano composites by Friction Stir Processing Route

    International Nuclear Information System (INIS)

    Srinivasan, R. C.; Karunanithi, M.

    2015-01-01

    Friction stir processing (FSP) technique has been successfully employed as low energy consumption route to prepare copper based surface level nano composites reinforced with nano sized silicon carbide particles (Si Cp). The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nano sized Si Cp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nano composites was remarkably enhanced and about 95% more than that of copper matrix

  15. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    International Nuclear Information System (INIS)

    Faghihi, K.; Ashouri, M.; Feyzi, A.

    2013-01-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  16. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, K.; Ashouri, M.; Feyzi, A., E-mail: k-faghihi@araku.ac.ir [Arak University, Faculty of Science, Organic Polymer Chemistry Research Laboratory, 38158-879 Arak (Iran, Islamic Republic of)

    2013-08-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  17. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    OpenAIRE

    Farzin Heravi; Mohammad Ramezani; Maryam Poosti; Mohsen Hosseini; Arezoo Shajiei; Farzaneh Ahrari

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extrac...

  18. Design and Fabrication of Al2O3-(W, TiC-TiN-Mo-Ni Nano-composite Cermet Tool Materials with Graded Structures

    Directory of Open Access Journals (Sweden)

    NI Xiu-ying

    2018-02-01

    Full Text Available Based on the analysis on temperature and stress distributions, as well as fatigue crack propagation in cutting tools, a model for designing compositional distribution and microstructure with graded characteristics was proposed. The addition of ductile phase and the introduction of the graded structure are beneficial to slow down the fatigue crack propagation rate and improve tool life.Al2O3-(W,TiC-TiN-Mo-Ni nano-composite tool material with graded structures was fabricated via two stage hot pressing sintering process, and the microstructure and mechanical properties were studied. The results show that the surface hardness, fracture toughness of inner layer and bending strength of the cermet with sintered gradient structure reach 19.258GPa, 10.015MPa·m1/2 and 1017.475MPa,respectively.The performance requirements to cutting tools were met. The dimple cleavage and torn edge of the binding phase in the fracture surfaces can be beneficial to the improvement of the fracture toughness and bending strength,so the resistance to fatigue crack propagation of tools is improved.

  19. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  20. Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Prajakta R.; Krishnamurthy, V.N.; Joshi, Satyawati S. [Department of Chemistry, University of Pune, Pune 411007 (India)

    2006-12-15

    A comparative study of the thermal decomposition of ammonium perchlorate (AP)/hydroxy terminated polybutadiene (HTPB) based composite propellants has been carried out in presence and absence of nano iron oxide at different heating rates in a dynamic nitrogen atmosphere using differential scanning calorimetry. The pronounced effect was a lowering of the high temperature decomposition by 49 C. A higher heat release up to 40% was observed in presence of nano ferric oxide (3.5 nm). The kinetic parameters were evaluated using the Kissinger method. The increase of the rate constant in the catalyzed propellant confirmed the enhancement of the catalytic activity of ammonium perchlorate. The scanning electron micrographs of nano Fe{sub 2}O{sub 3} incorporated in HTPB revealed a well-separated characteristic necklace-like structure of {alpha}-Fe{sub 2}O{sub 3} particles at high magnification. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Development of Nano TiO2–Geopolymer Functional Composite as Antifouling Bricks

    Directory of Open Access Journals (Sweden)

    Kusuma Wardani Nurul

    2017-01-01

    Full Text Available The purpose of study is to examine the ability of nano TiO2 – geopolymer functional composite as antifouling bricks. The samples were synthesized through alkali-activation method at 70°C for 1 hour by mixing metaclay with TiO2 nanoparticles and activated with sodium silicate solution. There were two series of samples produced, namely, GT_A with addition of 2% nanoTiO2 and GT_B with addition of 4% nano TiO2 relative to the mass of metaclay. The samples were immersed in water and in 1M H2SO4 solution for 4 days to examine the resistance of composites in hars environment. The x-ray diffraction (XRD was performed to examine the chemical compositions of the samples before and after environmental test. The morphology of the samples surfaces was examined by using Scanning Electron Microscopy (SEM coupled with energy dispersive spectroscopy (EDS. Based on this study, sample GT_A shows its excellent properties as antifouling bricks. The addition of nano TiO2 was found to improve the quality of geopolymers as a high performance bricks.

  2. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  3. The effect of micro nano multi-scale structures on the surface wettability

    International Nuclear Information System (INIS)

    Lee, Sang Min; Jung, Im Deok; Ko, Jong Soo

    2008-01-01

    Surface wettability in terms of the size of the micro nano structures has been examined. To evaluate the influence of the nano structures on the contact angles, we fabricated two different kinds of structures: square-pillar-type microstructure with nano-protrusions and without nano-protrusions. Microstructure and nanostructure arrays were fabricated by Deep Reactive Ion Etching (DRIE) and Reactive Ion Etching (RIE) processes, respectively. And Plasma Polymerized FluoroCarbon (PPFC) was finally deposited onto the fabricated structures. Average value of the measured contact angles from microstructures with nano-protrusions was 6.37 .deg. higher than that from microstructures without nano-protrusions. This result indicates that the nano-protrusions give a crucial effect to increase the contact angle

  4. Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions

    International Nuclear Information System (INIS)

    Ayatollahi, M.R.; Shadlou, S.; Shokrieh, M.M.

    2011-01-01

    Research highlights: → Mode I and mode II fracture tests were conducted on epoxy/MWCNT nano-composites. → Addition of MWCNT to epoxy increased both K Ic and K IIc of nano-composites. → The improvement in K IIc was more pronounced than in K Ic . → Mode I and mode II fracture surfaces were studied by scanning electron microscopy. -- Abstract: The effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of epoxy/MWCNT nano-composites were studied with emphasis on fracture toughness under bending and shear loading conditions. Several finite element (FE) analyses were performed to determine appropriate shear loading boundary conditions for a single-edge notch bend specimen (SENB) and an equation was derived for calculating the shear loading fracture toughness from the fracture load. It was seen that the increase in fracture toughness of nano-composite depends on the type of loading. That is to say, the presence of MWCNTs had a greater effect on fracture toughness of nano-composites under shear loading compared with normal loading. To study the fracture mechanisms, several scanning electron microscopy (SEM) pictures were taken from the fracture surfaces. A correlation was found between the characteristics of fracture surface and the mechanical behaviors observed in the fracture tests.

  5. Tailored sPP/Silica Nano composite for Eco friendly Insulation of Extruded HVDC Cable

    International Nuclear Information System (INIS)

    Dang, B.; He, J.; Hu, J.; Zhou, Y.

    2015-01-01

    Cross-linked polyethylene (XLPE) is a thermosetting material that cannot be recycled at the end of its lifetime. This study investigated the potential of syndiotactic polypropylene (sPP)/silica as an eco friendly extruded insulation system for HVDC cables. We investigated the morphology, Fourier transform infrared, and thermal, thermomechanical, and electrical behaviors of sPP modified with 0.5-3% nano silica. We found that the silica/sPP nano composite without cross-linking offered a suitable mechanical modulus at room temperature and sufficient intensity at high temperatures, and adding nano silica modified by a silane coupling agent to the sPP resulted in significant DC resistivity and space charge improvement. The optimal nano silica content in the sPP was determined by balancing the mechanical and thermomechanical characteristics and the DC resistivity. The sPP/silica nano composite reported here shows great potential as a candidate insulation material for future eco friendly extruded HVDC cables.

  6. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Bafandeh, Mohammad Reza, E-mail: mr.bafandeh@gmail.com [Department of Materials Science and Engineering, Faculty of Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Gharahkhani, Raziyeh; Fathi, Mohammad Hossein [Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  7. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites

    International Nuclear Information System (INIS)

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-01-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1 week immersion in SBF. After 2 weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4 weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications. - Highlights: • Co-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared. • In order to study their bioactivity, composite samples were immersed in SBF solution for 1 to 4 weeks. • Immersion in SBF accompanied with precipitation of hydroxyapatite on surface of samples. • Prepared composite samples unlike cobalt-based alloy were bioactive.

  8. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Meng, Lingyin [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Mu, Guiqin [Maize Research Institute of Sichuan Agricultural University, Wenjiang 611130 (China); Zhao, Maojun; Zou, Ping [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Zhang, Yunsong, E-mail: yaanyunsong@126.com [College of Science, Sichuan Agricultural University, Yaan 625014 (China)

    2016-08-15

    Highlights: • Nano-ZnO/yeast composites were fabricated by alkali hydrothermal method. • Nano-ZnO was in-situ achieved and anchored on the yeast surface. • Alkali and hydrothermal process cause more exposed funcitional groups on yeast. • Nano-ZnO/yeast composites show higher Pb{sup 2+} adsorption ability than pristine yeast. • Nano-ZnO and exposed functional groups synergistically participate in adsorption. - Abstract: Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb{sup 2+} ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb{sup 2+} concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb{sup 2+} (31.72 mg g{sup −1}) is 2.03 times higher than that of pristine yeast (15.63 mg g{sup −1}). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb{sup 2+} via synergistic effect.

  9. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    International Nuclear Information System (INIS)

    Zhang, Wei; Meng, Lingyin; Mu, Guiqin; Zhao, Maojun; Zou, Ping; Zhang, Yunsong

    2016-01-01

    Highlights: • Nano-ZnO/yeast composites were fabricated by alkali hydrothermal method. • Nano-ZnO was in-situ achieved and anchored on the yeast surface. • Alkali and hydrothermal process cause more exposed funcitional groups on yeast. • Nano-ZnO/yeast composites show higher Pb"2"+ adsorption ability than pristine yeast. • Nano-ZnO and exposed functional groups synergistically participate in adsorption. - Abstract: Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb"2"+ ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb"2"+ concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb"2"+ (31.72 mg g"−"1) is 2.03 times higher than that of pristine yeast (15.63 mg g"−"1). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb"2"+ via synergistic effect.

  10. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  11. Mechanical properties of cement concrete composites containing nano-metakaolin

    Science.gov (United States)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  12. Reduction reactions applied for synthesizing different nano-structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque Brocchi, Eduardo de; Correia de Siqueira, Rogério Navarro [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Motta, Marcelo Senna [Basck Ltd. (United Kingdom); Moura, Francisco José, E-mail: moura@puc-rio.br [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Solórzano-Naranjo, Ivan Guillermo [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil)

    2013-06-15

    Different materials have been synthesized by alternative routes: nitrates thermal decomposition to prepare oxide or co-formed oxides and reduction by hydrogen or graphite to obtain mixed oxides, composites or alloys. These chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support its feasibility. In addition, selective reduction reactions have been applied to successfully produce metal/ceramic composites, and alloys. Structural characterization has been carried out by X-ray Diffraction and, more extensively, Transmission Electron Microscopy operating in conventional diffraction contrast (CTEM) and high-resolution mode (HRTEM), indicated the possibility of obtaining oxide and alloy crystals of sizes ranging between 20 and 40 nm. - Highlights: • The viability in obtaining Ni–Co, Cu–Al, Mn–Al co-formed nano oxides was evaluated. • Partial and complete H{sub 2} reduction were used to produce alloy, composite and Spinel. • XRD, TEM and HREM techniques were used to characterize the obtained nanostructures.

  13. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  14. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings.

    Science.gov (United States)

    Wang, Huaiyuan; Zhao, Jingyan; Zhu, Youzhuang; Meng, Yang; Zhu, Yanji

    2013-07-15

    A simple engineering method was used to fabricate stability and wear-resistance of superhydrophobic PPS-based PPS/PTFE surfaces through nano/micro-structure design and modification of the lowest surface energy groups (-CF2-), which was inspired by the biomimic lotus leaves. The hydrophobic properties and wear-resistance of the coatings were measured by a contact angle meter and evaluated on a pin-on-disk friction and wear tester, respectively. Moreover, the surfaces of the PPS/PTFE composite coatings were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and thermogravimetry (TG) analysis. Results showed that the highest contact angle of the PPS/PTFE surface, with papillae-like randomly distributed double-scale structure, could reach up to 162°. When 1 wt.% PDMS was added, the highest contact angle could hold is 172°. The coatings also retained superhydrophobicity, even under high temperature environment. The investigation also indicated that the coatings were not only superhydrophobic but also oleophobic behavior at room temperature, such as the crude oil, glycerol, and oil-water mixture. The PPS/45%PTFE coatings had more stable friction coefficient and excellent wear-resistance (331,407 cycles) compared with those with less than 45% of PTFE. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  16. Compression and Injection Moulding of Nano-Structured Polymer Surfaces

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik Koblitz

    2006-01-01

    In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding.......In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding....

  17. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  18. Modal analysis of pre and post impacted nano composite laminates

    Directory of Open Access Journals (Sweden)

    R. Velmurugan

    Full Text Available Modal analysis is carried out on pre and post impacted nano composite laminates. The laminates are prepared using 3, 5 and 8 layers of 610gsm glass woven roving mats(WRM with epoxy resin and montmorillonite(MMT clay content is varied from 1% to 5%. Impulse hammer technique is used to find natural frequency and damping factor of laminates. Medium velocity impact tests are conducted by using a gas gun. The vibration responses of natural frequency and damping factor are obtained and are studied for laminates with all edges clamped boundary conditions. Results show considerable improvement in natural frequency and damping factor due to nano clay addition. It is also seen that the nano clay controls the delamination due to impact loading.

  19. Investigation of properties of modified oxides structured by nano technology

    International Nuclear Information System (INIS)

    Kurina, I.S.; Serebrennikova, O.V.; Rumyantsev, V.N.; Dvoryashin, A.M.

    2009-01-01

    Research results on the PuO 2 +MgO fuel composition with CeO 2 as a PuO 2 simulator are presented. The water nano technology for the production of oxide ceramic materials, developed in IPPE, was used for fabrication of powders and modified pellets. This technology includes obtaining precipitate, consisting of particles of different sizes as well as of nanoparticles, which is further calcined, pressed and sintered. It results in modifying structure of the sintered pellets. Modified pellets have anomalously high thermal conductivity measured by the axial heat flux method [ru

  20. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence...... lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non......-equilibrium action of the enzyme phospholipase A(2) which hydrolyses lipid-bilayer substrates. The resulting product molecules are assumed to induce local variations in the membrane interfacial pressure. Monte Carlo simulations of the non-equilibrium properties of the model for one-component as well as binary lipid...

  1. The Effect of Drawing Ratio on Mechanical Property of Nano-Hybrid Polyimide Composite Films

    Directory of Open Access Journals (Sweden)

    CHEN Hao

    2017-06-01

    Full Text Available In order to investigate the impact of drawing ratio of inorganic nano-hybrid polyamide three-layer composite films,the stretched composite films with different draw ratio were prepared by drawing partial imido polyamide film and then through the ring closing reaction in the high temperature,and the draw ratio was 0% ,2% , 4% ,6% ,8% ,10% ,12% ,14% etc. Under the same conditions,we made different draw ratio of three-layer composite film tensile test with the electronic universal material testing machine. The results show: doped inorganic nanometer oxide made PI film elastic modulus increase slightly,the tensile strength and elongation at break decrease obviously,but the nano hybrid three-layer composite PI films still had good mechanical properties; The yield of polyimide film should be caused by forced high-elastic deformation of polyimide molecular chain,and it had nothing to do with whether doped inorganic nano-oxide or whether through stretched processing; With the increase of draw ratio,the elastic modulus of the nano hybrid three-layer composite PI films existed the trend of first increased and then slow down gradually,and the tensile strength and elongation at break first decreased and then increased.

  2. Exergy analysis of the solar still integrated nano composite phase change materials

    International Nuclear Information System (INIS)

    Methre, V.K.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the exergy analysis of solar still integrated with nano composite phase change materials for design and operating parameters. Al_2O_3 nano materials (50 nm) is dispersed by weight ratio in paraffin wax at melting state and its thermophysical properties are evaluated using developed correlation. Exergy balance equation for basin liner, thermal energy storage, glass cover and saline water is developed and exergy efficiency is analysed. It is found that exergy efficiency is improved by higher weight ratio of Al_2O_3 nano materials with paraffin wax alone. (author)

  3. Kidney stone nano-structure - Is there an opportunity for nanomedicine development?

    Science.gov (United States)

    Vordos, N; Giannakopoulos, S; Gkika, D A; Nolan, J W; Kalaitzis, Ch; Bandekas, D V; Kontogoulidou, C; Mitropoulos, A Ch; Touloupidis, S

    2017-06-01

    Kidney stone analysis techniques are well-established in the field of materials characterization and provide information for the chemical composition and structure of a sample. Nanomedicine, on the other hand, is a field with an increasing rate of scientific research, a big budget and increasingly developing market. The key scientific question is if there is a possibility for the development of a nanomedicine to treat kidney stones. The main calculi characterization techniques such as X-ray Diffraction and Fourier Transform Infrared Spectroscopy can provide information about the composition of a kidney stone but not for its nanostructure. On the other hand, Small Angle X-ray Scattering and Nitrogen Porosimetry can show the nanostructural parameters of the calculi. The combination of the previously described parameters can be used for the development of nano-drugs for the treatment of urolithiasis, while no such nano-drugs exist yet. In this study, we focus on the most well-known techniques for kidney stone analysis, the urolithiasis management and the search for possible nanomedicine for the treatment of kidney stone disease. We combine the results from five different analysis techniques in order to represent a three dimensional model and we propose a hypothetical nano-drug with gold nanoparticles. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  5. Electron emission from nano-structured carbon composite materials and fabrication of high-quality electron emitters by using plasma technology

    International Nuclear Information System (INIS)

    Hiraki, H.; Hiraki, A.; Jiang, N.; Wang, H. X.

    2006-01-01

    Many trials have been done to fabricate high-quality electron-emitters from nano-composite carbon materials (such as nano-diamond, carbon nano tubes and others) by means of a variety of plasma chemical-vapor-deposition (CVD) techniques. Based upon the mechanism of electron emission, we have proposed several strategic guide lines for the fabrication of good emitters. Then, following these lines, several types of emitters were tried. One of the emitters has shown a worldclass, top ranking for fabricating very bright lamps: namely, a low turn-on voltage (0.5 ∼ 1 V/μm to induce 10 μA/cm 2 emission current) to emit a 1 mA/cm 2 current at 3 V/μm and 100 mA/cm 2 current at a slightly higher applied voltage. The bright lamps are Mercury-free fluorescence lamps to exhibit brightness of ∼10 5 cd/m 2 with high efficiency of ∼100 lm/w.

  6. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe_2O_3@Carbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-01-01

    Core-shell nano-ring α-Fe_2O_3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe_2O_3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe_2O_3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe_2O_3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g"−"1 and retains 920/897 mAh g"−"1 after 200 cycles at 500 mA g"−"1 (0.5C). Even at 2000 mA g"−"1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g"−"1, and still maintains 630/610 mAh g"−"1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe_2O_3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe_2O_3 and facilitate the transportation of electrons and Li"+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe_2O_3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  7. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-01

    Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  8. Synthesis of LiFePO4/Graphene Nano composite and Its Electrochemical Properties as Cathode Material for Li-Ion Batteries

    International Nuclear Information System (INIS)

    Ma, X.; Chen, G.; Liu, Q.; Zeng, G.; Wu, T.

    2014-01-01

    LiFePO 4 /graphene nano composite was successfully synthesized by rheological phase method and its electrochemical properties as the cathode materials for lithium ion batteries were measured. As the iron source in the synthesis, FeOOH nano rods anchored on graphene were first synthesized. The FeOOH nano rods precursors and the final LiFePO 4 /graphene nano composite products were characterized by XRD, SEM, and TEM. While the FeOOH precursors were nano rods with 5-10 nm in diameter and 10-50 nm in length, the LiFePO 4 were nanoparticles with 20-100 nm in size. Compared with the electrochemical properties of LiFePO 4 particles without graphene nano sheets, it is clear that the graphene nano sheets can improve the performances of LiFePO 4 as the cathode material for lithium ion batteries. The as-synthesized LiFePO 4 /graphene nano composite showed high capacities and good cyclabilities. When measured at room temperature and at the rate of 0.1 C (1 C = 170 mA g -1 ), the composite showed a discharge capacity of 156 mA h g -1 in the first cycle and a capacity retention of 96% after 15 cycles. The improved performances of the composite are believed to be the result of the three-dimensional conducting network formed by the flexible and planar graphene nano sheets.

  9. Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Zhao, Qinglong; Zha, Min; Jiang, Qichuan

    2017-07-03

    The tensile creep behavior of Al-Cu-Mg alloy and its composite containing in situ nano-sized TiC x were explored at temperatures of 493 K, 533 K and 573 K with the applied stresses in the range of 40 to 100 MPa. The composite reinforced by nano-sized TiC x particles exhibited excellent creep resistance ability, which was about 4-15 times higher than those of the unreinforced matrix alloy. The stress exponent of 5 was noticed for both Al-Cu-Mg alloy and its composite, which suggested that their creep behavior was related to dislocation climb mechanism. During deformation at elevated temperatures, the enhanced creep resistance of the composite was mainly attributed to two aspects: (a) Orowan strengthening and grain boundary (GB) strengthening induced by nano-sized TiC x particles, (b) θ' and S' precipitates strengthening.

  10. Corrigendum to Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite

    International Nuclear Information System (INIS)

    Bak, S. A.; Song, M. S.; Nam, I.T.; Lee, W.G.

    2015-01-01

    In the published paper entitled Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite [1], we mistakenly used Laponite in our paper. The corrected name is Laponite (BYK Corporations products). So we are making some changes from Laponite to Laponite (BYK Corporations products) in our paper.

  11. Radiation synthesis of the nano-scale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong, Ni; Zhicheng, Zhang; Xuewu, Ge; Xiangling, Xu [Department of Applied Chemistry, Univ. of Science and Technology of China, Hefei (China)

    2000-03-01

    Some recent research jobs on fabricating the nano-scale materials via {gamma}-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  12. Radiation synthesis of the nano-scale materials

    International Nuclear Information System (INIS)

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  13. Stimulated transformation in nano-layered composites with Se0.6Te0.4

    International Nuclear Information System (INIS)

    Malyovanik, M.; Shipljak, M.; Cheresnya, V.; Ivan, I.; Csik, A.; Kokenyesi, S.; Debrecen Univ.

    2005-01-01

    Complete text of publication follows. The main types of the photo-induced structural transformations (PST) in chalcogenide glasses and amorphous layers can be systematized as i) structural transformations within amorphous phase, ii) photo-induced crystallization or amorphyzation, iii) photo-induced mass transport. These main known types of PST can be further detailed, for example concerning photo-induced anisotropy, photo- bleaching, etc., and are widely investigated. But the fundamentals of these effects even in the most known compositions like AsSe, As 2 S 3 are not clear, especially for the nanostructures, where the possible cluster formation, size restrictions and interface conditions may essentially influence the parameters of the material. Furthermore, the basic applied problem related to the PST consists of the possibility of digital or analog optical information storage, phase change memory, fabrication of elements for optics and photonics. These applications require determined spectral and temperature range of functioning, increased sensitivity, transformation rates and stability of the memory at the same time. The realization of such requirements can be expected in nanosized objects made of chalcogenides due to the suitable change of thermodynamical parameters, conductivity, optical and other characteristics. The establishment of correlations between the compositional modulation at nanoscale-dimensions (3-10 nm) in Se 0.6 Te 0.4 and the changes of the optical and electrical parameters as well as the possible improvement of optical recording process in comparison with homogeneous Se 0.6 Te 0.4 films were the aims of the present work. Two types of nano-multilayers, namely Se 0.6 Te 0.4 /SiO x and Se 0.6 Te 0.4 /As 2 S 3 were investigated with respect to the thermo- or light-stimulated structural transformations, since they strongly di r by the possibility of intermixing or crystallization in a steady-state process of heating or laser illumination. Photo

  14. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    Science.gov (United States)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  15. Nano-Reinforcement of Interfaces in Prepreg-Based Composites Using a Carbon Nanotubes Spraying Method

    KAUST Repository

    Almuhammadi, Khaled

    2012-01-01

    of epoxy resins used as matrix materials for CFRP composites can be increased by the addition of nano-sized fillers such as Carbon nanotubes (CNTs). CNTs are particularly well suited for this purpose because of their nano-scale diameter and high aspect

  16. Quantitative analysis of supported membrane composition using the NanoSIMS

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, M L; Fishel, S F; Marxer, C G; Weber, P K; Hutcheon, I D; Boxer, S G

    2009-06-02

    We have improved methods reported earlier [1] for sample preparation, imaging and quantifying components in supported lipid bilayers using high-resolution secondary ion mass spectrometry performed with the NanoSIMS 50. By selectively incorporating a unique stable isotope into each component of interest, a component-specific image is generated from the location and intensity of the unique secondary ion signals exclusively produced by each molecule. Homogeneous supported lipid bilayers that systematically varied in their isotopic enrichment levels were freeze-dried and analyzed with the NanoSIMS 50. The molecule-specific secondary ion signal intensities had an excellent linear correlation to the isotopically labeled lipid content. Statistically indistinguishable calibration curves were obtained using different sample sets analyzed months apart. Fluid bilayers can be patterned using lithographic methods and the composition of each corralled region varied systematically by simple microfluidic methods. The resulting composition variations can be imaged and quantified. This approach opens the possibility of imaging and quantifying the composition of microdomains within membranes, including protein components, without using bulky labels and with very high lateral resolution and sensitivity.

  17. The Properties of Nano TiO2-Geopolymer Composite as a Material for Functional Surface Application

    Directory of Open Access Journals (Sweden)

    Syamsidar D.

    2017-01-01

    Full Text Available The aim of this study is to examine the properties of Nano TiO2-geopolymer as a material for functional surface applications such as walls, floors, bench top, arts and decoration materials. Class-C fly ash and metakaolin were used as raw materials to produce geopolymers pastes (binder. Geopolymers were synthesized through alkali activation method cured at 50°C for 2 hours using molar oxide ratios of SiO2/Al2O3 = 3.0, Na2O/SiO2 = 0.2, and H2O/Na2O = 10. Nano TiO2 was added into geopolymers paste at different concentration namely 0 wt%, 5wt%, 10wt% and 15wt % relative the weight of fly ash or metakaolin. The measurements were commenced after the samples aged 7 days. The samples made from fly ash were immersed in 1 M H2SO4 solution for 3 days for acid resistance examination. The self-cleaning properties of the composites were observed by immersing the sample into red clays solution. The X-Ray Diffraction (XRD was performed to examine the structure and phase of the samples before and after acid resistance measurement. Scanning Electron Microscopy (SEM was performed to examine the surface morphology of the resulting composites. The measurements results showed that Nano TiO2–geopolymers composite can be applied as functionally surface materials.

  18. Facile large scale synthesis of Bi{sub 2}S{sub 3} nano rods–graphene composite for photocatalytic photoelectrochemical and supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Vadivel, S. [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India); Naveen, A. Nirmalesh [Department of Physics, Anna University, Chennai, Tamil Nadu 600025 (India); Kamalakannan, V.P. [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India); Cao, P. [Department of Chemistry and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Balasubramanian, N., E-mail: nbsbala@annauniv.edu [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India)

    2015-10-01

    Graphical abstract: - Highlights: • A Bi{sub 2}S{sub 3}/RGO composite was synthesized by one pot precipitation method. • The synthesized Bi{sub 2}S{sub 3}/RGO composite exhibit rod like morphology. • As synthesized composite was applied for malachite green degradation. • The synthesized Bi{sub 2}S{sub 3}/RGO composite exhibits a specific capacitance of 290 F g{sup −1} at a scan rate of 1 A g{sup −1}. • Photocatalytic and supercapacitor properties of Bi{sub 2}S{sub 3} were enhanced mainly due to effective graphene incorporation. - Abstract: Bi{sub 2}S{sub 3} nano rods–graphene (BG) composite material was synthesized by a simple one step precipitation method. The crystallanity, structural and morphological properties were studied by the X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques. The photocatalytic activity of BG was evaluated by the photocatalytic degradation of malachite green dye (MG) aqueous solution under the visible light irradiation. The effect of graphene content on the photoelectrochemical property of Bi{sub 2}S{sub 3} nano rods was also studied. The enhancement of photocurrent and photocatalytic properties of BG composite attributed to the synergistic effect between the Bi{sub 2}S{sub 3} nano rods and graphene sheets which improves the charge separation efficiency in Bi{sub 2}S{sub 3} nano rods. The supercapacitor behavior was studied using cyclic voltametry and galvanostatic charge discharge studies. The BG composite exhibits a maximum specific capacitance of 290 F g{sup −1} at a current density of 1 A g{sup −1}. The present study may provide as a new approach in improving the performance of BG composite in supercapacitor, solar cells and photocatalytic applications.

  19. Transformation of sludge Si to nano-Si/SiOx structure by oxygen inward diffusion as precursor for high performance anodes in lithium ion batteries

    Science.gov (United States)

    Hua, Qiqi; Dai, Dongyang; Zhang, Chengzhi; Han, Fei; Lv, Tiezheng; Li, Xiaoshan; Wang, Shijie; Zhu, Rui; Liao, Haojie; Zhang, Shiguo

    2018-05-01

    Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained from the photovoltaic (PV) industry into the nano-Si/SiOx structure as a result of the high diffusion efficiency of O inside Si and high surface area of the sludge. After further process, a yolk/shell Si/C structure was obtained as an anode material for LIBs. This composite demonstrated an excellent cycling stability, with a high reversible capacity (˜ 1250 mAh/g for 500 cycles), by void space originally left by the SiOx accommodate inner Si expansion. We believe this is a rather simple way to convert the waste Si into a valuable nano-Si for LIB applications.

  20. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  1. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  2. Preparation of new series of poly(amide-imide) reinforced layer silicate nano composite containing N-trimellitimide-L-alanine

    International Nuclear Information System (INIS)

    Faghihi, K.; Soleimani, M.; Shabanian, M.

    2011-01-01

    A new poly(amide-imide)-montmorillonite series were generated through solution intercalation technique. Cloisite 20A was used as a modified montmorillonite for ample compatibility with the poly(amide-imide) (PAI) matrix. The PAI 5 chains were synthesized by the direct polycondensation reaction of N-trimellitylimido-L-alanine (3) with 4,4'-diamino diphenyl ether (4) in the presence of tryphenyl phosphites (TPP), CaCl 2 , pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nano composite films 5a-5d with (5-20 Wt%) silicate particles were characterized by Ftir spectroscopy, X-ray diffraction and scanning electron microscopy. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nano composites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis and water uptake measurements. (Author)

  3. Preparation of new series of poly(amide-imide) reinforced layer silicate nano composite containing N-trimellitimide-L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, K.; Soleimani, M. [Polymer Research Laboratory, Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Shabanian, M., E-mail: k-faghihi@araku.ac.ir [Young Researches Club, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of)

    2011-07-01

    A new poly(amide-imide)-montmorillonite series were generated through solution intercalation technique. Cloisite 20A was used as a modified montmorillonite for ample compatibility with the poly(amide-imide) (PAI) matrix. The PAI 5 chains were synthesized by the direct polycondensation reaction of N-trimellitylimido-L-alanine (3) with 4,4'-diamino diphenyl ether (4) in the presence of tryphenyl phosphites (TPP), CaCl{sub 2}, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nano composite films 5a-5d with (5-20 Wt%) silicate particles were characterized by Ftir spectroscopy, X-ray diffraction and scanning electron microscopy. The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nano composites films were investigated by using UV-Vis spectroscopy, thermogravimetric analysis and water uptake measurements. (Author)

  4. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    Science.gov (United States)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  5. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites.

    Science.gov (United States)

    Wang, Xudong; Zhao, Xueni; Zhang, Li; Wang, Wanying; Zhang, Jing; He, Fuzhen; Yang, Jianjun

    2017-08-01

    Carbon fibers (CFs) with needle-like nano-hydroxyapatite (nHA) coating were first used as reinforcing materials named nHA-CFs to improve the mechanical properties of pure HA. A powder mixture containing nHA-CFs and granular nano-HA (gHA) was directly sintered by hot pressing at appropriate sintering pressure and temperature. A three-phase nHA-CFs/gHA composite was designed, fabricated, and used as an artificial bone. Results show that the bending strengths of the nHA-CFs/gHA composite are approximately 41.1% and 59.2% higher than those of CFs/gHA composite and pure HA, respectively. The possible reinforcing mechanism of nHA-CFs in the composite is also proposed at the end. When nHA-CFs are applied for preparation of nHA-CFs/gHA composites, the internal stress on its phase boundary with gHA matrix generated during cooling of sintered is significantly reduced due to the presence of the nHA coatings. It infers that nHA coatings on CFs might act as a bridge to control the forming of interfacial gaps between the gHA matrix and the CFs effectively. Our work provides additional insights into the feasibility of nHA-CFs/gHA composites as load-bearing implant materials in clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  7. Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

    Science.gov (United States)

    Gaheen, Sharon; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli

    2015-01-01

    Summary The cancer Nanotechnology Laboratory (caNanoLab) data portal is an online nanomaterial database that allows users to submit and retrieve information on well-characterized nanomaterials, including composition, in vitro and in vivo experimental characterizations, experimental protocols, and related publications. Initiated in 2006, caNanoLab serves as an established resource with an infrastructure supporting the structured collection of nanotechnology data to address the needs of the cancer biomedical and nanotechnology communities. The portal contains over 1,000 curated nanomaterial data records that are publicly accessible for review, comparison, and re-use, with the ultimate goal of accelerating the translation of nanotechnology-based cancer therapeutics, diagnostics, and imaging agents to the clinic. In this paper, we will discuss challenges associated with developing a nanomaterial database and recognized needs for nanotechnology data curation and sharing in the biomedical research community. We will also describe the latest version of caNanoLab, caNanoLab 2.0, which includes enhancements and new features to improve usability such as personalized views of data and enhanced search and navigation. PMID:26425409

  8. Influence of volume percentage of NanoTiB2 particles on tribological & mechanical behaviour of 6061-T6 Al alloy nano-surface composite layer prepared via friction stir process

    Directory of Open Access Journals (Sweden)

    V. Kishan

    2017-02-01

    Full Text Available The aim of present study is to analyze the influence of volume percentage (vol.% of nano-sized particles (TiB2: average size is 35 nm on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surface nano composite prepared via Friction stir process (FSP. The microstructure of the fabricated surface nanocomposites is examined using optical microscopy (OM and scanning electron microscope (SEM for distribution of TiB2 nano reinforcement particles, thickness of nano composite layer formed on the Aluminum alloy substrate and fracture features. The depth of surface nano composite layer is measured as 3683.82 μm along the cross section of stir zone of nano composite perpendicular to FSP. It was observed that increase in volume percentage of TiB2 particles, the microhardness is increased up to 132 Hv and it is greater than as-received Al alloy's microhardness (104 Hv. It is also observed that at 4 volume percentage higher tensile properties exhibited as compared with the 2 and 8 vol. %. It is found that high wear resistance exhibited at 4 volume percentage as-compared with the 2 and 8 vol. %. The observed wear and mechanical properties are interrelated with microstructure, fractography and worn morphology.

  9. Fire retardancy assessment of polypropylene composite filed with nano clay prepared from Iraqi bentonite

    Science.gov (United States)

    Kareem Salih, Watheq

    2018-05-01

    Fire retardants have an extraordinary importance because of their role in saving the people, property and reducing the damages and minimizing the dangers resulting from fires and burning of polymeric composites which are used in different civil and industrial fields. The work in this paper can be divided into two main stages. In first one nano-clay was manufactured from Iraqi bentonite and it was characterized using AFM, XRD, XRF, SEM, and BET. The AFM test showed the particle size of prepared nano clay was about 99.25 nm. In the second stage, polypropylene/nano clay composites at three low loading percents (0%,2%,4%,6%) were formulated via twin screw extruder. The fire retardancy tests included burning rate according to ASTM:D-635 and maximum flame height of flame according to ASTM:D-3014. Besides, the mechanical tests and thermal behavior of prepared samples were investigated. The results showed that (4%) of nano-clay had the maximum fire retardancy and while at (2%) loading, the maximum value of tensile strength and Yong modulus were obtained. The maximum heat of fusion was recorded for 6% nano clay sample. The final results assessment confirmed on the possibility of using low loadings of prepared nano clay to improve the fire retardancy, mechanical and thermal properties successfully.

  10. Hierarchical Micro/Nano Structures by Combined Self-Organized Dewetting and Photopatterning of Photoresist Thin Films.

    Science.gov (United States)

    Sachan, Priyanka; Kulkarni, Manish; Sharma, Ashutosh

    2015-11-17

    Photoresists are the materials of choice for micro/nanopatterning and device fabrication but are rarely used as a self-assembly material. We report for the first time a novel interplay of self-assembly and photolithography for fabrication of hierarchical and ordered micro/nano structures. We create self-organized structures by the intensified dewetting of unstable thin (∼10 nm to 1 μm) photoresist films by annealing them in an optimal solvent and nonsolvent liquid mixture that allows spontaneous dewetting to form micro/nano smooth dome-like structures. The density, size (∼100 nm to millimeters), and curvature/contact angle of the dome/droplet structures are controlled by the film thickness, composition of the dewetting liquid, and time of annealing. Ordered dewetted structures are obtained simply by creating spatial variation of viscosity by ultraviolet exposure or by photopatterning before dewetting. Further, the structures thus fabricated are readily photopatterned again on the finer length scales after dewetting. We illustrate the approach by fabricating several three-dimensional structures of varying complexity with secondary and tertiary features.

  11. A Novel Silicon-based Wideband RF Nano Switch Matrix Cell and the Fabrication of RF Nano Switch Structures

    Directory of Open Access Journals (Sweden)

    Yi Xiu YANG

    2011-12-01

    Full Text Available This paper presents the concept of RF nano switch matrix cell and the fabrication of RF nano switch. The nano switch matrix cell can be implemented into complex switch matrix for signal routing. RF nano switch is the decision unit for the matrix cell; in this research, it is fabricated on a tri-layer high-resistivity-silicon substrate using surface micromachining approach. Electron beam lithography is introduced to define the pattern and IC compatible deposition process is used to construct the metal layers. Silicon-based nano switch fabricated by IC compatible process can lead to a high potential of system integration to perform a cost effective system-on-a-chip solution. In this paper, simulation results of the designed matrix cell are presented; followed by the details of the nano structure fabrication and fabrication challenges optimizations; finally, measurements of the fabricated nano structure along with analytical discussions are also discussed.

  12. [Study on the antibacterial activity of four kinds of nano-hydroxyapatite composites against Enterococcus faecalis].

    Science.gov (United States)

    Liu, Yi; Zhou, Rongjing; Wu, Hongkun

    2015-06-01

    This study aims to compare and determine a kind of nano-hydroxyapatite composite material with good antibacterial efficacy on Enterococcusfaecalis (E. faecalis) in vitro. We investigated the antimicrobial activity of four kinds of nano-hydroxyapatite composites, namely, silver/hydroxyapatite composite nanoparticles (Ag/nHA), yttrium/hydroxyapatite composite nanoparticles (Yi/nHA), cerium/hydroxyapatite composite nanoparticles (Ce/nHA), and hydroxyapatite nanoparticles (nHA), against E. faecalis in vitro using the agar diffusion and broth dilution method by measuring the growth inhibition zone and the minimum inhibitory concentration (MIC), respectively. The agar diffusion test results showed that Ag/nHA displayed an obvious growth inhibition zone, whereas Yi/nHA, Ce/nHA, and nHA showed no influence on E. faecalis. The MIC value of Ag/nHA was 1.0 g.L-1, and the three other materials had no effect on E.faecalis even at the high concentration of 32.0 g.L-1. Ag/nHA display a potential antimicrobial efficacy to planktonic E.faecalis. Whereas, the three other kinds of nano-hydroxyapatite composites (Yi/nHA, Ce/nHA, nHA) show no influence.

  13. Nano-Particle Enhanced Polymer Materials for Space Flight Applications

    Science.gov (United States)

    Criss, Jim M., Jr.; Powell, William D.; Connell, John W.; Stallworth-Bordain, Yemaya; Brown, Tracy R.; Mintz, Eric A.; Schlea, Michelle R.; Shofne, Meisha L.

    2009-01-01

    Recent advances in materials technology both in polymer chemistry and nano-materials warrant development of enhanced structures for space flight applications. This work aims to develop spacecraft structures based on polymer matrix composites (PMCs) that utilize these advancements.. Multi-wall carbon nano-tubes (MWCNTs) are expected ·to increase mechanical performance, lower coefficient of thermal expansion (CTE), increase electrical conductivity (mitigate electrostatic charge), increase thermal conductivity, and reduce moisture absorption of the resultant space structures. In this work, blends of MWCNTs with PETI-330 were prepared and characterized. The nano-reinforced resins were then resin transfer molded (RTM) into composite panels using M55J carbon fabric and compared to baseline panels fabricated from a cyanate ester (RS-3) or a polyimide (PETI-330) resin containing no MWCNTs. In addition, methods of pre-loading the fabric with the MWCNTs were also investigated. The effects of the MWCNTs on the resin processing properties and on the composite end-use properties were also determined.

  14. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  15. Semiconductor Nano wires and Nano tubes: From Fundamentals to Diverse Applications

    International Nuclear Information System (INIS)

    Xiong, Q.; Grimes, C.A.; Zacharias, M.; Morral, A.F.; Hiruma, K.; Shen, G.

    2012-01-01

    Research in the field of semiconductor nano wires (SNWs) and nano tubes has been progressing into a mature subject with several highly interdisciplinary sub areas such as nano electronics, nano photonics, nano composites, bio sensing, optoelectronics, and solar cells. SNWs represent a unique system with novel properties associated to their one-dimensional (1D) structures. The fundamental physics concerning the formation of discrete 1D subbands, coulomb blockade effects, ballistic transport, and many-body phenomena in 1D nano wires and nano tubes provide a strong platform to explore the various scientific aspects in these nano structures. A rich variety of preparation methods have already been developed for generating well-controlled 1D nano structures and from a broad range of materials. The present special issue focuses on the recent development in the mechanistic understanding of the synthesis, the studies on electrical/optical properties of nano wires and their applications in nano electronics, nano photonics, and solar-energy harvesting. In this special issue, we have several invited review articles and contributed papers that are addressing current status of the fundamental issues related to synthesis and the diverse applications of semiconducting nano wires and nano tubes. One of the papers reviews the progress of the top-down approach of developing silicon-based vertically aligned nano wires to explore novel device architectures and integration schemes for nano electronics and clean energy applications. Another paper reviews the recent developments and experimental evidences of probing the confined optical and acoustic phonon in nonpolar semiconducting (Si and Ge) nano wires using Raman spectroscopy. The paper by K. Hiruma et al. spotlights the III semiconductor nano wires and demonstrates selective-area metal organic vapor phase epitaxy grown GaAs/In(Al)GaAs and InP/InAs/InP nano wires with heterojunctions along their axial and radial directions. The paper

  16. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    Science.gov (United States)

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  17. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers

    Directory of Open Access Journals (Sweden)

    Lidia Benea

    2016-04-01

    Full Text Available This research work describes the effect of dispersed titanium carbide (TiC nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM. The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX. X-ray diffractometer (XRD has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  18. Study of rheological, viscoelastic and vulcanization behavior of sponge EPDM/NR blended nano- composites

    International Nuclear Information System (INIS)

    Bashir, M Arshad; Shahid, M; Ahmed, Riaz; Yahya, A G

    2014-01-01

    In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent δ, and viscosity variation during vulcanization of sponge nano composites.The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix

  19. Study of rheological, viscoelastic and vulcanization behavior of sponge EPDM/NR blended nano-composites

    International Nuclear Information System (INIS)

    Bashir, M. A.; Shahid, M.; Ahmed, R.; Yahya, A. G.

    2013-01-01

    In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent d, and viscosity variation during vulcanization of sponge nano composites. The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix. (author)

  20. Nano-composite powders Ag-SnO2 prepared by reactive milling sintering and microstructural evolution

    International Nuclear Information System (INIS)

    Lorrain, Nathalie

    2000-01-01

    This work aims at controlling the synthesis and the sintering of nano-composite powders Ag-SnO 2 in order to obtain a dense and nano-structured material for electrical contact as a substitute of the toxic compound Ag - CdO. The powder is prepared by reactive milling from silver oxide (Ag 2 O) and silver bronze (Ag 3 Sn) powders. This process leads to a fine dispersion of silver and tin oxide nanometer sized particles. We first studied the mechanisms of reaction promoted by milling in vacuum and in air. A two-stage oxidation of tin in Ag 3 Sn occurs: during forced contact with Ag 2 O, tin oxidises in SnO, then in SnO 2 . In air, gaseous oxygen also participates to the oxidation of tin in SnO 2 but the reaction is slower because of the formation of silver carbonates from a reaction of Ag 2 O with CO 2 .Then the sintering behaviour of the nano-composite powder as a function of the compacting pressure and of the heating rate has been studied. We show: (i) a diffusion of pure silver towards porosity and free surfaces (exo-diffusion) which destroys the nano-structure and (ii) a severe de-densification. We show that the origin of these phenomena is due to carbonates on to the Ag 2 O starting powder, which are incorporated, in the milled Ag-SnO 2 powder in course of milling; during sintering, decomposition gases generate internal stresses. Low stresses lead to a diffusional creep with exo-diffusion whereas high stresses induce an intensive de-densification by local plastic deformation but no exo-diffusion. A modelling shows that exo-diffusion is limited by heating very quickly a strongly compacted powder that contains a high quantity of carbonates. The experimental results confirm the predictions of the model. Finally, we propose solutions allowing a full densification and a process for decreasing the tin oxide concentration. (author) [fr

  1. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells.

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2018-04-03

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  2. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Ding Ding

    2018-04-01

    Full Text Available Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs, a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM, X-ray diffraction (XRD as well as transmission electron microscopy (TEM. The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.

  3. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al2O3 Ni–Cr composited electro-brush plating

    International Nuclear Information System (INIS)

    Chen, Tianchi; Ge, Shirong; Liu, Hongtao; Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei

    2015-01-01

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al 2 O 3 composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al 2 O 3 Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al 2 O 3 Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al 2 O 3 Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  4. The structure and elemental composition of the SiO2 layers with zinc-based nano clusters created by high-dose implantation and annealing

    International Nuclear Information System (INIS)

    Mokhovikov, M.A.; Komarov, F.F.; Vlasukova, L.A.; Mil'chanin, O.V.; Wendler, E.; Wesch, W.; Zhukovski, P.; Vengerek, P.

    2015-01-01

    We present the results of the structure and elemental composition of the SiO 2 layers after high-dose zinc implantation (10 16 - 10 17 sm -2 ) at room temperature and at 500°C, as well as after 700°C annealing. In the case of 'hot' implantation the formation of nano sized (to 5 nm) clusters containing atoms of zinc is registered in as-implanted samples. TEM-analysis proves crystalline structure of these precipitates. Subsequent annealing results in a redistribution of zinc within the implanted layer and in the formation of large crystallites (10 -12 nm for a dose of 5*10 16 cm -2 and 12-18 nm for a dose of 10 17 cm -2 ) in the area of high impurity concentration. (authors)

  5. Fabrication of CDs/CdS-TiO2 ternary nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation

    Science.gov (United States)

    Wang, Meng; Hua, Jianhao; Yang, Yaling

    2018-06-01

    An efficient cadmium sulfide quantum-dots (CdS QDs) and carbon dots (CDs) modified TiO2 photocatalyst (CdS/CDs-TiO2) was successfully fabricated. The as-prepared ternary nano-composites simultaneously improved the photo-corrosion of CdS and amplified its photocatalytic activity. The introduction of CdS QDs and CDs could enhance more absorbance of light, prevent the undesirable electron/hole recombination, and promote charge separation, which was important for the continuous formation of rad OH and rad O2- radicals. When the optimal mass ratio of CdS QDs to CDs was 3:1, above 90% degradation efficiencies were achieved for benzene within 1 h and toluene in 2 h, while that of pure TiO2 (P25), CdS QDs-TiO2, CDs-TiO2 nano-composites was around 15%. Owing to the symmetric structure and conjugation of methyl with benzene ring, the degradation of toluene was more difficult than benzene to carry on. The new fabricated nano-composites showed good prospective application of cleaning up refractory pollutants and the resource utilization.

  6. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    Science.gov (United States)

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering.

  7. A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan

    2015-12-17

    Nano-sized TiC x /2009Al composites (with 5, 7, and 9 vol% TiC x ) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiC x particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiC x particles in 2009Al as well as the tensile properties of nano-sized TiC x /2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiC x particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiC x /2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiC x /2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiC x particles and tensile properties of composites.

  8. Removal of light petroleum hydrocarbons from water sources using polypropylene and titanium dioxide nano-composite

    Directory of Open Access Journals (Sweden)

    H. Karyab

    2016-08-01

    Full Text Available Background: Petroleum hydrocarbons are the most important pollutants which threat human health and aquatics. Adsorbents are one of the common equipment in water pollution management; however, their applications have been associated with limitations. Objective: To evaluate the potential of polypropylene/titanium dioxide Nano-composite in adsorption of light petroleum hydrocarbons from water sources. Methods: This experimental study was conducted at school of health, Qazvin University of Medical Sciences in 2014-15. Activation of polypropylene fibers, with 1 cm length and 300 microns diameters, was achieved with wet heating. To synthesize of nano-composite the fibers were coated with nano-titanium dioxide with 20 nm diameter. The sonication was performed at 26 kHz and 100 W of power in 40ºc. The morphology of the fractured surfaces of impact specimens was examined by FESEM. The adsorption rate of petrol and gasoline, as surrogate of TPH, was evaluated in different retention time within polyamide mesh aperture diameter of 250 nm. Average of TPH adsorbing, per unit weight of adsorbent, were analyzed with analysis of variance and Scheffe post hoc tests. Findings: The FESEM micrographs showed that the dispersion of the nano-Tio2 particles was relatively good and only few aggregations exist. The maximum adsorption capacity of petrol and gasoline was obtained in 30 minute. The adsorption rate of gasoline was 6.49±0.10 g/g and oil was 7.01±0.13 g/g. Conclusion: According to the results and in comparison with commercial imported adsorbents, the synthesized Nano-composite had favorable performance. The results show that the polypropylene/Tio2 Nano-composite can be used effectively in light petroleum hydrocarbons removal from polluted water sources.

  9. Nano-microdelivery systems for oral delivery of an active ingredient

    DEFF Research Database (Denmark)

    2014-01-01

    A composition for oral delivery of one or more active ingredients in the form of a lipid nano-micro-delivery system comprising a lipid nano-micro-structure comprising at least one lipid and at least one active ingredient, said at least one active ingredient being immobilized in said lipid nano...

  10. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  11. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subse...

  12. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  13. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel

    Directory of Open Access Journals (Sweden)

    Yanan Meng

    2018-02-01

    Full Text Available In this paper, nano-TiO2lubricating fluid was chosen as an advanced rolling lubricant to investigate its effect on the hot rolled surface and metallographic structure of SS41 steel strips. The tribological performances of nano-TiO2 lubricating fluid were measured by a four-ball tribotester. The hot rolling experiments under different lubrication conditions were carried out by a four-high rolling mill. The surface morphology, oxide scales and metallographic structure after hot rolling were observed using a confocal laser scanning microscope and scanning electron microscope (SEM, respectively. The composition of surface attachments was analyzed with X-ray photoelectron spectroscopy (XPS. The results indicate that the nano-TiO2 lubricating fluid has a better tribological performance. The surface defects on the hot rolled surface could be decreased. The phase composition of the surface still appears as a mixture of ferrite and pearlite. The surface of steel strips is not micro-alloyed with titanium as predicted. Additionally, the grain size of rolled steel strips which were lubricated with the nano-TiO2lubricating fluid decreased by nearly 50%, compared with traditional lubricating fluid. Furthermore, it was found that the thickness of the oxide layers on the surface reduced, whilst the Rockwell hardness of the oxide layers was enhanced as nano-TiO2 lubricating fluid was applied.

  14. Nano-structured Pd{sub x}Pt{sub 1-x}/Ti anodes prepared by electrodeposition for alcohol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jinlin; Lu Shanfu; Wang Deli; Yang Meng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu Zili [School of Chemistry and Chemical Engineering, Guangzhou University, No. 601 Huangpudadao, Guangzhou 510006, Guangdong (China); Xu Changwei [School of Chemistry and Chemical Engineering, Guangzhou University, No. 601 Huangpudadao, Guangzhou 510006, Guangdong (China)], E-mail: cwxuneuzsu@126.com; Jiang, S.P. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: mspjiang@ntu.edu.sg

    2009-09-30

    Nano-structured Pd{sub x}Pt{sub 1-x} (x = 0-1) composite catalysts supported on Ti substrate are successfully prepared by electrodeposition method, and the morphology and phase of the catalysts are analyzed by field emission scanning electron microscope (FE-SEM) and X-ray energy dispersion spectroscopy (EDS). The activity and stability of the Pd{sub x}Pt{sub 1-x}/Ti composite catalysts are assessed for the electrooxidation of alcohols (methanol, ethanol and 2-propanol) in alkaline medium using cyclic voltammetry and chronoamperometry techniques. The results show that the Pd and Pt form Pd{sub x}Pt{sub 1-x} nano-structured composite catalysts, uniformly distributed on the Ti substrate. The electrocatalytic activity and stability of the Pd{sub x}Pt{sub 1-x} nanocatalysts depend strongly on the atomic ratios of Pd and Pt. Among the synthesized catalysts, the Pd{sub 0.8}Pt{sub 0.2}/Ti displays the best catalytic activity and stability for the electrooxidation reaction of alcohols investigated in alkaline medium under conditions in this study, and shows the potential as electrocatalysts for direct alcohol fuel cells.

  15. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  16. The effect of soda immersion on nano hybrid composite resin discoloration

    Directory of Open Access Journals (Sweden)

    M. Chair Effendi

    2014-03-01

    Full Text Available Background: Composite resin is the tooth-colored restorative material which most of the people are fond of due to their aesthetic value. The composite resin discoloration may happen because of the intrinsic and extrinsic factors. Soda water is one of the beverages which can cause the composite resin discoloration. Purpose: The study was aimed to determine the effect of soda immersion on nano hybrid composite resin discoloration. Methods: The study was an experimental laboratory study using 100 shade A3 nano hybrid composite resin specimens with the diameter of 5 mm and density of 2mm. The samples were divided into 5 groups, each group was immersed in different beverages. The beverages were mineral water; lemon-flavored soda; strawberry-flavored soda; fruit punch-flavored soda; and orange-flavored soda for 3, 7, 14 and 21 days respectively, in the temperature of 37o C. The discoloration measurement utilizes Spectrophotometer, Vita Easy Shade, and uses CIEL*a*b* method. Results: The result showed that the duration of immersion in soda had an effect on the Nano hybrid composite resin discoloration. Strawberry and fruit punch- flavored soda were the most influential components toward the discoloration. Nevertheless, the generally-occurred discoloration was clinically acceptable (∆E ≤ 3,3. Conclusion: The study suggested that the soda immersion duration has effect on Nano hybrid composite resin discoloration.Latar belakang: Resin komposit adalah material sewarna gigi yang diminati masyarakat karena memiliki nilai estetik yang baik. Perubahan warna resin komposit dapat terjadi karena faktor intrinsik dan ekstrinsik. Minuman soda merupakan salah satu minuman yang dapat menyebabkan perubahan warna pada resin komposit. Tujuan: Tujuan dari penelitian ini untuk meneliti perubahan warna resin komposit nanohibrida akibat perendaman dalam minuman soda. Metode: Metode yang digunakan pada penelitian ini adalah eksperimental laboratorik dengan menggunakan

  17. Hydrogen storage and hydrolysis properties of core-shell structured Mg-MFx (M=V, Ni, La and Ce) nano-composites prepared by arc plasma method

    Science.gov (United States)

    Mao, Jianfeng; Zou, Jianxin; Lu, Chong; Zeng, Xiaoqin; Ding, Wenjiang

    2017-10-01

    In this work, core-shell structured Mg-MFx (M = V, Ni, La and Ce) nano-composites are prepared by using arc plasma method. The particle size distribution, phase components, microstructures, hydrogen sorption properties of these composites and hydrolysis properties of their corresponding hydrogenated powders are carefully investigated. It is shown that the addition of MFx through arc plasma method can improve both the hydrogen absorption kinetics of Mg and the hydrolysis properties of corresponding hydrogenated powders. Among them, the Mg-NiF2 composite shows the best hydrogen absorption properties at relatively low temperatures, which can absorb 3.26 wt% of H2 at 373 K in 2 h. Such rapid hydrogen absorption rate is mainly due to the formation of Mg2Ni and MgF2 on Mg particles during arc evaporation and condensation. In contrast, measurements also show that the hydrogenated Mg-VF3 composite has the lowest peak desorption temperature and the fastest hydrolysis rate among all the hydrogenated Mg-MFx composites. The less agglomeration tendency of Mg particles and VO2 covered on MgH2 particles account for the reduced hydrogen desorption temperature and enhanced hydrolysis rate.

  18. Copper nano composites functionalized by bis-benzimidazole diamide ligand: Effect of size, co-anion dependent conductivity and band gap studies

    International Nuclear Information System (INIS)

    Singla, Manisha; Mohapatra, Subash Chandra; Ahmad, Sharif

    2012-01-01

    Copper (I) and copper (II) nano composites capped with a bis-benzimidazole diamide ligand were prepared by reverse micelle method and characterized using CHNS, FTIR, 1 H NMR, TEM and DLS studies. All particles were spherical ranging between 10 and 70 nm. They displayed a quasi reversible redox wave due to the Cu (II)/Cu (I) reduction process. The E g1 ′ values shift anodically as NO 3 − − − . Electrochemical HOMO and LUMO band gap (E g1 ′ ) for the nano composites were +1.80 (NO 3 − ), +2.80 (Cl − ) and +4.10 (SCN − ) eV, respectively. However, the optical band gap (E g1 ) for the nano composites was calculated from their absorption edges and lie between 1.77 and 4.13 eV. Fluorescence studies reveal that nano composites in themselves behave as an enhancer and quencher in respect to ligand, Quantum yield (φ) is varying from 0.008 to 0.02 photon. The activation energies range from 34 to 54 kJ mol −1 and are quite low in comparison to that of the free bis-benzimidazole diamide ligand (137 kJ mol −1 ). The lower activation energies further re-emphasize the nano size of these composites. At room temperature, the dc conductivity lies between 1 × 10 −4 –9.33 × 10 −4 S cm −1 [NO 3 − > SCN − > Cl − ] indicating them to be on the semiconductor insulator interface. The dielectric constant, dielectric loss and the ac conductivity were measured for all nano at room temperature and below the room temperature for the nano composite containing nitrate as co-anion. The conductivity was found to follow the correlated barrier hopping (CBH) mechanism; the exponent factor (s) varies from 0.5 to 1. -- Highlights: ► Nano composites of copper, capped by bis benzimidazole diamide ligand. ► Such copper nano composites have not been used in conductivity studies before. ► Conductance studies for these thus make this work unique. ► The dc conductivity of these composites is much higher than normal.

  19. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.

    Science.gov (United States)

    Park, Gye-Choon; Li, Zhen-Yu; Yang, O-Bong

    2017-04-01

    In this letter, for the absorption layer of a CuInS₂/TiO₂ composite solar cell, I–III–VI2 chalcopyrite semiconductor CuInS₂ nano-particles were deposited by using spray pyrolysis method on TiO2 porous film. Their material characteristics including structural and optical properties of CuInS₂ nano-particles on TiO₂ nanorods were analyzed as a function of its composition ratios of Cu:In:S. Crystalline structure, surface morphology and crystalline size were also investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and High-Resolution TEM (HRTEM), respectively. On the other hand, optical property was characterized by an UV-Visible Spectrophotometer. As a result, it was found that the size of CuInS₂ nano-particles, which was formed at 300±5 °C, was smaller than 16 nm from HRTEM analyses, and it was identified that the CuInS₂ particle size was increased as increasing the heat-treatment temperature and time. However, as the size of CuInS₂ nano-particle becomes smaller, optical absorption edge of ternary compound film tends to move to the blue wavelength band. It turns out that the optical energy-band gap of the compound films was ranging from 1.48 eV to 1.53 eV.

  20. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sookyung; Li, Xiaolin; Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Jung, Hee Joon; Wang, Chong M.; Liu, Jun; Zhang, Jiguang

    2016-08-27

    With the ever increasing demands on Li-ion batteries with higher energy densities, alternative anode with higher reversible capacity is required to replace the conventional graphite anode. Here, we demonstrate a cost-effective hydrothermal-carbonization approach to prepare the hard carbon coated nano-Si/graphite (HC-nSi/G) composite as a high performance anode for Li-ion batteries. In this hierarchical structured composite, the hard carbon coating layer not only provides an efficient pathway for electron transfer, but also alleviates the volume variation of silicon during charge/discharge processes. The HC-nSi/G composite electrode shows excellent electrochemical performances including a high specific capacity of 878.6 mAh g-1 based on the total weight of composite, good rate performance and a decent cycling stability, which is promising for practical applications.

  1. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property

    Science.gov (United States)

    Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong

    2017-12-01

    In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.

  2. Processing of a novel nano-structured ferritic steel via spark plasma sintering and investigation of its mechanical and microstructural characteristics

    International Nuclear Information System (INIS)

    Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.

    2015-01-01

    Nano-structured ferritic steels (NFSs) with 12-14 wt% Cr have attracted widespread interest for potential high temperature structural and fuel cladding applications in advanced nuclear reactors. They have excellent high temperature mechanical properties and high resistance to radiation-induced damage. The properties of the NFSs depend on the composition that mainly consists of Cr, Ti, W or Mo, and Y 2 O 3 as alloying constituents. In this study, a novel nano-structured ferritic steel (Fe-14Cr-1Ti-0.3Mo-0.5La 2 O 3 , wt%) termed as 14LMT was developed via high energy ball milling and spark plasma sintering. Vickers microhardness values were measured. Microstructural studies of the developed NFSs were performed by EBSD and TEM, which revealed a bimodal grain size distribution. A significant number density of nano-precipitates was observed in the microstructure. The diameter of the precipitates varied between 2-70 nm and the morphology from the spherical to faceted shape. The Cr-La-Ti-O-enriched nano-clusters were identified by APT studies. (authors)

  3. Electrical property and characterization of nano-SnO2/wollastonite composite materials

    International Nuclear Information System (INIS)

    Sun, Zhiming; Bai, Zhiqiang; Shen, Hongling; Zheng, Shuilin; Frost, Ray L.

    2013-01-01

    Graphical abstract: Resistivity as a function of different factors: hydrolysis temperature and time. Highlights: ► We have synthesized nano-tin oxide deposited on the surface of wollastonite. ► The antistatic properties were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. ► The results showed that the nano-SnO 2 /wollastonite composite materials showed better antistatic properties. ► The surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains. - Abstract: Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO 2 /wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO 2 coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO 2 /wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 10 4 Ω cm to 2.533 × 10 3 Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO 2 nanoparticles on the surface of wollastonite was proposed. The infrared spectrum indicated

  4. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  5. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  6. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  7. Facile Preparation of Nano-Bi₂MoO₆/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation.

    Science.gov (United States)

    Cai, Lu; Gong, Jiuyan; Liu, Jianshe; Zhang, Hailong; Song, Wendong; Ji, Lili

    2018-02-09

    In this work, a new nano-Bi₂MoO₆/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi₂MoO₆ crystals were well-deposited on the surface of Bi₂MoO₆/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB) under the visible light (λ > 420 nm) irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi₂MoO₆/diatomite composite with the mass ratio of Bi₂MoO₆ to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h⁺ and•O 2- . As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation.

  8. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    International Nuclear Information System (INIS)

    Nozaki, Kosuke; Shinonaga, Togo; Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao; Tsukamoto, Masahiro; Yamashita, Kimihiro; Nagai, Akiko

    2015-01-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface

  9. Hierarchical periodic micro/nano-structures on nitinol and their influence on oriented endothelialization and anti-thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Kosuke [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Shinonaga, Togo [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ebe, Noriko; Horiuchi, Naohiro; Nakamura, Miho; Tsutsumi, Yusuke; Hanawa, Takao [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Tsukamoto, Masahiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yamashita, Kimihiro [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan); Nagai, Akiko, E-mail: nag-bcr@tmd.ac.jp [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 (Japan)

    2015-12-01

    The applications of hierarchical micro/nano-structures, which possess properties of two-scale roughness, have been studied in various fields. In this study, hierarchical periodic micro/nano-structures were fabricated on nitinol, an equiatomic Ni–Ti alloy, using a femtosecond laser for the surface modification of intravascular stents. By controlling the laser fluence, two types of surfaces were developed: periodic nano- and micro/nano-structures. Evaluation of water contact angles indicated that the nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. Endothelial cells aligned along the nano-structures on both surfaces, whereas platelets failed to adhere to the micro/nano-surface. Decorrelation between the responses of the two cell types and the results of water contact angle analysis were a result of the pinning effect. This is the first study to show the applicability of hierarchical periodic micro/nano-structures for surface modification of nitinol. - Highlights: • Hierarchical micro/nano-structures were created on nitinol using a femtosecond laser. • The nano-surface was hydrophilic and the micro/nano-surface was hydrophobic. • Endothelial cells aligned along the nano-structures • Platelets failed to adhere to the micro/nano-surface.

  10. Synthesis of nano structures for use as toxic gas adsorbents

    International Nuclear Information System (INIS)

    Velazquez P, S.; Pacheco S, J.; Estrada M, N.; Vasquez N, C.; Garcia R, M.; Garduno A, M.; Torres R, C.; Garcia G, J.; Pacheco P, M.; Valdivia B, R.; Ramos F, F.; Cruz A, A.; Duran G, M.; Hidalgo P, M.

    2008-01-01

    The work described here is the study of adsorption of nitrogen oxides by carbon nano structures and its implementation in a plasma reactor used to treat toxic gases. By placing a bed of carbon nano structures to the plasma reactor outlet obtained and increase in the efficiency of degradation. (Author)

  11. Outlook for NanoInside Theme "3D nano-structuring and metrology"

    NARCIS (Netherlands)

    Kruit, P.; Kroon, M.G.M. de; Maas, D.J.; Baumer, S.M.B.; Spruit, W.E.T.

    2017-01-01

    Het vakgebied van 3D nano-structurering en metrologie ontwikkelt zich razendsnel, zowel in Nederland als in de rest van de wereld. Het niveau van de Nederlandse betrokken onderzoekers, kennisinstituten en bedrijven is van wereldklasse. Veel Nederlandse academische groepen, kennisinstituten en

  12. Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite.

    Science.gov (United States)

    Sionkowska, Alina; Kaczmarek, Beata

    2017-09-01

    3D porous composites based on the blend of chitosan, collagen and hyaluronic acid with the addition of nano-hydroxyapatite were prepared. SEM images for the composites were made and the structure was assessed. Mechanical properties were studied using a Zwick&Roell Testing Mashine. In addition, the porosity and density of composites were measured. The concentration of calcium ions released from the material was detected by the complexometric titration method. The results showed that in 3D porous sponge based on the blend of chitosan, collagen and hyaluronic acid, inorganic particles of nanohydroxyapatite can be incorporated, as well as that the properties of 3D composites depend on the material composition. Mechanical parameters and thermal stability of ternary biopolymeric blends were improved by the addition of hydroxyapatite. Moreover, the porosity of ternary materials was higher than in materials based on pure chitosan or collagen. All composites were characterized by a porous structure with interconnected pores. Calcium ions can be released from the composite during its degradation in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO3/paraffin composites at room temperature

    International Nuclear Information System (INIS)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO 3 /paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO 3 . The observed magneto-permittivity resonance in multiferroic nano-BiFeO 3 is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO 3 /paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO 3 /paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO 3 /paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO 3 is a sample-size resonance. • Nano-BiFeO 3 /paraffin composite with large thickness shows a sample-size resonance.

  14. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    Science.gov (United States)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  15. Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sabat, R.K.; Jayalakshmi, S.; Suwas, S.; Gupta, M.

    2014-01-01

    In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B 4 C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B 4 C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B 4 C) BM hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B 4 C) BM hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + x-B 4 C) BM hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B 4 C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B 4 C addition. - Highlights: • Micro-Ti particulates are hybridized with varying weight fractions of nano-B 4 C. • The hybrid mixture was used as hybrid reinforcements in magnesium. • Microstructure and mechanical properties of Mg-(5.6Ti + x-B 4 C) BM are compared with Mg-5.6Ti. • Electron back scattered diffraction (EBSD) analysis conducted to study the microtexture evolution

  16. Cost-Effective Fabrication of Inner-Porous Micro/Nano Carbon Structures.

    Science.gov (United States)

    Jiang, Shulan; Shi, Tielin; Tang, Zirong; Xi, Shuang

    2018-03-01

    This paper reports the fabrication of a new micro/nano carbon architecture array which owns the characteristics of inner-porous, desired conductivity and large effective surface area. The micro/nano inner-porous carbon structures were fabricated for the first time, with ordinary and cost-effective processes, including photolithography, oxygen plasma etching and pyrolysis. Firstly, micro/nano hierarchical photoresist structures array was generated through photolithography and oxygen plasma etching processes. By introducing a critical thin-film spin-coating step, and followed with carefully pyrolyzing process, the micro/nano photoresist structures were converted into innerporous carbon architectures with good electric connection which connected the carbon structures array together. Probably the inner-porous property can be attributed to the shrinkage difference between positive thin film and negative photoresist structures during pyrolyzing process. It is demonstrated that the simple method is effective to fabricate inner-porous carbon structures with good electric connection and the carbon structures can be used as electrochemical electrodes directly and without the addition of other pyrolysis or film coating processes. The electrochemical property of the carbon structures has been explored by cyclic voltammetric measurement. Compared with solid carbon microstructures array, the cyclic voltammetry curve of inner-porous carbon structures shows greatly enhanced current and improved charge-storage capability, indicating great potential in micro energy storage devices and bio-devices.

  17. Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes

    International Nuclear Information System (INIS)

    Li, Juan; Ru, Qiang; Hu, Shejun; Sun, Dawei; Zhang, Beibei; Hou, Xianhua

    2013-01-01

    A novel multi-step design of spherical nano-SnSb/MCMB/carbon core–shell composite for high stability and long life lithium battery electrodes has been introduced. The core–shell composite was successfully synthesized via co-precipitation and subsequent pyrolysis. The resultant composite sphere consisted of nanosized SnSb alloy and mesophase carbon microbeads (MCMB, 10 μm) embedded in a carbon matrix pyrolyzed from glucose and petroleum pitch, in which the MCMB was treated to be the inner core to offer mechanical support and efficient electron conducting pathway. The composite material exhibited a unique stability with a retention discharge capacity rate of 83.52% with reversible capacity of 422.5 mAh g −1 after 100 cycles and a high initial coulombic efficiency of 83.53%. The enhanced electrochemical performance is attributed to the structural stability of the composite sphere during the charging–discharging process

  18. Preparation of Multi-walled Carbon Nano tubes/ Natural Rubber Composite by Wet Mixing Method

    International Nuclear Information System (INIS)

    Azira Abdul Aziz; Azira Abdul Aziz; Che Su Mat Saad; Mohamad Rusop Mahmood

    2011-01-01

    Natural rubber/multi-walled carbon nano tubes (Nr/MWCNTs) nanocomposite is formed by incorporating nano tubes in a polymer solution and subsequently evaporating the solvent. Using this technique, nano tubes will be dispersed homogeneously in the NR matrix in an attempt to increase the mechanical properties of these nano composites. Mechanical test results show an increase in the tensile strength for up to 19 times in relation to pure NR. In addition to mechanical testing, the morphology of the MWNTs into NR was studied by Field Emission Scanning Electron Microscopy (FESEM) in order to understand the morphology of the resulting system. Slight shift noted from Raman analyses from each different wt. % of MWCNTs with the NR due to the stress transfer that indicates reinforcement of the nano tubes. (author)

  19. Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.J. [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Ru, H.Q., E-mail: ruhq@smm.neu.edu.cn [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Zhang, N.; Liang, B. [Key Laboratory of Advanced Materials Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Addition of nano-SiC particles enhances residual strength and critical temperature. Black-Right-Pointing-Pointer Young's modulus decreases with increasing quenching temperature. Black-Right-Pointing-Pointer Linear relationship between residual strength and thermal shock times is obtained. Black-Right-Pointing-Pointer Rougher fracture surfaces in the SiC-AlON composites are observed. - Abstract: Aluminum oxynitride (AlON) has been considered as a potential ceramic material for high-performance structural and advanced refractory applications. Thermal shock resistance is a major concern and an important performance index of high-temperature ceramics. While silicon carbide (SiC) particles have been proven to improve mechanical properties of AlON ceramic, the high-temperature thermal shock behavior was unknown. The aim of this investigation was to identify the thermal shock resistance and underlying mechanisms of AlON ceramic and 8 wt% SiC-AlON composites over a temperature range between 175 Degree-Sign C and 275 Degree-Sign C. The residual strength and Young's modulus after thermal shock decreased with increasing quenching temperature and thermal shock times due to large temperature gradients and thermal stresses caused by abrupt water-quenching. A linear relationship between the residual strength and thermal shock times was observed in both pure AlON and SiC-AlON composites. The addition of nano-sized SiC particles increased both residual strength and critical temperature from 200 Degree-Sign C in the monolithic AlON to 225 Degree-Sign C in the SiC-AlON composites due to the toughening effect, the lower coefficient of thermal expansion and higher thermal conductivity of SiC. The enhancement of the thermal shock resistance in the SiC-AlON composites was directly related to the change of fracture mode from intergranular cracking along with cleavage-type fracture in the AlON to a rougher fracture surface with ridge

  20. Investigation and Estimation of Structure of Web from Electro spun Nano fibres

    International Nuclear Information System (INIS)

    Malasauskiene, J.; Milasius, R.

    2013-01-01

    During the electro spinning process the web of nano fibres is manufactured by means of electrostatic forces between two electrodes. The diameters of nano fibres usually differ and they depend on various parameters. The different fineness of fibres influences the structure of the web and herewith the end-use properties of such kind of nano material. Analysis of nano fibres diameters distribution also shows big differences; even more, the distributions are not spread along the normal distribution. Understanding the influence of electro spinning parameters and the reason why the shapes of distributions are so sophisticated is very important. The goal of this paper is to analyse the distribution of diameter and to propose the new criterion for nano fibres diameter comparison and web of nano fibres estimation. In this paper the influence of covering time of support material on structure of PA6.6 nano fibre web has been investigated. It was estimated that this parameter does not have a significant influence on the average diameter of nano fibres, and only the structure of web has been influenced by the changes in covering time. According to the results provided the phenomena of nano fibres sticking on the support material at the time of electro spinning can be proved and explained.

  1. Nano-structured silica coated mesoporous carbon micro-granules for potential application in water filtration

    Science.gov (United States)

    Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.

    2017-05-01

    A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.

  2. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    Science.gov (United States)

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited significantly lower inflammatory response on the 90th day of implantation.

  3. Microstructures and Tensile Properties of Al–Cu Matrix Composites Reinforced with Nano-Sized SiCp Fabricated by Semisolid Stirring Process

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2017-02-01

    Full Text Available The nano-sized SiCp/Al–Cu composites were successfully fabricated by combining semisolid stirring with ball milling technology. Microstructures were examined by an olympus optical microscope (OM, field emission scanning electron microscope (FESEM and transmission electron microscope (TEM. Tensile properties were studied at room temperature. The results show that the α-Al dendrites of the composites were strongly refined, especially in the composite with 3 wt. % nano-sized SiCp, of which the morphology of the α-Al changes from 200 μm dendritic crystal to 90 μm much finer equiaxial grain. The strength and ductility of the composites are improved synchronously with the addition of nano-sized SiCp particles. The as-cast 3 wt. % nano-sized SiCp/Al–Cu composite displays the best tensile properties, i.e., the yield strength, ultimate tensile strength (UTS and fracture strain increase from 175 MPa, 310 MPa and 4.1% of the as-cast Al–Cu alloy to 220 MPa, 410 MPa and 6.3%, respectively. The significant improvement in the tensile properties of the composites is mainly due to the refinement of the α-Al dendrites, nano-sized SiCp strengthening, and good interface combination between the SiCp and Al–Cu alloys.

  4. Removal of Dibenzothiophene Using Activated Carbon/γ-Fe2O3 Nano-Composite: Kinetic and Thermodynamic Investigation of the Removal Process

    Directory of Open Access Journals (Sweden)

    Maryam Fayazi

    2015-12-01

    Full Text Available In the present study, removal of dibenzothiophene (DBT from model oil (n-hexane was investigated using magnetic activated carbon (MAC nano-composite adsorbent. The synthesized nano-composite was characterized by FT-IR, FE-SEM, BET and VSM techniques. The MAC nano-composite exhibited a nearly superparamagnetic property with a saturation magnetization (Ms of 29.2 emu g-1, which made it desirable for separation under an external magnetic field. The magnetic adsorbent afforded a maximum adsorption capacity of 38.0 mg DBT g-1 at the optimized conditions (adsorbent dose, 8 g l-1; contact time, 1 h; temperature, 25 °C. Langmuir, Freundlich and Temkin isotherm models were used to fit equilibrium data for MAC nano-composite. Adsorption process could be well described by the Langmuir model. Kinetic studies were carried out and showed the sorption kinetics of DBT was best described by a pseudo-second-order kinetic model. In addition, the MAC nano-composite exhibited good capability of recycling to adsorb DBT in gasoline deep desulfurization.

  5. Preparation of Ag@mSiO{sub 2} and Pt@mSiO{sub 2}nano composites using trioctylmethyl ammonium hydrogen phthalate (TOMAHP) ionic liquid as reaction medium

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Sujoy, E-mail: sujoyb@barc.gov.in [Chemical Engineering Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dasgupta, Kinshuk [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bahadur, Jitendra [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tewari, Raghavendra [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mazumder, Subhasish [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    A novel one step green chemistry approach utilizing trioctylmethyl ammonium hydrogen phthalate (TOMAHP), task specific ionic liquid has been attempted for synthesis of Ag and Pt nanoparticles supported on silica (Ag@mSiO{sub 2} and Pt@mSiO{sub 2}). Structure, size distribution and morphology of these nano-composite particles were evaluated using X-ray diffraction (XRD), transmission electron microscopy (TEM), small angle neutron scattering (SANS) as well as small angle X-ray scattering (SAXS) techniques. The XRD results show that Ag/Pt metal nanoparticles deposited on to SiO{sub 2} surface are face center cubic (fcc) in nature. The TEM and SAXS/SANS results show the morphology and size distributions of Ag and Pt nanoparticles loaded on to the surface of SiO{sub 2}. It has been found that Ag nanoparticles are well dispersed on to the SiO{sub 2} surface and are quite monodisperse in size, whereas Pt nanoparticles are quite polydisperse in size and forms aggregate or chain like structure on SiO{sub 2} surface containing primary nanoparticles of typical size range 3–7 nm. The stability of nanoparticles, which controls its dispersion on SiO{sub 2} substrate, has been discussed. - Graphical abstract: Mechanism for Ag@mSiO{sub 2} and Pt@mSiO{sub 2} nano composites in TOMAHP ionic liquid medium. - Highlights: • Novel methods for preparation of Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite in functionalized ionic liquid. • Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite are characterized using XRD, TEM as well as small angle x-ray scattering techniques. • The sizes of nano composite is <10 nm in size. • The method is simple one step, green chemical reduction method to prepare SiO{sub 2} support nano catalyst.

  6. Magnetically responsive (nano) composites as perspective materials for environmental technology applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    -, č. 0 (2010), s. 85-90 R&D Projects: GA MPO(CZ) 2A-1TP1/094; GA MŠk OC09052 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetically responsive materials * ( nano )biocomposites * environmental technology Subject RIV: JI - Composite Materials

  7. Structure-property relationships of multiferroic materials: A nano perspective

    Science.gov (United States)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  8. Preliminary characterization in the development of the nano composite low density polyethylene with attapulgite clay

    International Nuclear Information System (INIS)

    Domingos, Luanda G.; Rego, Jose K.M.A. do; Ito, Edson N.; Acchar, Wilson

    2011-01-01

    The aim of this study was a preliminary study of the physical, thermal and rheological properties of the materials to be used in the development of nano composite low density polyethylene (LDPE) with Brazilian attapulgite clay (ATP), with and without the use of a compatibilizing agent interfacial, polyethylene grafted with maleic anhydride (PE-g-MAH). The materials were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and torque rheometry. The materials were characterized and potentially could be developed polymeric nano composites with technological applications using attapulgite fibers in the nanometer scale. (author)

  9. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Haydari-Nasab, Fatemh; Malmir, Mariam

    2011-01-01

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30 o and 70 o incidence angles and at different azimuthal angles (φ). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the φ angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths ( o incidence angle.

  10. Micro/Nano Structural Tantalum Coating for Enhanced Osteogenic Differentiation of Human Bone Marrow Stem Cells

    OpenAIRE

    Ding Ding; Youtao Xie; Kai Li; Liping Huang; Xuebin Zheng

    2018-01-01

    Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were co...

  11. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited electro-brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianchi [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); Ge, Shirong [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China)

    2015-11-30

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al{sub 2}O{sub 3} composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al{sub 2}O{sub 3} Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  12. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    International Nuclear Information System (INIS)

    Yoo, Haneul; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Cho, Young Tak; Chen, Xing; Hong, Seunghun; Lee, Dong Jun; Park, Jae Yeol

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species. (paper)

  13. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves

    Science.gov (United States)

    Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A.

    2006-03-01

    When rain falls on lotus leaves water beads up with a high contact angle. The water drops promptly roll off the leaves, collecting dirt along the way. This self-cleaning ability or lotus effect has, in recent years, stimulated much research effort worldwide for a variety of applications ranging from self-cleaning window glasses, paints, and fabrics to low friction surfaces. What are the mechanisms giving rise to the lotus effect? Although chemical composition and surface structure are believed important, a systematic experimental investigation of their effects is still lacking. By altering the surface structure of the leaves while keeping their chemical composition approximately the same, we report in this study the influence of micro- and nano-scale structures on the wetting behaviour of lotus leaves. The findings of this work may help design self-cleaning surfaces and improve our understanding of wetting mechanisms.

  14. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    Science.gov (United States)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.

  15. High-rate nano-crystalline Li{sub 4}Ti{sub 5}O{sub 12} attached on carbon nano-fibers for hybrid supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, Katsuhiko; Isobe, Yusaku; Aoyagi, Shintaro [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558 (Japan); Ishimoto, Shuichi [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558 (Japan); Nippon Chemi-Con Corporation, 363 Arakawa, Takahagi-shi, Ibaraki 318-8505 (Japan)

    2010-09-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li{sub 4}Ti{sub 5}O{sub 12} electrode has a unique nano-structure consisting of unusually small nano-crystalline Li{sub 4}Ti{sub 5}O{sub 12} (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF). This nano-structured nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L{sup -1} and high power density of 7.5 kW L{sup -1} comparable to conventional EDLCs. (author)

  16. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3}/paraffin composites at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan, E-mail: hujf@sdu.edu.cn

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO{sub 3}/paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO{sub 3}. The observed magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3} is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO{sub 3}/paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO{sub 3}/paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO{sub 3}/paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO{sub 3} is a sample-size resonance. • Nano-BiFeO{sub 3}/paraffin composite with large thickness shows a sample-size resonance.

  17. Morphology of Poly lactide/Polycaprolactone (PLA/PCL) Nano composite by Scanning Electron Microscopy (SEM)

    International Nuclear Information System (INIS)

    Siti Zulaiha Hairaldin; Wan Md Zin Wan Yunus; Norazowa Ibrahim

    2011-01-01

    In this study, Octadecylamine Modified Montmorillonites (ODAMMT) were used to prepare Poly lactide/ Polycaprolactone (PLA/ PCL) nano composites. PLA and PCL mix in 90:10 ratios, using an internal mixer by melt blending technique. The other sample was blend with Natrium Montmorillonite (NaMMT) and Octadecylamine Modified Montmorillonite (ODA-MMT) to produce PLA/ PCL-NaMMT and PLA/ PCL ODAMMT. To characterize the polymer nano composites, X-ray diffraction (XRD), FTIR and SEM analysis were conducted. Comparison of morphology were made up between PLA/ PCL, PLA/ PCL with presence of 7 % of Na-MMT and 7 % ODA-MMT respectively based on SEM micrograph by calculate the number-average diameter. (author)

  18. Growth and Characterization of Indium Doped ZnO Nano wires Using Thermal Evaporation Method

    International Nuclear Information System (INIS)

    Abrar Ismardi; Dee, C.F.; Majlis, B.Y.

    2011-01-01

    Indium doped ZnO nano wires were grown on silicon substrate using vapor thermal deposition method without using any catalyst. Morphological structures were extensively investigated using field emission scanning electron microscopy (FESEM) and show that the nano wires have uniformly hexagonal nano structures with diameters less than 100 nm and lengths from one to a few microns. The sample was measured for elemental composition with energy dispersive X-ray (EDX) spectroscopy, Zn, In and O elements were found on the sample. XRD spectrum of indium doped ZnO nano wires revealed that the nano wires have a high crystalline structure. (author)

  19. Electrical property and characterization of nano-SnO{sub 2}/wollastonite composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Bai, Zhiqiang; Shen, Hongling [Qinhuangdao Glass Research Design Institute, Qinhuangdao 066000 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-03-15

    Graphical abstract: Resistivity as a function of different factors: hydrolysis temperature and time. Highlights: ► We have synthesized nano-tin oxide deposited on the surface of wollastonite. ► The antistatic properties were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. ► The results showed that the nano-SnO{sub 2}/wollastonite composite materials showed better antistatic properties. ► The surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains. - Abstract: Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO{sub 2}/wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO{sub 2} coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO{sub 2}/wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 10{sup 4} Ω cm to 2.533 × 10{sup 3} Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO{sub 2} nanoparticles on the surface of wollastonite was proposed

  20. Preparation and electrochemical property of TiO_2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium

    International Nuclear Information System (INIS)

    Guo, Xiaolei; Li, Dong; Wan, Jiafeng; Yu, Xiujuan

    2015-01-01

    Titanium dioxide/Nano-graphite (TiO_2/Nano-G) composite was synthesized by a sol-gel method and TiO_2/Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR), scanning electrons microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performance of the TiO_2/Nano-G anode electrode was investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electro-catalytic performance was evaluated by the yield of ·OH radicals, degradation of methyl orange and ceftriaxone sodium. The results demonstrated that TiO_2 nanoparticles were dispersed on the surface and interlamination of the Nano-G uniformly, TiO_2/Nano-G electrode owned higher electro-catalytic oxidation activity and stability than Nano-G electrode. Degradation rate of ceftriaxone sodium within 120 min by TiO_2(40)/Nano-G electrode was 97.7%. And ·OH radicals given by TiO_2/Nano-G electrode was higher than that of Nano-G electrode and DSA (Ti/IrO_2-RuO_2) electrode. The excellent electro-catalytic performance could be ascribed to the admirable conductive property of the Nano-G and more production of ·OH offered by TiO_2(40)/Nano-G electrode.

  1. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    Science.gov (United States)

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  2. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    Science.gov (United States)

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-30

    Core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe{sub 2}O{sub 3} nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe{sub 2}O{sub 3} (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe{sub 2}O{sub 3} during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g{sup −1} and retains 920/897 mAh g{sup −1} after 200 cycles at 500 mA g{sup −1} (0.5C). Even at 2000 mA g{sup −1} (2C), the electrode delivers the initial capacities of 1400/900 mAh g{sup −1}, and still maintains 630/610 mAh g{sup −1} after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe{sub 2}O{sub 3}@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe{sub 2}O{sub 3} and facilitate the transportation of electrons and Li{sup +} ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe{sub 2}O{sub 3}@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  4. Interfacial Properties of Bamboo Fiber-Reinforced High-Density Polyethylene Composites by Different Methods for Adding Nano Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Cuicui Wang

    2017-11-01

    Full Text Available The focus of this study was to observe the effect of nano calcium carbonate (CaCO3 modification methods on bamboo fiber (BF used in BF-reinforced high-density polyethylene (HDPE composites manufactured by extrusion molding. Two methods were used to introduce the nano CaCO3 into the BF for modification; the first was blending modification (BM and the second was impregnation modification (IM. In order to determine the effects of the modification methods, the water absorption, surface free energy and interfacial properties of the unmodified composites were compared to those of the composites made from the two modification methods. The results revealed that the percentage increase in the weight of the composite treated by nano CaCO3 decreased and that of the IMBF/HDPE composite was the lowest over the seven months of time. The results obtained by the acid-base model according to the Lewis and Owens-Wendt- Rabel-Kaelble (OWRK equations indicated that the surface energy of the composites was between 40 and 50 mJ/m2. When compared to the control sample, the maximum storage modulus (E′max of the BMBF/HDPE and IMBF/HDPE composites increased 1.43- and 1.53-fold, respectively. The values of the phase-to-phase interaction parameter B and the k value of the modified composites were higher than those of the unmodified composites, while the apparent activation energy Ea and interface parameter A were lower in the modified composites. It can be concluded that nano CaCO3 had an effect on the interfacial properties of BF-reinforced HDPE composites, and the interface bonding between IMBF and HDPE was greatest among the composites.

  5. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    Science.gov (United States)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  6. Enhanced generation of hydroxyl radicals on well-crystallized molybdenum trioxide/nano-graphite anode with sesame cake-like structure for degradation of bio-refractory antibiotic.

    Science.gov (United States)

    Tang, Bo; Du, Jiannan; Feng, Qingmao; Zhang, Jiaqi; Wu, Dan; Jiang, Xiankai; Dai, Ying; Zou, Jinlong

    2018-05-01

    Anodic electro-catalysis oxidation is a highly effective way to solve the pollution problem of antibiotics in wastewater and receiving water bodies. In this study, for the first time, molybdenum trioxide/Nano-graphite (MoO 3 /Nano-G) composites are synthesized as anodic catalysts by a surfactant-assisted solvothermal method followed by low-temperature calcination. The effects of the proportion of MoO 3 to Nano-G (10, 30 and 50%) on the properties of composites are investigated through structural characterizations and electrochemical measurements. Results indicate that MoO 3 (30)/Nano-G electrode displays the electro-catalysis degradation efficiency of 99.9% towards ceftazidime, which is much higher than those of Nano-G (46.7%) and dimensionally stable anode (69.2%). The degradation mechanism for ceftazidime is studied by investigating the yields and kinds of active species. Results show that all of the OH, O 2- and H 2 O 2 are responsible for the electro-catalytic degradation process, and the produced OH radicals are the major active species for ceftazidime degradation. The synergistic effects between MoO 3 and Nano-G greatly contribute to the activation of H 2 O molecules to produce OH, meanwhile the special sesame cake-like structure facilitates to the exposure of contaminants to OH on active sites to enhance the degradation efficiency. These results suggest that MoO 3 /Nano-G electrodes can be considered as the promising catalysts for treating bio-refractory organic wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Porous MnO/C of composite nanostructure consisting of nanorods and nano-octahedra as anode of lithium ion batteries with enhanced electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yue-Feng; Xu, Gui-Liang [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Su, Hang [College of Energy, Xiamen University, Xiamen 361005 (China); Chen, Yuan; Fang, Jun-Chuan; Wang, Qi; Huang, Ling [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Li, Jun-Tao [College of Energy, Xiamen University, Xiamen 361005 (China); Sun, Shi-Gang, E-mail: sgsun@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2016-08-15

    Porous MnO/C materials of composite nanostructure consisting of nanorods and nano-octahedra (denoted as nRO-MnO/C) were synthesized for the first time through a one-pot hydrothermal procedure followed by thermal annealing using PEG6000 as a soft template. When served as anode of LIBs, the nRO-MnO/C materials could maintain a reversible capacity as high as 861.3 mAh g{sup −1} after 120 cycles at a rate of 0.13 C (1 C = 755.6 mA g{sup −1}), and a stable capacity of 313.5 mAh g{sup −1} at a much higher rate of 4.16 C. Moreover, excellent long cycleability at high rate has been also evidenced by a capacity of 628.9 mAh g{sup −1} measured after 300 cycles at 1.32 C. In comparison with mono-form porous nanorods (nR-MnO/C) and mono-form porous nano-octahedra (nO-MnO/C), the enhanced electrochemical performances of the nRO-MnO/C materials are attributed to the composite nanostructure, in which the nano-octahedra contact effectively with nanorods by laying in the space between them yielding synergy effect that facilitates the electronic transportation on electrode. - Highlights: • Porous MnO/C with composite nanostructure was prepared by hydrothermal reaction. • The composite nanostructure is consisting of nanorods and nano-octahedra. • The nRO-MnO/C delivers a charge capacity of 628.9 mAh g{sup −1} after 300 cycles at 1.32 C. • The superior electrochemical performance should be owed to composite structure.

  8. Bulk Oxygen Isotopic Composition of Ultracarbonaceous Antarctic Micrometeorites with the NanoSIMS

    Science.gov (United States)

    Kakazu, Y.; Engrand, C.; Duprat, J.; Briani, G.; Bardin, N.; Mostefaoui, S.; Duhamel, R.; Remusat, L.

    2014-09-01

    We analyzed the carbon and oxygen isotope ratios of two UCAMMs with the NanoSIMS in order to understand the origin and formation of UCAMMs. One UCAMM has 16O-rich composition and a highly heterogeneous oxygen isotopic distribution.

  9. On the shear strength of tungsten nano-structures with embedded helium

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Krasheninnikov, S.I.

    2013-01-01

    Modification of plastic properties of tungsten nano-structures under shear stress load due to embedded helium atoms is studied using molecular dynamics modelling. The modelling demonstrates that the yield strength of tungsten nano-structures reduces significantly with increasing embedded helium concentration. At high helium concentrations (>10 at%), the yield strength decreases to values characteristic to the pressure in helium nano-bubbles, which are formed in tungsten under such conditions and thought to be responsible for the formation of nano-fuzz on tungsten surfaces irradiated with helium plasma. It is also shown that tungsten plastic flow strongly facilitates coagulation of helium clusters to larger bubbles. The temperature dependencies of the yield strength are obtained. (letter)

  10. Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite

    International Nuclear Information System (INIS)

    Sankar, Sasidharan; Raj, Athira N.; Jyothi, C.K.; Warrier, K.G.K.; Padmanabhan, P.V.A.

    2012-01-01

    Graphical abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Highlights: ► A novel lanthanum phosphate–Y 2 O 3 nano composite is synthesized for the first time using a modified facile sol gel process. ► The composite becomes crystalline at 600 °C and X-ray diffraction pattern is indexed for monoclinic LaPO 4 and cubic yttria. ► The composite synthesized was tested up to 1300 °C and no reaction between the phases of the constituents is observed with the morphologies of the phases being retained. -- Abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Lanthanum phosphate (80 wt%)–yttria (20 wt%) nano composite (LaPO 4 –20%Y 2 O 3 ), has an average particle size of ∼70 nm after heat treatment of precursor at 600 °C. TG–DTA analysis reveals that stable phase of the composite is formed on heating the precursor at 600 °C. The TEM images of the composite show rod shape morphology of LaPO 4 in which yttria is acquiring near spherical shape. Phase identification of the composite as well as the phase stability up to 1300 °C was carried out using X-ray diffraction technique. With the phases being stable at higher temperatures, the composite synthesized should be a potential material for high temperature applications like thermal barrier coatings and metal melting applications.

  11. Structural stability of nano-sized clusters

    NARCIS (Netherlands)

    De Hosson, JTM; Palasantzas, G; Vystavel, T; Koch, S; Ovidko,; Pande, CS; Krishnamoorti, R; Lavernia, E; Skandan, G

    2004-01-01

    This contribution presents challenges to control the microstructure in nano-structured materials via a relatively new approach, i.e. using a so-called nanocluster source. An important aspect is that the cluster size distribution is monodisperse and that the kinetic energy of the clusters during

  12. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  13. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    2012-10-29

    structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated ...Accomplishment 4) 5 Develop constitutive models for nano- foamed and micro- foamed PMC systems from single ply prepreg to multilayer laminated

  14. Novel Preparation of Nano-Composite CuO-Cr2O3 Using Ctab-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural

    Science.gov (United States)

    Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei

    2013-02-01

    A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.

  15. Self-assembled metal nano-multilayered film prepared by co-sputtering method

    Science.gov (United States)

    Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.

  16. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  17. Structural Design of a Compact in-Plane Nano-Grating Accelerometer

    International Nuclear Information System (INIS)

    Yao Bao-Yin; Zhou Zhen; Feng Li-Shuang; Wang Wen-Pu; Wang Xiao

    2012-01-01

    A combination of large mass, weak spring and nano-grating is the key for a nano-grating accelerometer to measure nano-G acceleration. A novel compact nano-grating accelerometer integrating a large mass with nano-grating is proposed. First, the numbers of diffraction orders are calculated. Then, structure parameters are optimized by finite element analysis to achieve a high sensitivity in an ideal vibration mode. Finally, we design the fabrication method to form such a compact nano-grating accelerometer and successfully fabricate the uniform and well-designed nano-gratings with a period of 847 nm, crater of 451 nm by an FIB/SEM dual beam system. Based on the ANSYS simulation, a nano-grating accelerometer is predicted to work in the first modal and enables the accelerometer to have displacement sensitivity at 197 nm/G with a measurement range of ±1 G, corresponding to zeroth diffraction beam optical sensitivity 1%/mG. The nano-gratings fabricated are very close to those designed ones within experimental error to lay the foundation for the sequent fabrication. These results provide a theoretical basis for the design and fabrication of nano-grating accelerometers

  18. Nano-MnO2@TiO2 microspheres: A novel structure and excellent performance as anode of lithium-ion batteries

    Science.gov (United States)

    Cao, Zhiguang; Chen, Xiaoqiao; Xing, Lidang; Liao, Youhao; Xu, Mengqing; Li, Xiaoping; Liu, Xiang; Li, Weishan

    2018-03-01

    A structurally hierarchical MnO2/TiO2 composite (Nano-MnO2@TiO2) is fabricated by calcining MnCO3 microspheres and coating a thin layer of TiO2 through the heat decomposition of tetrabutyl titanate, and evaluated as anode of gravimetrically and volumetrically high energy density lithium ion battery. The characterizations from FESEM, TEM, HRTEM and XRD, indicate that the resulting Nano-MnO2@TiO2 takes a spherical morphology with a core of about 2 μm in diameter, consisting of compact MnO2 nanoparticles, and a shell of 60 nm thick, consisting of smaller TiO2 nanoparticles. The charge/discharge tests demonstrate that Nano-MnO2@TiO2 exhibits excellent performance as anode of lithium ion battery, delivering a capacity of 938 mAh g-1 at 300 mA g-1 after 200 cycles, compared to the 103 mAh g-1 of the uncoated sample. The microsphere consisting of compact nanoparticles provides Nano-MnO2@TiO2 with high specific gravity. The dimensionally and structurally stable TiO2 maintains the integrity of MnO2 microspheres and facilitates lithium insertion/extraction. This unique structure yields the excellent cyclic stability and rate capability of Nano-MnO2@TiO2.

  19. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Micro-structural characterization and geometric modeling

    KAUST Repository

    Han, Fei; Azdoud, Yan; Lubineau, Gilles

    2014-01-01

    A computational strategy to predict the elastic properties of carbon nanotube-reinforced polymer composites is proposed in this two-part paper. In Part I, the micro-structural characteristics of these nano-composites are discerned

  20. Propeller-Shaped ZnO Nano structures Obtained by Chemical Vapor Deposition: Photoluminescence and Photo catalytic Properties

    International Nuclear Information System (INIS)

    Wang, S.L.; Zhu, H.W.; Li, P.G.; Tang, W.H.

    2012-01-01

    Propeller-shaped and flower-shaped ZnO nano structures on Si substrates were prepared by a one-step chemical vapor deposition technique. The propeller-shaped ZnO nano structure consists of a set of axial nano rod (50 nm in tip, 80 nm in root and 1μm in length), surrounded by radial-oriented nano ribbons (20-30 nm in thickness and 1.5μm in length). The morphology of flower-shaped ZnO nano structure is similar to that of propeller-shaped ZnO, except the shape of leaves. These nano rods leaves (30?nm in diameter and 1-1.5μm in length) are aligned in a radial way and pointed toward a common center. The flower-shaped ZnO nano structures show sharper and stronger UV emission at 378 nm than the propeller-shaped ZnO, indicating a better crystal quality and fewer structural defects in flower-shaped ZnO. In comparison with flower-shaped ZnO nano structures, the propeller-shaped ZnO nano structures exhibited a higher photo catalytic property for the photo catalytic degradation of Rhodamine B under UV-light illumination.

  1. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  2. Hierarchical Composites with Nanostructured Reinforcement for Multifunctional Aerospace Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced nano-engineered composites hold great potential for augmenting aerospace composites material performance by reducing spacecraft weight, increasing payload...

  3. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Haydari-Nasab, Fatemh; Malmir, Mariam [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of)

    2011-08-15

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30{sup o} and 70{sup o} incidence angles and at different azimuthal angles ({phi}). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the {phi} angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths (<450 nm) is observed in the s-polarization spectra, while in addition to this peak a broad peak at longer wavelengths (i.e., LM) observed in the p-polarization spectra, which is more dominant for 70{sup o} incidence angle.

  4. Preparation of disk-like particles with micro/nano hierarchical structures.

    Science.gov (United States)

    Meng, Zhen; Yang, Wenbo; Chen, Pengpeng; Wang, Weina; Jia, Xudong; Xi, Kai

    2013-10-15

    A facile, reproductive method has been successfully developed to produce disk-like microparticles self-assembled from monodispersed hybrid silica nanoparticles under certain circumstance. The disk-like microparticles with micro/nano hierarchical structures could be obtained in large amount under a mild condition and further used to biomimetic design of the superhydrophobic surface of lotus leaf. After traditional surface modification with dodecyltrichlorosiliane, the static contact angle of water on the surface with micro/nano hierarchical structure could reach 168.8°. The method of surface modification could be further simplified by click reaction with the introduction of thiol groups under mild condition. The present strategy for constructing the surface with micro/nano hierarchical structures offers the advantage of simple and large area fabrication, which enables a variety of superhydrophobic applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Designing a New Nano-Plant Composite of Cucurbita pepo for Wound Repair of Skin in Male Albino Mice: A New Nano Approach for Skin Repair

    Directory of Open Access Journals (Sweden)

    Nooshin Naghsh

    2013-06-01

    Full Text Available Background & Objective : The Cucurbita pepo is one of plants that are functional in traditional therapy. This plant has antioxidant and skin damage repair properties. This study investigated the effect of Cucurbita pepo nano silver as a new nano-plant composition in wound repair skin in male mice.   Materials & Methods: In this investigation, male albino mice were places in 8 groups, each containing 8 animals. Group I – VIII were treated with nano silver (500, 250, and 125 ppm concentrations and different concentrations of extracts [70%, 50%, and 25%] and the control group received a mixture of 25% Cucurbita pepo extract (125 ppm nano silver. The eighth group, as control, was treated with sterile deionizer water after the induction of wound skin. The average diameter of the wounds was measured 28 days after treatment in the control and treatment groups. These data were analyzed using the t-test and ANOVA statistical method.   Results: The results of this study showed that ethanol extraction (80% has its highest repair effect 28 days post treatment. The average diameter of the wounds in the control group was 1.16 ±. 0.46 cm, which was decreased to 0 cm and 0.12 ±. 0.23 cm in the ethanol extract (70% of the Cucurbita pepo and component groups, respectively (p value ≤ 0.01.   Conclusion: In this project, nano silver-Cucurbita pepo ethanol extraction for wound repair in albino male mice was more effective than single materials. These findings show that the repair synergic effects are between alcoholic extract and nano silver in this nano composite.

  6. The ionic conductivity, mechanical performance and morphology of two-phase structural electrolytes based on polyethylene glycol, epoxy resin and nano-silica

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qihang; Yang, Jiping, E-mail: jyang08@163.com; Yu, Yalin; Tian, Fangyu; Zhang, Boming; Feng, Mengjie; Wang, Shubin

    2017-05-15

    Highlights: • Structural electrolytes based on PEG-epoxy resins were prepared. • Factors of influencing ionic conductivity and mechanical properties were studied. • Co-continuous morphology was benefit for improved structural electrolyte property. • Efficiently optimized multifunctional electrolyte performance was achieved. - Abstract: As one of significant parts of structural power composites, structural electrolytes have desirable mechanical properties like structural resins while integrating enough ionic conductivity to work as electrolytes. Here, a series of polyethylene glycol (PEG)-epoxy-based electrolytes filled with nano-silica were prepared. The ionic conductivity and mechanical performance were studied as functions of PEG content, lithium salt concentration, nano-silica content and different curing agents. It was found that, PEG-600 and PEG-2000 content in the epoxy electrolyte system had a significant effect on their ionic conductivity. Furthermore, increasing the nano-silica content in the system induced increased ionic conductivity, decreased glass transition temperature and mechanical properties, and more interconnected irregular network in the cured systems. The introduction of rigid m-xylylenediamine resulted in enhanced mechanical properties and reasonably decreased ionic conductivity. As a result, these two-phase epoxy structural electrolytes have great potential to be used in the multifunctional energy storage devices.

  7. Self-assembly of nano/micro-structured Fe3O4 microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances

    International Nuclear Information System (INIS)

    Liu, Jinlong; Feng, Haibo; Wang, Xipeng; Qian, Dong; Jiang, Jianbo; Li, Junhua; Peng, Sanjun; Deng, Miao; Liu, Youcai

    2014-01-01

    Nano/micro-structured Fe 3 O 4 microspheres among three-dimensional (3D) reduced graphene oxide (rGO)/carbon nanotubes (CNTs) hierarchical networks (the ternary composite is denoted as rGCFs) have been synthesized using a facile, self-assembled and one-pot hydrothermal approach. The rGCFs composite exhibits superior lithium storage performances: initial discharge and charge capacities of 1452 and 1036 mAh g −1 , respectively, remarkable rate capability at current densities from 100 mA g −1 to 10 A g −1 and outstanding cycling performance up to 200 cycles. The highly enhanced electrochemical performances of rGCFs depend heavily on the robust 3D rGO/CNTs hierarchical networks, the stable nano/microstructures of active Fe 3 O 4 microspheres and the positive synergistic effects of building components. The systematic structure characterizations and electrochemical investigations provide insightful understanding towards the relationship between structure/morphology and lithium storage performances, which may pave the way for the rational design of composite materials with desirable goals. (papers)

  8. Degradation behavior and compatibility of micro, nanoHA/chitosan scaffolds with interconnected spherical macropores.

    Science.gov (United States)

    Ruixin, Li; Cheng, Xu; Yingjie, Liu; Hao, Li; Caihong, Shi; Weihua, Su; Weining, An; Yinghai, Yuan; Xiaoli, Qin; Yunqiang, Xu; Xizheng, Zhang; Hui, Li

    2017-10-01

    Hydroxyapatite/Chitosan (HA/CS) composite have significant application in biomedical especially for bone replacement. Inorganic particle shape and size of composite affect the scaffold mechanical property, biological property, and degradation. The aim of this study was to fabricate HA/CS scaffold with good pore connectivity and analyze their biological, degradation properties. Microhydroxyapatite/chitosan (mHA/CS) and nanohydroxyapatite/chitosan (nHA/CS) composite scaffolds with interconnected spherical pore architectures were fabricated. Composite scaffolds structure parameters were analyzed using micro CT. Cell proliferation and morphology were tested and compared between two scaffolds using mouse osteoblastic cell line MC3T3-E1. To research the composite degradation in lysozyme PBS solution, degradation rate and reducing sugar content were tested, and scaffolds morphology were observed by SEM. The results showed that microHA and nanoHA were fabricated by being calcined and synthesis methods, and their infrared spectra are very similar. EDAX composition analysis demonstrated that both of microHA and nanoHA were calcium deficiency HA. Micro-CT results demonstrated the scaffolds had interconnected spherical pores, and the structure parameters were similar. Cell viabilities were significant increased with cultured time, but there were no significant difference between microHA/CS and nanoHA/CS scaffolds. Scaffold structure was gradually destroyed and inorganic composition HA particles are more prominent with degradation time. (1) Inorganic particle shape and size of composite affect the scaffold mechanical property, biological property, and degradation. NanoHA/CS and microHA/CS scaffolds with good pore connectivity were fabricated and their biological, degradation properties were studied in this manuscript. (2) The scaffold with interconnected porosity construct provides the necessary support for cells to proliferate and maintain their differentiated function, and

  9. Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites

    Science.gov (United States)

    Hunt, Emily M.; Pantoya, Michelle L.

    2005-08-01

    Ignition behaviors associated with nano- and micron-scale particulate composite thermites were studied experimentally and modeled theoretically. The experimental analysis utilized a CO2 laser ignition apparatus to ignite the front surface of compacted nickel (Ni) and aluminum (Al) pellets at varying heating rates. Ignition delay time and ignition temperature as a function of both Ni and Al particle size were measured using high-speed imaging and microthermocouples. The apparent activation energy was determined from this data using a Kissinger isoconversion method. This study shows that the activation energy is significantly lower for nano- compared with micron-scale particulate media (i.e., as low as 17.4 compared with 162.5kJ /mol, respectively). Two separate Arrhenius-type mathematical models were developed that describe ignition in the nano- and the micron-composite thermites. The micron-composite model is based on a heat balance while the nanocomposite model incorporates the energy of phase transformation in the alumina shell theorized to be an initiating step in the solid-solid diffusion reaction and uniquely appreciable in nanoparticle media. These models were found to describe the ignition of the Ni /Al alloy for a wide range of heating rates.

  10. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Naheed Saba

    2014-08-01

    Full Text Available The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

  11. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  12. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.

    Science.gov (United States)

    Alothman, Othman Y; Almajhdi, Fahad N; Fouad, H

    2013-09-24

    The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G' increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable

  13. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  14. Study on the nano-composite electroless coating of Ni-P/Ag

    International Nuclear Information System (INIS)

    Ma Hongfang; Tian Fang; Li Dan; Guo Qiang

    2009-01-01

    The nano-composite coating of Ni-P/Ag was obtained by adding silver nanoparticles to the Ni-P electroless plating solutions. The properties of the coating were tested by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), differential scanning calorimeter (DSC), X-ray diffraction (XRD) and microsclerometer. Silver nanoparticles changed the properties of the composite coating. The Ni-P electroless coating contains 12.23 wt.% P while the composite coating of Ni-P/Ag contains 11.17 wt.% P and 0.24 wt.% Ag. The hardness of the composite coating is bigger than that of Ni-P alloy coating. Differential scanning calorimeter studies showed the amorphous to crystalline transition with precipitation of Ni 3 P and Ni around 335 deg. C

  15. Evaluation of Synthesized Nano hydroxyapatite-Nano cellulose Composites as Biocompatible Scaffolds for Applications in Bone Tissue Engineering

    International Nuclear Information System (INIS)

    Herdocia-Lluberes, C.S.; Herdocia-Lluberes, C.S.; Laboy-Lopez, S.; Morales, S.; Gonzalez-Roobles, T.J.; Gonzalez-Feliciano, J.A.; Nicolau, E.; Laboy-Lopez, S.; Gonzalez-Roobles, T.J.; Nicolau, E.

    2015-01-01

    Basic calcium phosphate (BCP) crystals have been associated with many diseases due to their activation of signaling pathways that lead to their mineralization and deposition in intra-articular and peri articular locations in the bones. In this study, hydroxyapatite (HAp) has been placed in a polysaccharide network as a strategy to minimize this deposition. This research consisted of the evaluation of varying proportions of the polysaccharide network, cellulose nano crystals (CNC_s), and HAp synthesized via a simple sol-gel method. The resulting biocompatible composites were extensively characterized by means of thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta potential, and scanning electron microscopy (SEM). It was found that an nHAp = CNC ratio presented greater homogeneity in the size and distribution of the nanoparticles without compromising the crystalline structure. Also, incorporation of bone morpho genetic protein 2 (BMP-2) was performed to evaluate the effects that this interaction would have in the constructs. Finally, the osteoblast cell (hFOB 1.19) viability assay was executed and it showed that all of the materials promoted greater cell proliferation while the nHAp > CNC proportion with the inclusion of the BMP-2 protein was the best composite for the purpose of this study

  16. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    Science.gov (United States)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  17. Using Neutron Scattering and Mercury Intrusion Techniques to Characterize Micro- and Nano-Pore Structure of Shale

    Science.gov (United States)

    Zhang, Y.; Barber, T.; Hu, Q.; Bleuel, M.

    2017-12-01

    The micro- and nano-pore structure of oil shale plays a critical role in hydrocarbon storage and migration. This study aims to characterize the pore structure of three Bakken members (i.e., upper organic-rich shale, middle silty/sandy dolomites, and lower organic-rich shale), through small and ultra-small angle neutron scattering (SANS and USANS) techniques, as well as mercury injection capillary pressure (MICP) analyses. SANS/USANS have the capabilities of measuring total porosity (connected and closed porosity) across nm-mm spectrum, not measurable than other fluid-invasion approaches, such as MICP which obtains connected porosity and pore-throat size distribution. Results from both techniques exhibit different features of upper/lower Bakken and middle Bakken, as a result of various mineral composition and organic matter contents. Middle Bakken is primarily dominated by the mineral pores, while in the upper and lower Bakken, organic pores contribute a significant portion of total porosity. A combination of USANS/SANS and MICP techniques gives a comprehensive picture of shale micro- and nano-pore structure.

  18. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  19. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  20. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    Science.gov (United States)

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Friction and wear of Synfluo 180XF wax and nano-Al2O3 filled Nomex fabric composites

    International Nuclear Information System (INIS)

    Su Fenghua; Zhang Zhaozhu; Wang Kun; Liu Weimin

    2006-01-01

    Nomex fabric composites filled with the particulates of Synfluo 180XF wax (SFW) and nano-Al 2 O 3 was prepared by dip-coating of Nomex fabric in a phenolic resin containing particulates to be incorporated and the successive curing. The friction and wear performance of the pure and filled Nomex fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration were evaluated on a Xuanwu-III high temperature friction and wear tester. The microstructure of the composites, and the morphologies of the worn surfaces and the morphologies of counterpart steel pins were analyzed by means of scanning electron microscopy. And the elemental plane distribution of Al on the cross-section of the Nomex fabric composites filled with nano-Al 2 O 3 was analyzed with an energy dispersive X-ray analyzer (EDAX). The results showed that the addition of Synfluo 180XF wax in composites have the potential to increase wear resistance and friction reduction of Nomex fabric composites, and the addition of the nano-Al 2 O 3 with the optimum mass fraction in composites can improve the anti-wear ability of the composites. Besides the self-properties of the filler, the character of the microstructure of the Nomex fabric composites filled with different particles, coupled with the character of the transfer film, largely accounts for the improved anti-wear and friction-reducing abilities of the filled Nomex fabric composites as compared with the unfilled one

  2. Effect of different polishing systems on the surface roughness of nano-hybrid composites.

    Science.gov (United States)

    Patel, Brijesh; Chhabra, Naveen; Jain, Disha

    2016-01-01

    The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of nano-hybrid composite Group I - Filtek Z350 and Group II - Tetric N-Ceram were used (n = 35 for each group). Both groups were further divided into four subgroups. Subgroup a - OneGloss (n = 10), Subgroup b - PoGo (n = 10), Subgroup c - Sof-Lex spiral (n = 10), Subgroup d - Mylar strip (control, n = 5). Samples were polished according to the manufacturer's recommendations. Surface roughness test was performed using contact profilometer. The obtained data were analyzed using the one-way analysis of variance test. Tetric N-Ceram produced smoother surfaces than Filtek Z350 (P OneGloss" (P OneGloss" and "Sof-Lex Spiral."

  3. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon

    International Nuclear Information System (INIS)

    Reza San German, C.M.

    2005-01-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS 2 , enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS 2 + C nano tubes were synthesized by propylene pyrolysis inside MoS 2 nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS 2 layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS 2 inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS 2 layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS 2 layers. Our results open up the possibility of using MoS 2 nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  4. Antimicrobial Activity of Hippurate Nano composite and Its Cytotoxicity Effect in Combination with Cytarabine against HL-60

    International Nuclear Information System (INIS)

    Al Ali, S.H.H.; Al-Qubaisi, M.; Ismail, M.; El Zowalaty, M.; Hussein, M.Z.; Ismail, M.

    2013-01-01

    Hippuric acid (HA) was intercalated into a zinc-layered hydroxide (ZLH) by direct reaction of an aqueous suspension of zinc oxide with an aqueous solution of hippuric acid to obtain hippurate nano composite (HAN). Various concentrations of hippuric acid (0.05, 0.2, and 0.4 molar) were used for the synthesis of the nano composite. The as-synthesized HAN using 0.2 molar was found to give a well-ordered layered nano composite material with an increase in the basal spacing to 21.3 Å which indicated the insertion of hippurate organic moiety into the ZLH interlayers. The cytotoxicity of HAN in combination with cytarabine against human promyelocytic leukemia cells (HL-60) was tested using MTT cell viability assay and trypan blue dye exclusion assay. The combination of cytarabine with HAN showed higher tumor suppression efficiency as compared to that of cytarabine alone. The IC 50 values of HAN/cytarabine combination and cytarabine alone were μg/mL and μg/mL, respectively. DNA fragmentation was also studied, and the exposure of HL-60 cells to cytarabine produced % DNA fragmentation compared to % when cells were exposed to combination of cytarabine with HAN. The antimicrobial activity of hippuric acid and HAN nano composite was carried out against Gram-positive bacteria, Gram-negative bacteria, and yeasts. It was found that Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus were more sensitive to HAN compared to Bacillus subtilis and Salmonella choleraesuis

  5. Synthesis of Vertically Aligned ZnO Nano rods on Various Substrates

    International Nuclear Information System (INIS)

    Hassan, J.J.; Hassan, Z.; Abu Hassan, H.; Mahdi, M.A.

    2011-01-01

    We successfully synthesized vertically aligned ZnO nano rods on Si, GaN, Sic, Al 2 O 3 , ITO, and quartz substrates using microwave assisted chemical bath deposition (MA-CBD) method. All these types of substrates were seeded with PVA-ZnO nano composites layer prior to the nano rods growth. The effect of substrate type on the morphology of the ZnO nano rods was studied. The diameter of grown ZnO nano rods ranged from 50 nm to 200 nm. Structural quality and morphology of ZnO nano rods were determined by x-ray diffraction and scanning electron microscopy, which revealed hexagonal wurtzite structures perpendicular to the substrate along the z-axis in the direction of (002). Photoluminescence measurements of grown ZnO nano rods on all substrates exhibited high UV peak intensity. Raman scattering studies were conducted to estimate the lattice vibration modes. (author)

  6. TiO2/ CNT hetero-structure with variable electron beam diameter suitable for nano lithography

    International Nuclear Information System (INIS)

    Barati, F.; Abdi, Y.; Arzi, E.

    2012-01-01

    We report fabrication of a novel TiO 2 /carbon nano tube based field emission device suitable for nano lithography and fabrication of transistor. The growth of carbon nano tubes is performed on silicon substrates using plasma-enhanced chemical vapor deposition method. The vertically grown carbon nano tubes are encapsulated by TiO 2 using an atmospheric pressure chemical vapor deposition system. Field emission from the carbon nano tubes is realized by mechanical polishing of the prepared nano structure. The possibility of the application of such nano structures as a lithography tool with variable electron beam diameter was investigated. The obtained results show that spot size of less than 30 nm can be obtained by applying a proper voltage on TiO 2 surrounding gate. Electrical measurements of the fabricated device confirm the capability of this nano structure for the fabrication of field emission based field effect transistor. By applying a voltage between the gate and the cathode electrode, the emission current from carbon nano tubes shows a significant drop, indicating proper control of gate on the emission current.

  7. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    Science.gov (United States)

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  8. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests

    Science.gov (United States)

    Özdemir, T.; Güngör, A.; Akbay, I. K.; Uzun, H.; Babucçuoglu, Y.

    2018-03-01

    It is important to have a shielding material that is not easily breaking in order to have a robust product that guarantee the radiation protection of the patients and radiation workers especially during the medical exposure. In this study, nano sized lead oxide (PbO) particles were used, for the first time, to obtain an elastomeric composite material in which lead oxide nanoparticles, after the surface modification with silane binding agent, was used as functional material for radiation shielding. In addition, the composite material including 1%, 5%, 10%, 15% and 20% weight percent nano sized lead oxide was irradiated with doses of 81, 100 and 120 kGy up to an irradiation period of 248 days in a gamma ray source with an initial dose rate of 21.1 Gy/h. Mechanical, thermal properties of the irradiated materials were investigated using DSC, DMA, TGA and tensile testing and modifications in thermal and mechanical properties of the nano lead oxide containing composite material via gamma irradiation were reported. Moreover, effect of bismuth-III oxide addition on radiation attenuation of the composite material was investigated. Nano lead oxide and bismuth-III oxide particles were mixed with different weight ratios. Attenuation tests have been conducted to determine lead equivalent values for the developed composite material. Lead equivalent thickness values from 0.07 to 0.65 (2-6 mm sample thickness) were obtained.

  9. Handbook of damage mechanics nano to macro scale for materials and structures

    CERN Document Server

    2015-01-01

    This authoritative reference provides comprehensive coverage of the topics of damage and healing mechanics. Computational modeling of constitutive equations is provided as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employ a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.

  10. Preparation and characterization of squeeze cast-Al–Si piston alloy reinforced by Ni and nano-Al2O3 particles

    Directory of Open Access Journals (Sweden)

    Hashem F. El-Labban

    2016-07-01

    Full Text Available Al–Si base composites reinforced with different mixtures of Ni and nano-Al2O3 particles have been fabricated by squeeze casting and their metallurgical and mechanical characterization has been investigated. A mixture of Ni and nano-Al2O3 particles of different ratios was added to the melted Al–Si piston alloy at 700 °C and stirred under pressure. After the Al-base-nano-composites were fabricated by squeeze casting, the microstructure and the particle distribution inside the matrix have been investigated using optical and scanning electron microscopes. Moreover, the hardness and the tensile properties of the resulted Al-base-nano-composites were evaluated at room temperature by using Vickers hardness and universal tensile testers, respectively. As a result, in most cases, it was found that the matrix showed a fine eutectic structure of short silicon constituent which appeared in the form of islands in the α-phase around some added particle agglomerations of the nano-composite structures. The tendency of this structure formation increases with the increase of Ni particle addition. As the ratio of the added particles increases, the tendency of these particles to be agglomerated also increases. Regarding the tensile properties of the fabricated Al-base-nano-composites, ultimate tensile strength is increased by adding the Ni and nano-Al2O3 particles up to 10 and 2 wt.%, respectively. Moreover, the ductility of the fabricated composites is significantly improved by increasing the added Ni particles. The composite material reinforced with 5 wt.% Ni and 2 wt.% nano-Al2O3 particles showed superior ultimate tensile strength and good ductility compared with any other added particles in this investigation.

  11. Nano-material aspects of shock absorption in bone joints.

    Science.gov (United States)

    Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.

  12. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    Science.gov (United States)

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next

  13. Strengthening of the RAFMS RUSFER-EK181 through nano structuring surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, A.; Melnikova, E.A. [Tomsk State Univ., lnstitute of Strength Physics and Materials Science, SB, RAS (Russian Federation); Chernov, V.M. [Bochvar Institute of Inorganic Materials, Moscow (Russian Federation); Leontieva-Smirnova, M.V. [A.A. Bochvar Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: Surface nano-structuring increases yield point and strength of the reduced activation ferritic-martensitic steel (RAFMS ) RUSREF - EK181. Ultrasonic impact treatment was used to produce a nano-structure within the surface layers of the specimens. Using scanning tunnelling microscope reveals a new mechanism of mesoscale-level plastic deformation of nano-structured surface layers of the RAFMS RUSREF - EK181 as doubled spirals of localised-plastic deformation meso-bands. A linear dependence of their sizes on thickness of strengthened layer was obtained. The effect of localised deformation meso-bands on macro-mechanical properties of a material was demonstrated. A certain combination of thermal and mechanical treatment as well as optimum proportion of nano-structured surface layer thickness to thickness of a whole specimen are necessary to achieve maximum strength values. Tests performed at high temperatures in the range from 20 to 700 deg. C shows efficiency of the surface hardening of the RAFMS RUSREF - EK181. The effect of nano-structured surface layer on the character of plastic deformation and mechanical properties of the RAFMS RUSREF - EK181 was considered in the framework of a multilevel model in which loss of shear stability and generation of structural defects occur self-consistently at various scale levels such as nano-, micro-, meso-, and macro-Chessboard like distribution of stresses and misfit deformations was theoretical and experimentally shown to appear at the 'nano-structured surface layer - bulk of material' interface. Zones of compressive normal stresses alternates with zones of tensile normal stresses as on a chessboard. Plastic shear can generate only within local zones of tensile normal stresses. Critical meso-volume of non-equilibrium states required for local structure-phase transformation can be formed within these zones. Whereas within the zones of compressive normal stresses acting from both

  14. Different Structures of PVA Nano fibrous Membrane for Sound Absorption Application

    International Nuclear Information System (INIS)

    Mohrova, J.; Kalinova, K.

    2012-01-01

    The thin nano fibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nano fibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA) was used as a polymer because of its good water solubility. It is possible to influence the structure of nano fibrous layer during the production process thanks to this property of polyvinyl alcohol.

  15. Nano-silica as the go material on heat resistant tunnel lining

    Science.gov (United States)

    Omar, Faizah; Osman, S. A.; Mutalib, A.

    2018-04-01

    This paper is concerned with passive fire protection method of protective concrete mix that is made up of fly ash, polypropylene fibre, and nano-silica. Nano-silica is focused on as the innovative material to be used in the composition of the protective concrete mix. The previous experimental studies which analyse the performance of passive fire protection on tunnels are discussed. This paper also discusses passive fire protection. The fire protection materials and behaviour analyses of tunnel structure are also presented. At the end of the paper, the recommendation of the optimum composition concrete material with fly ash, polypropylene fibre and nano-silica as tunnel lining fire protective materials is proposed.

  16. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  17. Semiconductor-to-metallic flipping in a ZnFe2O4–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy

    International Nuclear Information System (INIS)

    Ameer, Shahid; Gul, Iftikhar Hussain; Mahmood, Nasir; Mujahid, Muhammad

    2015-01-01

    Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis with different percentages of graphene. The structure of the nanocomposite was confirmed through X-ray diffraction, micro-Raman scattering spectroscopy, Ultraviolet–Visible spectroscopy, and Fourier transform infrared spectroscopy. The structural growth and morphological aspects were analyzed using scanning/transmission electron microscopy, revealing marvelous micro-structural features of the assembled nano-system resembling a maple leaf. To determine the composition, energy dispersive spectroscopy and X-ray photoelectron spectroscopy were used. Microwave magneto-dielectric spectroscopy revealed the improved dielectric properties of the nano-composite compared to those of the parent functional nanocrystals. Temperature gradient dielectric spectroscopy was used over the spectral range from 100 Hz to 5 MHz to reveal the phenomenological effect that the nanosystem flips from its usual semiconductor nature to a metallic nature with sensing temperature. Electrical conductivity and dielectric analysis indicated that the dielectric loss and the dielectric permittivity increased at room temperature. This extraordinary switching capability of the functionalized graphene nanosystem opens up a new dimension for engineering advanced and efficient smart composite materials. - Graphical abstract: Display Omitted - Highlights: • Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis. • The synthesized nano-system exhibits marvelous leaf like microstructure. • These nano-composites show improved magneto dielectric response. • This engineered smart nano-system shows phenomenological flipping from semiconductor like nature to metallic behavior

  18. Analysis of nano-meter structure in Ti implanted polymers

    International Nuclear Information System (INIS)

    Zhou Gu; Wu Yuguang; Zhang Tonghe; Zhao Xinrong

    2001-01-01

    Polyethylene terephthalate (PET) is modified with Ti ion implantation to a dose of 1x10 17 to 2 x 10 17 cm -2 by using a metal vapor vacuum arc(MEVVA)source. Nano-meter structures in the implanted sample are observed by means of transmission electron microscope (TEM). The influence of ion dose on the structure is indicated. The results show that dense nano-meter phases are dispersed uniformly in the implanted layer. TEM cross section indicates that there is a three-layer structure in the implanted PET. It is found that a metallurgical surface is formed. Therefore the hardness, wear resistance and conductive properties of PET are improved after metal ion implantation. The mechanism of electrical conduction will be discussed

  19. Synthesis of nano-structured materials by laser-ablation and their application to sensors

    International Nuclear Information System (INIS)

    Okada, T.; Suehiro, J.

    2007-01-01

    We describe the synthesis of nano-structured materials of ZnO and Pd by laser ablation and their applications to sensors. The synthesis of ZnO nano-wires was performed by nano-particle assisted deposition (NPAD) where nano-crystals were grown with nano-particles generated by laser-ablating a ZnO sintered target in an Ar background gas. The synthesized ZnO nano-wires were characterized with a scanning electron microscopy and the photoluminescent characteristics were examined under an excitation with the third harmonics of a Nd:YAG laser. The nano-wires with a diameter in the range from 50 to 150 nm and a length of up to 5 μm were taken out of the substrate by laser blow-off technique and/or sonication. It was confirmed that the nano-wires showed the stimulated emission under optical pumping, indicating a high quality of the crystalinity. Pd nano-particles were generated by laser-ablating a Pd plate in pure water. The transmission electron microscope observation revealed that Pd nano-particles with a diameter in the range from 3 nm to several tens of nanometers were produced. Using these nano-structured materials, we successfully fabricated sensors by the dielectrophoresis techniques. In the case of the ultraviolet photosensor, a detection sensitivity of 10 nW/cm 2 was achieved and in the case of hydrogen sensing, the response time of less than 10 s has been demonstrated with Pd nano-particles

  20. Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

    Directory of Open Access Journals (Sweden)

    M. Jafar-Tafreshi

    2012-12-01

    Full Text Available Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO33.9H2O and ammonium sulfate ((NH42SO4. The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were characterized by both X- ray diffraction and FTIR measurements. These two analyses determined the temperature at which the aluminum sulfate is converted to γ-alumina nano particles. The specific surface area and pore size distribution for  γ-alumina nano particles were determined by BET measurement. TEM measurement confirmed the size of the particles obtained by XRD and BET analyses.

  1. Nickel and titanium nanoboride composite coating

    International Nuclear Information System (INIS)

    Efimova, K A; Galevsky, G V; Rudneva, V V; Kozyrev, N A; Orshanskaya, E G

    2015-01-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density. (paper)

  2. Facile Preparation of Nano-Bi2MoO6/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Lu Cai

    2018-02-01

    Full Text Available In this work, a new nano-Bi2MoO6/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, and UV-vis diffuse reflection spectroscopy (DRS were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi2MoO6 crystals were well-deposited on the surface of Bi2MoO6/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB under the visible light (λ > 420 nm irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi2MoO6/diatomite composite with the mass ratio of Bi2MoO6 to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h+ and•O2−. As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation.

  3. Facile Preparation of Nano-Bi2MoO6/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation

    Science.gov (United States)

    Gong, Jiuyan; Liu, Jianshe; Song, Wendong; Ji, Lili

    2018-01-01

    In this work, a new nano-Bi2MoO6/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi2MoO6 crystals were well-deposited on the surface of Bi2MoO6/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB) under the visible light (λ > 420 nm) irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi2MoO6/diatomite composite with the mass ratio of Bi2MoO6 to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h+ and•O2−. As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation. PMID:29425138

  4. Bio-Based Nano Composites from Plant Oil and Nano Clay

    Science.gov (United States)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  5. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    Science.gov (United States)

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  6. Production of Al2O3–SiC nano-composites by spark plasma sintering

    International Nuclear Information System (INIS)

    Mansour Razavi; Ali Reza Farajipour; Mohammad Zakeri; Mohammad Reza Rahimipour; Ali Reza Firouzbakht

    2017-01-01

    In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600°C for 10min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329MPa, respectively, in Al2O3–20wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale. [es

  7. Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines

    International Nuclear Information System (INIS)

    Tiruvenkadam, N.; Thyla, P.R.; Senthilkumar, M.; Bharathiraja, M.; Murugesan, A.

    2015-01-01

    Highlights: • Nano hybrid composite cylinder liner (NL) was developed to replace cast iron liner. • NL improved engine performance, combustion and reduced emissions except NO x . • Teardown analysis provides the suitability of NL for diesel engine. • The developed aluminum NL saved 43.75% of weight than cast iron cylinder liner. - Abstract: This work aims to replace the conventional cast iron cylinder liner (CL) in diesel engine by introducing lightweight aluminum (Al) 6061 nano hybrid composite cylinder liner (NL) by analyzing the performance, combustion, and emission characteristics of an engine. NL was fabricated by bottom pouring stir casting technique with nano- and micro-reinforcement materials. Experimental results proved that the use of NL increased brake thermal efficiency, in-cylinder pressure, heat release rate, and reduced carbon monoxide, hydrocarbon, and smoke emission in comparison with CL. However, oxides of nitrogen slightly increased with the use of the new liner. No differences in wear or other issues were noted during the engine teardown after 1 year of operation and 2000 h of running. Thus, NL has been recommended to replace the CL to save the energy and to reap environmental benefits

  8. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview

    International Nuclear Information System (INIS)

    Zhang Donghua; Wang Yangyong

    2006-01-01

    This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory

  9. Electrochemically deposited BiTe-based nano wires for thermoelectric applications

    International Nuclear Information System (INIS)

    Inn-Khuan, N.; Kuan-Ying, K.; Che Zuraini Che Abdul Rahman; Nur Ubaidah Saidin; Suhaila Hani Ilias; Thye-Foo, C.

    2013-01-01

    Full-text: Nano structured materials systems such as thin-films and nano wires (NWs) are promising for thermoelectric power generation and refrigeration compared to traditional counterparts in bulk, due to their enhanced thermoelectric figures-of-merit. BiTe and its derivative compounds, in particular, are well-known for their near-room temperature thermoelectric performance. In this work, both the binary and ternary BiTe-based nano wires namely, BiTe and BiSbTe, were synthesized using template-assisted electrodeposition. Diameters of the nano wires were controlled by the pore sizes of the anodised alumina (AAO) templates used. Systematic study on the compositional change as a function of applied potential was carried out via Linear Sweep Voltametry (LSV). Chemical compositions of the nano wires were studied using Energy Dispersive X-ray Spectrometry (EDXS) and their microstructures evaluated using diffraction and imaging techniques. Results from chemical analysis on the nano wires indicated that while the Sb content in BiSbTe nano wires increased with more negative deposition potentials, the formation of Te 0 and Bi 2 Te 3 were favorable at more positive potentials. (author)

  10. Effect of Nano-clay on Rheological and Extrusion Foaming Process of a Block-Copolymerized Polypropylene

    Directory of Open Access Journals (Sweden)

    Wang Mingyi

    2016-01-01

    Full Text Available The effects of nano-clay and the corresponding coupling agent maleic anhydride grafted polypropylene (PP-g-MAH on thermal properties, rheological properties and extrusion foaming process of a block-copolymerized polypropylene (B-PP were studied. Supercritical CO2 (SC CO2 was used as the foaming agent with a concentration of 5wt%. Each step of foamed B-PP/ PP-g-MAH/ nano-clay composites processing is addressed, including mixing of the composites, manufacture of the composites, foaming process of the composites and characterization of the cell structure. The results showed that incorporation of nano-clay and PP-g-MAH caused reduced melt strength and complex viscosity of B-PP. However, the heterogeneous nucleation induced by nano-clay and PP-g-MAH improved the maximum foaming expansion ratio and cell-population density of B-PP foam.

  11. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  12. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    International Nuclear Information System (INIS)

    Rahbar, Mona; Gray, Bonnie L; Shannon, Lesley

    2014-01-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high

  13. Tolerance Verification of Micro and Nano Structures on Polycarbonate Substrates

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2010-01-01

    Micro and nano structures are an increasing challenge in terms of tolerance verification and process quality control: smaller dimensions led to a smaller tolerance zone to be evaluated. This paper focuses on the verification of CD, DVD and HD-DVD nanoscale features. CD tolerance features are defi......Micro and nano structures are an increasing challenge in terms of tolerance verification and process quality control: smaller dimensions led to a smaller tolerance zone to be evaluated. This paper focuses on the verification of CD, DVD and HD-DVD nanoscale features. CD tolerance features...

  14. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  15. Elastic nano-structure of diamond-like carbon (DLC)

    International Nuclear Information System (INIS)

    Ogiso, Hisato; Yoshida, Mikiko; Nakano, Shizuka; Yasui, Haruyuki; Awazu, Kaoru

    2006-01-01

    This research discusses the elastic nano-structure of diamond-like carbon (DLC) films. Two DLC film samples deposited by plasma based ion implantation (PBII) were prepared. The plasma generated by microwave (MW) was applied to one sample and the plasma by radio frequency (RF) to the other sample. The samples were evaluated for the elastic property image with nanometer resolution using scanning probe microscopy (SPM). The film surface deposited by RF-PBII was very flat and homogeneous in elastic property. In contrast, the film surface by MW-PBII was more uneven than that by RF-PBII and both the locally hard and the locally soft regions were found at the film surface. The size of the structure in elastic property is several tens nanometer. We conclude that the film probably contains nano-scale diamond phase

  16. Elastic nano-structure of diamond-like carbon (DLC)

    Energy Technology Data Exchange (ETDEWEB)

    Ogiso, Hisato [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Yoshida, Mikiko [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Nakano, Shizuka [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Yasui, Haruyuki [Industrial Research Institute of Ishikawa (IRII), Ro-1, Tomizu-machi, Kanazawa, Ishikawa 920-0233 (Japan); Awazu, Kaoru [Industrial Research Institute of Ishikawa (IRII), Ro-1, Tomizu-machi, Kanazawa, Ishikawa 920-0233 (Japan)

    2006-01-15

    This research discusses the elastic nano-structure of diamond-like carbon (DLC) films. Two DLC film samples deposited by plasma based ion implantation (PBII) were prepared. The plasma generated by microwave (MW) was applied to one sample and the plasma by radio frequency (RF) to the other sample. The samples were evaluated for the elastic property image with nanometer resolution using scanning probe microscopy (SPM). The film surface deposited by RF-PBII was very flat and homogeneous in elastic property. In contrast, the film surface by MW-PBII was more uneven than that by RF-PBII and both the locally hard and the locally soft regions were found at the film surface. The size of the structure in elastic property is several tens nanometer. We conclude that the film probably contains nano-scale diamond phase.

  17. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  18. Electrochemical construction of micro–nano spongelike structure on titanium substrate for enhancing corrosion resistance and bioactivity

    International Nuclear Information System (INIS)

    Jiang, Pinliang; Lin, Longxiang; Zhang, Fan; Dong, Xiang; Ren, Lei; Lin, Changjian

    2013-01-01

    Highlights: • A hierarchical micro–nano spongelike TiO 2 layer was constructed on Ti substrate. • The micro–nano TiO 2 surface presented good corrosion resistance. • Excellent biomineration ability was observed on such micro–nano TiO 2 layer. • Superior MG63 cell viability was discerned on the micro–nano structured surface. -- Abstract: Surface structures of medical implants generally play a crucial role in tissue growth and healing while implanted into a living body. The surface design and modification of implants can effectively promote its biocompatibility and integration ability. In this study, a hierarchically superhydrophilic structure on titanium surface with a nano-spongelike titania layer on the micro-roughened titanium surface was constructed through dual acid etching and electrochemical treatments. It is shown that the structure of micro/nano-spongelike TiO 2 provides not only better corrosion resistance and less oxygen vacancies, but also much higher ability of biomineralization after immersion in simulated body fluid (SBF) for 14 days. It is evident, by the cell culture for the different samples, that the micro–nano spongelike structured surface on Ti significantly promotes human osteoblast-like MG63 cell attachment and proliferation. All evaluations of electrochemical behavior and biological responses in this study indicate that the micro/nano-spongelike structure on Ti surface is of excellent chemical stability, bioactivity as well as biocompatibility for biomedical implant applications

  19. Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation

    Science.gov (United States)

    Shi, Feng

    Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as

  20. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].

    Science.gov (United States)

    Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping

    2012-05-01

    Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.

  1. Partial hydrogenation of alkynes on highly selective nano-structured mesoporous silica MCM-41 composite catalyst

    International Nuclear Information System (INIS)

    Kojoori, R.K.

    2016-01-01

    In this research, we have developed a silica MCM-41/Metformin/Pd (II) nano composite catalyst for the selective hydrogenation of alkynes to the corresponding (Z)-alkenes under a mild condition of atmospheric pressure and room temperature. Firstly, functionalized Si-MCM-41 metformin catalyst with the optimum performance was prepared. Then, the synthesized catalyst was elucidated by X-ray powder diffraction, BET surface area, FT-IR spectrophotometer, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) and applied in partial hydrogenation of different alkynes, with high selectivity and high yield. The products were characterized by 1H-NMR, 13C-NMR, FT-IR, and Mass Spectrometry (MS) that strongly approved the (Z)-double bond configuration of produced alkenes. This prepared catalyst is competitive with the best palladium catalysts known for the selective liquid phase hydrogenation of alkynes and can be easily recovered and regenerated with keeping high activity and selectivity over at least three cycles with a simple regeneration procedure. (author)

  2. Density functional theory for field emission from carbon nano-structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhibing, E-mail: stslzb@mail.sysu.edu.cn

    2015-12-15

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. - Highlights: • Applications of DFT to electron field emission of nano-structures are reviewed. • Fundamental concepts of field emission are re-visited with emphasis on the many-body effects. • New insights to field emission of nano-structures are obtained by multi-scale DFT calculations. • It is shown that the exchange–correlation effect on the emission barrier is significant. • Spontaneous symmetry breaking in field emission of CNT has been predicted.

  3. Effect of different polishing systems on the surface roughness of nano-hybrid composites

    OpenAIRE

    Brijesh Patel; Naveen Chhabra; Disha Jain

    2016-01-01

    Objective: The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Background: Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Materials and Methods: Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of...

  4. Synthesis of Carbon nano structures by plasma discharge

    International Nuclear Information System (INIS)

    Jimenez L, M.L.

    2007-01-01

    Due to the great quantity of applications of the carbon nano structures (NEC) in diverse areas like: synthesis of super-resistant materials, hydrogen storage, nano sensors generation and nano catalysts, it has seen the necessity to generate new processes of synthesis of this materials as well as to already improve those existent. The present work has as objective to optimize the NEC synthesis process by means of the electric arc method which uses alternating current to high frequencies (HF), obtaining relatively clean products; that is to say, it hardly presents amorphous material neither sludges. They stand out the obtaining of carbon nano fibers (NFC) by means of a luminescent-arch discharge, in a gas mixture of He-CH 4 with 34% at. Ni/10.32% at.Y like catalyst; at a frequency of 42 kHz and low power (300 W). This method benefits the amass of the particles in both electrodes due to the high frequencies. The time of duration of the process oscillates between 5 and 20 minutes. The obtained product was characterized by scanning electron microscopy (MEB), transmission electron microscopy (MET) to determine the NEC type obtained and by X-ray diffraction analysis and Raman spectroscopy for determining the purity of the samples. The NFC is relatively free of amorphous coal. The surface and structural analysis indicates that the fibers have a half diameter of 80 nm. It is also made, a study by optical emission spectroscopy of plasma using the Swan band for determining the temperature. (Author)

  5. Production of Al2O3–SiC nano-composites by spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mansour Razavi

    2017-07-01

    Full Text Available In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600 °C for 10 min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5 h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329 MPa, respectively, in Al2O3–20 wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale.

  6. Formation of Lanthanum Hydroxide nano structures: Effect of NaOH and KOH solvents

    International Nuclear Information System (INIS)

    Mazloumi, M.; Zanganeh, S.; Kajbafvala, A.; Shayegh, M. R.; Sadrnezhaad, S. K.

    2008-01-01

    Lanthanum hydroxide (La(OH) 3 ) nano structures, including elliptical nanoparticles, octahedral rods and irregular nanoparticles were prepared chemically in NaOH and KOH solutions with 10 M concentration. The obtained powders were characterized with x-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential thermal analysis. Crystallinities, morphologies and thermal behavior of the obtained nano structure powders were investigated under the influence of above mentioned solvents. The effect of chemical's temperature was also determined in one of the solvents (i.e. NaOH). The formation of growth in nano structure mechanism under the influence of alkali solutions (i.e., KOH and NaOH) have been discussed considerably in this paper

  7. Interference of processing variables on the mechanical behavior of nano composites HDPE/clay; Interferencia das variaveis de processamento no comportamento mecanico de nanocompositos PEAD/argila

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, R. [Universidade Federal do Piaui, Teresina, PI (Brazil); Souza, D.D.; Nobrega, K.C.; Araujo, E.M.; Melo, T.J. [Universidade Federal de Campina Grande - UAEMa Campina Grande, PB (Brazil)

    2010-07-01

    Nano composites were processed using the technique of melt intercalation, starting from a concentrated polar compatibilizer / organo clay (PE-g-MA / organo clay) prepared in an internal mixer. The concentrate was incorporated into the matrix of PEAD by two methods: (I) twin screw contrarrotational extruder and (II) twin screw corrotational extruder, using two thread profiles (ROS and 2KB90), after extrusion, the specimens of the extruded composites were injection molded. The diffraction of X-ray was used to analyze the degree of expansion of the clays prepared, and the degree of exfoliation of nano composites developed. The interference of processing variables on mechanical properties was studied by the behavior of the modulus and tensile strength of nano composite systems. Observed similar behavior in the use of thread (or 2KB90 ROS) of the nano composites, with a reduction in modulus and tensile strength. (author)

  8. Investigation of Catalytic Effects and Compositional Variations in Desorption Characteristics of LiNH2-nanoMgH2

    Directory of Open Access Journals (Sweden)

    Sesha S. Srinivasan

    2017-07-01

    Full Text Available LiNH2 and a pre-processed nanoMgH2 with 1:1 and 2:1 molar ratios were mechano-chemically milled in a high-energy planetary ball mill under inert atmosphere, and at room temperature and atmospheric pressure. Based on the thermogravimetric analysis (TGA experiments, 2LiNH2-nanoMgH2 demonstrated superior desorption characteristics when compared to the LiNH2-nanoMgH2. The TGA studies also revealed that doping 2LiNH2-nanoMgH2 base material with 2 wt. % nanoNi catalyst enhances the sorption kinetics at lower temperatures. Additional investigation of different catalysts showed improved reaction kinetics (weight percentage of H2 released per minute of the order TiF3 > nanoNi > nanoTi > nanoCo > nanoFe > multiwall carbon nanotube (MWCNT, and reduction in the on-set decomposition temperatures of the order nanoCo > TiF3 > nanoTi > nanoFe > nanoNi > MWCNT for the base material 2LiNH2-nanoMgH2. Pristine and catalyst-doped 2LiNH2-nanoMgH2 samples were further probed by X-ray diffraction, Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, thermal programmed desorption and pressure-composition-temperature measurements to better understand the improved performance of the catalyst-doped samples, and the results are discussed.

  9. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites.

    Science.gov (United States)

    Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi

    2018-04-01

    Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Vitrification of nanotoxic waste (Ru) from the production of nano-catalysts for direct ethanol fuel cells; Vitrificacao de nano-residuos toxicos (Ru) provenientes da producao de nano-catalisadores para celulas a combustivel de etanol direto

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C.; Julio-Junior, O.; Mello-Castanho, S.R.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Nanostructured catalysts have been developed for ethanol directly use in fuel cells, which due to the economic advantages that should have widespread use in the near future. The catalysts for these devices using nano-structured metal are based, where the toxic nature and environmental risks presented by these metals are largely enhanced by nano-dispersion. Thus, the production of nano-catalysts are potentially generating highly hazardous waste for public health and the environment. This study presents the treatment and inertization of ruthenium (Ru) nanoparticles waste containing by the vitrification technique and consequent attainment of silicate glasses for potential commercial use. Compositions were prepared containing up to about 20 wt % of nano-waste by changing the basic composition of glass soda-lime-borosilicate. After the fusion, at a temperature of 1100 deg C, the glasses were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Infra-red in the Fourier transform (FT-IR) techniques. The chemical stability was evaluated by hydrolytic attack test. The glass containing 20 wt % of nano-residue showed a high chemical stability, similar to a usual soda-lime glass. (author)

  11. Thermodynamics parameters of nano-Ni/PS composites prepared by in situ polymerization method

    International Nuclear Information System (INIS)

    Liao Qilong; Xiong Jie; Ning Haixia

    2011-01-01

    Spherical nickel nanoparticles with about 75∼200 nm in size were obtained by a liquid reduction method. The nickel nanoparticles/PS composites were synthesized via in situ polymerization method. XRD, FTIR, SEM and TG-DSC were respectively used to measure the properties of nickel nanoparticles, the microstructure of as-prepared composites samples, the distribution of nickel nanoparticles in PS and the thermodynamic parameters of as-prepared composites. The results show that the nickel nanoparticles will enhance the glass transition temperature of nano-Ni/PS composites. The enthalpy of composites is heightened by increasing of doping dose, and it reaches the top when the doping dose is from 1% to 2%. The specific heat of the composites will reduce with the doping dose of nickel nanoparticles increasing. (authors)

  12. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

    Science.gov (United States)

    Oskouyi, Amirhossein Biabangard; Sundararaj, Uttandaraman; Mertiny, Pierre

    2014-01-01

    In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined. PMID:28788580

  13. Influences of surface modification of nano-silica by silane coupling agents on the thermal and frictional properties of cyanate ester resin

    Science.gov (United States)

    Chuang, Wang; Geng-sheng, Jiao; Lei, Peng; Bao-lin, Zhu; Ke-zhi, Li; Jun-long, Wang

    2018-06-01

    The surface of nano-silicon dioxide (nano-SiO2) particles was modified by small molecular coupling agent KH-560 and macromolecular coupling agent SEA-171, respectively, to change the surface activity and structure. The modified nano-SiO2 was then used for reinforcing cyanate ester resin (CE). Influences of the content of nano-SiO2 and the interfacial structure over the thermal and frictional properties of nano-SiO2/CE composites were investigated. The mechanism of the surface modification of silicon dioxide by KH-560 and SEA-171 was discussed. The experimental results show that the addition of coupling agents increased the interfacial bonding between nano-SiO2 particles and the CE resin so that the heat resistance and friction properties of the composites were improved. After surface treatment of nano-SiO2 by SEA-171, the thermal decomposition temperature of the 3.0 wt% nano-SiO2/CE composites increased nearly by 75 °C and the frictional coefficient was reduced by 25% compared with that of the pure CE, and the wear resistance increased by 77%.

  14. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    Science.gov (United States)

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (porthodontic metal brackets to nano-hybrid composite resin surfaces.

  15. Adsorption of carbon dioxide on TEPA-modified TiO_2/titanate composite nano-rods

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Michalkiewicz, Beata; Wrobel, Rafal J.; Mozia, Sylwia; Pirog, Ewa; Usiak-Nejman, Ewelina K.; Serafin, Jaroslaw; Morawski, Antoni W.; Narkiewicz, Urszula

    2017-01-01

    A titanate-TiO_2 composite was obtained through hydrothermal treatment of TiO_2 in KOH solution. The presence of a titanate phase was confirmed by X-ray diffraction (XRD), whereas scanning electron microscopy (SEM) measurements showed the porous nano-rod structure of the material. The obtained nano-rods were treated with tetra-ethylene-pentamine (TEPA). Such synthesized sorbents were applied for CO_2 removal. The CO_2 capacity under a pressure of 1 bar and at 80 C was 0.47, 0.34, and 3.11 mmol.g"-"1 for the starting TiO_2, the titanate-TiO_2 composite and the TEPA-titanate-TiO_2 composite (27.4 wt% of TEPA), respectively. The experimental isotherms of CO_2 were analysed using the Langmuir, Freundlich, Sips, Toth, Unilan, Redlich-Peterson, Radke-Prausnitz, Dubinin-Radushkevich, Temkin and Pyzhev, and Jovanovich models. The error sums of squares (SSR) function was used to test the fit of the models. The analysis revealed that the Sips isotherm is the best-fitting model for the CO_2 adsorption on the starting TiO_2, whereas the Freundlich equation should be used to describe the CO_2 adsorption isotherm on the titanate-TiO_2 composite. The CO_2 adsorption on the TEPA-modified sorbents was proposed to be described using the Sips isotherm for physical sorption and the modified Sips model for chemical sorption. The calculated isosteric heat of adsorption was found to be E46 kJ mol"-"1, which is about two times higher than the heat of CO_2 absorption in liquid TEPA reported in the literature (i.e. E85 kJ.mol"-"1). Therefore, it was concluded that the TEPA-titanate-TiO_2 composite is an attractive alternative for liquid amines due to the lower energy of regeneration in the sorption-desorption process. The material was proved to be stable during multiple sorption-desorption cycles. Moreover, its thermal stability up to 150 C was confirmed by thermogravimetric analysis (TGA). All these features make it a promising alternative for sorbents based on liquid amines. (authors)

  16. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Structure and photoluminescence properties of Ag-coated ZnO nano-needles

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaozhu, E-mail: Lixiaozhu1019@21cn.com [Department of Physics, Shaoguan University, Shaoguan, Guangdong 512005 (China) and Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan, Hubei 430072 (China); Wang Yongqian [Engineering Research Center of Nano-Geomaterials of Ministry of Education (China University of Geosciences), Wuhan, Hubei 430074 (China)

    2011-05-12

    Highlights: > ZnO nano-needles were synthesized by thermal oxidation. > Their surfaces were coated with Ag by pulse electro-deposition technique. > The uncoated and coated ZnO nano-needles were characterized. > The results showed that the prepared ZnO nano-needles have been coated with Ag successfully. > The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the Ag-coated ZnO nano-needles can increase the absorption of UV light. - Abstract: A large number of zinc oxide (ZnO) nano-needles were synthesized by thermal oxidation of pure zinc. The surfaces of ZnO nano-needles were coated with a layer of Ag by pulse electro-deposition technique. The uncoated and coated ZnO nano-needles were characterized by using the X-ray diffraction and the scanning electron microscope (SEM). The results showed that the uncoated samples were close-packed hexagonal structure, which showed needle-like morphology. Their average diameter is about 40 nm, lengths up to 5 {mu}m. At the same time we observed that the prepared ZnO nano-needles have been coated with Ag successfully. The photoluminescence spectrums of ZnO nano-needles with Ag-coated and uncoated were analyzed, finding that the uncoated ZnO nano-needles have two fluorescence peaks at 388 nm and 470.8 nm, respectively, the relative intensity of 143.4 and 93.61; and the Ag-coated ZnO nano-needles showed a pair of strong peaks at 387.4 nm and 405.2 nm, the relative intensity of 1366 and 1305, respectively, indicating that the Ag-coated ZnO nano-needles can increase the absorption of UV light.

  18. In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications

    Directory of Open Access Journals (Sweden)

    Khaled R. Mohamed

    2014-03-01

    Full Text Available The present work aims to study the in vitro properties of nano-hydroxyapatite/chitosan–gelatin composite materials. In vitro behavior was performed in simulated body fluid (SBF to verify the formation of apatite layer onto the composite surfaces. The in vitro data proved the deposition of calcium and phosphorus ions onto hydroxyapatite /polymeric composite surfaces especially those containing high concentrations of polymer content. The degradation of the composites decreased with increase in the polymeric matrix content and highly decreased in the presence of citric acid (CA, especially these composites which contain 30% polymeric content. The water absorption of the composites increased with increase in the polymeric content and highly increased with CA addition. The Fourier transformed infrared reflectance (FT-IR and scanning electron microscope (SEM for the composites confirmed the formation of bone-like apatite layer on the composite surfaces, especially those containing high content of polymers (30% with 0.2 M of CA. These promising composites have suitable properties for bio-applications such as bone grafting and bone tissue engineering applications in the future.

  19. Nano-Reinforcement of Interfaces in Prepreg-Based Composites Using a Carbon Nanotubes Spraying Method

    KAUST Repository

    Almuhammadi, Khaled

    2012-11-01

    Multi-scale reinforcement of composite materials is a topic a great interest owing to the several advantages provided, e.g. increased stiffness, improved aging resistance, and fracture toughness. It is well known, that the fracture toughness of epoxy resins used as matrix materials for CFRP composites can be increased by the addition of nano-sized fillers such as Carbon nanotubes (CNTs). CNTs are particularly well suited for this purpose because of their nano-scale diameter and high aspect ratio which allow enhancing the contact area and adhesion to the epoxy matrix. On the other hand, CNTs can also be used to improve the interlaminar strength of composite, which is the resistance offered to delamination. Several fabrication techniques have been devised to this purpose, such as powder dispersion [51-53], spraying [54], roll coating [2] and electrospinning [55, 56]. The aim of this work is to extend the knowledge in this field. In particular, MWCNTs were dispersed throughout the interface of a carbon fiber composite laminate ([0o]16) through spraying and the resulting fracture toughness was investigated in detail. To this purpose, Double Cantilever Beam (DCB) specimens were fabricated by placing 0.5 wt.% CNTs at the interface of mid-plane plies and the fracture toughness was determined using the ASTM standard procedures. For comparison, baseline samples were prepared using neat prepregs. In order to corroborate the variation of fracture toughness to the modifications of interfacial damage mechanisms, Scanning Electron Microscopy (SEM) of the failed surfaces was also undertaken. The results of this work have shown that functionalized MWCNTs can enhance the interlaminar fracture toughness; indeed, compared to the neat case, an average increase around 17% was observed. The SEM analysis revealed that the improved fracture toughness was related to the ability of the Nano-reinforcement to spread the damage through crack bridging, i.e. CNTs pull-out and peeling.

  20. IMPROVING AIRCRAFT PARTS DUE TO USING NANO-COMPOSITE AND MICRO-COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Hassany Merhdad Boer

    2017-01-01

    Full Text Available In this paper it is investigated how to make composite carbon nanofiber/ epoxy resin and carbon micro-fiber / epoxy resin. Also, these materials' features are compared and it is shown how effective and benefitial are the received products containing carbon nano- and micro-fibers.In this study, epoxy composites were prepared in order to improve their mechanical and electrical properties. Ergo, carbon nanofibers and carbon microfibers were used as fillers. On the one hand, purchased microfibers were incorporatedinto the epoxy resin to produce epoxy/carbon microfiber composites via mechanical mixing at 1800 rpm in different concentrations (0.0125, 0.0225, 0.05, and 0.1.On the other hand, carbon nanofibers were prepared via electrospining method at room temperature, then epoxy/carbon nanofiber nanocomposites were prepared at mixing temperature of 60 °C at 1200 rpm at different concentrations (0.0125, 0.05, and 0.1.Morphology of samples was investigated via Field Emission Scanning Electron Microscopy (FESEM. Mechanical properties of samples were investigated via tensile and bending tests. Tensile test results revealed that incorporation of 0.0125 wt% carbon naofibers increased the epoxy resins modulus about 200%. Bending strength of sample containing 0.1wt% carbon microfibers had the most increment (from 20 to 100 MPa.