WorldWideScience

Sample records for composite waste materials

  1. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    involves several steps to prepare the samples mechanically and/or chemically for final analysis. Not all sample preparation methods are equally well suited for specific waste characterization purposes. The correctness of results and practical feasibility of sample preparation was strongly affected...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions....... The results for parameters associated with organic matter confirmed the idea of cross-contaminated recyclables in residual waste, whereas the results for heavy metals and trace elements were more complex. For many fractions rather high metal contents were found to be intrinsic properties of the recyclables...

  2. Producing New Composite Materials by Using Tragacanth and Waste Ash

    OpenAIRE

    Yasar Bicer; Serif Yilmaz

    2013-01-01

    In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conduct...

  3. POLYMER COMPOSITES MODIFIED BY WASTE MATERIALS CONTAINING WOOD FIBRES

    Directory of Open Access Journals (Sweden)

    Bernardeta Dębska

    2016-11-01

    Full Text Available In recent years, the idea of sustainable development has become one of the most important require-ments of civilization. Development of sustainable construction involves the need for the introduction of innovative technologies and solutions that will combine beneficial economic effects with taking care of the health and comfort of users, reducing the negative impact of the materials on the environment. Composites obtained from the use of waste materials are part of these assumptions. These include modified epoxy mortar containing waste wood fibres, described in this article. The modification consists in the substitution of sand by crushed waste boards, previously used as underlays for panels, in quantities of 0%, 10%, 20%, 35% and 50% by weight, respectively. Composites containing up to 20% of the modifier which were characterized by low water absorption, and good mechanical properties, also retained them after the process of cyclic freezing and thawing.

  4. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    OpenAIRE

    Cuizhen Xue; Aiqin Shen; Yinchuan Guo; Tianqin He

    2016-01-01

    The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM) as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, ...

  5. Materials characterization center workshop on compositional and microstructural analysis of nuclear waste materials. Summary report

    International Nuclear Information System (INIS)

    Daniel, J.L.; Strachan, D.M.; Shade, J.W.; Thomas, M.T.

    1981-06-01

    The purpose of the Workshop on Compositional and Microstructural Analysis of Nuclear Waste Materials, conducted November 11 and 12, 1980, was to critically examine and evaluate the various methods currently used to study non-radioactive, simulated, nuclear waste-form performance. Workshop participants recognized that most of the Materials Characterization Center (MCC) test data for inclusion in the Nuclear Waste Materials Handbook will result from application of appropriate analytical procedures to waste-package materials or to the products of performance tests. Therefore, the analytical methods must be reliable and of known accuracy and precision, and results must be directly comparable with those from other laboratories and from other nuclear waste materials. The 41 participants representing 18 laboratories in the United States and Canada were organized into three working groups: Analysis of Liquids and Solutions, Quantitative Analysis of Solids, and Phase and Microstructure Analysis. Each group identified the analytical methods favored by their respective laboratories, discussed areas needing attention, listed standards and reference materials currently used, and recommended means of verifying interlaboratory comparability of data. The major conclusions from this workshop are presented

  6. Chemical composition of material fractions in Danish household waste

    DEFF Research Database (Denmark)

    Riber, Christian; Petersen, Claus; Christensen, Thomas Højlund

    2009-01-01

    batches of 80-1200 tonnes of unsorted household waste was incinerated and the content of the waste determined from the content of the outputs from the incinerator. The indirect method is believed to better represent the small but highly contaminated material fractions (e,g., batteries) than the direct...... like paper, cardboard anti organic fractions. The single fraction contributing most to the total energy content is the non-recyclable plastic fraction, contributing 21% of the energy content and 60% of the chlorine content, although this fraction comprises less than 7% by weight. Heavy metals originate...... mainly from inert fractions, primarily batteries....

  7. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  8. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    Science.gov (United States)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  9. Structural Composite Construction Materials Manufactured from Municipal Solid Waste

    Science.gov (United States)

    1994-04-20

    alternatives. One company uses the wastes from leg cutouts in disposable diaper manufacture as a supply stream. Another is turning used carpet into plastic...sheathing type applications. While it offers a number of desirable properties, fiberglass suffers from degradation from solar exposure and embrittlement

  10. Preparation of Ni-C Ultrafine Composite from Waste Material

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Rabah

    2017-06-01

    Full Text Available This work depicts the preparation of Ni-C ultrafine composite from used engine oil. The used oil was emulsified with detergent loaded with Ni (OH2. The loaded emulsion was sprayed on electric plasma generated between two C electrodes to a DC main 28 V and 70-80 A. The purged Ni-doped carbon fume was trapped on a polymer film moistened with synthetic adhesive to fix the trapped smoke. Characterization of the deposit was made using SEM. XRD examined the crystal morphology. Carbon density in the cloud was calculated. The average size and thickness of the deposited composite is 120-160 nm. Aliphatic hydrocarbons readily decompose to gaseous products. Solid carbon smoke originates from aromatic compounds. Plasma heat blasts the oil in short time to decompose in one step.

  11. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  12. Possibility of using waste tire composites reinforced with rice straw as construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Lee, Young-Kyu; Kim, Hyun-Joong; Jeon, Jin-Yong; Kang, Chun-Won

    2004-10-01

    Agricultural lignocellulosic fiber (rice straw)-waste tire particle composite boards were manufactured for use as insulation boards in construction, using the same method as that used in the wood-based panel industry. The manufacturing parameters were: a specific gravity of 0.8 and a rice straw content (10/90, 20/80 and 30/70 by wt.% of rice straw/waste tire particle). A commercial polyurethane adhesive for rubber was used as the composite binder. The water proof, water absorption and thickness swelling properties of the composite boards were better than those of wood particleboard. Furthermore, the flexibility and flexural properties of the composite boards were superior to those of other wood-based panel products. The composite boards also demonstrated good acoustical insulation, electrical insulation, anti-caustic and anti-rot properties. These boards can be used to prevent impact damage, are easily modifiable and are inexpensive. They are able to be used as a substitute for insulation boards and other flexural materials in construction.

  13. Mechanical Properties of Composite Waste Material Based Styrofoam, Baggase and Eggshell Powder for Application of Drone Frames

    Science.gov (United States)

    Perdana, Mastariyanto; Prastiawan; Hadi, Syafrul

    2017-12-01

    The garbage issue becomes a very serious problem at the moment. Much research has been done to make waste into useful materials. One of the utilization of waste is as the basic material of composite material that can be applied in the field of engineering. Some of the wastes generated are styrofoam, bagasse and eggshell. Styrofoam, bagasse and eggshell can be applied to a composite material. Styrofoam serves as a composite binder material while the bagasse and eggshells serve as a reinforcement. Volume fraction between styrofoam, bagasse and eggshell are 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25%. The aims of research are determine the mechanical properties of composite material based waste materials from styrofoam, bagasse and eggshell. Mechanical properties tested in this study are bending strength and toughness of composite materials. The results showed bending strength of composite for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 5.07 MPa, 8.45 MPa, 8.68 MPa, and 11.01 MPa, respectively. Toughness of composite materials for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 0.33 J/mm2, 0.42 J/mm2, 0.75 J/mm2, and 0.75 J/mm2, respectively. Composite materials based on waste materials from styrofoam, bagasse and eggshell can be used as an alternative material for drone frames.

  14. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  15. Composite waste analysis system

    International Nuclear Information System (INIS)

    Wachter, J.R.; Hagan, R.C.; Bonner, C.A.; Malcom, J.E.; Camp, K.L.

    1993-01-01

    Nondestructive analysis (NDA) of radioactive waste forms an integral component of nuclear materials accountability programs and waste characterization acceptance criterion. However, waste measurements are often complicated by unknown isotopic compositions and the potential for concealment of special nuclear materials in a manner that is transparent to gamma-ray measurement instruments. To overcome these complications, a new NDA measurement system has been developed to assay special nuclear material in both transuranic and low level waste from the same measurement platform. The system incorporates a NaI detector and customized commercial software routines to measure small quantities of radioactive material in low level waste. Transuranic waste analysis is performed with a coaxial HPGE detector and uses upgraded PC-based segmented gamma scanner software to assay containers up to 55 gal. in volume. Gamma-Ray isotopics analysis of both waste forms is also performed with this detector. Finally, a small neutron counter using specialized software is attached to the measurement platform to satisfy safeguards concerns related to nuclear materials that are not sensed by the gamma-ray instruments. This report describes important features and capabilities of the system and presents a series of test measurements that are to be performed to define system parameters

  16. Green engineering: Green composite material, biodiesel from waste coffee grounds, and polyurethane bio-foam

    Science.gov (United States)

    Cheng, Hsiang-Fu

    In this thesis we developed several ways of producing green materials and energy resources. First, we developed a method to fabricate natural fibers composites, with the purpose to develop green textile/woven composites that could potentially serve as an alternative to materials derived from non-renewable sources. Flax and hemp fabrics were chosen because of their lightweight and exceptional mechanical properties. To make these textile/woven composites withstand moist environments, a commercially available marine resin was utilized as a matrix. The tensile, three-point bending, and edgewise compression strengths of these green textile/woven composites were measured using ASTM protocols. Secondly, we developed a chemical procedure to obtain oil from waste coffee grounds; we did leaching and liquid extractions to get liquid oil from the solid coffee. This coffee oil was used to produce bio-diesel that could be used as a substitute for petroleum-based diesel. Finally, polyurethane Bio-foam formation utilized glycerol that is the by-product from the biodiesel synthesis. A chemical synthesis procedure from the literature was used as the reference system: a triol and isocynate are mixed to produce polyurethane foam. Moreover, we use a similar triol, a by-product from bio-diesel synthesis, to reproduce polyurethane foam.

  17. Composite materials based on inorganic sorbents and extractants - new sorbents for several radionuclides removal from liquid radioactive wastes

    International Nuclear Information System (INIS)

    Kopyrin, A.A.

    1999-01-01

    A short review of recent investigation concerned with liquid radioactive waste treatment by means of composite materials. It is considered different aspects of technology of selective radionuclides removal and its direction connected with usage of composites. Results of research works in this line carried out under the direction of author are presented. (author)

  18. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  19. Composite materials

    International Nuclear Information System (INIS)

    Sambrook, D.J.

    1976-01-01

    A superconductor composite is described comprising at least one longitudinally extending superconductor filament or bundle of sub-filaments, each filament or bundle of sub-filaments being surrounded by and in good electrical contact with a matrix material, the matrix material comprising a plurality of longitudinally extending cells of a metal of high electrical conductivity surrounded by a material of lower electrical conductivity. The high electrical conductivity material surrounding the superconducting filament or bundle of sub-filaments is interrupted by a radially extending wall of the material of the lower electrical conductivity, the arrangement being such that at least two superconductor filaments or sub-filaments are circumferentially circumscribed by a single annulus of the material of high electrical conductivity. The annulus is electrically interrupted by a radially extending wall of the material of low electrical conductivity

  20. Study of backfill material composition for shallow land radioactive wastes disposal

    International Nuclear Information System (INIS)

    Sukarman-Aminjoyo; Sukrosono; Supardi

    1996-01-01

    The composition of back fill material for shallow land radioactive wastes disposal has been investigated by using bentonite, magnetic and quartz sands. The aim of this research is to observe the kind of mineral suitable for back fill material. The research was done for each mineral material and for the mixture of those three minerals. Firstly 2 grams of bentonite. magnetite or quartz sand was put into a glass column of 1.2 cm in diameter. Then the Sr-90 liquid waste was flown through out the column. In this experiment the adsorption velocity, through velocity, adsorption capacity and decontamination factor were determined for the grain size of 10 up to 100 mesh. By the same method the experiment was done for the mix of those three minerals. The experiment result indicated that the grain size mineral influenced the parameter of adsorption velocity, through velocity, adsorption capacity and decontamination factor. The relatively good result was obtained for the grain size of 80 mesh. Among the three kinds of minerals, bentonite had the highest of adsorption capacity and decontamination factor, while its adsorption velocity and through velocity were the lowest. The mixture of that three minerals gave better result than that mixture of two mineral component. The usage of the mineral mixture with the grain size of 80 mesh and the weight ratio between that component of 1:1:1, resulted in the decontamination factor of 68.44, the adsorption capacity of 235 ml/g, the adsorption velocity of 31x10 -3 ml/sec. and the through velocity of 1.82x10 -3 ml/sec

  1. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Тахира Далиевна Сидикова

    2016-02-01

    Full Text Available We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ceramic tiles for the masses and technological parameters of obtaining sintered materials based on the compositions of kaolin fireclay KVMR have been developed.It has been found that the use of the waste of Kaytashskoy tungsten-molybdenum ore (KVMR in the composition of the ceramic material will expand the raw material base of ceramic production, reduce the roasting temperature and the cost of ceramic materials and products.

  2. The use of composite ferrocyanide materials for treatment of high salinity liquid radioactive wastes rich in cesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Toropov, Andrey S. [National Nuclear Centre of the Republic of Kazakhstan, Kurchatov (Kazakhstan); Shakarim Semey State Univ. (Kazakhstan); Satayeva, Aliya R. [Shakarim Semey State Univ. (Kazakhstan); Mikhalovsky, Sergey [Nazarbayev Univ. (Kazakhstan); Brighton Univ. (United Kingdom); Cundy, Andrew B. [Brighton Univ. (United Kingdom)

    2014-07-01

    The use of composite materials based on metal ferrocyanides combined with natural mineral sorbents for treatment of high salinity Cs-containing liquid radioactive waste (LRW) was investigated. The study indicated that among the investigated composites, the best sorption characteristics for Cs were shown by materials based on copper ferrocyanide. Several factors affecting the removal of cesium from LRW, namely total salt content, pH and organic matter content, were also investigated. High concentrations of complexing organic matter significantly reduced the sorption capacity of ferrocyanide sorbents.

  3. TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

    Science.gov (United States)

    Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.

    2012-09-01

    Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

  4. Composite material making from empty fruit bunches of palm oil (EFB) and Ijuk (Arengapinnata) using plastic bottle waste as adhesives

    Science.gov (United States)

    Rihayat, T.; Salim, S.; Audina, N.; Khan, N. S. P.; Zaimahwati; Sami, M.; Yunus, M.; Salisah, Z.; Alam, P. N.; Saifuddin; Yusuf, I.

    2018-03-01

    Reviewed from the current technological required a new methods to capable offering a high profit value without overriding the quality. The development of composite technology is now beginning to shift from traditional composite materials based petroleum to natural fibers composite. In the present study, aim to made specimens using natural fibers in form of EFB as a composite reinforcedment with Polyethylene Terephtalate (PET) derived from Plastic bottles waste as matrix with mixed composition parameters and time-tolerance in the mixing process to build a biocomposite material. The characterization of mechanical properties includes tensile test (ASTM D638-01) and bending test (ASTM D790-02) followed by thermal analysis using Thermogravimetric Analysis (TGA), and morphological analysis using scanning electron microscope (SEM). The analysis effect of EFB, Ijuk and PET mixtures on the composite matrix is very influential with mechanical properties characterization, including tensile test and bending strength. The results demonstrated that from the sample named : 50 : 25: 25, hybrid composites showed improved properties such as tensile strength of 167 MPa while the 90:05:05 based composites exhibited tensile strength values of 30 MPa, respectively. In term the flexural test the best result of composition on the properties with 10 minutes duration time its load value 7,5 Mpa for 80:10:10.

  5. TSA waste stream and final waste form composition

    International Nuclear Information System (INIS)

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-01-01

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ''average'' transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ''average'' transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties

  6. Concrete-polymer composite materials and their potential for construction, urban waste utilization, and nuclear waste storage

    International Nuclear Information System (INIS)

    Fowler, E.E.; Steinberg, Meyer.

    1974-01-01

    A wide range of concrete-polymer composites have been investigated by Brookhaven National Laboratory. Polymer impregnated concrete (PIC) is basically formed by drying cured conventional concrete, displacing the air from open cell void volume, diffusing low viscosity monomer (less than 10 cps) through the open cell structure, saturating the concrete with the monomer and in-situ polymerizing the monomer to polymer by most convenient means. Mainly free-radical vinyl type monomers are used. For increased thermal stability, crosslinking agents and thermosetting monomers such as styrene-trimethylol propane trimethacrylate (TMPTMA) and polyester-styrene are used. Much informations on the formation, structural properties and durability of PIC have been accumulated over past five years. U.S. Patent 3,567,496 has been issued on the production of PIC. Compressive strength can be increased from 352 kg/cm 2 of conventional concrete to 1,410 kg/cm 2 . Water absorption is reduced by 99% and the freeze-thaw resistance is remarkably improved. With high silica cement, strong basaltic aggregate, and high temperature steam curing, strength increase from 845 to over 2,630 kg/cm 2 can be obtained. A maximum of 238 kg/cm 2 tensile strength has been obtained with the steam-cured concrete. In the steam- cured concrete, polymer loading roughly around 8% by weight is obtained. Aggregates can include the urban solid waste discarded by man. Sewage and solid waste refuse-polymer concrete has been produced by using garbage as aggregate and sewage as the hydrating media for cement. The potentially important application of hydrauric cement concrete, in combination with the polymers in PIC and PC, is the storage of long-living radioactive wastes from nuclear industry. (Iwakiri, K.)

  7. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  8. ASSESSMENT OF CHEMICAL COMPOSITION OF WASTE MATERIALS FROM HARD COAL BURNING IN VIEW OF THEIR AGRICULTURAL AND ENVIRONMENTAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Tomasz Czech

    2014-10-01

    Full Text Available Production of electric power in Poland bases on burning brown and hard coal. Currently over 90 % of electricity originates from this source. Generating electric power, like many other human activities, inevitably involves production of wastes. Considering the previous trends of these waste materials utilisation, one should analyse also potential use of biogenic components which they contain as fertilizers. The main objective of conducted investigations was an assessment of potential application of selected waste materials, i.e. fly ashes from production, fly ashes from the landfill site and slag sand from “KRAKÓW S.A.” heat and power plant for agricultural and environmental purposes. The assessment was made on the basis of analyses of the following physical and chemical properties of studied materials: pH, granulometric composition determined by Bouyoucose-Casagrande method in Prószyński’s modification, total alkalinity, total nitrogen content assessed by means of Kjeldahl’s method, organic carbon by Tiurin’s method, total contents of trace elements and the content of available forms of trace elements soluble in 1 mol · dm-3 HCl solution. On the basis of conducted laboratory analyses it should be stated that the amounts of heavy metals determined in the studied materials did not exceed the content allowable for waste materials designed for soil liming. The analysed materials reveal physical and chemical properties which do not exclude their potential application for soil liming. In this respect, fly ash from production seems the best. However, it contains about twice lower amounts of CaO in comparison with other calcium fertilizers available on the market.

  9. Leaching of the potentially toxic pollutants from composites based on waste raw material

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2012-01-01

    Full Text Available The disposal of the fly ash generated in coal based power-plants may pose a significant risk to the environment due to the possible leaching of hazardous pollutants, such as toxic metals. Also, there is a risk of leaching even when fly ash is built-in the construction composites. Fly ashes from various landfills were applied in several composite samples (mortar, concrete and brick without any physical or thermal pre-treatment. The leachability of the potentially toxic pollutants from the fly ash based products was investigated. The leaching behavior and potential environmental impact of the 11 potentially hazardous elements was tracked: Pb, Cd, Zn, Cu, Ni, Cr, Hg, As, Ba, Sb and Se. A detailed study of physico-chemical characteristics of the fly ash, with accent on trace elements and the chemical composition investigation is included. Physico/chemical properties of fly ash were investigated by means of X-ray fluorescence, differential thermal analysis and X-ray diffraction methods. Scanning electron microscope was used in microstructural analysis. The results show that most of the elements are more easily leachable from the fly ash in comparison with the fly ash based composites. The leaching of investigated pollutants is within allowed range thus investigated fly ashes can be reused in construction materials production.

  10. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  11. Development of a cellulose-based insulating composite material for green buildings: Case of treated organic waste (paper, cardboard, hash)

    Science.gov (United States)

    Ouargui, Ahmed; Belouaggadia, Naoual; Elbouari, Abdeslam; Ezzine, Mohammed

    2018-05-01

    Buildings are responsible for 36% of the final energy consumption in Morocco [1-2], and a reduction of this energy consumption of buildings is a priority for the kingdom in order to reach its energy saving goals. One of the most effective actions to reduce energy consumption is the selection and development of innovative and efficient building materials [3]. In this work, we present an experimental study of the effect of adding treated organic waste (paper, cardboard, hash) on mechanical and thermal properties of cement and clay bricks. Thermal conductivity, specific heat and mechanical resistance were investigated in terms of content and size additives. Soaking time and drying temperature were also taken into account. The results reveal that thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. In the case of the composite paper-cement, it is found that, for an additives quantity exceeding 15%, the compressive strength exceeds the standard for the hollow non-load bearing masonry. However, the case of paper-clay mixture seems to give more interesting results, related to the compressive strength, for a mass composition of 15% in paper. Given the positive results achieved, it seems possible to use these composites for the construction of walls, ceilings and roofs of housing while minimizing the energy consumption of the building.

  12. Gas from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, H

    1943-01-01

    Various efforts to produce fuel gas from waste materials by fermentation are reviewed. Although the thermal yield appears to be attractive (60%) in the formation of CH/sub 4/ + CO/sub 2/ from cellulose the process requires very large equipment owing to the slowness of the reaction. From 1 ton of waste, a daily production of 1 m/sup 2/ of gas (7700 cal) is obtained for 50 days.

  13. Method of treating radioactive waste material

    International Nuclear Information System (INIS)

    Allison, W.

    1980-01-01

    A method of treating radioactive waste material, particularly a radioactive sludge, is described comprising separating solid material from liquid material, compressing the solid material and encapsulating the solid material in a hardenable composition such as cement, bitumen or a synthetic resin. The separation and compaction stages are conveniently effected in a tube press. (author)

  14. Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials

    Directory of Open Access Journals (Sweden)

    Nural Yilgo

    2014-06-01

    Full Text Available Manufacturing panels from Tetra Pak® (TP packaging material might be an alternative to conventional wood-based panels. This study evaluated some chemical and physical properties as well as biological, weathering, and fire performance of panels with and without zinc borate (ZnB by using shredded TP packaging cartons. Such packaging material, a worldwide well-known multilayer beverage packaging system, is composed of cellulose, low-density polyethylene (LDPE, and aluminum (Al. Panels produced from waste TP packaging material were also examined by FT-IR to understand the fungal deterioration and extent of degradation after accelerated weathering. Before FT-IR investigations, panel specimens were ground under nitrogen atmosphere due to non-uniformity of the composite material. The FT-IR results showed that fungal degradation occurred in the natural polymer of the panel matrix. Although the natural polymer is mostly composed of cellulose, there were also small amounts of polyoses and lignin. It was seen that especially polyose and lignin bands in FT-IR spectra were affected more than cellulose bands by fungal attack. No changes were observed by the fungi in the plastic component (LDPE of the matrix; however, LDPE seemed more sensitive to weathering than cellulose. Incorporation of ZnB at loading level of 1% (w/w did not contribute fire performance of the panels when compared to control panel specimens, while a loading level of 10% improved fire performance considering test parameters such as mass loss, ignition time and peak heat release rate.

  15. Radioactive waste solidification material

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Wakuta, Kuniharu; Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    The present invention concerns a radioactive waste solidification material containing vermiculite cement used for a vacuum packing type waste processing device, which contains no residue of calcium hydroxide in cement solidification products. No residue of calcium hydroxide means, for example, that peak of Ca(OH) 2 is not recognized in an X ray diffraction device. With such procedures, since calcium sulfoaluminate clinker and Portland cement themselves exhibit water hardening property, and slugs exhibit hydration activity from the early stage, the cement exhibits quick-hardening property, has great extension of long term strength, further, has no shrinking property, less dry- shrinkage, excellent durability, less causing damages such as cracks and peeling as processing products of radioactive wastes, enabling to attain highly safe solidification product. (T.M.)

  16. Composite material dosimeters

    Science.gov (United States)

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  17. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  18. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  19. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  20. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation

    Directory of Open Access Journals (Sweden)

    A. C. P. Galvão

    2015-09-01

    Full Text Available AbstractThe beneficiation plate process by soda-lime glass lapping in the glass industry generates, an untapped residue (waste. The waste of this material is sent to landfills, causing impact on the environment. This work aimed to characterize and evaluate the waste of soda-lime glass (GP lapping. After its acquisition, the GP was processed by grinding and sieving and further characterized by the chemical/mineralogical analysis (XRF, EDS and XRD, SEM morphology, particle size by laser diffraction, thermogravimetric analyses (TGA and DSC and thermophysical analyses. It was observed that the GP particles are irregular and micrometric with the predominant presence of Na, Si and Ca elements characteristic of amorphous soda-lime glass. The assessment of the chemical/mineralogical, morphological, thermophysical and thermal gravimetric characteristics of GP suggest its reuse as reinforcing fillers or filler in composite materials to obtain thermal insulation.

  1. Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste

    Science.gov (United States)

    Todor, M. P.; Bulei, C.; Heput, T.; Kiss, I.

    2018-01-01

    The objective of the research is to develop new fully / partially biodegradable composite materials by using new natural fibers and those recovered from various wastes. Thus, the research aims to obtain some composites with matrix of various types of polymeric materials and the reinforcement phase of textile materials (of different natures, morphologies and composites) so that the resulting products to be (bio)degradable. The textile inserts used as raffle are ecological, non-toxic and biodegradable and they contain (divided or in combination) bast fibers (flax, hemp, jute) and other vegetable fibers (cotton, wool) as plain yarn or fabric, which can replace fibers of glass commonly used in polymeric composites. The main activities described in this article are carried out during the first phase of the research (phase I - initiation of research) and they are oriented towards the choice of types of textile inserts from which the composites will be obtained (the materials needed for the raffle), the choice of the types of polymers (the necessary materials for matrices) and choosing the variants of composites with different types and proportions of the constituent content (proposals and working variants) and choosing the right method for obtaining samples of composite materials (realization technology). The purpose of the research is to obtain composite materials with high structural, thermo-mechanical and / or tribological performances, according to ecological norms and international requirements in order to replace the existing classical materials, setting up current, innovative and high performance solutions, for applications in top areas such as automotive industry and not only.

  2. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  3. Package materials, waste form

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The schedules for waste package development for the various host rocks were presented. The waste form subtask activities were reviewed, with the papers focusing on high-level waste, transuranic waste, and spent fuel. The following ten papers were presented: (1) Waste Package Development Approach; (2) Borosilicate Glass as a Matrix for Savannah River Plant Waste; (3) Development of Alternative High-Level Waste Forms; (4) Overview of the Transuranic Waste Management Program; (5) Assessment of the Impacts of Spent Fuel Disassembly - Alternatives on the Nuclear Waste Isolation System; (6) Reactions of Spent Fuel and Reprocessing Waste Forms with Water in the Presence of Basalt; (7) Spent Fuel Stabilizer Screening Studies; (8) Chemical Interactions of Shale Rock, Prototype Waste Forms, and Prototype Canister Metals in a Simulated Wet Repository Environment; (9) Impact of Fission Gas and Volatiles on Spent Fuel During Geologic Disposal; and (10) Spent Fuel Assembly Decay Heat Measurement and Analysis

  4. Electrically conductive composite material

    Science.gov (United States)

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  5. Importance of waste composition for Life Cycle Assessment of waste management solutions

    DEFF Research Database (Denmark)

    Bisinella, Valentina; Götze, Ramona; Conradsen, Knut

    2017-01-01

    The composition of waste materials has fundamental influence on environmental emissions associated with waste treatment, recycling and disposal, and may play an important role also for the Life Cycle Assessment (LCA) of waste management solutions. However, very few assessments include effects...... of the waste composition and waste LCAs often rely on poorly justified data from secondary sources. This study systematically quantifiesy the influence and uncertainty on LCA results associated with selection of waste composition data. Three archetypal waste management scenarios were modelled with the waste...... LCA model EASETECH based on detailed waste composition data from the literature. The influence from waste composition data on the LCA results was quantified with a step-wise Global Sensitivity Analysis (GSA) approach involving contribution, sensitivity, uncertainty and discernibility analyses...

  6. Composite Material Switches

    Science.gov (United States)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  7. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  8. Radioactive waste material melter apparatus

    Science.gov (United States)

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  9. Radioactive waste material melter apparatus

    International Nuclear Information System (INIS)

    Newman, D.F.; Ross, W.A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs

  10. Evaluation for swelling characteristics of buffer and backfill materials for high-level nuclear waste disposal. Influence of sand-bentonite content and cation compositions in bentonite

    International Nuclear Information System (INIS)

    Komine, Hideo; Ogata, Nobuhide

    1999-01-01

    Compacted bentonite and sand-bentonite mixture are attracting greater attention as buffer and backfill materials for disposal pits and access tunnels in the underground facilities for repositories of high-level nuclear waste. Buffer and backfill materials must have the swelling characteristics and are expected to fill up the space between these materials and surrounding ground by swelling. This role is called as 'Self-sealing'. To design the specifications, such as dry density, bentonite content and size, of buffer and backfill materials for the disposal facilities of high-level nuclear wastes described above, we must evaluate the swelling characteristics of compacted bentonite and sand-bentonite mixtures. For this purpose, this study proposed the evaluation formula for swelling characteristics of buffer and backfill materials containing bentonite. This study derived new equations for evaluating the relationship between the swelling deformation of compacted bentonite and sand-bentonite mixtures, and the swelling behavior of montmorillonite minerals, which are swelling clay minerals. This study also proposed new equations for evaluating the ion compositions of bentonite, ion concentration of pore water and the specific surface of bentonite, which significantly influence the swelling characteristics of buffer and backfill materials. The evaluation formula proposed in this study is presented by combining the above-mentioned new equations with theoretical equations, of which are the Gouy-Chapman diffuse double layer theory and the van der Waals force, of repulsive and attractive forces of montmorillonite minerals. (author)

  11. Optimization of Concrete Composition in Radioactive Waste Management

    International Nuclear Information System (INIS)

    IIija, P.

    1999-01-01

    Low and Intermediate level radioactive waste re presents 95% of the total wastes that is conditioned into special concrete containers. Since these containers are to protect radioactive waste safely for about 300 years, the selection and precise control of physical and mechanical characteristics of materials is very important. After volume reduction and valuable components recovery, waste materials have to be conditioned for transport, storage and disposal. Conditioning is the waste management step in which radioactive wastes are immobilized and packed . In this paper methods and optimization of concrete container composition, used for storing radioactive waste, is presented

  12. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  13. Radioactive waste material disposal

    Science.gov (United States)

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  14. Waste package materials selection process

    International Nuclear Information System (INIS)

    Roy, A.K.; Fish, R.L.; McCright, R.D.

    1994-01-01

    The office of Civilian Radioactive Waste Management (OCRWM) of the United States Department of Energy (USDOE) is evaluating a site at Yucca Mountain in Southern Nevada to determine its suitability as a mined geologic disposal system (MGDS) for the disposal of high-level nuclear waste (HLW). The B ampersand W Fuel Company (BWFC), as a part of the Management and Operating (M ampersand O) team in support of the Yucca Mountain Site Characterization Project (YMP), is responsible for designing and developing the waste package for this potential repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) is responsible for testing materials and developing models for the materials to be used in the waste package. This paper is aimed at presenting the selection process for materials needed in fabricating the different components of the waste package

  15. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George

    2013-01-01

    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  16. Materials and Waste Management Research

    Science.gov (United States)

    EPA is developing data and tools to reduce waste, manage risks, reuse and conserve natural materials, and optimize energy recovery. Collaboration with states facilitates assessment and utilization of technologies developed by the private sector.

  17. New recycling approaches for thermoset polymeric composite wastes – an experimental study on polyester based concrete materials filled with fibre reinforced plastic recyclates

    OpenAIRE

    Ribeiro, M. C. S.; Fiúza, António; Meira Castro, A C; Dinis, M. L.; Silva, Francisco J. G.; Meixedo, João Paulo

    2011-01-01

    In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in we...

  18. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  19. Composition of municipal solid waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2014-01-01

    Data for the composition of municipal solid waste is a critical basis for any assessment of waste technologies and waste management systems. The detailed quantification of waste fractions is absolutely needed for a better technological development of waste treatment. The current waste composition...... comparability to characterize municipal solid waste. This methodology was applied to residual waste collected from 1,442 households in three municipalities in Denmark. The main fractions contributing to the residual household waste were food waste and miscellaneous waste. Statistical analysis suggested...... of standardised and commonly accepted waste characterization methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. The purpose of this study was to introduce a consistent methodology that reduces uncertainties and ensures data...

  20. Optimization of concrete composition in radioactive waste management

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.

    1995-01-01

    Low and intermediate level waste represents 95% of the total wastes that is conditioned into special concrete containers. Since these containers are to protect radioactive waste safely for about 300 years, the selection and precise control of physical and mechanical characteristics of materials is very important. After volume reduction and valuable components recovery, waste materials have to be conditioned for transport, storage and disposal. Conditioning is the waste management step in which radioactive wastes are immobilized and packed. The immobilization processes involve conversation of the wastes to solid forms that reduce the potential for migration or dispersion of radionuclides from the wastes by natural processes during storage, transport and disposal. The immobilization processes involve the use of various matrices of nonradioactive materials, such as concrete, to fix the wastes as monoliths, usually directly in the waste containers used for subsequent handling. In this paper an optimization of concrete container composition, used for storing radioactive waste from nuclear power plants, is presented. Optimization was performed on the composition of the concrete that is used in the container production. In experiments, the authors tried to obtain the best mechanical characteristics of the concrete, varying the weight percentage of the granulate due to its diameter, water-to-cement ratios and type of the cements that were used in preparing the concrete container formulation. Concrete containers, that were optimized in the manner described in this paper, will be in used for the radioactive waste materials final disposal, using the concept of the engineer trench system facilities

  1. Coating material composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Maeda, Yutaka.

    1969-01-01

    A coating material composition is provided which can easily be cross-linked by irradiation with active energy, particularly electron beams and ultraviolet light, using a mixture of a prepolymer (a) with an addition reaction product (b). Such compositions have coating properties as good as thermosetting acrylic or amino alkyd resins. The prepolymer (a) is produced by primarily reacting at least 0.1 mol of saturated cyclocarboxylic acid anhydrides and/or alpha-, beta-ethylene unsaturated carboxylic acid anhydrides by addition reaction with one mol of hydroxyl radicals of a basic polymer having a molecular weight of 1,000 to 100,000, the basic polymer being obtained from 1%-40% of a hydroxyl radical containing vinyl monomer and at least 30% of (meth)acrylate monomer. One mol of the sum of hydroxyl radicals and carboxyl radicals of the primary reaction product undergoes a secondary addition reaction with at least 0.1 mol of an epoxy radical-containing vinyl monomer to form the prepolymer(a). The addition reaction product(b) is produced by reacting an epoxy radical-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The coating material composition contains a majority of a mixture consisting of 10%-90% of (a) and 90%-10% of (b) above by weight. Four examples of the production of basic polymers, seven examples of the production of prepolymers, seven examples of the production of oligomers, and five examples of applications are given. (Iwakiri, K.)

  2. Waste Material Management: Energy and materials for industry

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  3. Epoxy composites based on inexpensive tire waste filler

    Science.gov (United States)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-05-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young's modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites.

  4. DWPF waste glass Product Composition Control System

    International Nuclear Information System (INIS)

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system

  5. Composite materials processing, applications, characterizations

    CERN Document Server

    2017-01-01

    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  6. EVALUATION OF CAUSES OF CONSTRUCTION MATERIAL WASTE

    African Journals Online (AJOL)

    Osondu

    factors contributing to construction material waste generation on building sites in Rivers State, ... the studied factors at every level of the construction processes and in their waste management plan. ..... Evaluation of Solid Waste in Building.

  7. Magnetic losses in composite materials

    International Nuclear Information System (INIS)

    Ramprecht, J; Sjoeberg, D

    2008-01-01

    We discuss some of the problems involved in homogenization of a composite material built from ferromagnetic inclusions in a nonmagnetic background material. The small signal permeability for a ferromagnetic spherical particle is combined with a homogenization formula to give an effective permeability for the composite material. The composite material inherits the gyrotropic structure and resonant behaviour of the single particle. The resonance frequency of the composite material is found to be independent of the volume fraction, unlike dielectric composite materials. The magnetic losses are described by a magnetic conductivity which can be made independent of frequency and proportional to the volume fraction by choosing a certain bias. Finally, some concerns regarding particles of small size, i.e. nanoparticles, are treated and the possibility of exciting exchange modes are discussed. These exchange modes may be an interesting way to increase losses in composite materials

  8. Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials

    Science.gov (United States)

    Nural Yilgor; Coskun Kose; Evren Terzi; Aysel Kanturk Figen; Rebecca Ibach; S. Nami Kartal; Sabriye Piskin

    2014-01-01

    Manufacturing panels from Tetra Pak® (TP) packaging material might be an alternative to conventional wood-based panels. This study evaluated some chemical and physical properties as well as biological, weathering, and fire performance of panels with and without zinc borate (ZnB) by using shredded TP packaging cartons. Such packaging material, a worldwide well-known...

  9. Carbon/carbon composite materials

    International Nuclear Information System (INIS)

    Thebault, J.; Orly, P.

    2006-01-01

    Carbon/carbon composites are singular materials from their components, their manufacturing process as well as their characteristics. This paper gives a global overview of these particularities and applications which make them now daily used composites. (authors)

  10. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  11. Glass compositions suitable for PFR wastes

    International Nuclear Information System (INIS)

    Boult, K.A.; Dalton, J.T.; Eccles, E.W.; Hough, A.; Marples, J.A.C.; Paige, E.L.; Sutcliffe, P.W.

    1988-03-01

    Previous work had identified glass compositions that were suitable for vitrifying current and future high level wastes from the Prototype Fast Reactor (PFR) fuel reprocessing plant. Further work on these glasses has shown that: a) Foaming and crystallisation can occur under certain conditions, both probably associated with the presence of iron in the waste. Either of these could lead to greater difficulties in processing. b) Inconel 690, the preferred JCM (Joule-heated Ceramic Melter) electrode material has an acceptable corrosion rate at 1200 0 C: ca 0.6mm.y -1 . c) The leach rates are unaffected by radiation damage. The density of the glass decreases slightly with α-dose, with a dependency that extrapolates, at infinite time, to an 0.13% linear expansion. d) The concentrations of the radiologically important elements Tc, Np, Pu and Am, observed in a 'repository simulation' leach test, were satisfactorily low. (author)

  12. Discussion paper on managing composite blade waste

    DEFF Research Database (Denmark)

    Skelton, Kristen

    A sustainable process for dealing with wind turbines at the end of their service life is needed in order to maximize the environmental benefits of wind power from a life cycle approach. Most components of a wind turbine such as foundation, tower, components of the gear box and generator are alrea...... as practical examples and experiences from research and industry projects. Important sources have been obtained from researchers, the original equipment manufacturers (OEMs), operators and maintainers (O&Ms), waste handlers and those that use the recyclates from blade waste....... recyclable and treated accordingly. Nevertheless, wind turbine blades represent a challenge due to the materials used and their complex composition. The objective of this research note is to provide an overview of the different methods used for sectioning and recycling wind turbine blades as well...

  13. Multifunctional Composite Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  14. Simulating the structure of gypsum composites using pulverized basalt waste

    Directory of Open Access Journals (Sweden)

    Buryanov Аleksandr

    2017-01-01

    Full Text Available This paper examines the possibility of simulating the structure of gypsum composite modified with basalt dust waste to make materials and products based on it. Structural simulating of the topological space in gypsum modified composite by optimizing its grain-size composition highly improves its physical and mechanical properties. Strength and density tests have confirmed the results of the simulation. The properties of modified gypsum materials are improved by obtaining of denser particle packing in the presence of hemihydrate of finely dispersed basalt and plasticizer particles in the system, and by engaging basalt waste in the structuring process of modified gypsum stone.

  15. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  16. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald

    2004-01-01

    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  17. Bacterial leaching of waste uranium materials.

    Science.gov (United States)

    Barbic, F F; Bracilović, D M; Krajincanić, B V; Lucić, J L

    1976-01-01

    The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid.

  18. Bacterial leaching of waste uranium materials

    International Nuclear Information System (INIS)

    Barbic, F.F.; Bracilovic, D.M.; Krajincanic, B.V.; Lucic, J.L.

    1976-01-01

    The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.0372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid. (author)

  19. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  20. Microbiologically-Facilitated Effects on the Surface Composition of Alloy 22, A Candidate Nuclear Waste Packaging Material

    International Nuclear Information System (INIS)

    Horn, J; Lian, T; Martin, S I

    2001-01-01

    The effects of microbiological activities on the surface composition of Alloy 22 was investigated. Prior studies suggesting microbially-generated selective dissolution of chromium from Alloy 22 were based solely on analyzing solubilized Alloy 22 elements. These and other investigations point to the insufficiencies of analyzing solubilized (or solubilized and reprecipitated) alloying elements to discern between homogeneous/stoichiometric dissolution and selective/non-stoichiometric dissolution of alloying elements. Therefore, an approach using X-ray Photoelectron Spectroscopy (XPS) to interrogate the surface layers of treated Alloy 22 specimens was taken to resolve this issue. Sputtering into the surface of the samples, coupled with XPS analysis at given intervals, allowed a high resolution quantitative elemental evaluation of the alloy as a function of depth. Biotically-incubated Alloy 22 show a region that could be depleted of chromium. Surfacial XPS analysis of these same coupons did not detect the presence of re-precipitated Alloy 22 component elements, also supporting the possible occurrence of non-stoichiometric dissolution. Thus, these preliminary data do not exclude the possibility of selective dissolution. It also appears that this experimental approach shows promise to unequivocally resolve this issue. Further tests using smoother-surface, more highly polished coupons should allow for better resolution between surface layers to permit a decisive determination of the mode of Alloy 22 dissolution using sputtering XPS analysis

  1. Composite Materials in Overhead Lines

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim

    2009-01-01

    towers and recently conductors based on composite materials are available at transmission levels. In this paper it is investigated which composite based solutions are available in connection with complete overhead line systems including insulators, towers and conductors. The components are reviewed......The use of composite materials, e.g. fibreglass materials, in overhead transmission line systems is nothing new. Composite based insulators have been applied to transmission lines for over 30 years, mainly as suspension and post insulators and often as an option for special applications. Also...... with respect to solved and persisting known failures/problems of both mechanical and electrical nature. Major challenges related to extensive use of composite materials in an overhead line system are identified, as are possible benefits - both when using standard as well as customised composite components, e...

  2. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P; Boterel, F; Lostec, J; Bertot, J P; Haussonne, J M [Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR)

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  3. Database for waste glass composition and properties

    International Nuclear Information System (INIS)

    Peters, R.D.; Chapman, C.C.; Mendel, J.E.; Williams, C.G.

    1993-09-01

    A database of waste glass composition and properties, called PNL Waste Glass Database, has been developed. The source of data is published literature and files from projects funded by the US Department of Energy. The glass data have been organized into categories and corresponding data files have been prepared. These categories are glass chemical composition, thermal properties, leaching data, waste composition, glass radionuclide composition and crystallinity data. The data files are compatible with commercial database software. Glass compositions are linked to properties across the various files using a unique glass code. Programs have been written in database software language to permit searches and retrievals of data. The database provides easy access to the vast quantities of glass compositions and properties that have been studied. It will be a tool for researchers and others investigating vitrification and glass waste forms

  4. Strain-Detecting Composite Materials

    Science.gov (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  5. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  6. Mechanics in Composite Materials and Process

    International Nuclear Information System (INIS)

    Lee, Dae Gil

    1993-03-01

    This book includes introduction of composite materials, stress, in-plane stiffness of laminates strain rate, ply stress, failure criterion and bending, composite materials micromechanics, composite plates and micromechanics of composite materials. It also deals with process of composite materials such as autoclave vacuum bag degassing process, connection of composite materials, filament winding process, resin transfer molding, sheet molding compound and compression molding.

  7. Composition of municipal solid waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe

    In response to continuous pressure on resources, and the requirement for secure and sustainable consumption, public authorities are pushing the efficient use of resources. Among other initiatives, the prevention, reduction and recycling of solid waste have been promoted. In this context, reliable...... data for the material and resource content of waste flows are crucial to establishing baselines, setting targets and tracking progress on waste prevention, reduction and recycling goals. Waste data are also a critical basis for the planning, development and environmental assessment of technologies...... the comparison of waste data with various objectives. Analysis revealed that Danish residual household waste constitutes mainly food waste (42 – 45% mass per wet basis). Misplaced recyclable materials in residual waste bins, such as paper, board, glass, metal and plastic, amounted to 20% (mass per wet basis...

  8. Biotechnology and Composite Materials

    Science.gov (United States)

    1993-04-01

    means. Silk made from the caterpillar, Bombyx mori , has outstanding mechanical and good thermal properties. The Bombyx mori synthesises the components of...Silk Proteins for Composite Fibers 185 In natural systems, the two c=nm=n sources of silks are the dch!sticated silkworm, mori , and the orb weaving...unit cell remain parallel to their original orientation during deformation. This prevents the formation of any voids or gaps in the model. Using the

  9. Polymer-Cement Composites Containing Waste Perlite Powder

    Directory of Open Access Journals (Sweden)

    Paweł Łukowski

    2016-10-01

    Full Text Available Polymer-cement composites (PCCs are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  10. Forecasting waste compositions: A case study on plastic waste of electronic display housings.

    Science.gov (United States)

    Peeters, Jef R; Vanegas, Paul; Kellens, Karel; Wang, Feng; Huisman, Jaco; Dewulf, Wim; Duflou, Joost R

    2015-12-01

    Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Gasification from waste organic materials

    Directory of Open Access Journals (Sweden)

    Santiago Ramírez Rubio

    2011-09-01

    Full Text Available This article describes the fixed bed biomass gasifier operation designed and built by the Clean Development Mechanisms and Energy Management research group, the gasifier equipment and the measurement system. The experiment involved agro-industrial residues (biomass such wood chips, coconut shell, cocoa and coffee husk; some temperatures along the bed, its pressure, inlet air flow and the percentage of carbon monoxide and carbon dioxide in the syngas composition were measured. The test results showed that a fuel gas was being obtained which was suitable for use with an internal combustion engine for generating electricity because more carbon monoxide than carbon dioxide was being obtained during several parts of the operation. The gasification experimentation revealed that a gasifier having these characteristics should be ideal for bringing energy to areas where it is hard to obtain it (such as many rural sites in Latin-America or other places where large amounts of agro-industrial wastes are produced. Temperatures of around 1,000°C were obtained in the combustion zone, generating a syngas having more than 20% carbon monoxide in its composition, thereby leading to obtaining combustible gas.

  12. Methane generation from waste materials

    Science.gov (United States)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  13. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  14. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  15. Absorption properties of waste matrix materials

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  16. Physico-chemical characterisation of material fractions in household waste

    DEFF Research Database (Denmark)

    Götze, Ramona; Boldrin, Alessio; Scheutz, Charlotte

    2016-01-01

    State-of-the-art environmental assessment of waste management systems rely on data for the physico-chemical composition of individual material fractions comprising the waste in question. To derive the necessary inventory data for different scopes and systems, literature data from different sources...... and backgrounds are consulted and combined. This study provides an overview of physico-chemical waste characterisation data for individual waste material fractions available in literature and thereby aims to support the selection of data fitting to a specific scope and the selection of uncertainty ranges related...... to the data selection from literature. Overall, 97 publications were reviewed with respect to employed characterisation method, regional origin of the waste, number of investigated parameters and material fractions and other qualitative aspects. Descriptive statistical analysis of the reported physico...

  17. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  18. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  19. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  20. Compositional data analysis of household food waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Pivnenko, Kostyantyn; Petersen, Claus

    waste. Although, food waste composition carries relative information, no attempt was made to analysis food waste composition as compositional data. Thus the relationship between food waste fractions has been analysed by mean of Pearson correlation test and log-ratio analysis. The food waste data...... household per week), (b) percentage composition of food waste based on the total food waste, and (c) percentage composition of food waste based on the total residual household waste. The Pearson correlation test showed different results when different datasets are used, whereas the log-ratio analysis showed...... was collected by sampling and sorting residual household waste in Denmark. The food waste was subdivided into three fractions: (1) avoidable vegetable food waste, (2) avoidable animal-derive food waste, and (3) avoidable food waste. The correlation was carried out using: (a) the amount of food waste (kg per...

  1. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    is successfully justified comparing predicted results with experimental data obtained in the HETEK-project on creep, relaxation, and shrinkage of very young concretes cured at a temperature of T = 20^o C and a relative humidity of RH = 100%. The model is also justified comparing predicted creep, shrinkage......, and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...... in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus...

  2. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  3. Epoxy composites based on inexpensive tire waste filler

    International Nuclear Information System (INIS)

    Ahmetli, Gulnare; Gungor, Ahmet; Kocaman, Suheyla

    2014-01-01

    Tire waste (TW) was recycled as raw material for the preparation of DGEBA-type epoxy composite materials. The effects of filler amount and epoxy type on the mechanical properties of the composites were investigated. Tensile strength and Young’s modulus of the composites with NPEL were generally higher than composites with NPEF. The appropriate mass level for TW in both type composites was found to be 20 wt%. The equilibrium water sorption of NPEL/TW and NPEF/TW composites for 14-day immersion was determined as 0.10 % and 0.21 %, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization of the composites

  4. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  5. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  6. Municipal Solid Waste - Sustainable Materials Management

    Science.gov (United States)

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  7. Concept of an integrated waste economy represented on the example of recycling of valuable materials

    Energy Technology Data Exchange (ETDEWEB)

    Wender, H

    1980-08-01

    The historical development of waste elimination is discussed, followed by the waste problem in an environmental discussion, the possibilities of recycling within the framework of a waste industry, and the solution of the waste problem from a waste-economy viewpoint, including the definition of 'waste' and the grouping by types of waste, their amounts and increase rates, composition and valuable materials in community wastes with a review of waste technologies under waste-economy viewpoints. This is followed by a discussion of the sales possibilities for valuable components from mechanical sorting facilities, including used paper, old glass, hard substances, metals, plastics, succeeded by a comparative evaluation method, and the national economy aspect of the waste industry, with the savings effect in raw materials for different branches, effects on raw material reserves, the problem of dependence on imports, waste rates and living standard, and the importance of environmental instruments which are discussed in detail.

  8. Recovery of fissile materials from nuclear wastes

    Science.gov (United States)

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  9. Performance of waste-paper/PETG wood–plastic composites

    Directory of Open Access Journals (Sweden)

    Lijie Huang

    2018-05-01

    Full Text Available Wood–plastic composites were prepared from polyethylene terephthalate- 1,4-cyclohexanedimethanol ester (PETG and waste-paper fiber that was unmodified, modified with alkyl-ketene-dimer (AKD, and modified with a silane-coupling agent. The mechanical properties, water absorption properties, surface structure, and thermal properties of the three prepared materials were compared. The results showed that the optimum amount of waste-paper powder is 10 wt%, while that of the waste-paper particles is 60–80 mesh. The use of AKD and coupling agent KH550 can reduce the water absorption of the composite; however, the reductive effect of the coupling agent is better, in that it is reduced by 0.3%. Modification using a 1-wt% KH550 coupling agent can effectively increase the tensile strength of a composite from 31.36 to 41.67 MPa (increase of 32.8%, while the bending strength increased from 86.47 to 98.31 MPa (increase of 13.7%. This also enhances the thermal stability of the composites. With the addition of the coupling agent, the composite material maintains good mechanical properties even after being immersed in water; this can enable the safe use of these composite materials in outdoor environments.

  10. Performance of waste-paper/PETG wood–plastic composites

    Science.gov (United States)

    Huang, Lijie; An, Shuxiang; Li, Chunying; Huang, Chongxing; Wang, Shuangfei; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Zhou, Lei

    2018-05-01

    Wood-plastic composites were prepared from polyethylene terephthalate- 1,4-cyclohexanedimethanol ester (PETG) and waste-paper fiber that was unmodified, modified with alkyl-ketene-dimer (AKD), and modified with a silane-coupling agent. The mechanical properties, water absorption properties, surface structure, and thermal properties of the three prepared materials were compared. The results showed that the optimum amount of waste-paper powder is 10 wt%, while that of the waste-paper particles is 60-80 mesh. The use of AKD and coupling agent KH550 can reduce the water absorption of the composite; however, the reductive effect of the coupling agent is better, in that it is reduced by 0.3%. Modification using a 1-wt% KH550 coupling agent can effectively increase the tensile strength of a composite from 31.36 to 41.67 MPa (increase of 32.8%), while the bending strength increased from 86.47 to 98.31 MPa (increase of 13.7%). This also enhances the thermal stability of the composites. With the addition of the coupling agent, the composite material maintains good mechanical properties even after being immersed in water; this can enable the safe use of these composite materials in outdoor environments.

  11. Waste management, energy generation, material recycling

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The concept of process pyrolysis according to the system of low-temperature pyrolysis (up to 450 Cel) for the purpose of waste processing is described. This system not only uses the material value (raw materials) but also the processing value (energetic utilization of organic components). Three product groups are mentioned where process pyrolysis can be applied: 1. rubber-metall connecting, coated and non-coated components, 2. Compound materials like pc boards, used electronic devices, films, used cables and batteries, 3. organic waste and residues like foils, insulating material, lubricating, oil and grease, flooring. Importance of waste management is emphasized, economic aspects are illustrated.

  12. Questa baseline and pre-mining ground-water quality investigation. 19. Leaching characteristics of composited materials from mine waste-rock piles and naturally altered areas near Questa, New Mexico

    Science.gov (United States)

    Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.

    2007-01-01

    The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the

  13. Environmental restoration waste materials co-disposal

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E.; Dagan, E.B.; Holt, R.G.

    1993-09-01

    Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities

  14. Composite Materials: An Educational Need.

    Science.gov (United States)

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  15. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  16. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  17. Corrosion assessment of refractory materials for high temperature waste vitrification

    International Nuclear Information System (INIS)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-01-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials

  18. Composite Compost Produced from Organic Waste

    Directory of Open Access Journals (Sweden)

    Lăcătuşu Radu

    2016-10-01

    Full Text Available The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33% of each waste, 50% of each of the three wastes separately, the difference being made up in equal amounts (25% of the other two wastes. Composting process was performed in Könemann silos (cubs with side by 1.20m and lasted 60 days, from July 19 until September 16, when the composted material has passed the stages of reduction and oxidation. During composting process, in the reductive stage the material has reached a temperature up to 63°C Celsius, enough heat for its sterilization. Initial material, semi composted and final composted material were been chemical analyzed, especially in terms of macro- and microelements, analytical results revealing high and normal content of such chemicals. Therefore the achieved compost could be used in organic farming systems.

  19. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  20. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  1. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  2. Processing glass-pyrochlore composites for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R.

    2005-01-01

    Glass matrix composites have been developed as alternative materials to immobilize nuclear solid waste, in particular actinides. These composites are made of soda borosilicate glass matrix, into which particles of lanthanum zirconate pyrochlore are encapsulated in concentrations of 30 vol.%. The fabrication process involves powder mixing followed by hot-pressing. At the relatively low processing temperature used (620 deg. C), the pyrochlore crystalline structure of the zirconate, which is relevant for containment of radioactive nuclei, remains unaltered. The microstructure of the composites exhibits a homogeneous distribution of isolated pyrochlore particles in the glass matrix and strong bonding at the matrix-particle interfaces. Hot-pressing was found to lead to high densification (95% th.d.) of the composite. The materials are characterized by relatively high elastic modulus, flexural strength, hardness and fracture toughness. A numerical approach using a microstructure-based finite element solver was used in order to investigate the mechanical properties of the composites

  3. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  4. Co-disposal of mixed waste materials

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal

  5. Asymmetric Dielectric Elastomer Composite Material

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  6. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    International Nuclear Information System (INIS)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands

  7. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    Science.gov (United States)

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  8. Plasma vitrification of waste materials

    Science.gov (United States)

    McLaughlin, David F.; Dighe, Shyam V.; Gass, William R.

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

  9. Plasma vitrification of waste materials

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs

  10. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  11. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  12. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  13. Aqueous Corrosion Rates for Waste Package Materials

    International Nuclear Information System (INIS)

    Arthur, S.

    2004-01-01

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports

  14. Disposal of radioactive waste material to sea

    International Nuclear Information System (INIS)

    Burton, W.R.

    1985-01-01

    Radioactive waste liquid of a low or intermediate activity level is mixed with a suitable particulate material and discharged under the sea from a pipeline. The particulate material is chosen so that it sorbs radio-nuclides from this waste, has a good retention for these nuclides when immersed in sea water, and has a particle size or density such that transfer of the particles back to the shore by naturally occurring phenomena is reduced. Radio nuclide concentration in the sea water at the end of the pipeline may also be reduced. The particulate material used may be preformed or co-precipitated in the waste. Suitable materials are oxides or hydroxides of iron or manganese or material obtained from the sea-bed. (author)

  15. Calcium phosphate nuclear materials: apatitic ceramics for separated wastes

    International Nuclear Information System (INIS)

    Carpena, J.; Lacout, J.L.

    2005-01-01

    Is it feasible to elaborate conditioning materials for separated high activity nuclear wastes, as actinides or fission products? Specific materials have been elaborated so that the waste is incorporated within the crystalline structure of the most stable calcium phosphate, i.e. apatite. This mineral is able to sustain high irradiation doses assuming a well chosen chemical composition. Mainly two different ways of synthesis have been developed to produce hard apatite ceramics that can be used to condition nuclear wastes. Here we present a data synthesis regarding the elaboration of these apatite nuclear materials that includes experiments on crystallo-chemistry, chemical analysis, leaching and irradiation tests performed for the past fifteen years. (authors)

  16. Evaluation of shipping doses and compositions for vitrified waste

    International Nuclear Information System (INIS)

    Shapiro, A.

    1996-01-01

    Shipments of radioactive materials must adhere to dose limits specified in the Code of Federal Regulations. This paper discusses methods for evaluating shipping doses of vitrified waste. A methodology was developed for evaluating the change in vitrification composition required to maintain shipping dose rates within limits. The point kernel codes QAD and Microshield were used to evaluate dose equivalent rates from specified waste forms and radioactivity measurements. The Origen code was utilized to provide the gamma-ray activity as a function of time from isotopic activity measurements. This gamma-ray activity served as source input for QAD. Microshield developed its own source from the given isotopic activities

  17. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials

    Science.gov (United States)

    Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.

    2017-09-01

    The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.

  18. composite materials under static loading

    Directory of Open Access Journals (Sweden)

    Hamrat Mostefa

    2018-01-01

    Full Text Available This work constitutes a contribution to the analysis of the behavior of beams repaired by composite materials. To analyze the overall behavior and failure modes of the beams, an experimental study of nine reinforced concrete beams, pre-cracked and then repaired by composite materials was conducted. Six beams were pre-cracked and repaired in the tensioned part (bending repair and in the other two beams on the tensioned and lateral parts with strips in the shape of U (shear repair. A comparative study was made between the ultimate moments measured experimentally and those calculated by the theoretical models. Compared to the control beam, the resistance gain for the beams repaired in bending is 50% to 90%, while that of beams repaired in shear is from 120% to177 %. The beams repaired in shear exhibit a ductile rupture in bending. However, the beams repaired in bending were failed by the lift-off of composite or by failure of concrete cover layer (except for beams repaired by fiber glass. BAEL99, EC2-04 and ACI318-08 models give the best prediction of the ultimate moments with a mean value of 1.16 for the ratio of MExp./Mtheor. and a mean standard deviation of 0.33.

  19. Materials aspects of nuclear waste isolation

    International Nuclear Information System (INIS)

    Bennett, J.W.

    1984-01-01

    This paper is intended to provide an overview of the nuclear waste repository performance requirements and the roles which we expect materials to play in meeting these requirements. The objective of the U.S. Dept. of Energy's (DOE) program is to provide for the safe, permanent isolation of high-level radioactive wastes from the public. The Nuclear Waste Policy Act of 1982 (the Act) provides the mandate to accomplish this objective by establishing a program timetable, a schedule of procedures to be followed, and program funding (1 mil/kwhr for all nuclear generated electricity). The centerpiece of this plan is the design and operation of a mined geologic repository system for the permanent isolation of radioactive wastes. A nuclear waste repository contains several thousand acres of tunnels and drifts into which the nuclear waste will be emplaced, and several hundred acres for the facilities on the surface in which the waste is received, handled, and prepared for movement underground. With the exception of the nuclear material-related facilities, a repository is similar to a standard mining operation. The difference comes in what a repository is supposed to do - to contain an isolate nuclear waste from man and the environment

  20. Elaboration of new ceramic composites containing glass fibre production wastes

    International Nuclear Information System (INIS)

    Rozenstrauha, I.; Sosins, G.; Krage, L.; Sedmale, G.; Vaiciukyniene, D.

    2013-01-01

    Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50 % of organic matter as well as waste glass from aluminium borosilicate glass fibre with relatively high softening temperature (> 600 degree centigrade). In order to elaborate different new ceramic products (porous or dense composites) the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia) with illite content in clay fraction up to 80-90 % was used as a matrix. The raw materials were investigated by differential-thermal (DTA) and XRD analysis. Ternary compositions were prepared from mixtures of 15 - 35 wt % of sludge, 20 wt % of waste glass and 45 - 65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 degree centigrade in different treatment conditions. Materials produced in temperature range 1090 - 1100 degree centigrade with the most optimal properties - porosity 38 - 52 %, water absorption 39 -47 % and bulk density 1.35 - 1.67 g/cm 3 were selected for production of porous ceramics and materials showing porosity 0.35 - 1.1 %, water absorption 0.7 - 2.6 % and bulk density 2.1 - 2.3 g/cm 3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM). By X-ray diffraction analysis (XRD) the quartz, diopside and anorthite crystalline phases were detected. (Author)

  1. Materials considerations relative to multibarrier waste isolation

    International Nuclear Information System (INIS)

    McCoy, H.E.; Griess, J.C.

    1981-07-01

    The environmental conditions associated with the storage of radioactive wastes are reviewed, and the corrosion of potential waste containment materials under these conditions is evaluated. The desired service life of about 1000 years is beyond the time period for which existing corrosion data can be extrapolated with certainty; however, titanium alloys seem to offer the most promise. The mechanical requirements for canisters and overpacks are considered and several candidate materials are selected. Designs for a canister and an overpack have been developed, and these are used to estimate the costs for three possible materials of construction

  2. Materials for high-level waste containment

    International Nuclear Information System (INIS)

    Marsh, G.P.

    1982-01-01

    The function of the high-level radioactive waste container in storage and of a container/overpack combination in disposal is considered. The consequent properties required from potential fabrication materials are discussed. The strategy adopted in selecting containment materials and the experimental programme underway to evaluate them are described. (U.K.)

  3. Compositional data analysis of household waste recycling centres in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Martín-Fernández, J. A.; Boldrin, Alessio

    of these projects on the recycling rates does not exist. Thus, compositional data analysis technique was applied to analyze consistently waste data. Based on the waste composition obtained from a recycling center in Denmark, we analyzed the composition of waste treatment and disposal options. Zero and non......-zero pattern was used to describe historical changes in the definition and components of waste fractions. Variation array was applied to determine the relationship between waste treatment and disposal options. As a result, compositional data analysis technique enables to analyze waste data regardless...

  4. Some functional properties of composite material based on scrap tires

    Science.gov (United States)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  5. Physical and mechanical properties of degraded waste surrogate material

    International Nuclear Information System (INIS)

    Hansen, F.D.; Mellegard, K.D.

    1998-03-01

    This paper discusses rock mechanics testing of surrogate materials to provide failure criteria for compacted, degraded nuclear waste. This daunting proposition was approached by first assembling all known parameters such as the initial waste inventory and rock mechanics response of the underground setting after the waste is stored. Conservative assumptions allowing for extensive degradation processes helped quantify the lowest possible strength conditions of the future state of the waste. In the larger conceptual setting, computations involve degraded waste behavior in transient pressure gradients as gas exits the waste horizon into a wellbore. Therefore, a defensible evaluation of tensile strength is paramount for successful analyses and intentionally provided maximal failed volumes. The very conservative approach assumes rampant degradation to define waste surrogate composition. Specimens prepared from derivative degradation product were consolidated into simple geometries for rock mechanics testing. Tensile strength thus derived helped convince a skeptical peer review panel that drilling into the Waste Isolation Pilot Plant (WIPP) would not likely expel appreciable solids via the drill string

  6. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  7. Microwave reactor for utilizing waste materials

    Directory of Open Access Journals (Sweden)

    M. Pigiel

    2010-01-01

    Full Text Available The paper presents a designed and manufactured, semi-industrial microwave reactor for thermal utilization of asbestos-bearing wastes. Presented are also semi-industrial tests of utilizing such wastes. It was found that microwave heating can be applied for utilizing asbestos with use of suitable wetting agents. The wetting agents should ensure continuous heating process above 600 °C, as well as uniform heat distribution in the whole volume of the utilized material. Analysis of the neutralization process indicates a possibility of presenting specific, efficient and effective process parameters of utilizing some asbestos-bearing industrial wastes.

  8. Buried waste containment system materials. Final Report

    International Nuclear Information System (INIS)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers

  9. Modern filaments for composite materials

    International Nuclear Information System (INIS)

    Krivelli-Viskonti, I.

    1982-01-01

    Analysis of modern state and ways to improve properties of different filaments for the forecast of the filament application in composite materials has been conducted. In the near future as before the greatest attention will be paid to fibre glass, as this material is widely used in the reinforcing of organic matrices. Carbon and kevlar filaments are the most prospective ones. For the service at medium, high or superhigh temperatures selection of matrix material is more significant than selection of filament. Organic matrices can not be used at temperatures > 250 deg C: this is already the range of metal matrix application. Though at temperatures above room one many filaments can be used, boron filaments and metal wire are the only reinforcing materials, inspite of the fact that carbon filaments are successfully used for metal matrix reinforcing. At very high temperatures only carbon filaments or silicon carbide ones can be used, but their cost is very high and besides economical problems there are many difficulties of technical character

  10. Producing glass-ceramics from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, A.R.; Rawlings, R.D. [Imperial College, London (United Kingdom)

    2002-10-01

    An overview is given of recent research at the Department of Materials of Imperial College, London, UK, concerning the production of useful glass-ceramic products from industrial waste materials. The new work, using controlled crystallisation to improve the properties of vitrified products, could help to solve the problem of what to do with increasing amounts of slag, fly ash and combustion dust. The results show, that it is possible to produce new materials with interesting magnetic and constructive properties.

  11. Gas generation by self-radiolysis of tritiated waste materials

    International Nuclear Information System (INIS)

    Tadlock, W.E.; Abell, G.C.; Steinmeyer, R.H.

    1980-01-01

    Studies simulating the effect of self-radiolysis in disposal packages containing tritiated waste materials show hydrogen to be the dominant gas-phase product. Pressure buildup and gas composition over various tritiated octane and tritiated water samples are designed to give worst case results. One effect of tritium fixation agents is to reduce pressure buildup. The results show that development of explosive gas mixtures is unlikely and that maximum pressure buildup in typical Mound Facility waste packages can be expected to be <0.25 MPa

  12. Valorisation of waste plastic bags in cement-mortar composites as ...

    African Journals Online (AJOL)

    2015-01-07

    Jan 7, 2015 ... Keywords: Waste plastic bags, cement-plastic-mortar composite, aggregates coating ..... and closely attached to the aggregate by physical bonds and ... transformation steps, known as fusing material behaviour. In fact,.

  13. Characterization of material composite marble-polyester

    Directory of Open Access Journals (Sweden)

    Corpas, F. A.

    2002-12-01

    Full Text Available In this work we characterize a new material composite, formed with a polyester and crushed white marble mixture. The final purpose is double: to obtain a material for applications sufficiently competitive after an economic viability study, increasing the yield of the main commodity, using waste marble and improving the jobs in the quarries area. From the results obtained, we deduce then that this material could be used to inside and outside adornment.

    En este trabajo, caracterizamos un nuevo material compuesto, formado con una mezcla de poliéster y de mármol blanco triturado. El propósito final es doble: por un lado obtener un material para aplicaciones lo suficientemente competitivas como para que se pueda iniciar un estudio económico de viabilidad, aumentando el rendimiento de la materia prima y mejorando las salidas laborales de las comarcas extractoras. Para la caracterización del material se ha determinado el porcentaje adecuado de poliéster. Así como las propiedades mecánicas (flexión, compresión y dureza, químicas, fatiga térmica y su influencia a la exposición solar In order to characterized of material, we have determined the suitable porcentage of polyester Also we have carried out a study of the mechanical (stretching, resistance to traction, hardeness and thermal fatigue chemicals properties and solar radiation influence. De los resultados obtenidos, este material podría ser utilizado para ornamentación tanto de interior como de exterior.

  14. Coastal structures, waste materials and fishery enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Collins, K.J.; Jensen, A.C.; Lockwood, A.P.M.; Lockwood, S.J. [University of Southampton, Southampton (United Kingdom). Dept. of Oceanography

    1994-09-01

    Current UK practice relating to the disposal of material at sea is reviewed. The use of stabilization technology relating to bulk waste materials, coal ash, oil ash and incinerator ash is discussed. The extension of this technology to inert minestone waste and tailings, contaminated dredged sediments and phosphogypsum is explored. Uses of stabilized wastes are considered in the areas of habitat restoration, coastal defense and fishery enhancement. It is suggested that rehabilitation of marine dump sites receiving loose waste such as pulverized fuel ash (PFA) could be enhanced by the continued dumping of the material but in a stabilized block form, so creating new habitat diversity. Global warming predictions include sea level rise and increased storm frequency. This is of particular concern along the southern and eastern coasts of the UK. The emphasis of coastal defense is changing from hard seawalls to soft options which include offshore barriers to reduce wave energy reaching the coast. Stabilized waste materials could be included in these and other marine constructions with possible economic benefit. Ministry of Agriculture, Fisheries and Food (MAFF), the regulatory authority in England and Wales for marine disposal/construction, policy regarding marine structures and fishery enhancement is outlined. A case is made for the inclusion of fishery enhancement features in future coastal structures. Examples of the productivity of man-made structures are given. Slight modification of planned structures and inclusion of suitable habitat niches could allow for the cultivation of kelp, molluscs, crustacea and fish.

  15. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    International Nuclear Information System (INIS)

    Michalske, T.A.

    2013-01-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

  16. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    Energy Technology Data Exchange (ETDEWEB)

    Michalske, T.A. [Savannah River National Laboratory (United States)

    2013-07-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the

  17. Release of powdered material from waste packages

    International Nuclear Information System (INIS)

    Berg, H.P.; Gruendler, D.; Peiffer, F.; Seehars, H.D.

    1990-01-01

    Possible incidents in the operational phase of the planned German repository KONRAD for radioactive waste with negligible heat production were investigated to assess the radiological consequences. For these investigations release fractions of the radioactive materials are required. This paper deals with the determination of the release of powdered material from waste packages under mechanical stress. These determinations were based on experiments. The experimental procedure and the process parameters chosen in accordance with the conditions in the planned repository will be described. The significance of the experimental results is discussed with respect to incidents in the planned repository. 8 figs., 3 tabs

  18. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

    International Nuclear Information System (INIS)

    Edjabou, Maklawe Essonanawe; Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn; Petersen, Claus; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2015-01-01

    -family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required

  19. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Jensen, Morten Bang; Götze, Ramona; Pivnenko, Kostyantyn [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Petersen, Claus [Econet AS, Omøgade 8, 2.sal, 2100 Copenhagen (Denmark); Scheutz, Charlotte; Astrup, Thomas Fruergaard [Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2015-02-15

    -family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.

  20. Cementitions materials in nuclear waste management

    International Nuclear Information System (INIS)

    Roy, D.M.

    1990-01-01

    Cementitious materials have been investigated extensively to establish their role, and enable a prediction of their performance, when used for radioactive waste isolation. A number of applications have been addressed, ranging from those in high-level waste management, where their prime roles would be physical such as in sealing an underground waste repository, mechanical to serve as a protective cask for transport, or under certain conditions, both chemical and physical in the solidification of high-level waste. Cements also have been explored for their use in forming primary casks for containment of spent fuel assemblies. For the disposal of low-level (and in some countries, intermediate-level) waste, a cementitious matrix may be used to encapsulate the waste, thereby generating an integral waste form. In addition, concretes will be required to perform special structural roles, used to construct trenches, vaults, and other disposal units. Also, there are numerous applications where grouts are used for sealing purposes. This paper addresses each of these areas

  1. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2018-06-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  2. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2018-02-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  3. Compositional data analysis of household food waste in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Pivnenko, Kostyantyn; Petersen, Claus

    Food waste is a growing public concern because the food production and distribution exert enormous pressure on natural resources such as land, water and energy, and leads to significant environmental, societal and economic impacts. Thus, the European Commission has aimed to reduce to 50% the total...... amount of discarded edible food waste by 2020 within the European Union (EU) Member States. Reliable data on food waste and a better understanding of the food waste generation patterns are crucial for planning the avoidable food waste reduction and an environmental sound treatment of unavoidable food...... waste. Although, food waste composition carries relative information, no attempt was made to analysis food waste composition as compositional data. Thus the relationship between food waste fractions has been analysed by mean of Pearson correlation test and log-ratio analysis. The food waste data...

  4. Immobilization of INEL low-level radioactive wastes in ceramic containment materials

    International Nuclear Information System (INIS)

    Seymour, W.C.; Kelsey, P.V.

    1978-11-01

    INEL low-level radioactive wastes have an overall chemical composition that lends itself to self-containment in a ceramic-based material. Fewer chemical additives would be needed to process the wastes than to process high-level wastes or use a mixture containment method. The resulting forms of waste material could include a basalt-type glass or glass ceramic and a ceramic-type brick. Expected leach resistance is discussed in relationshp to data found in the literature for these materials and appears encouraging. An overview of possible processing steps for the ceramic materials is presented

  5. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Science.gov (United States)

    2010-07-01

    ... to the information requirements of § 61.07(b)(3), a (i) Description of waste feed handling and...) Disposed of as asbestos-containing waste material according to § 61.150, or (ii) Recycled as waste feed... waste feed to the process. (2) Collect and analyze monthly composite samples (one 200-gram (7-ounce...

  6. Composites materials: the technology of future

    International Nuclear Information System (INIS)

    Ahmed, M.N.; Memon, I.R.; Ahmad, F.; Zafar, N.

    2001-01-01

    Composite materials have a long history of usage. Their precise beginnings are not known; however all recorded history contains references to some form of composite material. e.g. straw was used by man to strengthen mud bricks thousands of years ago. This article presents the use of advanced composites materials in aircraft and space industry. Its brief history, use in military and civil aviation, use in space program, future usage, advantages in terms of cost, weight and strength. Use of composites in unmanned aerial vehicles and problems associated with usage of composites materials are also discussed. (author)

  7. Influence of assumptions about household waste composition in waste management LCAs

    International Nuclear Information System (INIS)

    Slagstad, Helene; Brattebø, Helge

    2013-01-01

    Highlights: ► Uncertainty in waste composition of household waste. ► Systematically changed waste composition in a constructed waste management system. ► Waste composition important for the results of accounting LCA. ► Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  8. Unify a hazardous materials/waste program

    International Nuclear Information System (INIS)

    Carson, H.T.

    1988-01-01

    Efficiently managing a hazardous materials/waste program in a multi-facility, multi-product corporation is a major challenge. This paper describes several methods to help unify a program and gain maximum efficiency of manpower and to minimize risk

  9. Radioactive waste - a select list of material

    International Nuclear Information System (INIS)

    Lambert, C.M.

    1982-01-01

    A chronological bibliography is presented of literature relating to radioactive waste management in the United Kingdom concentrating on material published since 1978. The main sections include Dept. of Environ. and Official publications, administrative and environmental concerns, technological and scientific considerations, including publications on geological aspects, deep-sea bed and ocean-dumping and salt domes, with general background material and further sources of information listed at the end. (U.K.)

  10. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    Science.gov (United States)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  11. Radiation damage in nuclear waste materials

    International Nuclear Information System (INIS)

    Jencic, I.

    2000-01-01

    Final disposal of high-level radioactive nuclear waste is usually envisioned in some sort of ceramic material. The physical and chemical properties of host materials for nuclear waste can be altered by internal radiation and consequently their structural integrity can be jeopardized. Assessment of long-term performance of these ceramic materials is therefore vital for a safe and successful disposal. This paper presents an overview of studies on several possible candidate materials for immobilization of fission products and actinides, such as spinel (MgAl 2 O 4 ), perovskite (CaTiO 3 ), zircon (ZrSiO 4 ), and pyrochlore (Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 ). The basic microscopic picture of radiation damage in ceramics consists of atomic displacements and ionization. In many cases these processes result in amorphization (metaminctization) of irradiated material. The evolution of microscopic structure during irradiation leads to various macroscopic radiation effects. The connection between microscopic and macroscopic picture is in most cases at least qualitatively known and studies of radiation induced microscopic changes are therefore an essential step in the design of a reliable nuclear waste host material. The relevance of these technologically important results on our general understanding of radiation damage processes and on current research efforts in Slovenia is also addressed. (author)

  12. Mathematical model for choosing the nuclear safe matrix compositions for fissile material immobilization

    International Nuclear Information System (INIS)

    Gorshtein, A.I.; Matyunin, Yu.I.; Poluehktov, P.P.

    2000-01-01

    A mathematical model is proposed for preliminary choice of the nuclear safe matrix compositions for fissile material immobilization. The IBM PC computer software for nuclear safe matrix composition calculations is developed. The limiting concentration of fissile materials in the some used and perspective nuclear safe matrix compositions for radioactive waste immobilization is calculated [ru

  13. Investigation of waste form materials suitable for immobilizing actinide elements in high-level waste

    International Nuclear Information System (INIS)

    Hayakawa, Issei; Kamizono, Hiroshi

    1992-07-01

    The microstructure of waste form materials suitable for immobilizing actinide elements can be classified into the following two categories. (1) Actinide elements are immobilized in an crystallized matrix after the formation of solid solution or compounds. (2) Actinide elements are immobilized in a durable material by encapsulation. Based on crystal chemistry, durability data, phase diagrams, compositions of natural minerals, eleven oxide compounds and one non-oxide compound are pointed out to be new candidates included in category (1). The other survey on material compositions, manufacturing conditions and feasibility shows that SiC, glassy carbon, ZrO 2 , Ti-O-Si-C ceramics are preferable matrix materials included in category (2). Polymers and fine powders are suitable as starting materials for the encapsulation of actinide elements because of their excellent sinterability. (author) 50 refs

  14. Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106

    Energy Technology Data Exchange (ETDEWEB)

    Esch, R.A.

    1997-04-14

    This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

  15. Composite material and method of making

    Science.gov (United States)

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  16. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  17. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  18. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  19. Compositional data analysis of household waste recycling centres in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Martín-Fernández, J. A.; Boldrin, Alessio

    of these projects on the recycling rates does not exist. Thus, compositional data analysis technique was applied to analyze consistently waste data. Based on the waste composition obtained from a recycling center in Denmark, we analyzed the composition of waste treatment and disposal options. Zero and non......The Danish government has set a target of 50% recycling rates for household waste by 2022. To achieve this goal, the Danish municipalities should increase the source separation of household waste. While significant knowledge and experiences were locally gained, lessons learnt have not been...

  20. Hazardous materials and waste management a guide for the professional hazards manager

    CERN Document Server

    Cheremisinoff, Nicholas P

    1995-01-01

    The management of hazardous materials and industrial wastes is complex, requiring a high degree of knowledge over very broad technical and legal subject areas. Hazardous wastes and materials are diverse, with compositions and properties that not only vary significantly between industries, but within industries, and indeed within the complexity of single facilities. Proper management not only requires an understanding of the numerous and complex regulations governing hazardous materials and waste streams, but an understanding and knowledge of the treatment, post-treatment, and waste minimizatio

  1. Recycling ceramic industry wastes in sound absorbing materials

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2016-10-01

    Full Text Available The scope of this investigation is to develop a material mainly composed (80% w/w of ceramic wastes that can be applied in the manufacture of road traffic noise reducing devices. The characterization of the product has been carried out attending to its acoustic, physical and mechanical properties, by measuring the sound absorption coefficient at normal incidence, the open void ratio, density and compressive strength. Since the sound absorbing behavior of a porous material is related to the size of the pores and the thickness of the specimen tested, the influence of the particle grain size of the ceramic waste and the thickness of the samples tested on the properties of the final product has been analyzed. The results obtained have been compared to a porous concrete made of crushed granite aggregate as a reference commercial material traditionally used in similar applications. Compositions with coarse particles showed greater sound absorption properties than compositions made with finer particles, besides presenting better sound absorption behavior than the reference porous concrete. Therefore, a ceramic waste-based porous concrete can be potentially recycled in the highway noise barriers field.

  2. Morphology and microstructure of composite materials

    Science.gov (United States)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  3. A composite material based on recycled tires

    Science.gov (United States)

    Malers, L.; Plesuma, R.; Locmele, L.

    2009-01-01

    The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.

  4. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  5. Mechanism of lead removal by waste materials

    International Nuclear Information System (INIS)

    Qaiser, S.; Saleemi, A.R.; Ahmed, M.M.

    2007-01-01

    Heavy metal ions are priority pollutants, due to their toxicity and mobility in natural water ecosystems. The discharge of heavy metals into aquatic ecosystems has become a matter of concern in Pakistan over the last few decades. These contaminants are introduced into the aquatic systems significantly as a result of various industrial operations. The metals of concern include lead, chromium, zinc, copper, nickel and uranium. Lead is one of the most hazardous and toxic metals. It is used as industrial raw material in the manufacture of storage batteries, pigments, leaded glass, fuels, photographic materials, matches and explosives. Conventional methods for treatment of dissolved lead include precipitation, adsorption, coagulation/notation, sedimentation, reverse osmosis and ion exchange. Each process has its merits and limitations in applications. Adsorption by activated carbon and ion exchange using commercial ion exchange resins are very expensive processes, especially for a developing country like Pakistan. The present research was conducted to identify some waste materials, which can be utilized to remove lead from industrial wastewater. Natural wastes in the form of leaves and ash have considerable amounts of CaO, MgO, Na/sub 2/O, SiO/sub 2/ and Al/sub 2/O/sub 3/ which can be utilized for precipitation and adsorption. Utilization of waste materials to remove lead from industrial wastewater is the basic theme of this research. The waste materials used in this research were maple leaves, pongamia pinata leaves, coal ash and maple ago leave ash. Parameters studied were reaction time, precipitant dose, pH and temperature. It was found that maple leaves ash has maximum lead removal capacity 19.24 mg g/sup -1/ followed by coal ash 13.2 mg g/sup -1/. The optimal pH was 5 for maple leaves and pongamia Pinata leaves; and 4 for coal ash and maple leaves ash. Removal capacity decreased with increase in temperature. The major removal mechanisms were adsorption and

  6. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans

    International Nuclear Information System (INIS)

    Zorpas, Antonis A.; Lasaridi, Katia; Voukkali, Irene; Loizia, Pantelitsa; Chroni, Christina

    2015-01-01

    Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impact on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes

  7. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans

    Energy Technology Data Exchange (ETDEWEB)

    Zorpas, Antonis A., E-mail: antonis.zorpas@ouc.ac.cy [Cyprus Open University, Faculty of Pure and Applied Science, Environmental Conservation and Management, P.O. Box 12794, 2252 Latsia, Nicosia (Cyprus); Lasaridi, Katia, E-mail: klasaridi@hua.gr [Harokopio University, Department of Geography, 70 El. Venizelou, 176 71 Athens, Kallithea (Greece); Voukkali, Irene [Institute of Environmental Technology and Sustainable Development, ENVITECH LTD, Department of Research and Development, P.O. Box 34073, 5309 (Cyprus); Loizia, Pantelitsa, E-mail: irenevoukkali@envitech.org [Institute of Environmental Technology and Sustainable Development, ENVITECH LTD, Department of Research and Development, P.O. Box 34073, 5309 (Cyprus); Chroni, Christina [Harokopio University, Department of Geography, 70 El. Venizelou, 176 71 Athens, Kallithea (Greece)

    2015-04-15

    Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impact on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes.

  8. Fixation of waste materials in grouts. Part II. An empirical equation for estimating compressive strength for grouts from different wastes

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Godsey, T.T.

    1986-04-01

    Compressive strength data for grouts prepared from three different nuclear waste materials have been correlated. The wastes include ORNL low-level waste (LLW) solution, Hanford Facility Waste (HFW) solution, and Hanford cladding removal waste (CRW) slurry. Data for the three wastes can be represented with a 0.96 coefficient of correlation by the following equation: S = -9.56 + 9.27 D/I + 18.11/C + 0.010 R, where S denotess 28-d compressive strength, in mPa; D designates Waste concentration, fraction of the original; I is ionic strength; C denotes Attapulgite-150 clay content of dry blend, in wt %; and R is the mix ratio, kg/m 3 . The equation may be used to estimate 28-d compressive strengths of grouts prepared within the compositional range of this investigation

  9. Characteristics of and sorption to biochars derived from waste material

    Science.gov (United States)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (sludge (50-70% ash) and pig manure (30-60% ash), as well as a commercial biochar derived from grain husks (40% ash), were extensively characterized (e.g., element composition, surface area, porosity, Fourier transform infrared spectroscopy). The contents of potentially toxic elements (i.e., heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 waste material and exhibiting high mineral

  10. Use of waste materials in rubber matrix

    Directory of Open Access Journals (Sweden)

    Pajtášová Mariana

    2018-01-01

    Full Text Available The presented paper deals with the use of waste materials as ecological fillers into rubber matrix. Waste materials were used as partial replacement of the commercial filler – carbon black, designated as N339. These prepared rubber compounds were characterized on the basis of the rheology and vulcanization characteristics – minimum torque (ML, maximum torque (MH, optimum time of vulcanization (t(c90, processing safety of compound (ts, rate coefficient of vulcanization (Rv. In the case of the prepared vulcanizates, physical-mechanical properties (tensile strength, tensibility and hardness and dynamic-mechanical properties (storage modulus, loss modulus, loss angle tan δ were investigated. Using the dependency of loss angle on temperature, the selected properties for tyre tread vulcanizates were evaluated, including traction on snow and ice, traction on the wet surface and rolling resistance.

  11. Food waste from Danish households: Generation and composition

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2016-01-01

    Sustainable solutions for reducing food waste require a good understanding of food waste generation and composition, including avoidable and unavoidable food waste. We analysed 12 tonnes of residual household waste collected from 1474 households, without source segregation of organic waste. Food...... waste was divided into six fractions according to avoidability, suitability for home-composting and whether or not it was cooked, prepared or had been served within the household. The results showed that the residual household waste generation rate was 434 ± 18 kg per household per year, of which 183...... ± 10 kg per year was food waste. Unavoidable food waste amounted to 80 ± 6 kg per household per year, and avoidable food waste was 103 ± 9 kg per household per year. Food waste mass was influenced significantly by the number of occupants per household (household size) and the housing type. The results...

  12. Treatment of contaminated waste plastics material

    International Nuclear Information System (INIS)

    Sims, J.; Hitchcock, J.W.

    1984-01-01

    Radioactive contaminated plastics material is treated by reducing it to uniform-sized debris and extruding it from a heated extruder into a sealed container in monolithic block form or as an in-fill matrix for other contaminated waste articles to create a substantially void-free sealed mass for disposal. Density adjusting fillers may be included. Extrusion may alternatively take place into a clean sealable plastics tube. (author)

  13. Evaluation of S-type fiberglass composites for use in high-level radioactive waste environments

    International Nuclear Information System (INIS)

    Parra, S.A.

    1996-01-01

    Two types of S-type fiberglass materials were evaluated for use in a high-level radioactive waste environment. The S-type fiberglass composites tested were in the form of tubes and were exposed to a simulated high-level radioactive waste environment consisting of corrosive chemicals, high gamma radiation, and elevated temperatures. The physical properties of the exposed and unexposed tube samples were compared to determine the effects of the simulated environment on the S-type fiberglass composites

  14. Development and study of mechanical behaviour reinforcing composites by waste BTP

    Directory of Open Access Journals (Sweden)

    kanzaoui M.El

    2018-01-01

    Full Text Available Composite materials are used in many industrial applications for their excellent mechanical and electric properties and their low density compared to metal structures. Most countries are extremely rich waste materials such as white ceramic breakages which represents a potential to be developed. Ceramic breakages have exceptional properties and could be effectively exploited in the manufacture of composite materials for a wide variety of applications. The composite materials reinforced by construction waste materials, such as ceramic breaks which offer significant benefits and gains in strength and stiffness properties (Young's modulus E : a material whose modulus Young is very high is said rigid.This article covers the benefits of breakages as ceramic filler used for reinforcement in composites, as well as improve the mechanical response of these structural elements (test compression.

  15. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  16. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  17. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  18. Effect of Waste Materials on Performance of Self Compacting Concrete

    OpenAIRE

    DEMİREL, Sevgi; ÖZ, Hatice Öznur

    2017-01-01

    Asustainable waste management approach is increasingly important in order toconserve natural resources and reduce industrial waste. Creating new areas andmethods for evaluating waste materials has become one of the important researchareas of the scientific world. Due to the limited natural resources, recyclingapplications have emerged as a potential source of raw materials, especially inthe construction industry. For example, the use of industrial wastes (fly ash,marble dust, waste glass and ...

  19. Mechanical degradation temperature of waste storage materials

    International Nuclear Information System (INIS)

    Fink, M.C.; Meyer, M.L.

    1993-01-01

    Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90 degrees C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66 degrees C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-density polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185 degrees C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110 degrees C; (2) polyvinyl chloride -- 130 degrees C; (3) high-density polyethylene -- 140 degrees C; (4) sealing tape -- 140 degrees C. Testing with LDPE and PVC at temperatures ranging from 110 to 130 degrees C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185 degrees C) is not anticipated

  20. Recovering energy and materials from hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-12-01

    The tannery industry faces growing environmental concerns because of the high hazardous metal content of its process waste. The formation, during the tanning process, of the highly toxic hexavalent chromium precludes the use of conventional thermal incineration processes. Borge Tannery in Norway, which processes 600 cattle hides per day, has solved the problem by using new PyroArc technology. The PyroArc waste processing plant can treat all of the tannery's production wastes, transforming them into useful products such as fuel gas and re-usable metal. The fuel gas consists mainly of carbon monoxide, hydrogen and nitrogen, and has a calorific value of about 4 MJ/Nm{sub 3}. About 65-70% of the energy content of the source material (waste or biomass) is recovered in the gas, and this is used to produce steam and/or electricity in a gas engine with a capacity of 580 kW. A further 20-25% of the initial energy content is recovered as heat or low-pressure steam. The plant is designed to be self-sufficient in energy (1.5 MW) and to meet the tannery's maximum requirements for hot water and steam. (UK)

  1. Composites and blends from biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.S. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  2. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    Science.gov (United States)

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  3. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  4. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... detrimental to their recycling. Finally, a material flow analysis (MFA) approach revealed the potential for accumulation and spreading of contaminants in material recycling, on the example of the European paper cycle. Assessment of potential mitigation measures indicated that prevention of chemical use...

  5. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    Science.gov (United States)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  6. Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran

    Directory of Open Access Journals (Sweden)

    Habibe Momeni

    2018-01-01

    Full Text Available Background: The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as “hazardous waste.” Objective: To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. Methods: 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. Results: The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year and toxic waste had the lowest quantity (9.275 kg/year. Components with the highest amounts in dentistry waste products were nylon gloves (16.7%, paper and cardboard (13.4%, latex gloves (10.8%, and pharmaceuticals (10.2%. Waste separation was restricted to sharp and cutting waste. More than half (57% of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. Conclusion: This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.

  7. Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran.

    Science.gov (United States)

    Momeni, Habibe; Tabatabaei Fard, Seyyedeh Fatemeh; Arefinejad, Aliye; Afzali, Afsane; Talebi, Farkhonde; Rahmanpour Salmani, Elham

    2018-01-01

    The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as "hazardous waste." To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year) and toxic waste had the lowest quantity (9.275 kg/year). Components with the highest amounts in dentistry waste products were nylon gloves (16.7%), paper and cardboard (13.4%), latex gloves (10.8%), and pharmaceuticals (10.2%). Waste separation was restricted to sharp and cutting waste. More than half (57%) of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.

  8. PROTECTIVE TREATMENT OF WOOD IMPREGNATING COMPOSITION OF PETROCHEMICAL WASTE

    Directory of Open Access Journals (Sweden)

    T. V. Maslakova

    2015-01-01

    Full Text Available The paper presents results of experimental and theoretical studies aimed at expanding the applications of the copolymers on the basis of the waste styrene production. One of the areas is used as impregnating compositions of wood materials, selection of optimal conditions modification on samples of the most widely used in the industry of wood, such as birch, aspen and other. Studies were conducted to obtain and use an impregnating compositions based on copolymers synthesized from waste products of styrene and the cubic remainder rectification of ethylbenzene (CRRE for the protective treatment of birch wood. Identified physic-chemical characteristics of physical mixtures of copolymers «CORS», «STAM», CRRE at different ratios. Studied the process of modification birch using the method of experiment planning greco-latin square of the fourth order, and the influence of such factors as the temperature of the impregnating composition, the duration of the impregnation, the temperature and duration of thermal treatment on the performance moisture resistance of wood. Were established optimal conditions modification birch wood treated impregnating compositions on the basis of physical mixtures of copolymer «CORS» with CRRE and copolymer «STAM» with CRRE is the mixing ratio 2:1, the duration and temperature of the impregnation 7 h and 95 0C, time and temperature of heat treatment 7 h and 170 0C, respectively. A sealing composition containing CRRE with copolymer «STAM» 1:2 is more preferable, as in the structure of the copolymer «STAM» contains carboxyl and anhydrite group. Thus was justified use for the modification of natural wood impregnating compositions on the basis of physical mixtures of CRRE with copolymers «CORS» and «STAM», which improve the properties of wood, increase moisture and weather resistance more than twice.

  9. Utilization of Blended Waste Materials in Bricks

    Directory of Open Access Journals (Sweden)

    Muhammad Ekhlasur Rahman

    2018-01-01

    Full Text Available Cement is considered a key raw material for brick production. However, excessive use of cement leads to a negative environment impact. Cement replaced with locally available waste materials has a significant potential to address this environmental impact, especially in the construction industry by contributing to cleaner production. The objective of this research is to investigate the performance of brick where cement is replaced by fly ash and palm oil fuel ash, waste materials typically available in Malaysia, where the construction industry is on the rise. To determine the performance of these bricks, a compressive strength test, a water absorption test, and a thermogravimetric analysis were carried out at different percentage combinations of fly ash and palm oil fuel ash. The results from the tests reveal that both fly ash and palm oil fuel ash incorporated bricks satisfy Class 1 and Class 2 load-bearing brick requirements according to the Malaysian Standard MS76:1972 along with water absorption requirements as per ASTM C55-11. The thermogravimetric analysis study confirms that the Ca(OH2 gradually decreases due to the increase of pozzolanic material contents (fly ash and palm oil fuel ash. Moreover, these newly developed bricks cost less than the conventional bricks.

  10. Tests with ceramic waste form materials made by pressureless consolidation

    International Nuclear Information System (INIS)

    Lewis, M. A.; Hash, M. C.; Hebden, A. S.; Ebert, W. L.

    2002-01-01

    A multiphase waste form referred to as the ceramic waste form (CWF) will be used to immobilize radioactively contaminated salt wastes recovered after the electrometallurgical treatment of spent sodium-bonded nuclear fuel. The CWF is made by first occluding salt in zeolite and then encapsulating the zeolite in a borosilicate binder glass. A variety of surrogate CWF materials were made using pressureless consolidation (PC) methods for comparison with CWF consolidated using a hot isostatic press (HIP) method and to study the effects of glass/zeolite batching ratio and processing conditions on the physical and chemical properties of the resulting materials. The data summarized in this report will also be used to support qualification of the PC CWF for disposal in the proposed federal high-level radioactive waste repository at Yucca Mountain. The phase composition and microstructure of HIP CWF and PC CWF are essentially identical: both are composed of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). The primary difference is that PC CWF materials have higher porosities than HIP CWFs. The product consistency test (PCT) that was initially developed to monitor homogeneous glass waste forms was used to measure the chemical durabilities of the CWF materials. Series of replicate tests with several PC CWF materials indicate that the PCT can be conducted with the same precision with CWF materials as with borosilicate glasses. Short-term (7-day) PCTs were used to evaluate the repeatability of making the PC CWF and the effects of the glass/zeolite mass ratio, process temperature, and processing time on the chemical durability. Long-term (up to 1 year) PCTs were used to compare the durabilities of HIP and PC CWFs and to estimate the apparent solubility limit for the PC CWF that is needed for modeling. The PC and HIP CWF materials had similar disabilities, based on the release of silicon in long

  11. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  12. Apparatus and method for treating waste material

    International Nuclear Information System (INIS)

    Allison, W.

    1981-01-01

    Apparatus is described for the packaging of waste material in a vessel, comprising: a vessel entry station having inlet and outlet doors; a filling station downstream of the vessel entry station and having a filling position to which vessels are transferred from the entry station through the outlet door, the filling station having filling means for introducing radioactive waste into the vessel; a mixing station having a mixing position to which a vessel is transferred from the filling position; a capping station having a capping position to which a vessel is transferred from the mixing position; and means for effecting transfer of a vessel through the apparatus. Radiation shielding is provided. (U.K.)

  13. Composites as structural materials in fusion reactors

    International Nuclear Information System (INIS)

    Megusar, J.

    1989-01-01

    In fusion reactors, materials are used under extreme conditions of temperature, stress, irradiation, and chemical environment. The absence of adequate materials will seriously impede the development of fusion reactors and might ultimately be one of the major difficulties. Some of the current materials problems can be solved by proper design features. For others, the solution will have to rely on materials development. A parallel and balanced effort between the research in plasma physics and fusion-related technology and in materials research is, therefore, the best strategy to ultimately achieve economic, safe, and environmentally acceptable fusion. The essential steps in developing composites for structural components of fusion reactors include optimization of mechanical properties followed by testing under fusion-reactor-relevant conditions. In optimizing the mechanical behavior of composite materials, a wealth of experience can be drawn from the research on ceramic matrix and metal matrix composite materials sponsored by the Department of Defense. The particular aspects of this research relevant to fusion materials development are methodology of the composite materials design and studies of new processing routes to develop composite materials with specific properties. Most notable examples are the synthesis of fibers, coatings, and ceramic materials in their final shapes form polymeric precursors and the infiltration of fibrous preforms by molten metals

  14. Waste in Education: The Potential of Materiality and Practice

    Science.gov (United States)

    Jørgensen, Nanna Jordt; Madsen, Katrine Dahl; Laessøe, Jeppe

    2018-01-01

    This article explores how waste materials and waste practices figure in education, pointing to educational potentials of waste which have hitherto received little consideration in environmental and sustainability education practice and research. Building on empirical research on waste education in Danish schools and preschools, we discuss how an…

  15. 2009 National inventory of radioactive material and wastes. In short

    International Nuclear Information System (INIS)

    2009-01-01

    This booklet gives a summary of the national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). Intended for public information, the booklet explains the basics of radioactive materials and wastes and waste management, and gives some data on present and future waste volumes, information about radioactive waste classification, the geographical distribution of waste sites in France, etc. The various types of radioactive wastes are described (classified by their lifetime and activity level) as well as historical storage sites, polluted areas where wastes are stored, radioactive objects, etc. and their respective management approaches are presented

  16. Nuclear-waste-package materials degradation modes and accelerated testing

    International Nuclear Information System (INIS)

    1981-09-01

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  17. Nanocellulose based polymer composite for acoustical materials

    Science.gov (United States)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  18. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  19. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    International Nuclear Information System (INIS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-01-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO 2 , TiO 2 , SiO 2 ) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO 2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 – 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm. (paper)

  20. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    International Nuclear Information System (INIS)

    Indacochea, J. E.; Gattu, V. K.; Chen, X.; Rahman, T.

    2017-01-01

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviors of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  1. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    Energy Technology Data Exchange (ETDEWEB)

    Indacochea, J. E. [Univ. of Illinois, Chicago, IL (United States); Gattu, V. K. [Univ. of Illinois, Chicago, IL (United States); Chen, X. [Univ. of Illinois, Chicago, IL (United States); Rahman, T. [Univ. of Illinois, Chicago, IL (United States)

    2017-06-15

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviors of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  2. A Fire-Retardant Composite Made from Domestic Waste and PVA

    Directory of Open Access Journals (Sweden)

    Neni Surtiyeni

    2016-01-01

    Full Text Available We report the synthesis of a composite from domestic waste with the strength of wood building materials. We used original domestic waste with only a simple pretreatment to reduce the processing cost. The wastes were composed of organic components (generally originating from foods, paper, plastics, and clothes; the average fraction of each type of waste mirrored the corresponding fractions of wastes in the city of Bandung, Indonesia. An initial survey of ten landfills scattered through Bandung was conducted to determine the average fraction of each component in the waste. The composite was made using a hot press. A large number of synthesis parameters were tested to determine the optimum ones. The measured mechanical strength of the produced composite approached the mechanical properties of wood building materials. A fire-retardant powder was added to retard fire so that the composite could be useful for the construction of residential homes of lower-income people who often have problems with fire. Fire tests showed that the composites were more resistant to fire than widely used wood building materials.

  3. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  4. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  5. Design of composite microparticle systems based on pectin and waste material of propolis for modified l-alanyl-l-glutamine release and with immunostimulant activity.

    Science.gov (United States)

    Villa Nova, Mônica; Ratti, Bianca A; Herculano, Leandro S; Bittencourt, Paulo R S; Novello, Cláudio R; Bazotte, Roberto Barbosa; Lautenschlager, Sueli de Oliveira Silva; Bruschi, Marcos Luciano

    2017-12-12

    Catabolic conditions like acquired immunodeficiency syndrome, cancer, and burn can cause immunosuppression. Amino acids such as alanine and glutamine are essential for the activity of the immune system. Propolis is immunostimulant and the waste of propolis extraction has been reused with technological and therapeutic purposes. Therefore, this study describes the association of propolis byproduct extract (BPE) with pectin to prepare spray-dried microparticles containing the dipeptide l-alanyl-l-glutamine as stimulant systems of neutrophils. The use of a factorial design allowed selecting the best formulation, which was characterized by morphology, size, and entrapment efficiency analyses. In addition, the systems were characterized by thermal and X-ray diffraction analysis, Fourier-transform infrared spectroscopy, in vitro drug release, and in vitro cytotoxicity and stimulation test of neutrophils. Small well-structured microparticles with good entrapment efficiency values were achieved. Thermal stability of formulation was observed, and it was proved that pectin, BPE and l-alanyl-l-glutamine were dispersed throughout the matrix. The drug was released from the microparticles during 24 h governed by swelling and diffusion. The drug-loaded formulations showed a significant stimulating effect on neutrophils. These structures could increase the activity of immune cells, and other in vitro and in vivo studies should be performed in the future.

  6. Power plant wastes capitalization as geopolymeric building materials

    Science.gov (United States)

    Ciobanu, Gabriela; Litu, Loredana; Harja, Maria

    2017-11-01

    In this innovative study, we are present an investigation over the properties of geopolymeric materials prepared using ash supplied by power plant Iasi, Romania and sodium hydroxide solutions/pellets. Having as objective a minimum consumption of energy and materials was developed a class of advanced eco-materials. New synthesized materials can be used as a binder for cement replacement or for the removal/immobilization of pollutants from waste waters or soils. It offers an advanced and low cost-effective solution too many problems, where waste must be capitalized. The geopolymer formation, by hydrothermal method, is influenced by: temperature (20-600°C), alkali concentration (2M-6M), solid /liquid ratio (1-2), ash composition, time of heating (2-48 h), etc. The behaviour of the FTIR peak of 6M sample indicated upper quantity of geopolymer formation at the first stage of the reaction. XRD spectra indicated phases like sodalite, faujasite, Na-Y, which are known phases of geopolymer/zeolite. Advanced destroyed of ash particles due to geopolymerisation reaction were observed when the temperature was higher. At the constant temperature the percentage of geopolymer increases with increasing of curing time, from 4-48 h. Geopolymer materials are environmentally friendly, for its obtaining energy consumption, and CO2 emission is reduced compared to cement binder.

  7. Chemical composition of lunar material.

    Science.gov (United States)

    Maxwell, J A; Abbey, S; Champ, W H

    1970-01-30

    Chemical and emission spectrographic analyses of three Apollo 11 samples, 10017-29, 10020-30, and 10084-132, are given. Major and minor constituents were determined both by conventional rock analysis methods and by a new composite scheme utilizing a lithium fluoborate method for dissolution of the samples and atomic absorption spectroscopy and colorimetry. Trace constituents were determined by optical emission spectroscopy involving a d-c arc, air-jet controlled.

  8. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials. Final Report

    International Nuclear Information System (INIS)

    Lindle, Dennis W.

    2011-01-01

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate 'real' waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  9. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  10. Fibrous and textile materials for composite applications

    CERN Document Server

    Fangueiro, Raul

    2016-01-01

    This book focuses on the fibers and textiles used in composite materials. It presents both existing technologies currently used in commercial applications and the latest advanced research and developments. It also discusses the different fiber forms and architectures, such as short fibers, unidirectional tows, directionally oriented structures or advanced 2D- and 3D-textile structures that are used in composite materials. In addition, it examines various synthetic, natural and metallic fibers that are used to reinforce polymeric, cementitious and metallic matrices, as well as fiber properties, special functionalities, manufacturing processes, and composite processing and properties. Two entire chapters are dedicated to advanced nanofiber and nanotube reinforced composite materials. The book goes on to highlight different surface treatments and finishes that are applied to improve fiber/matrix interfaces and other essential composite properties. Although a great deal of information about fibers and textile str...

  11. Radiation damage in natural materials: implications for radioactive waste forms

    International Nuclear Information System (INIS)

    Ewing, R.C.

    1981-01-01

    The long-term effect of radiation damage on waste forms, either crystalline or glass, is a factor in the evaluation of the integrity of waste disposal mediums. Natural analogs, such as metamict minerals, provide one approach for the evaluaton of radiation damage effects that might be observed in crystalline waste forms, such as supercalcine or synroc. Metamict minerals are a special class of amorphous materials which were initially crystalline. Although the mechanism for the loss of crystallinity in these minerals (mostly actinide-containing oxides and silicates) is not clearly understood, damage caused by alpha particles and recoil nuclei is critical to the metamictization process. The study of metamict minerals allows the evaluation of long-term radiation damage effects, particularly changes in physical and chemical properties such as microfracturing, hydrothermal alteration, and solubility. In addition, structures susceptible to metamictization share some common properties: (1) complex compositions; (2) some degree of covalent bonding, instead of being ionic close-packed MO/sub x/ structures; and (3) channels or interstitial voids which may accommodate displaced atoms or absorbed water. On the basis of these empirical criteria, minerals such as pollucite, sodalite, nepheline and leucite warrant careful scrutiny as potential waste form phases. Phases with the monazite or fluorite structures are excellent candidates

  12. Material Recovery and Waste Form Development FY 2014 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

  13. State-of-the-art of biodegradable composite materials

    International Nuclear Information System (INIS)

    Baley, Ch.; Grohens, Y.; Pillin, I.

    2004-01-01

    Nowadays, the market demand for environment friendly materials is in strong growth. The biodegradable composites (biodegradable fibres and polymers) mainly extracted from renewable resources will be a major contributor to the production of new industrial high performance products partially solving the problem of waste management. At the end of the lifetime, a structural bio-composite could be be crushed and recycled through a controlled industrial composting process. This the state-of-the-art report focuses on the biopolymers the vegetable fibres properties, the mechanisms of biodegradation and the examples of biodegradable composites. Eco-design of new products requires these new materials for which a life cycle analysis is nevertheless necessary to validate their environmental benefits. (authors)

  14. Mechanics of composite materials: Unified micromechanical approach

    International Nuclear Information System (INIS)

    Aboundi, J.

    1991-01-01

    Although many books have been written on the mechanics of composite materials, only a vew few have been devoted almost exclusively to the micromechanics aspects. The present monograph is devoted primarily to the micromechanics of fiber and particle reinforced composites with some additional treatment of laminates as well. Thus, this book would probably be more suitable as a reference book than a textbook

  15. Graphite matrix materials for nuclear waste isolation

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept

  16. Cement mortar-degraded spinney waste composite as a matrix for immobilizing some low and intermediate level radioactive wastes: Consistency under frost attack

    International Nuclear Information System (INIS)

    Eskander, S.B.; Saleh, H.M.

    2012-01-01

    Highlights: ► Spinney fiber is one of the wastes generated from spinning of cotton raw materials. ► Cement mortar composite was hydrated by using the degraded slurry of spinney wastes. ► Frost resistance was assessed for the mortar-degraded spinney waste composite specimens. ► SEM image, FT-IR and XRD patterns were performed for samples subjected to frost attack. - Abstract: The increasing amounts of spinning waste fibers generated from cotton fabrication are problematic subject. Simultaneous shortage in the landfill disposal space is also the most problem associated with dumping of these wastes. Cement mortar composite was developed by hydrating mortar components using the waste slurry obtained from wet oxidative degradation of these spinney wastes. The consistency of obtained composite was determined under freeze–thaw events. Frost resistance was assessed for the mortar composite specimens by evaluating its compressive strength, apparent porosity and mass loss at the end of each period of freeze–thaw up to 45 cycles. Scanning electron microscopy, infrared spectroscopy and X-ray diffraction analyses were performed for samples subjected to frost attack aiming at evaluating the cement mortar in the presence of degraded spinney waste. The cement mortar composite exhibits acceptable resistance and durability against the freeze–thaw treatment that could be chosen in radioactive waste management as immobilizing agent for some low and intermediate level radioactive wastes.

  17. The aqueous corrosion behavior of technetium - Alloy and composite materials

    International Nuclear Information System (INIS)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M.; Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K.

    2013-01-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection

  18. The aqueous corrosion behavior of technetium - Alloy and composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K. [Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154 (United States)

    2013-07-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection.

  19. Application of electron and Bremsstrahlung beams for composite materials processing

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Avilov, A.M.; Popov, G.F.; Rudychev, V.G.

    1998-01-01

    In Kharkiv University the radiation process of obtaining composite polymer materials, CPM, with high strength properties and corrosion resistance was studied. CPM are manufactured by vacuum impregnating capillary-porous materials with synthetic monomers and oligomers or by molding granular waste and resins which are further treated by relativistic electron or Bremsstrahlung beam. Such radiation treatment yields new CPM in which capillary-porous structure acting as reinforcement is filled with polymer. The results of the applied research with industrial electron accelerator in the field of thick CPM formation are presented

  20. Composite Compost Produced from Organic Waste

    OpenAIRE

    Lăcătuşu Radu; Căpăţână Romeo; Lăcătuşu Anca-Rovena

    2016-01-01

    The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33%) of...

  1. Radiolytic gas generation in plutonium contaminated waste materials

    International Nuclear Information System (INIS)

    Kazanjian, A.R.

    1976-01-01

    Many plutonium contaminated waste materials decompose into gaseous products because of exposure to alpha radiation. The gases generated (usually hydrogen) over long-storage periods may create hazardous conditions. To determine the extent of such hazards, knowing the gas generation yields is necessary. These yields were measured by contacting some common Rocky Flats Plant waste materials with plutonium and monitoring the enclosed atmospheres for extensive periods of time. The materials were Plexiglas, polyvinyl chloride, glove-box gloves, machining oil, carbon tetrachloride, chlorothene VG solvent, Kimwipes (dry and wet), polyethylene, Dowex-1 resin, and surgeon's gloves. Both 239 Pu oxide and 238 Pu oxide were used as radiation sources. The gas analyses were made by mass spectrometry and the results obtained were the total gas generation, the hydrogen generation, the oxygen consumption rate, and the gas composition over the entire storage period. Hydrogen was the major gas produced in most of the materials. The total gas yields varied from 0.71 to 16 cm 3 (standard temperature pressure) per day per curie of plutonium. The oxygen consumption rates varied from 0.0088 to 0.070 millimoles per day per gram of plutonium oxide-239 and from 0.0014 to 0.0051 millimoles per day per milligram 238 Pu

  2. Comparative studies on acid leaching of zinc waste materials

    Science.gov (United States)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  3. Cementitious Composites for Immobilization of Radioactive Waste into Final Wasteform

    International Nuclear Information System (INIS)

    Varlakov, A.P.

    2013-01-01

    Research and development works are important on universal cementation technological processes to achieve maximal conditioning efficiency for various type wastes such as saline liquid radioactive waste (LRW), where the variants of cement composition formulations, modes of cement compounds preparation and types of equipment are minimised. This work presents the results of development of multi-component cement compositions for the complex of technological processes of different types of radioactive waste (RAW) cementation: concentrated saline LRW, concentrated boron-containing saline LRW, LRW with high surface active substances content, with residues, liquid organic radioactive waste, spent ion-exchange resins and filter-perlite powder, ash residues from solid radioactive waste (SRW) combustion, mixed closely packed and large-fragmented SRW. The research has found technological parameters of equipment and cement compositions providing reliable RAW cementation. Continuous and periodic cycle plants were developed for LRW cementation by mixing. Pouring and penetration methods were developed for SRW cementation. Based on compliance with equipment parameters, methods and cement grouts were selected for most effective technological processes of cementation. Formulations of cement compositions were developed to provide reliable preparation of cement compounds with maximal waste loading at required cement compound quality. The complex of technological processes of cementation using multi-component cement compositions allows highly efficient treatment of the wide range of RAW including problematic waste streams and wastes generated in small amounts. Rational reduction of cementation variants significantly increases economical efficiency of immobilisation. (author)

  4. Material control and accountability procedures for a waste isolation repository

    International Nuclear Information System (INIS)

    Jenkins, J.D.; Allen, E.J.; Blakeman, E.D.

    1978-05-01

    The material control and accountability needs of a waste isolation repository are examined. Three levels of control are discussed: (1) item identification and control, (2) tamper indication, and (3) quantitative material assay. A summary of waste characteristics is presented and, based on these, plus a consideration of the accessibility of the various types of waste, material control by item identification and accountability (where the individual waste container is the basic unit) is recommended. Tamper indicating procedures are also recommended for the intermediate and low level waste categories

  5. Composite materials for wind power turbine blades

    DEFF Research Database (Denmark)

    Brøndsted, P.; Lilholt, H.; Lystrup, Aa.

    2005-01-01

    , and industrial potential. The important technologies of today are prepreg (pre-impregnated) technology and resin infusion technology. The mechanical properties of fiber composite materials are discussed, with a focus on fatigue performance. Damage and materials degradation during fatigue are described. Testing...

  6. Repeated application of organic waste affects soil organic matter composition

    DEFF Research Database (Denmark)

    Peltre, Clément; Gregorich, Edward G.; Bruun, Sander

    2017-01-01

    Land application of organic waste is an important alternative to landfilling and incineration because it helps restore soil fertility and has environmental and agronomic benefits. These benefits may be related to the biochemical composition of the waste, which can result in the accumulation...... of different types of carbon compounds in soil. The objective of this study was to identify and characterise changes in soil organic matter (SOM) composition after repeated applications of organic waste. Soil from the CRUCIAL field experiment in Denmark was sampled after 12 years of annual application...... that there was accumulation in soil of different C compounds for the different types of applied organic waste, which appeared to be related to the degree to which microbial activity was stimulated and the type of microbial communities applied with the wastes or associated with the decomposition of applied wastes...

  7. Removal of radioactive and other hazardous material from fluid waste

    Science.gov (United States)

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  8. Damping in aerospace composite materials

    Science.gov (United States)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  9. Radioactive waste material testing capabilities in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    1999-01-01

    Radioactive material including wastes, generated by Romanian nuclear facilities are packaged in accordance with national and IAEA's Regulation for a safe transport to the disposal center. The evaluation and certification of packages is accomplished by subjecting these packages to normal and simulated test conditions in order to prove the package to technical performances. The standards provide to package designers the possibility to use analysis, testing or a combination of these. The paper describes the experimental and simulating qualification tests for type A packages used for transport and storage of radioactive wastes (low level). Testing are used to substantiate assumptions used in analytical models and to demonstrate package structural response. There are also presented testing capabilities which are used to perform and simulate the required qualification tests. By direct comparison of analysis and experimental results, the degree of reliability of analytical methods and admissibility of assumptions taken in package designing and in demonstrating its safety under conditions of INR - Pitesti, within the contract between the INR - Pitesti and IAEA - Vienna, were determined. (author)

  10. Use of waste materials for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Vitiello, R.; Tesser, R.; Di Serio, M.; Santacesaria, E. [Napoli Univ. (Italy). Dipt. di Scienze Chimiche; Buonerba, A.; Grassi, A. [Salerno Univ. (Italy). Dipt. di Chimica e Biologia

    2012-07-01

    Waste raw materials obtained by several sources of both food and agro industries could be considered for biofuel production. In the last years, this topic has growing in interest. At this purpose, our research, has been focused on the development of new technologies to obtain biodiesel from the mentioned wastes feedstock. In particular from oleins, that are mixtures of free fatty acids (FFAs) and triglycerides. Therefore, we are studying the way to produce biodiesel in two steps: an esterification reaction of FFAs with glycerol and a transesterification with methanol of the whole mixture. The esterification of FFAs with glycerol has the advantage of using a relatively high temperature favouring the stripping of water formed during the esterification. In this way esterification equilibrium is shifted to the right. Then, the mixture of mono-, di- and triglycerides, obtained by esterification with glycerol, can be submitted to transesterification with methanol, in the usual way, to produce biodiesel Catalysts promoting esterification, normally, are mineral acids or heterogeneous Bronsted acid catalysts. At this purpose, the classical sulphonated polystyrene acid resins cannot be used at temperature greater than 120 C. Therefore, a new class of sulfonated polymers, with enhanced temperature resistance, has been developed by selective and quantitative sulfonation of olefinic butadiene units in multiblock copolymers syndiotactic polystyrene-co-1,4-cis-polybutadiene. This catalytic system has been successfully tested in the above mentioned esterification reaction and compared to classic commercial strong acid catalysts like Amberlyst {sup registered}, Nafion {sup registered} and sulfuric acid. (orig.)

  11. A U-bearing composite waste form for electrochemical processing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.

  12. Updating and testing of a Finnish method for mixed municipal solid waste composition studies.

    Science.gov (United States)

    Liikanen, M; Sahimaa, O; Hupponen, M; Havukainen, J; Sorvari, J; Horttanainen, M

    2016-06-01

    More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?

    DEFF Research Database (Denmark)

    Tonini, Davide; Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2013-01-01

    Waste refineries focusing on multiple outputs of material resources, energy carriers, and nutrients may potentially provide more sustainable utilization of waste resources than traditional waste technologies. This consequential life cycle assessment (LCA) evaluated the environmental performance....... Overall, the waste refinery provided global warming (GW) savings comparable with efficient incineration, MBT, and bioreactor landfilling technologies. The main environmental benefits from waste refining were a potential for improved phosphorus recovery (about 85%) and increased electricity production (by...

  14. Influence of assumptions about household waste composition in waste management LCAs.

    Science.gov (United States)

    Slagstad, Helene; Brattebø, Helge

    2013-01-01

    This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Biotransformation of an uncured composite material

    Science.gov (United States)

    Welsh, Clement J.; Glass, Michael J.; Cheslack, Brian; Pryor, Robert; Tran, Duan K.; Bowers-Irons, Gail

    1994-01-01

    The feasibility of biologically degrading prepreg wastes was studied. The work was conducted with the intention of obtaining baseline data that would facilitate the achievement of two long-range goals. These goals are: (1) the biological remediation of the hazardous components in the prepreg wastes, and (2) providing the potential for recycling the prepreg waste fibers. The experiments examined a prepreg that employs an bismaleimide resin system. Initial results demonstrated an obvious deterioration of the prepreg material when incubated with several bacterial strains. The most active cultures were identified as a mixture of 'Bacillus cereus' and 'Pseudomonas sp'. Gas chromatography analyses revealed seven primary compounds in the resin mixture. Biotransformation studies, using the complete prepreg material, demonstrated on obvious loss of all seven organic compounds. Gas chromatography-mass spectrometry analyses resulted in structure assignments for the two primary components of the resin. Both were analogs of Bisphenol A; one being bismaleimide, and the other being Bisphenol A containing a diglycidyl moiety. The 'diglycidyl analog' was purified using thin-layer chromatography and the biotransformation of this compound (at 27 ug/ml bacterial culture) was monitored. After a seven-day incubation, approximately 40% of the organic compound was biotransformed. These results demonstrate the biotransformation of the prepreg resin and indicate that biological remediation of the prepreg wastes is feasible.

  16. Processes for fabricating composite reinforced material

    Science.gov (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  17. Sustainable Materials Management (SMM) WasteWise Data

    Science.gov (United States)

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  18. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  19. The waste minimization program at the Feed Materials Production Center

    International Nuclear Information System (INIS)

    Blasdel, J.E.; Crotzer, M.E.; Gardner, R.L.; Kato, T.R.; Spradlin, C.N.

    1987-01-01

    A waste minimization program is being implemented at the Feed Materials Production Center to reduce the generation of uranium-contaminated wastes and to comply with existing and forthcoming regulations. Procedures and plans are described which deal with process and non-process trash, contaminated wood and metals, used metal drums, and major process wastes such as contaminated magnesium fluoride and neutralized raffinate. Waste minimization techniques used include segregation, source reduction, volume reduction, material substitution and waste/product recycle. The importance of training, communication, and incentives is also covered. 5 refs., 11 figs

  20. Enhanced Materials from Nature: Nanocellulose from Citrus Waste

    Directory of Open Access Journals (Sweden)

    Mayra Mariño

    2015-04-01

    Full Text Available Nanocellulose is a relatively inexpensive, highly versatile bio-based renewable material with advantageous properties, including biodegradability and nontoxicity. Numerous potential applications of nanocellulose, such as its use for the preparation of high-performance composites, have attracted much attention from industry. Owing to the low energy consumption and the addition of significant value, nanocellulose extraction from agricultural waste is one of the best alternatives for waste treatment. Different techniques for the isolation and purification of nanocellulose have been reported, and combining these techniques influences the morphology of the resultant fibers. Herein, some of the extraction routes for obtaining nanocellulose from citrus waste are addressed. The morphology of nanocellulose was determined by Scanning Electron Microscopy (SEM and Field Emission Scanning Electron Microscopy (FESEM, while cellulose crystallinity indexes (CI from lyophilized samples were determined using solid-state Nuclear Magnetic Resonance (NMR and X-Ray Diffraction (XRD measurements. The resultant nanofibers had 55% crystallinity, an average diameter of 10 nm and a length of 458 nm.

  1. Enhanced materials from nature: nanocellulose from citrus waste.

    Science.gov (United States)

    Mariño, Mayra; Lopes da Silva, Lucimara; Durán, Nelson; Tasic, Ljubica

    2015-04-03

    Nanocellulose is a relatively inexpensive, highly versatile bio-based renewable material with advantageous properties, including biodegradability and nontoxicity. Numerous potential applications of nanocellulose, such as its use for the preparation of high-performance composites, have attracted much attention from industry. Owing to the low energy consumption and the addition of significant value, nanocellulose extraction from agricultural waste is one of the best alternatives for waste treatment. Different techniques for the isolation and purification of nanocellulose have been reported, and combining these techniques influences the morphology of the resultant fibers. Herein, some of the extraction routes for obtaining nanocellulose from citrus waste are addressed. The morphology of nanocellulose was determined by Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM), while cellulose crystallinity indexes (CI) from lyophilized samples were determined using solid-state Nuclear Magnetic Resonance (NMR) and X-Ray Diffraction (XRD) measurements. The resultant nanofibers had 55% crystallinity, an average diameter of 10 nm and a length of 458 nm.

  2. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  3. Effects of composition on waste glass properties

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Chick, L.A.

    1979-01-01

    The electrical conductivity, viscosity, chemical durability, devitrification, and crystallinity of a defense waste glass were measured. Each oxide component in the glass was varied to determine its effect on these properties. A generic study is being developed which will determine the effects of 26 oxides on the above and additional properties of a wide field of possible waste glasses. 5 figures, 2 tables

  4. Polyester Apparel Cutting Waste as Insulation Material

    OpenAIRE

    Trajković, Dušan; Jordeva, Sonja; Tomovska, Elena; Zafirova, Koleta

    2017-01-01

    Polyester waste is the dominant component of the clothing industry waste stream, yet its recycling in this industry is rarely addressed. This paper proposes using polyester cutting waste as an insulation blanket for roofing and buildings’ internal walls in order to reduce environmental pollution. The designed textile structures used waste cuttings from different polyester fabrics without opening the fabric to fibre. Thermal insulation, acoustic insulation, fire resistance and biodegradation o...

  5. Health monitoring method for composite materials

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  6. Disposal containers for radioactive waste materials and separation systems for radioactive waste materials

    International Nuclear Information System (INIS)

    Rubin, L.S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. The separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. The inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and the discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by a second valve structure that is centrifugally actuated to open the discharge ports. The container also includes a coupling structure for releasable engagement with the centrifugal drive structure. The centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized. (author)

  7. Machining of Fibre Reinforced Plastic Composite Materials

    Science.gov (United States)

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  8. Machining of Fibre Reinforced Plastic Composite Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  9. Homogenization in thermoelasticity: application to composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Peyroux, R [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France); Licht, C [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France)

    1993-11-01

    One of the obstacles to the industrial use of metal matrix composite materials is the damage they rapidly undergo when they are subjected to cyclic thermal loadings; local thermal stresses of high level can develop, sometimes nearby or over the elastic limit, due to the mismatch of elastic and thermal coefficients between the fibers and the matrix. For the same reasons, early cracks can appear in composites like ceramic-ceramic. Therefore, we investigate the linear thermoelastic behaviour of heterogeneous materials, taking account of the isentropic coupling term in the heat conduction equation. In the case of periodic materials, recent results, using the homogenization theory, allowed us to describe macroscopic and microscopic behaviours of such materials. This paper is concerned with the numerical simulation of this problem by a finite element method, using a multiscale approach. (orig.).

  10. Youth Solid Waste Educational Materials List, November 1991.

    Science.gov (United States)

    Cornell Univ., Ithaca, NY. Cooperative Extension Service.

    This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…

  11. Characterization study of industrial waste glass as starting material ...

    African Journals Online (AJOL)

    In present study, an industrial waste glass was characterized and the potential to assess as starting material in development of bioactive materials was investigated. A waste glass collected from the two different glass industry was grounded to fine powder. The samples were characterized using X-ray fluorescence (XRF), ...

  12. Structured Piezoelectric Composites: Materials and Applications

    OpenAIRE

    Van den Ende, D.A.

    2012-01-01

    The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits their practical application to certain specific fields. Piezoelectric composites, which contain an active piezoelectric (ceramic) phase in a robust polymer matrix, can potentially have better proper...

  13. Glass-crystalline materials for active waste incorporation

    International Nuclear Information System (INIS)

    Kulichenko, V.V.; Krylova, N.V.; Vlasov, V.I.; Polyakov, A.S.

    1979-01-01

    This paper presents the results of investigations into the possibility and conditions for using glass-crystalline materials for the incorporation of radionuclides. Materials of a cast pyroxene type that are obtained by smelting calcined wastes with acid blast furnace slags are described. A study was also made of materials of a basalt type prepared from wastes with and without alkali metal salt. Changes in the structure and properties of materials in the process of storage at different temperatures have been studied

  14. Characterization of materials for waste-canister compatibility studies

    International Nuclear Information System (INIS)

    McCoy, H.E.; Mack, J.E.

    1981-10-01

    Sample materials of 7 waste forms and 15 potential canister materials were procured for compatibility tests. These materials were characterized before being placed in test, and the results are the main topic of this report. A test capsule was designed for the tests in which disks of a single waste form were contacted with duplicate samples of canister materials. The capsules are undergoing short-term tests at 800 0 C and long-term tests at 100 and 300 0 C

  15. Fixation of waste materials in grouts: Part 3, Equation for critical flow rate

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Spence, R.D.; Godsey, T.T.; Dodson, K.E.

    1986-12-01

    Critical flow rate data for grouts prepared from three distinctly different nuclear waste materials have been correlated. The wastes include Oak Ridge National Laboratory (ORNL) low-level waste (LLW) solution, Hanford Facility waste (HFW) solution, and cladding removal waste (CRW) slurry. Data for the three wastes have been correlated with a 0.96 coefficient of correlation by the following equation: log V/sub E/ = 0.289 + 0.707 log μ/sub E/, where V/sub E/ and μ/sub E/ denote critical flow rate in m 3 /min and apparent viscosity in Pa.s, respectively. The equation may be used to estimate critical flow rate for grouts prepared within the compositional range of the investigation. 5 refs., 4 figs., 7 tabs

  16. Hanford Site Composite Analysis Technical Approach Description: Radionuclide Inventory and Waste Site Selection Process.

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Will E.; Mehta, Sunil

    2017-09-13

    The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.

  17. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste

    International Nuclear Information System (INIS)

    Adrados, A.; Marco, I. de; Caballero, B.M.; López, A.; Laresgoiti, M.F.; Torres, A.

    2012-01-01

    Highlights: ► Pyrolysis of plastic waste. ► Comparison of different samples: real waste, simulated and real waste + catalyst. ► Study of the effects of inorganic components in the pyrolysis products. - Abstract: Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  18. Material chemistry challenges in vitrification of high level radioactive waste

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2008-01-01

    Full text: Nuclear technology with an affective environmental management plan and focused attention on safety measures is a much cleaner source of electricity generation as compared to other sources. With this perspective, India has undertaken nuclear energy program to share substantial part of future need of power. Safe containment and isolation of nuclear waste from human environment is an indispensable part of this programme. Majority of radioactivity in the entire nuclear fuel cycle is high level radioactive liquid waste (HLW), which is getting generated during reprocessing of spent nuclear fuels. A three stage strategy for management of HLW has been adopted in India. This involves (i) immobilization of waste oxides in stable and inert solid matrices, (ii) interim retrievable storage of the conditioned waste product under continuous cooling and (iii) disposal in deep geological formation. Borosilicate glass matrix has been adopted in India for immobilization of HLW. Material issue are very important during the entire process of waste immobilization. Performance of the materials used in nuclear waste management determines its safety/hazards. Material chemistry therefore has a significant bearing on immobilization science and its technological development for management of HLW. The choice of suitable waste form to deploy for nuclear waste immobilization is difficult decision and the durability of the conditioned product is not the sole criterion. In any immobilization process, where radioactive materials are involved, the process and operational conditions play an important role in final selection of a suitable glass formulation. In remotely operated vitrification process, study of chemistry of materials like glass, melter, materials of construction of other equipment under high temperature and hostile corrosive condition assume significance for safe and un-interrupted vitrification of radioactive to ensure its isolation waste from human environment. The present

  19. Preliminary Validation of Composite Material Constitutive Characterization

    Science.gov (United States)

    John G. Michopoulos; Athanasios lliopoulos; John C. Hermanson; Adrian C. Orifici; Rodney S. Thomson

    2012-01-01

    This paper is describing the preliminary results of an effort to validate a methodology developed for composite material constitutive characterization. This methodology involves using massive amounts of data produced from multiaxially tested coupons via a 6-DoF robotic system called NRL66.3 developed at the Naval Research Laboratory. The testing is followed by...

  20. Composite materials. From gammas to weight measurement

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    A gamma photons backscattering gauge called 'Filbor 2' has been designed by the CEA/DAMRI (Saclay, France) and allows to measure the resin content of fiber wicks (boron, carbon, kevlar, glass..) devoted to the manufacturing of elements made of composite materials. (J.S.)

  1. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  2. Composition models for the viscosity and chemical durability of West Valley related nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Saad, E.E.; Freeborn, W.P.; Macedo, P.B.; Pegg, I.L.; Sassoon, R.E.; Barkatt, A.; Finger, S.M.

    1988-01-01

    There are two important criteria that must be satisfied by a nuclear waste glass durability and processability. The chemical composition of the glass must be such that it does not dissolve or erode appreciably faster than the decay of the radioactive materials embedded in it. The second criterion, processability, means that the glass must melt with ease, must be easily pourable, and must not crystallize appreciably. This paper summarizes the development of simple models for predicting the durability and viscosity of nuclear waste glasses from their composition

  3. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Cunnane, J.; Sutaria, M.; Kurokawa, S.; Mayberry, J.

    1994-04-01

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  4. Study on Waste Composition at Taman Pura Kencana, Batu Pahat

    Directory of Open Access Journals (Sweden)

    Abdul Kadir Aeslina

    2017-01-01

    Full Text Available Municipal solid waste management is a major challenge due to the increase in population and the development of a country. The problems also arise when the lifespan of the landfills available are shorten than estimated. The aim of this study is to determine waste composition at Taman Pura Kencana. The waste collection was carried out for 50 houses on a daily basis. The collection and sorting out method was conducted based on Malaysian Standard MS 2505:2012 and the data collected is recorded. The result showed the moisture content was approximately ranging between 25% – 30%. The density for each waste has been calculated and the result was recorded accordingly. The highest density is metal followed by organic waste, glass, napkins, household hazardous waste, textiles, paper, plastic rigid, plastic film, rubber and tetrapek. The waste collected also were categorized and consisted of food waste/organic (43.75%, paper (17.97%, plastics rigid (13.58%, plastic film (10.62%, napkins (4.43%, glass (3.10%, household hazardous waste (1.68%, metal (1.67%, tetrapek (1.34% , rubber (0.93%, and textiles (0.92%. Results from the analysis illustrated that waste generation in Taman Pura Kencana may influenced by sudden changes in lifestyles, incomes, household size and also increase of population.

  5. Methods of vitrifying waste with low melting high lithia glass compositions

    Science.gov (United States)

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  6. Use of waste material in cultivation substrates

    Directory of Open Access Journals (Sweden)

    Petr Salaš

    2004-01-01

    Full Text Available Gardeners' practical experience and experimental work prove the affirmation that the used substrate is a very important base for the production of quality nursery products. It is important to emphasis the complexity and synergy of all factors influencing the ecosystem and there mutual relations. Physical, chemical and biological properties do not separately affect the growth and development of plants. In addition, the relations are not statical but differ in relation with other factors changes. This article is dealing with the possibility to use waste material from timber processing in cultivation substrates. The large scale use of such substrates would enable people to reach a relative independence from peat substrates, of which the global reserve is gradually decreasing.Our research activities focus on the use of bark. The basic problems of a bark substrate are easy dehydration and unbalanced nutrition of trees and shrubs. The suggested and experimented cultivation technology solves these problems. It is based on the cultivation of woody species in bark substrates, using modern irrigation systems, slow release fertilisers (Silvamix Forte and special soil conditioners (TerraCottem. This technology was tested on the following species of trees and shrubs: Malus and Buxus.

  7. Accelerated Aging of Polymer Composite Bridge Materials

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  8. Validation of new ceramic materials from tungsten mining wastes. Mechanical properties

    International Nuclear Information System (INIS)

    Duran Suarez, J. A.; Montoya Herrera, J.; Silva, A. P.; Peralbo Cano, R.; Castro-Gomes, J. P.

    2014-01-01

    New ceramic materials obtained from tungsten mining wastes, from region of Beira Interior in Portugal, with no commercial use, responsible for landscape and environmental problems are presented. These preshaped new ceramic products, prepared in a wide thermal range (800 degree centigrade to 1300 degree centigrade) was evaluated by mechanical test, but also was characterized the starting raw materials: tungsten wastes mining and industrial kaolin. Results, which also include a mineralogical characterization of ceramic products and morphologic evaluation of neoformed by scanning electron microscopy, show firstly, the feasibility of converting a large number of these wastes in marketable ceramics. Thanks to the experimentation carried out, the ability to generate ceramic materials is emphasized, without the presence of mineral clay, due to the particular composition of these waste of mining with content of acid, neutral and basic oxides. (Author)

  9. 2009 National inventory of radioactive material and wastes. Synthesis report

    International Nuclear Information System (INIS)

    2009-01-01

    Third edition of the ANDRA's national inventory report on radioactive wastes that are present on the French territory (as recorded until december, 2007). After a brief historical review of the national inventory and the way it is constructed, the report gives the basics on radioactive wastes, their classification, origins and management processes, followed by a general presentation and discussion of the inventory results (radioactive wastes and materials). Results are then detailed for the different activity sectors using radioactive materials (nuclear industry, medical domain, scientific research, conventional industry, Defense...). Information is also given concerning radioactive polluted areas (characterization and site management) and radioactive waste inventories in various foreign countries

  10. Report on current research into organic materials in radioactive waste

    International Nuclear Information System (INIS)

    Norris, G.H.

    1987-11-01

    A preliminary review of relevant recent papers on organic materials in radioactive waste is presented. In particular, the effects of chelating or complexing agents, the influence of bacteria and the role of colloids are assessed. The requirement for further radioactive waste inventory detail is indicated. Potential problem areas associated with the presence of organic materials in radioactive waste are identified and appropriate experimental work to assess their significance is proposed. Recommendations for specific further work are made. A list and diagrams of some of the more important polymer structures likely to be present in radioactive waste and their possible degradation products are appended. (author)

  11. Concrete and cement composites used for radioactive waste deposition.

    Science.gov (United States)

    Koťátková, Jaroslava; Zatloukal, Jan; Reiterman, Pavel; Kolář, Karel

    2017-11-01

    This review article presents the current state-of-knowledge of the use of cementitious materials for radioactive waste disposal. An overview of radwaste management processes with respect to the classification of the waste type is given. The application of cementitious materials for waste disposal is divided into two main lines: i) as a matrix for direct immobilization of treated waste form; and ii) as an engineered barrier of secondary protection in the form of concrete or grout. In the first part the immobilization mechanisms of the waste by cement hydration products is briefly described and an up-to date knowledge about the performance of different cementitious materials is given, including both traditional cements and alternative binder systems. The advantages, disadvantages as well as gaps in the base of information in relation to individual materials are stated. The following part of the article is aimed at description of multi-barrier systems for intermediate level waste repositories. It provides examples of proposed concepts by countries with advanced waste management programmes. In the paper summary, the good knowledge of the material durability due to its vast experience from civil engineering is highlighted however with the urge for specific approach during design and construction of a repository in terms of stringent safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The waste of assistance material perceived by nursing students

    Directory of Open Access Journals (Sweden)

    Magaly Cecília Franchini Reichert

    2017-11-01

    Full Text Available The study aimed to identify the opinion of nursing students about the waste of assistance materials in practical learning activities. We conducted an exploratory, descriptive study with a quantitative approach. One hundred and eighty-six students composed the sample and they answered to an instrument with affirmatives measured by a Likert-type scale. More than half of students believed that institutions where they are interns waste materials; 76% of fourth grade students (p<0.001 acknowledged to waste materials during their internships and, 89% of the same year (p<0.001 attributed waste to conducting a procedure for the first time. The study allowed the discussion about waste materials during nursing training, alerting about the importance of adequate management of these resources besides the nursing responsibility with the environment and sustainable practices.

  13. Incentivizing secondary raw material markets for sustainable waste management.

    Science.gov (United States)

    Schreck, Maximilian; Wagner, Jeffrey

    2017-09-01

    Notwithstanding several policy initiatives in many countries over a number of years, there remains a general sense that too much municipal solid waste is generated and that too much of the waste that is generated is landfilled. There is an emerging consensus that a sustainable approach to waste management requires further development of secondary raw material markets. The purpose of this paper is to propose a theoretical economic model that focuses upon this stage of a sustainable waste management program and explores policy options that could motivate efficiency in secondary raw material markets. In particular, we show how firm profit and social welfare optimizing objectives can be reconciled in a two-product market of waste management processes: landfilling and material reclamation. Our results provide theoretical support for building out recent Circular Economy initiatives as well as for the relatively recent emergence of landfill mining as a means for procuring secondary raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Solid waste composition analysis and recycling evaluation: Zaatari Syrian Refugees Camp, Jordan.

    Science.gov (United States)

    Saidan, Motasem N; Drais, Ammar Abu; Al-Manaseer, Ehab

    2017-03-01

    There is a need for Municipal Solid Waste (MSW) stream characterization and composition analysis to allow for an accurate estimation of its recycling potential and for effective management of the entire system. Recycling provides employment and a livelihood for vulnerable social groups such as refugees. The aim of this paper is to determine the composition of MSW in Zaatari Syrian Refugee Camp, where approximately 430,000 Syrian refugees have passed through the camp. The representative waste samples and analysis included household waste and commercial waste produced by the refugees in the selected districts in Zaatari. The waste sampling was performed in 2015 over two seasons to ensure that the seasonal fluctuations in the composition of the waste stream are taken into consideration. Hand sorting was used for classifying the collected wastes into the categories and subcategories. The organic waste represents the main waste category with 53% of the total MSW, while plastics, textile, and paper and cardboard are 12.85%, 10.22% and 9%, respectively. Moreover, the MSW composition percentage in Zaatari Camp is similar to that in municipalities in Jordan with slight disparity. The potential recyclable materials market has been investigated in this study. Plastics and paper and cardboard have significant potential to be separated and collected for recycling purposes. Financial revenues of potential recyclables have been analyzed based on local prices. Recycling model in the camp is also proposed based on the present study findings. Consequently, these results should be taken as a baseline for all Syrian refugees camps in the Middle East, as well as, in Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  16. Standard leach tests for nuclear waste materials

    International Nuclear Information System (INIS)

    Strachan, D.M.; Barnes, B.O.; Turcotte, R.P.

    1980-01-01

    Five leach tests were conducted to study time-dependent leaching of waste forms (glass). The first four tests include temperature as a variable and the use of three standard leachants. Three of the tests are static and two are dynamic (flow). This paper discusses the waste-form leach tests and presents some representative data. 4 figures

  17. Test plan for buried waste containment system materials

    International Nuclear Information System (INIS)

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100 degrees C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs

  18. Product Control of Waste Products with New Coating Materials

    International Nuclear Information System (INIS)

    Krumbach, H.; Steinmetz, H.J.; Odoj, R.; Wartenberg, W.; Grunau, H.

    2009-01-01

    In Germany, with the shaft KONRAD a repository for low radioactive waste will be available at the earliest in the year 2013. The previously conditioned radioactive waste has to be suitable for a longer-term interim storage. They have to be treated in a way that they are chemically stable and that their integrity is guaranteed for a long time. That is why the waste product or the container is covered/ coated for special waste such as hygroscopic waste or waste that includes aluminium. The Product Control Group for radioactive waste (PKS) has to proof the suitability of the so-treated waste for the repository KONRAD on behalf of the Federal Office for Radiation Protection (BfS). This has to be done before the delivering. In this context the PKS also assesses the suitability of new coating materials for low radioactive waste products or containers and their correct technical application. The characteristics and the technical application of polyurethane coatings as well as the control of the so-coated waste for the disposal in the shaft KONRAD are described in this poster. The Poster shows the development stages of the coating and the filling. There are also shown the boundary conditions and the investigations of the Product Control Group for the use of the new coating material for radioactive waste. (authors)

  19. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    Science.gov (United States)

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  20. Risks associated with nuclear material recovery and waste preparation

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R R; Erdmann, R C

    1983-01-01

    An analysis of the risk associated with nuclear material recovery and waste preparation is presented. The steps involve: reprocessing of spent fuel to recycle fissionable material, refabrication of the recovered material for use as reactor fuel, and the transportation links connecting these plants with the power plants and waste repositories. The risks considered are radiological and non-radiological, accident and routine effects on the public and workers during plant construction, operation and decommissioning.

  1. Reinforced concrete treatment as composite material

    International Nuclear Information System (INIS)

    Oller, S.; Onate, E.; Miguel, J.

    1995-01-01

    This paper presents the general mixing theory applied to the numerical simulation of multiphase composite material behaviour as reinforced concrete materials. This theory is based on the mixture of that composite basic substances and allows to evaluate the inter-dependence behaviour between the different compounding constitutive models. If it would be necessary to consider the initial anisotropy of each compound it could be done by mean of the mapped isotropic plastic formulation. The approach is a generalization of the classic isotropic plasticity theory to be applied to either ortho tropic or anisotropic materials such as reinforced concrete. The existence of a stress and strain real anisotropic spaces, and the respective fictitious isotropic spaces are assumed, where a mapped fictitious problem is solved. Those spaces are relating by means of two fourth order transformation tensors. Both formulation are joined establishing a powerful work tool for the treatment of bulk-fiber composite materials. The induced anisotropy behaviour is take into account by each compounding constitutive formulation. (author). 24 refs., 3 figs

  2. Additive Manufacturing of Composites and Complex Materials

    Science.gov (United States)

    Spowart, Jonathan E.; Gupta, Nikhil; Lehmhus, Dirk

    2018-03-01

    Advanced composite materials form an important class of high-performance industrial materials used in weight-sensitive applications such as aerospace structures, automotive structures and sports equipment. In many of these applications, parts are made in small production runs, are highly customized and involve long process development times. Developments in additive manufacturing (AM) methods have helped in overcoming many of these limitations. The special topic of Additive Manufacturing of Composites and Complex Materials captures the state of the art in this area by collecting nine papers that present much novel advancement in this field. The studies under this topic show advancement in the area of AM of carbon fiber and graphene-reinforced composites with high thermal and electrical conductivities, development of new hollow glass particle-filled syntactic foam filaments for printing lightweight structures and integration of sensors or actuators during AM of metallic parts. Some of the studies are focused on process optimization or modification to increase the manufacturing speed or tuning manufacturing techniques to enable AM of new materials.

  3. Compositional threshold for Nuclear Waste Glass Durability

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-01-01

    Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, i.e., those which are sufficiently durable, from 'bad' glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region

  4. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  5. Materials and wastes from power generation of nuclear origin

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Guillemette, Andre; Laponche, Bernard; Zerbib, Jean-Claude

    2014-01-01

    In most countries, spent nuclear fuel is directly stored in pools and constitute the bulk of highly radioactive waste. In France, reprocessing separates spent fuel into three categories: uranium, plutonium, minor actinides and fission products. Hence, a vast amount of very diverse radioactive materials are stored in various sites and conditions, under two denominations: 'nuclear materials' (which can be or are partly recycled) and 'radioactive waste' which should be permanently disposed of. The production of highly radioactive and long-lived waste raise legitimate questions on the use of nuclear energy for power production and many people think that it's a sufficient reason for giving up this technique. Concerning existing radioactive waste, the alternative to deep disposal should be: a) dry storage of spent fuel and other existing waste in protected sites (bunkers or hills), and b) more active research on the possibilities to reduce both radioactivity and the lifetime of radioactive waste. (authors)

  6. New Porous Material Made from Industrial and Municipal Waste for Building Application

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2014-09-01

    Full Text Available The aim of this study was to find a new method for usage of the hazardous waste coming from recycling industry. Two hazardous wastes – aluminium recycling final dross or non-metallic product (NMP and lead – silica glass (LSG were investigated. It is generally considered that NMP is a process waste and subject to disposal after residual metal has been recovered from primary dross. NMP is impurities which are removed from the molten metal in dross recycling process and it could be defined as a hazardous waste product in aluminium recycling industry. LSG comes from fluorescence lamp recycling plant and could be classified as hazardous waste due to high amount of lead in the composition and re-melting problems. The new alkali activated material, which can be defined as porous building material, was created. Composition of this material consisted of aluminium recycling waste, recycled fluorescent lamp LSG, sintered kaolin clay as well as commercially available alkali flakes (NaOH and liquid glass (Na2SiO3 + nH2O. Physical and mechanical properties of the obtained material were tested. Density of the obtained material was from (460 – 550 kg/m3 and the total porosity was from 82 % – 83 %. The compressive strength of the material was in range from 1.1 MPa to 2.3 MPa. The thermal conductivity was determined. The pore microstructure was investigated and the mineralogical composition of porous material was determined. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4330

  7. Possibility of using waste tire rubber and fly ash with Portland cement as construction materials.

    Science.gov (United States)

    Yilmaz, Arin; Degirmenci, Nurhayat

    2009-05-01

    The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications.

  8. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Astrup, Thomas

    2011-01-01

    variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective...... routed to incineration. Emission factors ranged from 27 to 40kg CO2/GJ. The results appeared most sensitive towards variations in waste composition and water content. Recycling rates and lower heating values could not be used as simple indicators of the resulting emission factors for residual household...... different studies and when using the values for environmental assessment purposes....

  9. ZeroWaste BYG: Redesigning construction materials towards zero waste society

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Schmidt, Jacob Wittrup; Ottosen, Lisbeth M.

    2014-01-01

    material. The physical‐chemical characteristics of fly ash, such as large uniformity coefficient, clay‐sized particles and rich in some metal elements and salts, show the possibility ofbeing a raw material also for bricks and lightweight aggregates. In the future we expect increasing political pressure......The ZeroWaste research group (www.zerowaste.byg.dtu.dk) at the Department of Civil Engineering was established in 2012 and covers the broad range of expertise required for turning waste materials into attractive, new materials. Members of the group have developed methods for removal of heavy metals...... and phosphorous from waste incineration, sewage sludge and other bio ashes [1], providing the basis to make these ash types an attractive, new material for the building sector.The amount of waste increases and it is both difficult and expensive to handle many waste types as e.g.different ashes. At the same time...

  10. A photogrammetric methodology for estimating construction and demolition waste composition

    International Nuclear Information System (INIS)

    Heck, H.H.; Reinhart, D.R.; Townsend, T.; Seibert, S.; Medeiros, S.; Cochran, K.; Chakrabarti, S.

    2002-01-01

    Manual sorting of construction, demolition, and renovation (C and D) waste is difficult and costly. A photogrammetric method has been developed to analyze the composition of C and D waste that eliminates the need for physical contact with the waste. The only field data collected is the weight and volume of the solid waste in the storage container and a photograph of each side of the waste pile, after it is dumped on the tipping floor. The methodology was developed and calibrated based on manual sorting studies at three different landfills in Florida, where the contents of twenty roll-off containers filled with C and D waste were sorted. The component classifications used were wood, concrete, paper products, drywall, metals, insulation, roofing, plastic, flooring, municipal solid waste, land-clearing waste, and other waste. Photographs of each side of the waste pile were taken with a digital camera and the pictures were analyzed on a computer using Photoshop software. Photoshop was used to divide the picture into eighty cells composed of ten columns and eight rows. The component distribution of each cell was estimated and results were summed to get a component distribution for the pile. Two types of distribution factors were developed that allow the component volumes and weights to be estimated. One set of distribution factors was developed to correct the volume distributions and the second set was developed to correct the weight distributions. The bulk density of each of the waste components were determined and used to convert waste volumes to weights. (author)

  11. A photogrammetric methodology for estimating construction and demolition waste composition

    Energy Technology Data Exchange (ETDEWEB)

    Heck, H.H. [Florida Inst. of Technology, Dept. of divil Engineering, Melbourne, Florida (United States); Reinhart, D.R.; Townsend, T.; Seibert, S.; Medeiros, S.; Cochran, K.; Chakrabarti, S

    2002-06-15

    Manual sorting of construction, demolition, and renovation (C and D) waste is difficult and costly. A photogrammetric method has been developed to analyze the composition of C and D waste that eliminates the need for physical contact with the waste. The only field data collected is the weight and volume of the solid waste in the storage container and a photograph of each side of the waste pile, after it is dumped on the tipping floor. The methodology was developed and calibrated based on manual sorting studies at three different landfills in Florida, where the contents of twenty roll-off containers filled with C and D waste were sorted. The component classifications used were wood, concrete, paper products, drywall, metals, insulation, roofing, plastic, flooring, municipal solid waste, land-clearing waste, and other waste. Photographs of each side of the waste pile were taken with a digital camera and the pictures were analyzed on a computer using Photoshop software. Photoshop was used to divide the picture into eighty cells composed of ten columns and eight rows. The component distribution of each cell was estimated and results were summed to get a component distribution for the pile. Two types of distribution factors were developed that allow the component volumes and weights to be estimated. One set of distribution factors was developed to correct the volume distributions and the second set was developed to correct the weight distributions. The bulk density of each of the waste components were determined and used to convert waste volumes to weights. (author)

  12. Mechanical Properties of Medium Density Fibreboard Composites Material Using Recycled Rubber and Coconut Coir

    OpenAIRE

    S. Mahzan; A.M. Ahmad Zaidi; M.I. Ghazali; N. Arsat; M.N. M. Hatta

    2010-01-01

    Natural fibre reinforced composite has emerged as highly potential replacement for synthetic fibres. Various natural waste fibres have been adopted for various engineering applications. This paper investigates the mechanical properties of medium density fibreboard composites material fabricated using recycled rubber and coconut coir. The suitability of using recycled rubber and coconut coir as a raw material and polyurethane as a resin in the manufacturer of medium density fibreboard was also...

  13. Stratospheric experiments on curing of composite materials

    Science.gov (United States)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  14. Management of radioactive wastes produced by users of radioactive materials

    International Nuclear Information System (INIS)

    1985-01-01

    This report is intended as a document to provide guidance for regulatory, administrative and technical authorities who are responsible for, or are involved in, planning, approving, executing and reviewing national waste management programmes related to the safe use of radioactive materials in hospitals, research laboratories, industrial and agricultural premises and the subsequent disposal of the radioactive wastes produced. It provides information and guidance for waste management including treatment techniques that may be available to establishments and individual users

  15. ERG review of waste package container materials selection and corrosion

    International Nuclear Information System (INIS)

    Moak, D.P.; Perrin, J.S.

    1986-07-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The October 1984 meeting of the ERG reviewed the waste package container materials selection and corrosion. This report documents the ERG's comments and recommendations on these subjects and the ONWI response to the specific points raised by the ERG

  16. Using Composite Materials in a Cryogenic Pump

    Science.gov (United States)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  17. The elastic response of composite materials

    International Nuclear Information System (INIS)

    Laws, N.

    1980-01-01

    The theory of linear elasticity is used to study the elastic response of composite materials. The main concern is the prediction of overall moduli. Some attention is paid to the problem of deciding upon when the idea of an overall modulus is meaningful. In addition it is shown how to calculate some rigorous bounds on the overall moduli, and some predictions of the self-consistent method are discussed. The paper mainly concentrates on isotropic dispersions of spheres, unidirectional fibre-reinforced materials and laminates. (author)

  18. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  19. A new approach for modeling composite materials

    Science.gov (United States)

    Alcaraz de la Osa, R.; Moreno, F.; Saiz, J. M.

    2013-03-01

    The increasing use of composite materials is due to their ability to tailor materials for special purposes, with applications evolving day by day. This is why predicting the properties of these systems from their constituents, or phases, has become so important. However, assigning macroscopical optical properties for these materials from the bulk properties of their constituents is not a straightforward task. In this research, we present a spectral analysis of three-dimensional random composite typical nanostructures using an Extension of the Discrete Dipole Approximation (E-DDA code), comparing different approaches and emphasizing the influences of optical properties of constituents and their concentration. In particular, we hypothesize a new approach that preserves the individual nature of the constituents introducing at the same time a variation in the optical properties of each discrete element that is driven by the surrounding medium. The results obtained with this new approach compare more favorably with the experiment than previous ones. We have also applied it to a non-conventional material composed of a metamaterial embedded in a dielectric matrix. Our version of the Discrete Dipole Approximation code, the EDDA code, has been formulated specifically to tackle this kind of problem, including materials with either magnetic and tensor properties.

  20. Advanced Technology Composite Fuselage - Materials and Processes

    Science.gov (United States)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  1. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste

    Directory of Open Access Journals (Sweden)

    L. Francis Xavier

    2016-01-01

    Full Text Available With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  2. Improved Materials for Composite and Adhesive Joints.

    Science.gov (United States)

    1984-07-01

    Analysis of Thick Composites," 28th National Society for Advancement of Material and Process Engineering Symposium, Disneyland Hotel, Anaheim... Grant , "Deconvolution as an Aid to Quantification in Electron Spectroscopy Studies of Surfaces and Thin Films," IX International Vacuum Congress, V...International Conference on Solid Surfaces, Madrid, Spain, Sept. 26-Oct. 1, 1983. 8. M. F. Koenig and J. T. Grant , "Direct Comparison of Deconvoluted

  3. Alkali metal protective garment and composite material

    Science.gov (United States)

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  4. Thermally Conductive Structural 2D Composite Materials

    Science.gov (United States)

    2012-08-14

    Dimensional Pitch Polyimide Composite Micrographs ........ 27 Figure 23. 4-Ply Silver Polyimide Laminate ...through-thickness thermal conductivity of up to 20 W/m.K. This novel structural prepreg material will be developed through engineering of an optimal fiber...with an EPON 862/Epikure W epoxy resin system to form unidirectional prepreg tapes. Each prepreg was then cut to 6 inch by 6 inch plies and

  5. Flexible Composite-Material Pressure Vessel

    Science.gov (United States)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  6. Nanocellulose Composite Materials Synthesizes with Ultrasonic Agitation

    Science.gov (United States)

    Kidd, Timothy; Folken, Andrew; Fritch, Byron; Bradley, Derek

    We have extended current techniques in forming nanocellulose composite solids, suspensions and aerogels to enhance the breakdown of cellulose into its molecular components. Using only mechanical processing which includes ball milling, using a simple mortar and pestle, and ultrasonic agitation, we are able to create very low concentration uniform nanocellulose suspensions in water, as well as incorporate other materials such as graphite, carbon nanotubes, and magnetic materials. Of interest is that no chemical processing is necessary, nor is the use of nanoparticles, necessary for composite formation. Using both graphite and carbon nanotubes, we are able to achieve conducting nanocellulose solids and aerogels. Standard magnetic powder can also be incorporated to create magnetic solids. The technique also allows for the creation of an extremely fine nanocellulose suspension in water. Using extremely low concentrations, less than 1% cellulose by mass, along with careful control over processing parameters, we are able to achieve highly dilute, yet homogenous nanocellulose suspensions. When air dried, these suspensions have similar hardness and strength properties to those created with more typical starting cellulose concentrations (2-10%). However, when freeze-dried, these dilute suspensions form aerogels with a new morphology with much higher surface area than those with higher starting concentrations. We are currently examining the effect of this higher surface area on the properties of nanocellulose aerogel composites and how it influences the impact of incorporating nanocellulose into other polymer materials.

  7. Review on factors influencing thermal conductivity of concrete incorporating various type of waste materials

    Science.gov (United States)

    Misri, Z.; Ibrahim, M. H. W.; Awal, A. S. M. A.; Desa, M. S. M.; Ghadzali, N. S.

    2018-04-01

    Concrete is well-known as a construction material which is widely used in building and infrastructure around the world. However, its widespread use has affected the reduction of natural resources. Hence, many approached have been made by researchers to study the incorporation of waste materials in concrete as a substitution for natural resources besides reducing waste disposal problems. Concrete is basically verified by determining its properties; strengths, permeability, shrinkage, durability, thermal properties etc. In various thermal properties of concrete, thermal conductivity (TC) has received a large amount of attention because it is depend upon the composition of concrete. Thermal conductivity is important in building insulation to measure the ability of a material to transfer heat. The aim of this paper is to discuss the methods and influence factors of TC of concrete containing various type of waste materials.

  8. The application of waste fly ash and construction-waste in cement filling material in goaf

    Science.gov (United States)

    Chen, W. X.; Xiao, F. K.; Guan, X. H.; Cheng, Y.; Shi, X. P.; Liu, S. M.; Wang, W. W.

    2018-01-01

    As the process of urbanization accelerated, resulting in a large number of abandoned fly ash and construction waste, which have occupied the farmland and polluted the environment. In this paper, a large number of construction waste and abandoned fly ash are mixed into the filling material in goaf, the best formula of the filling material which containing a large amount of abandoned fly ash and construction waste is obtained, and the performance of the filling material is analyzed. The experimental results show that the cost of filling material is very low while the performance is very good, which have a good prospect in goaf.

  9. Use of selected waste materials in concrete mixes.

    Science.gov (United States)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  10. Qualification test of packages for transporting radioactive materials and wastes

    International Nuclear Information System (INIS)

    Oliveira Santos, P. de; Miaw, S.T.W.

    1990-01-01

    Since 1979 the Waste Treatment Division of Nuclear Tecnology Development Center has been developed and tested packagings for transporting radioactive materials and wastes. The Division has designed facilities for testing Type A packages in accordance with the adopted regulations. The Division has tested several packages for universities, research centers, industries, INB, FURNAS, etc. (author) [pt

  11. Use of selected waste materials in concrete mixes

    International Nuclear Information System (INIS)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures

  12. Glass: a candidate engineered material for management of high level nuclear waste

    International Nuclear Information System (INIS)

    Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    While the commercial importance of glass is generally recognized, a few people are aware of extremely wide range of glass formulations that can be made and of the versatility of this engineered material. Some of the recent developments in the field of glass leading to various technological applications include glass fiber reinforcement of cement to give new building materials, substrates for microelectronics circuitry in form of semiconducting glasses, nuclear waste immobilization and specific medical applications. The present paper covers fundamental understanding of glass structure and its application for immobilization of high level radioactive liquid waste. High level radioactive liquid waste (HLW) arising during reprocessing of spent fuel are immobilized in sodium borosilicate glass matrix developed indigenously. Glass compositions are modified according to the composition of HLW to meet the criteria of desirable properties in terms. These glass matrices have been characterized for different properties like homogeneity, chemical durability, thermal stability and radiation stability. (author)

  13. [Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].

    Science.gov (United States)

    González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo

    2015-01-01

    The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Elution of Monomers from Provisional Composite Materials

    Directory of Open Access Journals (Sweden)

    Simon Daniel Schulz

    2015-01-01

    Full Text Available The aim of this study was to evaluate the elution of substances from different materials used for the manufacturing of temporary indirect restorations, after storage in saliva and ethanol 75%. 10 samples of three chemically cured materials (Protemp 3 Garant, Systemp.c&b, and Trim and one light-cured material (Clip F were stored in saliva and ethanol 75% for 24 h, 7, and days 28 days. From the storage media at each time period, samples were prepared and analysed by LC-MS/MS, in order to access the elution of monomers. The results differed among the materials (P ≤ 0.05. No monomers were detected in the samples of Protemp 3 Garant and Clip F. Substances were detected only in ethanol samples of Systemp.c&b and Trim. The amount of BisGMA, TEGDMA, and UDMA 2 released from Systemp.c&b was higher compared to Trim. Storage time affected the release of substances (P ≤ 0.05. The highest release was observed within the first 24 h. It can be concluded that provisional resin composite materials do not show high release of monomers and this release is material dependent. However, the detection of additional peaks during the analysis, suggesting the formation of by-products of the eluted substances, may not be in favour of these materials with respect to their toxicity.

  15. Biogenic carbon in combustible waste: waste composition, variability and measurement uncertainty.

    Science.gov (United States)

    Larsen, Anna W; Fuglsang, Karsten; Pedersen, Niels H; Fellner, Johann; Rechberger, Helmut; Astrup, Thomas

    2013-10-01

    Obtaining accurate data for the contents of biogenic and fossil carbon in thermally-treated waste is essential for determination of the environmental profile of waste technologies. Relations between the variability of waste chemistry and the biogenic and fossil carbon emissions are not well described in the literature. This study addressed the variability of biogenic and fossil carbon in combustible waste received at a municipal solid waste incinerator. Two approaches were compared: (1) radiocarbon dating ((14)C analysis) of carbon dioxide sampled from the flue gas, and (2) mass and energy balance calculations using the balance method. The ability of the two approaches to accurately describe short-term day-to-day variations in carbon emissions, and to which extent these short-term variations could be explained by controlled changes in waste input composition, was evaluated. Finally, the measurement uncertainties related to the two approaches were determined. Two flue gas sampling campaigns at a full-scale waste incinerator were included: one during normal operation and one with controlled waste input. Estimation of carbon contents in the main waste types received was included. Both the (14)C method and the balance method represented promising methods able to provide good quality data for the ratio between biogenic and fossil carbon in waste. The relative uncertainty in the individual experiments was 7-10% (95% confidence interval) for the (14)C method and slightly lower for the balance method.

  16. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Science.gov (United States)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  17. Synthesizing Smart Polymeric and Composite Materials

    Science.gov (United States)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4

  18. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    Science.gov (United States)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  19. Glass Ceramics Composites Fabricated from Coal Fly Ash and Waste Glass

    International Nuclear Information System (INIS)

    Angjusheva, B.; Jovanov, V.; Srebrenkoska, V.; Fidancevska, E.

    2014-01-01

    Great quantities of coal ash are produced in thermal power plants which present a double problem to the society: economical and environmental. This waste is a result of burning of coal at temperatures between 1100-14500C. Fly ash available as fine powder presents a source of important oxides SiO2, Al2O3, Fe2O3, MgO, Na2O, but also consist of small amount of ecologically hazardous oxides such as Cr2O3, NiO, MnO. The combination of the fly ash with waste glass under controlled sintering procedure gave bulk glass-ceramics composite material. The principle of this procedure is presented as a multi barrier concept. Many researches have been conducted the investigations for utilization of fly ash as starting material for various glass–ceramics production. Using waste glass ecologically hazardous components are fixed at the molecular level in the silicate phase and the fabricated new glass-ceramic composites possess significantly higher mechanical properties. The aim of this investigation was to fabricate dense glass ceramic composites using fly ash and waste glass with the potential for its utilization as building material

  20. Gamma irradiation technology for composite materials

    International Nuclear Information System (INIS)

    Romero, Guillermo R; Gonzalez, Maria E.

    2003-01-01

    A composite of sugar cane bagasse and low-density polyethylene was prepared. Gamma -radiation of Cobalt-60 (Co 60 ) and reactive additives were used, to make compatible the lignocellulosic fibers with the polymeric matrix. Gamma-radiation was applied in different stages with different purposes: a) Irradiation of cellulosic fibers treated or not with reactive additive, in presence of air, to produce macro radicals increasing their reactivity during extrusion with polyethylene. A homogeneous and fusible material resulted that can be used as raw material in thermoforming processes with cost in between that of its constitutive elements; b) Irradiation of final products, to produce the cross-linking of polymeric chains. The fibers remain trapped in the cross-linked matrix. A homogeneous and infusible material with high mechanical properties was obtained. (author)

  1. Chemical digestion of low level nuclear solid waste material

    International Nuclear Information System (INIS)

    Cooley, C.R.; Lerch, R.E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230 0 --300 0 C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue. 6 claims, no drawings

  2. PRODUCTION OF AN INSULATION MATERIAL FROM CARPET AND BORON WASTES

    OpenAIRE

    Yasin ERDOĞAN

    2016-01-01

    Buildings are large consumers of energy in all countries. In regions with harsh climatic conditions, a substantial share of energy goes to heat and cool buildings. This paper reports an investigation of the insulation materials made from mixing carpet wastes with a solution with added crude colemanite ore, one of boron minerals, and a solution with added colemanite wastes from a barrage. A new building insulation material was produced which is name, Halibor. Optimum mixing ratios were determi...

  3. Properties of nanoclay PVA composites materials

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2012-03-01

    Full Text Available Polyvinyl alcohol (PVA/ Na-rich Montmorillonite (MMT nanocomposites were prepared using solution method to create polymer-clay nanocomposite (PCN material. The PCN material was studied using X-ray diffraction (XRD, demonstrating polymer-clay intercalation that has a high d-spacing (lower diffraction angles in the PCN XRD pattern, compared to the pure MMT clay XRD pattern, which has a low d-spacing (high diffraction angles. The nano-scanning electron microscope (NSEM was used to study the morphological image of the PVA, MMT and PCN materials. The results showed that intercalation that took place between the PVA and MMT produced the PCN material. The mechanical properties of the pure PVA and the intercalated polymer material were studied. It was found that the small amount of MMT clay made the tensile modulus and percentage of the total elongation of the nano-composite significantly higher than the pure PVA polymer value, due to polymer-clay intercalation. The thermal stability of the intercalated polymer has been studied using thermal analytical techniques such as thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the PCN material is more thermally stable than the pure PVA polymer.

  4. Overview of hydrothermal testing of waste-package barrier materials at the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1982-01-01

    The current Waste Package Department (WPD) hydrothermal testing program for the Basalt Waste Isolation Project (BWIP) has followed a systematic approach for the testing of waste-barrier-basalt interactions based on sequential penetration of barriers by intruding groundwaters. Present test activities in the WPD program have focused on determining radionuclide solubility limits (or steady-state conditions) of simulated waste forms and the long-term stability of waste package barriers under site-specific hydrothermal conditions. The resulting data on solution compositions and solid alteration products have been used to evaluate waste form degradation under conditions specific to a nuclear waste repository located in basalt (NWRB). Isothermal, time-invariant compositional data on sampled solutions have been coupled with realistic hydrologic flow data for near-field and far-field modeling for the calculation of meaningful radionuclide release rates. Radionuclides that are not strongly sorbed or precipitated from solution and that, therefore, may require special attention to ensure their isolation within the waste package have been identified. Taken together, these hydrothermal test data have been used to establish design requirements for waste packages located in basalt

  5. Exploring of Agro Waste (Pineapple Leaf, Corn Stalk, and Napier Grass) by Chemical Composition and Morphological Study

    OpenAIRE

    Angzzas Sari Mohd Kassim; Halizah Awang; Ashuvila Mohd Aripin

    2013-01-01

    Malaysia is a country that is a rich source of agricultural waste material. Three different crops were studied here, including pineapple (Ananas comosus) leaf, corn (Zea mays) stalk, and Napier grass (Pennisetum purpureum). These crops are characterized as agricultural waste materials in Malaysia and have a high potential to be used as alternative fibers for the paper making industry. The objective of this work was to analyze the chemical composition of pineapple leaf, corn stalk, and Napier ...

  6. Backfill composition for secondary barriers in nuclear waste repositories

    Science.gov (United States)

    Beall, Gary W.; Allard, Bert M.

    1982-01-01

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50-70% by weight of quartz, 10-30% by weight of montmorillonite, 1-10% by weight of phosphate mineral, 1-10% by weight of ferrous mineral, 1-10% by weight of sulfate mineral and 1-10% by weight of attapulgite.

  7. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  8. Initial specifications for nuclear waste package external dimensions and materials

    International Nuclear Information System (INIS)

    Gregg, D.W.; O'Neal, W.C.

    1983-09-01

    Initial specifications of external dimensions and materials for waste package conceptual designs are given for Defense High Level Waste (DHLW), Commercial High Level Waste (CHLW) and Spent Fuel (SF). The designs have been developed for use in a high-level waste repository sited in a tuff media in the unsaturated zone. Drawings for reference and alternative package conceptual designs are presented for each waste form for both vertical and horizontal emplacement configurations. Four metal alloys: 304L SS, 321 SS, 316L SS and Incoloy 825 are considered for the canister or overpack; 1020 carbon steel was selected for horizontal borehole liners, and a preliminary packing material selection is either compressed tuff or compressed tuff containing iron bearing smectite clay as a binder

  9. Radioactive waste management complex low-level waste radiological composite analysis

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  10. Radioactive waste management complex low-level waste radiological composite analysis

    International Nuclear Information System (INIS)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective

  11. Forming artificial soils from waste materials for mine site rehabilitation

    Science.gov (United States)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  12. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste

    Science.gov (United States)

    Müller, Miroslav; Valášek, Petr

    2018-05-01

    A research on composite adhesive bonds reinforced with waste from hen eggs processing, i.e. egg shell waste (ESW) is based on an assumption of the utilization of agricultural/food production waste. The aim of the research is to gain new pieces of knowledge about the material utilization of ESW, i.e. to evaluate possibilities of the use of various concentrations of ESW microparticles smaller than 100 µm based on hen egg shells as the filler in a structural resin used for a creation of adhesive bonds from bearing metal elements. An adhesive bond strength, an elongation at break and a fracture surface were evaluated within the research on adhesive bonds. The experiment results proved the efficiency of ESW filler in the area of composite adhesive bonds. The adhesive bond strength was increased up of more than 17 % by adding 40 wt.% of ESW microparticles.

  13. GLASS COMPOSITION-TCLP RESPONSE MODEL FOR WASTE GLASSES

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2004-01-01

    A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This paper describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model

  14. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    Science.gov (United States)

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  15. Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.

    Science.gov (United States)

    Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos

    2012-03-01

    In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo

    1997-01-01

    of piecewise homogeneous layers with equivalent elastic properties estimated by Mori-Tanaka and self-consistent methods are also analysed under similar boundary conditions. Comparisons of the overall and local fields predicted by the discrete and homogenized models are made using a C/SiC composite system...... fields are predicted by Mori-Tanaka estimates. On the other hand, the response of graded materials with a skeletal microstructure in a wide transition zone between clearly defined matrix phases is better approximated by the self-consistent estimates. Certain exceptions are noted for loading by overall...... transverse shear stress; The results suggest that the averaging methods originally developed for statistically homogeneous aggregates may be selectively applied, with a reasonable degree of confidence, to aggregates dth composition gradients, subjected to both uniform and nonuniform overall loads. (C) 1997...

  17. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  18. Elaboration of new ceramic composites containing glass fibre production wastes

    Directory of Open Access Journals (Sweden)

    Rozenstrauha, I.

    2013-04-01

    Full Text Available Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50% of organic matter as well as waste glass from aluminiumborosilicate glass fibre with relatively high softening temperature (> 600 ºC. In order to elaborate different new ceramic products (porous or dense composites the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia with illite content in clay fraction up to 80-90% was used as a matrix. The raw materials were investigated by differential-thermal (DTA and XRD analysis. Ternary compositions were prepared from mixtures of 15–35 wt % of sludge, 20 wt % of waste glass and 45–65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 ºC in different treatment conditions. Materials produced in temperature range 1090–1100 ºC with the most optimal properties - porosity 38-52%, water absorption 39–47% and bulk density 1.35–1.67 g/cm3 were selected for production of porous ceramics and materials showing porosity 0.35–1.1%, water absorption 0.7–2.6 % and bulk density 2.1–2.3 g/cm3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM. By X-ray diffraction analysis (XRD the quartz, diopside and anorthite crystalline phases were detected.Durante la obtención de ciertas fibras de vidrio se generan dos subproductos o residuos principalmente: Lodo de arcilla montmorillonítica capaz de adsorber el 50 % de materia orgánica y un vidrio silicato alumínico con temperatura de reblandecimiento relativamente alta (> 600 ºC. Con el fin de elaborar nuevos

  19. Molecular composition of recycled organic wastes, as determined by solid-state {sup 13}C NMR and elemental analyses

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, S.M., E-mail: simon.eldridge@dpi.nsw.gov.au [Environmental Futures Centre, School of Environment, Griffith University, Nathan, QLD 4111 (Australia); NSW Department of Primary Industries, Bruxner Highway, Wollongbar, NSW 2477 (Australia); Chen, C.R. [Environmental Futures Centre, School of Environment, Griffith University, Nathan, QLD 4111 (Australia); Xu, Z.H. [Environmental Futures Centre, School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111 (Australia); Nelson, P.N. [School of Earth and Environmental Sciences, James Cook University, Cairns, QLD 4870 (Australia); Boyd, S.E. [Environmental Futures Centre, School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111 (Australia); Meszaros, I. [Formerly NSW Department of Primary Industries, Richmond, NSW 2753 (Australia); Chan, K.Y. [Graduate School of Environment, Macquarie University, North Ryde, NSW 2109 (Australia); Formerly NSW Department of Primary Industries, Richmond, NSW 2753 (Australia)

    2013-11-15

    Highlights: • Model estimated the molecular C components well for most RO wastes. • Molecular nature of organic matter in RO wastes varied widely. • Molecular composition by NMR modelling preferable to extraction techniques. • Some model shortcomings in estimating molecular composition of biochars. • Waste molecular composition important for carbon/nutrient outcomes in soil. - Abstract: Using solid state {sup 13}C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes.

  20. Molecular composition of recycled organic wastes, as determined by solid-state 13C NMR and elemental analyses

    International Nuclear Information System (INIS)

    Eldridge, S.M.; Chen, C.R.; Xu, Z.H.; Nelson, P.N.; Boyd, S.E.; Meszaros, I.; Chan, K.Y.

    2013-01-01

    Highlights: • Model estimated the molecular C components well for most RO wastes. • Molecular nature of organic matter in RO wastes varied widely. • Molecular composition by NMR modelling preferable to extraction techniques. • Some model shortcomings in estimating molecular composition of biochars. • Waste molecular composition important for carbon/nutrient outcomes in soil. - Abstract: Using solid state 13 C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes

  1. Composite analysis for solid waste storage area 6

    International Nuclear Information System (INIS)

    Lee, D.W.

    1997-09-01

    The composite analysis (CA) provides an estimate of the potential cumulative impacts to a hypothetical future member of the public from the Solid Waste Storage Area 6 (SWSA 6) disposal operations and all of the other sources of radioactive material in the ground on the ORR that may interact with contamination originating in SWSA 6.The projected annual dose to hypothetical future member of the public from all contributing sources is compared to the primary dose limit of 100 mrem per year and a dose constraint of 30 mrem per year. Consistent with the CA guidance, dose estimates for the first 1000 years after disposal are emphasized for comparison with the primary dose limit and dose constraint.The current land use plan for the ORR is being revised, and may include a reduction in the land currently controlled by DOE on the ORR. The possibility of changes in the land use boundary is considered in the CA as part of the sensitivity and uncertainty analysis of the results, the interpretation of results, and the conclusions

  2. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, D. K.; Burrows, R. W.; Shinton, Y. D.

    1985-01-01

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations are discussed. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  3. Composite materials for thermal energy storage

    Science.gov (United States)

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  4. Carbon Fiber Composite Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Jr., Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mainka, Hendrik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Volkswagen (VW) is internationally recognized for quantity and quality of world-wide vehicle production and the Oak Ridge National Laboratory (ORNL) is internationally recognized in materials research and development. With automotive production ramping up in the recently constructed VW Group of America facility in Chattanooga, Tennessee, ORNL and VW initiated discussions in 2012 concerning opportunities for collaboration around ORNL’s carbon fiber and composites programs. ORNL is conducting an internationally recognized program to develop and implement lower cost carbon fibers and composites for automotive and other “energy missions” for the US Department of Energy. Significant effort is ongoing in selecting, developing, and evaluating alternative precursors, developing and demonstrating advanced conversion techniques, and developing and tailoring surface treatment, sizings, and formatting fiber for specific composite matrices and end-use applications. ORNL already had North America’s most comprehensive suite of tools for carbon fiber research and development and established a semiproduction demonstration line referred to as the Carbon Fiber Technology Facility (CFTF) to facilitate implementation of low cost carbon fiber (LCCF) approaches in early 2013. ORNL and VW agreed to collaborate in a formal Cooperative Research and Development Agreement (NFE-12-03992) specifically focused on evaluating applicability of low cost carbon fiber products for potential vehicle components. The goal of the work outlined in this report was to develop and qualify uses for carbon fiber-reinforced structures in connection with civilian ground transportation. Significant progress was achieved in evaluating and understanding lignin-based precursor materials; however, availability of carbon fiber converted from lignin precursor combined with logistical issues associated with the Visa limitations for the VW participant resulted in significantly shortening of the collaboration

  5. Valorization of post-consumer waste plastic in cementitious concrete composites

    International Nuclear Information System (INIS)

    Marzouk, O. Yazoghli; Dheilly, R.M.; Queneudec, M.

    2007-01-01

    The sheer amount of disposable bottles being produced nowadays makes it imperative to identify alternative procedures for recycling them since they are non-biodegradable. This paper describes an innovative use of consumed plastic bottle waste as sand-substitution aggregate within composite materials for building application. Particularly, bottles made of polyethylene terephthalate (PET) have been used as partial and complete substitutes for sand in concrete composites. Various volume fractions of sand varying from 2% to 100% were substituted by the same volume of granulated plastic, and various sizes of PET aggregates were used. The bulk density and mechanical characteristics of the composites produced were evaluated. To study the relationship between mechanical properties and composite microstructure, scanning electron microscopy technique was employed. The results presented show that substituting sand at a level below 50% by volume with granulated PET, whose upper granular limit equals 5 mm, affects neither the compressive strength nor the flexural strength of composites. This study demonstrates that plastic bottles shredded into small PET particles may be used successfully as sand-substitution aggregates in cementitious concrete composites. These new composites would appear to offer an attractive low-cost material with consistent properties; moreover, they would help in resolving some of the solid waste problems created by plastics production and in saving energy

  6. Solid waste and materials systems alternatives study summary

    International Nuclear Information System (INIS)

    Kasper, J.R.; Smith, S.T.

    1996-01-01

    The Hanford Site is a 560-sq.-mi. area in southeastern Washington State owned and operated by the U.S. Department of Energy (DOE). Previous weapons program activities and recent environmental cleanup activities at the Hanford Site have resulted in an accumulation of large quantities of solid wastes and materials. Future Decontamination and Decommissioning (D ampersand D) and Environmental Remediation activities will generate additional wastes. This paper provides a summary of a recently completed analysis of the Hanford Site Solid Wastes and Materials. The analysis involved development and compilation of waste stream and material information including type, classification. location current and project volumes, and curie content. Current program plans for treatment, storage, and disposal/disposition (TSD) have also been included in this analysis

  7. Materials selection for process equipment in the Hanford waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  8. Ceramic Matrix Composite (CMC) Materials Characterization

    Science.gov (United States)

    Calomino, Anthony

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  9. Ceramic Matrix Composite (CMC) Materials Development

    Science.gov (United States)

    DiCarlo, James

    2001-01-01

    Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.

  10. Intelligent Image Segment for Material Composition Detection

    Directory of Open Access Journals (Sweden)

    Liang Xiaodan

    2017-01-01

    Full Text Available In the process of material composition detection, the image analysis is an inevitable problem. Multilevel thresholding based OTSU method is one of the most popular image segmentation techniques. How, with the increase of the number of thresholds, the computing time increases exponentially. To overcome this problem, this paper proposed an artificial bee colony algorithm with a two-level topology. This improved artificial bee colony algorithm can quickly find out the suitable thresholds and nearly no trap into local optimal. The test results confirm it good performance.

  11. Production of titanium silicate compositions from technogenic titanium containing waste of Khibiny ores' enrichment

    Directory of Open Access Journals (Sweden)

    Shchukina E. S.

    2017-03-01

    Full Text Available The low level of complexity in the processing of raw materials at mining and processing enterprises adversely affect the environment causing considerable damage to it. Meanwhile technological waste is a cheap source of raw materials for liquid products of functional purpose, particularly inorganic filler which are widely used in the manufacture of paints and building materials, paper, plastics, insulating and protective materials. Improved performance and physical and chemical properties of materials are achieved by optimizing the composition and dispersion of the particles. By the example of the research subjects received from the flotation waste nepheline ore-dressing, it has been shown that a high degree of homogenization to obtain fine mixtures (75 % of 3–4 micron fraction composite filler powders the ultrafine grinding method achieved by using a planetary ball mill for a short period of time (at least 1 hours. The use of other grinding methods, for example by means of ball mill or a vibration such effect is not obtained. At the conditions of ultrafine grinding the ionization and amorphization of the surface layer of powder material particles (mechanical activated processing are occurred. This increases its activity by reacting with organic and inorganic binding, and provides high performance. The obtained filler has been tested in the composition of temperature-controlled sealants and glues used in the aerospace industry, shipbuilding and electronics. To obtain such materials sphene and nepheline received from industrial tailings of Khibiny apatite-nepheline ore deposits are used

  12. Recycling and reuse of waste from electricity distribution networks as reinforcement agents in polymeric composites.

    Science.gov (United States)

    Zimmermann, Matheus V G; Zattera, Ademir J

    2013-07-01

    Of the waste generated from electricity distribution networks, wooden posts treated with chromated copper arsenate (CCA) and ceramic insulators make up the majority of the materials for which no effective recycling scheme has been developed. This study aims to recycle and reuse this waste as reinforcement elements in polymer composites and hybrid composites, promoting an ecologically and economically viable alternative for the disposal of this waste. The CCA wooden posts were cut, crushed and recycled via acid leaching using 0.2 and 0.4N H2SO4 in triplicate at 70°C and then washed and dried. The ceramic insulators were fragmented in a hydraulic press and separated by particle size using a vibrating sieve. The composites were mixed in a twin-screw extruder and injected into the test specimens, which were subjected to physical, mechanical, thermal and morphological characterization. The results indicate that the acid treatment most effective for removing heavy metals in the wood utilizes 0.4NH2SO4. However, the composites made from wood treated with 0.2NH2SO4 exhibited the highest mechanical properties of the composites, whereas the use of a ceramic insulator produces composites with better thermal stability and impact strength. This study is part of the research and development project of ANEEL (Agência Nacional de Energia Elétrica) and funded by CPFL (Companhia Paulista de Força e Luz). Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Remote automated material handling of radioactive waste containers

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site's suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling

  14. Material Not Categorized As Waste (MNCAW) data report

    International Nuclear Information System (INIS)

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported

  15. Concerning enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material

    International Nuclear Information System (INIS)

    1988-01-01

    The Atomic Safety Commission of Japan, after examining a report submitted by the Science and Technology Agency concerning the enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material, has approved the plan given in the report. Thus, laws and regulations concerning procedures for application for waste burying business, technical standards for implementation of waste burying operation, and measures to be taken for security should be established to ensure the following. Matters to be described in the application for the approval of such business and materials to be attached to the application should be stipulated. Technical standards concerning inspection of waste burying operation should be stipulated. Measures to be taken for the security of waste burying facilities and security concerning the transportation and disposal of nuclear fuel material should be stipulated. Matters to be specified in the security rules should be stipulated. Matters to be recorded by waste burying business operators, measures to be taken to overcome dangers and matters to be reported to the Science and Technology Agency should be stipulated. (Nogami, K.)

  16. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  17. TIME-TEMPERATURE-TRANSFORMATION (TTT) DIAGRAMS FOR FUTURE WASTE COMPOSITIONS

    International Nuclear Information System (INIS)

    Billings, A.; Edwards, T.

    2010-01-01

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the waste form stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (T g ) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The T g of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP) and in SRNL-STI-2009-00025. Additional phase transformation information exists for other projected compositions, but overall these compositions did not cover composition regions estimated for future waste processing. To develop TTT diagrams for future waste types, the Savannah River National Laboratory (SRNL) fabricated two caches of glass from reagent grade oxides to simulate glass compositions which would be likely processed with and without Al dissolution. These were used for glass transition temperature measurement and TTT diagram development. The glass transition temperatures of both glasses were measured using differential scanning calorimetry (DSC) and were recorded to be 448 C and 452 C. Using the previous TTT diagrams as guidance

  18. Management of radioactive materials and wastes: status, stakes and perspectives

    International Nuclear Information System (INIS)

    Champion, Didier; Devin, Patrick; Tanguy, Loic; Bernard, Herve; Minon, Jean-Paul; Leclaire, Arnaud; Gilli, Ludivine; Lheureux, Yves; Pescatore, Claudio; Barbey, Pierre; Schneider, Thierry; Gay, Didier; Forest, Isabelle; Hemidy, Pierre-Yves; Baglan, Nicolas; Desnoyers, Bruno; Pieraccini, Michel; Poncet, Philippe; Seguin, Bertille; Calvez, Marianne; Leclerc, Elisabeth; Bancelin, Estelle; Fillion, Eric; Segura, Yannick; Vernaz, Etienne; Granier, Guy; De Preter, Peter; Petitfrere, Michael; Laye, Frederic; Nakamura, Takashi; Gin, Stephane; Lebaron-Jacobs, Laurence; Dinant, Sophie; Vacquier, Blandine; Crochon, Philippe; Griffault, Lise; Smith, Graham

    2013-10-01

    These technical days were organized by the Environment section of the French Society of Radiation Protection (SFRP). Time was given to some exchange about the societal aspects of radioactive waste management as well as about the legal context but the most part of the debates delt with the actual management modalities of the different types of wastes, both in France and in foreign countries, and with the related stakes, in particular in terms of impact. This document brings together the presentations (slides) of the following talks: - Contributions of radiation protection to the long-term safety management of radioactive wastes (Jean-Paul MINON - ONDRAF); - The national inventory of radioactive materials and wastes (Arnaud LECLAIRE - ANDRA); - The high activity, medium activity-long living wastes in debate - a co-building approach (ANCCLI/Clis of Bure/IRSN) to share stakes, enlighten, and develop thought (Ludivine GILLI - IRSN, Yves LHEUREUX - ANCCLI); - Social aspects of Radioactive Waste Management - The International Learning (Claudio PESCATORE - AEN/OCDE); - Citizens involvement and ACRO's point of view on radioactive wastes management (Pierre BARBEY - ACRO); - New CIPR recommendations about the geologic disposal of long-living radioactive wastes (Thierry SCHNEIDER - CEPN); - Overview of processes under the views of radiation protection principles (Didier GAY - IRSN); - The national plan of radioactive materials and wastes management (Loic TANGUY - ASN); - Joint convention on spent fuel management safety and on radioactive waste management safety - status and main stakes (Isabelle FOREST - ASN); - Transport of radioactive wastes (Bruno DESNOYERS - AREVA); - Optimisation and limitation of the environmental impacts of very-low level wastes - valorisation and processes selection (Michel PIERACCINI - EDF), Philippe PONCET - AREVA); - Management of hospital wastes - Example of Montpellier's University Regional Hospital (Bertille SEGUIN - CHRU de Montpellier); - Waste

  19. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Directory of Open Access Journals (Sweden)

    Jairo F. Pereira

    2010-07-01

    Full Text Available Material recovery from municipal solid waste (MSW is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste management plant (SWMP. The findings show that, although there are significant amounts of useful materials, their handling of the materials as “garbage”, the low recognition of recovery work, and the inadequate storage and source management practices, affect material recovery and the operation of SWMPs. These results may be taken as a reference for this type of municipality, because the solid waste management system and the type of operation of the SWMPs analyzed is similar to all of the SWMPs in the country as well as in other countries in the region.

  20. Composite Material from By-products and Its Properties

    Science.gov (United States)

    Šeps, K.; Broukalová, I.; Vodička, J.

    2017-09-01

    The paper shows an example of utilization of specific textile admixture - fluffs of torn textiles from waste cars in production of composite with aggregate consisting entirely of unsorted recycled concrete. The admixture in the mixture of recycled concrete and cement binder fills the pores and voids in composite. The elaborated composite has working title STEREDconcrete. In the article, basic mechanical-physical properties of the composite are presented also the fire resistance of STEREDconcrete, which was determined in tests.

  1. Rock-welding materials for deep borehole nuclear waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The concept of deep borehole nuclear waste disposal has recently been proposed. Effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficient adhesion to waste container surface, and lack of flexibility for engineering controls. Here we show that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. This work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. A number of engineered granitic materials have been obtained that have decreased melting points, enhanced viscous densification, and accelerated recrystallization rates without compromising the mechanical integrity of the materials.

  2. Shock resistance of composite material pipes

    International Nuclear Information System (INIS)

    Pays, M.F.

    1995-01-01

    Composite materials have found a wide range of applications for EDF nuclear plants. Applications include fire pipework, demineralized water, service water, and emergency-supplied service water piping. Some of those pipework is classified nuclear safety, their integrity (resistance to water aging and earthquakes or accidental excess pressure (water hammer)) must be safeguarded. As composite materials generally suffer damage for low energy impacts (under 10 J), the pipes planned for the Civaux power plant have been studied for their resistance to a low speed shock (0 to 50 m/s) and of a 0 to 110 J energy level. For three representative diameters (20, 150, 600 mm), the minimum impact energy that leads to a leak has been determined to be respectively 18, 20 and 48 J. Then the leak rate versus impact energy was plotted; until roughly 90 J, the leak rate remains stable at less than 25 cm 3 /h and raises to higher values (300 cm 3 /h) afterwards. The level of leakage in the range of impact energy tested always stays within the limits set by the Safety Authorities for metallic pipes. These results have been linked to destructive examinations, to clarify the damage mechanisms. Other tests are still ongoing to follow the evolution of the damage and of the leak rate while the pipe is maintained under service pressure during one year

  3. Hanford Site Composite Analysis Technical Approach Description: Waste Form Release.

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, S. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Paris, B. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Apted, M. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-09-14

    The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems; or, to determine management alternatives, corrective actions or assessment needs, if potential problems are identified.

  4. Practice of the utilization of biomass from waste materials; Praxis der Verwertung von Biomasse aus Abfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, Klaus; Kern, Michael; Raussen, Thomas (eds.)

    2010-07-01

    Within the 4th Witzenhaeuser Biomass Conference from 10th to 11th November, 2010, in Witzenhausen (Federal Republic of Germany) the following lectures were held: (1) Consequences of the amendment of the law of life-cycle management and biological waste regulations for the practice of acquisition and utilization of biological wastes (Claus-Gerhard Bergs); (2) An eco-efficient handling with biological wastes and composting wastes (Siegfried Kreibe); (3) Perspectives of the biological waste management (Michael Kern); (4) Assessment of waste biogas plants by environmental verifiers - implementation of the EEG novella (Michael Hub); (5) Fermentation of biogenic residuals - State of the art and perspectives (David Wilken); (6) Energy from cultivation masses and waste biomasses - Perspectives for Europe (Katja Bunzel); (7) Optimization of a biogas plant in practical operation (Michael Buchheit); (8) Odour situation and germ situation before and after an integration of a biogas plant in a composite system (Juergen Roth); (9) Aspects of immission protection rights according to the requirements on the permission and operation of biogas plants (Norbert Suritsch); (10) Actual veterinary regulatory, fertilizer regulatory and waste regulatory requirements on the treatment and utilization of fermentation products (Andreas Kirsch); (11) Utilization of fermentation residues from biological waste: Basic conditions and technology of processing (Thomas Raussen); (12) Practical experiences and new developments using selected examples: Pohlsche Heide, Baar (Switzerland) and Cesena (Italy) (Peter Lutz); (13) New facility concepts of dry fermentation in Lohfelden and Uelzen (Gunnar Ziehmann); (14) New facility concepts of plug flow fermentation (Michael Oertig); (15) Further development of the KOMPOFERM {sup registered} systems (Sandra Striewski); (16) Optimization of the gas yield and reduction of disruptive substances in the processing of biological wastes for the wet fermentation

  5. Method and apparatus for the management of hazardous waste material

    Science.gov (United States)

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  6. Correlation between Composition and Properties of Composite Material Based on Scrap Tires

    OpenAIRE

    Mālers, L; Plēsuma, R; Ločmele, L; Kalniņš, M

    2010-01-01

    Purpose of present work is to investigate mechanical and insulation properties of the composite material based on scrap tires and polyurethane-type binder in correlation with composition of composite material. The studies of material’s hardness must be considered as an express-method for estimation of the selected mechanical properties (E and ccompressive stress) of the composite material without direct experimental testing of given parameters. It was shown that composite material must be r...

  7. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan [Nuclear Fuel Cycle Process Development Division, Korea Atomic Energy Research Institute, 989-111 Daeduk-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Park, Hwan Seo; Ahn, Do-Hee [Nuclear Fuel Cycle Process Development Division, Korea Atomic Energy Research Institute, 989-111 Daeduk-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Yim, Man-Sung, E-mail: msyim@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2016-11-15

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi{sub 2}O{sub 3} (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi{sub 2}O{sub 3} and the glass composition. It was confirmed that BiI{sub 3}, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi{sub 5}O{sub 7}I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10{sup −3}–10{sup −2} g/m{sup 2} day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of {sup 129}I. - Highlights: • Glass composite waste forms were developed to stabilize iodine confined in Bi-embedded SBA-15. • BiI{sub 3} within Bi-embedded SBA-15 was transformed to BiOI and Bi{sub 5}O{sub 7}I during sintering process. • Iodine volatility was significantly affected by glass composition and Bi{sub 2}O{sub 3} additive. • Iodine leaching rates were 10{sup −3}–10{sup −2} g/m{sup 2} day due to the stable iodine phases encapsulated by glassy networks. • Glass composite waste form of Bi-embedded SBA-15 is expected to be a candidate material for stable storage of {sup 129}I.

  8. Prevention of spontaneous combustion of backfilled plant waste material.

    CSIR Research Space (South Africa)

    Adamski, SA

    2003-06-01

    Full Text Available Since Grootegeluk Coal Mine commenced operation in 1980 all plant discards and inter-burden material have been stacked on discards dumps, a practice that has led to the spontaneous combustion of the waste material on these dumps. From 1980 to 1988...

  9. Fabrication of unglazed ceramic tile using dense structured sago waste and clay composite

    International Nuclear Information System (INIS)

    Aripin; S Tani; S Mitsudo; T Saito; T Idehara

    2010-01-01

    In Indonesia, the sago processing industry generates every year huge amount of sago waste, and converting this waste into a useful material is possible. In the present study, physical properties of dense structured sago waste and clay composite were investigated in order to study the feasibility of reuse this sample as raw material in the producing of ceramics. Firstly, the chemical composition of ash (obtained from the sago waste) and clay was characterized. The prepared sample was sintered at the temperature range from 800 to 1,200 °C using electric furnace. The density, linear shrinkage and water absorption of the sintered sample were determined by using the Archimedes' method. The experimental result indicated that the density of the sintered sample increased with increasing sintering temperature up to 1100°C and then slightly decreased afterward. The water absorption of the products decreased with an increase in sintering temperature. In the sintered sample at 1,100 °C, the water absorption decreased rapidly and water adsorption of less than 1 % was achieved. This water absorption was less than 5 % which was needed for unglazed floor tile. The result of water adsorption suggest that it is possible to use this sample as a raw material for producing the ceramic floor tile. (author)

  10. Proceedings of the research conference on cementitious composites in decommissioning and waste management (RCWM2017)

    International Nuclear Information System (INIS)

    Sano, Yuichi; Ashida, Takashi

    2017-11-01

    Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R and D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Research Conference on Cementitious Composites in Decommissioning and Waste Management (RCWM2017) on 20th and 21st June, 2017. This report compiles the abstracts and the presentation materials in the above conference. (author)

  11. Research on swelling clays and bitumen as sealing materials for radioactive waste repositories

    International Nuclear Information System (INIS)

    Allison, J.A.; Wilson, J.; Mawditt, J.M.; Hurt, J.C.

    1991-01-01

    This report describes a programme of research to investigate the performance of composite seals incorporating adjacent blocks of swelling clay and bitumen. It is shown that the interaction of the materials can promote a self-sealing mechanism which prevents water penetration, even when defects are present in the bitumen layer. A review of the swelling properties of highly compacted bentonite and magnesium oxide is presented, and the characteristic sealing properties of bituminous materials are described. On the basis of this review, it is concluded that bentonite is the preferred candidate material for use in composite clay/bitumen seals for intermediate-level radioactive waste repositories. However, it is thought that magnesium oxide may have other sealing applications for high-level waste repositories. A programme of laboratory experiments is described in which relevant swelling and intrusion properties of highly compacted bentonite blocks and the annealing characteristics of oxidised and hard-grade industrial bitumens are examined. The results of composite sealing experiments involving different water penetration routes are reported, and factors governing the mechanism of self-sealing are described. The validation of the sealing concept at a laboratory scale indicates that composite bentonite/bitumen seals could form highly effective barriers for the containment of radioactive wastes. Accordingly, recommendations are made concerning the development of the research, including the implementation of full-scale demonstration experiments to simulate conditions in an underground repository. 13 tabs., 41 figs., 62 refs

  12. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    International Nuclear Information System (INIS)

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent

  13. Melting behaviour of raw materials and recycled stone wool waste

    DEFF Research Database (Denmark)

    Schultz-Falk, Vickie; Agersted, Karsten; Jensen, Peter Arendt

    2018-01-01

    Stone wool is a widely used material for building insulation, to provide thermal comfort along with fire stability and acoustic comfort for all types of buildings. Stone wool waste generated either during production or during renovation or demolition of buildings can be recycled back into the sto...... wool melt production. This study investigates and compares the thermal response and melting behaviour of a conventional stone wool charge and stone wool waste. The study combines differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray diffraction (XRD). DSC reveals...... that the conventional charge and stone wool waste have fundamentally different thermal responses, where the charge experiences gas release, phase transition and melting of the individual raw materials. The stone wool waste experiences glass transition, crystallization and finally melting. Both DSC and HSM measurements...

  14. Method of encapsulating waste radioactive material

    International Nuclear Information System (INIS)

    Forrester, J.A.; Rootham, M.W.

    1982-01-01

    When encapsulating radioactive waste including radioactive liquid having a retardant therein which retards the setting of cements by preventing hydration at cement particles in the mix, the liquid is mixed with ordinary Portland cement and subjected, in a high shear mixer, to long term shear far in excess of that needed to form ordinary grout. The controlled utilization of the retardants plus shear produces a thixotropic paste with extreme moldability which will not bleed, and finally sets more rapidly than can be expected with normal cement mixtures forming a very strong product. (author)

  15. Disposal of hazardous and toxic waste material

    International Nuclear Information System (INIS)

    Burton, W.R.

    1984-01-01

    A repository for waste packages is in the form of a below-ground tunnel having a filled access shaft and lined borehole. A tube passes down through the filling in the access shaft and the tunnel, lined borehole and tube are filled with a plastic substance such as a bentonite clay or bitumen to provide a pressure in the repository greater than the pressure provided by water in the ground around the repository. A trench with a sealing cap can be used as an alternative to a tunnel. (author)

  16. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jubouri, Sama M. [Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Curry, Nicholas A. [Materials Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Holmes, Stuart M., E-mail: stuart.holmes@manchester.ac.uk [Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-12-15

    A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr{sup 2+} ions from an aqueous phase. The encapsulation of the Sr{sup 2+} using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65 mg/g for the pure natural clinoptilolite and 72 mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160 mg/g) having higher capacity than the natural clinoptilolite composite (95 mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite.

  17. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  18. Peer Review of the Waste Package Material Performance Interim Report

    International Nuclear Information System (INIS)

    J. A. Beavers; T. M. Devine, Jr.; G. S. Frankel; R. H. Jones; R. G. Kelly; R. M. Latanision; J. H. Payer

    2001-01-01

    At the request of the U.S. Department of Energy, Bechtel SAIC Company, LLC, formed the Waste Package Materials Performance Peer Review Panel (the Panel) to review the technical basis for evaluating the long-term performance of waste package materials in a proposed repository at Yucca Mountain, Nevada. This is the interim report of the Panel; a final report will be issued in February 2002. In its work to date, the Panel has identified important issues regarding waste package materials performance. In the remainder of its work, the Panel will address approaches and plans to resolve these issues. In its review to date, the Panel has not found a technical basis to conclude that the waste package materials are unsuitable for long-term containment at the proposed Yucca Mountain Repository. Nevertheless, significant technical issues remain unsettled and, primarily because of the extremely long life required for the waste packages, there will always be some uncertainty in the assessment. A significant base of scientific and engineering knowledge for assessing materials performance does exist and, therefore, the likelihood is great that uncertainty about the long-term performance can be substantially reduced through further experiments and analysis

  19. Elaboration and characterisation of plutonium waste reference materials

    International Nuclear Information System (INIS)

    Perolat, J.P.

    1990-01-01

    The Analysis Methods Establishment Commission (CETAMA) has set up a program for the elaboration and characterisation of plutonium waste reference materials. The object of this program is to give laboratories the possibility to test and calibrate apparatus used in non-destructive methods for the analysis of plutonium waste. The different parameters of this program are presented: - characterisation of plutonium, - type and number of containers, - plutonium distribution inside the different containers, - description of the matrix

  20. Method of encapsulating solid radioactive waste material for storage

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Bates, J.L.

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation. 8 claims

  1. Handbook of solid waste disposal: materials and energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J L; Heer, Jr, J E; Hagerty, D J

    1975-01-01

    Traditional and innovative solid waste disposal techniques and new developments in materials and energy recovery systems are analyzed. Each method is evaluated in terms of system methodology, controlling process parameters, and process requirements, by-products, economics, and case histories. Medium and high temperature incineration; wet pulping; landfill with leachate recirculation; the Hercules, Inc., system; USBM front-end and back-end systems; pyrolysis; waste heat utilization, the Combustion Power Unit-400; use of refuse as a supplementary fuel; and methane production from anaerobic fermentation systems are considered, as well as sanitary landfilling, incineration, and composting. European solid waste management techniques are evaluated for their applicability to the US.

  2. Retrieval process development and enhancements waste simulant compositions and defensibility

    International Nuclear Information System (INIS)

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD ampersand E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD ampersand E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties

  3. Feasibility of using ceramic furnace wastes in cement composites

    International Nuclear Information System (INIS)

    Fazzan, J.V.; Sanches, A.O.; Akasaki, J.L.; Malmonge, J.A.

    2016-01-01

    Currently, the region of Epitacio-SP President is classified as Paulista West Center in the production of ceramic tiles and bricks. However, as these industries have also generated environmental impacts in the production process with the generation of waste, the construction industries presents as great potential to absorb a large portion of these materials, called Pozzolans. In this sense, the research aims to study the characterization of Ceramic Furnace Wastes (CFC) and the evaluation of their reactivity. Mortar specimens were molded with different waste percentages in partial replacement of Portland cement, for analysis of compressive strength and capillary water absorption test. The characterization results show that important properties can be obtained by the preparation conditions of ashes, besides obtaining resistant activity index higher than expected by technical standards when using the material in replacement of Portland cement. (author)

  4. Composition of estuarine colloidal material: organic components

    Science.gov (United States)

    Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

    1982-01-01

    Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

  5. Composite materials from new textile technologies

    Directory of Open Access Journals (Sweden)

    Jiménez, M. A.

    1997-12-01

    Full Text Available The present paper describes in a general way the most important of the advanced textile technologies which are oriented to the manufacturing of organic matrix composite materials, the paper presents their applications and the possibilities of future development. The use of these advanced weaving techniques allows the production of near-net-shaped preforms, which results in important savings in processing costs; moreover, these textile processes offer the possibility of introducing out-of plane reinforcing fibres, so there is an important increment of the impact strength and the damage tolerance of the final material.

    En el presente artículo se describen, de forma genérica, las más importantes de las tejedurías avanzadas destinadas a la fabricación de materiales compuestos de matriz orgánica, presentándose sus aplicaciones y futuras posibilidades de desarrollo. La utilización de estos procesos de tejeduría avanzados permite la elaboración de preformas cercanas a la forma final de la pieza, lo que se traduce en importantes reducciones en los costes de fabricación; además, estos procesos textiles ofrecen la posibilidad de introducir fibras de refuerzo fuera del plano, aumentando de forma considerable la resistencia a impacto y la tolerancia al daño del material final.

  6. Active Waste Materials Corrosion and Decontamination Tests

    International Nuclear Information System (INIS)

    Danielson, M.J.; Elmore, M.R.; Pitman, S.G.

    2000-01-01

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 und M HNO 3 could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test

  7. The material politics of waste disposal - decentralization and integrated systems

    Directory of Open Access Journals (Sweden)

    Penelope Harvey

    2012-12-01

    Full Text Available This article and the previous «Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley» from Teresa Tupayachi are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. The present article explores how discontinuities across diverse instances of the state are experienced and understood. Drawing from an ethnographic study of the Vilcanota Valley in Cusco, the article looks at the material politics of waste disposal in neoliberal times. Faced with the problem of how to dispose of solid waste, people from Cusco experience a lack of institutional responsibility and call for a stronger state presence. The article describes the efforts by technical experts to design integrated waste management systems that maximise the potential for re-cycling, minimise toxic contamination, and turn ‘rubbish’ into the altogether more economically lively category of ‘solid waste’. However while the financialization of waste might appear to offer an indisputable public good, efforts to instigate a viable waste disposal business in a decentralizing political space elicit deep social tensions and contradictions. The social discontinuities that decentralization supports disrupt ambitions for integrated solutions as local actors resist top-down models and look not just for alternative solutions, but alternative ways of framing the problem of urban waste, and by extension their relationship to the state.

  8. Developing an institutional strategy for transporting defense transuranic waste materials

    International Nuclear Information System (INIS)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations

  9. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    OpenAIRE

    Lota, Katarzyna; Sierczynska, Agnieszka; Lota, Grzegorz

    2011-01-01

    In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD). The morphology of the composite...

  10. Composition and Value of waste in landfills in SA

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2015-09-01

    Full Text Available in landfills in SA German Chamber of Business From Mining to Urban Mining 16 September 2015 IFAT Environmental Technology Forum Africa 2015 by Prof Suzan Oelofse Research Group Leader: Waste for Development Competency Area: Solutions for a Green... in collection infrastructure is required • Creation of entrepreneurial opportunities • Design for recycling • Creation of markets for recycled materials – Replacing virgin materials with recyclate – Develop new innovative high quality recycled products...

  11. Potential applications of nanostructured materials in nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  12. Low activation material design methodology for reduction of radio-active wastes of nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, A.; Satou, M.; Nogami, S.; Kakinuma, N.; Kinno, M.; Hayashi, K.

    2007-01-01

    Most of the concrete shielding walls and pipes around a reactor pressure vessel of a light water reactor become low level radioactive waste at decommission phase because they contain radioactive nuclides by thermal-neutron irradiation during its operation. The radioactivity of some low level radioactive wastes is close to the clearance level. It is very desirable in terms of life cycle cost reduction that the radioactivity of those low level radioactive wastes is decreased below clearance level. In case of light water reactors, however, methodology of low activation design of a nuclear plant has not been established yet because the reactor is a large-scale facility and has various structural materials. The Objectives of this work are to develop low activation material design methodology and material fabrication for reduction of radio-active wastes of nuclear power plant such as reinforced concrete. To realize fabrication of reduced radioactive concrete, it is necessary to develop (1) the database of the chemical composition of raw materials to select low activation materials, (2) the tool for calculation of the neutron flux and the spectrum distribution of nuclear plants to evaluate radioactivity of reactor components, (3) optimization of material process conditions to produce the low activation cement and the low activation steels. Results of the data base development, calculation tools and trial production of low activation cements will be presented. (authors)

  13. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    International Nuclear Information System (INIS)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-01-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper. (paper)

  14. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    Science.gov (United States)

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Development and Sliding Wear Response of Epoxy Composites Filled with Coal Mine Overburden Material

    Science.gov (United States)

    Das, Prithika; Satapathy, Alok; Mishra, M. K.

    2018-03-01

    The paper reports on development and characterization of epoxy based composites filled with micro-sized mine overburden material. Coal mine overburden material is typically highly heterogeneous and is considered as waste material. For excavating each ton of coal, roughly 5 tons of overburden materials are removed and is dumped nearby occupying large space. Gainful utilization of this waste is a major challenge. In the present work, this material is used as filler materials in making a new class of epoxy matrix composites. Composites with different weight proportions of fillers (0, 10, 20, 30 and 40) wt. % are prepared by hand layup technique. Compression tests are performed as per corresponding ASTM standards to assess the compressive strength of these composites. Further, dry sliding tests are performed following ASTM G99 standards using a pin on disk machine. A design of experiment approach based on Taguchi’s L16 orthogonal arrays is adopted. Tests are performed at different sliding velocities for multiple sliding distances under varying normal loads. Specific wear rates of the composites under different test conditions are obtained. The analysis of the test results revealed that the filler content and the sliding velocity are the most predominant control factors affecting the wear rate. This work thus, opens up a new avenue for the value added utilization of coal mine overburden material.

  16. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  17. Pilot-Plant for Energy Recovery from Tropical Waste Food Materials ...

    African Journals Online (AJOL)

    An experimental unit for obtaining gaseous methane from waste food materials is discussed and results are presented for experimental tests with animal wastes and tropical waste food materials. The tropical waste food considered include garri, boiled beans and plantains. As expected, the animal wastes produced higher ...

  18. Porous alkali activated materials with slow alkali release dynamic. Role of composition

    International Nuclear Information System (INIS)

    Bumanis, G.; Bajare, D.

    2018-01-01

    Alkali activated materials (AAM) based on calcined metakaolin or illite clay together with waste by-products, such as waste glass or aluminium scrap recycling waste, were tested as value-added materials for pH stabilization in biogas technology where decrease of pH should be avoided. Porous materials with ability to slowly leach alkalis in the water media thus providing continuous control of the pH level were obtained. XRD, FTIR, SEM and titration methods were used to characterize AAM and their leaching properties. It is clear that composition of the material has an important effect on the diffusion of alkali from structure. Namely, higher Si/Al and Na/Al molar ratios may increase pore solution transfer to the leachate. The leaching rate of alkalis from the structure of AAM is high for the first few days, decreasing over time. It was possible to calculate the buffer capacity from the mixture design of AAM. [es

  19. Development of Composite Materials Under Ecological Aspects as Recycling Concept For Borosilicate Glass Containing Iron Slags

    International Nuclear Information System (INIS)

    Khalil, T.K.; Bossert, J.; Aly, H.F.; Bossert, J.

    1999-01-01

    Composite concept in materials science can be conveniently applied in the waste treatment technology to construct specific t ailor made c omposite materials, in which at least one of the phases is built by the waste material. In this work the applicability of this concept for the fixation and recycling of slags wastes is done, whereby different mixtures of blast furnace slags are mixed with two different borosilicate glasses, which serve as matrix material. Thermal behaviour of the produced compacts were studied. Both melting and powder technology are applied for the fabrication of dense products. The microstructure of sintered samples is investigated by electron microscopy. The mechanical properties such as hardness and fracture toughness are determined by a Vickers technique. An improvement of the fracture toughness of more than 50% over the value for the original glass VG 98 is achieved by slag addition

  20. Materials aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Pohl, R.O.

    1984-01-01

    Detailed discussion of the heat flow in granitic rocks is presented because temperature is one of the most important parameters determining the containment of nuclear waste in a geologic repository. This paper focusses on a review of our present understanding of the thermal conductivity of igneous rocks. It is suggested that the low, glass-like thermal conductivity of one of the major constituents of these rocks, namely the plagioclase feldspars, is caused by a disorder intrinsic to these solids. Because of the strong phonon scattering in the plagioclases, it is their presence, and only to a lesser degree the disorder in the other constituent minerals in the igneous rocks, which determines their conductivity

  1. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  2. Waste Package and Material Testing for the Proposed Yucca Mountain High Level Waste Repository

    International Nuclear Information System (INIS)

    Doering, Thomas; Pasupathi, V.

    2002-01-01

    Over the repository lifetime, the waste package containment barriers will perform various functions that will change with time. During the operational period, the barriers will function as vessels for handling, emplacement, and waste retrieval (if necessary). During the years following repository closure, the containment barriers will be relied upon to provide substantially complete containment, through 10,000 years and beyond. Following the substantially complete containment phase, the barriers and the waste package internal structures help minimize release of radionuclides by aqueous- and gaseous-phase transport. These requirements have lead to a defense-in-depth design philosophy. A multi-barrier design will result in a lower breach rate distributed over a longer period of time, thereby ensuring the regulatory requirements are met. The design of the Engineered Barrier System (EBS) has evolved. The initial waste package design was a thin walled package, 3/8 inch of stainless steel 304, that had very limited capacity, (3 PWR and 4 BWR assemblies) and performance characteristics, 300 to 1,000 years. This design required over 35,000 waste packages compared to today's design of just over 10,000 waste packages. The waste package designs are now based on a defense-in-depth/multi-barrier philosophy and have a capacity similar to the standard storage and rail transported spent nuclear fuel casks. Concurrent with the development of the design of the waste packages, a comprehensive waste package materials testing program has been undertaken to support the selection of containment barrier materials and to develop predictive models for the long-term behavior of these materials under expected repository conditions. The testing program includes both long-term and short-term tests and the results from these tests combination with the data published in the open literature are being used to develop models for predicting performance of the waste packages

  3. Optimization of glass composition for the vitrification of nuclear waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Soper, P.D.; Roberts, G.J.; Lightner, L.F.; Walker, D.D.; Plodinec, M.J.

    1982-01-01

    Waste glasses of different compositions were compared in terms of leachability, viscosity, liquidus temperature, and coefficient of expansion. The compositions of the glasses were determined by statistical optimization. Waste glass of the optimized composition is more durable than the current reference composition but can still be processed at low temperature

  4. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Industrial waste as a source for fabrication of composite ceramics-glass with a controlled porosity

    Directory of Open Access Journals (Sweden)

    Adziski R.

    2008-01-01

    Full Text Available Metallurgical slag with granulation (-0.125+0.063mm and 20 wt% waste TV glass were used for obtaining a glass ceramic composite with a controlled porosity. This material obtained by sintering at 950oC/2h possessed thermal stability, integral porosity of 43.6% and E-modulus and bending strength of 12 GPa and 39 MPa, respectively. The composite was characterized with a permeability of 0.47 Da and generation of air bubbles with size of 1-4 mm in a water medium.

  6. Used nuclear materials at Savannah River Site: asset or waste?

    International Nuclear Information System (INIS)

    Magoulas, Virginia

    2013-01-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ''assets'' to worthless ''wastes''. In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as ''waste'' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

  7. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  8. Actinide separation chemistry in nuclear waste streams and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  9. EXPERIMENTAL INVESTIGATION ON PREFABRICATED ROAD PANEL BY USING WASTE MATERIALS

    OpenAIRE

    M. Aravinth; P. Arun Kumar; R. Aravind Kumar; S. Arun Kumar

    2018-01-01

    Plastics are user friendly but not eco-friendly as they are non-biodegradable. Generally it is disposed by way of land filling or incineration of materials which are hazardous. The better binding property of plastics in its molten state has helped in finding out a method of safe disposal of waste plastics, by using them in road laying. Use of plastic waste (HDPE) and Crumb Rubber. This not only allows us to collect modifier raw material at low cost, but also provides a solution towards ecolog...

  10. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    International Nuclear Information System (INIS)

    J.P. Nicot

    2000-01-01

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the WP. This

  11. Far-Field Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Nicot

    2000-09-29

    The objective of this calculation is to estimate the quantity of fissile material that could accumulate in fractures in the rock beneath plutonium-ceramic (Pu-ceramic) and Mixed-Oxide (MOX) waste packages (WPs) as they degrade in the potential monitored geologic repository at Yucca Mountain. This calculation is to feed another calculation (Ref. 31) computing the probability of criticality in the systems described in Section 6 and then ultimately to a more general report on the impact of plutonium on the performance of the proposed repository (Ref. 32), both developed concurrently to this work. This calculation is done in accordance with the development plan TDP-DDC-MD-000001 (Ref. 9), item 5. The original document described in item 5 has been split into two documents: this calculation and Ref. 4. The scope of the calculation is limited to only very low flow rates because they lead to the most conservative cases for Pu accumulation and more generally are consistent with the way the effluent from the WP (called source term in this calculation) was calculated (Ref. 4). Ref. 4 (''In-Drift Accumulation of Fissile Material from WPs Containing Plutonium Disposition Waste Forms'') details the evolution through time (breach time is initial time) of the chemical composition of the solution inside the WP as degradation of the fuel and other materials proceed. It is the chemical solution used as a source term in this calculation. Ref. 4 takes that same source term and reacts it with the invert; this calculation reacts it with the rock. In addition to reactions with the rock minerals (that release Si and Ca), the basic mechanisms for actinide precipitation are dilution and mixing with resident water as explained in Section 2.1.4. No other potential mechanism such as flow through a reducing zone is investigated in this calculation. No attempt was made to use the effluent water from the bottom of the invert instead of using directly the effluent water from the

  12. Phosphates as packaging materials for separated nuclear wastes

    International Nuclear Information System (INIS)

    Audubert, F.

    2006-10-01

    The author gives an overview of fifteen years of research activities performed within the context of the so-called Bataille bill which recommended in 1991 new investigations on the management of nuclear wastes. She presents studies aimed at the elaboration of phosphates with an apatite structure, and outlines the determination of compositions adapted to iodine, caesium and tri- or tetravalent actinide incorporation. She reports the synthesis of phosphates with a monazite structure for caesium and actinide confinement. Finally, she reports studies dealing with the waste packaging issue (elaboration of packaging matrices, properties)

  13. Environmentally sound management of hazardous waste and hazardous recyclable materials

    International Nuclear Information System (INIS)

    Smyth, T.

    2002-01-01

    Environmentally sound management or ESM has been defined under the Basel Convention as 'taking all practicable steps to ensure that hazardous wastes and other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes'. An initiative is underway to develop and implement a Canadian Environmentally Sound Management (ESM) regime for both hazardous wastes and hazardous recyclable materials. This ESM regime aims to assure equivalent minimum environmental protection across Canada while respecting regional differences. Cooperation and coordination between the federal government, provinces and territories is essential to the development and implementation of ESM systems since waste management is a shared jurisdiction in Canada. Federally, CEPA 1999 provides an opportunity to improve Environment Canada's ability to ensure that all exports and imports are managed in an environmentally sound manner. CEPA 1999 enabled Environment Canada to establish criteria for environmentally sound management (ESM) that can be applied by importers and exporters in seeking to ensure that wastes and recyclable materials they import or export will be treated in an environmentally sound manner. The ESM regime would include the development of ESM principles, criteria and guidelines relevant to Canada and a procedure for evaluating ESM. It would be developed in full consultation with stakeholders. The timeline for the development and implementation of the ESM regime is anticipated by about 2006. (author)

  14. Container material and design considerations for storage of low-level radioactive waste

    International Nuclear Information System (INIS)

    Temus, C.J.

    1987-01-01

    With the threat of increased burial site restrictions and increased surcharges; the ease with which waste is sent to the burial site has been reduced. For many generators of waste the only alternative after maximizing volume reduction efforts is to store the waste. Even after working through the difficult decision of deciding what type of storage facility to have, the decision of what type of container to store the waste in has to still be made. This paper explores the many parameters that affect not only the material selection but also the design. The proper selection of materials affect the ability of the container to survive the storage period. The material selection also directly affects the design and utilization of the storage facility. The impacts to the facility include the functional aspects as well as its operational cost and liability as related to such things as fire insurance and active environmental control systems. The advantages and disadvantages of many of the common systems such as carbon steel, various coatings, polyethylene, stainless steel, composites and concrete will be discussed and evaluated. Recognizing that the waste is to be disposed of in the future differentiates it from waste that is shipped directly to the disposal site. The stored waste has to have the capability to be handled not only once like the disposal site waste but potentially several times before ultimate disposal. This handling may be by several different systems both at the storage facility and the burial site. Some of these systems due to ALARA considerations are usually remote requiring various interfaces, while not interfering with handling, transportation or disposal operations

  15. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW)...

  16. Recycling of nonferrous metals from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, A

    1982-02-01

    Recycling of metals was one of the 9 central subjects of the international symposium on 'Materials and Energy from Refuse', held in Antwerpen on October 20 to 22, 1981. Six of 65 poster sessions papers were on metal recycling; four of them discussed the recycling of nonferrous metals.

  17. Ceramic nuclear waste forms. II. A ceramic-waste composite prepared by hot pressing. Progress report and preprint

    International Nuclear Information System (INIS)

    McCarthy, G.J.

    1975-01-01

    A feasibility study was conducted to determine whether nuclear waste calcine and a crystalline ceramic matrix can be fabricated by hot pressing into a composite waste form with suitable leaching resistance and thermal stability. It was found that a hard, dense composite could be formed using the typical commercial waste formulation PW-4b and a matrix of α-quartz with a small amount of a lead borosilicate glass added as a consolidation aide. Its density, waste loading, and leaching resistance are comparable to the glasses currently being considered for fixation of nuclear wastes. The hot pressed composite offers a closer approach to thermodynamic stability and improved thermal stability (in monolithic form) compared to glass waste forms. Recommendations for further optimization of the hot pressed waste form are given. (U.S.)

  18. Materials evaluation programs at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided

  19. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  20. Molecular environmental science using synchrotron radiation: Chemistry and physics of waste form materials

    International Nuclear Information System (INIS)

    Lindle, Dennis W.; Shuh, David K.

    2005-01-01

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements

  1. Molecular environmental science using synchrotron radiation:Chemistry and physics of waste form materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.; Shuh, David K.

    2005-02-28

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements.

  2. Perovskite-Ni composite: a potential route for management of radioactive metallic waste.

    Science.gov (United States)

    Mahadik, Pooja Sawant; Sengupta, Pranesh; Halder, Rumu; Abraham, G; Dey, G K

    2015-04-28

    Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Investigation on polyetheretherketone composite for long term storage of nuclear waste

    Science.gov (United States)

    Ajeesh, G.; Bhowmik, Shantanu; Sivakumar, Venugopal; Varshney, Lalit; Kumar, Virendra; Abraham, Mathew

    2015-12-01

    This investigation highlights the effect of radiation, chemical and thermal environments on mechanical and thermal properties of Polyetheretherketone (PEEK) composites, which could prove to be an alternative material for long term storage of nuclear wastes. The tests are conducted on specimens made from PEEK and PEEK reinforced with carbon short fiber. The specimens are subjected to radiation doses, equivalent to the cumulative dosage for 500 years followed by exposure under highly corrosive and thermal environments. Studies under optical microscopy reveal that the dispersion of carbon short fiber in the PEEK Composites is significantly uniform. Differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) indicates that there are no significant changes in thermal properties of PEEK composite when exposed to aggressive environments. It is further observed that there are no significant changes in mechanical properties of the composite after exposure to radiation and thermo-chemical environment.

  4. Investigation on polyetheretherketone composite for long term storage of nuclear waste

    International Nuclear Information System (INIS)

    Ajeesh, G.; Bhowmik, Shantanu; Sivakumar, Venugopal; Varshney, Lalit; Kumar, Virendra; Abraham, Mathew

    2015-01-01

    This investigation highlights the effect of radiation, chemical and thermal environments on mechanical and thermal properties of Polyetheretherketone (PEEK) composites, which could prove to be an alternative material for long term storage of nuclear wastes. The tests are conducted on specimens made from PEEK and PEEK reinforced with carbon short fiber. The specimens are subjected to radiation doses, equivalent to the cumulative dosage for 500 years followed by exposure under highly corrosive and thermal environments. Studies under optical microscopy reveal that the dispersion of carbon short fiber in the PEEK Composites is significantly uniform. Differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) indicates that there are no significant changes in thermal properties of PEEK composite when exposed to aggressive environments. It is further observed that there are no significant changes in mechanical properties of the composite after exposure to radiation and thermo-chemical environment.

  5. Effect of pressing temperature on the mechanical properties of waste styrofoam filled sawdust composite

    Science.gov (United States)

    Nasution, H.; Harahap, H.; Riani, R.; Pelawi, A. I.

    2018-02-01

    This study has investigated the effect of pressing temperature on mechanical properties of waste styrofoam composite filled with sawdust. The waste styrofoam as the matrix was mixed with sawdust as filler and maleic anhydride (6%wt) as a compatibilizer. The weight fraction ratio between matrix and filler 70:30 (wt) and wood fiber size of 100 mesh were conducted. The pressing temperatures were investigated using a hot press with temperatures varied viz. 120, 130, 150, and 170 °C. Surface modification was applied to sawdust to diminish its polarity so that it could be compatible with the non-polar waste styrofoam matrix. Composites were evaluated using Instron and impact tester machine to investigate the tensile strength and impact strength of the material, respectively. The result indicated that tensile strength has decreased with the increase of pressing temperature where the largest tensile strength is at 130 °C of 33 MPa. The same trend has occurred on impact strength, where the value has reached of 300 J/cm2 on pressing temperature of 130 °C. From scanning electron microscopy (SEM) analysis it is also confirmed that during impact test, the resistance of the composite which has been pressed at the temperature of 130 °C have given better morphology than the composite at 170 °C.

  6. Bentonite as a waste isolation pilot plant shaft sealing material

    International Nuclear Information System (INIS)

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites

  7. Bentonite as a waste isolation pilot plant shaft sealing material

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  8. Composite Materials in Aircraft Mishaps Involving Fire: A Literature Review

    National Research Council Canada - National Science Library

    Wright, Mark

    2003-01-01

    .... The Naval Air Systems Command (NAVAIR), which provides technical guidance for aircraft fire safety, was concerned that hazards presented by new composite materials and greater quantities of composites may not be adequately addressed...

  9. Developing Raman spectroscopy for the nondestructive testing of composite materials.

    Science.gov (United States)

    2009-08-01

    The proposed research will develop the application of Raman Spectroscopy as a nondestructive evaluation tool for the condition assessment of carbon fiber composites. Composite materials are increasingly being used in engineered structures and compone...

  10. Developing polymer composite materials: carbon nanotubes or graphene?

    Science.gov (United States)

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng

    2013-10-04

    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Numerical simulation of mechanical behavior of composite materials

    CERN Document Server

    Oller, Sergio

    2014-01-01

    An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...

  12. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    Science.gov (United States)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  13. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Science.gov (United States)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  14. A proposal of materials for the storage of radioactive wastes

    International Nuclear Information System (INIS)

    Carlsson, R.

    1978-01-01

    On the basis of a literature study concerning the chemical stability of ceramics as well as of different experiencies of persons working with ceramics in Sweden a proposal of candidate materials for the storage of radioactive wastes is presented. Advantages and disadvantages in connection with the use of different ceramics have been tabulated. (E.R.)

  15. Compression device for feeding a waste material to a reactor

    Science.gov (United States)

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  16. DOE materials program supporting immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Oertel, G.K.; Scheib, W.S. Jr.

    1979-01-01

    A summary is presented of the DOE program for developing waste-form criteria, immobilization processes, and generation and evaluation of performance characterization data. Interrelationships are discussed among repository design, materials requirements, immobilization process definition, quality assurance, and risk analysis as part of the National Environmental Policy Act and regulatory processes

  17. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials

    Czech Academy of Sciences Publication Activity Database

    Maděrová, Z.; Horská, K.; Kim, S.-R.; Lee, Ch.-H.; Pospíšková, K.; Šafaříková, Miroslava; Šafařík, Ivo

    2016-01-01

    Roč. 73, č. 9 (2016), s. 2143-2149 ISSN 0273-1223 Institutional support: RVO:60077344 Keywords : biofilm * food waste materials * magnetic spent grain * Pseudomonas aeruginosa Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.197, year: 2016

  18. MIXING OF INCOMPATIBLE MATERIALS IN WASTE TANKS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    SANDGREN, K.R.

    2006-01-01

    This document presents onsite radiological, onsite toxicological, and offsite toxicological consequences, risk binning, and control decision results for the mixing of incompatible materials in waste tanks representative accident. Revision 4 updates the analysis to consider bulk chemical additions to single shell tanks (SSTs)

  19. The useful application of sulphur-bound waste materials

    NARCIS (Netherlands)

    Alkemade, M.M.C.; Koene, J.I.A.

    1996-01-01

    An immobilization process is described which is based on sulphur (instead of cement) as a binding agent for the treatment of hazardous waste materials. Elemental sulphur is able to bind chemically metals such as mercury and, to a lesser extent, lead as metal sulphides. Furthermore, sulphur forms a

  20. The use of agricultural waste materials for concrete making ...

    African Journals Online (AJOL)

    This paper presents laterite as fine aggregate and agricultural waste materials such as periwinkle shell, (PS) and palm kernel shell (PKS) as coarse aggregate for making concrete. Saturated surface dry (SSD) bulk density and compressive cube strength tests of concrete made from these were carried at the concrete age of ...

  1. Neural network analysis of nuclear waste glass composition vs durability

    International Nuclear Information System (INIS)

    Seibel, C.K.

    1994-01-01

    The relationship between the chemical composition of oxide glasses and their physical properties is poorly understood, but it is becoming more important as vitrification (transformation into glass) of high-level nuclear waste becomes the favored method for long-term storage. The vitrified waste will be stored deep in geologic repositories where it must remain intact for at least 10,000 years. A strong resistance to groundwater exposure; i.c. a slow rate of glass dissolution, is of great importance. This project deals specifically with glass samples developed and tested for the nuclear fuel reprocessing facility near West Valley, New York. This facility needs to dispose of approximately 2.2 million liters of high-level radioactive liquid waste currently stored in stainless steel tanks. A self-organizing, artificial neural network was used to analyze the trends in the glass dissolution data for the effects of composition and the resulting durability of borosilicate glasses in an aqueous environment. This durability data can be used to systematically optimize the properties of the complex nuclear glasses and slow the dissolution rate of radionuclides into the environment

  2. Feasibility of Target Material Recycling as Waste Management Alternative

    International Nuclear Information System (INIS)

    El-Guebaly, L.; Wilson, P.; Henderson, D.; Varuttamaseni, A.

    2004-01-01

    The issue of waste management has been studied simultaneously along with the development of the ARIES heavy-ion-driven inertial fusion energy (IFE) concept. Options for waste management include disposal in repositories, recycling, or clearance from regulatory control, following a reasonable cooling period. This paper concerns the feasibility of recycling the heavy-ion-beam targets, in particular the hohlraum wall materials that include, for example, Au/Gd, Au, W, Pb, Hg, Ta, Pb/Ta/Cs, Hg/W/Cs, Pb/Hf, Hf, solid Kr, and solid Xe. The choice between target material disposal and recycling depends on the amount of waste generated relative to the nuclear island, the strategy to solve the recycling problem, and the impact of the additional cost and complexity of the recycling process on the overall machine. A detailed flow diagram for the elements of the recycling process was developed to analyze two extreme activation cases: (a) one-shot use and then disposal in a repository and (b) recycling continuously during plant life without removal of transmutation products. Metrics for comparing the two scenarios included waste level, dose to recycling equipment, additional cost, and design complexity. Comparing the two approaches indicated a preference for the one-shot scenario as it generates 1 m 3 /yr of extremely low-level waste (Class A) and offers attractive design and economics features. Recycling reduces the target waste stream by a factor of 10 or more but introduces additional issues. It may produce high-level waste, requires remote handling, adds radioactive storage facilities, and increases the cost and complexity of the plant. The inventory analysis indicated that the heavy-ion-beam (HIB) target materials represent a very small waste stream compared to that of the nuclear island (<1% of the total waste). This means recycling is not a 'must' requirement for IFE-HIB power plants unless the target materials have cost and/or resource problems (e.g., Au and Gd). In this

  3. Composite Material Hazard Assessment at Crash Sites

    Science.gov (United States)

    2015-01-01

    polymer matrix composites, ceramic matrix composites, and metal matrix composites. Advanced composites use various resin systems including polyester...intensity, and its growth rate. Broadly classified polycyclic aromatic hydrocarbons (naphthalene), nitrogen-containing aromatics (aniline), and phenol...detect. aNIOSH Method 7400 reported Total Dusts and Inhalable results using a 0.8-um mixed cellulose ester filter . bNIOSH Method 600 reported Respirable

  4. Characterization of industrial wastes as raw materials for Emulsified Modified Bitumen (EMB) formulation

    Science.gov (United States)

    Najib Razali, Mohd; Isa, Syarifah Nur Ezatie Mohd; Salehan, Noor Adilah Md; Musa, Musfafikri; Aziz, Mohd Aizudin Abd; Nour, Abdurahman Hamid; Yunus, Rosli Mohd

    2018-04-01

    This study was conducted to characterize industrial wastes for formulation of emulsified modified bitumen (EMB) in relation to their physical characteristic and elemental composition. This analysis will give information either raw materials from industrial wastes can be used for EMB formulation. Bitumen is produced from crude oil that is extracted from the ground which categorizes the crude oil as one of the non-renewable form of product. A vast environmental problem issues arises in Malaysia cause by the excessive manufacturing activity that lead to a miss-management of industrial waste has leads to the used of industrial waste in the EMB formulation. Industrial waste such as polystyrene, polyethylene and used automotive oil can be used as alternative to formulate bitumen. Then a suitable emulsifier needs to be added to produce the final product which is EMB. The emulsifier will yield a charge depends on its properties to bind the oily bitumen with water. Physical characteristic studies were performed by thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), flash point test, density rest and moisture content test. Fourier Transform Infrared Spectroscopy (FTIR) analysis was measured to determine the material’s molecular composition and structure.

  5. Positive utilization of waste materials from mines and quarries

    International Nuclear Information System (INIS)

    Blunden, J.R.

    1980-01-01

    World mineral waste production together with its backlog accumulation is reviewed with particular emphasis upon the situation in North America and the UK. The common problems of conventional waste dumping in relation to its propensity to create land dereliction, are discussed before considering the positive ways of utilizing such material. Upgrading to a saleable product has not resulted in the significant utilization of currently produced waste or stockpiles, whilst processing and transport costs are unlikely in the near future to permit any reduction in on-site tipping through this mode of use. Amenity uses are related to the availability of quantities of waste. Where small amounts are concerned opportunities exist for the backfilling of old excavations, rolling restoration and the construction of amenity backs; the technical and economic problems of each of these is considered. Large scale waste production cannot be similarly contained. Thus the problems of backfilling old workings and long distance transport for reclamation or public works schemes are examined in relation to cost factors. The limitations of conventional economics in dealing with the environmental problems posed by waste are stressed and the possible supportive role of governments in this respect is examined

  6. Performance ratio hardness characteristics polystyrene-metal composite materials

    International Nuclear Information System (INIS)

    Klepikov, V.F.; Prokhorenko, E.M.; Lytvynenko, V.V.; Zakharchenko, A.A.; Hazhmuradov, M.A.

    2015-01-01

    The methods of measuring the hardness of layered polystyrene-metallic composite materials. It is proposed to use powder-like tungsten and powder-like steel as radiation-protective layer. A measurement of the hardness of composites of different composition, and given its dependence on the particle size and their form. The possibility of increasing the hardness of the composites reinforced with metallic additives. Radiation-protective characteristics were calculated for the studied species of composite materials. Influence of the quantitative composition of the metal components is studied on the change of the absorbed dose of gamma radiation

  7. National inventory of radioactive wastes and valorizable materials. Synthesis report

    International Nuclear Information System (INIS)

    2004-01-01

    This national inventory of radioactive wastes is a reference document for professionals and scientists of the nuclear domain and also for any citizen interested in the management of radioactive wastes. It contains: 1 - general introduction; 2 - the radioactive wastes: definition, classification, origin and management; 3 - methodology of the inventory: organization, accounting, prospective, production forecasting, recording of valorizable materials, exhaustiveness, verification tools; 4 - general results: radioactive waste stocks recorded until December 31, 2002, forecasts for the 2003-2020 era, post-2020 prospects: dismantling operations, recording of valorizable materials; 5 - inventory per producer or owner: front-end fuel cycle facilities, power generation nuclear centers, back-end fuel cycle facilities, waste processing or maintenance facilities, civil CEA research centers, non-CEA research centers, medical activities (diagnostics, therapeutics, analyses), various industrial activities (sources fabrication, control, particular devices), military research and experiment centers, storage and disposal facilities; 6 - elements about radioactive polluted sites; 7 - examples of foreign inventories; 8 - conclusion and appendixes. (J.S.)

  8. Multi-material Preforming of Structural Composites

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eberle, Cliff C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pastore, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sudbury, Thomas Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xiong, Fue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hartman, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.

  9. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    International Nuclear Information System (INIS)

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  10. Simulated HLLW compositions for cold test of waste management development

    International Nuclear Information System (INIS)

    Banba, Tsunetaka; Kimura, Hideo; Kamizono, Hiroshi; Tashiro, Shingo

    1982-07-01

    Three grades of simulated high-level liquid waste (HLLW)-JW-A, JW-B, and JW-C - were proposed to be used respectively according to stages of various cold tests for safety assessment of HLW management. The composition of HLLW was estimated taking into account the spectrum of fission products and actinides, waste volume, corrosion products, and chemical additives. One of conditions, the spectrum of fission products and actinides of LWR spent fuels, was calculated by DCHAIN-code. Fuel burn-up of 28,000 MWD/tUO 2 and 33,000 MWD/tUO 2 were adopted as normal and maximum values of Japanese LWR power plants. The other conditions were estimated using the data obtained at Marcoule plant in France. (author)

  11. Composition, production rate and characterization of Greek dental solid waste.

    Science.gov (United States)

    Mandalidis, Alexandros; Topalidis, Antonios; Voudrias, Evangelos A; Iosifidis, Nikolaos

    2018-05-01

    The overall objective of this work is to determine the composition, characterization and production rate of Greek dental solid waste (DSW). This information is important to design and cost management systems for DSW, for safety and health considerations and for assessing environmental impact. A total of 141 kg of DSW produced by a total of 2542 patients in 20 dental practices from Xanthi, Greece was collected, manually separated and weighed over a period of four working weeks. The waste was separated in 19 sub fractions, which were classified in 2 major categories, according to Greek regulations: Domestic-type waste comprising 8% and hazardous waste comprising 92% by weight of total DSW. The latter was further classified in infectious waste, toxic waste and mixed type waste (infectious and toxic together), accounting for 88.5%, 3.5% and 0.03% of total DSW by weight, respectively. The overall unit production rates (mean ± standard error of the mean) were 381 ± 15 g/practice/d and 53.3 ± 1.4 g/patient/d for total DSW, 337 ± 14 g/practice/d and 46.6 ± 1.2 g/patient/d for total infectious DSW, 13.4 ± 0.7 g/practice/d and 2.1 ± 0.1 g/patient/d for total toxic DSW and 30.4 ± 2.5 g/practice/d and 4.6 ± 0.4 g/patient/d for domestic-type waste. Daily DSW production was correlated with daily number of patients and regression correlations were produced. DSW was subject to laboratory characterization in terms of bulk density, calorific value, moisture, ash and volatile solids content. Measured calorific values were compared to predictions from empirical models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Non-Catalytic Self Healing Composite Material Solution, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber reinforce polymer (FRP) composite materials are seeing increasing use in the construction of a wide variety of aerospace structures. However, uncertainties...

  13. Diffusion through composite materials made with thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-08-01

    Medium and low-level radioactive wastes may be coated in a solid matrix mainly made with thermosetting resins: the study of water and cesium migration through composite materials made with thermosetting resins is usefull to compare the water tightness of different coatings. Disks with a thickness of two millimeters were used to measure the water absorption. Diffusion cells including a plane membrane the thickness of which was at least 70μ were used to measure the diffusion of cesium 137. The diffusion coefficient of water in pure thermosetting resins, polyester or epoxyde, is about 10 -9 cm 2 .s -1 ; the diffusion coefficients of cesium in the same materials are about 10 -12 cm 2 .s -1 ; the introduction of solid particles in these polymers generally induces an acceleration of the diffusion process: the diffusion coefficient may reach 10 -8 cm 2 .s -1 . This lost of water-tightness may be reduced either by rendering insoluble the filler mixed to the polymer, or by diminushing the porosity of the interfacial zones by improving the bonding between the polymer and the filler [fr

  14. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark

    DEFF Research Database (Denmark)

    Götze, Ramona; Pivnenko, Kostyantyn; Boldrin, Alessio

    2016-01-01

    differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable......Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher...... recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant...

  15. Supervisory control of drilling of composite materials

    Science.gov (United States)

    Ozaki, Motoyoshi

    Composite materials have attractive features, such as high ratios of strength-to-weight and stiffness-to-weight. However, they are easily damaged when they are machined. A typical damage is delamination, which can occur when fiber reinforced composite laminates are drilled. The objective of this research is to study the drilling processes of carbon fiber reinforced laminates, and to develop and test a supervisory control strategy for their delamination-free drilling. Characterization of thrust force and torque is achieved through constant feedrate drilling experiments. The average values of thrust force and torque during the full engagement of the drill are utilized to obtain the Shaw's equations' parameters. The thrust force profile just before exit is given special attention. The Hocheng-Dharan equations, which give conservative values of delamination at the entrance and at the exit, are modified to express the influence of one lamina thickness explicitly. They are utilized not only for the characterization of thrust force but also for the determination of the thrust force reference for force control. In the design of the controllers of thrust force and torque, both thrust force and torque are assumed to be proportional to FPHR (Feed Per Half Revolution). A discrete-time dynamic model is established for the case when the time interval for a half revolution of the drill is divided by the sampling time, and the model is extended to the case of general spindle speeds. PI controllers are designed for the dynamic models of thrust force and torque. Root-locus techniques are used in the analysis. The phases of the drilling process are introduced and the control strategy at each phase is explained. The supervisory controller chooses not only the best control strategy for each phase, but also the reference value and the controller gain that are suitable at each drill position. Drilling experiments are conducted to show the usefulness of the concepts introduced in this

  16. Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation.

    Science.gov (United States)

    Chen, Yong; Sun, Li-Ping; Liu, Zhi-Hui; Martin, Greg; Sun, Zheng

    2017-11-27

    Managing waste is an increasing problem globally. Microalgae have the potential to help remove contaminants from a range of waste streams and convert them into useful biomass. This article presents a critical review of recent technological developments in the production of chemicals and other materials from microalgae grown using different types of waste. A range of novel approaches are examined for efficiently capturing CO 2 in flue gas via photosynthetic microalgal cultivation. Strategies for using microalgae to assimilate nitrogen, organic carbon, phosphorus, and metal ions from wastewater are considered in relation to modes of production. Generally, more economical open cultivation systems such as raceway ponds are better suited for waste conversion than more expensive closed photobioreactor systems, which might have use for higher-value products. The effect of cultivation methods and the properties of the waste streams on the composition the microalgal biomass is discussed relative to its utilization. Possibilities include the production of biodiesel via lipid extraction, biocrude from hydrothermal liquefaction, and bioethanol or biogas from microbial conversion. Microalgal biomass produced from wastes may also find use in higher-value applications including protein feeds or for the production of bioactive compounds such as astaxanthin or omega-3 fatty acids. However, for some waste streams, further consideration of how to manage potential microbial and chemical contaminants is needed for food or health applications. The use of microalgae for waste valorization holds promise. Widespread implementation of the available technologies will likely follow from further improvements to reduce costs, as well as the increasing pressure to effectively manage waste.

  17. Synthesis of microporous material faujasite-type from kaolin waste

    International Nuclear Information System (INIS)

    Hildebrando, E.A.; Valenzuela-Diaz, F.R.; Angelica, R.S.; Neves, R.F.

    2010-01-01

    Zeolite with structure faujasite was synthesized using kaolin waste from kaolin processing industries for paper coating as predominant source of silicon and aluminum; the starting material was characterized by XRF, XRD, DTA/TG, SEM, and products obtained by XRD and SEM. Synthesis in hydrothermal conditions occurred on autoclave and time-temperature effects, as well as the relationship Si/Al were considered. The results show that the methodology developed with the waste of calcined kaolin reacting at 90 deg C for 20 hours in an alkaline medium, in the presence of an additional source of silica was obtained zeolite Y as single phase present in the product. (author)

  18. Compacting biomass waste materials for use as fuel

    Science.gov (United States)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were

  19. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  20. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  1. PRODUCTION OF AN INSULATION MATERIAL FROM CARPET AND BORON WASTES

    Directory of Open Access Journals (Sweden)

    Yasin ERDOĞAN

    2016-12-01

    Full Text Available Buildings are large consumers of energy in all countries. In regions with harsh climatic conditions, a substantial share of energy goes to heat and cool buildings. This paper reports an investigation of the insulation materials made from mixing carpet wastes with a solution with added crude colemanite ore, one of boron minerals, and a solution with added colemanite wastes from a barrage. A new building insulation material was produced which is name, Halibor. Optimum mixing ratios were determined for mass production and the physical properties of the product were established. In addition, the material produced was compared with similar products used in buildings in terms of physical properties. As a result of the investigations, it was established that the product provides high heat and sound insulation and can be used easily in building and construction industry.

  2. Design and Fabrication of Aerospace-Grade Digital Composite Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to advance design rules and fabrication approaches to create aerospace-grade structures from digital composite materials. Digital materials are...

  3. Radioactive material inventory control at a waste characterization facility

    International Nuclear Information System (INIS)

    Yong, L.K.; Chapman, J.A.; Schultz, F.J.

    1996-01-01

    Due to the recent introduction of more stringent Department of Energy (DOE) regulations and requirements pertaining to nuclear and criticality safety, the control of radioactive material inventory has emerged as an important facet of operations at DOE nuclear facilities. In order to comply with nuclear safety regulations and nuclear criticality requirements, radioactive material inventories at each nuclear facility have to be maintained below limits specified for the facility in its safety authorization basis documentation. Exceeding these radioactive material limits constitutes a breach of the facility's nuclear and criticality safety envelope and could potentially result in an accident, cause a shut-down of the facility, and bring about imminent regulatory repercussions. The practice of maintaining control of radioactive material, especially sealed and unsealed sources, is commonplace and widely implemented; however, the requirement to track the entire radioactivity inventory at each nuclear facility for the purpose of ensuring nuclear safety is a new development. To meet the new requirements, the Applied Radiation Measurements Department at Oak Ridge National Laboratory (ORNL) has developed an information system, called the open-quotes Radioactive Material Inventory Systemclose quotes (RMIS), to track the radioactive material inventory at an ORNL facility, the Waste Examination and Assay Facility (WEAF). The operations at WEAF, which revolve around the nondestructive assay and nondestructive examination of waste and related research and development activities, results in an ever-changing radioactive material inventory. Waste packages and radioactive sources are constantly being brought in or taken out of the facility; hence, use of the RMIS is necessary to ensure that the radioactive material inventory limits are not exceeded

  4. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    Science.gov (United States)

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste.

    Science.gov (United States)

    Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta

    2017-06-01

    Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of

  6. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  7. Composite materials application on FORMOSAT-5 remote sensing instrument structure

    Directory of Open Access Journals (Sweden)

    Jen-Chueh Kuo

    2017-01-01

    Full Text Available Composite material has been widely applied in space vehicle structures due to its light weight and designed stiffness modulus. Some special mechanical properties that cannot be changed in general metal materials, such as low CTE (coefficient of thermal expansion and directional material stiffness can be artificially adjusted in composite materials to meet the user’s requirements. Space-qualified Carbon Fiber Reinforced Plastic (CFRP composite materials are applied In the FORMOSAT-5 Remote Sensing (RSI structure because of its light weight and low CTE characteristics. The RSI structural elements include the primary mirror supporting plate, secondary mirror supporting ring, and supporting frame. These elements are designed, manufactured, and verified using composite materials to meet specifications. The structure manufacturing process, detailed material properties, and CFRP structural element validation methods are introduced in this paper.

  8. Process for fabricating composite material having high thermal conductivity

    Science.gov (United States)

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  9. Photoproducts of carminic acid formed by a composite from Manihot dulcis waste.

    Science.gov (United States)

    Antonio-Cisneros, Cynthia M; Dávila-Jiménez, Martín M; Elizalde-González, María P; García-Díaz, Esmeralda

    2015-04-15

    Carbon-TiO2 composites were obtained from carbonised Manihot dulcis waste and TiO2 using glycerol as an additive and thermally treating the composites at 800 °C. Furthermore, carbon was obtained from manihot to study the adsorption, desorption and photocatalysis of carminic acid on these materials. Carminic acid, a natural dye extracted from cochineal insects, is a pollutant produced by the food industry and handicrafts. Its photocatalysis was observed under different atmospheres, and kinetic curves were measured by both UV-Vis and HPLC for comparison, yielding interesting differences. The composite was capable of decomposing approximately 50% of the carminic acid under various conditions. The reaction was monitored by UV-Vis spectroscopy and LC-ESI-(Qq)-TOF-MS-DAD, enabling the identification of some intermediate species. The deleterious compound anthracene-9,10-dione was detected both in N2 and air atmospheres. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-04-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties in relation to BMP, protein content, lipids, lignocellulose biofibres and easily degradable carbohydrates (carbohydrates other than lignocellulose biofibres). The three components in lignocellulose biofibres, i.e. lignin, cellulose and hemicellulose, were differentiated, and theoretical BMP (TBMP) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability of material fractions such as vegetation waste, moulded fibres, animal straw, dirty paper and dirty cardboard, however, was constrained by lignin content. BMP for overall SSOHW (untreated) was 404 mL CH4 per g VS, which might increase if the relative content of material fractions, such as animal and vegetable food waste, kitchen tissue and dirty paper in the waste, becomes larger. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evaluation of Composite Materials for Use on Launch Complexes

    Science.gov (United States)

    Finchum, A.; Welch, Peter J.

    1989-01-01

    Commercially available composite structural shapes were evaluated for use. These composites, fiberglass-reinforced polyester and vinylester resin materials are being used extensively in the fabrication and construction of low maintenance, corrosion resistant structures. The evaluation found that in many applications these composite materials can be successfully used at the space center. These composite materials should not be used where they will be exposed to the hot exhaust plume/cloud of the launch vehicle during the liftoff, and caution should be taken in their use in areas where electrostatic discharge and hypergolic propellant compatibility are primary concerns.

  12. Characterization of terahertz waves on foreign materials of composite materials

    Science.gov (United States)

    Im, Kwang-Hee; Kim, Sun-Kyu; Chiou, Chien-Ping; Jung, Jong-An

    2018-04-01

    Carbon-fiber reinforced plastics (CFRP) are widely utilized due to their comparatively high performance in engineering structures. It is well understood that a nondestructive technique would be very beneficial. A new terahertz radiation has been recognized for its importance in technological applications. Recently, T-ray (terahertz ray) advances in technology and instrumentation have provided a probing field on the electromagnetic spectrum. In carbon composites, the penetration characterization of T-ray waves was fundamentally investigated in order to measure the painting thickness. Also, another study dealt with THz scan images of honeycomb sandwich composite panels using a refractive index (n), an absorption coefficient (α), the electrical conductivity of glass fiber embedded epoxy matrix composites, and carbon fiber reinforced plastics (CFRP) skin. For experiments, a method of detecting FRP composites with impact damage is presented, which utilizes aluminum wires intertwined with woven carbon fibers as they are inserted into the surface of the CFRP honeycomb sandwich panels. Intensive characterization of T-ray for the nondestructive evaluation (NDE) of carbon composite reinforced plastics (CFRP) composites is discussed in relation to the E-field influence with CFRP composite laminates.

  13. Mechanical properties of wood-based composite materials

    Science.gov (United States)

    Zhiyong Cai; Robert J. Ross

    2010-01-01

    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  14. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  15. Cement-Polymer Composite Containers for Radioactive Wastes Disposal

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.; Bayoumi, T.A.; Saleh, H.M.

    2009-01-01

    Improving cement-composite containers using polymer as organic additives was studied extensively. Both unsaturated styrenated polyester (SPE) and polymethyl methacrylate (PMMA) were used to fill the pores in cement containers that used for disposal of radioactive wastes. Two different techniques were adopted for the addition of organic polymers based on their viscosity. The low density PMMA was added using impregnation technique. On the other hand high density SPE was mixed with cement paste as a premix process. Predetermined weight of dried borate radioactive powder waste simulate was introduced into the Cement-polymer composite (CPC) container and then closed before subjecting it to leaching characterization. The effect of the organic polymers on the hydration of cement matrix and on the properties of the obtained CPC container has been studied using X-ray diffraction, IR-analysis, thermal effects and weight loss. Porosity, pore parameters and rate of release were also determined. The results obtained showed that for the candidate CPC container positive effect of polymer dominates and an improvement in the retardation rate of PMMA release radionuclides was observed

  16. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  17. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  18. Thermo-stimulated current and dielectric loss in composite materials

    International Nuclear Information System (INIS)

    Nishijima, S.; Hagihara, T.; Okada, T.

    1986-01-01

    Thermo-stimulated current and dielectric loss measurements have been performed on five kinds of commercially available composite materials in order to study the electric properties of composite materials at low temperatures. Thermo-stimulated current measurements have been made on the composite materials in which the matrix quality was changed intentionally. The changes in the matrices were introduced by gamma irradiation or different curing conditions. Thermo-stimulated current and dielectric loss measurements revealed the number and the molecular weight of dipolar molecules. The different features of thermo-stimulated current and dielectric losses were determined for different composite materials. The gamma irradiation and the curing conditions especially affect the thermo-stimulated current features. The changes in macroscopic mechanical properties reflect those of thermo-stimulated current. It was found that the change in quality and/or degradation of the composite materials could be detected by means of thermo-stimulated current and/or dielectric loss measurements

  19. The function of packing materials in a high-level nuclear waste repository and some candidate materials: Salt Repository Project

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Shade, J.W.

    1987-03-01

    Packing materials should be included in waste package design for a high-level nuclear waste repository in salt. A packing material barrier would increase confidence in the waste package by alleviating possible shortcomings in the present design and prolonging confinement capabilities. Packing materials have been studied for uses in other geologic repositories; appropriately chosen, they would enhance the confinement capabilities of salt repository waste packages in several ways. Benefits of packing materials include retarding or chemically modifying brines to reduce corrosion of the waste package, providing good thermal conductivity between the waste package and host rock, retarding or absorbing radionuclides, and reducing the massiveness of the waste package. These benefits are available at low percentage of total repository cost, if the packing material is properly chosen and used. Several candidate materials are being considered, including oxides, hydroxides, silicates, cement-based mixtures, and clay mixtures. 18 refs

  20. Corrosion of canister materials for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [KIT Karlsruhe (Germany). Institut fuer Nukleare Entsorgung (INE)

    2017-08-15

    In the period between 1980 and 2004, corrosion studies on various metallic materials have been performed at the Research Center Karlsruhe. The objectives of these experimental studies addressed mainly the performance of canister materials for heat producing, high-level wastes and spent nuclear fuels for a repository in a German salt dome. Additional studies covered the performance of steels for packaging wastes with negligible heat production under conditions to be expected in rocksalt and in the Konrad iron ore mine. The results of the investigations have been published in journals and conference proceedings but also in ''grey literature''. This paper presents a summary of the results of corrosion experiments with fine-grained steels and nodular cast steel.