WorldWideScience

Sample records for composite resonator surface

  1. Composite Resonator Surface Emitting Lasers

    Energy Technology Data Exchange (ETDEWEB)

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-05-01

    The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

  2. Investigation of surface plasmon resonance in composite nanostructure of silver film and nanowire array

    Science.gov (United States)

    Li, Jun; Yang, Junyi; Wu, Xingzhi; Song, Yinglin

    2016-10-01

    We investigate the surface plasmon resonance in a new composite nanostructure (Nanowires array beneath metal film). Computational simulation results exhibit that, for both transverse electric(TE) and transverse magnetic (TM) polarization, the positions of resonance peaks is extremely sensitive to the change of center distance (Filling ratio of nanowires). When the diameter of Nanowires is 4nm and under TM polarization, the resonance angle increasing with the increase of center distance. In the case of TE polarization, the result is completely the opposite within limits. It is also shown that changes in thickness of Ag film(At the top of the Ag nanowire) has little direct effect on the resonance angle, But the characteritics of SPR intensity is influenced by the thickness of Ag film in the most degree. When the thickness of Ag film is 50 nm, In range of 10nm to 100nm, the minimum value of the reflectance is only 0.05, the result is consistent with the previous studies. Additionally, the nano composite structure material is very sensitive to the refractive index change of the lowest layer when under the TE- polarization. we have done mode analysis of the SPR structure for both simple and practical structures using comsol multiphysics, our approach is intend to show the feasibity and extend the applicability of the plasmonic nanowires, could lead to provide the basis for design the new structure of nanowires array.

  3. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites.

    Science.gov (United States)

    Frasconi, Marco; Tel-Vered, Ran; Riskin, Michael; Willner, Itamar

    2010-03-15

    Au nanoparticles (NPs) are functionalized with thioaniline electropolymerizable groups and (mercaptophenyl)boronic acid. The antibiotic substrates neomycin (NE), kanamycin (KA), and streptomycin (ST) include vicinal diol functionalities and, thus, bind to the boronic acid ligands. The electropolymerization of the functionalized Au NPs in the presence of NE, KA, or ST onto Au surfaces yields bisaniline-cross-linked Au NP composites that, after removal of the ligated antibiotics, provide molecularly imprinted matrixes which reveal high sensitivities toward the sensing of the imprinted antibiotic analytes (detection limits for analyzing NE, KA, and ST correspond to 2.00 +/- 0.21 pM, 1.00 +/- 0.10 pM, and 200 +/- 30 fM, respectively). The antibiotics are sensed by surface plasmon resonance (SPR) spectroscopy, where the coupling between the localized plasmon of the NPs and the surface plasmon wave associated with the Au surface is implemented to amplify the SPR responses. The imprinted Au NP composites are, then, used to analyze the antibiotics in milk samples.

  4. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  5. Polypyrrole-chitosan/nickel-ferrite nanoparticle composite layer for detecting heavy metal ions using surface plasmon resonance technique

    Science.gov (United States)

    Sadrolhosseini, Amir Reza; Naseri, Mahmoud; Rashid, Suraya Abdul

    2017-08-01

    A polypyrrole-chitosan/nickel ferrite nanoparticle composite layer was prepared using the electrochemical method to detect nickel, iron, cobalt, aluminium, manganese, mercury, and lead ions. The polypyrrole-chitosan/nickel ferrite nanoparticle composite layers were characterized using field emission electron microscopy, energy dispersive spectroscopy, and X-ray diffraction spectroscopy. The polymer composite was used to improve the surface of the gold layer to apply the surface plasmon resonance technique. The sensor detected the ferromagnetic ions down to a level of 0.001 ppm, and the detection of diamagnetic ions was conducted with a limitation of roughly 0.5 ppm. The polymer composite improved the response time of the sensor better than the other polymer composite sensing layers did.

  6. Robust myoelectric signal detection based on stochastic resonance using multiple-surface-electrode array made of carbon nanotube composite paper

    Science.gov (United States)

    Shirata, Kento; Inden, Yuki; Kasai, Seiya; Oya, Takahide; Hagiwara, Yosuke; Kaeriyama, Shunichi; Nakamura, Hideyuki

    2016-04-01

    We investigated the robust detection of surface electromyogram (EMG) signals based on the stochastic resonance (SR) phenomenon, in which the response to weak signals is optimized by adding noise, combined with multiple surface electrodes. Flexible carbon nanotube composite paper (CNT-cp) was applied to the surface electrode, which showed good performance that is comparable to that of conventional Ag/AgCl electrodes. The SR-based EMG signal system integrating an 8-Schmitt-trigger network and the multiple-CNT-cp-electrode array successfully detected weak EMG signals even when the subject’s body is in the motion, which was difficult to achieve using the conventional technique. The feasibility of the SR-based EMG detection technique was confirmed by demonstrating its applicability to robot hand control.

  7. Comparative study of resonant and sequential features in electron field emission from composite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Filip, Valeriu, E-mail: vfilip@gmail.com [Faculty of Physics, University of Bucharest, 405 Atomistilor Str., Magurele 077125, P.O. Box MG-11 (Romania); Institute of Microelectronics and Photonics, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Wong, Hei, E-mail: xiwang@zju.edu.cn [Institute of Microelectronics and Photonics, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China)

    2016-06-01

    A simple model of a layered hetero-structure was developed and used to simultaneously compute and compare resonant and sequential electron field emission currents. It was found that, while various slope changes appear in both current-field characteristics, for the sequential tunneling type of emission, such features are merely interference effects. They occur in parts of the structure, prior to the electrons' lingering in the quasi-bound states from which field emission proceeds. These purely quantum effects further combine with the flow effects resulting from the steady current requirement and give corresponding field variations of the electron population of the quasi-bound states, which further react on the resonant part of the current. A spectral approach of the two types of field emission is also considered by computing the total energy distribution of electrons in each case. The differences between these possible spectra are pointed out and discussed. - Highlights: • The relationship between resonant and sequential field emission is studied. • Sequential current–voltage characteristics show barrier-controlled undulations. • Resonant characteristics depend mainly on the width/shape of the topmost well. • The resonant and sequential total energy distributions differ widely.

  8. Surface plasmon resonance sensor for detecting of arsenic in aqueous solution using polypyrrole-chitosan-cobalt ferrite nanoparticles composite layer

    Science.gov (United States)

    Sadrolhosseini, Amir Reza; Naseri, Mahmoud; Kamari, Halimah Mohamed

    2017-01-01

    The detection and measurement of low concentrations of arsenic (V) are the subjects of intense research interest in chemistry and environmental activity. In this research, a polypyrrole-chitosan/cobalt ferrite nanoparticles composite layer was prepared using an electrodeposition method on a gold-coated glass slide. The composite layer was characterized using field emission scanning electron microscopy, energy-dispersed spectroscopy, atomic force microscopy, and a high surface stylus profilometer. The composite layer was used to detect the arsenic in water, and the sensor limitation was about 0.001 ppm. The composite layer was tested using atomic-force microscopy before and after the detection of arsenic. As a result, the roughness was disoriented, as the arsenic was bound on the surface of the composite layer.

  9. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region.

    Science.gov (United States)

    Kanehara, Masayuki; Koike, Hayato; Yoshinaga, Taizo; Teranishi, Toshiharu

    2009-12-16

    Here we report the synthesis of conducting indium tin oxide (ITO) nanoparticles (NPs) and their surface plasmon resonance (SPR) properties. The SPR peaks of the ITO NPs can be easily tuned by changing the concentration of Sn doping from 3 to 30 mol %. The shortest SPR wavelength of 1618 nm in 10% Sn-doped ITO NPs may reflect the highest electron carrier density in the ITO NPs. The controllable SPR frequencies of metal oxides may offer a novel approach for noble-metal-free SPR applications. Unlike noble-metal nanostructures, ITO has no inter- and intraband transitions in the vis-near-IR region and represents a free-electron conduction, allowing us to systematically study the origin of optical effects arising from the SPRs of conduction electrons.

  10. Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique.

    Science.gov (United States)

    Sadrolhosseini, Amir Reza; Noor, A S M; Bahrami, Afarin; Lim, H N; Talib, Zainal Abidin; Mahdi, Mohd Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°.

  11. Composite spin-1 resonances at the LHC

    CERN Document Server

    Low, Matthew; Wang, Lian-Tao

    2015-01-01

    In this paper, we discuss the signal of composite spin-1 resonances at the LHC. Motivated by the possible observation of a diboson resonance in the 8 TeV LHC data, we demonstrate that vector resonances from composite Higgs models are able to describe the data. We pay particular attention to the role played by fermion partial compositeness, which is a common feature in composite Higgs models. The parameter space that is both able to account for the diboson excess and passes electroweak precision and flavor tests is explored. Finally, we make projections for signals of such resonances at the 13 TeV run of the LHC.

  12. Gold nanodisk array surface plasmon resonance sensor

    Science.gov (United States)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  13. Classical and quantum resonances for hyperbolic surfaces

    OpenAIRE

    Guillarmou, Colin; Hilgert, Joachim; Weich, Tobias

    2016-01-01

    For compact and for convex co-compact oriented hyperbolic surfaces, we prove an explicit correspondence between classical Ruelle resonant states and quantum resonant states, except at negative integers where the correspondence involves holomorphic sections of line bundles.

  14. Composite resonator vertical cavity laser diode

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Hou, H.Q.; Chow, W.W.; Geib, K.M.; Hammons, B.E.

    1998-05-01

    The use of two coupled laser cavities has been employed in edge emitting semiconductor lasers for mode suppression and frequency stabilization. The incorporation of coupled resonators within a vertical cavity laser opens up new possibilities due to the unique ability to tailor the interaction between the cavities. Composite resonators can be utilized to control spectral and temporal properties within the laser; previous studies of coupled cavity vertical cavity lasers have employed photopumped structures. The authors report the first composite resonator vertical cavity laser diode consisting of two optical cavities and three monolithic distributed Bragg reflectors. Cavity coupling effects and two techniques for external modulation of the laser are described.

  15. Distributed optical fiber surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Zhenxin Cao; Lenan Wu; Dayong Li

    2006-01-01

    @@ The relationships of the resonant wavelength of optical fiber surface plasmon resonance (SPR) sensors to the modulation layer refractive index, thickness and the refractive index of the bulk medium are obtained by using theoretical calculation model of optical fiber SPR sensors under certain conditions, which indicates that resonant wavelength of the sensors is approximately linear with modulation layer thickness. Based on the linear relationship, multiple SPR sensors with different resonant wavelengths can be fabricated in a single optical fiber named as distributed optical fiber surface plasmon resonance sensors (DOFSPRSs).Experimental results are presented, showing that it is practical to fabricate more than one SPR sensors in a single optical fiber.

  16. Spatial filtering with surface plasmon resonance systems

    Science.gov (United States)

    Ghosh, A. K.; Siddharth, V.; Bhagat, M.; Aggarwal, S.; Anurag, P.; Jain, M.

    2007-09-01

    Surface plasmon resonance based sensors are most useful in measuring the refractive indices of biochemicals. In such sensors a beam of light obliquely incident at an interface of glass and metallic thin film excites resonant plasmon waves in the metal if the angle of incidence or the wavelength is selected properly. The resonance conditions are changed by the refractive indices of any material in contact with the metal film. When resonance occurs the light beam is absorbed strongly. We can easily show that the phenomenon of surface plasmon resonance in such a system acts as a high quality spatial notch or band rejection filter.

  17. Probabilistic interpretation of compositeness relation for resonances

    CERN Document Server

    Guo, Zhi-Hui

    2015-01-01

    Bound, antibound and resonances states are associated to poles in the on-shell partial wave amplitudes. We show here that from the residues of the pole a rank 1 projection operator associated with any of these states can be extracted, in terms of which a sum rule related to the composition of the state can be derived. Although typically it involves complex coefficients for the compositeness and elementariness, except for the bound state case, we demonstrate that one can formulate a meaningful compositeness relation with only positive coefficients for resonances whose associated Laurent series in the variable $s$ converges in a region of the physical axis around its squared mass. We apply this formalism to study the two-body components of several resonances of interest.

  18. Surface acoustic wave mode conversion resonator

    Science.gov (United States)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  19. Nanostructured imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, Sweccha

    2017-01-01

    The testing and further development of a prototype nanostructured imaging surface plasmon resonance (iSPR) biosensor, with a focus on surface modification and detailed characterization of the biosensor chip and in-field and at-line applicability in the food industry is described. Furthermore, a simp

  20. Nanostructured imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, Sweccha

    2017-01-01

    The testing and further development of a prototype nanostructured imaging surface plasmon resonance (iSPR) biosensor, with a focus on surface modification and detailed characterization of the biosensor chip and in-field and at-line applicability in the food industry is described. Furthermore, a

  1. Collider tests of (composite) diphoton resonances

    Science.gov (United States)

    Molinaro, Emiliano; Sannino, Francesco; Vignaroli, Natascia

    2016-10-01

    We analyze the Large Hadron Collider sensitivity to new pseudoscalar resonances decaying into diphoton with masses up to scales of few TeVs. We focus on minimal scenarios where the production mechanisms involve either photon or top-mediated gluon fusion, partially motivated by the tantalizing excess around 750 GeV reported by ATLAS and CMS. The two scenarios lead respectively to a narrow and a wide resonance. We first provide a model-independent analysis via effective operators and then introduce minimal models of composite dynamics where the diphoton channel is characterized by their topological sector. The relevant state here is the pseudoscalar associated with the axial anomaly of the new composite dynamics. If the Standard Model top mass is generated via four-fermion operators the coupling of this state to the top remarkably explains the wide-width resonance reported by ATLAS. Beyond the excess, our analysis paves the way to test dynamical electroweak symmetry breaking via topological sectors.

  2. Collider tests of (composite diphoton resonances

    Directory of Open Access Journals (Sweden)

    Emiliano Molinaro

    2016-10-01

    Full Text Available We analyze the Large Hadron Collider sensitivity to new pseudoscalar resonances decaying into diphoton with masses up to scales of few TeVs. We focus on minimal scenarios where the production mechanisms involve either photon or top-mediated gluon fusion, partially motivated by the tantalizing excess around 750 GeV reported by ATLAS and CMS. The two scenarios lead respectively to a narrow and a wide resonance. We first provide a model-independent analysis via effective operators and then introduce minimal models of composite dynamics where the diphoton channel is characterized by their topological sector. The relevant state here is the pseudoscalar associated with the axial anomaly of the new composite dynamics. If the Standard Model top mass is generated via four-fermion operators the coupling of this state to the top remarkably explains the wide-width resonance reported by ATLAS. Beyond the excess, our analysis paves the way to test dynamical electroweak symmetry breaking via topological sectors.

  3. Resonant charge transfer at dielectric surfaces

    CERN Document Server

    Marbach, Johannes; Fehske, Holger

    2012-01-01

    We report on the theoretical description of secondary electron emission due to resonant charge transfer occurring during the collision of metastable nitrogen molecules with dielectric surfaces. The emission is described as a two step process consisting of electron capture to form an intermediate shape resonance and subsequent electron emission by decay of this ion, either due to its natural life time or its interaction with the surface. The electron capture is modeled using the Keldysh Green's function technique and the negative ion decay is described by a combination of the Keldysh technique and a rate equation approach. We find the resonant capture of electrons to be very efficient and the natural decay to be clearly dominating over the surface-induced decay. Secondary electron emission coefficients are calculated for aluminum oxide, magnesium oxide, silicon oxide, and diamond at several kinetic energies of the projectile. With the exception of magnesium oxide the coefficients turn out to be of the order of...

  4. Spatially coherent surface resonance states derived from magnetic resonances

    CERN Document Server

    Wei, Zeyong; Cao, Yang; Wu, Chao; Ren, Jinzhi; Hang, Zhihong; Chen, Hong; Zhang, Daozhong; Chan, C T

    2010-01-01

    A thin metamaterial slab comprising a dielectric spacer sandwiched between a metallic grating and a ground plane is shown to possess spatially coherent surface resonance states that span a large frequency range and can be tuned by structural and material parameters. They give rise to nearly perfect angle-selective absorption and thus exhibit directional thermal emissivity. Direct numerical simulations show that the metamaterial slab supports spatially coherent thermal emission in a wide frequency range that is robust against structural disorder.

  5. Fano resonance Rabi splitting of surface plasmons.

    Science.gov (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2017-08-14

    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  6. Measurement of binding of basic drugs to acidic phospholipids using surface plasmon resonance and incorporation of the data into mechanistic tissue composition equations to predict steady-state volume of distribution.

    Science.gov (United States)

    Small, Helen; Gardner, Iain; Jones, Hannah M; Davis, John; Rowland, Malcolm

    2011-10-01

    Acidic phospholipid binding plays an important role in determining the tissue distribution of basic drugs. This article describes the use of surface plasmon resonance to measure binding affinity (K(D)) of three basic drugs to phosphatidylserine, a major tissue acidic phospholipid. The data are incorporated into mechanistic tissue composition equations to allow prediction of the steady-state volume of distribution (V(ss)). The prediction accuracy of V(ss) using this approach is compared with the original methodology described by Rodgers et al. (J Pharm Sci 94:1259-1276), in which the binding to acidic phospholipids is calculated from the blood/plasma concentration ratio (BPR). The compounds used in this study [amlodipine, propranolol, and 3-dimethylaminomethyl-4-(4-methylsulfanyl-phenoxy)-benzenesulfonamide (UK-390957)] showed higher affinity binding to phosphatidylserine than to phosphatidylcholine. When the binding affinity to phosphatidylserine was incorporated into mechanistic tissue composition equations, the V(ss) was more accurately predicted for all three compounds by using the surface plasmon resonance measurement than by using the BPR to estimate acidic phospholipid binding affinity. The difference was particularly marked for UK-390957, a sulfonamide that has a high BPR due to binding to carbonic anhydrase. The novel approach described in this article allows the binding affinity of drugs to an acidic phospholipid (phosphatidylserine) to be measured directly and demonstrates the utility of the binding data in the prediction of V(ss).

  7. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.;

    2013-01-01

    A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed in a tra......A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed...... in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...

  8. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, I.; Schasfoort, R.B.M.; Terstappen, L.W.M.M.

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  9. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  10. Surface Plasmon Resonance Studies on Molecular Imprinting

    Directory of Open Access Journals (Sweden)

    Baoping Lin

    2002-01-01

    Full Text Available The molecular imprinted polymer (MIP members were fabricated with the print molecule L-phenylalanine ethyl ester. The elution and adsorption procedures were investigated by surface plasmon resonance in situ. The changes of refractive angle during elution procedure suggest that the MIP is prepared on the base of the non-covalent interactions. This MIP member sensor can achieve enantioselective recognition.

  11. Prediction and Migration of Surface-related Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Surface-related resonant multiples can be migrated to achieve better resolution than migrating primary reflections. We now derive the formula for migrating surface-related resonant multiples, and show its super-resolution characteristics. Moreover, a method is proposed to predict surface-related resonant multiples with zero-offset primary reflections. The prediction can be used to indentify and extract the true resonant multiple from other events. Both synthetic and field data are used to validate this prediction.

  12. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS{sub 2} hybrid structure with TiO{sub 2}-SiO{sub 2} composite layer

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, J.B.; Prajapati, Y.K. [Motilal Nehru National Institute of Technology, Electronics and Communication Engineering Department, Allahabad, Uttar Pradesh (India); Singh, V. [Banaras Hindu University, Department of Physics, Varanasi, Uttar Pradesh (India); Saini, J.P. [Bundelkhand Institute of Engineering and Technology, Electronics and Communication Engineering Department, Jhansi, Uttar Pradesh (India)

    2015-11-15

    In this paper, surface plasmon resonance (SPR) sensor based on graphene-MoS{sub 2} hybrid structure with composite layer of TiO{sub 2}-SiO{sub 2} is presented. The angular interrogation method is used for the analysis of reflected light from the sensor. For the calculation of the sensitivity, first of all the thicknesses of TiO{sub 2}, SiO{sub 2} and gold layers are optimized for the monolayer graphene and MoS{sub 2}. Thereafter, at these optimum thicknesses the reflectance curves are plotted for different sensor structure and comparison of change in resonance angle is made among these structures. It is observed that the sensitivity of the graphene-MoS{sub 2}-based sensor is enhanced by 9.24 % with respect conventional SPR sensor. The sensitivity is further enhanced by including TiO{sub 2}-SiO{sub 2} composite layer between prism base and metal layer and observed that the enhanced sensitivity for this sensor is 12.82 % with respect to conventional SPR sensor and 3.28 % with respect to graphene-MoS{sub 2}-based SPR sensor. At the end of this paper, the variation of the sensitivity and minimum reflectance is plotted with respect to sensing layer refractive index at the optimum thickness of all the layers and optimum number of MoS{sub 2} and graphene layers. It is also observed that four layers of MoS{sub 2} and monolayer graphene are best selection for the maximum enhancement of the sensitivity. (orig.)

  13. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    Institute of Scientific and Technical Information of China (English)

    Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong

    2013-01-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.

  14. Surface Coil for Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Beatriz Taimy Ricardo Ferro

    2015-01-01

    Full Text Available Currently Magnetic Resonance Imaging (MRI, has become a vital tool for the clinical diagnosis of various diseases, especially in the Nervisos Central System and the Musculos keletal System. Coils(RF are an essential component in the generation of these images, are responsible for exciting thespins of nuclei in a sample and/or detect the resultant signal coming from them. The use of surface RF coils has increased considerably, because they have a high signal to noise ratio, a parameter that defines the quality of the image. In the present work, there was realized the theoretical design and practical implementation of a circular surface RF coil. The experimental prototype was optimized to be used in the tomograph Giroimag03  built in Medical Biophysics Center

  15. Resonant surface acoustic wave chemical detector

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  16. A Composite Capacitor/Inductor Assembly for Resonant Circuits

    Science.gov (United States)

    Hull, J. P.; Scholfield, D. W.

    2001-06-01

    Resonant structures are of interest due to their ability to produce oscillatory voltages in circuits. Past resonant structures have typically been designed using a lumped element capacitor for energy storage and a separate inductor. A composite capacitor/inductor assembly has been developed which merges the capacitance utilized for energy storage into the inductor, creating a consolidated electrical component. Composite capacitor/inductor assemblies are of interest due to the ability of these devices to produce resonant responses with one half the number of parts required by more traditional resonant structures. This composite capacitor/inductor could be utilized in applications of frequency band suppression or frequency band pass for frequencies in excess of 100 MHz, or where a resonant circuit is required to reside in an area of minimum space - such as a printed circuit board or an integrated circuit. The device and the mathematical treatment to predict the device's performance are described.

  17. Spoof surface plasmon Fabry-Perot open resonators in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Xu, Hongyi; Zhang, Youming; Zhang, Baile

    2016-01-01

    We report on the proposal and experimental realization of a spoof surface plasmon Fabry-Perot (FP) open resonator in a surface-wave photonic crystal. This surface-wave FP open resonator is formed by introducing a finite line defect in a surface-wave photonic crystal. The resonance frequencies of the surface-wave FP open resonator lie exactly within the forbidden band gap of the surface-wave photonic crystal and the FP open resonator uses this complete forbidden band gap to concentrate surface waves within a subwavelength cavity. Due to the complete forbidden band gap of the surface-wave photonic crystal, a new FP plasmonic resonance mode that exhibits monopolar features which is missing in traditional FP resonators and plasmonic resonators is demonstrated. Near-field response spectra and mode profiles are presented in the microwave regime to characterize properties of the proposed FP open resonator for spoof surface plasmons.

  18. Surface plasmon resonance biosensors: advances and applications

    Science.gov (United States)

    Homola, Jirí

    2009-10-01

    Surface plasmon resonance (SPR) biosensors represent the most advanced label-free optical affinity biosensor technology. In the last decade numerous SPR sensor platforms have been developed and applied in the life sciences and bioanalytics. This contribution reviews the state of the art in the development of SPR (bio)sensor technology and presents selected results of research into SPR biosensors at the Institute of Photonics and Electronics, Prague. The developments discussed in detail include a miniature fiber optic SPR sensor for localized measurements, a compact SPR sensor for field use and a multichannel SPR sensor for high-throughput screening. Examples of applications for the detection of analytes related to medical diagnostics (biomarkers, hormones, antibodies), environmental monitoring (endocrine disrupting compounds), and food safety (pathogens and toxins) are given.

  19. Toxin Detection by Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available Significant efforts have been invested in the past years for the development of analytical methods for fast toxin detection in food and water. Immunochemical methods like ELISA, spectroscopy and chromatography are the most used in toxin detection. Different methods have been linked, e.g. liquid chromatography and mass spectrometry (LC-MS, in order to detect as low concentrations as possible. Surface plasmon resonance (SPR is one of the new biophysical methods which enables rapid toxin detection. Moreover, this method was already included in portable sensors for on-site determinations. In this paper we describe some of the most common methods for toxin detection, with an emphasis on SPR.

  20. Methods of decontaminating surfaces and related compositions

    Energy Technology Data Exchange (ETDEWEB)

    Demmer, Ricky L.; Crosby, Daniel; Norton, Christopher J.

    2016-11-22

    A composition of matter includes water, at least one acid, at least one surfactant, at least one fluoride salt, and ammonium nitrate. A method of decontaminating a surface includes exposing a surface to such a composition and removing the composition from the surface. Other compositions of matter include water, a fatty alcohol ether sulfate, nitrilotriacetic acid, at least one of hydrochloric acid and nitric acid, sodium fluoride, potassium fluoride, ammonium nitrate, and gelatin.

  1. Proximity Resonance and Localized Surface Plasmons

    Science.gov (United States)

    Liu, Bo; Heller, Eric

    2014-03-01

    The collective excitation of conduction electrons in subwavelength nanostructures is known as Localized Surface Plasmon(LSP)[1]. Such plasmon modes has been intensively studied using noble nanoparticles . More recently, the possibility of building terahertz metamaterials supporting such LSP modes has been explored in graphene microribbons and microdisks. Unlike Surface Plasmon Polaritons(SPPs) at metal-insulator interface, LSP can be directly excited by light illumination and holds promise for applications in ultrasensitive biosensing, nano-optical tweezers and improved photovoltaic devices. In this paper, we consider the interaction of two LSPs in the weak coupling regime and show how an effect similar to the proximity resonance in the quantum scattering theory) gives rise to an asymmetric(quadrupole) mode with increased damping rate. The existence of this asymmetric mode relies on a small phase retardation between the two LSPs. This phase retardation, though small, is key to both increased damping rate for the asymmetric mode and reduced damping rate for the symmetric mode. When this small phase retardation is removed by changing the polarization of the exciting light,we show that the asymmetric mode can not be excited and the symmetric mode shows increased damping.

  2. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    Science.gov (United States)

    Petefish, Joseph W.

    Surface plasmon resonance (SPR) has achieved widespread recognition as a sensitive, label-free, and versatile optical method for monitoring changes in refractive index at a metal-dielectric interface. Refractive index deviations of 10-6 RIU are resolvable using SPR, and the method can be used in real-time or ex-situ. Instruments based on carboxymethyl dextran coated SPR chips have achieved commercial success in biological detection, while SPR sensors can also be found in other fields as varied as food safety and gas sensing. Chapter 1 provides a physical background of SPR sensing. A brief history of the technology is presented, and publication data are included that demonstrate the large and growing interest in surface plasmons. Numerous applications of SPR sensors are listed to illustrate the broad appeal of the method. Surface plasmons (SPs) and surface plasmon polaritions (SPPs) are formally defined, and important parameters governing their spatial behavior are derived from Maxwell's equations and appropriate boundary conditions. Physical requirements for exciting SPs with incident light are discussed, and SPR imaging is used to illustrate the operating principle of SPR-based detection. Angle-tunable surface enhanced infrared absorption (SEIRA) of polymer vibrational modes via grating-coupled SPR is demonstrated in Chapter 2. Over 10-fold enhancement of C-H stretching modes was found relative to the absorbance of the same film in the absence of plasmon excitation. Modeling results are used to support and explain experimental observations. Improvements to the grating coupler SEIRA platform in Chapter 2 are explored in Chapters 3 and 4. Chapter 3 displays data for two sets of multipitch gratings: one set with broadly distributed resonances with the potential for multiband IR enhancement and the other with finely spaced, overlapping resonances to form a broadband IR enhancement device. Diffraction gratings having multiple periods were fabricated using a Lloyd

  3. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag2WO4/Ag/Bi2MoO6 composite for enhanced and stable visible light photocatalyst

    Science.gov (United States)

    Lv, Jiali; Dai, Kai; Zhang, Jinfeng; Lu, Luhua; Liang, Changhao; Geng, Lei; Wang, Zhongliao; Yuan, Guangyu; Zhu, Guangping

    2017-01-01

    A novel hierarchical Ag2WO4/Ag/Bi2MoO6 ternary visible-light-driven photocatalyst was successfully synthesized by in situ doping Ag2WO4 with Bi2MoO6 nanosheets through a facile hydrothermal and photochemical process. The morphology, structure, optical performance and crystallinity of the products were measured by field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray diffraction (XRD). The results showed that Ag2WO4/Ag was uniformly dispersed on the surface of Bi2MoO6 nanosheets. The photocatalytic performance of Ag2WO4/Ag/Bi2MoO6 heterostructures was evaluated by the degradation of methylene blue (MB) under 410 nm LED arrays. The ternary Ag2WO4/Ag/Bi2MoO6 nanocomposite exhibits higher photocatalytic activity than Bi2MoO6 and Ag2WO4. The synergistic effect of Ag2WO4 and Bi2MoO6 could generated more heterojunctions which promoted photoelectrons transfer from Ag2WO4 to Bi2MoO6, leading to the improvement of photocatalytic performance by photoelectrons-holes recombination suppression. At the same time, the surface plasmon resonance of Ag2WO4/Ag/Bi2MoO6 is another crucial reason for the high photocatalytic performance of organic pollutants degradation. And the 20 wt% Ag2WO4-loaded Bi2MoO6 shows the optimal photocatalytic performance in the degradation of MB. In addition, the ternary composites can be easily reclaimed by precipitation and exhibits high stability of photocatalytic degradation after five recycles.

  4. Visualizing Composite Data on the Lexis Surface

    DEFF Research Database (Denmark)

    Schöley, Jonas; Willekens, Frans

    dimensions produces challenges in visualizing the data. To aid the understanding of age-structured timelines of compositions we seek to extend the Lexis surface plot from 1-dimensional continuous data to multidimensional composite data. We apply different strategies for visualizing composite data...... on the Lexis surface to French death counts given by cause and compare the results for compliance with multiple desired criteria....

  5. Collider Tests of (Composite) Diphoton Resonances

    DEFF Research Database (Denmark)

    Molinaro, Emiliano; Sannino, Francesco; Vignaroli, Natascia

    2016-01-01

    We analyze the Large Hadron Collider sensitivity to new pseudoscalar resonances decaying into diphoton with masses up to scales of few TeVs. We focus on minimal scenarios where the production mechanisms involve either photon or top-mediated gluon fusion, partially motivated by the tantalizing...

  6. Surface plasmon resonance in super-periodic metal nanostructures

    Science.gov (United States)

    Leong, Haisheng

    Surface plasmon resonances in periodic metal nanostructures have been investigated over the past decade. The periodic metal nanostructures have served as new technology platforms in fields such as biological and chemical sensing. An existing method to determine the surface plasmon resonance properties of these metal nanostructures is the measurement of the light transmission or reflection from these nanostructures. The measurement of surface plasmon resonances in either the transmission or reflection allows one to resolve the surface plasmon resonance in metal nanostructures. In this dissertation, surface plasmon resonances in a new type of metal nanostructures were investigated. The new nanostructures were created by patterning traditional periodic nanohole and nanoslit arrays into diffraction gratings. The patterned nanohole and 11anoslit arrays have two periods in the structures. The new nanostructures are called "super-periodic" nanostructures. With rigorous finite difference time domain (FDTD) numerical simulations, surface plasmon resonances in super-periodic nanoslit and nanohole arrays were investigated. It was found that by creating a super-period in periodic metal nanostructures, surface plasmon radiations can be observed in the non-zero order diffractions. This discovery presents a new method of characterizing the surface plasmon resonances in metal nanostructures. Super-periodic gold nanoslit and nanohole arrays were fabricated with the electron beam lithography technique. The surface plasmon resonances were measured in the first order diffraction by using a CCD. The experimental results confirm well with the FDTD numerical simulations.

  7. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  8. Fredholm Composition Operators on Riemann Surfaces

    Institute of Scientific and Technical Information of China (English)

    Guang Fu CAO

    2005-01-01

    It is proved that the invertibility of a composition operator on the differential form space for a Riemann surface is equivalent to its Fredholmness. In addition, the Fredholmness of weighted composition operators is discussed.

  9. Multi-hole Optical Fiber Surface Plasmon Resonance Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Guan Chunying; Wang Yang; Yuan Libo, E-mail: cyguan@163.com [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2011-02-01

    A microstructured-fiber containing six large air holes is proposed to construct the surface plasmon resonance (SPR) sensor. The finite element method is used to analyze characteristics of the surface plasmon resonance sensor. The effects of the thickness of metal films, pitch between air holes, diameter of air hole, and refractive index of liquid on the resonance wavelength are elucidated. The results show that the resonance wavelength is sensitive to the thickness of metal film and refractive index of liquid, while the resonance wavelength doesn't change basically when the pitch between air holes and diameter of air holes vary. The proposed surface plasmon resonance sensor exhibits high sensitivity up to 10{sup -4}.

  10. Characterization of complementary electric field coupled resonant surfaces

    Science.gov (United States)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  11. Methodology of Resonant Equiangular Composite Quantum Gates

    Science.gov (United States)

    Low, Guang Hao; Yoder, Theodore J.; Chuang, Isaac L.

    2016-10-01

    The creation of composite quantum gates that implement quantum response functions U ^(θ ) dependent on some parameter of interest θ is often more of an art than a science. Through inspired design, a sequence of L primitive gates also depending on θ can engineer a highly nontrivial U ^ (θ ) that enables myriad precision metrology, spectroscopy, and control techniques. However, discovering new, useful examples of U ^(θ ) requires great intuition to perceive the possibilities, and often brute force to find optimal implementations. We present a systematic and efficient methodology for composite gate design of arbitrary length, where phase-controlled primitive gates all rotating by θ act on a single spin. We fully characterize the realizable family of U ^ (θ ) , provide an efficient algorithm that decomposes a choice of U ^ (θ ) into its shortest sequence of gates, and show how to efficiently choose an achievable U ^(θ ) that, for fixed L , is an optimal approximation to objective functions on its quadratures. A strong connection is forged with classical discrete-time signal processing, allowing us to swiftly construct, as examples, compensated gates with optimal bandwidth that implement arbitrary single-spin rotations with subwavelength spatial selectivity.

  12. Open Circuit Resonant Sensors for Composite Damage Detection and Diagnosis

    Science.gov (United States)

    Mielnik, John J., Jr.

    2011-01-01

    Under the Integrated Vehicle Health Management (IVHM) program work was begun to investigate the feasibility of sensor systems for detecting and diagnosing damage to aircraft composite structures and materials. Specific interest for this study was in damage initiated by environmental storm hazards and the direct effect of lightning strikes on the material structures of a composite aircraft in flight. A series of open circuit resonant sensors was designed, fabricated, characterized, and determined to be a potentially viable means for damage detection and diagnosis of composite materials. The results of this research and development effort are documented in this report.

  13. Observation of resonant interactions among surface gravity waves

    CERN Document Server

    Bonnefoy, F; Michel, G; Semin, B; Humbert, T; Aumaître, S; Berhanu, M; Falcon, E

    2016-01-01

    We experimentally study resonant interactions of oblique surface gravity waves in a large basin. Our results strongly extend previous experimental results performed mainly for perpendicular or collinear wave trains. We generate two oblique waves crossing at an acute angle, while we control their frequency ratio, steepnesses and directions. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory with no fitting parameter. Off-resonance experiments are also reported and the relevant theoretical analysis is conducted and validated.

  14. The positions of secular resonance surfaces. [for major planet orbits

    Science.gov (United States)

    Williams, J. G.; Faulkner, J.

    1981-01-01

    The surfaces for the three strongest secular resonances have been located as a function of proper semimajor axis, eccentricity, and inclination for semimajor axes between 1.25 and 3.5 AU. The results are presented graphically. The nu5 resonance only occurs at high inclinations (approximately greater than 23 deg). The nu6 resonance passes through both the main belt and Mars-crossing space. The nu16 resonance starts near the inner edge of the belt and, at low inclinations at least, folds around a portion of the Mars-crossing space until it runs nearly parallel with the earth-crossing boundary.

  15. Relationship of wood surface energy to surface composition

    Science.gov (United States)

    Feipeng P. Liu; Timothy G. Rials; John Simonsen

    1998-01-01

    The wood cell wall is composed of cellulose, lignin, hemicelluloses, and extractives. Thus, the surface energy of the wood material must be some combination of the surface energies of these components. The influence of extractives on wood surface chemistry can be important in diverse industrial applications, such as coating, pulping, and wood-based composites. In this...

  16. Culturing photosynthetic bacteria through surface plasmon resonance

    Science.gov (United States)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-01

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 μm thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  17. Culturing photosynthetic bacteria through surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David [Department of Mechanical and Industrial Engineering and Centre for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  18. Vegetation Composition and Marsh Surface Elevation, 2015

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data table contains plant composition and marsh surface elevation data for 64 plots where Salicornia pacifica litter was buried at 7 sites in 2015. These data...

  19. Compositeness of the Delta(1232) resonance in pi N scattering

    CERN Document Server

    Sekihara, Takayasu; Yamagata-Sekihara, Junko; Yasui, Shigehiro

    2015-01-01

    We evaluate the $\\pi N$ compositeness of the $\\Delta (1232)$ resonance so as to clarify the internal structure of $\\Delta (1232)$ in terms of the $\\pi N$ component. Here the compositeness is defined as contributions from two-body wave functions to the normalization of the total wave function and is extracted from the $\\pi N$ scattering amplitude. In this study we employ the chiral unitary approach with the interaction up to the next-to-leading order plus a bare $\\Delta$ term in chiral perturbation theory and describe $\\Delta (1232)$ in an elastic $\\pi N$ scattering. Fitting the $\\pi N$ scattering amplitude to the solution of the partial wave analysis, we obtain a large real part of the $\\pi N$ compositeness for $\\Delta (1232)$ comparable to unity and non-negligible imaginary part as well, with which we reconfirm the result in the previous study on the $\\pi N$ compositeness for $\\Delta (1232)$.

  20. Magnetic Resonance Imaging of Gel-cast Ceramic Composites

    Science.gov (United States)

    Dieckman, S. L.; Balss, K. M.; Waterfield, L. G.; Jendrzejczyk, J. A.; Raptis, A. C.

    1997-01-16

    Magnetic resonance imaging (MRI) techniques are being employed to aid in the development of advanced near-net-shape gel-cast ceramic composites. MRI is a unique nondestructive evaluation tool that provides information on both the chemical and physical properties of materials. In this effort, MRI imaging was performed to monitor the drying of porous green-state alumina - methacrylamide-N.N`-methylene bisacrylamide (MAM-MBAM) polymerized composite specimens. Studies were performed on several specimens as a function of humidity and time. The mass and shrinkage of the specimens were also monitored and correlated with the water content.

  1. Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chuanbo [University of California, Riverside; Lu, Zhenda [University of California, Riverside; Chi, Miaofang [ORNL; Liu, ying [University of California, Riverside; Cheng, Quan [University of California, Riverside; Yin, Yadong [University of California, Riverside

    2012-01-01

    An SPR biosensor was developed by employing highly stable Au-protected Ag nanoplates (NP) as enhancers (see picture). Superior performance was achieved by depositing a thin and uniform coating of Au on the Ag surface while minimizing disruptive galvanic replacement and retaining the strong surface plasmon resonance (SPR) of the silver nanoplates.

  2. Model castings with composite surface layer - application

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-10-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.

  3. Flexural Mie Resonances: Localized Surface Platonic Modes

    CERN Document Server

    Farhat, M; Chen, P Y; Salama, K N; Bagci, H

    2016-01-01

    Surface plasmons polaritons were thought to exist only in metals near their plasma frequencies. The concept of spoof plasmons extended the realms of plasmonics to domains such as radio frequencies, magnetism, or even acoustic waves. Here, we introduce the concept of localized surface platonic modes (SPMs). We demonstrate that they can be generated on a two-dimensional clamped (or stress-free) cylindrical surface, in a thin elastic plate, with subwavelength corrugations under excitation by an incident flexural plane wave. Our results show that the corrugated rigid surface is elastically equivalent to a cylindrical scatterer with negatively uniform and dispersive flexural rigidity. This, indeed, suggests that plasmonic-like platonic materials can be engineered with potential applications in various areas including earthquake sensing, or elastic imaging and cloaking.

  4. TEMPERATURE CONTROL CIRCUIT FOR SURFACE ACOUSTIC WAVE (SAW RESONATORS

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2011-10-01

    Full Text Available Surface Acoustic Wave (SAW resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work propose a simple circuit design which stabalizes the temperature of the SAW resonator, making it independet of temperature change. This circuit is based on the oven control method which elevates the temperature of the resonator to a high temperature, making it tolerant to minor changes in ambient temperature.This circuit consist of a temperature sensor, heaters and a comparator which turn the heater on or off depending on the ambient temperature. Several SAW resonator were tested using this circuit. Experimental results indicate the temperature coefficient of frequency (TCF decreases from maximum of 130.44/°C to a minimum of -1.11/°C. 

  5. Sensitivity of surface resistance measurement of HTS thin films by cavity resonator, dielectric resonator and microstrip line resonator

    Indian Academy of Sciences (India)

    N D Kataria; Mukul Misra; R Pinto

    2002-05-01

    Microwave surface resistance s of silver-doped YBa2Cu3O7- (YBCO) thin film, deposited by laser ablation technique on 10 mm × 10 mm LaAlO3 substrate, has been measured by resonant techniques in the frequency range from 5 GHz to 20 GHz. The geometrical factor of the sample and the resonator has been determined theoretically by the knowledge of the electromagnetic field distribution in the resonators. The microwave surface resistance of the superconducting sample is then extracted from the measured value as a function of temperature. The sensitivity of the s measurement, that is, the relative change in the value with the change in the s value is determined for each resonator.

  6. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  7. Visualizing compositional data on the Lexis surface

    DEFF Research Database (Denmark)

    Schöley, Jonas; Willekens, Frans

    2017-01-01

    proposed techniques depends primarily on the number of groups making up the composition and whether or not the plot should be readable by people with impaired colour vision. Contribution: We introduce techniques for visualizing compositional data on a period-age grid to the field of demography......Background: The Lexis surface plot is an established visualization tool in demography. Its present utility, however, is limited to the domain of one-dimensional magnitudes such as rates and counts. Visualizing proportions among three or more groups on a period-age grid is an unsolved problem....... Objective: We seek to extend the Lexis surface plot to the domain of compositional data. Methods: We propose four techniques for visualizing group compositions on a period-age grid. To demonstrate the techniques we use data on age-specific cause-of-death compositions in France from 1925 to 1999. We compare...

  8. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  9. Localized spoof surface plasmon resonances at terahertz range

    Science.gov (United States)

    Chen, Lin; Xu, Mengjian; Zang, Xiaofei; Peng, Yan; Zhu, Yiming

    2016-11-01

    The influence of the inner disk radius r, the filling ratio α, numbers of sectors N, and the gap g on transmission response for corrugated metallic disk (CMD) with single C-shaped resonator(CSR) has been fully studied. The results indicate that varying parameters r can efficiently excite the higher order spoof localized surface plasmon modes in corrugated metallic disk. The relationship between the bright dipole and dark multipolar resonances presents the possibility of high Q dark resonances excitation. All results may be of great interest for diverse applications.

  10. Surface acoustic wave vapor sensors based on resonator devices

    Science.gov (United States)

    Grate, Jay W.; Klusty, Mark

    1991-05-01

    Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.

  11. Information Exchange via Surface Modified Resonance Energy Transfer

    CERN Document Server

    Boström, Mathias; Huang, Dan; Ninham, Barry W; Sernelius, Bo E

    2013-01-01

    The theory is presented for resonance interaction between two atoms in an excited configuration: one atom, the "receptor" of information (i.e. energy), adsorbed on a phospholipid surface and the other atom, the "emitter" of information (i.e. energy), a long distance away. The dielectric function for a specific phospholipid membrane is obtained from density functional theory calculations. We present numerical results comparing the range and magnitude of non-specific Casimir-Polder interactions with the much more long-ranged, and highly specific, resonance interaction. A study of the resonance interaction with one or both atoms adsorbed on a phospholipid membrane surface reveals a possibility to have a cross over from attraction to repulsion or from repulsion to attraction at separations between receptor and emitter atoms exceeding several hundred {\\AA}ngstr\\"oms. The energy transfer and the observed transitions in the sign of the interaction energies near surfaces provide potential new ways to start recognitio...

  12. Composite charge 8/3 resonances at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Matsedonskyi, Oleksii [Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126 Pisa (Italy); Dipartimento di Fisica e Astronomia, Università di Padova,Via Marzolo 8, I-35131 Padua (Italy); Riva, Francesco; Vantalon, Thibaud [Institut de Théorie des Phénomènes Physiques,EPFL, CH-1015 Lausanne (Switzerland)

    2014-04-08

    In composite Higgs models with partial compositeness, the small value of the observed Higgs mass implies the existence of light fermionic resonances, the top partners, whose quantum numbers are determined by the symmetry (and symmetry breaking) structure of the theory. Here we study light top partners with electric charge 8/3, which are predicted, for instance, in some of the most natural composite Higgs realizations. We recast data from two same sign lepton searches and from searches for microscopic blackholes into a bound on its mass, M{sub 8/3}>940 GeV. Furthermore, we compare potential reach of these searches with a specifically designed search for three same-sign leptons, both at 8 and 14 TeV. We provide a simplified model, suitable for collider analysis.

  13. Composite charge 8/3 resonances at the LHC

    Science.gov (United States)

    Matsedonskyi, Oleksii; Riva, Francesco; Vantalon, Thibaud

    2014-04-01

    In composite Higgs models with partial compositeness, the small value of the observed Higgs mass implies the existence of light fermionic resonances, the top partners, whose quantum numbers are determined by the symmetry (and symmetry breaking) structure of the theory. Here we study light top partners with electric charge 8/3, which are predicted, for instance, in some of the most natural composite Higgs realizations. We recast data from two same sign lepton searches and from searches for microscopic blackholes into a bound on its mass, M 8/3 > 940 GeV. Furthermore, we compare potential reach of these searches with a specifically designed search for three same-sign leptons, both at 8 and 14TeV. We provide a simplified model, suitable for collider analysis.

  14. Composite Charge 8/3 Resonances at the LHC

    CERN Document Server

    Matsedonskyi, Oleksii; Vantalon, Thibaud

    2014-01-01

    In composite Higgs models with partial compositeness, the small value of the observed Higgs mass implies the existence of light fermionic resonances, the top partners, whose quantum numbers are determined by the symmetry (and symmetry breaking) structure of the theory. Here we study light top partners with electric charge 8/3, which are predicted, for instance, in some of the most natural composite Higgs realizations. We recast data from two same sign lepton searches and from searches for microscopic blackholes into a bound on its mass, M8/3 > 940 GeV. Furthermore, we compare potential reach of these searches with a specifically designed search for three same-sign lepton, both at 8 and 14 TeV. We provide a simplified model, suitable for collider analysis.

  15. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.

  16. Finite element simulations of thin-film composite BAW resonators.

    Science.gov (United States)

    Makkonen, T; Holappa, A; Ellä, J; Salomaa, M M

    2001-09-01

    A finite element method (FEM) formulation is presented for the numerical solution of the electroelastic equations that govern the linear forced vibrations of piezoelectric media. A harmonic time dependence is assumed. Both of the approaches, that of solving the field problem (harmonic analysis) and that of solving the corresponding eigenvalue problem (modal analysis), are described. A FEM software package has been created from scratch. Important aspects central to the efficient implementation of FEM are explained, such as memory management and solving the generalized piezoelectric eigenvalue problem. Algorithms for reducing the required computer memory through optimization of the matrix profile, as well as Lanczos algorithm for the solution of the eigenvalue problem are linked into the software from external numerical libraries. Our FEM software is applied to detailed numerical modeling of thin-film bulk acoustic wave (BAW) composite resonators. Comparison of results from 2D and full 39 simulations of a resonator are presented. In particular, 3D simulations are used to investigate the effect of the top electrode shape on the resonator electrical response. The validity of the modeling technique is demonstrated by comparing the simulated and measured displacement profiles at several frequencies. The results show that useful information on the performance of the thin-film resonators can be obtained even with relatively coarse meshes and, consequently, moderate computational resources.

  17. Vector resonances at LHC Run II in composite 2HDM

    CERN Document Server

    Di Chiara, Stefano; Tuominen, Kimmo

    2016-01-01

    We consider a model where the electroweak symmetry breaking is driven by strong dynamics, resulting in an electroweak doublet scalar condensate, and transmitted to the standard model matter fields via another electroweak doublet scalar. At low energies the effective theory therefore shares features with a type-I two Higgs doublet model. However, important differences arise due to the rich composite spectrum expected to contain new vector resonances accessible at the LHC. We carry out a systematic analysis of the vector resonance signals at LHC and find that the model remains viable, but will be tightly constrained by direct searches as the projected integrated luminosity, around 200 fb$^{-1}$, of the current run becomes available.

  18. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  19. Optimization of Pd Surface Plasmon Resonance sensors for hydrogen detection

    NARCIS (Netherlands)

    Perrotton, C.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2011-01-01

    A design to optimize a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, the sensitive layer is deposited on the core of a multimode fiber, after removing the optical cladding. The light is injected in the f

  20. A Surface Plasmon Resonance Immunobiosensor for Detection of Phytophthora infestans

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hejgaard, Jørn;

    In this study we focused on the development of a Surface Plasmon Resonance (SPR) immunosensor for Phytophthora infestans detection. The fungus-like organism is the cause of potato late blight and is a major problem in potato growing regions of the world. Efficient control is dependent on early...

  1. Surface Plasmon Resonance Spectroscopy: A Versatile Technique in a

    Science.gov (United States)

    Bakhtiar, Ray

    2013-01-01

    Surface plasmon resonance (SPR) spectroscopy is a powerful, label-free technique to monitor noncovalent molecular interactions in real time and in a noninvasive fashion. As a label-free assay, SPR does not require tags, dyes, or specialized reagents (e.g., enzymes-substrate complexes) to elicit a visible or a fluorescence signal. During the last…

  2. Optimization of Pd Surface Plasmon Resonance sensors for hydrogen detection

    NARCIS (Netherlands)

    Perrotton, C.; Javahiraly, N.; Slaman, M.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2011-01-01

    A design to optimize a fiber optic Surface Plasmon Resonance (SPR) sensor using Palladium as a sensitive layer for hydrogen detection is presented. In this approach, the sensitive layer is deposited on the core of a multimode fiber, after removing the optical cladding. The light is injected in the f

  3. Sub-micron surface plasmon resonance sensor systems

    Science.gov (United States)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2013-01-01

    Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.

  4. Surface composition of Mercury from reflectance spectrophotometry

    Science.gov (United States)

    Vilas, Faith

    1988-01-01

    The controversies surrounding the existing spectra of Mercury are discussed together with the various implications for interpretations of Mercury's surface composition. Special attention is given to the basic procedure used for reducing reflectance spectrophotometry data, the factors that must be accounted for in the reduction of these data, and the methodology for defining the portion of the surface contributing the greatest amount of light to an individual spectrum. The application of these methodologies to Mercury's spectra is presented.

  5. Experimental study of surface texture and resonance mechanism of booming sand

    Institute of Scientific and Technical Information of China (English)

    QU; JianJun; ZHANG; KeCun; SUN; Bo; JIANG; ShengXiang; DONG; GuangRong; ZU; RuiPing; FANG; HaiYan

    2007-01-01

    The sound-producing mechanism of booming sand has long been a pending problem in the blown sand physics. Based on the earlier researches, the authors collected some silent sand samples from Tengger Desert, Australian Desert, Kuwait Desert, beaches of Hainan Island and Japanese coast as well as the soundless booming sand samples from the Mingsha Mountain in Dunhuang to make washing experiments. In the meantime the chemical corrosion experiment of glass micro-spheres, surface coating experiment and SEM examination were also conducted. The experimental results show that the sound production of booming sand seems to have nothing to do with the presence of SiO2 gel on the surface of sand grains and unrelated to the surface chemical composition of sand grains but is related to the resonance cavities formed by porous (pit-like) physical structure resulting from a number of factors such as wind erosion, water erosion, chemical corrosion and SiO2 gel deposition, etc. Its resonance mechanism is similar to that of Hemholz resonance cavity. Under the action of external forces, numerous spherical and sand grains with smooth surface and porous surface are set in motion and rub with each other to produce extremely weak vibration sound and then become audible sound by human ears through the magnification of surface cavity resonance. However the booming sands may lose their resonance mechanism and become silent sand due to the damping action caused by the invasion of finer particles such as dust and clay into surface holes of sand grains. Therefore, clearing away fine pollutants on the quartz grain surface is an effective way to make silent sand emit audible sound.

  6. Composite resonances and their impact on the EW chiral Lagrangian

    CERN Document Server

    Sanz-Cillero, J J

    2015-01-01

    In this talk we study the low-energy effective couplings generated by strongly-coupled electroweak models that contain heavy composite resonances. Invariance under $SU(2)_L\\times SU(2)_R$ is a key ingredient in the construction of the resonance action. For simplicity, in these proceedings we focus our attention on the impact of a heavy colourless vector V, which transforms as a triplet under the custodial group. More precisely, we study the couplings that are relevant for the vector form-factors of the L+R current into two electroweak Goldstones and into two Standard Model fermions, which contribute to the oblique parameters S and T and the anomalous $Z\\to f\\bar{f}$ couplings, respectively. Our predictions are compatible with bounds from direct and indirect searches for Mv > 1.5 TeV. Finally, although we consider an antisymmetric tensor formalism to describe the vector resonance, we derive the equivalent action in the Proca four-vector representation and show that the predictions for low-energy couplings and ...

  7. Near-field thermal radiative emission of materials demonstrating near infrared surface polariton resonance

    Science.gov (United States)

    Petersen, Spencer Justin

    Surface polariton mediated near-field radiative transfer exceeds the blackbody limit by orders of magnitude and is quasimonochromatic. Thermophotovoltaic (TPV) power generation consists of converting thermal radiation into useful electrical energy and exhibits a peak performance near the TPV cell bandgap, which is typically located within the near infrared bandwidth. Therefore, an ideal emission source for a nanoscale gap TPV device, in which the emitter and cell are separated by no more than one peak emitted wavelength, will sustain surface polariton resonance at or near the TPV cell bandgap in the near infrared. To date, few materials have been identified that satisfy this requirement. The first objective of this dissertation is to theoretically explore dielectric Mie resonance-based (DMRB) electromagnetic metamaterials for the potential to sustain near infrared surface polariton resonance. Electromagnetic metamaterials are composite media, consisting of subwavelength, repeating unit structures called "meta-atoms." The microscopic configuration of the meta-atom can be engineered, dictating the effective macroscale electromagnetic properties of the bulk metamaterial, including the surface polariton resonance wavelength. DMRB metamaterials consist of dielectric nanoparticles within a host medium and are analyzed using an effective medium theory. The local density of electromagnetic states, an indicator of possibly harvestable energy near an emitting surface, is calculated for two DMRB metamaterials: spherical nanoparticles of 1) silicon carbide, and 2) silicon embedded in a host medium. Results show that the surface polariton resonance of these metamaterials is tunable and, for the silicon metamaterial only, is found in the near infrared bandwidth, making it a viable candidate for use in a nano-TPV device. In order to demonstrate the practicality thereof, the second objective is to fabricate and characterize DMRB metamaterials. Specimens are fabricated by hand

  8. Probing a new strongly interacting sector via composite diboson resonances

    Science.gov (United States)

    Ko, P.; Yu, Chaehyun; Yuan, Tzu-Chiang

    2017-06-01

    Diphoton resonance was a crucial discovery mode for the 125 GeV Standard Model Higgs boson at the Large Hadron Collider (LHC). This mode or the more general diboson modes may also play an important role in probing for new physics beyond the Standard Model. In this paper, we consider the possibility that a diphoton resonance is due to a composite scalar or pseudoscalar boson, whose constituents are either new hyperquarks Q or scalar hyperquarks Q ˜ confined by a new hypercolor force at a confinement scale Λh. Assuming the mass mQ (or mQ ˜) ≫Λh, a diphoton resonance could be interpreted as either a Q Q ¯ (1S0) state ηQ with JP C=0-+ or a Q ˜ Q˜ †(1S0) state ηQ ˜ with JP C=0++. For the Q Q ¯ scenario, there will be a spin-triplet partner ψQ which is slightly heavier than ηQ due to the hyperfine interactions mediated by hypercolor gluon exchange; while for the Q ˜Q˜† scenario, the spin-triplet partner χQ ˜ arises from higher radial excitation with nonzero orbital angular momentum. We consider productions and decays of ηQ, ηQ ˜, ψQ, and χQ ˜ at the LHC using the nonrelativistic QCD factorization approach. We discuss how to test these scenarios by using the Drell-Yan process and the forward dijet azimuthal angular distributions to determine the JP C quantum number of the diphoton resonance. Constraints on the parameter space can be obtained by interpreting some of the small diphoton "excesses" reported by the LHC as the composite scalar or pseudoscalar of the model. Another important test of the model is the presence of a nearby hypercolor-singlet but color-octet state like the 1S0 state ηQ8 or ηQ˜8, which can also be constrained by dijet or monojet plus monophoton data. Both possibilities of a large or small width of the resonance can be accommodated, depending on whether the hyper-glueball states are kinematically allowed in the final state or not.

  9. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  10. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    Science.gov (United States)

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  11. Microfluidic transmission surface plasmon resonance enhancement for biosensor applications

    Science.gov (United States)

    Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2017-01-01

    The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.

  12. Young's modulus measurement based on surface plasmon resonance

    Science.gov (United States)

    Lotfalian, Ali; Jandaghian, Ali; Saghafifar, Hossein; Mohajerani, Ezzedin

    2017-09-01

    In this paper, Young's modulus of polymers is experimentally measured using pressure sensors based on surface plasmon polariton. Theoretical relationships of changes in polymer reflective index due to applying pressure are investigated as well as the dependence of surface plasmon to the polymer reflective index. For the purpose of investigating the effects of the layers thicknesses, numerical simulation is performed using transfer matrix. Changes in resonance angle of surface plasmon due to applying pressure are experimentally studied as well. Practically, a sample of silicon rubber, as one of the most widely-used polymers, is checked and its Young's modulus is measured as 8.1 MPa.

  13. Surface plasmon resonance-enabled antibacterial digital versatile discs

    Science.gov (United States)

    Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli

    2012-02-01

    We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.

  14. Surface Plasmon Resonance Sensors Based on Polymer Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    Rong-Sheng Zheng; Yong-Hua Lu; Zhi-Guo Xie; Jun Tao; Kai-Qun Lin; Hai Ming

    2008-01-01

    Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber application in SPR sensors, including wavelength interrogation surface enhanced Raman scattering SPR sensor and surface enhanced Raman scattering (SERS) probe.Long-period fiber gratings are fabricated on single mode polymer optical fiber (POF) with 120 μm period and 50% duty cycle. The polarization characteristic of this kind of birefringent grating is studied. Theoretical analysis shows it will be advantageous in SPR sensing applications.

  15. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  16. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Science.gov (United States)

    Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  17. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  18. Compositional Mapping of Europa's Surface with SUDA

    Science.gov (United States)

    Kempf, S.; Sternovsky, Z.; Horanyi, M.; Hand, K. P.; Srama, R.; Postberg, F.; Altobelli, N.; Gruen, E.; Gudipati, M. S.; Schmidt, J.; Zolotov, M. Y.; Tucker, S.; Hoxie, V. C.; Kohnert, R.

    2015-12-01

    The Surface Mass Analyzer (SUDA) measures the composition of ballistic dust particles populating the thin exospheres that were detected around each of the Galilean moons. Since these grains are direct samples from the moons' icy surfaces, unique composition data will be obtained that will help to define and constrain the geological activities on and below the moons' surface. SUDA will make a vital contribution to NASA's mission to Europa and provide key answers to its main scientific questions about the surface composition, habitability, the icy crust, and exchange processes with the deeper interior of the Jovian icy moon Europa. SUDA is a time-of- flight, reflectron-type impact mass spectrometer, optimised for a high mass resolution which only weakly depends on the impact location. The small size, low mass and large sensitive area meet the challenging demands of mission to Europa. A full-size prototype SUDA instrument was built in order to demonstrate its performance through calibration experiments at the dust accelerator at NASA's IMPACT institute at Boulder, CO, with a variety of cosmo-chemically relevant dust analogues. The effective mass resolution of m/Δm of 150-300 is achieved for mass range of interest m = 1-150.

  19. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Bing; ZHOU Zhi-Ping

    2008-01-01

    @@ The tunable omnidirectional surface plasmon resonance in the optical range is theoretically demonstrated in a cylindrical plasmonic crystal by using rigorous coupled-wave analysis.The cylindrical plasmonic crystal consists of an infinite chain of two-dimensional cylindrical metal-dielectric-dielectric-metal structures.The dispersion relation of the cylindrical plasmonic crystal is obtained by calculating the absorptance as a function of a TM-polarized incident plane wave and its in-plane wave vector.The omnidirectional surface plasmon resonance can be tuned from UV region to visible region by adjusting the thickness of the cylindrical dielectric layers.The absorption spectrum of the infinite chain of nanocylinders is also investigated for comparison.

  20. Detection of Penicillin via Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; MU Ying; JIN Wei; YANG Meng-chao; ZHANG Ti-qiang; ZHOU Chao; XIE Fei; SONG Qi; REN Hao; JIN Qin-han

    2012-01-01

    A method of using Au colloid to capture the decomposed product of penicillin,penicillamine,on a surface plasmon resonance(SPR) biosensor for the quantitative determination of penicillin was developed.Based on the decomposition of penicillin to generate penicillamine and penilloaldehyde,a high seositive biosensor for detecting penicillin was also developed.In our experiment,it was penicillamine rather than penicillin that has been measured.This is because penicillamine contains a functional group that makes it self-assembling on Au colloid to increase the molecular weight so as to improve the surface plasmon resonance signal.On a UV-Vis spectrophotometer,a high concentration of penicilliamine-Au complex was determined,indicating that penicillamine was already well combined with Au colloid.The method,using the combination of Au colloid with penicillamine,proved to detect penicillin.

  1. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays

    CERN Document Server

    Guo, R; Törmä, P

    2016-01-01

    Plasmonic nanoarrays which support collective surface lattice resonances (SLRs) have become an exciting frontier in plasmonics. Compared with the localized surface plasmon resonance (LSPR) in individual particles, these collective modes have appealing advantages such as angle-dependent dispersions and much narrower linewidths. Here, we investigate systematically how the geometry of the lattice affects the SLRs supported by metallic nanoparticles. We present a general theoretical framework from which the various SLR modes of a given geometry can be straightforwardly obtained by a simple comparison of the diffractive order (DO) vectors and orientation of the nanoparticle dipole given by the polarization of the incident field. Our experimental measurements show that while square, hexagonal, rectangular, honeycomb and Lieb lattice arrays have similar spectra near the $\\Gamma$-point ($k=0$), they have remarkably different SLR dispersions. Furthermore, their dispersions are highly dependent on the polarization. Num...

  2. Boiling on Microconfigured Composite Surfaces Enhanced

    Science.gov (United States)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future

  3. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    OpenAIRE

    Lepage Dominic; Carrier Dominic; Jiménez Alvaro; Beauvais Jacques; Dubowski Jan

    2011-01-01

    Abstract A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral r...

  4. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  5. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    CERN Document Server

    Takezawa, Akihiro

    2014-01-01

    The effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, they can be efficiently designed by handling the physical properties of anisotropic materials directly. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 10% compared with existing multilayer cloaking by isotropic materials in eight-layer cylindrical cloaking materials. The same performance with eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using anisotropic materials. Cloaking with a about 50% reduct...

  6. Characterization of elastic interactions in GaAs/Si composites by optically pumped nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Ryan M.; Tokarski, John T.; McCarthy, Lauren A.; Bowers, Clifford R., E-mail: bowers@chem.ufl.edu [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Stanton, Christopher J. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2016-08-28

    Elastic interactions in GaAs/Si bilayer composite structures were studied by optically pumped nuclear magnetic resonance (OPNMR). The composites were fabricated by epoxy bonding of a single crystal of GaAs to a single crystal of Si at 373 K followed by selective chemical etching of the GaAs at room temperature to obtain a series of samples with GaAs thickness varying from 37 μm to 635 μm, while the Si support thickness remained fixed at 650 μm. Upon cooling to below 10 K, a biaxial tensile stress developed in the GaAs film due to differential thermal contraction. The strain perpendicular to the plane of the bilayer and localized near the surface of the GaAs was deduced from the quadrupolar splitting of the Gallium-71 OPNMR resonance. Strain relaxation by bowing of the composite was observed to an extent that depended on the relative thickness of the GaAs and Si layers. The variation of the strain with GaAs layer thickness was found to be in good agreement with a general analytical model for the elastic relationships in composite media.

  7. Encoded and multiplexed surface plasmon resonance sensor platform.

    Science.gov (United States)

    Kastl, Katja F; Lowe, Christopher R; Norman, Carl E

    2008-10-15

    We present a flexible new sensor system that combines the joint advantages of (i) discretely functionalized, code-bearing, microparticles and (ii) label-free detection using grating-coupled surface plasmon resonance. This system offers the possibility of simultaneously investigating the real-time binding kinetics of a variety of molecular interactions. One single multiplexed assay could employ a wide range of immobilization chemistries, surface preparation methods, and formats. Thus, the new system offers a very high level of assay conformability to the end user, particularly when compared to fixed microarrays.

  8. Scattering-Type Surface-Plasmon-Resonance Biosensors

    Science.gov (United States)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  9. Flexible, fibre-addressable surface-plasmon-resonance chip

    Science.gov (United States)

    Chowdhury, Faqrul; Chau, Kenneth J.

    2012-02-01

    Surface plasmon resonance (SPR) sensors exploit optical coupling to surface plasmons, light waves bound to a metal surface. In the most common configuration, a SPR sensor is used with an external light source, optical components to polarize incident light and guide light to and from a metal surface, a coupling device to convert free-space light into surface plasmons and back into free-space light, and a light detector. The light source, the optical components, and the light detector are external to the SPR device, and the coupling structure is often integrated directly with the surface-plasmon-sustaining metal surface. The requirement of several external components restricts the miniaturization of SPR devices and prohibits low-cost implementation. To address these limitations, we design, fabricate, and test a new SPR device chip that is fibre-addressable, does not require a discrete coupling structure, and integrates light delivery, light polarization control, surface plasmon coupling onto a thin, flexible substrate. Our SPR chip is constructed from a thin gold layer deposited on top of a clear plastic sheet, which is then optically connected from the bottom surface onto a plastic linear polarizer sheet. Two cleaved fibres, one to input light and the other to collect reflected light, are then optically attached to SPR device. We experimentally characterize the SPR device and find good agreement between our measurements and a theoretical model based on transfer matrix formalism.

  10. Mineralogy of the Martian Surface: Crustal Composition to Surface Processes

    Science.gov (United States)

    Mustard, John F.

    1997-01-01

    The main results have been published in the refereed literature, and thus this report serves mainly to summarize the main findings and indicate where the detailed papers may be found. Reflectance spectroscopy has been an important tool for determining the mineralogic makeup of the near surface materials on Mars. Analysis of the spectral properties of the surface have demonstrated that these attributes are heterogeneous from the coarse spatial but high spectral resolution spectra obtained with telescopes to the high spatial but coarse spectral resolution Viking data (e.g. Arvidson et al., 1989; McEwen et al., 1989). Low albedo materials show strong evidence for the presence of igneous rock forming minerals while bright materials are generally interpreted as representing heavily altered crustal material. How these materials are physically and genetically related has important implications for understanding martian surface properties and processes, weathering histories and paths, and crustal composition. The goal of this research is to characterize the physical and chemical properties of low albedo materials on Mars and the relationship to intermediate and high albedo materials. Fundamental science questions to be pursued include: (1) the observed distributions of soil, rock, and dust a function of physical processes or weathering and (2) different stages of chemical and physical alteration fresh rock identified. These objectives will be addressed through detailed analyses and modelling of the ISM data from the Phobos-2 mission with corroborating evidence of surface composition and properties provided by data from the Viking mission.

  11. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO3/paraffin composites at room temperature

    Science.gov (United States)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO3/paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO3. The observed magneto-permittivity resonance in multiferroic nano-BiFeO3 is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii-Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO3/paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance.

  12. Surface relief resonant Brewster filters with multiple with multiple channels

    Institute of Scientific and Technical Information of China (English)

    Ma Jian-Yong; Liu Shi-Jie; Zhang Da-Wei; Yao Jian-Ke; Xu Cheng; Jin Yun-Xia; Shao Jian-Da; Fan Zheng-Xiu

    2008-01-01

    In this paper,a new type of resonant Brewster filters(RBF)with surface relief structure for the multiple channels is first presented by using the rigorous coupled-wave analysis and the S-matrix method.By tuning the depth of homogeneous layer which is under the surface relief structure,the multiple channels phenomenon is obtained.Long range,extremely low sidebands and multiple channels are found when the RBF with surface relief structure is illuminated with Transverse Magnetic incident polarization light near the Brewster angle calculated with the effective media theory of sub wavelength grating.Moreover,the wavelengths of RBF with surface relief structure can be easily shifted by changing the depth of homogeneous layer while its optical properties such as low sideband reflection and narrow band are not spoiled when the depth is changed.Furthermore,the variation of the grating thickness does not effectively change the resonant wavelength of RBF,but have a remarkable effect on its line width,which is very useful for designing such filters with different line widths at desired wavelength.

  13. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO{sub 2} were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO{sub 2}, large photoelectrocatalytic effect for the reduction of CO{sub 2} was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO{sub 2} in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  14. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  15. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing

    Directory of Open Access Journals (Sweden)

    Lepage Dominic

    2011-01-01

    Full Text Available Abstract A surface plasmon resonance (SPR scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  16. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing.

    Science.gov (United States)

    Lepage, Dominic; Carrier, Dominic; Jiménez, Alvaro; Beauvais, Jacques; Dubowski, Jan J

    2011-05-17

    A surface plasmon resonance (SPR) scheme is proposed in which the local phase modulations of the coupled plasmons can interfere and yield phase-sensitive intensity modulations in the measured signal. The result is an increased traceability of the SPR shifts for biosensing applications. The main system limitation is the propagation distance of the coupled plasmon modes. This aspect is therefore studied for thin film microstructures operating in the visible and near-infrared spectral regions. The surface roughness of the substrate layer is examined for different dielectrics and deposition methods. The Au layer, on which the plasmonic modes are propagating and the biosensing occurs, is also examined. The surface roughness and dielectric values for various deposition rates of very thin Au films are measured. We also investigate an interferometric SPR setup where, due to the power flux transfer between plasmon modes, the specific choice of grating coupler can either decrease or increase the plasmon propagation length.

  17. LSM Microelectrodes: Kinetics and Surface Composition

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Jacobsen, Torben

    2015-01-01

    Lanthanum strontium manganite microelectrodes with the nominal composition of (La0.75Sr0.25)0.95MnO3 and a thickness of ca 500 nm was electrochemically characterized in situ at temperatures from 660 to 850◦C using a controlled atmosphere high temperature scanning probe microscope. Impedance...... spectroscopy and cyclic voltammetry were performed on electrodes with diameters of 20–100 μm in oxygen, air and nitrogen both at open circuit voltage and at anodic and cathodic polarization. In situ conductance mapping, ex situ surface analysis by time-of-flight secondary ion mass spectrometry, and scanning...

  18. Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)

    Science.gov (United States)

    Špašková, Barbora; Lynn, Nicholas S.; Slabý, Jiří Bocková, Markéta; Homola, Jiří

    2017-06-01

    There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.

  19. Surface plasmon resonance in nanocrystalline gold-copper alloy films.

    Science.gov (United States)

    Hussain, S; Datta, Subhadeep; Roy, R K; Pal, A K

    2007-12-01

    Nanocrystalline Au(x)Cu(1-x) films were synthesized by depositing Cu/Au/Cu multilayer in nanocrystalline thin film form with requisite thickness of individual layers onto fused silica substrates by high pressure sputtering technique. The absorbance spectra showed only one surface plasmon peak for all the compositions with the exception that the peak position did not indicate gradual shift as gold concentration was increased. Peak position for the two compositions corresponding to the two superlattice structures, AuCu3 and AuCu, deviated significantly from linear variation. The experimental results have been discussed in light of the existing Mie theory and the Core-shell model.

  20. Nanobiosensors Based on Localized Surface Plasmon Resonance for Biomarker Detection

    Directory of Open Access Journals (Sweden)

    Yoochan Hong

    2012-01-01

    Full Text Available Localized surface plasmon resonance (LSPR is induced by incident light when it interacts with noble metal nanoparticles that have smaller sizes than the wavelength of the incident light. Recently, LSPR-based nanobiosensors were developed as tools for highly sensitive, label-free, and flexible sensing techniques for the detection of biomolecular interactions. In this paper, we describe the basic principles of LSPR-based nanobiosensing techniques and LSPR sensor system for biomolecule sensing. We also discuss the challenges using LSPR nanobiosensors for detection of biomolecules as a biomarker.

  1. Surface plasmon resonance imaging for parallelized detection of protein biomarkers

    Science.gov (United States)

    Piliarik, Marek; Párová, Lucie; Vaisocherová, Hana; Homola, Jiří

    2009-05-01

    We report a novel high-throughput surface plasmon resonance (SPR) biosensor for rapid and parallelized detection of protein biomarkers. The biosensor is based on a high-performance SPR imaging sensor with polarization contrast and internal referencing which yields a considerably higher sensitivity and resolution than conventional SPR imaging systems (refractive index resolution 2 × 10-7 RIU). We combined the SPR imaging biosensor with microspotting to create an array of antibodies. DNA-directed protein immobilization was utilized for the spatially resolved attachment of antibodies. Using Human Chorionic Gonadotropin (hCG) as model protein biomarker, we demonstrated the potential for simultaneous detection of proteins in up to 100 channels.

  2. Optical cavity coupled surface plasmon resonance sensing for enhanced sensitivity

    Institute of Scientific and Technical Information of China (English)

    Zheng Zheng; Xin Zhao; Jinsong Zhu; Jim Diamond

    2008-01-01

    A surface plasmon resonance (SPR) sensing system based on the optical cavity enhanced detection tech-nique is experimentally demonstrated. A fiber-optic laser cavity is built with a SPR sensor inside. By measuring the laser output power when the cavity is biased near the threshold point, the sensitivity, defined as the dependence of the output optical intensity on the sample variations, can be increased by about one order of magnitude compared to that of the SPR sensor alone under the intensity interrogation scheme. This could facilitate ultra-high sensitivity SPR biosensing applications. Further system miniaturization is possible by using integrated optical components and waveguide SPR sensors.

  3. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    Science.gov (United States)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  4. Enceladus and Tethys: Ultraviolet clues to surface composition & surface processing

    Science.gov (United States)

    Hendrix, Amanda R.; Hansen, Candice; Cassidy, Timothy A.; Royer, Emilie M.; Esposito, Larry W.; Holsclaw, Gregory

    2016-10-01

    Cassini's Ultraviolet Imaging Spectrograph (UVIS) is sensitive to the uppermost portion of the regoliths of the icy Saturnian moons, where interactions with E-ring grains and plasma processing are important. Organics are present in at least 30% of E ring grains (Postberg et al., 2008) and are likely transported to the surfaces of the satellites orbiting Saturn within the E ring. Plasma bombardment on the trailing hemispheres of the satellites can further process these organic species. Enceladus' surface exhibits visible color variations (Schenk et al., 2011), evidence of plume fall-out zones and zones where plume fall-out is not as heavy (and where E ring grain bombardment dominates). In this study, we investigate far-UV spectral and photometric differences in the Enceladus plume fallout and non-fallout regions to study compositional and structural differences, and we also study compositional and photometric variations in regions on Tethys' trailing and leading hemispheres to understand spectral effects of organics, E ring bombardment and plasma bombardment.

  5. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Science.gov (United States)

    Serrano, A.; Rodríguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Monton, C.; Castro, G. R.; García, M. A.

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10-3 to 10-5, depending on the particular experiment.

  6. Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy

    CERN Document Server

    Serrano, A; Collado, V; Rubio-Zuazo, J; Monton, C; Castro, G; García, M A

    2012-01-01

    We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-ray irradiation on the SPR curves to explore the interaction of X-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to detect the changes in the electronic configuration of thin films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be carried out. The relative variations in the SPR and XAS spectra that can be detected with this set-up ranges from 10-3 to 10-5, depending on the particular experiment.

  7. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Rodriguez de la Fuente, O. [Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Collado, V.; Rubio-Zuazo, J.; Castro, G. R. [SpLine, Spanish CRG Beamline at the ESRF, F-38043 Grenoble, Cedex 09, France and Instituto de Ciencia de Materiales de Madrid, (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain); Monton, C. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093 (United States); Garcia, M. A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); IMDEA Nanociencia, Cantoblanco, 28049 Madrid (Spain)

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  8. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuhki Yanase

    2014-03-01

    Full Text Available Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR sensors detect the refractive index (RI changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells’ reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.

  9. Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance

    Science.gov (United States)

    Kurabayashi, Katsuo; Oh, Bo-Ram

    2014-08-01

    Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.

  10. Surface characterization and antifouling properties of nanostructured gold chips for imaging surface plasmon resonance biosensing

    NARCIS (Netherlands)

    Joshi, S.; Pellacani, P.; Beek, van T.A.; Zuilhof, H.; Nielen, M.W.F.

    2015-01-01

    Surface Plasmon Resonance (SPR) optical sensing is a label-free technique for real-time monitoring of biomolecular interactions. Recently, a portable imaging SPR (iSPR) prototype instrument, featuring a nanostructured gold chip, has been developed. In the present work, we investigated the crucial

  11. Surface Functionalization for Enhanced Fluorescence Detection, Surface Plasmon Resonance Imaging and Microscopy

    OpenAIRE

    Fasoli, Jennifer Betsy

    2015-01-01

    This work presents several high throughput imaging and analysis techniques performed by fluorescence detection and surface plasmon resonance biosensing. The microarray fabrication methods introduced in this thesis, as well as the DNA functionalization on planar and nanoparticle surfaces, enable and facilitate the real-time study of adsorption events via DNA- DNA hybridization and protein-DNA interaction. Silica deposited on polyolefin film serves as the base for the development of DNA mic...

  12. Surface plasmon resonance phenomenon of the insulating state polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Umiati, Ngurah Ayu Ketut, E-mail: ngurahayuketutumiati@gmail.com [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia); Jurusan Fisika FMIPA Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang Semarang 50275 (Indonesia); Triyana, Kuwat; Kamsul [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia)

    2015-04-16

    Surface Plasmon Resonance (SPR) phenomenon of the insulating polyaniline (PANI) is has been observed. Surface Plasmon (SP) is the traveled electromagnetic wave that passes through the interface of dielectric metal and excited by attenuated total reflection (ATR) method in Kretschmannn configuration (Au-PANI prism). The resonance condition is observed through the angle of SPR in such condition that SP wave is coupled by the evanescent constant of laser beam. In this research, the laser beam was generated by He–Ne and its wavelength (λ) was 632,8 nm. SPR curve is obtained through observation of incidence angles of the laser beam in prism. SPR phenomenon at the boundary between Au – PANI layer has showed by reflection dip when the laser beam passes through the prism. In this early study, the observation was carried out through simulation Winspall 3.02 software and preliminary compared with some experimental data reported in other referred literatures. The results shows that the optimum layer of Au and polyaniline are 50 and 1,5 nm thick respectively. Our own near future experimental work would be further performed and reported elsewhere.

  13. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  14. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  15. Guided-mode-resonance coupled localized surface plasmons for dually resonance enhanced Raman scattering sensing

    Science.gov (United States)

    Wang, Zheng; Liu, Chao; Li, Erwen; Chakravarty, Swapnajit; Xu, Xiaochuan; Wang, Alan X.; Fan, D. L.; Chen, Ray T.

    2017-02-01

    Raman scattering spectroscopy is a unique tool to probe vibrational, rotational, and other low-frequency modes of a molecular system and therefore could be utilized to identify chemistry and quantity of molecules. However, the ultralow efficient Raman scattering, which is only 1/109 1/1014 of the excitation light due to the small Raman scattering cross-sections of molecules, have significantly hindered its development in practical sensing applications. The discovery of surface-enhanced Raman scattering (SERS) in the 1970s and the significant progress in nanofabrication technique, provide a promising solution to overcome the inherent issues of Raman spectroscopy. It is found that In the vicinity of nanoparticles and their junctions, the Raman signals of molecules can be significantly improved by an enhancement factor as high as 1010, due to the ultrahigh electric field generated by the localized surface plasmons resonance (LSPR), where the intensity of Raman scattering is proportional to the |E|4. In this work, we propose and demonstrate a new approach combining LSPR from nanocapsules with densely assembled silver nanoparticles (NC-AgNPs) and guidemode- resonance (GMR) from dielectric photonic crystal slabs (PCSs) for SERS substrates with robustly high performance.

  16. Surface effects on ferromagnetic resonance in magnetic nanocubes

    Science.gov (United States)

    Bastardis, R.; Vernay, F.; Garanin, D.-A.; Kachkachi, H.

    2017-01-01

    We study the effect of surface anisotropy on the spectrum of spin-wave excitations in a magnetic nanocluster and compute the corresponding absorbed power. For this, we develop a general numerical method based on the (undamped) Landau-Lifshitz equation, either linearized around the equilibrium state leading to an eigenvalue problem or solved using a symplectic technique. For box-shaped clusters, the numerical results are favorably compared to those of the finite-size linear spin-wave theory. Our numerical method allows us to disentangle the contributions of the core and surface spins to the spectral weight and absorbed power. In regard to the recent developments in synthesis and characterization of assemblies of well defined nano-elements, we study the effects of free boundaries and surface anisotropy on the spin-wave spectrum in iron nanocubes and give orders of magnitude of the expected spin-wave resonances. For an 8~\\text{nm} iron nanocube, we show that the absorbed power spectrum should exhibit a low-energy peak around 10 GHz, typical of the uniform mode, followed by other low-energy features that couple to the uniform mode but with a stronger contribution from the surface. There are also high-frequency exchange-mode peaks around 60 GHz.

  17. Enhancing Surface Plasmon Resonance Detection Using Nanostructured Au Chips

    Science.gov (United States)

    Indutnyi, Ivan; Ushenin, Yuriy; Hegemann, Dirk; Vandenbossche, Marianne; Myn'ko, Victor; Lukaniuk, Mariia; Shepeliavyi, Petro; Korchovyi, Andrii; Khrystosenko, Roman

    2016-12-01

    The increase of the sensitivity of surface plasmon resonance (SPR) refractometers was studied experimentally by forming a periodic relief in the form of a grating with submicron period on the surface of the Au-coated chip. Periodic reliefs of different depths and spatial frequency were formed on the Au film surface using interference lithography and vacuum chalcogenide photoresists. Spatial frequencies of the grating were selected close to the conditions of Bragg reflection of plasmons for the working wavelength of the SPR refractometer and the used environment (solution of glycerol in water). It was found that the degree of refractometer sensitivity enhancement and the value of the interval of environment refractive index variation, Δ n, in which this enhancement is observed, depend on the depth of the grating relief. By increasing the depth of relief from 13.5 ± 2 nm to 21.0 ± 2 nm, Δ n decreased from 0.009 to 0.0031, whereas sensitivity increased from 110 deg./RIU (refractive index unit) for a standard chip up to 264 and 484 deg./RIU for the nanostructured chips, respectively. Finally, it was shown that the working range of the sensor can be adjusted to the refractive index of the studied environment by changing the spatial frequency of the grating, by modification of the chip surface or by rotation of the chip.

  18. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks.

    Science.gov (United States)

    Seifar, R M; Verheul, J M; Ariese, F; Brinkman, U A; Gooijer, C

    2001-08-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not provide adequate discriminative power. At these excitation wavelengths, the SERRS signals of the Methyl Violet derivatives present in inks easily dominate the overall spectrum because of resonance enhancement and preferential interaction with silver sol particles. At 685 nm, this problem is not encountered as the Methyl Violet derivatives do not show resonance enhancement, while other components may still exhibit resonance. Thirteen blue and thirteen black ink lines were examined. For the blue and black inks, on the basis of the 685 nm SERR spectra, eight and six groups of spectra, respectively, could be distinguished. This discrimination largely agrees with information from thin layer chromatography (TLC) experiments, although some differences in group compositions are found. The in situ SERR spectra show good repeatability with regard to the Raman frequencies, band shapes and relative intensities of the spectral bands. However, absolute intensities cannot be used for discrimination purposes.

  19. Analysis of a shielded TE011 mode composite dielectric resonator for stable frequency reference

    Indian Academy of Sciences (India)

    N D Kataria; K S Daya; V G Das

    2002-05-01

    Analysis of a TE011 mode composite sapphire–rutile dielectric resonator has been carried out to study the temperature variation of resonance frequency, close to the Cs atomic clock hyperfine frequency of 9.192 GHz. The complementary behavior of dielectric permittivity with temperature of the composite has been exploited to obtain the desired turning point in the resonant frequency. The frequency of the composite structure is found to be independent of the shield diameter beyond four times the puck diameter.

  20. Mineralogy and Surface Composition of Asteroids

    CERN Document Server

    Reddy, Vishnu; Thomas, Cristina A; Moskovitz, Nicholas A; Burbine, Thomas H

    2015-01-01

    Methods to constrain the surface mineralogy of asteroids have seen considerable development during the last decade with advancement in laboratory spectral calibrations and validation of our interpretive methodologies by spacecraft rendezvous missions. This has enabled the accurate identification of several meteorite parent bodies in the main asteroid belt and helped constrain the mineral chemistries and abundances in ordinary chondrites and basaltic achondrites. With better quantification of spectral effects due to temperature, phase angle, and grain size, systematic discrepancies due to non-compositional factors can now be virtually eliminated for mafic silicate-bearing asteroids. Interpretation of spectrally featureless asteroids remains a challenge. This paper presents a review of all mineralogical interpretive tools currently in use and outlines procedures for their application.

  1. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  2. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Bilgen [Uludag University, Department of Chemistry, Bursa (Turkey); Uzun, Lokman [Hacettepe University, Department of Chemistry, Ankara (Turkey); Beşirli, Necati [Uludag University, Department of Chemistry, Bursa (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2013-10-15

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH 7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. - Highlights: • Micro-contact imprinted surface plasmon resonance sensor. • Real-time myoglobin detection in the serum taken from a patient with acute myocardial infarction • Reproducible results for consecutive myoglobin solution supplement • LOD and LOQ values of the SPR sensor were determined to be 26.3 and 87.6 ng/mL. • The SPR sensor has potential for myoglobin sensing during acute MI cases.

  3. Synthesis and tuning of gold nanorods with surface plasmon resonance

    Science.gov (United States)

    Shajari, Daryush; Bahari, Ali; Gill, Pooria; Mohseni, Mojtaba

    2017-02-01

    Gold nanostructures in general and gold nanorods in particular due to their plasmon resonance has been employed for many applications, such as biosensors. For the biosensors uses, gold nanorods remain popular and reproducibility of them is the most important and critical. In the present work we used six different CTAB (Hexadecyltrimethylammonium bromide) products and one BDAC (Benzyldimethylhexadecylammonium chloride) with varying silver nitrate concentration in the seed-mediated growth of gold nanostructures. We synthesized gold nanorods with varying aspect ratio up to 5.5 with a longitudinal surface plasmon resonance peak from 670 to 950 nm. We obtained excellent rod-shape gold nanostructures witch were reliable and reproducible with our method based on common seed-mediated growth. The synthesized nanostructures were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Here, we report our method in more detail as a user-friendly guide for the production of gold nanorods and tuning of their aspect ratios.

  4. Gallium arsenide based surface plasmon resonance for glucose monitoring

    Science.gov (United States)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta

    2015-07-01

    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  5. Unconventional nuclear magnetic resonance techniques using nanostructured diamond surfaces

    Science.gov (United States)

    Acosta, Victor; Jarmola, Andrey; Budker, Dmitry; Santori, Charles; Huang, Zhihong; Beausoleil, Raymond

    2014-03-01

    Nuclear magnetic resonance (NMR) technologies rely on obtaining high nuclear magnetization, motivating low operating temperatures and high magnetic fields. Dynamic nuclear polarization (DNP) techniques traditionally require another superconducting magnet and THz optics. We seek to use chip-scale devices to polarize nuclei in liquids at room temperature. The technique relies on optical pumping of nitrogen-vacancy (NV) centers and subsequent transfer of polarization to nuclei via hyperfine interaction, spin diffusion, and heteronuclear polarization transfer. We expect efficient polarization transfer will be realized by maximizing the diamond surface area. We have fabricated densely-packed (50 % packing fraction), high-aspect-ratio (10+) nanopillars over mm2 regions of the diamond surface. Pillars designed to have a few-hundred-nanometer diameter act as optical antennas, reducing saturation intensity. We also report progress in using nanopillar arrays as sensitive optical detectors of nano-scale NMR by measuring NV center Zeeman shifts produced by nearby external nuclei. The enhanced surface area increases the effective density of NV centers which couple to external nuclei. Combining these techniques may enable, e.g., identification of trace analytes and molecular imaging.

  6. Calibration of Surface Plasmon Resonance Imager for Biochemical Detection

    Directory of Open Access Journals (Sweden)

    T. Ktari

    2012-01-01

    Full Text Available We present a new Surface Plasmon Resonance imager (SPRi based on immobilized T4-phage for bacteria detection. First, we present the sensitivity of the SPR imager towards refractive index variation for biosensor application. The SPR imager can be calibrated versus different percentage of triethylene glycol mixture in ultrapure water. The system can be used as a refractometer with sensitivity below 5×10−5 in the range of 1.33300–1.34360. Second, bacteriophage (T4-phage can be physisorbed on gold microarray spots for bacteria detection. The kinetic physisorption of different concentrations of T4-phages can be observed in real time. Finally, two types of bacteria such as E. coli (gram negative and Lactobacillus (gram positive were used for positive and negative tests. The results show a selectivity of T4-phage toward E. coli with a detection limit below 104 CFU/mL and with good reproducibility.

  7. Adaptive optical design in surface plasma resonance sensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng; ZHONG Jin-gang

    2006-01-01

    A double-prism adaptive optical design in surface plasma resonance (SPR) sensor is proposed,which consists of two identical isosceles right-triangular prisms. One prism is used as a component of Kretschmann configuration,and the other is for regulation of the optical path. When double-prism structure is angle-scanned by an immovable incident ray,the output ray will be always parallel with the incident ray and just has a small displacement with the shift of output point.The output ray can be focused on a fixed photodetector by a convex lens.Thus it can be avoided that a prism and a photodetector rotate by θ and 2θ respectively in conventional angular scanning SPR sensor.This new design reduces the number of the movable components,makes the structure simple and compact,and makes the manipulation convenient.

  8. Characteristics of surface sterilization using electron cyclotron resonance plasma

    Science.gov (United States)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  9. Abrasive wear and surface roughness of contemporary dental composite resin.

    Science.gov (United States)

    Han, Jian-min; Zhang, Hongyu; Choe, Hyo-Sun; Lin, Hong; Zheng, Gang; Hong, Guang

    2014-01-01

    The purpose of this study was to evaluate the abrasive wear and surface roughness of 20 currently available commercial dental composite resins, including nanofilled, supra-nanofilled, nanohybrid and microhybrid composite resins. The volume loss, maximum vertical loss, surface roughness (R(a)) and surface morphology [Scanning electron microscopy (SEM)] were determined after wear. The inorganic filler content was determined by thermogravimetric analysis. The result showed that the volume loss and vertical loss varied among the materials. The coefficients of determination (R(2)) of wear volume loss and filler content (wt%) was 0.283. SEM micrographs revealed nanofilled composites displayed a relatively uniform wear surfaces with nanoclusters protrusion, while the performance of nanohybrid composites varied. The abrasive wear resistance of contemporary dental composite resins is material-dependent and cannot be deduced from its category, filler loading and composite matrix; The abrasive wear resistance of some flowable composites is comparable to the universal/posterior composite resins.

  10. Super-Period Gold Nanodisc Grating-Enabled Surface Plasmon Resonance Spectrometer Sensor.

    Science.gov (United States)

    Tian, Xueli; Guo, Hong; Bhatt, Ketan H; Zhao, Song Q; Wang, Yi; Guo, Junpeng

    2015-10-01

    We experimentally demonstrate a surface plasmon resonance spectrometer sensor by using an e-beam-patterned super-period gold nanodisc grating on a glass substrate. The super-period gold nanodisc grating has a small subwavelength period and a large diffraction grating period. The small subwavelength period enhances localized surface plasmon resonance, and the large diffraction grating period diffracts surface plasmon resonance radiation into different directions corresponding to different wavelengths. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD) in addition to the traditional way of measurement using an external optical spectrometer in the zeroth order transmission. A surface plasmon resonance sensor for the bovine serum albumin protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  11. Hardness of celluloid strip-finished or polished composite surfaces with time

    OpenAIRE

    Park, S. H.; KREJCI,Ivo; Lutz, F

    2000-01-01

    An in-vitro study revealed that a celluloid strip-finished composite surface discolored more than the polished composite surface. Thus, the celluloid strip-finished composite surface may not cure enough compared with the polished composite surface.

  12. Interband interaction between bulk and surface resonance bands of a Pb-adsorbed Ge(001) surface

    Science.gov (United States)

    Sakata, Tomohiro; Takeda, Sakura N.; Kitagawa, Kosuke; Daimon, Hiroshi

    2016-08-01

    We investigated the valence band structure of a Pb-adsorbed Ge(001) surface by angle-resolved photoelectron spectroscopy. Three Ge bands, G1, G2, and G3, were observed in a Ge(001) 2 × 1 clean surface. In addition to these three bands, a fourth band (R band) is found on the surface with 2 ML of Pb. The R band continuously appeared even when the surface superstructure was changed. The position of the R band does not depend on Pb coverage. These results indicate that the R band derives from Ge subsurface states, known as surface resonance states. Furthermore, the effective mass of G3 is significantly reduced when the R band exists. We found that this reduction of G3 effective mass was explained by the interaction of the G3 and R bands. Consequently, the surface resonance band is considered to penetrate into the Ge subsurface region affecting the Ge bulk states. We determine the hybridization energy to be 0.068 eV by fitting the observed bands.

  13. Surface plasmon resonance immunosensor for cortisol and cortisone determination.

    Science.gov (United States)

    Frasconi, Marco; Mazzarino, Monica; Botrè, Francesco; Mazzei, Franco

    2009-08-01

    In this paper, we present a surface-plasmon-resonance-based immunosensor for the real-time detection of cortisol and cortisone levels in urine and saliva samples. The method proposed here is simple, rapid, economic, sensitive, robust, and reproducible thanks also to the special features of the polycarboxylate-hydrogel-based coatings used for the antibody immobilization. The sensor surface displays a high level of stability during repeated regeneration and affinity reaction cycles. The immunosensor shows high specificity for cortisol and cortisone; furthermore, no significant interferences from other steroids with a similar chemical structure have been observed. The suitability of the hydrogel coating for the prevention of nonspecific binding is also investigated. A good correlation is noticed between the results obtained by the proposed method and the reference liquid chromatography/tandem mass spectrometry method for the analysis of cortisol and cortisone in urine and saliva samples. Standard curves for the detection of cortisol and cortisone in saliva and urine are characterized by a detection limit less than 10 microg l(-1), sufficiently sensitive for both clinical and forensic use.

  14. Surface plasmon resonance characterization of calspermin-calmodulin binding kinetics.

    Science.gov (United States)

    Murphy, Andrew J; Kemp, Fred; Love, John

    2008-05-01

    We cloned, expressed, and purified a chimeric fusion between a soluble green fluorescent protein (smGFP) and the calmodulin binding protein calspermin. We have shown that the fusion protein, labeled smGN, has a K(i) in the calmodulin-dependent cyclic nucleotide phosphodiesterase activity assay of 1.97 nM, i.e., 3800 times smaller than that of the commonly used calmodulin inhibitor W7. Association and dissociation rate constants (k(a) and k(d)) and the dissociation equilibrium constant (K(D)) of smGN for calmodulin were determined using surface plasmon resonance (SPR). The k(a)=1.24 x 10(6)M(-1)s(-1), the k(d)=5.49 x 10(-3)s(-1), and the K(D)=4.42 x 10(-9)M. We also found that the GFP moiety was important for successfully binding calspermin to the surface of the CM5 flow cell at a sufficiently high concentration for SPR, and that this procedure may be used for SPR analysis of other acidic polypeptides, whose pIliquid chromatography-tandem mass spectrometry, indicating a high level of specificity. We conclude that the high affinity and specific binding between smGN and calmodulin make it an easily localized recombinant alternative to chemical calmodulin inhibitors.

  15. Polymer-based chips for surface plasmon resonance sensors

    Science.gov (United States)

    Obreja, Paula; Cristea, Dana; Kusko, Mihai; Dinescu, Adrian

    2008-06-01

    This paper presents a design and low-cost techniques for polymer-based chips for surface plasmon resonance (SPR) sensors. To obtain a polymer chip with a prism, microchannels and a chamber at microscale dimensions, replication techniques in polymers with controlled refractive index have been developed. Photoresist, polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA) and epoxy resin were used. Silicon dioxide/silicon-based molds have been obtained by anisotropic etching of silicon, and glass prisms were used as masters for replication. The photoresist molds were obtained by optical lithography and were used to obtain the microchannels and the chamber. A liquid prepolymer (PDMS, Sylgard 184) with curing agent at a ratio of 10:1 was used, and a special technique was developed in order to fabricate the components of the structure at the same time. For the deposition and direct patterning of the metallic layers onto the polymer surface, different methods were experimented with, including sputtering. The materials and techniques used to achieve SPR sensors are presented, and the possibilities and limitations of the technology are discussed.

  16. Surface plasmon resonance biosensor for enzymatic detection of small analytes

    Science.gov (United States)

    Massumi Miyazaki, Celina; Makoto Shimizu, Flávio; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2017-04-01

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l‑1, respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  17. Surface plasmon resonance microscopy: Achieving a quantitative optical response

    Science.gov (United States)

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-09-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based figuration. We carry out SPR imaging on a microscope by launching light into a sample and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy.

  18. Highly sensitive surface plasmon resonance chemical sensor based on Goos-Hanchen effects

    Science.gov (United States)

    Yin, Xiaobo; Hesselink, Lambertus

    2006-08-01

    The resonance enhanced Goos-Hanchen shifts at attenuated total internal reflection enables the possibility for highly sensitive surface plasmon resonance sensor. The observed giant displacements result from the singular phase retardation at the resonance where the phase is continuous but changes dramatically. The phenomenon is proposed for chemical sensing and the superior sensitivity is demonstrated.

  19. Resonant vs. non-resonant neutralization of multiply charged ions in the interaction with solid surfaces

    Science.gov (United States)

    Nedeljkovic, N. N.; Galijas, S. M. D.; Obradovic, M. B.

    2008-07-01

    The two-state vector model is used to investigate the intermediate stages of the electron capture into the Rydberg states of multiply charged ArVIII ion, escaping solid surface. Two cases of the ionic velocities are considered: the low velocities (v approx 0 a.u.) and the intermediate velocities (v approx1 a.u.). Within the framework of the two-state vector description of the neutralization dynamics the two wave functions are used to determine the state of a single active electron. The intermediate stages of the process are characterized by the two-amplitude, the neutralization probability and rate. These quantities are obtained in two different analytical forms in the two considered cases of the projectile velocities. The key difference of the intermediate velocity case in respect to the low-velocity case, is the non- resonant character of the electron transitions. The obtained rates in the low velocity case are well localized. The neutralization rates in the intermediate velocity case are oscillatory in character. At larger ion-surface distances R the neutralization is stabilized; the behavior of the rates becomes similar to that obtained for the low ionic velocities.

  20. Particle-in-cell investigation on the resonant absorption of a plasma surface wave

    Institute of Scientific and Technical Information of China (English)

    Lan Chao-Hui; Hu Xi-Wei

    2011-01-01

    The resonant absorption of a plasma surface wave is supposed to be an important and efficient mechanism of power deposition for a surface wave plasma source.In this paper,by using the particle-in-cell method and Monte Carlo simulation,the resonance absorption mechanism is investigated.Simulation results demonstrate the existence of surface wave resonance and show the high efficiency of heating electrons.The positions of resonant points,the resonance width and the spatio-temporal evolution of the resonant electric field are presented,which accord well with the theoretical results.The paper also discusses the effect of pressure on the resonance electric field and the plasma density.

  1. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  2. Surface roughness of etched composite resin in light of composite repair

    NARCIS (Netherlands)

    Loomans, B.A.C.; Cardoso, M.V.; Opdam, N.J.M.; Roeters, F.J.M.; Munck, J. De; Huysmans, M.C.D.N.J.M.; Meerbeek, B. Van

    2011-01-01

    OBJECTIVES: In search for clinically effective composite repair protocols, the effect of various etching protocols on the surface roughness of composite resins with different filler composition were investigated. METHODS: Of two composite resins (hybrid-filled Clearfil AP-X; nano-filled Filtek Supre

  3. Surface tension of compositions of polyhexametyleneguanidine hydrochloride - surfactants

    Directory of Open Access Journals (Sweden)

    S. Kumargaliyeva

    2012-12-01

    Full Text Available We made up songs bactericidal polyhexamethyleneguanidine hydrochloride (metacyde with the surface-active substances - anionic sodium dodecylsulfate, cationic cetylpyridinium bromide, and nonionic Tween-80 and measured the surface tension of water solutions. The study showed that the composition metacyde with surface-active agents have a greater surface activity than the individual components.

  4. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Papancea, Adina [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Baltes, Liana; Tierean, Mircea [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania)

    2015-12-15

    Highlights: • Glass fibre-reinforced polyester composites surface analysis by photographic method. • The composites are submitted to accelerated ageing by UV irradiation at 254 nm. • The UV irradiation promotes differences in the surface chemistry of the composites. • MB dye is differently adsorbed on surfaces with different degradation degrees. • Good correlation between the colouring degree and surface chemistry. - Abstract: The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  5. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  6. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  7. Immunosensor Based on Surface Plasmon Resonance for Antigen Recognition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel immunosensor based on surface plasmon resonance(SPR)has been developed for the recognition of antigen.The sensor was designed on the basis of the fixed angle of incidence and measuring the reflected intensities in a wavelength range of 430-750 nm in real-time. An ultra-bright white light-emitting diode(LED)was used as the light source. Molecular self-assembling in solution was used to form the sensing membrane on gold substrate. It has been seen that the sensitivity of the SPR sensor with 3-mercaptopropionic acid(MPA)/protein A(SPA) sensing membrane is considerably higher than that with MPA or SPA modified Sensing membrane. The kinetic processes on the sensing membrane were studied. The human B factor(Bf), an activator of complement 3(C3), was recognized among the other antigens. This sensor can also be used for other antigen/antibody or adaptor/receptor recognition. Under optimized experimental conditions, the sensor has good selectivity, repeatability, and reversibility.

  8. Atomically precise gold nanocrystal molecules with surface plasmon resonance.

    Science.gov (United States)

    Qian, Huifeng; Zhu, Yan; Jin, Rongchao

    2012-01-17

    Since Faraday's pioneering work on gold colloids, tremendous scientific research on plasmonic gold nanoparticles has been carried out, but no atomically precise Au nanocrystals have been achieved. This work reports the first example of gold nanocrystal molecules. Mass spectrometry analysis has determined its formula to be Au(333)(SR)(79) (R = CH(2)CH(2)Ph). This magic sized nanocrystal molecule exhibits fcc-crystallinity and surface plasmon resonance at approximately 520 nm, hence, a metallic nanomolecule. Simulations have revealed that atomic shell closing largely contributes to the particular robustness of Au(333)(SR)(79), albeit the number of free electrons (i.e., 333 - 79 = 254) is also consistent with electron shell closing based on calculations using a confined free electron model. Guided by the atomic shell closing growth mode, we have also found the next larger size of extraordinarily stability to be Au(~530)(SR)(~100) after a size-focusing selection--which selects the robust size available in the starting polydisperse nanoparticles. This work clearly demonstrates that atomically precise nanocrystal molecules are achievable and that the factor of atomic shell closing contributes to their extraordinary stability compared to other sizes. Overall, this work opens up new opportunities for investigating many fundamental issues of nanocrystals, such as the formation of metallic state, and will have potential impact on condensed matter physics, nanochemistry, and catalysis as well.

  9. Counterintuitive dispersion effect near surface plasmon resonances in Otto structures

    Science.gov (United States)

    Wang, Lin; Wang, Li-Gang; Ye, Lin-Hua; Al-Amri, M.; Zhu, Shi-Yao; Zubairy, M. Suhail

    2016-07-01

    In this paper, we investigate the counterintuitive dispersion effect associated with the poles and zeros of reflection and transmission functions in an Otto configuration when a surface plasmon resonance is excited. We show that the zeros and/or poles in the reflection and transmission functions may move into the upper-half complex-frequency plane (CFP), and these locations of the zeros and poles determine the dispersion properties of the whole structures (i.e., the frequency-dependent change of both reflected and transmitted phases). Meanwhile, we demonstrate various dispersion effects (both normal and abnormal) related to the changes of the poles and zeros in both reflection and transmission functions when considering the properties of metal substrates. For a realistic metal substrate in an Otto structure, there are the optimal thickness and incident angle, which correspond to the transitions of the zeros in the reflection function from the upper-half to lower-half CFP. These properties may be helpful to manipulate light propagation in optical devices.

  10. Fibre optic surface plasmon resonance sensor system designed for smartphones.

    Science.gov (United States)

    Bremer, Kort; Roth, Bernhard

    2015-06-29

    A fibre optic surface plasmon resonance (SPR) sensor system for smartphones is reported, for the first time. The sensor was fabricated by using an easy-to-implement silver coating technique and by polishing both ends of a 400 µm optical fibre to obtain 45° end-faces. For excitation and interrogation of the SPR sensor system the flash-light and camera at the back side of the smartphone were employed, respectively. Consequently, no external electrical components are required for the operation of the sensor system developed. In a first application example a refractive index sensor was realised. The performance of the SPR sensor system was demonstrated by using different volume concentrations of glycerol solution. A sensitivity of 5.96·10(-4) refractive index units (RIU)/pixel was obtained for a refractive index (RI) range from 1.33 to 1.36. In future implementations the reported sensor system could be integrated in a cover of a smartphone or used as a low-cost, portable point-of-care diagnostic platform. Consequently it offers the potential of monitoring a large variety of environmental or point-of-care parameters in combination with smartphones.

  11. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    Directory of Open Access Journals (Sweden)

    Martina Gerken

    2013-06-01

    Full Text Available Multiferroic composite magnetoelectric (ME sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line

  12. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    Science.gov (United States)

    Gerken, Martina

    2013-06-01

    Multiferroic composite magnetoelectric (ME) sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite) cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM) simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line shape and a zero

  13. Surface plasmon effect in nanocrystalline copper/DLC composite films by electrodeposition technique

    Indian Academy of Sciences (India)

    S Hussain; A K Pal

    2006-11-01

    Composite films of nanocrystalline copper embedded in DLC matrix prepared by electrodeposition technique were studied for their optical properties. Particle size and metal volume fractions were tailored by varying the amount of copper containing salt in the electrolyte. Blue-shift of the surface plasmon resonance peak in the absorbance spectra of the films was observed with the reduction in size and volume fraction of metal particles. Mie theory was found to describe the experimental spectra quite well.

  14. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.

    Science.gov (United States)

    Liu, Xiaotong; Li, Dabing; Sun, Xiaojuan; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren

    2015-07-28

    The tunability of surface plasmon resonance can enable the highest degree of localised surface plasmon enhancement to be achieved, based on the emitting or absorbing wavelength. In this article, tunable dipole surface plasmon resonances of Ag nanoparticles (NPs) are realized by modification of the SiO2 dielectric layer thicknesses. SiO2 layers both beneath and over the Ag NPs affected the resonance wavelengths of local surface plasmons (LSPs). By adjusting the SiO2 thickness beneath the Ag NPs from 5 nm to 20 nm, the dipole surface plasmon resonances shifted from 470 nm to 410 nm. Meanwhile, after sandwiching the Ag NPs by growing SiO2 before NPs fabrication and then overcoating the NPs with various SiO2 thicknesses from 5 nm to 20 nm, the dipole surface plasmon resonances changed from 450 nm to 490 nm. The SiO2 cladding dielectric layer can tune the Ag NP surface charge, leading to a change in the effective permittivity of the surrounding medium, and thus to a blueshift or redshift of the resonance wavelength. Also, the quadrupole plasmon resonances were suppressed by the SiO2 cladding layer because the dielectric SiO2 can suppress level splitting of surface plasmon resonances caused by the Ag NP coupling effect.

  15. Simultaneous surface acoustic wave and surface plasmon resonance measurements: Electrodeposition and biological interactions monitoring

    Science.gov (United States)

    Friedt, J.-M.; Francis, L.; Reekmans, G.; De Palma, R.; Campitelli, A.; Sleytr, U. B.

    2004-02-01

    We present results from an instrument combining surface acoustic wave propagation and surface plasmon resonance measurements. The objective is to use two independent methods, the former based on adsorbed mass change measurements and the latter on surface dielectric properties variations, to identify physical properties of protein layers, and more specifically their water content. We display mass sensitivity calibration curves using electrodeposition of copper leading to a sensitivity in liquid of 150±15 cm2/g for the Love mode device used here, and the application to monitoring biological processes. The extraction of protein layer thickness and protein to water content ratio is also presented for S-layer proteins under investigation. We obtain, respectively, 4.7±0.7 nm and 75±15%.

  16. Surface-enhanced Raman spectroscopy on a surface plasmon resonance biosensor platform for gene diagnostics

    Science.gov (United States)

    Yuan, W.; Ho, H. P.; Suen, Y. K.; Kong, S. K.; Lin, Chinlon; Prasad, Paras N.; Li, J.; Ong, Daniel H. C.

    2008-02-01

    We propose to integrate the surface-enhanced Raman spectroscopy (SERS) detection capability with a surface plasmon resonance (SPR) biosensor platform. As a demonstration setup, the experimental scheme is built from a Total Internal Reflection Fluorescence (TIRF) microscope. The sample surface is a gold-coated plasmonic crystal substrate. Two oligonucleotide (ODN) probes that have been labeled with two different Raman active dyes are used to achieve a sandwich assay of target ODNs or polynucleotide. Upon complementary hybridizations between the target and probe ODNs, the target can be identified by detecting the narrow-band spectroscopic fingerprints of the Raman tags. This concept has high potential for achieving multiplexed detection of ODN targets because a very large number of probes can be incorporated to the plasmonic crystal substrate, which may find applications in gene based diseases diagnostics. We also explored the detection of single molecules and achieved some preliminary results.

  17. Localized description of surface energy gap effects in the resonant charge exchange between atoms and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias-Garcia, A; Garcia, Evelina A; Goldberg, E C, E-mail: aiglesiasg@santafe-conicet.gov.ar [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC-CONICET-UNL), Gueemes 3450, CC91, (S3000GLN) Santa Fe (Argentina)

    2011-02-02

    The resonant charge exchange between atoms and surfaces is described by considering a localized atomistic view of the solid within the Anderson model. The presence of a surface energy gap is treated within a simplified tight-binding model of the solid, and a proper calculation of the Hamiltonian terms based on a LCAO expansion of the solid eigenstates is performed. It is found that interference terms jointly with a surface projected gap maximum at the {Gamma} point and the Fermi level inside it, lead to hybridization widths negligible around the Fermi level. This result can explain experimental observations related to long-lived adsorbate states and anomalous neutral fractions of low energy ions in alkali/Cu(111) systems.

  18. Immediate repair bond strengths of microhybrid, nanohybrid and nanofilled composites after different surface treatments

    NARCIS (Netherlands)

    Rinastiti, Margareta; Siswomihardjo, Widowati; Busscher, Henk J.; Ozcan, Mutlu

    2010-01-01

    Objectives: To evaluate immediate repair bond strengths and failure types of resin composites with and without surface conditioning and characterize the interacting composite surfaces by their surface composition and roughness. Methods: Microhybrid, nanohybrid and nanofilled resin composites were ph

  19. Magnification of photonic crystal fluorescence enhancement via TM resonance excitation and TE resonance extraction on a dielectric nanorod surface

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsin-Yu; Cunningham, Brian T [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 W Green Street, Urbana, IL 61801 (United States); Zhang Wei [Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W Green Street, Urbana, IL 61801 (United States); Mathias, Patrick C, E-mail: bcunning@illinois.edu [Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W Springfield Avenue, Urbana, IL 61801 (United States)

    2010-03-26

    Using a one-dimensional grating surface photonic crystal (PC), we experimentally demonstrate that the detection of fluorescent molecules on a PC surface can be substantially magnified through the combined effects of resonance-enhanced excitation of the fluorescent dye, resonance-enhanced extraction of the fluorescence emission and a dielectric nanorod surface coating increasing the surface area available for fluorophore-PC interaction. Enhanced excitation is obtained by engineering a high-Q TM resonant mode to efficiently couple with an incident TM-polarized {lambda} = 633 nm laser for exciting Cyanine-5 (Cy5). Enhanced extraction results from a low-Q TE resonance designed to spectrally overlap the Cy5 emission spectrum for channeling TE-polarized emission towards the detection instrument. The entire PC surface is coated with a porous film of TiO{sub 2} nanorods that allows more fluorophores to penetrate into the region of enhanced near-electric fields. Experimental results reveal a 588-fold enhancement in fluorescence intensity relative to an unpatterned glass surface.

  20. Low-cost, high performance surface plasmon resonance-compatible films characterized by the surface plasmon resonance technique

    Institute of Scientific and Technical Information of China (English)

    Li Song-Quan; Ye Hong-An; Liu Chun-Yu; Dou Yin-Feng; Huang Yan

    2013-01-01

    A new analytical method based on the surface plasmon resonance (SPR) technique is presented,with which SPR curves for both wavelength and angular modulations can be obtained simultaneously via only a single scan of the incident angle.Using this method,the SPR responses of TiO2-coated Cu films are characterized in the wavelength range from 600 nm to 900 nm.For the first time,we determine the effective optical constants and the thicknesses of TiO2-coated Cu films using the SPR curves of wavelength modulation.The sensitivities of prism-based SPR refractive index sensors using TiO2-coated Cu films are investigated theoretically for both wavelength and angular modulations,the results show that in the case of sensitivity with wavelength modulation,TiO2-coated Cu films are not as good as the Au film,however,they are more suitable than the Au film for SPR refractive index sensors with angular modulation because a higher sensitivity can be achieved.

  1. A saliva molecular imprinted localized surface plasmon resonance biosensor for wine astringency estimation.

    Science.gov (United States)

    Guerreiro, J Rafaela L; Teixeira, Natércia; De Freitas, Victor; Sales, M Goreti F; Sutherland, Duncan S

    2017-10-15

    Wine astringency was evaluated based on the interaction of two complex matrices (red wine and saliva) by combining localized surface plasmon resonance (LSPR) and molecular imprinted polymers (MIP) at gold nanodisks as an alternative to sensorial analysis. The main objective of the work was to simulate wine astringency inside the mouth by mimicking this biological system. The LSPR/MIP sensor provided a linear response for astringency expressed in pentagalloyl glucose (PGG) units in concentrations ranging from 1 to 140μmol/L. The sensor was also applied to wine samples correlating well with sensorial analysis obtained by a trained panel. The correlation of astringency and wine composition was also evaluated showing that anthocyanins may have an important role, not only for pigmentation but also in astringency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Technology of Strengthening Steel Details by Surfacing Composite Coatings

    Science.gov (United States)

    Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.

    2016-04-01

    The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.

  3. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Science.gov (United States)

    Croitoru, Catalin; Patachia, Silvia; Papancea, Adina; Baltes, Liana; Tierean, Mircea

    2015-12-01

    The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  4. Isotropic negative permeability composite based on Mie resonance of the BST-MgO dielectric medium

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qian; KANG Lei; DU Bo; ZHAO HongJie; XIE Qin; LI Bo; ZHOU Ji; LI LongTu; MENG YongGang

    2008-01-01

    Isotropic negative permeability composite, composed of BST-MgO dielectric cubes with high permit-tivity dispersed in the Teflon substrate with low permittivity, was designed and fabricated based on Mie resonance and the effective medium theory. Measurements and simulations showed that the dielectric composite exhibited a strong sub-wavelength magnetic resonance at the first Mie resonance and possessed isotropic negative permeability, which resulted from the displacement current excited in the cubes. The dielectric particle was equivalent to a magnetic dipole at the magnetic resonance, which could be adjusted by the size and permitllvity of the particles. It may provide a convenient method to design isotropic metamaterials and invisible cloak at infrared and visible frequencies.

  5. Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noor Azlina Masdor

    2017-05-01

    Full Text Available Campylobacteriosis is an internationally important foodborne disease caused by Campylobacter jejuni. The bacterium is prevalent in chicken meat and it is estimated that as much as 90% of chicken meat on the market may be contaminated with the bacterium. The current gold standard for the detection of C. jejuni is the culturing method, which takes at least 48 h to confirm the presence of the bacterium. Hence, the aim of this work was to investigate the development of a Surface Plasmon Resonance (SPR sensor platform for C. jejuni detection. Bacterial strains were cultivated in-house and used in the development of the sensor. SPR sensor chips were first functionalized with polyclonal antibodies raised against C. jejuni using covalent attachment. The gold chips were then applied for the direct detection of C. jejuni. The assay conditions were then optimized and the sensor used for C. jejuni detection, achieving a detection limit of 8 × 106 CFU·mL−1. The sensitivity of the assay was further enhanced to 4 × 104 CFU·mL−1 through the deployment of a sandwich assay format using the same polyclonal antibody. The LOD obtained in the sandwich assay was higher than that achieved using commercial enzyme-linked immunosorbent assay (ELISA (106–107 CFU·mL−1. This indicate that the SPR-based sandwich sensor method has an excellent potential to replace ELISA tests for C. jejuni detection. Specificity studies performed with Gram-positive and Gram-negative bacteria, demonstrated the high specific of the sensor for C. jejuni.

  6. Vector and axial-vector resonances in composite models of the Higgs boson

    Science.gov (United States)

    Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo; Frandsen, Mads

    2016-11-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.

  7. Vector and Axial-vector resonances in composite models of the Higgs boson

    CERN Document Server

    Franzosi, Diogo Buarque; Cai, Haiying; Deandrea, Aldo; Frandsen, Mads

    2016-01-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.

  8. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range.

  9. Resonant and nonresonant magnetoelectric effects in multilayer composites at microwave frequencies

    Science.gov (United States)

    Petrov, V. M.; Bichurin, M. I.; Kiliba, Yu. V.; Srinivasan, G.

    2002-03-01

    A phenomenological theory is presented on the effect of an external electric field on magnetic and magnetoelectric (ME) susceptibilities of ferroelectric/ferromagnetic composites, such as lithium ferrite lead zirconate titanate (PZT), at microwave frequencies. Expressions have been obtained relating the magnetic susceptibility tensor components of the composite (symmetry point group 3m and 4mm) to ME coupling constants. Estimates of linear and bilinear ME susceptibilities at high frequencies are given and are extended to include ferromagnetic resonance (FMR) conditions [1]. Both magnetic and ME susceptibilities reveal a resonance in the electric field dependence. Three methods for measurements of ME susceptibility at microwave frequencies are considered: electric dipole transitions, resonance ME effects at ferromagnetic resonance and off-resonance method. Using the theory and experimental data on ferromagnetic resonance line shift in external electric field, the ME constants for lithium ferrite-PZT multilayer composite are determined. The theory is useful for measurements of ME constants and for the design and analysis of electrically controlled high frequency magnetic devices. - work supported by a grant from the National Science Foundation (DMR-0072144) 1. M.I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan, Phys. Rev. B 64, 094409 (2001).

  10. Features of electromagnetic waves in a complex plasma due to surface plasmon resonances on macroparticles

    CERN Document Server

    Vladimirov, S V

    2015-01-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.

  11. Plasmon resonance optical tuning based on photosensitive composite structures

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Mortensen, N. Asger

    2014-01-01

    This paper reports a numerical investigation of a periodic metallic structure sandwiched between two quartz plates. The volume comprised between the quartz plates and the metallic structure is infiltrated by a mixture of azo-dye-doped liquid crystal. The exposure to a low power visible light beam...... modifies the azo dye molecular configuration, thus allowing the wavelength shift of the resonance of the system. The wavelength shift depends on the geometry of the periodic structure and it also depends on the intensity of the visible light beam....

  12. A study of trapped mode resonances in asymmetric X-shape resonator for frequency selective surface

    Science.gov (United States)

    Chen, Kejian; Liu, Hong; Wang, Yiqi; Zhu, Yiming

    2013-08-01

    FSS is a two-dimensional periodic array of resonating metallic-dielectric structures, When FSS device steps into Terahertz range from microwave range, it is studied as THz functional components (such as Terahertz filter, Terahertz biochemical sensor, etc.) to promote the functionality of the THz spectroscopy/imaging system. When the device requires a narrow band transmission window for frequency selecting or a high electric field concentration in certain area to improve its sensitivity for sensing, normally, a high quality (Q) resonant structure can give helps. Recently, high-Q resonance induced by trapped mode resonance i studied widely in FSS research areas. To induce trapped mode resonance, one can simply break the symmetric of the unit structure of FSS. In this paper, several asymmetric X-shaped resonators for FSS working in terahertz range have been studied numerically. To compare the behaviour of X-shape resonator under different conditions (with additional part: Heart lines, Shoulder lines, Wrap or Shoes squares), a common platform (θ=60, θis angle of X shape) which is suitable for most of cases was used to make the study more meaningful. As the field enhancement behaviour is related to the trapped mode introduced by the asymmetric structure, we propose such kind of device to be used as a high quality filter or as a sensing element for biochemical samples.

  13. Surface and bulk nanostructure influence on dissipation in nanoelectromechanical resonators

    OpenAIRE

    Ergincan, Orçun

    2014-01-01

    In the most general form, MEMS/NEMS consist of mechanical microstructures, microsensors, microactuators/transducers, and microelectronics, all integrated onto the same silicon chip. A sensor responds to physical stimuli such as pressure, heat, light or motion, and generates an electric signal for detection while an actuator converts an electric signal to motion. The mechanical resonator plays a central role in MEMS or NEMS devices. Examples of mechanical resonator sensors used in MEMS and NEM...

  14. Durable hydrophobic coating composition for metallic surfaces and method for the preparation of the composition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiong

    2017-02-14

    A durable hydrophobic coating composition containing fluorinated silanes for metallic surfaces, such as stainless steel surfaces. The composition includes at least one fluorine-containing silane compound, at least one phosphorus-containing silane compound, and at least one hydrolysable compound. This coating is suitable for condenser tubes, among other applications, to promote dropwise condensation.

  15. Composite Resonances effects on EWPT and Higgs diphoton decay rate

    CERN Document Server

    Hernández, A E Cárcamo; Zerwekh, Alfonso R

    2015-01-01

    In scenarios of strongly coupled electroweak symmetry breaking, heavy composite particles of different spin and parity may arise and cause observable effects on signals that appear at loop levels. The recently observed process of Higgs to $\\gamma \\gamma$ at the LHC is one of such signals. We study the new constraints that are imposed on composite models from $H\\to \\gamma\\gamma$, together with the existing constraints from the high precision electroweak tests. We use an effective chiral Lagrangian to describe the effective theory that contains the Standard Model spectrum and the extra composites below the electroweak scale. Considering the effective theory cutoff at $\\Lambda = 4\\pi v \\sim 3 $ TeV, consistency with the $T$ and $S$ parameters and the newly observed $H\\to \\gamma\\gamma$ can be found for a rather restricted range of masses of vector and axial-vector composites from $1.5$ TeV to $1.7$ TeV and $1.8$ TeV to $1.9$ TeV, respectively, and only provided a non-standard kinetic mixing between the $W^{3}$ an...

  16. Roughness and fibre reinforcement effect onto wettability of composite surfaces

    Science.gov (United States)

    Bénard, Quentin; Fois, Magali; Grisel, Michel

    2007-03-01

    Wettability of glass/epoxy and carbon/epoxy composites materials has been determined via sessile drop technique. Good-Van Oss approach has been used to evaluate surface free energy parameters of smooth and rough surfaces. Results obtained point out the influence of fibre reinforcement on surface free energy of composite materials. In addition, the interest of surface treatment to increase surface roughness has been discussed in terms of wettability. To sum up, results obtained clearly demonstrate the necessity of considering properties of a given composite surface not only as a polymer but a fibre/polymer couple. The drawn conclusions are of great interest as it may have numerous consequences in applications such as adhesion.

  17. Tunable plasmon resonance in the nanobars and split ring resonator(SRR) composite structure

    Science.gov (United States)

    Xu, Haiqing; Li, Hongjian; Xiao, Gang; Chen, Qiao

    2016-10-01

    We have proposed a multi-band metamaterials composed of bars and planer SRR. There are three sharp peaks in the transmission spectra in the visible and near-infrared region, we find that the transmission spectra are highly tunable as the coupling and geometric parameters modifying, especially the third peak in the near-infrared region. When the gap distance between the two nanobar g1<14 nm, the original first peak will split, a new dip and peak will exist, which is results from the high-order plasmon resonance. When introducing asymmetry to the planer SRR, a new sharp peak accompany with a new sharp dip exists in the original second peak, which is originated from the strong electric field resonance. We also find that the proposed structures with sensing sensitivity of ~467 nm/RIU, which can be used for plasmonic sensor.

  18. Surface Plasmon Resonance Analysis of Histidine-Tagged F1-ATPase Surface Adsorption

    Science.gov (United States)

    Tucker, Jenifer K.; Richter, Mark L.; Berrie, Cindy L.

    2015-11-01

    Studies of the rotational activity of the enzymatic core (α3β3γ) of the F1-ATPase motor protein have relied on binding the enzyme to NTA-coated glass surfaces via polyhistidine tags engineered into the C-termini of each of the three α or β subunits. Those studies revealed the rotational motion of the central γ subunit by monitoring the motion of attached micron-long actin filaments or spherical nanoparticles. However, only a small percentage of the attached filaments or particles were observed to rotate, likely due, at least in part, to non-uniform surface attachment of the motor proteins. In this study, we have applied surface plasmon resonance to monitor the kinetics and affinity of binding of the His-tagged motor protein to NTA-coated gold sensor surfaces. The binding data, when fit to a heterogeneous binding model, exhibit two sets of adsorption-desorption rate constants with two dissociation constants of 4.0 × 10-9 M and 8.6 × 10-11 M for 6His-α3β3γ binding to the nickel ion-activated NTA surface. The data are consistent with mixed attachment of the protein via two (bimodal) and three (trimodal) NTA/Ni2+-His-tag interactions, respectively, with the less stable bimodal interaction dominating. The results provide a partial explanation for the low number of surface-attached F1 motors previously observed in rotation studies and suggest alternative approaches to uniform F1 motor surface attachment for future fabrication of motor-based nanobiodevices and materials.

  19. LSM Microelectrodes: Kinetics and Surface Composition

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Jacobsen, Torben;

    2015-01-01

    Lanthanum strontium manganite microelectrodes with the nominal composition of (La0.75Sr0.25)0.95MnO3 and a thickness of ca 500 nm was electrochemically characterized in situ at temperatures from 660 to 850◦C using a controlled atmosphere high temperature scanning probe microscope. Impedance...

  20. Abnormal thermal effects on the surface plasmon resonance of Ag nanoparticles on the surface of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Han; Ding, Ruiqiang [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Suzhou Institute, North China Electric Power University, Suzhou 215123 (China); Li, Yingfeng; Yang, Ganghai; Song, Dandan; Yu, Yue; Trevor, Mwenya [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)

    2015-06-01

    The thermal effects on the surface plasmon resonance (SPR) of Ag nanoparticles on the silicon surface have been studied. It is found that unusual blue shifts and narrowing of the SPR troughs occur as the temperature increases from 323 K to 363 K. At low temperature range (from 273 K to 323 K), the SPR troughs have the normal red shifts and broadening as in previous studies. The change of SPR is attributed to the thermal induced electron transport between particles and substrate, and is analyzed using samples with different particle sizes. This work reveals the mechanism of thermal effects on the plasmonic properties of Ag nanoparticles on the surface of silicon and offers useful information for designing of SPR devices. - Highlights: • Unusual blue shift of the SPR troughs is observed at 343 K. • Red shift of the SPR troughs is observed at 323 K. • The mechanism relies on the thermal induced surface electron transport. • Particle sizes play an important role in the change of the SPR troughs.

  1. The surface finish of light-cured composite resin materials.

    Science.gov (United States)

    Sidhu, S K; Henderson, L J

    1993-01-01

    A necessity for any dental restorative material is its ability to take and maintain a smooth surface finish. Composite resin restorative materials with fillers and matrix of differing hardness are difficult to finish and polish. The use of aluminum trioxide discs is a popular and acceptable method of finishing composite restorative materials where the material is accessible. Burs and stones are used for finishing and polishing inaccessible areas. This study was undertaken to compare the surface finish of composite resin restorative material when finished with white stones, superfine diamond burs and aluminum trioxide discs. The finished surface was measured with a profilometer and the roughness average value used to compare the surfaces. The aluminum trioxide discs gave the best and most consistent results. It was possible to attain similar results with the superfine diamond bur. However, the results were highly variable. None of the methods used achieved the smoothness of composite resin cured against a transparent matrix.

  2. Surface composition of Pt-Pd alloys treated in hydrogen

    Science.gov (United States)

    Szabo, A.; Paál, Z.; Szász, A.; Kojnok, J.; Fabian, D. J.

    1989-11-01

    Pd enrichment is observed in Pd-Pt alloy sheets when heated in He and in H 2. The surface composition was monitored by soft X-ray emission spectroscopy (SXES) and by work function measurements. A regular solution model is used to calculate the expected composition of the surface atomic layers, with and without adsorbed hydrogen, and the calculated and measured values for Pd-enrichment are compared. The possible effect of subsurface adsorbed hydrogen is discussed.

  3. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  4. Observation of a surface lattice resonance in a fractal arrangement of gold nanoparticles

    CERN Document Server

    Chen, Ting Lee; Segerink, Frans B; Dikken, Dirk Jan; Herek, Jennifer L

    2015-01-01

    The collective response of closely spaced metal particles in non-periodic arrangements has the potential to provide a beneficial angular and frequency dependence in sensing applications. In this paper, we investigate the optical response of a Sierpinski fractal arrangement of gold nanoparticles and show that it supports a collective resonance similar to the surface lattice resonances that exist in periodic arrangements of plasmonic resonators. Using back focal plane microscopy, we observe the leakage of radiation out of a surface lattice resonance that is efficiently excited when the wavenumber of the incident light matches a strong Fourier component of the fractal structure. The efficient coupling between localized surface plasmons leads to a collective resonance and a Fano-like feature in the scattering spectrum. Our experimental observations are supported by numerical simulations based on the coupled-dipole approximation and finite-difference time-domain methods. This work presents a first step towards the...

  5. Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Kadkhodazadeh, Shima

    2013-01-01

    We study the surface plasmon (SP) resonance energy of isolated spherical Ag nanoparticles dispersed on a silicon nitride substrate in the diameter range 3.5–26 nm with monochromated electron energy-loss spectroscopy. A significant blueshift of the SP resonance energy of 0.5 eV is measured when...

  6. Utilizing an Automated Home-Built Surface Plasmon Resonance Apparatus to Investigate How Water Interacts with a Hydrophobic Surface

    Science.gov (United States)

    Poynor, Adele

    2011-03-01

    By definition hydrophobic substances hate water. Water placed on a hydrophobic surface will form a drop in order to minimize its contact area. What happens when water is forced into contact with a hydrophobic surface? One theory is that an ultra-thin low- density region forms near the surface. We have employed an automated home-built Surface Plasmon Resonance (SPR) apparatus to investigate this boundary.

  7. Composition and physical properties of Enceladus' surface

    Science.gov (United States)

    Brown, R.H.; Clark, R.N.; Buratti, B.J.; Cruikshank, D.P.; Barnes, J.W.; Mastrapa, R.M.E.; Bauer, J.; Newman, S.; Momary, T.; Baines, K.H.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Drossart, P.; Formisano, V.; Jaumann, R.; Langavin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, C.

    2006-01-01

    Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH 3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.

  8. Finishing systems on the final surface roughness of composites.

    Science.gov (United States)

    Koh, Richard; Neiva, Gisele; Dennison, Joseph; Yaman, Peter

    2008-02-01

    This study evaluated differences in surface roughness of a microhybrid (Gradia Direct, GC America) and a nanofil (Filtek Supreme, 3M ESPE) composite using four polishing systems: PoGo/Enhance (DENTSPLY/Caulk), Sof-Lex (3M ESPE), Astropol (Ivoclar Vivadent), and Optidisc (KerrHawe). An aluminum mold was used to prepare 2 X 60 composite disks (10 mm X 2 mm). Composite was packed into the mold, placed between two glass slabs, and polymerized for 40 seconds from the top and bottom surfaces. Specimens were finished to a standard rough surface using Moore's disks with six brushing strokes. Specimens were rinsed and stored in artificial saliva in individual plastic bags at 36 degrees C for 24 hours prior to testing. Specimens were randomly assigned to one of the four polishing systems and were polished for 30 seconds (10 seconds per grit) with brushing strokes according to the manufacturer's instructions. Mean surface roughness (Ra) was recorded with a surface-analyzer 24 hours after storage in artificial saliva, both before and after polishing. Means were analyzed using two-way and one-way analysis of variance (ANOVA) and Tukey multiple comparison tests at p composites for individual polishing systems (p=0.3991). Filtek specimens were smoother than Gradia specimens after baseline roughening. Sof-Lex provided the smoothest final surface when used with either composite. Astropol provided a rough surface for Gradia specimens.

  9. Vector and Axial-vector resonances in composite models of the Higgs boson

    DEFF Research Database (Denmark)

    Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying;

    2016-01-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...... as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.......We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT...... constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used...

  10. Thermal energy transfer by plasmon-resonant composite nanoparticles at pulse laser irradiation.

    Science.gov (United States)

    Avetisyan, Yuri A; Yakunin, Alexander N; Tuchin, Valery V

    2012-04-01

    Heating of composite plasmon-resonant nanoparticles (spherical gold nanoshells) under pulse laser illumination is considered. The numerical solution of the time-dependent heat conduction equation accounting for spatial inhomogeneities of absorbed laser radiation is performed. Important features of temperature kinetics and thermal flux inside nanoparticles are analyzed. Possible applications of the observed effects in nanotechnology and medicine are discussed.

  11. Electron spin resonance and electron nuclear double resonance of photogenerated polarons in polyfluorene and its fullerene composite

    Science.gov (United States)

    Marumoto, K.; Kato, M.; Kondo, H.; Kuroda, S.; Greenham, N. C.; Friend, R. H.; Shimoi, Y.; Abe, S.

    2009-06-01

    Electron spin resonance (ESR) and electron-nuclear double resonance (ENDOR) of photogenerated polarons in poly(9,9-dioctylfluorene) (PFO) and its composite with fullerene (C60) using variable photoexcitation energy up to 4.1 eV are reported. For PFO, a light-induced ESR (LESR) signal (g=2.003) is observed below 60 K, and its transient response and excitation spectrum indicate that the observed spins are photogenerated polarons on PFO. For the PFO-C60 composite, two LESR signals of photogenerated positive polarons on PFO (g1=2.003) and radical anions on C60 (g2=1.999) , respectively, are observed below 120 K, which are caused by photoinduced electron transfer from PFO to C60 . A remarkable enhancement of the LESR signals in the excitation spectrum at ˜2.8eV is observed compared with the case of pure PFO. The bimolecular-recombination kinetics of photogenerated charge carriers in the composite are confirmed by the dependence of the LESR on excitation-light intensity and by the decay dynamics. Light-induced ENDOR (LENDOR) signals are clearly observed for excitation around 2.8 eV owing to the highly efficient photoinduced electron transfer in the composite. Broad LENDOR shifts directly reflect the spin-density distribution of the polarons in PFO. We have determined its maximum shift using LENDOR-induced ESR, and have evaluated the maximum spin density on the carbon site coupled to the proton as 0.032. This value is consistent with the theoretical result obtained by Pariser-Parr-Pople (PPP) model, where the spatial extent of the polarons is calculated as ˜3 monomer units of PFO. The calculated LESR spectra of PFO based on the PPP model are consistent with the experimental spectra, which confirm the above spatial extension of the polaron in PFO.

  12. Surface modification of ceramic matrix composites induced by laser treatment

    Science.gov (United States)

    Costil, S.; Lukat, S.; Langlade, C.; Coddet, C.

    2008-12-01

    Ceramics or ceramic composites present many advantages (hardness, chemical resistance, low density, etc.) which induce some more and more important applications particularly from the industrial point of view. The evolution of technology can also be beneficial to enlarge their global application areas. This is particularly the aim of this work which consists in applying a laser beam on the ceramic in order to clean its surface. A Nd:YAG laser has been used to study the basic mechanism roughening the surface of silicon carbide composite (ceramic matrix composite (CMC)). Investigations on different surfaces (two chemical compositions) show a strong influence of the nature of the material on the development of a characteristic conic structure. Microscopic studies (SEM) and elementary analyses (EDS and RMS) demonstrated the formation of a regular cone-like structure with a kinetic and a chemical modification specific to each material.

  13. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Chen, Jian [ORNL; Jones, Jonaaron F. [University of Tennessee (UT); Alexandra, Hackett [University of Tennessee (UT); Jellison Jr, Gerald Earle [ORNL; Daniel, Claus [ORNL; Warren, Charles David [ORNL; Rehkopf, Jackie D. [Plasan Carbon Composites

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  14. Objective Surface Evaluation of Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Palmer, Stuart; Hall, Wayne

    2013-08-01

    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

  15. Surface compositions across Pluto and Charon.

    Science.gov (United States)

    Grundy, W M; Binzel, R P; Buratti, B J; Cook, J C; Cruikshank, D P; Dalle Ore, C M; Earle, A M; Ennico, K; Howett, C J A; Lunsford, A W; Olkin, C B; Parker, A H; Philippe, S; Protopapa, S; Quirico, E; Reuter, D C; Schmitt, B; Singer, K N; Verbiscer, A J; Beyer, R A; Buie, M W; Cheng, A F; Jennings, D E; Linscott, I R; Parker, J Wm; Schenk, P M; Spencer, J R; Stansberry, J A; Stern, S A; Throop, H B; Tsang, C C C; Weaver, H A; Weigle, G E; Young, L A

    2016-03-18

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta. Copyright © 2016, American Association for the Advancement of Science.

  16. Surface Compositions Across Pluto and Charon

    CERN Document Server

    Grundy, W M; Buratti, B J; Cook, J C; Cruikshank, D P; Ore, C M Dalle; Earle, A M; Ennico, K; Howett, C J A; Lunsford, A W; Olkin, C B; Parker, A H; Philippe, S; Protopapa, S; Quirico, E; Reuter, D C; Schmitt, B; Singer, K N; Verbiscer, A J; Beyer, R A; Buie, M W; Cheng, A F; Jennings, D E; Linscott, I R; Parker, J Wm; Schenk, P M; Spencer, J R; Stansberry, J A; Stern, S A; Throop, H B; Tsang, C C C; Weaver, H A; Weigle, G E; Young, L A

    2016-01-01

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile ices CH$_4$, CO, and N$_2$, that dominate Pluto's surface, have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological timescales. Pluto's H$_2$O ice "bedrock" is also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon near infrared spectra reveal highly localized areas with strong NH$_3$ absorption tied to small craters with relatively fresh-appearing impact ejecta.

  17. Constraints on Mercury's surface composition from MESSENGER neutron spectrometer data

    Science.gov (United States)

    Riner, M. A.; Lucey, P. G.; McCubbin, F. M.; Taylor, G. J.

    2011-08-01

    The composition of Mercury's surface is poorly known, but the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission has provided a wealth of new data from three flybys. In particular, MESSENGER Neutron Spectrometer (NS) observations reveal a surface enriched in neutron absorbing elements, consistent with interpretations of color and albedo observations suggesting a surface composition enriched in Fe-Mg-Ti oxides. In this study, we have computed the neutron absorption cross sections for all of the available proposed surface compositions of Mercury and evaluated the plausibility of each surface composition based on the neutron absorption cross section observed by MESSENGER. For identified plausible compositions, the implications for the thermal and magmatic evolution of Mercury are discussed. The measured macroscopic neutron absorption cross section of Mercury is inconsistent with a crust formed from partial melting of plausible bulk mantle compositions, flotation in a magma ocean or adiabatic melting of upwelling cumulates during magma ocean overturn. However, the observed neutron absorption is consistent with model compositions of late-stage magma-ocean cumulates and some proposed compositions from spectral modeling and equilibrium modeling. This suggests that the enrichment of neutron absorbing elements may be indicative of the processes that acted to form Mercury's crust. The enrichment in neutron absorbing elements, in combination with spectral observations that constrain FeO in silicates (neutron absorption cross section. High-Fe oxides are not required and more Mg-rich oxides may even be favored as the Ti-contents can sufficiently account for the observed neutron absorption.

  18. Image potential resonances of the aluminum (100) surface; Bildpotentialresonanzen der Aluminium-(100)-Oberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Matthias

    2011-07-08

    Image-potential resonances on the (100) surface of pure Aluminum are investigated experimentally and theoretically. The experiments are conducted both energy- and time-resolved using the method of two-photon photoemission spectroscopy. The main attention of the theoretical examination and extensive numerical calculations is devoted to the interaction between surface and bulk states. Image-potential resonances on Al(100) are a system in which a complete series of discrete Rydberg states strongly couples to a continuum of states. As a simple metal it also provides a good opportunity to test theoretical models of the structure of the potential at metal surfaces. This work represents the first high-resolution investigation of image-potential resonances with such strong resonance character. For the first time, it is demonstrated experimentally that isolated image-potential resonances exist on an Aluminum surface. On the (100) surface of Aluminum the second through fifth image-potential resonance are resolved and both, their energies and lifetimes are measured. The binding energies of the image-potential resonances form a Rydberg series of states {epsilon}{sub n}=-(0,85 eV)/((n+a){sup 2}). Within the accuracy of the measurement it is not necessary to introduce a quantum defect a (a=0.022{+-}0.035). Using angle-resolved two-photon photoemission spectroscopy the effective mass of electrons in the second image-potential resonance is measured to 1.01{+-}0.11 electron masses. The lifetimes of the resonances increase as {tau}{sub n} = (1.0{+-}0.2)fs.n{sup 3} starting from n=2. Calculations using the density matrix formalism show that the experimentally observed lifetimes can be explained well by electrons decaying into the bulk. The effect of resonance trapping leads to extended lifetimes in the process. Contrary to common theoretical models of image-potential states at metal surfaces the first image-potential resonance cannot be observed in two-photon photoemission on Al(100

  19. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  20. Effect of surface penetrating sealant on surface texture and microhardness of composite resins.

    Science.gov (United States)

    Bertrand, M F; Leforestier, E; Muller, M; Lupi-Pégurier, L; Bolla, M

    2000-01-01

    The application of Fortify (Bisco, Lombard, IL), an unfilled resin, to the surface of composite resin restorations is intended to fill in defects in the surface that persist despite polishing, improve marginal integrity, and increase these materials' resistance to abrasion. The aim of this study was to observe the surface texture by scanning electron microscopy and measure the microhardness of the surface. For each sample of composite resin covered with glaze, 40 measurements were made of the thickness of the resin. Measurements of the Vickers microhardness included three samples of composite resin, three samples of glaze, and six samples of composite resin covered with glaze. A relationship was established between microhardness and thickness. Scanning electron microscopy showed a noticeable improvement in the surface texture. Nevertheless, areas were seen in which glaze seemed very thin or even completely absent. Measurements of the thickness ranged from 0-70 microm. The mean microhardness of composite resin was 65.8 +/- 0.7, while the mean hardness of glaze was 7.3 +/- 0.7. The microhardness of the double layer was reduced, depending on the thickness of the glazing resin. The capacity of glaze to mask surface defects of composite resin was shown, but it was difficult to obtain a regular surface with liquid resin. The application of this product caused a decrease of the microhardness of the composite resin's surface.

  1. Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications

    Science.gov (United States)

    Zheng, Gaige; Zou, Xiujuan; Chen, Yunyun; Xu, Linhua; Rao, Weifeng

    2017-04-01

    We propose a new configuration of surface plasmon resonance (SPR) sensor that is based on graphene-MoS2 hybrid structures for ultrasensitive detection of molecules. The present configuration is consisted of chalcogenide glass (2S2G) prism, Ag, coupling layer, guiding layer, graphene-MoS2 heterostructure and analyte. We perform numerical and analytical study of the impact of the thickness and refractive index (RI) of the coupling and guiding layer in a planar sensing structure within the Kretschmann configuration on the resonance properties of the excitation. Results of reflectivity calculations clearly demonstrate the sharp Fano-type resonance appears in the curve of SPR because of the coupling between surface plasmon polariton (SPP) and planar waveguide (PWG) modes. The properties of the Fano resonance (FR) strongly depend on the parameters of the structure. The calculated magnetic field profiles manifest that the hybrid nature of the electromagnetic (EM) modes excited in the present structure. The proposed system displays an enhancement factor of sensitivity by intensity more than 2 × 103-fold when compared to the SPR sensing scheme.

  2. Surface plasmon-polariton resonance at diffraction of THz radiation on semiconductor gratings

    CERN Document Server

    Spevak, I S; Gavrikov, V K; Shulga, V M; Feng, J; Sun, H B; Kamenev, Yu E; Kats, A V

    2013-01-01

    Resonance diffraction of THz HCN laser radiation on a semiconductor (InSb) grating is studied both experimentally and theoretically. The specular reflectivity suppression due to the resonance excitation of the THz surface plasmon-polariton is observed on a pure semiconductor grating and on semiconductor gratings covered with a thin striped layer of the residual photoresist. Presence of a thin dielectric layer on the grating surface leads to the shift and widening of the plasmon-polariton resonance. A simple analytical theory of the resonance diffraction on a shallow grating covered with a dielectric layer is presented. Its results are in a good accordance with the experimental data. Analytical expressions for the resonance shift and broadening can be useful for sensing data interpretation.

  3. Study of dual wavelength composite output of solid state laser based on adjustment of resonator parameters

    Science.gov (United States)

    Wang, Lei; Nie, Jinsong; Wang, Xi; Hu, Yuze

    2016-10-01

    The 1064nm fundamental wave (FW) and the 532nm second harmonic wave (SHW) of Nd:YAG laser have been widely applied in many fields. In some military applications requiring interference in both visible and near-infrared spectrum range, the de-identification interference technology based on the dual wavelength composite output of FW and SHW offers an effective way of making the device or equipment miniaturized and low cost. In this paper, the application of 1064nm and 532nm dual-wavelength composite output technology in military electro-optical countermeasure is studied. A certain resonator configuration that can achieve composite laser output with high power, high beam quality and high repetition rate is proposed. Considering the thermal lens effect, the stability of this certain resonator is analyzed based on the theory of cavity transfer matrix. It shows that with the increase of thermal effect, the intracavity fundamental mode volume decreased, resulting the peak fluctuation of cavity stability parameter. To explore the impact the resonator parameters does to characteristics and output ratio of composite laser, the solid-state laser's dual-wavelength composite output models in both continuous and pulsed condition are established by theory of steady state equation and rate equation. Throughout theoretical simulation and analysis, the optimal KTP length and best FW transmissivity are obtained. The experiment is then carried out to verify the correctness of theoretical calculation result.

  4. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.

    Science.gov (United States)

    Friedt, J-M; Droit, C; Ballandras, S; Alzuaga, S; Martin, G; Sandoz, P

    2012-05-01

    Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.

  5. Multiphonon resonances in the Debye-Waller factor of atom surface scattering.

    Science.gov (United States)

    Brenig, W

    2004-02-06

    He atom surface scattering by dispersionless phonons is treated employing coupled channel (CC) calculations. At low energies, they predict a behavior opposite to perturbative Born or "exponentiated" Born approximation: strong resonant phonon stimulated elastic and inhibited inelastic scattering. The corresponding resonances have not been observed in earlier CC results since these have considered only the temperature dependence of the Debye-Waller factor at higher energy or omitted the attractive well. The resonances can be interpreted in terms of bound states in the attractive well with several excited vibrational quanta. They may be observable for, e.g., He scattering by a cold Xe/Cu surface.

  6. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide

    DEFF Research Database (Denmark)

    Soh, N; Tokuda, T.; Watanabe, T.

    2003-01-01

    A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2,4-dichloroph......A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2...

  7. Off-Resonant Third-Order Optical Nonlinearity of an Ag:TiO2 Composite Film

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-Feng; YOU Guan-Jun; DONG Zhi-Wei; LIU Ye; MA Guo-Hong; QIAN Shi-Xiong

    2005-01-01

    @@ Using the femtosecond time-resolved optical Kerr effect technique, we investigate the off-resonant nonlinear optical response of an Ag:TiO2 composite film prepared by a vacuum magnetron sputtering method. The third-order nonlinear optical susceptibility of the composite film with silver nanoparticle size of about 30 nm is estimated to be 1.9×10-10 esu at the incident laser wavelength of 800nm. When the photon energy of the incident beam is lower than that for surface plasmon or the interband transition of silver nanoparticles, the observed third-order optical nonlinearity is attributed to the intraband transition of the free electrons. Based on the linear limit of the electric field within micro-spherical model, we assign this large optical nonlinearity to the local field enhancement of the third-order nonlinearity.

  8. Angular characteristics of a multimode fiber surface plasmon resonance sensor

    CERN Document Server

    Tan, Zhixin; Li, Xuejin; Chen, Yuzhi; Hong, Xueming; Fan, Ping

    2015-01-01

    In this paper the angular characteristics of a multimode fiber SPR sensor are investigated theoretically. By separating the contributions of beams incident at different angles, a compact model is presented to predict the shift of the resonance wavelength with respect to the angle and the environmental refractive index. The result suggests that the performance of conventional fiber SPR sensors can be substantially improved by optimizing the incident angle.

  9. Label-Enhanced Surface Plasmon Resonance: A New Concept for Improved Performance in Optical Biosensor Analysis

    Directory of Open Access Journals (Sweden)

    Niko Granqvist

    2013-11-01

    Full Text Available Surface plasmon resonance (SPR is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations.

  10. Localized surface plasmons selectively coupled to resonant light in tubular microcavities

    CERN Document Server

    Yin, Yin; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    Vertical gold-nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold-nanogap on the microcavities which is conveniently achieved by rolling-up specially designed thin dielectric films into three dimensional microtube ring resonators. The coupling phenomenon is explained by a modified quasi-potential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  11. Dawn Maps the Surface Composition of Vesta

    Science.gov (United States)

    Prettyman, T.; Palmer, E.; Reedy, R.; Sykes, M.; Yingst, R.; McSween, H.; DeSanctis, M. C.; Capaccinoni, F.; Capria, M. T.; Filacchione, G.; Magni, G.; Ammannito, E.; Carraro, F.; Coradini, A.; Fonte, S.; Noschese, R.; Tosi, F.; Blewett, D.; Denevi, B.; Lawrence, D.; Buratti, B.; Raymond, C. A.; Combe, J. P.; McCord, T.; Forni, O.

    2011-01-01

    By 7-October-2011, the Dawn mission will have completed Survey orbit and commenced high altitude mapping of 4-Vesta. We present a preliminary analysis of data acquired by Dawn's Framing Camera (FC) and the Visual and InfraRed Spectrometer (VIR) to map mineralogy and surface temperature, and to detect and quantify surficial OH. The radiometric calibration of VIR and FC is described. Background counting data acquired by GRaND are used to determine elemental detection limits from measurements at low altitude, which will commence in November. Geochemical models used in the interpretation of the data are described. Thermal properties, mineral-, and geochemical-data are combined to provide constraints on Vesta s formation and thermal evolution, the delivery of exogenic materials, space weathering processes, and the origin of the howardite, eucrite, and diogenite (HED) meteorites.

  12. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  13. Preparation and catalytic application of Ag/polydopamine composite on surface of glass substrates

    Science.gov (United States)

    Yu, Jianying; Sun, Chengyi; Lu, Shixiang; Xu, Wenguo; Liu, Zhehan; He, Dongsheng

    2017-01-01

    In this work, Ag/polydopamine composite on glass substrates (Ag/PDA@slides) were formed by using polydopamine (PDA) as both reducing and stabilizing agent to reduce silver salts to silver nanoparticles (NPs) and adhesive them to slides. The morphology and chemical composition of the composite material was characterized by scanning electron microscopy (SEM) and X-ray diffraction pattern (XRD). The prepared Ag/PDA@slide was a highly active catalyst for the reduction of 4-nitrophenol (4-NP) in the presence of sodium borohydride (NaBH4) aqueous solution at room temperature. The reduction rate of the optimal catalyst was as fast as 10 s and it was stable up to 6 cycles without a significant loss of its catalytic activity. By measuring the UV-Vis absorption bonds of Ag/PDA@slides, it proved that condition of the strongest surface plasmon resonance of Ag/PDA@slides is the optimal condition of catalytic reduction of 4-NP.

  14. Surface treatment of CFRP composites using femtosecond laser radiation

    Science.gov (United States)

    Oliveira, V.; Sharma, S. P.; de Moura, M. F. S. F.; Moreira, R. D. F.; Vilar, R.

    2017-07-01

    In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1-0.5 mJ and 0.1-5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.

  15. What controls the isotopic composition of Greenland surface snow?

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2013-10-01

    Full Text Available Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically-enabled atmospheric models. However, post-deposition processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition (δ18O, δD of surface water vapor, precipitation and samples of top (0.5 cm snow surface has been conducted during two summers (2011–2012 at NEEM, NW Greenland. The measurements also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between surface vapor δ18O and air temperature (0.85 ± 0.11 ‰ °C−1 (R = 0.76 for 2012. The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated that 6 to 20% of the surface snow mass is exchanged with the atmosphere using the CROCUS snow model. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or condensation. Comparisons with atmospheric models show that day-to-day variations in surface vapor isotopic composition are driven by synoptic weather and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in surface vapor isotopic

  16. What controls the isotopic composition of Greenland surface snow?

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2014-02-01

    Full Text Available Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD of near-surface water vapor, precipitation and samples of the top (0.5 cm snow surface has been conducted during two summers (2011–2012 at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76 for 2012. The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface

  17. What controls the isotopic composition of Greenland surface snow?

    Science.gov (United States)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Hirabayashi, M.; Winkler, R.; Satow, K.; Prié, F.; Bayou, N.; Brun, E.; Cuffey, K. M.; Dahl-Jensen, D.; Dumont, M.; Guillevic, M.; Kipfstuhl, S.; Landais, A.; Popp, T.; Risi, C.; Steffen, K.; Stenni, B.; Sveinbjörnsdottír, A. E.

    2014-02-01

    Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor

  18. Picosecond Pulsed Laser Ablation for the Surface Preparation of Epoxy Composites

    Science.gov (United States)

    Palmieri, Frank; Ledesma, Rodolfo; Fulton, Tayler; Arthur, Alexandria; Eldridge, Keishara; Thibeault, Sheila; Lin, Yi; Wohl, Chris; Connell, John

    2017-01-01

    As part of a technical challenge under the Advanced Composites Program, methods for improving pre-bond process control for aerospace composite surface treatments and inspections, in conjunction with Federal Aviation Administration guidelines, are under investigation. The overall goal is to demonstrate high fidelity, rapid and reproducible surface treatment and surface characterization methods to reduce uncertainty associated with the bonding process. The desired outcomes are reliable bonded airframe structure, and reduced timeline to certification. In this work, laser ablation was conducted using a q-switched Nd:YVO4 laser capable of nominal pulse durations of 8 picoseconds (ps). Aerospace structural carbon fiber reinforced composites with an epoxy resin matrix were laser treated, characterized, processed into bonded assemblies and mechanically tested. The characterization of ablated surfaces were conducted using scanning electron microscopy (SEM), water contact angle (WCA) goniometry, micro laser induced breakdown spectroscopy (uLIBS), and electron spin resonance (ESR). The bond performance was assessed using a double cantilever beam (DCB) test with an epoxy adhesive. The surface characteristics and bond performance obtained from picosecond ablated carbon fiber reinforced plastics (CFRPs) are presented herein.

  19. Resonance Fluorescence of Many Interacting Adatoms at a Metal Surface.

    Science.gov (United States)

    1983-06-01

    a series of experiments in which the fluores - cence of an excited atom or molecule at a fixed distance from a metal surface (gold, silver and cooper...Theodore E. Madey Surface Chemistry Section Dr. Chia -wel Woo Department of Commerce Department of Physics National Bureau of Standards Northwestern

  20. Surface roughness of composite resins after finishing and polishing

    Directory of Open Access Journals (Sweden)

    Nagem Filho Halim

    2003-01-01

    Full Text Available This study evaluated the effect of surface finishing methods on the average surface roughness of resin composites. Seven composites and two polishing systems were used. One hundred and twenty-six conical specimens of each material were prepared in stainless steel molds against a polyester strip. Forty-two of them remained intact and were used as controls. Each half of the remaining samples was polished with either diamond burs or diamond burs + aluminum oxide discs. The results showed no statistical difference in average surface roughness (Ra, mm between the polyester strip and aluminum oxide discs (p>0.05. However, finishing with diamond burs showed a statistically higher average roughness for all composites (p<0.05. Statistical differences were detected among materials (p<0.05 in the use of diamond burs.

  1. Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    Science.gov (United States)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  2. Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials

    KAUST Repository

    Mutoro, Eva

    2012-01-05

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically/ionically conducting, and thus, they have been used in a number of solid-state devices such as solid oxide fuel cells (SOFCs) and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface compositions is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface compositional changes of La 0.8Sr 0.2CoO 3-δ (LSC 113), (La 0.5Sr 0.5) 2CoO 4±δ (LSC 214), and LSC 214-decorated LSC 113 films (LSC 113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr were found for the LSC 113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites. © 2011 American Chemical Society.

  3. Reflection characteristics of a composite planar AMC surface

    Directory of Open Access Journals (Sweden)

    Ruey-Bing Hwang

    2012-03-01

    Full Text Available This study investigates the reflection characteristics of a composite Artificial Magnetic Conductor (AMC surface consisting of multiple orthogonal gradient AMC surfaces arranged in a two-dimensional periodic pattern. The gradient AMC surface in this study consists of square metal patches of variable size printed on a grounded dielectric substrate. Due to the orthogonal placement of the gradient AMC surface, the incident energy of a plane wave normally incident on the composite AMC surface will be reflected into four major lobes away from the impinging direction. To achieve a systematical design, a simple formula based on array antenna theory was developed to determine the reflection pattern of the gradient AMC surface illuminated by a normal incident plane wave. A time-domain full-wave simulation was also carried out to calculate the electromagnetic fields in the structure and the far-field patterns. The scattering patterns of the structure were measured in an electromagnetic anechoic chamber. Results confirm the design principle and procedures in this research. Since such a composite AMC surface can be easily fabricated using the standard printed circuit board technique without via-hole process, it may have potential applications in beam-steering and radar cross section reduction.

  4. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... as resonators storing mechanical energy. These resonators are evanescently coupled by the surface. The dispersion diagram is presented and shows very low group velocities as the wave vector approaches the limit of the first Brillouin zone. ©2009 American Institute of Physics...

  5. Electron emission induced by resonant coherent ion-surface interaction at grazing incidence

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F.J. (Departamento de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Universidad del Pais Vasco, Apartado 649, 20080 San Sebastian (Spain)); Ponce, V.H. (Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 San Carlos de Bariloche, Rio Negro (Argentina)); Echenique, P.M. (Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Apartado 1072, 20080 San Sebastian (Spain))

    1992-10-19

    A new spectroscopy based on the resonant coherently induced electron loss to the continuum in ion-surface scattering under grazing incidence is proposed. A series of peaks, corresponding to the energy differences determined by the resonant interaction with the rows of atoms in the surface, is predicted to appear in the energy distribution of electrons emitted from electronic states bound to the probe. Calculations for MeV He{sup +} ions scattered at a W(001) surface along the {l angle}100{r angle} direction with a glancing angle of 0--2 mrad show a total yield close to 1.

  6. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Marchesini, Gerardo R.; Bremer, Maria G. E. G.; Colpo, Pascal; Garcia, Cesar Pascual; Guidetti, Guido; Norde, Willem; Rossi, Francois

    2012-01-01

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices - the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave pe

  7. Compositional Mapping of the Surfaces of Europa and Ganymede

    Science.gov (United States)

    Gruen, Eberhard; Horanyi, M.; Kempf, S.; Krueger, H.; Postberg, F.; Srama, R.; Sternovsky, Z.; Trieloff, M.

    2010-10-01

    The determination of the global surface compositions of Europa and Ganymede is a prime objective of the Europa Jupiter System Mission (EJSM). Classical methods to analyze surfaces of airless planetary objects are IR and gamma ray spectroscopy, and neutron backscatter measurements. Here we present a complementary method to analyze dust particles as samples of planetary objects from which they were released. All airless moons and planets are exposed to the ambient meteoroid bombardment that erodes the surface and generates ejecta particles. The Galileo dust detector (Krueger et al., Icarus, 164, 170, 2003) discovered tenuous ejecta clouds around all Galilean satellites. In-situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Depending on the altitude from which the dust measurements are taken, the position of origin on the surface can be determined with at least corresponding resolution. Since the detection rates are on the order of thousands per day, spatially resolved maps of the surface composition can be obtained. This `dust spectrometer’ approach provides key chemical and isotopic constraints for varying provinces on the surfaces, leading to better understanding of the body's geological evolution. Traces of mineral or organic components in an ice matrix can be identified and quantified even at low impact speeds >1 km/s. Compositional measurements by the Cassini Cosmic Dust Analyzer of ice grains emitted from Enceladus probed the deep interior of this satellite (Postberg et al., Nature, 459, 1098, 2009). New instrumentation has been developed that meet or exceeded the capabilities in sensitivity and mass resolution of all previous dust analyzers. The deployment of such dust analyzers on the Jupiter Europa Orbiter (JEO) and the Jupiter Ganymede Orbiter (JGO) missions will provide unprecedented information on the surface compositions of these satellites and their potential activity.

  8. Determination of elastic properties of surface layers and coatings by resonant ultrasound spectroscopy

    Science.gov (United States)

    Růžek, M.; Sedlák, P.; Seiner, H.; Landa, M.

    2011-01-01

    This paper deals with determination of in-plane elastic constants of thin layers deposited on substrates. Modified resonant ultrasound spectroscopy is used to measure resonant spectra before and after layer deposition . These two spectra are compared and changes in the position of the resonant peaks are associated with layer properties. It is shown that for thin layers either the elastic moduli or the surface mass density can be determined, providing the complementary information (the surface mass density for the determination of the moduli, the elastic moduli for the determination of the surface mass density) is known. As an experimental demonstration of this approach, the elastic moduli of diamond-like-carbon film deposited on a silicon substrate and the surface mass density of a thin spray paint on a silicon substrate are determined.

  9. Design of Highly Sensitive Surface Plasmon Resonance Sensors Using Planar Metallic Films Closely Coupled to Nanogratings

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Yan; XIE Wen-Chong; LIU De-Ming

    2008-01-01

    We investigate the sensitivity enhancement of surface plasmon resonance(SPR)sensors using planar metallic films closely coupled to nanogratings.The strong coupling between localized surface plasmon resonances(LSPRs)presenting in metallic nanostructures and surface plasmon polaritons(SPPs)propagating at the metallic film surface leads to changes of resonance reflection properties,resulting in enhanced sensitivity of SPR sensors.The effects of thickness of the metallic films,grating period and metal materials on the refractive index sensitivity of the device are investigated.The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU(refractive index unit)using optimized structure parameters.Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.

  10. Magnetic field dependence of piezoelectric resonance frequency in CoFe2O4-BaTiO3 composites

    Science.gov (United States)

    Kagomiya, Isao; Hayashi, Yusuke; Kakimoto, Ken-ichi; Kobayashi, Kazuyoshi

    2012-08-01

    The particulate and the multilayer CoFe2O4(CFO)-BaTiO3(BT) composites were prepared by the conventional solid state reaction method and the tape casting method, respectively. Both the prepared composites were simultaneously ferroelectric and ferromagnetic at room temperature. For the multilayer composite sample, a piezoelectric resonance frequency remarkably depended on the applied DC magnetic field, while no remarkable magnetic field dependence was observed for the particulate composite samples. An uniform magnetostriction of the CFO phase in the multilayer composite contributes to piezoelectric effect of the BT phases, resulting in the modulation of the piezoelectric resonance frequency.

  11. The Origin of Mercury's Surface Composition, an Experimental Investigation

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.

    2016-01-01

    Introduction: Results from MESSENGER spacecraft have confirmed the reduced nature of Mercury, based on its high core/mantle ratio and its FeO-poor and S-rich surface. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting major melting stages of the Mercurian mantle. In addition, MESSENGER has provided the most precise data to date on major elemental compositions of Mercury's surface. These results revealed considerable chemical heterogeneities that suggested several stages of differentiation and re-melting processes. This interpretation was challenged by our experimental previous study, which showed a similar compositional variation in the melting products of enstatite chondrites, which are a possible Mercury analogue. However, these experimental melts were obtained over a limited range of pressure (1 bar to 1 gigapascal) and were not compared to the most recent elemental maps. Therefore, here we extend the experimental dataset to higher pressures and perform a more quantitative comparison with Mercury's surface compositions measured by MESSENGER. In particular, we test whether these chemical heterogeneities result from mixing between polybaric melts. Our experiments and models show that the majority of chemical diversity of Mercury's surface can result from melting of a primitive mantle compositionally similar to enstatite chondrites in composition at various depths and degrees of melting. The high-Mg region's composition is reproduced by melting at high pressure (3 gigapascals) (Tab. 1), which is consistent with previous interpretation as being a large degraded impact basin based on its low elevation and thin average crust. While low-Mg NVP (North Volcanic Plains) are the result of melting at low pressure (1 bar), intermediate-Mg NVP, Caloris Basin and Rachmaninoff result from mixing of a high-pressure (3 gigapascals) and low-pressure components (1 bar for Rachmaninoff and 1 gigapascal for the other regions

  12. Wavelength-resonant surface-emitting semiconductor laser

    Science.gov (United States)

    Brueck, Steven R. J.; Schaus, Christian F.; Osinski, Marek A.; McInerney, John G.; Raja, M. Yasin A.; Brennan, Thomas M.; Hammons, Burrell E.

    1989-01-01

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  13. Composite and elementary nature of a resonance in the sigma model

    CERN Document Server

    Nagahiro, Hideko

    2013-01-01

    We analyze the mixing nature of the low-lying scalar resonance consisting of the pipi composite and the elementary particle within the sigma model. A method to disentangle the mixing is formulated in the scattering theory with the concept of the two-level problem. We investigate the composite and elementary components of the sigma meson by changing a mixing parameter. We also study the dependence of the results on model parameters such as the cut-off value and the mass of the elementary sigma meson.

  14. Single dc magnetic field tunable electromechanical resonance in Terfenol-D/PZT/Terfenol-D trilayer composites

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wang, E-mail: wangwei1@njnu.edu.cn [Opto-Electronic Technology Key Laboratory of Jiangsu Province, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023 (China); JingJing, Ye; Jie, Wu [Opto-Electronic Technology Key Laboratory of Jiangsu Province, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023 (China); LiSheng, Zhou [Hangzhou Applied Acoustics Research Institute, National Key Laboratory of Science and Technology on Sonar, Hang Zhou 310012 (China); Bin, Luo Xiao; Ning, Zhang [Opto-Electronic Technology Key Laboratory of Jiangsu Province, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023 (China)

    2014-10-01

    Single dc magnetic field excited electromechanical resonance (EMR) in Terfenol-D/PZT/Terfenol-D trilayer composites structure was experimentally investigated and theoretically analyzed. The experiment proves dc magnetic field influence on EMR of magnetoelectric (ME) composites. The tuning of approximately 17.7 kHz was obtained in a dc magnetic field of 100 mT. The theory of dc magnetic field tunable resonance frequency shift containing different ferroelectric volume fractions in layer magnetoelectric composites is presented. This tuning is due to the magnetoelectric interactions in the layered ME composites structure. - Highlights: • Magnetically excited EMR in trilayer composites structure was studied. • The EMR frequency shift is approximately 17.7 kHz with dc magnetic field of 100 mT. • Calculation of capacitance as a function of frequency under different magnetic fields. • Dependence of ferroelectric volume fraction on EMR shifts have been revealed. • Promise for control EMR with a dc magnetic field is suggested.

  15. Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging

    Science.gov (United States)

    2016-02-13

    switchable array, RF magnetic field, NQR, MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic...Resonance (NMR) or Nuclear Quadrupole Resonance (NQR) techniques. REF [1] and [6] explain the differences between NMR and NQR. What NMR and NQR...inductances due to physical dimensions. A wider bandwidth will insure all surface coils are individually tuned and matched within the bandwidth

  16. Surface composition gradients of immobilized cell signaling molecules. Epidermal growth factor on gold

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qian [Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801 (United States); Bohn, Paul W. [Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801 (United States)]. E-mail: bohn@scs.uiuc.edu

    2006-08-14

    Surface composition gradients of the signaling molecule, epidermal growth factor (EGF), have been prepared by an adaptation of the electrochemical gradient technique. EGF is covalently bound to the reactive component, 11-amino-l-undecanethiol (AUT), in a counterpropagating two-component gradient composed of AUT and poly(ethylene glycol) thiol (PEG) using carbodiimide coupling chemistry. Areas of the surface presenting -NH{sub 2} termination react with succinimidyl esters of solvent-accessible acidic amino acids in EGF, while non-specific protein adsorption is resisted in the PEG regions. The maximum surface coverage of EGF prepared in this manner was determined by surface plasmon resonance reflectometry (SPR) on spatially uniform films to be 20% < {gamma} {sub EGF} < 70% depending on the concentration of the EGF derivatization solution. EGF retains its biological activity with this immobilization process, as verified by culturing human umbilical vein endothelial cell (HUVEC) on an EGF-terminated surface for 24 h. PEG shows good resistance to EGF physical adsorption as demonstrated by both SPR and X-ray photoelectron spectroscopy (XPS). The N / C ratio of EGF gradients, which is characteristic of EGF adsorption, because only the protein contains N, while both protein and PEG contain C, was spatially mapped with XPS. The gradient composition distributions are sigmoidal with lateral distance, with the position of the gradient transition region being readily controlled by adjusting the applied potential window. EGF gradients with variable quantitative surface coverage profiles were generated by varying EGF and AUT concentrations.

  17. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Science.gov (United States)

    George, David; Li, Li; Jiang, Yan; Lowell, David; Mao, Michelle; Hassan, Safaa; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2016-07-01

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  18. A novel optical pressure sensor based on surface plasmon polariton resonator

    Science.gov (United States)

    Wu, Jing; Lang, Peilin; Chen, Xi; Zhang, Ru

    2016-02-01

    We propose a Metal-Insulator-Metal structure consists of two surface plasmon polaritons (SPPs) and an H-shaped resonator. The reflectance spectrum is numerically simulated by the two-dimensional finite-difference time-domain method. The results show that this structure can act as a pressure sensor. To our knowledge, this is the first proposal to utilize the SPP resonator to form a pressure sensor. The size of the SPP resonator can be as small as a few hundred nanometers. The nano-scale pressure sensor opens a wide field for potential applications in biological and biomedical engineering.

  19. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  20. Localized surface plate modes via flexural Mie resonances

    KAUST Repository

    Farhat, M.

    2017-05-11

    Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electromagnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional (clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate, under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications in various areas including earthquake sensing and elastic imaging and cloaking.

  1. New resonance scale and fingerprint identification in minimal composite Higgs models

    CERN Document Server

    Kanemura, Shinya; Machida, Naoki; Shindou, Tetsuo

    2014-01-01

    Composite Higgs models are an intriguing scenario in which the Higgs particle is identified as a pseudo Nambu-Goldstone boson associated with spontaneous breaking of some global symmetry above the electroweak scale. In general, such models predict new resonances at high energy scales, some of which can appear at multi-TeV scales. In such a case, analogies with pion physics in QCD that a sizable phase shift is predicted in pion-pion scattering processes might help us to evaluate scales of the resonances. In this paper, we discuss two complementary approaches to investigate the compositeness scale in minimal composite Higgs models. First, we discuss the bound on vector boson scattering from perturbative unitarity, and we evaluate the phase shift of the scattering amplitude. We obtain the relation between possible phase shifts and promising new resonance scales. We also investigate the possibility to measure the phase shift at LHC and the future hadron colliders. Second, we classify deviations in Higgs coupling ...

  2. Composite sampling of a Bacillus anthracis surrogate with cellulose sponge surface samplers from a nonporous surface.

    Directory of Open Access Journals (Sweden)

    Jenia A M Tufts

    Full Text Available A series of experiments was conducted to explore the utility of composite-based collection of surface samples for the detection of a Bacillus anthracis surrogate using cellulose sponge samplers on a nonporous stainless steel surface. Two composite-based collection approaches were evaluated over a surface area of 3716 cm2 (four separate 929 cm2 areas, larger than the 645 cm2 prescribed by the standard Centers for Disease Control (CDC and Prevention cellulose sponge sampling protocol for use on nonporous surfaces. The CDC method was also compared to a modified protocol where only one surface of the sponge sampler was used for each of the four areas composited. Differences in collection efficiency compared to positive controls and the potential for contaminant transfer for each protocol were assessed. The impact of the loss of wetting buffer from the sponge sampler onto additional surface areas sampled was evaluated. Statistical tests of the results using ANOVA indicate that the collection of composite samples using the modified sampling protocol is comparable to the collection of composite samples using the standard CDC protocol (p  =  0.261. Most of the surface-bound spores are collected on the first sampling pass, suggesting that multiple passes with the sponge sampler over the same surface may be unnecessary. The effect of moisture loss from the sponge sampler on collection efficiency was not significant (p  =  0.720 for both methods. Contaminant transfer occurs with both sampling protocols, but the magnitude of transfer is significantly greater when using the standard protocol than when the modified protocol is used (p<0.001. The results of this study suggest that composite surface sampling, by either method presented here, could successfully be used to increase the surface area sampled per sponge sampler, resulting in reduced sampling times in the field and decreased laboratory processing cost and turn-around times.

  3. Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state.

    Science.gov (United States)

    Gerasimov, V S; Ershov, A E; Gavrilyuk, A P; Karpov, S V; Ågren, H; Polyutov, S P

    2016-11-14

    Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electron-phonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles.

  4. Analysis of surface hardness of artificially aged resin composites

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2012-02-01

    Full Text Available This study evaluated the effect of artificially accelerated aging (AAA on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05, ANOVA and Tukey test (p < 0.05. With regard to hardness (F = 86.74, p < 0.0001 the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53. In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002. It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

  5. Surface characterization of current composites after toothbrush abrasion.

    Science.gov (United States)

    Takahashi, Rena; Jin, Jian; Nikaido, Toru; Tagami, Junji; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2013-01-01

    The present study was designed to evaluate the surface roughness and the gloss of current composites before and after toothbrush abrasion. We assessed forty dimensionally standardized composite specimens (n=8/group) from five composites: two nanohybrids (i. e., IPS Empress Direct Enamel and IPS Empress Direct Dentin), two microhybrids (i. e., Clearfil AP-X and Filtek Z250) and one organically modified ceramics (Admira). All of the specimens were polished with 4000-grid silicon carbide papers. Surface roughness was measured with a profilometer and gloss was measured with a glossmeter before and after powered toothbrush abrasion with a 1:1 slurry (dentifrice/tap water) at 12,000 strokes in a toothbrush simulator. There was a significant increase in the surface roughness and a reduction in gloss after toothbrush abrasion in all of the composites except Clearfil AP-X (p<0.05). Simple regression analysis showed that there was not an association between the surface roughness and the gloss (R(2)=0.191, p<0.001).

  6. Influence of surface preparation on fusion bonding of thermoplastic composites

    NARCIS (Netherlands)

    Sacchetti, F.; Grouve, W.J.B.; Warnet, L.L.; Fernandez Villegas, I.

    2015-01-01

    Carbon fibre-reinforced thermoplastic composites laminates (CFRP) meant for fusion bonding have been moulded using different release media. The potential contamination of the laminate surface by the release media and its effect on the mechanical performance of fusion bonded joints was studied. The p

  7. Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...

  8. Interplay between surface and surface resonance states on height selective stability of fcc Dy(111) film at nanoscale.

    Science.gov (United States)

    Liu, Xiaojie; Wang, Cai-Zhuang; Hupalo, Myron; Ho, Kai-Ming; Thiel, Patricia A; Tringides, Michael C

    2016-11-16

    Using first-principles calculations we show that face-centered cubic Dy(111) ultrathin films exhibit height selective stability. The origin of such height selection can be attributed to the interplay between the localized surface states and surface resonance states due to electron confinement effects. Such effect could be utilized to manipulate the film thickness at the atomic level to achieve desirable film properties or to control the growth of nanostructures on the thin film for various applications.

  9. Breaking the black-body limit with resonant surfaces

    Directory of Open Access Journals (Sweden)

    Valagiannopoulos Constantinos A.

    2017-01-01

    Full Text Available The speed with which electromagnetic energy can be wirelessly transferred from a source to the user is a crucial indicator for the performance of a large number of electronic and photonic devices. We expect that energy transfer can be enhanced using special materials. In this paper, we determine the constituent parameters of a medium which can support theoretically infinite energy concentration close to its boundary; such a material combines properties of Perfectly Matched Layers (PML and Double-Negative (DNG media. It realizes conjugate matching with free space for every possible mode including, most importantly, all evanescent modes; we call this medium Conjugate Matched Layer (CML. Sources located outside such layer deliver power to the conjugate-matched body exceptionally effectively, impressively overcoming the black-body absorption limit which takes into account only propagating waves. We also expand this near-field concept related to the infinitely fast absorption of energy along the air-medium interface to enhance the far-field radiation. This becomes possible with the use of small particles randomly placed along the boundary; the induced currents due to the extremely high-amplitude resonating fields can play the role of emission “vessels”, by sending part of the theoretically unlimited near-field energy far away from the CML structure.

  10. Influence of sodium hydroxide in enhancing the surface plasmon resonance of silver nanoparticles

    Science.gov (United States)

    Yadav, Vijay D.; Jain, Ratnesh; Dandekar, Prajakta

    2017-08-01

    Herein, we report green synthesis of silver nanoparticles, by confluence graph described previously using acetate as the stabilizer as well as a reducing agent. The process involves use of ‘green’ chemicals and benign synthesis conditions. The synthesized nanoparticles were tuned for their surface plasmon resonance by sodium hydroxide addition and scanned between 400 to 800 nm to study the hyperchromic effect. As the concentration of sodium hydroxide increased, the surface plasmon resonance of the silver nanoparticles at 420 nm increased (hyperchromic effect). The synthesized silver nanoparticles were further characterized by TEM, for morphology analysis and laser scattering for the electromagnetic properties of nanoparticles. Our method may provide a gateway for intensive exploration of innovative approaches in synthesizing silver nanoparticles and tuning (hyperchromic effect) their localized surface plasmon resonance by using sodium hydroxide, which has tremendous utility in diverse application sectors.

  11. Surface-enhanced resonance Raman spectroscopy of copper chlorophyllin on silver and gold colloids

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, P.; Spiro, T.G.

    1988-06-16

    Surface-enhanced resonance Raman spectra (SERRS) are reported for copper chlorophyllin a (CuChl) adsorbed on silver and gold colloids. The surface species are shown to be monomeric, by comparison with solution resonance Raman (RR) spectra, although lowering the pH of the gold colloid to 2.0 induces spectral changes suggestive of surface aggregation. The similarity of CuChl monomer RR and SERRS spectra is consistent with electromagnetic enhancement of the RR spectra via the metal particles, with no indication of a chemical interaction that would perturb the electronic states. The SERRS spectra change markedly with excitation wavelength in ways that can be explained on the basis of the different Raman enhancement pattern expected for resonance with the different chlorin excited states. The SERRS spectra are highly resolved and are useful in suggesting new assignments for chlorin vibrational modes.

  12. Localized surface phonon polariton resonances in polar gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Kaijun, E-mail: kfeng@nd.edu; Islam, S. M.; Verma, Jai; Hoffman, Anthony J. [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Streyer, William; Wasserman, Daniel [Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2015-08-24

    We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4–18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.

  13. Surface plasmon resonance scattered by a dielectric sphere

    Science.gov (United States)

    Hong, Xin; Yin, Xuejie

    2016-11-01

    It is well known that when total internal reflection occurs at the interface between high to low refractive index, evanescent field will go into the media with low refractive index. This field can be scattered by a small dielectric particle on the surface. In this paper, with the aim to enhance the scattering field we introduced a thin gold film, the filed modified by the metallic film was theoretically calculated by FDTD solver. Further a polystyrene bead at the diameter of 200nm and 800nm was employed to test the model. Theoretical and experimental results agree well with each other that the locally excitated surface plasmon play a dominant role in the field enhancement scattered by the sphere.

  14. Influence of constant and ac electric fields on ferromagnetic resonance in magnetoelectric composites

    Science.gov (United States)

    Tatarenko, A. S.; Bichurin, M. I.; Petrov, V. M.; Fillipov, D. A.; Srinivasan, G.

    2004-03-01

    A composite of ferromagnetic and ferroelectric phases is expected to show magnetoelectric coupling that is mediated by mechanical deformation. For such composites, we proposed a model to treat the magnetoelectric (ME) coupling at frequencies corresponding to ferromagnetic resonance (FMR) [1,2]. The effect manifests as a shift in the resonance field when subjected to a constant electric field. Here we discuss a theory for the influence of both dc and high frequency electric fields on FMR in the composites. The model predicts a significant increase in the strength of ME coupling when the electric field is tuned to the electromechanical resonance (EMR) frequency. We assume the composite to be a homogeneous medium. By solving combined elastostatics, electrostatics and magnetostatics equations, we estimate the ME constants using effective parameters. The calculations are for 3-0, 0-3 and 2-2 connectivities. Expressions for ME coefficients are obtained as a function of interface coupling and the volume fraction for the piezoelectric phase. Under the influence of a constant electric field E, our model predicts a shift in the ferromagnetic resonance field that is proportional to ME constants. In the presence of an ac electric field, we estimate a strong ME coupling when the frequency is tuned to EMR. As an example, the FMR field shift at 9.3 GHz due an ac electrical field tuned to EMR at 350 kHz is determined for multilayer and bulk composites of nickel ferrite - lead zirconate titanate. It is shown that ME interactions are enhanced by several orders of magnitude compared to off resonance values. 1. M.I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan. Phys. Rev. B 64, 094409 (2001). 2. M.I. Bichurin, V. M. Petrov, Yu. V. Kiliba, and G. Srinivasan. Phys. Rev. B 66, 134404 (2002). - supported by grants from the Russian Ministry of Education (Å02-3.4-278), the Universities of Russia Foundation (UNR 01.01.007), and the National Science

  15. Optical properties of surface plasmon resonances of coupled metallic nanorods.

    Science.gov (United States)

    Smythe, Elizabeth J; Cubukcu, Ertugrul; Capasso, Federico

    2007-06-11

    We present a systematic study of optical antenna arrays, in which the effects of coupling between the antennas, as well as of the antenna length, on the reflection spectra are investigated and compared. Such arrays can be fabricated on the facet of a fiber, and we propose a photonic device, a plasmonic optical antenna fiber probe, that can potentially be used for in-situ chemical and biological detection and surface-enhanced Raman scattering.

  16. Study on Dielectric Function Models for Surface Plasmon Resonance Structure

    Directory of Open Access Journals (Sweden)

    Peyman Jahanshahi

    2014-01-01

    Full Text Available The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.

  17. Localized surface plasmon resonance mercury detection system and methods

    Energy Technology Data Exchange (ETDEWEB)

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  18. Influence of a prophylaxis paste on surface roughness of different composites, porcelain, enamel and dentin surfaces

    OpenAIRE

    2012-01-01

    Objective: To investigate the effect of a prophylaxis paste on surface roughness of different composites, enamel, dentin and porcelain surfaces. Methods: Three different composites (FiltekZ250/Group1, Filtek Supreme XT/Group2, Premise/Group3), enamel/Group4, dentin/Group5 and porcelain/Group6 samples were used in this study. All specimens were prepared flat by SiC discs and polished with a diamond polishing paste. The surface roughness measurements were determined with a profilometer after po...

  19. Higher-Order Bragg Resonance in Gravity Surface Waves over Periodic Bottoms

    Institute of Scientific and Technical Information of China (English)

    XIAO Yu-Meng; TAO Zhi-Yong; WANG Xin-Long

    2006-01-01

    @@ A calculation method based on the Bloch theorem is developed for the gravity surface waves over the periodic bottoms of large undulations. The study shows the existence of comparable high-order bandgaps, which are demonstrated to result from the higher-order Bragg resonances, i.e. the resonant interactions between surface waves and the harmonic components of the fluctuating bottom. It is also shown that the band widths of the high-order gaps are quite sensitive to the amplitudes of high-order harmonics of the bottom.

  20. Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance

    OpenAIRE

    2012-01-01

    4/24/2014 PLOS ONE: Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044392 1/9 Published: August 29, 2012 DOI: 10.1371/journal.pone.0044392 Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance Rıza Kizilel , Enis Demir, Selimcan Azizoglu, Hande Asımgi, Ibrahim Halil Kavakli , Seda Kizilel Corrections 25 Oct 2012: Kizilel R, Demir E, Aziz...

  1. Determination of dipyridamole by modified extraction-gravimetry with a surface acoustic wave resonator sensor.

    Science.gov (United States)

    Liu, D Z; Wang, R H; Nie, L H; Yao, S Z

    1996-08-01

    A simple and sensitive extraction-gravimetric method for the determination of dipyridamole is presented. The method is based on the extraction of free dipyridamole with chloroform, after neutralization with a basic agent, followed by measurement of the frequency shift response of the specially designed surface acoustic wave resonator sensor after evaporation of the extractant from the surface of the resonator. The frequency shift response was proportional to the amount of dipyridamole in the range 0.065-1.12 micrograms. Experimental parameters and the effect of interfering substances on the assay of dipyridamole were also examined in this study. The method was applied to the determination of dipyridamole in tablets.

  2. Grating-coupled surface plasmon resonance in conical mounting with polarization modulation.

    Science.gov (United States)

    Ruffato, G; Romanato, F

    2012-07-01

    A grating-coupled surface plasmon resonance (GCSPR) technique based on polarization modulation in conical mounting is presented. A metallic grating is azimuthally rotated to support double-surface plasmon polariton excitation and exploit the consequent sensitivity enhancement. Corresponding to the resonance polar angle, a polarization scan of incident light is performed, and reflectivity data are collected before and after functionalization with a dodecanethiol self-assembled monolayer. The output signal exhibits a harmonic dependence on polarization, and the phase term is used as a parameter for sensing. This technique offers the possibility of designing extremely compact, fast, and cheap high-resolution plasmonic sensors based on GCSPR.

  3. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...... theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall perspective...

  4. Effect of temperature, curing time, and filler composition on surface microhardness of composite resins

    OpenAIRE

    Dimitrios Dionysopoulos; Constantinos Papadopoulos; Eugenia Koliniotou-Koumpia

    2015-01-01

    Aim: The aim of this study was to evaluate the microhardness of two composite resins when subjected to three different temperatures and three different light-curing times. Materials and Methods: Two composites were used; Filtek Z250 and Grandio. Three different temperatures (23, 37, and 55 o C) were used, utilizing a composite warmer. The heated samples were immediately injected into cylindrical molds (6 mm × 2 mm) and the top surface of the specimens was polymerized for 10, 20, and 40 se...

  5. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film.

    Science.gov (United States)

    Wang, Shuang-Yue; Ma, Jin-Yi; Li, Zhi-Jie; Su, H Q; Alkurd, N R; Zhou, Wei-Lie; Wang, Lu; Du, Bo; Tang, Yong-Liang; Ao, Dong-Yi; Zhang, Shou-Chao; Yu, Q K; Zu, Xiao-Tao

    2015-03-21

    A surface acoustic wave (SAW) resonator with ZnO/SiO2 (ZS) composite film was used as an ammonia sensor in this study. ZS composite films were deposited on the surface of SAW devices using the sol-gel method, and were characterized using SEM, AFM, and XRD. The performance of the sensors under ammonia gas was optimized by adjusting the molar ratio of ZnO:SiO2 to 1:1, 1:2 and 1:3, and the sensor with the ratio of ZnO to SiO2 equaling to 1:2 was found to have the best performance. The response of sensor was 1.132 kHz under 10 ppm NH3, which was much higher than that of the sensor based on a pristine ZnO film. Moreover, the sensor has good selectivity, reversibility and stability at room temperature. These can be attributed to the enhanced absorption of ammonia and unique surface reaction on composite films due to the existence of silica. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Frontal slab composite magnetic resonance neurography of the brachial plexus: implications for infraclavicular block approaches.

    Science.gov (United States)

    Raphael, David T; McIntee, Diane; Tsuruda, Jay S; Colletti, Patrick; Tatevossian, Ray

    2005-12-01

    Magnetic resonance neurography (MRN) is an imaging method by which nerves can be selectively highlighted. Using commercial software, the authors explored a variety of approaches to develop a three-dimensional volume-rendered MRN image of the entire brachial plexus and used it to evaluate the accuracy of infraclavicular block approaches. With institutional review board approval, MRN of the brachial plexus was performed in 10 volunteer subjects. MRN imaging was performed on a GE 1.5-tesla magnetic resonance scanner (General Electric Healthcare Technologies, Waukesha, WI) using a phased array torso coil. Coronal STIR and T1 oblique sagittal sequences of the brachial plexus were obtained. Multiple software programs were explored for enhanced display and manipulation of the composite magnetic resonance images. The authors developed a frontal slab composite approach that allows single-frame reconstruction of a three-dimensional volume-rendered image of the entire brachial plexus. Automatic segmentation was supplemented by manual segmentation in nearly all cases. For each of three infraclavicular approaches (posteriorly directed needle below midclavicle, infracoracoid, or caudomedial to coracoid), the targeting error was measured as the distance from the MRN plexus midpoint to the approach-targeted site. Composite frontal slabs (coronal views), which are single-frame three-dimensional volume renderings from image-enhanced two-dimensional frontal view projections of the underlying coronal slices, were created. The targeting errors (mean +/- SD) for the approaches-midclavicle, infracoracoid, caudomedial to coracoid-were 0.43 +/- 0.67, 0.99 +/- 1.22, and 0.65 +/- 1.14 cm, respectively. Image-processed three-dimensional volume-rendered MNR scans, which allow visualization of the entire brachial plexus within a single composite image, have educational value in illustrating the complexity and individual variation of the plexus. Suggestions for improved guidance during

  7. Surface composites fabricated by vacuum infiltration casting technique

    Institute of Scientific and Technical Information of China (English)

    Guirong Yang; Yuan Hao; Wenming Song; Jinjun Lü; Ying Ma

    2005-01-01

    Alumina (Al2O3) particles reinforced copper matrix surface composites were fabricated on the bronze substrate using the vacuum infiltration casting technique. Three cases were obtained in the vacuum infiltration casting technique: no infiltration, partial infiltration and full infiltration (the thickness of preforms do not exceed 3.5 mm). The reason of no infiltration is that the vacuum degree is not enough so that the force acting on the liquid metal is lower than the resistance due to the surface tension. Partial infiltration is because of somewhat lower vacuum degree and pouring temperature. Full desired infiltration is on account of suitable infiltration casting conditions, such as vacuum degree, pouring temperature, grain size and preheating temperature of the preform. The most important factor of affecting formation of surface composites is the vacuum degree, then pouring temperature and particle size.The infiltration mechanism was discussed on the bases of different processing conditions. The surface composite up to 3.5 mm in thickness with uniformly distributed Al2O3 particles could be fabricated via the vacuum infiltration casting technique.

  8. Surface acoustic wave resonators on a ZnO-on-Si layered medium

    Science.gov (United States)

    Martin, S. J.; Schwartz, S. S.; Gunshor, R. L.; Pierret, R. F.

    1983-02-01

    The adaptation of surface acoustic wave resonator technology to a ZnO-on-Si layered medium is presented. Several distributed reflector schemes are considered, including shorted and isolated metallic strips, as well as grooves etched in the ZnO layer. In the case of etched groove reflectors, a first-order velocity perturbation arises due to the dispersive nature of the layered medium. Unique resonator design considerations result from the reflector array velocity and reflectivity characteristics. Transverse mode resonances are characterized and their effect on resonator response eliminated by a novel transducer design. A technique for temperature compensating the devices by use of a thermal SiO2 layer is discussed.

  9. Dielectric surface loss in superconducting resonators with flux-trapping holes

    Science.gov (United States)

    Chiaro, B.; Megrant, A.; Dunsworth, A.; Chen, Z.; Barends, R.; Campbell, B.; Chen, Y.; Fowler, A.; Hoi, I. C.; Jeffrey, E.; Kelly, J.; Mutus, J.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Martinis, John M.

    2016-10-01

    Surface distributions of two level system (TLS) defects and magnetic vortices are limiting dissipation sources in superconducting quantum circuits. Arrays of flux-trapping holes are commonly used to eliminate loss due to magnetic vortices, but may increase dielectric TLS loss. We find that dielectric TLS loss increases by approximately 25% for resonators with a hole array beginning 2 μ {{m}} from the resonator edge, while the dielectric loss added by holes further away was below measurement sensitivity. Other forms of loss were not affected by the holes. Additionally, we estimate the loss due to residual magnetic effects to be 9× {10}-10 {μ {{T}}}-1 for resonators patterned with flux-traps and operated in magnetic fields up to 5 μ {{T}}. This is orders of magnitude below the total loss of the best superconducting coplanar waveguide resonators.

  10. Influence of nanoparticle-graphene separation on the localized surface plasmon resonances of metal nanoparticles

    CERN Document Server

    Saadabad, Reza Masoudian; Shirdel-Havar, Amir Hushang; Havar, Majid Shirdel

    2015-01-01

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4 nm radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  11. Tuneable and robust long range surface plasmon resonance for biosensing applications

    Science.gov (United States)

    Méjard, Régis; Dostálek, Jakub; Huang, Chun-Jen; Griesser, Hans; Thierry, Benjamin

    2013-10-01

    A multilayered biosensing architecture based on long range surface plasmons (LRSPs) is reported. LRSPs originate from the coupling of surface plasmons on the opposite sides of a thin metal film embedded in a symmetrical refractive index environment. With respect to regular SPs, LRSPs are characterized by extended electromagnetic field profiles and lower losses, making them of high interest in biosensing, especially for large biological entities. LRSPs-supporting layer structures are typically prepared by using fluoropolymers with refractive indices close to that of water. Unfortunately, fluoropolymers have low surface energies which can translate into poor adhesion to substrates and sub-optimal properties of coatings with surface plasmon resonance-active metal layers such as gold. In this work, a multilayered fluoropolymer structure with tuneable average refractive index is described and used to adjust the penetration depth of LRSP from the sensor surface. The proposed methodology also provides a simple solution to increase the adhesion of LRSP-supporting structures to glass substrates. Towards taking full advantage of long range surface plasmon resonance sensors, a novel approach based on the plasma-polymerization of allylamine is also described to improve the quality of gold layers on fluoropolymers such as Teflon AF. Through these advancements, long range surface plasmon resonance sensors were fabricated with figures of merit as high as 466 RIU-1. The remarkable performance of these sensors combined with their high stability is expected to foster applications of LRSPR in biosensing.

  12. Parametric study on nonlinear vibration of composite truss core sandwich plate with internal resonance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jia Nen; Liu, Jun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin (China); Zhang, Wei; Yao, Ming Hui [College of Mechanical Engineering, Beijing University of Technology, Beijing (China); Sun, Min [School of Science, Tianjin Chengjian University, Tianjin (China)

    2016-09-15

    Nonlinear vibrations of carbon fiber reinforced composite sandwich plate with pyramidal truss core are investigated. The governing equation of motion for the sandwich plate is derived by using a Zig-Zag theory under consideration of geometrically nonlinear. The natural frequencies of sandwich plates with different dimensions are calculated and compared with those obtained from the classic laminated plate theory and Reddy's third-order shear deformation plate theory. The frequency responses and waveforms of the sandwich plate when 1:3 internal resonance occurs are obtained, and the characteristics of the internal resonance are discussed. The influences of layer number of face sheet, strut radius, core height and inclination angle on the nonlinear responses of the sandwich plate are analyzed. The results demonstrate that the strut radius and inclination angle mainly affect the resonance frequency band of the sandwich plate, and the layer number and core height not only influence the resonance frequency band but also significantly affect the response amplitude.

  13. Scattering properties of vein induced localized surface plasmon resonances on a gold disk

    KAUST Repository

    Amin, Muhammad

    2011-12-01

    It is demonstrated via simulations that a gold nano-disk with a non-concentric cavity supports localized surface plasmon resonances over a frequency band that includes the visible and the near-infrared parts of the spectrum. The charge distribution on the disk indicates that the two distinct peaks in the scattering cross section are due to the (hybridized) higher-order plasmon modes; plasmon hybridization that involves the dipole modes of the disk and the cavity enforces the "coupling" of the plane-wave excitation to the originally-dark higher-order modes. It is further demonstrated that the resonance frequencies can be tuned by varying the radius of the embedded non-concentric cavity. The near-field enhancement observed at these two tunable resonance frequencies suggests that the proposed structure can be used as a substrate in surface enhanced spectroscopy applications. © 2011 IEEE.

  14. Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance

    CERN Document Server

    Szalai, Aniko; Somogyi, Aniko; Szenes, Andras; Banhelyi, Balazs; Csapo, Edit; Dekany, Imre; Csendes, Tibor; Csete, Maria

    2016-01-01

    Plasmonic biosensing chips were prepared by fabricating wavelength-scaled dielectric-metal interfacial gratings on thin polycarbonate films covered bimetal layers via two-beam interference laser lithography. Lysozyme (LYZ) biomolecules and gold nanoparticle (AuNP-LYZ) bioconjugates with 1:5 mass ratio were seeded onto the biochip surfaces. Surface plasmon resonance spectroscopy was performed before and after biomolecule seeding in a modified Kretschmann-arrangement by varying the azimuthal and polar angles to optimize the conditions for rotated grating-coupling. The shift of secondary and primary resonance peaks originating from rotated grating-coupling phenomenon was monitored to detect the biomolecule and bioconjugate adherence. Numerical calculations were performed to reproduce the measured reflectance spectra and the resonance peak shifts caused by different biocoverings. Comparison of measurements and calculations proved that monitoring the narrower secondary peaks under optimal rotated-grating coupling ...

  15. Fermi surface traversal resonance in metals: two theories and an experiment

    Science.gov (United States)

    Ardavan, Arzhang; Schrama, J. M.; Blundell, S. J.; Singleton, J.; Semeno, A.; Goy, Philippe; Kurmoo, M.; Day, P.

    1999-09-01

    Fermi-surface traversal resonance (FTR) is caused by the periodic motion of carriers in a magnetic field across open sections of Fermi surface (FS). Owing to the warping of the FS, the real space velocities of the carries oscillate, generating resonances in the high frequency conductivity which may be described by a semiclassical model. A rectangular resonance cavity, oscillating at 70 GHz, which can rotate in the external magnetic field, has been used to confirm the existence of the effect in the organic metal (alpha) -(BEDT-TTF)2KHg(SCN)4. The data contain a great deal of information about the FS, including the direction and anharmonicity of warping components. A quantum mechanical model is presented which predicts all of the features of FTR appearing in the semiclassical model. This confirms that FTR is a fundamental property of low- dimensional systems, existing under a very wide range of conditions.

  16. Evidence on a link between the intensity of Schumann resonance and global surface temperature

    Directory of Open Access Journals (Sweden)

    Sekiguchi

    2006-08-01

    Full Text Available A correlation is investigated between the intensity of the global electromagnetic oscillations (Schumann resonance with the planetary surface temperature. The electromagnetic signal was monitored at Moshiri (Japan, and temperature data were taken from surface meteorological observations. The series covers the period from November 1998 to May 2002. The Schumann resonance intensity is found to vary coherently with the global ground temperature in the latitude interval from 45° S to 45° N: the relevant cross-correlation coefficient reaches the value of 0.9. It slightly increases when the high-latitude temperature is incorporated. Correspondence among the data decreases when we reduce the latitude interval, which indicates the important role of the middle-latitude lightning in the Schumann resonance oscillations. We apply the principal component (or singular spectral analysis to the electromagnetic and temperature records to extract annual, semiannual, and interannual variations. The principal component analysis (PCA clarifies the links between electromagnetic records and meteorological data.

  17. Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation.

    Science.gov (United States)

    Kari, Otto K; Rojalin, Tatu; Salmaso, Stefano; Barattin, Michela; Jarva, Hanna; Meri, Seppo; Yliperttula, Marjo; Viitala, Tapani; Urtti, Arto

    2017-04-01

    When nanocarriers are administered into the blood circulation, a complex biomolecular layer known as the "protein corona" associates with their surface. Although the drivers of corona formation are not known, it is widely accepted that this layer mediates biological interactions of the nanocarrier with its surroundings. Label-free optical methods can be used to study protein corona formation without interfering with its dynamics. We demonstrate the proof-of-concept for a multi-parametric surface plasmon resonance (MP-SPR) technique in monitoring the formation of a protein corona on surface-immobilized liposomes subjected to flowing 100 % human serum. We observed the formation of formulation-dependent "hard" and "soft" coronas with distinct refractive indices, layer thicknesses, and surface mass densities. MP-SPR was also employed to determine the affinity (K D ) of a complement system molecule (C3b) with cationic liposomes with and without polyethylene glycol. Tendency to create a thick corona correlated with a higher affinity of opsonin C3b for the surface. The label-free platform provides a fast and robust preclinical tool for tuning nanocarrier surface architecture and composition to control protein corona formation.

  18. Surface-enhanced gallium arsenide photonic resonator with a quality factor of six million

    CERN Document Server

    Guha, Biswarup; Cadiz, Fabian; Morgenroth, Laurence; Ulin, Vladimir; Berkovitz, Vladimir; Lemaître, Aristide; Gomez, Carmen; Amo, Alberto; Combrié, Sylvian; Gérard, Bruno; Leo, Giuseppe; Favero, Ivan

    2016-01-01

    Gallium Arsenide and related compound semiconductors lie at the heart of optoelectronics and integrated laser technologies. Shaped at the micro and nano-scale, they allow strong interaction with quantum dots and quantum wells, and promise to result in stunning devices. However gallium arsenide optical structures presently exhibit lower performances than their silicon-based counterparts, notably in nanophotonics where the surface plays a chief role. Here we report on advanced surface control of miniature gallium arsenide optical resonators, using two distinct techniques that produce permanent results. One leads to extend the lifetime of free-carriers and enhance luminescence, while the other strongly reduces surface absorption originating from mid-gap states and enables ultra-low optical dissipation devices. With such surface control, the quality factor of wavelength-sized optical disk resonators is observed to rise up to six million at telecom wavelength, greatly surpassing previous realizations and opening n...

  19. Spin polarized surface resonance bands in single layer Bi on Ge(1 1 1)

    Science.gov (United States)

    Bottegoni, F.; Calloni, A.; Bussetti, G.; Camera, A.; Zucchetti, C.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2016-05-01

    The spin features of surface resonance bands in single layer Bi on Ge(1 1 1) are studied by means of spin- and angle-resolved photoemission spectroscopy and inverse photoemission spectroscopy. We characterize the occupied and empty surface states of Ge(1 1 1) and show that the deposition of one monolayer of Bi on Ge(1 1 1) leads to the appearance of spin-polarized surface resonance bands. In particular, the C 3v symmetry, which Bi adatoms adopt on Ge(1 1 1), allows for the presence of Rashba-like occupied and unoccupied electronic states around the \\overline{\\text{M}} point of the Bi surface Brillouin zone with a giant spin-orbit constant |{α\\text{R}}| =≤ft(1.4+/- 0.1\\right) eV · Å.

  20. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor.

    Science.gov (United States)

    Albert, Jacques; Lepinay, Sandrine; Caucheteur, Christophe; Derosa, Maria C

    2013-10-01

    A surface plasmon resonance biochemical sensor based on a tilted fiber Bragg grating imprinted in a single mode fiber core is demonstrated. A 30-50 nm thick gold coating on the cladding of the fiber provides the support for surface plasmon waves whose interaction with attached biomolecules is monitored at near infrared wavelengths near 1,550 nm. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with the broader absorption of the surface plasmon and thus provide a unique tool to measure small shifts of the plasmon with high accuracy. The attachment on the gold surfaces of aptamers with specific affinities for proteins provides the required target-analyte system and is shown to be functional in the framework of our sensing device. The implementation of the sensor either as a stand-alone device or as part of a multi-sensor platform is also described. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  2. Scalar Resonance at 750 GeV as Composite of Heavy Vector-Like Fermions

    Science.gov (United States)

    Liao, Wei; Zheng, Han-Qing

    2016-08-01

    We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The scalar singlet decays to SM vector bosons through loop of heavy vector-like fermions. We show that the surprisingly large production cross section of di-photon events at 750 GeV resonance and the odd decay properties can all be explained. This model serves as a good model for both SM Higgs and a scalar resonance at 750 GeV. Supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 11135009, 11375065 and 10925522

  3. Novel resonator based on composite right/left-handed transmission lines

    Institute of Scientific and Technical Information of China (English)

    LI Chao; LI Fang

    2006-01-01

    A new approach was introduced to analyze composite right/left-handed transmission lines (CRLH TLs). The Bloch impedance and the dispersion relations are directly obtained from the S parameters of the unit cells. The LH and RH frequency bands are then identified by the real parts of the Bloch impedance and the phase delay of the unit cells. The new approach has some advantages over the LC parameters extraction method introduced by Caloz et al.(2004). Based on the new approach, a novel resonator is designed using CRLH TLs. The simulation and experimental results accorded well with the theoretical analysis. The novel resonator may have potential applications in filters with high harmonic suppression and compact structures.

  4. Enhanced Sensitivity of Surface Plasmon Resonance Sensor Based on Bilayers of Silver-Barium Titanate

    Directory of Open Access Journals (Sweden)

    S. Fouad

    2016-12-01

    Full Text Available Surface plasmon resonance (SPR sensors have been widely adopted with various fields such as physics, chemistry, biology and biochemistry. SPR sensor has many advantages like the less number of sensing samples required, freedom of electromagnetic interference and higher sensitivity. This research investigates the phase interrogation technique of a surface plasmon resonance sensor based on silver and thin film dielectric material of Barium titanate layers. Barium titanate (BaTiO3 layer is adopted due to its excellent dielectric properties such as high dielectric constant and low dielectric loss. The numerical results demonstrate that the fusion of the proposed material BaTiO3 layer into surface plasmon resonance sensor yields a higher sensitivity of 280 degree/RIU in comparison with surface plasmon resonance sensor without BaTiO3 layer which shows only a sensitivity of 120 degree/RIU. As the thickness of this layer increases from 5 nm to 10 nm, the sensitivity is enhanced from 160 degree/RIU to 280 degree/RIU for a fixed metal layer of silver with a thickness of (70 nm.

  5. Studies on Interactions of Antibiotics with Serum Albumin by Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Characterizing how chemical compounds binding to serum albumin is essential in evaluating drug candidates and is the focus of this study. A surface plasmon resonance biosensor developed in this laboratory was used to determine the binding constants of antibiotics with serum albumin. The binding constants of five antibiotics(azithromycin, spectinomycin, gentamycin, metacycline and kanamycin) with serum albumins were obtained.

  6. Surface plasmon resonance (SPR) detection of Staphylococcal Enterotoxin A in food samples

    Science.gov (United States)

    An automated and rapid method for detection of staphylococcal enterotoxins (SE) is needed. A sandwich assay was developed using a surface plasmon resonance (SPR) biosensor for detection of staphylococcal enterotoxin A (SEA) at subpicomolar concentration. Assay conditions were optimized for capturing...

  7. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...

  8. Improvement of the Specificity of Surface Plasmon Resonance with BSA-modified Chip

    Institute of Scientific and Technical Information of China (English)

    Li Hua CHEN

    2006-01-01

    A chip was modified with bovine serum albumin (BSA), then interaction between glutathione (GSH) immobilized on the top of BSA and glutathione-S-transferase (GST) was examined, using surface plasmon resonance (SPR). The SPR results showed that BSA-modified chip was effective not only in binding the target proteins but also in suppressing the nonspecific binding (NSB) of proteins.

  9. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia...

  10. Development of a biosensor microarray towards food screening using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Rebe, S.; Bremer, M.G.E.G.; Giesbers, M.; Norde, W.

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration c

  11. Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass

    Science.gov (United States)

    Chicken is one of the most popular meat products in the world. Salmonella Typhimurium is a common foodborne pathogens associated with the processing of poultry. An optical Surface Plasmon Resonance (SPR) biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The Spr...

  12. Detection of benzimidazole carbamates and amino metabolites in liver by surface plasmon resonance-biosensor

    Science.gov (United States)

    Two surface plasmon resonance (SPR) biosensor screening assays were developed and validated to detect 11 benzimidazole carbamate (BZT) and four amino-benzimidazole veterinary drug residues in liver tissue. The assays used polyclonal antibodies, raised in sheep, to detect BZTs and amino-benzimidazole...

  13. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangi...

  14. Detection of Fungal Spores Using a Generic Surface Plasmon Resonance Immunoassay

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hearty, Stephen; Frøkiær, Hanne

    2007-01-01

    This paper describes a biosensor-based method for detection of fungal spores using Surface Plasmon Resonance (SPR). The approach involves the use of a mouse monoclonal antibody (Pst mAb8) and a SPR sensor for label-free detection of urediniospores from the model organism Puccinia striiformis f.sp...

  15. Detection of mycotoxins using imaging surface plasmon resonance (iSPR)

    Science.gov (United States)

    Significant progress has been made in the development of biosensors that can be used to detect mycotoxins. One technology that has been extensively tested is surface plasmon resonance (SPR). In 2003 a multi-toxin method was reported that detected aflatoxin B1 (AFB1), zearalenone (ZEA), fumonisin B1 ...

  16. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors

    NARCIS (Netherlands)

    Maljaars, C.E.P.; de Souza, A.C.; Halkes, K.M.; Upton, P.J.; Reeman, S.M.; André, S.; Gabius, H.-J.; McDonnell, M.B.; Kamerling, J.P.

    2008-01-01

    The development of a biosensor based on surface plasmon resonance is described for the detection of carbohydrate-binding proteins in solution on a Biacore 2000 instrument, using immobilized glycopeptides as ligands. Their selection was based on previous screenings of solid-phase glycopeptide

  17. The application of neoglycopeptides in the development of sensitive surface plasmon resonance-based biosensors

    NARCIS (Netherlands)

    Maljaars, C.E.P.; de Souza, A.C.; Halkes, K.M.; Upton, P.J.; Reeman, S.M.; André, S.; Gabius, H.-J.; McDonnell, M.B.; Kamerling, J.P.

    2008-01-01

    The development of a biosensor based on surface plasmon resonance is described for the detection of carbohydrate-binding proteins in solution on a Biacore 2000 instrument, using immobilized glycopeptides as ligands. Their selection was based on previous screenings of solid-phase glycopeptide librari

  18. A Surface Plasmon Resonance Immunosensor for Detection of urediniospores from Puccinia striiformis f. sp. tritici

    DEFF Research Database (Denmark)

    Skottrup, Peter; Hearty, Stephen; Frøkiær, Hanne;

    2006-01-01

    This study describes a generic biosensing principle for detection of fungal spores using surface plasmon resonance (SPR). The approach involves the use of a mouse monoclonal antibody (mAb) and a SPR sensor for label-free detection of the model organism Puccinia striiformis f.sp. tritici (Pst). We...

  19. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    Science.gov (United States)

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  20. Detection of egg yolk antibodies reflecting Salmonella enteritidis infections using a surface plasmon resonance biosensor

    NARCIS (Netherlands)

    Thomas, M.E.; Bouma, A.; Eerden, van E.; Landman, W.J.M.; Knapen, van F.; Stegeman, J.A.; Bergwerff, A.A.

    2006-01-01

    A surface plasmon resonance (SPR) biosensor assay was developed on the basis of a lipopolysaccharide antigen of Salmonella enterica serovar enteritidis (S. enterica serovar enteritidis) to detect egg yolk antibodies against S. enterica serovar enteritidis. This biosensor assay was compared to two co

  1. Vapor sensing by means of a ZnO-on-Si surface acoustic wave resonator

    Science.gov (United States)

    Martin, S. J.; Schweizer, K. S.; Schwartz, S. S.; Gunshor, R. L.

    Surface Acoustic Wave (SAW) devices can function as sensitive detectors of vapors. The high surface acoustic energy density of the device makes it extremely sensitive to the presence of molecules adsorbed from the gas phase. Mass loading by the adsorbate is the primary mechanism for the surface wave velocity perturbation. If the device is used as the frequency control element of an oscillator, perturbations in wave velocity on the order of 10 parts per billion may be resolved by means of a frequency counter. Zno-on-Si SAW resonators have been examined as vapor sensors. The piezoelectric ZnO layer permits transduction between electrical and acoustic energies, as well as endowing the surface with particular adsorptive properties. These devices exhibit C-values up to 12,000 at a resonant frequency of 109 MHZ. The resonant frequency of the device shifts upon exposure to a vapor-air mixture, with a transient response which is distinct for each of the organic vapors tested. Due to the permeability of the polycrystalline ZnO layer, the instantaneous reversibility of the resonant frequency shift is found to depend on the type of adsorbed molecule.

  2. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Bremer, Maria G. E. G.; Giesbers, Marcel; Norde, Willem

    2008-01-01

    In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration c

  3. Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2005-01-01

    The commercial availability of instruments, such as Biacore, that are capable of monitoring surface plasmon resonance (SPR) has greatly simplified the quantification of protein-protein interactions. Already, this technique has been used for some studies of the ubiquitin-proteasome system. Here we...

  4. Enhancing the gas sensitivity of surface plasmon resonance with a nanoporous silica matrix

    NARCIS (Netherlands)

    Berrier, A.; Offermans, P.; Cools, R.; Megen, B. van; Knoben, W.; Vecchi, G.; Rivas, J.G.; Crego-Calama, M.; Brongersma, S.H.

    2011-01-01

    The development of sensing schemes for the detection of health-threatening gases is an attractive subject for research towards novel integrated autonomous sensor systems. We report here on a novel way of sensing NO\\2 by surface plasmon resonance (SPR) using a gas-sensitive layer composed of

  5. Sensitivity Dependence of Surface Plasmon Resonance Based Sensors on Prism Refractive Index

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We theoretically and experimentally demonstrate that refractive index of the prism used toload metal film has significant influence on sensitivity of surface plasmon resonance based sensors. Theprism with lower refractive index gives the sensors a higher sensitivity in detecting refractive index varia-tions of a sample. We attribute this effect to the fact that a prism with low refractive index will increasecoupling distance between surface plasmons and the medium under investigation.

  6. Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces.

    Science.gov (United States)

    Soboleva, I V; Moskalenko, V V; Fedyanin, A A

    2012-03-23

    The Goos-Hänchen effect and Fano resonance are studied in photonic crystals that are considered Fourier counterparts in wave-vector-coordinate space. The Goos-Hänchen effect, which is enhanced by the excitation of Bloch surface electromagnetic waves, is visualized using far-field microscopy and measured at the surface of photonic crystals by angular spectroscopy. The maximal Goos-Hänchen shift is observed to be 66  μm.

  7. Improving Acousto-Optical Interaction by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    The finite element method is employed to model surface acoustic waves generated by high aspect ratio electrodes and their interaction with an optical wave in a waveguide. With a periodic model it is first shown that these electrodes act as a mechanical resonator, which introduces several confined...... types of surface acoustic waves compared to using a conventional interdigital transducer with thin electrodes. Thus, this indicates a way to improve acousto-optical interaction for integrated modulators....

  8. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Science.gov (United States)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  9. Chemical composition and surface charge properties of montmorillonite

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-wen; HU Min; HU Yue-hua

    2008-01-01

    The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe2O3 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe2O3 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(b0) of the montmofillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does c0sinβ with mass fractions of SiO2 and Fe2O3. And there is no specific relationship between bo and IEP of different montmori Uonites, but there is positive correlation between c0sinβ and IEP of different montmorillonite samples.

  10. Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays

    Science.gov (United States)

    2015-07-01

    UNCLASSIFIED UNCLASSIFIED Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays Claire...arrays to the surface of a composite hydrofoil and reports on an experiment to measure surface strains from the hydrofoil under static and fatigue...July 2015 APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Measurement of Surface Strains from a Composite Hydrofoil using

  11. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H2SO4 and CaCl2. Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H2SO4 and CaCl2; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites.

  12. Study of the surface composition on alumina-NbC composites

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.R.B. da; Acchar, W.; Costa, J.A.P. da; Losch, W.H. [Dept. de Fisica Teorica e Experimental, Univ. Federal do Rio Grande do Norte (Brazil)

    2001-09-16

    The aim of this work is to analyse an alumina-NbC based composite ceramic made from a polymeric precursor (polysiloxane), alumina and metallic niobium. The materials have a fixed concentration of 60 wt% of polymer and 40% of a mixture of niobium and alumina. These materials are mixed and sintered at 1450 C for 6 h. Alumina based composites have been proposed as excellent materials for use as cutting tools, so knowledge of the superficial composition is extremely important because it is directly related to the hardness and abrasion resistance. Analysis of the surface composition was carried out by electron spectroscopy. It should be emphasized that there may be a meaningful difference between the surface and the interior composition due to a eventual processes such as element segregation to the surface and/or diffusion of elements from the surface to the sample bulk. The analysis was performed by XPS and Auger for three niobium concentrations 10, 20 and 40 wt%, and the results show the appearance of niobium on the surface only at the Nb composition of 10 wt%; this appears to be due to a process of niobium atom migration ot the interior of the sample or one involving niobium bonds. For the 10 wt% sample after sintering, the formation of NbC on the surface and the presence of niobium Auger peaks were observed. However, for concentrations larger than 10 wt%, oxides and sub-oxides (NbO, NbO{sub 2}, etc.) were formed which may result in the absence of niobium peaks in the spectra. The analysis of the ratio of niobium to carbon atoms at the surface shows a value of 0.1 which reveals that the quantity of niobium and carbon is not sufficient for ideal formation of niobium carbide (NbC). Under these conditions it is verified that there is only a slight formation of niobium carbide on the surface, which is harmful to the hardness of the material. The excess niobium tends to diffuse towards the interior of the sample and react with the oxygen forming sub-oxides. (orig.)

  13. Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate

    Directory of Open Access Journals (Sweden)

    Antonino Parisi

    2008-11-01

    Full Text Available The surface plasmon resonance (SPR technique is a well-known optical method that can be used to measure the refractive index of organic nano-layers adsorbed on a thin metal film. Although there are many configurations for measuring biomolecular interactions, SPR-based techniques play a central role in many current biosensing experiments, since they are the most suited for sensitive and quantitative kinetic measurements. Here we give some results from the analysis and numerical elaboration of SPR data from integrated optics experiments in a particular borosilicate glass, chosen for its composition offering the rather low refractive index of 1.4701 at 633 nm wavelength. These data regard the flow over the sensing region (metal window of different solutions with refractive indexes in the range of interest (1.3÷1.5 for the detection of contaminants in aqueous solutions. After a discussion of the principles of SPR, of the metal window design optimization by means of optical interaction numerical modeling, and of waveguide fabrication techniques, we give a description of system setup and experimental results. Optimum gold film window thickness and width in this guided-wave configuration has been for the first time derived and implemented on an integrated optic prototype device. Its characterization is given by means of the real time waveguide output intensity measurements, which correspond to the interaction between the sensing gold thin film window and the flowing analyte. The SPR curve was subsequently inferred. Finally, a modified version of the device is reported, with channel waveguides arranged in a Y-junction optical circuit, so that laser source stability requirements are lowered by a factor of 85 dB, making possible the use of low cost sources in practical applications.

  14. Handheld Chem/Biosensor Using Extreme Conformational Changes in Designed Binding Proteins to Enhance Surface Plasmon Resonance (SPR)

    Science.gov (United States)

    2016-04-01

    detection system for chemical and biological toxins . Surface Plasmon Resonance (SPR), protein design, protein engineering, supercharged protein ...chemical and biological toxins . Keywords: Surface Plasmon Resonance (SPR), protein design, protein engineering, supercharged protein , metamaterials...even this small index change, should be capable of detecting larger target molecules, such as proteins or even viral or bacterial pathogens, which

  15. Combining nutation and surface gravity observations to estimate the Earth's core and inner core resonant frequencies

    Science.gov (United States)

    Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian

    2017-04-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.

  16. INTERNAL RESONANT INTERACTIONS OF THREE FREE SURFACE-WAVES IN A CIRCULAR CYLINDRICAL BASIN

    Institute of Scientific and Technical Information of China (English)

    马晨明

    2003-01-01

    The basic equations of free capillary-gravity surface-waves in a circular cylindrical basin were derived from Luke' s principle. Taking Galerkin ' s expansion of the velocity potential and the free surface elevation, the second-order perturbation equations were derived by use of expansion of multiple scale. The nonlinear interactions with the second order internal resonance of three free surface-waves were discussed based on the above. The results include:derivation of the couple equations of resonant interactions among three waves and the conservation laws; analysis of the positions of equilibrium points in phase plane; study of the resonant parameters and the non-resonant parameters respectively in all kinds of circumstances; derivation of the stationary solutions of the second-order interaction equations corresponding to different parameters and analysis of the stability property of the solutions; discussion of the effective solutions only in the limited time range. The analysis makes it clear that the energy transformation mode among three waves differs because of the different initial conditions under nontrivial circumstance. The energy may either exchange among three waves periodically or damp or increase in single waves.

  17. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor.

  18. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects

    OpenAIRE

    Raza, Søren; Yan, Wei; Stenger, Nicolas; Wubs, Martijn; Mortensen, N. Asger

    2013-01-01

    We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate ...

  19. Stochastic resonance in surface catalytic oxidation of carbon monoxide induced by colored noise

    Institute of Scientific and Technical Information of China (English)

    GONG Yubing; HOU Zhonghuai; XIN Houwen

    2004-01-01

    The dynamical behavior of surface catalytic oxidation reaction of Pt(110)/CO+O2modulated by colored noise, under the condition of specific temperature, has been investigated when the partial pressure of CO gas is near the supercritical Hopf bifurcation point. By computer simulation the oscillation and stochastic resonance induced by colored noise are observed. The influences of the intensity and correlation time of colored noise on stochastic resonance are discussed. The range of sensitivity of the system to the environmental fluctuation is analyzed.

  20. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    Science.gov (United States)

    Zhang, Bing; Li, Yazhuo; Dong, Wei; Wen, Yizhang; Pang, Kai; Zhan, Shuyue; Wang, Xiaoping

    2016-10-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions.

  1. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Shastri, Kunal Krishnaraj; Zhang, Baile

    2016-01-01

    Localized spoof surface plasmon polaritons (spoof-SPPs) in a graded spoof-plasmonic resonator chain with linearly increasing spacing are experimentally investigated at microwave frequencies. Transmission measurements and direct near-field mappings on this graded chain show that the propagation of localized spoof-SPPs can be cutoff at different positions along the graded chain under different frequencies due to the graded coupling between adjacent resonators. This mechanism can be used to guide localized spoof-SPPs in the graded chain to specific positions depending on the frequency and thereby implement a device that can work as a selective switch in integrated plasmonic circuits. PMID:27149656

  2. Phase effects in guided mode resonances II: measuring the angular phase of a surface plasmon polariton

    Science.gov (United States)

    Theisen, M. J.; Brown, T. G.

    2015-02-01

    We show how the phase of a resonant interaction between a focused beam and a guided mode can be directly observed in a pupil imaging experiment, in which the irradiance leaving the pupil of a standard microscope is relayed to an image sensor through a combination Wollaston prism, calcite beam splitter and polarizer. We apply the method to the observation of a surface plasmon polariton resonance excited in a corrugated silver film fabricated using electron beam lithography. We discuss how this particular imaging configuration could be adapted for applications in plasmonic optical sensing.

  3. Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors

    CERN Document Server

    Su, Chin B

    2007-01-01

    A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.

  4. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Son, J R [National Institute of Agricultural Engineering, RDA, 249 Seodun-dong, Suwon, Republic of Korea 441-100 (Korea, Republic of); Kim, G [National Institute of Agricultural Engineering, RDA, 249 Seodun-dong, Suwon, Republic of Korea 441-100 (Korea, Republic of); Kothapalli, A [Department of Food Science, Purdue University, West Lafayette, IN, USA 47907 (United States); Morgan, M T [Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA 47907 (United States); Ess, D [Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA 47907 (United States)

    2007-04-15

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 10{sup 5} cfu/ml.

  5. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    Science.gov (United States)

    Son, J. R.; Kim, G.; Kothapalli, A.; Morgan, M. T.; Ess, D.

    2007-04-01

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 105 cfu/ml.

  6. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity.

    Science.gov (United States)

    Lin, Kaiqun; Lu, Yonghua; Chen, Junxue; Zheng, Rongsheng; Wang, Pei; Ming, Hai

    2008-11-10

    High sensitivity is obtained at larger resonant incident angle if negative diffraction order of metallic grating is used to excite the surface plasmon. A highly sensitive grating-based surface plasmon resonance (SPR) sensor is designed for the hydrogen detection. A thin palladium (Pd) film deposited on the grating surface is used as transducer. The influences of grating period and the thickness of Pd on the performance of sensor are investigated using rigorous coupled-wave analysis (RCWA) method. The sensitivity as well as the width of the SPR curves and reflective amplitude is considered simultaneously for designing the grating-based SPR hydrogen sensor, and a set of optimized structural parameters is presented. The performance of grating-based SPR sensor is also compared with that of conventional prism-based SPR sensor.

  7. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    CERN Document Server

    Bhattacharya, Jishnu; Antia, H M

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the "surface term." The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun....

  8. Surface plasmon resonator using high sensitive resonance telecommunication wavelengths for DNA sensors of Mycobacterium tuberculosis with thiol-modified probes.

    Science.gov (United States)

    Hsu, Shih-Hsiang; Hung, Shao-Chiang; Chen, Yu-Kun; Jian, Zhi-Hao

    2014-12-25

    Various analytes can be verified by surface plasmon resonance, thus continuous improvement of this sensing technology is crucial for better sensing selection and higher sensitivity. The SPR sensitivity on the wavelength modulation is enhanced with increasing wavelengths. The telecommunication wavelength range was then utilized to detect Mycobacterium tuberculosis (MTB) deoxyribonucleic acid (DNA) under two situations, without immobilization and with 5'-thiol end labeled IS6100 DNA probes, for SPR sensitivity comparison. The experimental data demonstrated that the SPR sensitivity increased more than 13 times with the wavelength modulation after immobilization. Since the operating wavelength accuracy of a tunable laser source can be controlled within 0.001 nm, the sensitivity and resolution on immobilized MTB DNA were determined as 1.04 nm/(μg/mL) and 0.9 ng/mL, respectively.

  9. Thiolene-based microfluidic flow cells for surface plasmon resonance imaging.

    Science.gov (United States)

    Sheppard, Gareth; Oseki, Takao; Baba, Akira; Patton, Derek; Kaneko, Futao; Mao, Leidong; Locklin, Jason

    2011-06-01

    Thiolene-based microfluidic devices have been coupled with surface plasmon resonance imaging (SPRI) to provide an integrated platform to study interfacial interactions in both aqueous and organic solutions. In this work, we develop a photolithographic method that interfaces commercially available thiolene resin to gold and glass substrates to generate microfluidic channels with excellent adhesion that leave the underlying sensor surface free from contamination and readily available for surface modification through self-assembly. These devices can sustain high flow rates and have excellent solvent compatibility even with several organic solvents. To demonstrate the versatility of these devices, we have conducted nanomolar detection of streptavidin-biotin interactions using in situ SPRI.

  10. A saccharides sensor developed by symmetrical optical waveguide-based surface plasmon resonance

    OpenAIRE

    Ang Li; Zhouyi Guo; Qing Peng; Chan Du; Xida Han; Le Liu; Jun Guo; Yonghong He; Yanhong Ji

    2015-01-01

    We proposed a new saccharides sensor developed by symmetrical optical waveguide (SOW)-based surface plasmon resonance (SPR). This unique MgF2/Au/MgF2/Analyte film structure results in longer surface plasmon wave (SPW) propagation lengths and depths, leading to an increment of resolution. In this paper, we managed to decorate the dielectric interface (MgF2 layer) by depositing a thin polydopamine film as surface-adherent that provides a platform for secondary reactions with the probe molecule....

  11. Spectral reflectance of SNC meteorites: Relationships to Martian surface composition

    Science.gov (United States)

    Mcfadden, L. A.

    1987-01-01

    The spectral signatures of each of the Shergottite-Nakhlite-Chassignite (SNC) meteorite types measured to date are unique among extraterrestrial materials. Reflectance spectra of dark regions of Mars show evidence of basaltic composition. Analytic analysis of absorption band positions and widths in reflectance spectra of SNC meteorites will permit comparisons with spectra from approximately 600 km sized regions for which high-quality, near-IR spectra are available. Multi-spectral mapping data from orbital spacecraft is expected to provide the necessary spectra to determine basaltic compositions of smaller regions on Mars provided fresh, unaltered basalts can be observed or the effects of Martian weathering can be understood and removed from the spectra. With modeling of spectral weathering and mixing of SNC meteoritic assemblages it should be possible with the Mars Observer data to test for the presence of SNC analogs on the Martian surface. Before the relationship between the basaltic composition of units on Mars and the SNC meteorites can be addressed, it is necessary to analyze the absorption band parameters of the SNC reflectance spectra and to acquire high resolution spectral data on smaller regions of the Martian surface.

  12. Peptide-functionalized semiconductor surfaces: strong surface electronic effects from minor alterations to backbone composition.

    Science.gov (United States)

    Matmor, Maayan; Lengyel, George A; Horne, W Seth; Ashkenasy, Nurit

    2017-02-22

    The use of non-canonical amino acids is a powerful way to control protein structure. Here, we show that subtle changes to backbone composition affect the ability of a dipeptide to modify solid surface electronic properties. The extreme sensitivity of the interactions to the peptide structure suggests potential applications in improving the performance of electronic devices.

  13. Diffuse Surface Scattering and Quantum Size Effects in the Surface Plasmon Resonances of Low Carrier Density Nanocrystals

    CERN Document Server

    Monreal, R Carmina; Apell, S Peter

    2016-01-01

    The detailed understanding of the physical parameters that determine Localized Surface Plasmon Resonances (LSPRs) is essential to develop new applications for plasmonics. A relatively new area of research has been opened by the identification of LSPRs in low carrier density systems obtained by doping semiconductor quantum dots. We investigate theoretically how diffuse surface scattering of electrons in combination with the effect of quantization due to size (QSE) impact the evolution of the LSPRs with the size of these nanosystems. Two key parameters are the length $R_0$ giving the strength of the QSE and the velocity $\\beta_T$ of the electronic excitations entering in the length scale for diffuse surface scattering. While the QSE itself only produces a blueshift in energy of the LSPRs, the diffuse surface scattering mechanism gives to both energy and linewidth an oscillatory-damped behavior as a function of size, with characteristic lengths that depend on material parameters. Thus, the evolution of the LSPRs...

  14. Kenaf-polypropylene composites: effect of amphiphilic coupling agent on surface properties of fibres and composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2010-10-01

    Full Text Available Water absorption characteristics of kenaf core to use as animal bedding material. Industrial 391 Crops and Products, 2, 73–79. 392 Momany, F.A., Sessa, D.J., Lawton, J.W., Gordon, W., Selling, G.W., Hamaker, S.A.H., & 393 Willet, J.L., (2006...-POLYPROPYLENE COMPOSITES: EFFECT OF AMPHIPHILIC COUPLING AGENT ON SURFACE PROPERTIES OF FIBRES AND COMPOSITES Authors: Maya Jacob John, Cornelia Bellmann, Rajesh D. Anandjiwala PII: S0144-8617(10)00390-5 DOI: doi:10.1016/j.carbpol.2010.05.015 Reference: CARP 4858...

  15. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    Science.gov (United States)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-11-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr2O3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr2O3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr2O3 coatings.

  16. Molecular dynamics and composition of crude oil by low-field nuclear magnetic resonance.

    Science.gov (United States)

    Jia, Zijian; Xiao, Lizhi; Wang, Zhizhan; Liao, Guangzhi; Zhang, Yan; Liang, Can

    2016-08-01

    Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. Previous work show that empirical correlations of relaxation times and diffusion coefficients were found for simple alkane mixtures, and also the shape of the relaxation and diffusion distribution functions are related to the composition of the fluids. The 2D NMR is a promising qualitative evaluation method for oil composition. But uncertainty in the interpretation of crude oil indicated further study was required. In this research, the effect of each composition on relaxation distribution functions is analyzed in detail. We also suggest a new method for prediction of the rotational correlation time distribution of crude oil molecules using low field NMR (LF-NMR) relaxation time distributions. A set of down-hole NMR fluid analysis system is independently designed and developed for fluid measurement. We illustrate this with relaxation-relaxation correlation experiments and rotational correlation time distributions on a series of hydrocarbon mixtures that employ our laboratory-designed downhole NMR fluid analyzer. The LF-NMR is a useful tool for detecting oil composition and monitoring oil property changes. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Multimode filter composed of single-mode surface acoustic wave/bulk acoustic wave resonators

    Science.gov (United States)

    Huang, Yulin; Bao, Jingfu; Tang, Gongbin; Wang, Yiling; Omori, Tatsuya; Hashimoto, Ken-ya

    2017-07-01

    This paper discusses the possibility of realizing multimode filters composed of multiple single-mode resonators by using radio frequency surface and bulk acoustic wave (SAW/BAW) technologies. First, the filter operation and design principle are given. It is shown that excellent filter characteristics are achievable by combining multiple single-mode resonators with identical capacitance ratios provided that their resonance frequencies and clamped capacitances are set properly. Next, the effect of balun performance is investigated. It is shown that the total filter performance is significantly degraded by balun imperfections such as the common-mode rejection. Then, two circuits are proposed to improve the common-mode rejection, and their effectiveness is demonstrated.

  18. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Directory of Open Access Journals (Sweden)

    Solis S.E.

    2012-01-01

    Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.

  19. Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis

    Science.gov (United States)

    Shushama, Kamrun Nahar; Rana, Md. Masud; Inum, Reefat; Hossain, Md. Biplob

    2017-01-01

    In this paper, a graphene coated optical fiber surface plasmon resonance (SPR) biosensor is presented for the detection of DNA Hybridization. For the proposed sensor, a four layer model (fiber core /metal /sensing layer /sample) where a sheet of graphene (biomolecular recognition elements (BRE)) acting as a sensing layer is coated around the gold film because graphene enhances the sensitivity of fiber optic SPR biosensor. Numerical analysis shows the variation of resonance wavelength and spectrum of transmitted power for mismatched DNA strands and for complementary DNA strands. For mismatched DNA strands variation is negligible whereas for complementary DNA strands is considerably countable. Proposed sensor successfully distinguishes hybridization and single nucleotide polymorphisms (SNP) by observing the variation level of resonance wavelength and spectrum of transmitted power.

  20. Coupled resonator induced transparency in surface plasmon polariton gap waveguide with two side-coupled cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengren, E-mail: zhrenzhang@126.com [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Liwei [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Yin, Pengfei; Han, Xiangyu [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China)

    2014-08-01

    We investigate theoretically the generation process of coupled resonator-induced transparency (CRIT) in surface plasmon polariton gap waveguide system containing two side-coupled cavities, which locate at a symmetric position. The CRIT is original from the destructive interference of the two detuned cavities. In contrast with the existing electromagnetically induced transparency (EIT) schemes, the occurrence of the CRIT is caused by the two radiative cavities in waveguide, instead of interference between a dark cavity and radiative cavity. This behavior mimics the quantum interference between two direct excitation pathways in a three-level V-type atom. The transmission lineshape can be tuned between an EIT-like resonant peak and a Lorentzian-like resonant dip by tailoring the detuning of the two cavities. Moreover, we also find that the transparency peak moves to high frequency with a line shift and its Q factor decreases with the increase of coupling distance between the cavities and waveguide.

  1. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects

    CERN Document Server

    Raza, Søren; Stenger, Nicolas; Wubs, Martijn; Mortensen, N Asger

    2013-01-01

    We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS). As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate on the SP resonance energy to the approach of an effective homogeneous background permittivity. We derive the nonlocal polarizability of a small metal sphere embedded in a homogeneous dielectric environment, leading to the nonlocal generalization of the classical Clausius-Mossotti factor. We also present an exact formalism based on multipole expansions and scattering matrices to determine the optical response of a metal sphere on a dielectric substrate of finite thickness, taking into account retardation and nonlocal effects....

  2. Vibration, Stability, and Resonance of Angle-Ply Composite Laminated Rectangular Thin Plate under Multiexcitations

    Directory of Open Access Journals (Sweden)

    M. Sayed

    2013-01-01

    Full Text Available An analytical investigation of the nonlinear vibration of a symmetric cross-ply composite laminated piezoelectric rectangular plate under parametric and external excitations is presented. The method of multiple time scale perturbation is applied to solve the nonlinear differential equations describing the system up to and including the second-order approximation. All possible resonance cases are extracted at this approximation order. The case of 1 : 1 : 3 primary and internal resonance, where Ω3≅ω1, ω2≅ω1, and ω3≅3ω1, is considered. The stability of the system is investigated using both phase-plane method and frequency response curves. The influences of the cubic terms on nonlinear dynamic characteristics of the composite laminated piezoelectric rectangular plate are studied. The analytical results given by the method of multiple time scale is verified by comparison with results from numerical integration of the modal equations. Reliability of the obtained results is verified by comparison between the finite difference method (FDM and Runge-Kutta method (RKM. It is quite clear that some of the simultaneous resonance cases are undesirable in the design of such system. Such cases should be avoided as working conditions for the system. Variation of the parameters μ1, μ2, α7,β8, ω1, ω2, f1, f2 leads to multivalued amplitudes and hence to jump phenomena. Some recommendations regarding the different parameters of the system are reported. Comparison with the available published work is reported.

  3. Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

    CERN Document Server

    Shi, L; Rekola, H T; Martikainen, J -P; Moerland, R J; Törmä, P

    2014-01-01

    We study spatial coherence properties of a system composed of periodic silver nanoparticle arrays covered with a fluorescent organic molecule (DiD) film. The evolution of spatial coherence of this composite structure from the weak to the strong coupling regime is investigated by systematically varying the coupling strength between the localized DiD excitons and the collective, delocalized modes of the nanoparticle array known as surface lattice resonances. A gradual evolution of coherence from the weak to the strong coupling regime is observed, with the strong coupling features clearly visible in interference fringes. A high degree of spatial coherence is demonstrated in the strong coupling regime, even when the mode is very excitonlike (80%), in contrast to the purely localized nature of molecular excitons. We show that coherence appears in proportion to the weight of the plasmonic component of the mode throughout the weak-to-strong coupling crossover, providing evidence for the hybrid nature of the normal m...

  4. On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj K; Mohr, Gerhard J [Institute of Physical Chemistry, Friedrich-Schiller University, Lessingstrasse 10, 07743 Jena (Germany)], E-mail: anuj.sharma@uni-jena.de

    2008-03-07

    In this work, we have investigated the capability of different bimetallic nanoparticle alloy combinations to be used in fibre optic sensors based on the technique of surface plasmon resonance. The metals considered for this analysis are silver, gold, copper and aluminium. The performance of the sensor with different bimetallic nanoparticle alloy combinations is evaluated and compared numerically. The performance is analysed in terms of three parameters: sensitivity, signal-to-noise ratio (SNR) and operating range for the sensing layer refractive index values. On the basis of the comparison and some logistic criteria, the best possible bimetallic alloy combinations along with a requisite alloy composition ratio are predicted. The bimetallic nanoparticle alloy combination is capable of simultaneously providing larger values of sensitivity, SNR and operating range, which is not possible with any single metallic nanoparticle layer.

  5. Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel

    Science.gov (United States)

    Liu, Chao; Yang, Lin; Su, Weiquan; Wang, Famei; Sun, Tao; Liu, Qiang; Mu, Haiwei; Chu, Paul K.

    2017-01-01

    A sensing structure is designed with a photonic crystal fiber based on a surface plasmon resonance (PCF-SPR) sensor using gold as the sensitive material. The benefit of the structure is to reduce the difficulty in gold deposition, because the Au film is deposited on the outside of the fiber core instead of on the holes filled with analyte inside the core. The properties of the sensor are numerically calculated by the finite element method. The results show that the thickness of the gold film, refractive index of the analyte, and radius of the central hole affect the sensing performance of the PCF-SPR. By optimizing the model, an extra graphene layer with the thickness of 20 nm is deposited on the gold film in the model. The maximum spectral sensitivity can be as high as 7500 nm/RIU for the sensor with the gold-graphene composite film as the sensitive material.

  6. Colorimetric determination of Timolol concentration based on localized surface plasmon resonance of silver nanoparticles

    Science.gov (United States)

    Amirjani, Amirmostafa; Bagheri, Mozhgan; Heydari, Mojgan; Hesaraki, Saeed

    2016-09-01

    In this work, a rapid and simple colorimetric method based on the surface plasmon resonance of silver nanoparticles (AgNPs) was developed for the detection of the drug Timolol. The method used is based on the interaction of Timolol with the surface of the as-synthesized AgNPs, which promotes aggregation of the nanoparticles. This aggregation exploits the surface plasmon resonance through the electric dipole-dipole interaction and coupling among the agglomerated particles, hence bringing forth distinctive changes in the spectra as well as the color of colloidal silver. UV-vis spectrophotometery was used to monitor the changes of the localized surface plasmon resonance of AgNPs at wavelengths of 400 and 550 nm. The developed colorimetric sensor has a wide dynamic range of 1.0 × 10-7 M-1.0 × 10-3 M for detection of Timolol with a low detection limit of 1.2 × 10-6 M. The proposed method was successfully applied for the determination of Timolol concentration in ophthalmic eye-drop solution with a response time lower than 40 s.

  7. Venus Surface Composition Constrained by Observation and Experiment

    Science.gov (United States)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-08-01

    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to

  8. Mass sensitivity analysis and designing of surface acoustic wave resonators for chemical sensors

    Science.gov (United States)

    Kshetrimayum, Roshan; Yadava, R. D. S.; Tandon, R. P.

    2009-05-01

    The sensitivity of surface acoustic wave (SAW) chemical sensors depends on several factors such as the frequency and phase point of SAW device operation, sensitivity of the SAW velocity to surface mass loading, sensitivity of the SAW oscillator resonance to the loop phase shift, film thickness and oscillator electronics. This paper analyzes the influence of the phase point of operation in SAW oscillator sensors based on two-port resonator devices. It is found that the mass sensitivity will be enhanced if the SAW device has a nonlinear dependence on the frequency (delay ~ frequency-1). This requires the device to generate and operate in a ωτg(ω) = const region in the device passband, where ω denotes the angular frequency of oscillation and τg(ω) denotes the phase slope of the SAW resonator device. A SAW coupled resonator filter (CRF) that take advantage of mode coupling is considered in realizing such a device to help in shaping the phase transfer characteristics of a high mass sensitivity sensor. The device design and simulation results are presented within the coupling-of-modes formalism.

  9. Multiple resonances of a moving, oscillating surface disturbance on a shear current

    CERN Document Server

    Li, Yan

    2016-01-01

    We consider waves radiated by a disturbance of oscillating strength moving at constant velocity along the free surface of a shear flow which, when undisturbed, has uniform horizontal vorticity of magnitude $S$. When no current is present the problem is a classical one and much studied, and in deep water a resonance is known to occur when $\\tau=|\\boldsymbol{V}|\\omega_0/g$ equals the critical value $1/4$ ($\\boldsymbol{V}$: velocity of disturbance, $\\omega_0$: oscillation frequency, $g$: gravitational acceleration). We show that the presence of the sub-surface shear current can change this picture radically. Not only does the resonant value of $\\tau$ depend strongly on the angle between $\\boldsymbol{V}$ and the current's direction and the "shear-Froude number" $\\mathrm{Frs}=|\\boldsymbol{V}|S/g$; when $\\mathrm{Frs}>1/3$, multiple resonant values --- as many as $4$ --- can occur for some directions of motion. At sufficiently large values of $\\mathrm{Frs}$, the smallest resonance frequency tends to zero, representi...

  10. Surface plasmon resonance biosensor with high anti-fouling ability for the detection of cardiac marker troponin T.

    Science.gov (United States)

    Liu, Jen Tsai; Chen, Ching Jung; Ikoma, Toshiyuki; Yoshioka, Tomohiko; Cross, Jeffrey S; Chang, Shwu-Jen; Tsai, Jang-Zern; Tanaka, Junzo

    2011-10-03

    Designing a surface recognition layer with high anti-fouling ability, high affinity, and high specificity is an important issue to produce high sensitivity biosensing transducers. In this study, a self-assembled monolayer (SAM) consisting of a homogeneous mixture of oligo(ethylene glycol) (OEG)-terminated alkanethiolate and mercaptohexadecanoic acid (MHDA) on Au was employed for immobilizing troponin T antibody and applied in detecting cardiac troponin T by using surface plasmon resonance (SPR). The mixed SAM showed no phase segregation and exhibited human serum albumin resistance, particularly with an antibody-immobilized surface. X-ray photoemission spectra revealed that the chemical composition ratio of OEG to the mixed SAM was 69% and the OEG packing density was 82%. The specific binding of troponin T on the designed surface indicated a good linear correlation (R=0.991, P<0.0009) at concentrations lower than 50 μgmL(-1) with the limit of detection of 100 ngmL(-1) using a SPR measuring instrument. It is concluded that the mixed SAM functions as designed since it has high detection capability, high accuracy and reproducibility, as well as shows strong potential to be applied in rapid clinical diagnosis for label-free detection within 2 min.

  11. Diffuse Surface Scattering in the Plasmonic Resonances of Ultra-Low Electron Density Nanospheres

    CERN Document Server

    Monreal, R Carmina; Apell, S Peter

    2015-01-01

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here we investigate the role that different surface effects, namely electronic spill-out and diffuse surface scattering, play in the optical properties of these ultra-low electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior both in position and width for large particles and a strong blueshift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultra-low electron density ...

  12. Time Dependent Coupled Cluster Approach to Resonance Raman Excitation Profiles from General Anharmonic Surfaces

    Directory of Open Access Journals (Sweden)

    M. Durga Prasad

    2002-05-01

    Full Text Available Abstract: A time dependent coupled cluster approach to the calculation of Resonance Raman excitation profiles on general anharmonic surfaces is presented. The vibrational wave functions on the ground electronic surface are obtained by the coupled cluster method (CCM. It is shown that the propagation of the vibrational ground state on the upper surface is equivalent to propagation of the vacuum state by an effective hamiltonian generated by the similarity transformation of the vibrational hamiltonian of that surface by the CCM wave operator of the lower surface up to a normalization constant. This time propagation is carried out by the time-dependent coupled cluster method in a time dependent frame. Numerical studies are presented to asses the validity of the approach.

  13. Dynamics of a surface-modified miniaturized SiN mechanical resonator via a nanometer-scale pore array

    Science.gov (United States)

    Lee, Eun Joong; Cho, Myung Rae; Kim, Seunghwan; Park, Yun Daniel; Kouh, Taejoon

    2016-05-01

    We have fabricated porous miniaturized SiN resonators with various dimensions and studied their mechanical dynamics at their resonant modes. The surface modification of the resonators has been achieved by etching through a thin porous anodic aluminum oxide (AAO) mask, prepared by two-step anodization. Even though these porous resonators show well-defined Lorentzian line-shapes at their resonant modes, the corresponding fundamental flexural resonance frequencies are lower than those from typical non-porous resonators. The change in the resonance frequency is due to the presence of the pores on the surface, which reduces the effective tensile stress across the beam structure, as shown from both experimental measurements and the computational model. In addition, the observed quality factor reveals the level of dissipation originating from the surface modification. The principal dissipation mechanism is found to be gas damping in the free molecular flow regime. Based on the dissipation measurement, one can see an increase in the surface-to-mass ratio, which is responsible for the increased dissipation in the porous beam structure. The work presented here demonstrates simple integration of mechanical elements with a nanopatterning technique based on an AAO as well as the tuning of mechanics via surface modification at a small scale. Such a scheme could provide an additional degree of freedom in developing a mechanical sensing element with enhanced effective surface area.

  14. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Science.gov (United States)

    Mahmoodi, S.; Moradi, M.; Mohseni, S. M.

    2016-12-01

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism.

  15. Profile Prediction and Fabrication of Wet-Etched Gold Nanostructures for Localized Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Zhou Xiaodong

    2009-01-01

    Full Text Available Abstract Dispersed nanosphere lithography can be employed to fabricate gold nanostructures for localized surface plasmon resonance, in which the gold film evaporated on the nanospheres is anisotropically dry etched to obtain gold nanostructures. This paper reports that by wet etching of the gold film, various kinds of gold nanostructures can be fabricated in a cost-effective way. The shape of the nanostructures is predicted by profile simulation, and the localized surface plasmon resonance spectrum is observed to be shifting its extinction peak with the etching time. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9486-4 contains supplementary material, which is available to authorized users. Click here for file

  16. Design optimization of highly sensitive LSPR enhanced surface plasmon resonance biosensors with nanoholes

    Institute of Scientific and Technical Information of China (English)

    Bin Wu; Qingkang Wang

    2008-01-01

    For breaking through the sensitivity limitation of conventional surface plasmon resonance (SPR) biosensors, novel highly sensitive SPR biosensors with Au nanoparticles and nanogratings enhancement have been proposed recently.But in practice, these structures have obvious disadvantages.In this study, a nanohole based sensitivity enhancement SPR biosensor is proposed and the influence of different structural parameters on the performance is investigated by using rigorous coupled wave analysis (RCWA).Electromagnetic field distributions around the nanohole are also given out to directly explain the performance difference for various structural parameters.The results indicate that significant sensitivity increase is associated with localized surface plasmons (LSPs) excitation mediated by nanoholes.Except to outcome the weakness of other LSP based biosensors, larger resonance angle shift, reflectance amplitude, and sharper SPR curves' width are obtained simultaneously under optimized structural parameters.

  17. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications.

    Science.gov (United States)

    Wang, Da-Shin; Fan, Shih-Kang

    2016-07-27

    Surface plasmon resonance (SPR) is a label-free, highly-sensitive, and real-time sensing technique. Conventional SPR sensors, which involve a planar thin gold film, have been widely exploited in biosensing; various miniaturized formats have been devised for portability purposes. Another type of SPR sensor which utilizes localized SPR (LSPR), is based on metal nanostructures with surface plasmon modes at the structural interface. The resonance condition is sensitive to the refractive index change of the local medium. The principles of these two types of SPR sensors are reviewed and their integration with microfluidic platforms is described. Further applications of microfluidic SPR sensors to point-of-care (POC) diagnostics are discussed.

  18. Compositional fingerprint of soy sauces via hydrophobic surface interaction.

    Science.gov (United States)

    Jakobi, Victoria; Salmen, Paul; Paulus, Michael; Tolan, Metin; Rosenhahn, Axel

    2017-03-01

    In this work, the interaction of soy sauces with hydrophobic surfaces has been analyzed. Hydrophobic self-assembled monolayers on gold or silicon dioxide were used to harvest conditioning layers from soy sauce products with varying amounts of additives. The data was compared to adsorption of soy protein and glutamic acid as common ingredients. Spectral ellipsometry revealed that all tested sauces led to the formation of thin overlayers on hydrophobic surfaces. Products with less additives yielded adlayers in the same thickness range as pure soy protein. In contrast, sauces with more ingredients create distinctly thicker films. Using water contact angle goniometry, it is shown that all adlayers render the substrate more hydrophilic. Infrared spectroscopy provided a deeper insight into the adlayer chemistry and revealed that the adlayer composition is dominated by protein rich components. X-ray reflectivity on selected films provided further insight into the density profiles within the adlayers on the molecular scale.

  19. Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells.

    Science.gov (United States)

    Li, Ben Q; Liu, Changhong

    2011-01-15

    A hybridization model for the localized surface plasmon resonance of a nanoshell is developed within the framework of long-wave approximation. Compared with the existing hybridization model derived from the hydrodynamic simulation of free electron gas, this approach is much simpler and gives identical results for a concentric nanoshell. Also, with this approach, the limitations associated with the original hybridization model are succinctly stated. Extension of this approach to hybridization modeling of more complicated structures such as multiplayered nanoshells is straightforward.

  20. Cavitands: Container Molecules for Surface Plasmon Resonance (SPR)-Based Chemical Vapor Detection

    Science.gov (United States)

    2005-01-01

    spin coated onto surface plasmon resonance substrates (50-nm thick gold-coated cover glass). Spin coating was performed at 4000 rpm for 60 s at...room temperature. Th e spin coating parameters gave a fi lm thickness (confi rmed using spectroscopic ellipsometry) of nearly 4 nm. For targets, a...fact that the polymer fi lms were about twice as thick as the cavitand fi lms obtained under identical spin - coating conditions. Th is clearly

  1. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration

    OpenAIRE

    Wenchang Hao; Jiuling Liu; Minghua Liu; Yong Liang; Shitang He

    2016-01-01

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of...

  2. Pelvic varices diagnosed with endorectal surface coil magnetic resonance imaging: case report

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, G.; Russ, P.D. [Univ. of Colorado Health Sciences Center, Dept. of Radiology, Denver, Colorado (United States)

    2000-07-01

    Pelvic varices are a well-recognized cause of pain, especially in multiparous women, and are often associated with pelvic congestion syndrome. These dilated veins have been imaged using positive-contrast venography and ultrasonography (US). We present a case of painless pelvic varices that presented as an amorphous, non-specific-appearing parametrial and pericervical mass on computed tomography (CT), but which were diagnosed with magnetic resonance imaging (MRI) using an endorectal surface coil. (author)

  3. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O-3 under resonant drive

    OpenAIRE

    Dong, Shuxiang; Cheng, J. R.; Li, Jiefang; Viehland, Dwight D.

    2003-01-01

    We have found that laminate composites consisting of longitudinally magnetized magnetostrictive Terfenol-D and longitudinally poled piezoelectric Pb(Zr,Ti)O-3 layers have dramatically enhanced magnetoelectric effects when driven near resonance. The maximum induced magnetoelectric voltage at resonance was similar to10 Vp/Oe, which is similar to10(2) times higher than previous reports at subresonant frequencies. (C) 2003 American Institute of Physics.

  4. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  5. Free Surface Waves And Interacting Bouncing Droplets: A Parametric Resonance Case Study

    KAUST Repository

    Borja, Francisco J.

    2013-07-01

    Parametric resonance is a particular type of resonance in which a parameter in a system changes with time. A particularly interesting case is when the parameter changes in a periodic way, which can lead to very intricate behavior. This di↵ers from periodic forcing in that solutions are not necessarily periodic. A system in which parametric resonance is realized is when a fluid bath is shaken periodically, which leads to an e↵ective time dependent gravitational force. This system will be used to study the onset of surface waves in a bath with non-uniform topography. A linear model for the surface waves is derived from the Euler equations in the limit of shallow waves, which includes the geometry of the bottom and surface tension. Experiments are performed to compare with the proposed model and good qualitative agreement is found. Another experiment which relies on a shaking fluid bath is that of bouncing fluid droplets. In the case of two droplets the shaking allows for a larger bouncing droplet to attract a smaller moving droplet in a way that creates a bound system. This bound system is studied and shows some analogous properties to quantum systems, so a quantum mechanical model for a two dimensional atom is studied, as well as a proposed model for the droplet-wave system in terms of equations of fluid mechanics.

  6. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor.

    Science.gov (United States)

    Morsin, Marlia; Mat Salleh, Muhamad; Ali Umar, Akrajas; Sahdan, Mohd Zainizan

    2017-04-25

    Localized surface plasmon resonance (LSPR) properties of metallic nanostructures, such as gold, are very sensitive to the dielectric environment of the material, which can simply be adjusted by changing its shape and size through modification of the synthesizing process. Thus, these unique properties are very promising, particularly for the detection of various types of chemicals, for example boric acid which is a non-permitted preservative employed in food preparations. For the sensing material, gold (Au) nanoplates with a variety of shapes, i.e., triangular, hexagonal, truncated pentagon and flat rod, were prepared using a seed-mediated growth method. The yield of Au nanoplates was estimated to be ca. 63% over all areas of the sensing material. The nanoplates produced two absorption bands, i.e., the transverse surface plasmon resonance (t-SPR) and the longitudinal surface plasmon resonance (l-SPR) at 545 nm and 710 nm, respectively. In the sensing study, these two bands were used to examine the response of gold nanoplates to the presence of boric acid in an aqueous environment. In a typical process, when the sample is immersed into an aqueous solution containing boric acid, these two bands may change their intensity and peak centers as a result of the interaction between the boric acid and the gold nanoplates. The changes in the intensities and peak positions of t-SPR and l-SPR linearly correlated with the change in the boric acid concentration in the solution.

  7. Multi-dimensional Inversion Modeling of Surface Nuclear Magnetic Resonance (SNMR Data for Groundwater Exploration

    Directory of Open Access Journals (Sweden)

    Warsa

    2014-07-01

    Full Text Available Groundwater is an important economic source of water supply for drinking water and irrigation water for agriculture. Surface nuclear magnetic resonance (SNMR sounding is a relatively new geophysical method that can be used to determine the presence of culturally and economically important substances, such as subsurface water or hydrocarbon distribution. SNMR sounding allows the determination of water content and pore size distribution directly from the surface. The SNMR method is performed by stimulating an alternating current pulse through an antenna at the surface in order to confirm the existence of water in the subsurface. This paper reports the development of a 3-D forward modeling code for SNMR amplitudes and decay times, after which an improved 2-D and 3-D inversion algorithm is investigated, consisting of schemes for regularizing model parameterization. After briefly reviewing inversion schemes generally used in geophysics, the special properties of SNMR or magnetic resonance sounding (MRS inversion are evaluated. We present an extension of MRS to magnetic resonance tomography (MRT, i.e. an extension for 2-D and 3-D investigation, and the appropriate inversions.

  8. Multilayer graphene electrodes for one-port surface acoustic wave resonator mass sensor

    Science.gov (United States)

    Leong, Ainan; Swamy, Varghese; Ramakrishnan, N.

    2017-02-01

    A one-port surface acoustic wave (SAW) resonator mass sensor composed of multilayer graphene (MLG) electrodes was investigated by the finite element method (FEM) and analyses were carried out to study the enhancement of sensitivity and the secondary effects caused by MLG electrodes on the performance of the resonator. Unlike metal electrodes, MLG electrode offers elastic loading to the contact surface, as evidenced by the increase in the surface velocity of the SAW device. In terms of the sensitivity of the mass sensor, MLG electrode showed the largest center frequency shift in response to a change in mass loading, as well as when used as a gas sensor to detect volatile organic compounds (VOCs). Also, MLG electrodes offered the least triple transit signal (TTS) and bulk acoustic wave (BAW) generations compared with Al and Au–Cr electrodes. Thus, the one-port SAW resonator with graphene electrodes not only possesses excellent performance characteristics but also gives rise to new opportunities in the development of highly sensitive mass sensors.

  9. [Spectra modulated surface plasmon resonance sensor based on side polished multi-mode optical fiber].

    Science.gov (United States)

    Luo, Yun-Han; Chen, Xiao-Long; Xu, Meng-Yun; Ge, Jia; Zhang, Yi-Long; He, Yong-Hong; Tang, Jie-Yuan; Yu, Jian-Hui; Zhang, Jun; Chen, Zhe; Chen, Xing-Dan

    2014-03-01

    Surface plasmon resonance, which utilizes the resonance of optical evanescent wave with the metal surface plasmon wave, has been developed into a high sensitivity, rapid, label-less measurement method for chemical and biological analysis. In order to improve the spectral sensitivity in refractive index for a side polished fiber surface plasmon resonance sensor, the whole cladding layer and part of core of a multimode fiber was polished off. Additionally, an extra chrome layer with relatively high refractive index was coated on the polished zone before a gold film. The results showed that the sensor can measure the refractive index range from 1.333 to 1. 431 RIU, with the average spectral sensitivity of 4.11 x 10(3) nm RIU(-1), which is better than the reported results. Especially, in the refractive index range of 1. 417 1. 431 RIU, the sensitivity reaches to 1.09 x 10(4) nm RIU(-1). The minimum resolution of approximately 3.6 x 10(-5) RIU was estimated by a combination analysis with the sensor sensitivity and stability. The superiorities possessed by the proposed sensor in high sensitivity, wide detection range, small size and good stability and reproducibility, etc., make it a good candidate for food testing, environmental monitoring, biomedical testing and other related fields.

  10. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2014-03-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn2+ and Cu4+ selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  11. Surface plasmon resonance based fibre optic chemical sensor for the detection of cocaine

    Science.gov (United States)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.

    2016-05-01

    A surface plasmon based fibre-optic chemical sensor for the detection of cocaine has been developed using a molecularly imprinted polymer (MIP) film with embedded gold nanoparticles as the recognition element. The MIP was formed on the layer of gold thin film which was deposited on the surface of a fibre core. The sensing was based on swelling of the MIP film induced by analyte binding that shifted the resonance spectrum toward a shorter wavelength. The sensor exhibited a response to cocaine in the concentration range of 0 - 400 μM in aqueous acetonitrile mixtures. Selectivity for cocaine over other drugs has also been demonstrated.

  12. Effective grating theory for resonance domain surface-relief diffraction gratings.

    Science.gov (United States)

    Golub, Michael A; Friesem, Asher A

    2005-06-01

    An effective grating model, which generalizes effective-medium theory to the case of resonance domain surface-relief gratings, is presented. In addition to the zero order, it takes into account the first diffraction order, which obeys the Bragg condition. Modeling the surface-relief grating as an effective grating with two diffraction orders provides closed-form analytical relationships between efficiency and grating parameters. The aspect ratio, the grating period, and the required incidence angle that would lead to high diffraction efficiencies are predicted for TE and TM polarization and verified by rigorous numerical calculations.

  13. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Byoungho Lee

    2011-01-01

    Full Text Available The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

  14. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  15. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F.J. (Dept. de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Univ. del Pais Vasco, San Sebastian (Spain)); Pitarke, J.M. (Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Univ., Bilbo (Spain))

    1994-05-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  16. The effect of surface roughness on repair bond strength of light-curing composite resin to polymer composite substrate.

    Science.gov (United States)

    Kallio, Timo T; Tezvergil-Mutluay, Arzu; Lassila, Lippo V J; Vallittu, Pekka K

    2013-01-01

    The purpose of this study was to analyze the shear bond strength of a new composite resin to polymer-based composite substrates using various surface roughnesses and two kinds of polymer matrices. Particulate filler composite resin with cross-linked polymer matrix and fiber-reinforced composite with semi-interpenetrating polymer matrix were used as bonding substrates after being ground to different roughnesses. Substrates were aged in water for one week before bonding to new resin composites. Twelve specimens in the substrate groups were ground with grinding papers of four grits; 320, 800, 1200 and 2400. Corresponding values of surface roughness (Ra) varied from 0.09 to 0.40 for the particulate filler composite resin and 0.07 to 0.96 for the fiber-reinforced composite resin. Characteristic shear bond strength between the new resin and particulate filler composite resin was highest (27.8 MPa) with the roughest surface (Weibull modulus: 2.085). Fiber-reinforced composite showed the highest bond strength (20.8 MPa) with the smoothest surface (Weibull modulus: 4.713). We concluded that surface roughness did not increase the bonding of new resin to the substrate of IPN based fiber-reinforced composite, whereas the roughness contributed to bonding the new resin to the particulate filler composite resin with a cross-linked polymer matrix.

  17. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    Science.gov (United States)

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-03

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  18. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells

    Science.gov (United States)

    Bai, Lihua; Li, Meiya; Liu, Xiaolian; Luoshan, Mengdai; Zhang, Feng; Guo, Kaimo; Zhu, Yongdan; Sun, Beilei; Zhao, Xingzhong

    2016-10-01

    Graphene (G), TiO2 fusiform nanorods (TiO2NRs) adsorbed with Au nanoparticles (AuNPs) are prepared and blended as multifunctional materials into TiO2 nanocrystalline film to form a novel ternary (G-TiO2NRs-Au) composite photoanode in dye-sensitized solar cells (DSSCs). The effects of G-TiO2NRs-Au on the properties of the photoanode and DSSC are investigated. Results show that, by blending G-TiO2NRs-Au, the light absorption and scattering of the photoanode are obviously improved, and the charge transfer resistance R2 and electron recombination are decreased, resulting in a significant enhancement in the short-circuit current density (J sc) and the photoelectric conversion efficiency (PCE) of the DSSCs. The maximum J sc of 17.66 mA cm-2 and PCE of 8.56% are obtained in the optimal G-TiO2NRs-Au-based DSSC, about 33.6% and 35.0% higher than that obtained in the conventional TiO2-based DSSC. This significant improvement in the performance of the DSSC can be attributed to the ternary composite complementary effects of multi-functions from the surface plasmon resonance of AuNPs, light scattering of TiO2NRs, and the improved dye loading and fast electron transmission channel from graphene. This study provides an effective way of ternary composite complementary enhancement of the J sc and PCE of the DSSCs.

  19. Highly Sensitive Local Surface Plasmon Resonance in Anisotropic Au Nanoparticles Deposited on Nanofibers

    Directory of Open Access Journals (Sweden)

    Masanari Saigusa

    2015-01-01

    Full Text Available This paper reports the facile and high-throughput fabrication method of anisotropic Au nanoparticles with a highly sensitive local surface plasmon resonance (LPR using cylindrical nanofibers as substrates. The substrates consisting of nanofibers were prepared by the electrospinning of poly(vinylidene fluoride (PVDF. The Au nanoparticles were deposited on the surface of electrospun nanofibers by vacuum evaporation. Scanning electron microscopy revealed the formation of a curved Au island structure on the surface of cylindrical nanofibers. Polarized UV-visible extinction spectroscopy showed anisotropy in their LPR arising from the high surface curvature of the nanofiber. The LPR of the Au nanoparticles on the thinnest nanofiber with a diameter of ~100 nm showed maximum refractive index (RI sensitivity over 500 nm/RI unit (RIU. The close correlation between the fiber diameter dependence of the RI sensitivity and polarization dependence of the LPR suggests that anisotropic Au nanoparticles improve RI sensitivity.

  20. Smaller to larger biomolecule detection using a lab-built surface plasmon resonance based instrument

    Science.gov (United States)

    Lukose, J.; Kulal, V.; Chidangil, S.; Sinha, R. K.

    2016-10-01

    We have developed a low-cost surface plasmon resonance (SPR) instrument based on the Kretschmann configuration for biosensing applications. The fabricated instrument is capable of operating in both angular and intensity interrogation schemes. The proposed sensor has proved enormously versatile by detecting a range of analytes with low to high molecular weights. The refractive index based sensor has been used for detecting the variation in the concentration of the aqueous solution of glucose and glycerine. Real time immobilization of protein molecules, bovine serum albumin on a gold (Au) film surface, has also been detected using the SPR imaging technique. Alkanethiol functionalization of the Au surface was performed, and bovine serum albumin was immobilized onto the carboxyl functionalized surface using amine reactive cross linker chemistry. In future, the present approach can also be utilized for the selective detection of a wide range of target biomolecules with the help of specific capture probes, as well as for monitoring protein-drug interactions.

  1. Towards an Electronic Dog Nose: Surface Plasmon Resonance Immunosensor for Security and Safety

    Directory of Open Access Journals (Sweden)

    Takeshi Onodera

    2014-09-01

    Full Text Available This review describes an “electronic dog nose” based on a surface plasmon resonance (SPR sensor and an antigen–antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol, dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described.

  2. Surface Plasmon Resonance from Bimetallic Interface in Au–Ag Core–Shell Structure Nanowires

    Directory of Open Access Journals (Sweden)

    Zhu Jian

    2009-01-01

    Full Text Available Abstract Transverse surface plasmon resonances (SPR in Au–Ag and Ag–Au core–shell structure nanowires have been investigated by means of quasi-static theory. There are two kinds of SPR bands resulting from the outer surface of wall metal and the interface between core and wall metals, respectively. The SPR corresponding to the interface, which is similar to that of alloy particle, decreases and shifts obviously with increasing the wall thickness. However, the SPR corresponding to the outer surface, which is similar to that of pure metal particle, increases and shifts slightly with increasing the wall thickness. A mechanism based on oscillatory surface electrons under coulombic attraction is developed to illuminate the shift fashion of SPR from bimetallic core–shell interface. The net charges and extra coulombic force in metallic wall affect the SPR energy and the shift fashion.

  3. Thermo-Oxidative Stability of Graphite/PMR-15 Composites: Effect of Fiber Surface Modification on Composite Shear Properties

    Science.gov (United States)

    Madhukar, Madhu S.; Bowles, Kenneth J.; Papadopolous, Demetrios S.

    1994-01-01

    Experiments were conducted to establish a correlation between the weight loss of a polyimide (PMR- 15) matrix and graphite fibers and the in-plane shear properties of their unidirectional composites subjected to different isothermal aging times up to 1000 hr at 316 C. The role of fiber surface treatment on the composite degradation during the thermo-oxidative aging was investigated by using A4 graphite fibers with three surface modifications: untreated (AU-4), surface treated (AS-4), and surface treated and sized with an epoxy-compatible sizing (AS-4G). The weight loss of the matrix fibers, and composites was determined during the aging. The effect of thermal aging was seen in all the fiber samples in terms of weight loss and reduction in fiber diameter. Calculated values of weight loss fluxes for different surfaces of rectangular unidirectional composite plates showed that the largest weight loss occurred at those cut surfaces where fibers were perpendicular to the surface. Consequently, the largest amount of damage was also noted on these cut surfaces. Optical observation of the neat matrix and composite plates subjected to different aging times revealed that the degradation (such as matrix microcracking and void growth) occurred in a thin surface layer near the specimen edges. The in-plane shear modulus of the composites was unaffected by the fiber surface treatment and the thermal aging. The shear strength of the composites with the untreated fibers was the lowest and it decreased with aging. A fracture surface examination of the composites with untreated fibers suggested that the weak interface allowed the oxidation reaction to proceed along the interface and thus expose the inner material to further oxidation. The results indicated that the fiber-matrix interface affected the composite degradation process during its thermal aging and that the the weak interface accelerated the composite degradation.

  4. Experimental Design on Laminated Veneer Lumber Fiber Composite: Surface Enhancement

    Science.gov (United States)

    Meekum, U.; Mingmongkol, Y.

    2010-06-01

    Thick laminate veneer lumber(LVL) fibre reinforced composites were constructed from the alternated perpendicularly arrayed of peeled rubber woods. Glass woven was laid in between the layers. Native golden teak veneers were used as faces. In house formulae epoxy was employed as wood adhesive. The hand lay-up laminate was cured at 150° C for 45 mins. The cut specimen was post cured at 80° C for at least 5 hours. The 2k factorial design of experimental(DOE) was used to verify the parameters. Three parameters by mean of silane content in epoxy formulation(A), smoke treatment of rubber wood surface(B) and anti-termite application(C) on the wood surface were analysed. Both low and high levels were further subcategorised into 2 sub-levels. Flexural properties were the main respond obtained. ANOVA analysis of the Pareto chart was engaged. The main effect plot was also testified. The results showed that the interaction between silane quantity and termite treatment is negative effect at high level(AC+). Vice versa, the interaction between silane and smoke treatment was positive significant effect at high level(AB+). According to this research work, the optimal setting to improve the surface adhesion and hence flexural properties enhancement were high level of silane quantity, 15% by weight, high level of smoked wood layers, 8 out of 14 layers, and low anti termite applied wood. The further testes also revealed that the LVL composite had superior properties that the solid woods but slightly inferior in flexibility. The screw withdrawn strength of LVL showed the higher figure than solid wood. It is also better resistance to moisture and termite attack than the rubber wood.

  5. Dual-wavelength distributed Bragg reflector semiconductor laser based on a composite resonant cavity

    Science.gov (United States)

    Chen, Cheng; Zhao, Ling-Juan; Qiu, Ji-Fang; Liu, Yang; Wang, Wei; Lou, Cai-Yun

    2012-09-01

    We report a monolithic integrated dual-wavelength laser diode based on a distributed Bragg reflector (DBR) composite resonant cavity. The device consists of three sections, a DBR grating section, a passive phase section, and an active gain section. The gain section facet is cleaved to work as a laser cavity mirror. The other laser mirror is the DBR grating, which also functions as a wavelength filter and can control the number of wavelengths involved in the laser action. The reflection bandwidth of the DBR grating is fabricated to have an appropriate value to make the device work at the dual-wavelength lasing state. We adopt the quantum well intermixing (QWI) technique to provide low-absorption loss grating and passive phase section in the fabrication process. By tuning the injection currents on the DBR and the gain sections, the device can generate 0.596 nm-spaced dual-wavelength lasing at room temperature.

  6. Multi-axis force sensing using a resonant composite piezoelectric plate: model and experiments

    Science.gov (United States)

    Castaño-Cano, Davinson; Grossard, Mathieu; Hubert, Arnaud

    2015-05-01

    Wrist force/torque sensors used in robotic applications increase the performances and flexibility of the automated tasks. They also offer new possibilities in the manufacturing process, where physical contact between the work-piece and environment is required. The wide spreading of these sensors is for now restricted by their features. As an alternative to the existing strain-gauges force sensors, this paper presents a resonant composite structure, which is sensitive to multiple components of force that are considered via the pre-stress effect. Structurally bonded piezoelectric patches are used to bring the structure to its resonance, which is shifted according to applied forces. The relationship between force and frequency shift is modelled considering the multi-physics of this smart structure. This model is built using Hamilton's principle and takes into account pre-stress phenomena. A finite element model (FEM) based on Mindlin theory for plates, has been derived from the analytical model. The FEM model is implemented in MATLAB and compared with commercial FE software. Finally, an experimental prototype validates the model, and shows that it is possible to measure multiple force-components with one single sensing element such as a plate.

  7. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  8. Optical method to differentiate tequilas based on angular modulation surface plasmon resonance

    Science.gov (United States)

    Martínez-López, G.; Luna-Moreno, D.; Monzón-Hernández, D.; Valdivia-Hernández, R.

    2011-06-01

    We report the use of the prism-based surface plasmon resonance (SPR) technique to differentiate between three types of tequilas white or silver, aged, and extra-aged. We used the angular interrogation method in which the structure is based on prism fabricated with BK7 glass coated with a gold layer as the SPR active layer. Our study was centered in the analysis of the resonant angle of the SPR generated by the three types of tequilas produced by the three major tequila-producing firms. We observed that each tequila sample produced a well-differentiated SPR curve. We found that resonant angle of the SPR curve produced by silver tequilas is larger than that produced by the aged and extra-aged tequilas of the same producer firm. We found that the position of the SPR curve is not exclusively determined by the alcohol contents; we believe that there are other parameters derived from the aging process that should be considered. The refractive index of the tequilas used in this study was estimated using the measured resonant angle.

  9. Cyclotron resonance of composite fermions with two and four flux quanta

    Science.gov (United States)

    Kukushkin, I. V.; Smet, J. H.; von Klitzing, K.; Wegscheider, W.

    2003-12-01

    The application of quantum field theoretical methods to strongly interacting many-body problems has reaped rich rewards. Foremost, it has nurtured the quasi-particle notion. The introduction of suitable fictitious entities permits to cast otherwise notoriously difficult many-body systems in a single-particle form. We can then take the customary physical approach, using concepts and representations which formerly could only be applied to systems with weak interactions, and still capture the essential physics. A most notable recent example occurs in the conduction properties of a two-dimensional electron system, when exposed to a strong perpendicular magnetic field B. They are governed by electron-electron interactions, that bring about the Nobel prize winning fractional quantum Hall effect (FQHE) (Perspectives on Quantum Hall effects, Wiley, New York, 1996). Composite fermions (CFs), that do not experience the external magnetic field but a drastically reduced effective magnetic field B ∗, were identified as opposite quasi-particles that simplify enormously the understanding of the FQHE (Phys. Today (2000) 39; Phys. Rev. Lett. 63 (1989) 199). They behave as legitimate particles with well-defined charge, spin and statistics (Phys. Rev. B 47 (1993) 7312; Composite Fermions, World Scientific, Singapore, 1998; Phys. Rev. Lett. 70 (1993) 2944; 75 (1995) 3926; 71 (1993) 3846; 72 (1994) 2065; 77 (1996) 2272). They precess, like electrons, along circular orbits, with a diameter determined by B ∗ rather than B, and with a frequency that is hard to predict, since the effective mass remains enigmatic. Ever since their prediction, the demonstration of enhanced absorption of a microwave field that resonates with the frequency of their circular motion was considered the ultimate experiment to unravel this issue. Here, we report the observation of this cyclotron resonance of CFs with two and four flux quanta and extract their effective mass.

  10. In Situ Measurement of Surface Functional Groups on Silica Nanoparticles Using Solvent Relaxation Nuclear Magnetic Resonance.

    Science.gov (United States)

    Yuan, Li; Chen, Lan; Chen, Xiaohong; Liu, Renxiao; Ge, Guanglu

    2017-09-05

    In situ analysis and study on the surface of nanoparticles (NPs) is a key to obtain their important physicochemical properties for the subsequent applications. Of them, most works focus on the qualitative characterization whereas quantitative analysis and measurement on the NPs under their storage and usage conditions is still a challenge. In order to cope with this challenge, solvation relaxation-based nuclear magnetic resonance (NMR) technology has been applied to measure the wet specific surface area and, therefore, determine the number of the bound water molecules on the surface of silica NPs in solution and the hydrophilic groups of various types grafted on the surface of the NPs. By changing the surface functional group on silica particles, the fine distinction for the solvent-particle interaction with different surface group can be quantitatively differentiated by measuring the number of water molecules absorbed on the surface. The results show that the number of the surface hydroxyl, amine, and carboxyl group per nm(2) is 4.0, 3.7, and 2.3, respectively, for the silica particles with a diameter of 203 nm. The method reported here is the first attempt to determine in situ the number of bound solvent molecules and any solvophilic groups grafted on nanoparticles.

  11. Preparation and characterization of reconstructed small intestinal brush border membranes for surface plasmon resonance analysis.

    Science.gov (United States)

    Cho, Sungpil; Park, Jae Hyung; Yu, Jaehoon; Lee, Yong-Kyu; Byun, Youngro; Chung, Hesson; Kwon, Ick Chan; Jeong, Seo Young

    2004-01-01

    To prepare the surface generated by small intestinal brush border membrane vesicles (BBMVs) for the surface plasmon resonance (SPR) analysis, which allows the real-time measurement of binding events occurring on the intestinal membrane. BBMVs were isolated from Sprague-Dawley rats, suspended in HEPES-buffered saline, and flowed over the surface of a SPR sensor chip composed of dextran derivatives modified with lipophilic residues. The surface coverage was determined from binding of bovine serum albumin to BBMV-immobilized sensor chip. The performance of BBMVs immobilized was evaluated by their interaction with otilonium bromide and bile salts. The stable BBMV surface was achieved when BBMV suspension was flowed over the sensor chip for 8 h at a rate of 2 microl/min. The flow of otilonium bromide resulted in an increased SPR signal because of its binding to calcium channel, which is known to be distributed over the gastrointestinal tact. When bile salts were flowed over ileal and duodenal BBMV surfaces, respectively, a slightly higher SPR signal was observed in the ileal BBMV surface, indicating the specific interaction of bile salts with bile acid transporters. BBMV surfaces may be useful for the estimation of binding events on the intestinal membrane by SPR analysis, especially for the drugs that are orally administrated.

  12. Numerical analysis of surface plasmon resonance effects on a rotational silver nanorod/nanoshell dimer

    Science.gov (United States)

    Chou Chau, Yuan-Fong

    2013-06-01

    In this work, we numerically investigate the surface plasmon resonance (SPR) effects on a pair of rotational silver nanorod/nanoshell dimer with a finite height of 1000 nm by means of finite element method with three dimensional calculation. The rotational angles of the silver nanorod/nanoshell dimer are chosen θ=0°, θ=25°, θ=45° and θ=90°, respectively. The proposed structure exhibits a red-shifted localized SPR that can tuned over an extended wavelength range by varying the dielectric constant in metal nanoshell and the rotational angle of the silver nanorod/nanoshell dimer. The tunable optical properties on SPR phenomena are attributed to the rotational effect and a larger effective size of dielectric constant that is filled with a higher refractive medium of finite height of metal nanorod/nanoshell. This unique property of a pair of rotational nanorod/nanoshell dimer is highly attractive for serving as resonant center to hold and probe smaller nanostructures, such as biomolecules or quantum dots. Such structures also show significant promise for applications in nano-switch devices, sensing, and surface-enhanced spectroscopy, due to their strong and tunable plasmon resonances.

  13. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  14. Fiber-optic surface plasmon resonant sensor with low-index anti-oxidation coating

    Institute of Scientific and Technical Information of China (English)

    Yong Chen; Rongsheng Zheng; Yonghua Lu; Pei Wang; Hai Ming

    2011-01-01

    A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied. The fiber-optic SPR sensor is investigated theoretically, specifically the influence of the dielectric protecting layer, using a four-layer model. The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation. The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40. The best sensitivity of 4464 nm/RIU is achieved in the experiment. The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor, but also protect the silver film from oxidation.%A multimode fiber-optic surface plasmon resonance (SPR) sensor with a MgF2 film as a modulated layer is studied.The fiber-optic SPR sensor is investigated theoretically,specifically the influence of the dielectric protecting layer,using a four-layer model.The sensor is then fabricated with the optimal parameters suggested by the theoretical simulation.The sensor has a high sensitivity in the analyte refractive index (RI) range of 1.33-1.40.The best sensitivity of 4 464 nm/RIU is achieved in the experiment.The use of dielectric film (MgF2) can not only modulate the resonance wavelength of the sensor,but also protect the silver film from oxidation.Surface plasmon resonance (SPR) is a kind of coherent oscillation between the free electrons at a metal/dielectric interface and the optical wave.The hybridized excitation,called surface plasmon polariton (SPP),is the electromagnetic excitation that propagates along the interface as a longitudinal wave.At a given wavelength and angle that satisfy the wave-vector matching condition,the incident light will be intensively absorbed.Due to its high sensitivity to the refractive index (RI) of the adjacent material,the SPR phenomenon was firstly applied to gas detection in 1983[1].The SPR sensing technology has been widely used in the detection of biological and chemical analytes

  15. Resonant photoactivation of cadmium sulfide and its effect on the surface chemical activity

    Science.gov (United States)

    Giberti, Alessio; Fabbri, Barbara; Gaiardo, Andrea; Guidi, Vincenzo; Malagù, Cesare

    2014-06-01

    Photo-enhanced surface chemical activity of cadmium sulfide gives rise to a wide class of surface-dependent phenomena, such as heterogeneous photocatalysis, chemoresistivity, and chemiluminescence, which have several technological and scientific applications. In this work, the photochemical properties of nanostructured cadmium sulfide films are investigated by means of electrical conductance measurements in controlled atmosphere, while irradiated by light of wavelengths ranging from 400 to 645 nm. Chemisorption of benzene, carbon monoxide, methane, ethanol, and hydrogen sulfide onto CdS surface has been analyzed as a function of the wavelength, in a gas concentration range of the order of parts per million. It resulted that the increase of photoconductance with gas adsorption is resonant with the bandgap energy. It turns out that this resonant enhancement of the surface chemical activity can be of advantage for all the optical and chemical mechanisms that depend upon it. An interpretation of these results, in terms of electronic optical transitions and Fermi level shift induced by light, is proposed.

  16. Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits.

    Science.gov (United States)

    Koh, Jung-Woo; Yang, Jae-Ho; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun

    2009-07-01

    Macroscopic and especially microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Dental implants with modified surfaces have shown stronger osseointegration than implants which are only turned (machined). Advanced surface modification techniques such as anodic oxidation and Ca-P application have been developed to achieve faster and stronger bonding between the host bone and the implant. The purpose of this study was to investigate the effect of surface treatment of titanium dental implant on implant stability after insertion using the rabbit tibia model. THREE TEST GROUPS WERE PREPARED: sandblasted, large-grit and acid-etched (SLA) implants, anodic oxidized implants, and anodized implants with Ca-P immersion. The turned implants served as control. Twenty rabbits received 80 implants in the tibia. Resonance frequencies were measured at the time of implant insertion, 2 weeks and 4 weeks of healing. Removal torque values (RTV) were measured 2 and 4 weeks after insertion. The implant stability quotient (ISQ) values of implants for resonance frequency analysis (RFA) increased significantly (P .05). The test and control implants also showed significantly higher ISQ values during 4 weeks of healing period (P .05). The SLA, anodized and Ca-P immersed implants showed higher RTVs at 2 and 4 weeks of healing than the machined one (P anodic oxidation nor Ca-P immersion techniques have any advantage over the conventional SLA technique with respect to implant stability.

  17. Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F.J. (Departamento de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Universidad del Pais Vasco, Apartado 649, 20080 San Sebastian (Spain)); Ponce, V.H.; Echenique, P.M. (Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Apartado 1072, 20080 San Sebastian (Spain))

    1994-01-15

    The resonant coherent interaction of an ion with an oriented crystal surface, under grazing-incidence conditions with respect to a special direction of the crystal, gives rise to electron loss to the continuum from electronic bound states of the ion. The calculations presented below predict large probabilities for electron emission due to this mechanism. The electrons are emitted with well defined energies, expressed in terms of the condition of resonance. Furthermore, the emission takes place around certain preferential directions, which are determined by both the latter condition and the symmetry of the surface lattice. Our calculations for MeV He[sup +] ions scattered at a W(001) surface along the [l angle]100[r angle] direction with glancing angle of 0--2 mrad indicate a yield of emission close to 1. Using heavier projectiles, one obtains smaller yields, but still large enough to be measurable in some cases (e.g., [approx]0.9 for 53 MeV B[sup 4+] and an angle of incidence of 1 mrad). Besides, the initial bound state is energy shifted due to the interaction with both the crystal potential and the velocity-dependent image potential. This results in a slight shift of the peaks of emission, which suggests a possible spectroscopy for analyzing the dynamical interaction of electronic bound states with solid surfaces.

  18. Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors

    Science.gov (United States)

    Zhang, Zhenglong; Sheng, Shaoxiang; Zheng, Hairong; Xu, Hongxing; Sun, Mengtao

    2014-04-01

    The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by `plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply `hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry.The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis

  19. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Ae; Jang, Sung Min; Kim, Sung June [School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742 (Korea, Republic of); Byun, Kyung Min [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Kyujung; Kim, Donghyun [Program of Nanomedical Science and Technology, Yonsei University, Seoul 120-749 (Korea, Republic of); Ma, Kyungjae; Oh, Youngjin [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Sung Guk [College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 (United States); Shuler, Michael L, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2010-09-03

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  20. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics.

    Science.gov (United States)

    Wilson, Rab; Bowden, Stephen A; Parnell, John; Cooper, Jonathan M

    2010-03-01

    We demonstrate the enhanced analytical sensitivity of both surface enhanced Raman scattering (SERS) and surface enhanced resonance Raman scattering (SERRS) responses, resulting from the in situ synthesis of silver colloid in a microfluidic flow structure, where both mixing and optical interrogation were integrated on-chip. The chip-based sensor was characterized with a model Raman active label, rhodamine-6G (R6G), and had a limit of detection (LOD) of ca. 50 fM (equivalent to single molecule detection). The device was also used for the determination of the natural pigment, scytonemin, from cyanobacteria (as an analogue for extraterrestrial life existing in extreme environments). The observed LOD of approximately 10 pM (ca. microfluidic system than those measured using the same experimental parameters, with colloid synthesized off-chip, under quiescent conditions.

  1. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate.

    Science.gov (United States)

    Renaudin, Alan; Chabot, Vincent; Grondin, Etienne; Aimez, Vincent; Charette, Paul G

    2010-01-07

    This article presents a device incorporating surface plasmon resonance (SPR) sensing and surface acoustic wave (SAW) actuation integrated onto a common LiNbO(3) piezoelectric substrate. The device uses Rayleigh-type SAW to provide active microfluidic mixing in the fluid above the SPR sensor. Validation experiments show that SAW-induced microfluidic mixing results in accelerated binding kinetics of an avidin-biotin assay. Results also show that, though SAW action causes a parasitic SPR response due to heat injection into the fluid, a relatively brief relaxation time following the SAW pulses allows the effect to dissipate, without affecting the overall assay response. Since both SPR sensors and SAW transducers can be fabricated simultaneously using low-cost microfabrication methods on a single substrate, the proposed design is well-suited to lab-on-chip applications.

  2. Wide-angle resonance of a photonic crystal surface mode under a surface termination and its influence on imaging

    Science.gov (United States)

    Hu, Hengrun; Liu, Hongmei; Qing, Yun; Cheng, Lu-Teng; Song, Weiwei; Yang, Xu; Jiang, Wei; Rao, Wei-Feng

    2017-01-01

    We have developed a semi-analytical approach to the modulation transfer function (MTF) for negative-index flat lenses based on photonic crystals (PhCs). Contributions of various PhC modes to the MTF have been identified and analyzed. With a certain surface termination, a high-order PhC surface mode can be tamed to produce a broad angular resonance. As such, the isotropy of the image field can be significantly enhanced, resulting in an ideal image formation with nearly perfect outgoing circular wavefronts. Ray-optics analysis has also been utilized to assist the design of a negative-index flat lens. Finite-difference time domain simulations confirm the effectiveness of PhC lens designed by this semi-analytic approach to the MTF.

  3. Surface composition of Europa based on VLT observations

    Science.gov (United States)

    Ligier, N.; Poulet, F.; Carter, J.

    2016-12-01

    Jupiter's moon Europa may harbor a global salty ocean under an 80-170 km thick outer layer consisting of an icy crust (Anderson et al. 1998). Meanwhile, the 10-50 My old surface, dated by cratering rates (Pappalardo et al. 1999) implies rapid surface recycling and reprocessing that could result in tectonic activity (Kattenhorn et al. 2014) and plumes (Roth et al. 2014). The surface could thus exhibit fingerprints of chemical species, as minerals characteristics of an ocean-mantle interaction and/or organics of exobiological interest, directly originating from the subglacial ocean. In order to re-investigate the composition of Europa's surface, a global mapping campaign of the satellite was performed with the near-infrared integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) and large signal noise ratio in comparison to previous observations are adequate to detect sharp absorptions in the wavelength range 1.45-2.45 μm. In addition, the spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s ( 35 by 70 km on Europa's surface), thus permitting a global scale study. Several icy and non-icy compounds were detected and mapped at process likely engendered by the Io plasma torus, the crystalline form is found to be approximately twice as abundant as the amorphous ice based on the analysis of the 1.65 μm band. If the surface is dominated by small and mid-sized water ice grains (25-200 μm), crystalline water-ice grains exhibit spatial inhomogeneities in their distribution. The sulfuric acid hydrate distribution exhibits the typical "bullseye" feature on the trailing hemisphere. The presence of Mg-bearing chlorinated salts (chloride, chlorate, and perchlorate) is supported by linear spectral modeling of the data, while the presence of sulfate salts is challenged. The distribution of some of these species is

  4. Nanoemulsion drug delivery by ketene based polyester synthesized using electron rich carbon/silica composite surface.

    Science.gov (United States)

    Swarnalatha, S; Selvi, P K; Ganesh Kumar, A; Sekaran, G

    2008-09-01

    A new carrier matrix for nanoemulsion drug delivery was synthesized from glycine as the raw material, using mesoporous/microporous electron rich carbon-silica composite surface (MAC(800)). MAC(800) was prepared from rice husk in two-stage carbonization. The surface area, pore volume, and pore size distribution of MAC(800) were measured, using nitrogen adsorption isotherms at 77K. The unpaired electron density of MAC(800) was measured in electron spin resonance spectroscopy (ESR), using TEMPOL (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) as the reference spin probe. Glycine was converted into ketene at the surface of MAC(800), which further underwent radical polymerization to form a low molecular weight ketene polymer (LMKP) of ester structure. The structure and the properties of LMKP were confirmed through (13)C, (1)H and DEPT nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and size exclusion chromatography (SEC). The two hydrophilic drugs namely ciprofloxacin hydrochloride (CPH) and gentamicin sulphate (GS) were chosen for the nanoemulsion preparation and characterization. They were characterized for morphology, interaction of drugs with the polymer and their crystallinity, using HR-TEM, DSC and XRD, respectively. The encapsulation efficiency of the LMKP towards the drugs ciprofloxacin hydrochloride and gentamicin sulphate were 26% and 12%, respectively. The dissolution studies of the nanoemulsion were carried out for the pH 6.5, 7.4 and 8.0. The cytocompatibility studies were done for LMKP as well as nanoemulsion using Hep2 epithelial cells.

  5. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    Science.gov (United States)

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  6. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai-400005 (India)

    2015-06-20

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  7. Two-dimensional evaluation of 3D needled Cf/SiC composite fiber bundle surface

    Science.gov (United States)

    Wei, Jinhua; Lin, Bin; Cao, Xiaoyan; Zhang, Xiaofeng; Fang, Sheng

    2015-11-01

    The variations of fiber bundle surface microstructure have direct influence on the material performance, especially the friction and wear properties. Therefore, fiber bundle is the smallest evaluation unit of Cf/SiC composite surface. However, due to the anisotropy and inhomogeneity of Cf/SiC composite, it is difficult to evaluate the surface characteristics. Researchers think that two-dimensional evaluation is not suitable for the composites surface assessment any more because of its complex composition and varied surface structure. In this paper, a novel method is introduced for the evaluation of 3D needled Cf/SiC composite fiber bundle surface. On the level of Cf/SiC composite fiber bundle surface, two-dimensional evaluation method is adopted, with which the fiber bundle surface quality can be quantitatively evaluated by the two-dimensional surface roughness Ra. As long as the extracted surface profiles averagely distributed on Cf/SiC composite fiber bundle surface, with appropriate sampling length and sampling number, the mean value of Ra can estimate the whole surface roughness, thus reflecting the roughness degree of surface accurately. This study not only benefits the detection of 3D needled Cf/SiC composite fiber bundle surface quality, and lays a foundation on the evaluation of material functional features in further. And it corresponds to the convenient application in engineering practice.

  8. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  9. Analysis of surface plasmon resonance with Goos-Hanchen shift using FDTD method

    Science.gov (United States)

    Oh, Geum-Yoon; Kim, Doo-Gun; Kim, Hong-Seung; Choi, Young-Wan

    2009-02-01

    The Goos-Hanchen (GH) shift is observed from phase transition of the reflected light. However, the reported Artmann's equation is difficult to apply to drastic phase change of the critical and resonance angles because this equation is solved by differential of the phase shift. Therefore, the GH shift can be obtained from the structure optimized by the finite-difference time-domain method. In the surface plasmon resonance (SPR) phenomenon, positive and negative lateral shifts may result from the variation of incidence angle. The GH shift is very important to exactly detect the output power of the micro-size SPR sensor. The accurate positive and negative lateral shifts of -0.49 and +1.46 μm are obtained on the SPR with the incidence angles of 44.4° and 47°, respectively.

  10. Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator.

    Science.gov (United States)

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-24

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10(-4) deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.

  11. Surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber

    Science.gov (United States)

    Bing, Pibin; Li, Zhongyang; Yuan, Sheng; Yao, Jianquan; Lu, Ying

    2016-04-01

    A surface plasmon resonance biosensor based on large size square-lattice photonic crystal fiber has been designed and simulated by finite element method. The square-lattice airholes are first coated with a calcium fluoride layer to provide mode confinement, then a nanoscale gold layer is deposited to excite the plasmon mode, and finally, the sample is infiltrated into the holes. The numerical results reveal that the resonance properties are easily affected by many parameters. The refractive index resolution of corresponding sensor can reach 4.3 × 10-6 RIU when the optimum parameters are set as the radius of curvature of the airhole r = 2 μm, the thickness of the core struts c = 200 nm, the auxiliary dielectric layer s = 1 μm, and the gold film d = 40 nm. In addition, the effective area and nonlinear coefficient are calculated.

  12. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  13. Second-Order Nonlinearity in Triangular Lattice Perforated Gold Film due to Surface Plasmas Resonance

    Directory of Open Access Journals (Sweden)

    Renlong Zhou

    2014-01-01

    Full Text Available We have studied the excitation second-order nonlinearity through a triangular lattice perforated gold film instead of square lattice in many papers. Under the excitation of surface plasmas resonance effect, the second order nonlinearity exists in the noncentrosymmetric split-ring resonators arrays. Reflection of fundamental frequency wave through a triangular lattice perforated gold film is obtained. We also described the second harmonic conversion efficiencies in the second order nonlinear optical process with the spectra. Moreover, the electric field distributions of fundamental frequency above the gold film region are calculated. The light propagation through the holes results in the enhancement of the second order nonlinearity including second harmonic generation as well as the sum (difference frequency generation.

  14. Polymer-based surface plasmon resonance biochip: construction and experimental aspects

    Directory of Open Access Journals (Sweden)

    Cleumar da Silva Moreira

    Full Text Available Abstract Introduction: Surface plasmon resonance biosensors are high sensitive analytical instruments that normally employ glass materials at the optical substrate layer. However, the use of polymer-based substrates is increasing in the last years due to favorable features, like: disposability, ease to construction and low-cost design. Review Recently, a polymer-based SPR biochip was proposed by using monochromatic and polychromatic input sources. Its construction and experimental considerations are detailed here. Experimental considerations and results, aspects from performance characteristics (resonance parameters, sensitivity and full width at half maximum – FWHM – calculations are presented for hydrophilic and hydrophobic solutions. It is included also a brief description of the state of the art of polymer-based SPR biosensors.

  15. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    Science.gov (United States)

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-11-01

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  16. Effect of radiotherapy on the hardness and surface roughness of two composite resins.

    Science.gov (United States)

    Viero, Flavio Luiz; Boscolo, Frab Norberto; Demarco, Flavio Fernando; Faot, Fernanda

    2011-01-01

    The knowledge about the potential adverse effects of radiotherapy compared to dental composites is a useful information for the clinician's decision regarding adoption of repairs or replacement of dental restorations during oral cancer treatment. This study evaluated the effects of irradiation on microhardness and surface roughness of a microfilled and a packable composite resin. The microfilled composite resin demonstrated significantly lower microhardness and a smoother surface compared to the packable composite resin (p composite resins (P surface hardness (P > 0.05). Meanwhile, irradiation did not produce a significantly rougher surface (P > 0.05), but specimens submitted to abrasion exhibited a significant increase in surface roughness for both composite resins (P hardness of tested composite resins, it does not interfere with surface roughness.

  17. Underpotential deposition of a copper monolayer on a gold film sensed by integrated optical surface plasmon resonance

    OpenAIRE

    Abanulo, J.C.; Harris, R.D.; Bartlett, P.N.; Wilkinson, J.S.

    2000-01-01

    An integrated optical surface plasmon resonance sensor combined with electrochemical control is used to monitor the underpotential deposition of a copper monolayer onto a gold film from 1 mM Cu2+ in 0.1 M perchloric acid.

  18. Comparisons of venus surface compositions with terrestrial ocean floor rocks

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, J.B.; Bryan, W.B.

    1987-10-01

    Statistical comparison of Venera and Vega lander x-ray fluorescence spectrometer measurements of the composition of the Venus surface with an extensive database of compositional data for terrestrial ocean floor rocks indicates that the Venera 14 data matches certain tholeiitic basalts from the Kane Fracture Zone (KFZ) in the Mid-Atlantic Ridge (22-25/sup 0/N) at high confidence levels. The tholeiites most similar to the Venera measurements are very primitive, low-calcium, high-alumina pillow basalts depleted in clinopyroxene, and are relatively unique to certain fracture zones in oceanic regions. If the Venera 14 analogy is valid, the implication is that certain Venus basaltic magmas have lost clinopyroxene at relatively high pressures by fractionation, perhaps within a deep source region. Comparisons of Venera 13 and Vega 2 data with oceanic rocks yield poorer matches. Venera 13 matches Loihi seamount alkali basalts, as well as potassic mafic rocks from oceanic island such as Tristan de Cunha. The best analogy to Vega 2 may be altered gabbros or basic lavas from terrestrial basic intrusions such as the Troodos ophiolite. The close similarity of a representative sample of Venera 14 material with distinctive ocean floor tholeiitic basalts suggests that deep magma storage regions exist on Venus, and that derivation of both tholeiitic and alkalic magmas from a single primitive parent may be an important process on Venus.

  19. Sensing (un)binding events via surface plasmons: effects of resonator geometry

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael

    2016-04-01

    The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations

  20. Surface Coil Intensity Correction in Magnetic Resonance Imaging in Spinal Metastases.

    Science.gov (United States)

    Ren, Hong; Lin, Wei; Ding, Xianjun

    2017-01-01

    To evaluate the clinical application of phased-array surface coil intensity correction in magnetic resonance imaging (MRI) in spinal metastases. 3 phantoms and 50 patients with a corresponding total number of 80 spinal metastases were included in this study. Fast spin echo T1- and T2- weighted MRI with and without surface coil intensity correction was routinely performed for all phantoms and patients. Phantoms were evaluated by means of variance to mean ratio of signal intensity on both T1- and T2- weighted MRI obtained with and without surface coil intensity correction. Spinal metastases were evaluated by image quality scores; reading time per case on both T1- and T2- weighted MRI obtained with and without surface coil intensity correction. Spinal metastases were diagnosed more successfully on MRI with surface coil intensity correction than on MRI with conventional surface coil technique. The variance to mean ratio of signal intensity was 53.36% for original T1-weighted MRI and 53.58% for original T2-weighted MRI. The variance to mean ratio of signal intensity was reduced to 18.99% for T1-weighted MRI with surface coil intensity correction and 22.77% for T2-weighted MRI with surface coil intensity correction. The overall image quality scores (interface conspicuity of lesion and details of lesion) were significantly higher than those of the original MRI. The reading time per case was shorter for MRI with surface coil intensity correction than for MRI without surface coil intensity correction. Phased-array surface coil intensity correction in MRIs of spinal metastases provides improvements in image quality that leads to more successfully detection and assessment of spinal metastases than original MRI.

  1. Photocurrent enhancement by surface plasmon resonance of gold nanoparticles in spray deposited large area dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chander, Nikhil; Singh, Puneet [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Khan, A.F. [Department of Electronics and Information Technology, Ministry of Communications and Information Technology, Government of India, New Delhi 110003 (India); Dutta, Viresh [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Komarala, Vamsi K., E-mail: vamsi@ces.iitd.ac.in [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2014-10-01

    A facile method for fabricating large area TiO{sub 2} and TiO{sub 2}–Au nanocomposite films for dye sensitized solar cells (DSSCs) is presented using a spray technique. Pre-synthesized gold nanoparticles (Au NPs) were sprayed together with the TiO{sub 2} NPs and composite films with brilliant coloration due to surface plasmon resonances of Au NPs were prepared. Composite films containing ∼ 15 nm sized Au NPs exhibited enhanced absorption in the visible region of the electromagnetic spectrum. DSSCs with a large area of ∼ 4.5 cm{sup 2} were fabricated and a photocurrent enhancement of ∼ 10% was obtained for plasmonic DSSC containing 0.3 wt.% of ∼ 15 nm Au NPs. Incident photon to current conversion efficiency data conclusively showed enhanced currents in the visible region of the polychromatic spectrum arising due to plasmon enhanced near-field effects of Au NPs around the absorbing dye molecules. - Highlights: • Preparation of TiO{sub 2} and TiO{sub 2}–Au films with a large area of ∼ 7.5 cm{sup 2} by a spray technique • An efficiency of ∼ 4.5% achieved by the large area plasmonic DSSC • Photocurrent enhancement due to SPR effects of gold NPs observed • Comparison of the spray and conventional doctor blade methods in DSSC performance • Demonstration of technological feasibility and versatility of a simple spray process.

  2. Millimeter-wave scanning surface resistance analyzer using a confocal resonator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Martens, J.S.; Shih, C.F.; Withers, R.S.; Sachtjen, S.A.; Suppan, L.P.; Kotsubo, V. [Conductus, Inc., Sunnyvale, CA (United States); Tigges, C.P. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Millimeter-wave confocal resonators are used in a new, commercially available instrument to map the surface resistance of large area (2--4 inch diameter) superconducting thin films. Q-factors are measured from the reflection coefficient of the cavity formed by a spherical aluminum mirror and a planar conductor sitting at half the radius of curvature of the mirror. The surface resistance of the superconducting film is extracted from the measured Q values. Typical R{sub s} values of 20--40 m{Omega} are measured for high-quality 2 in. high-{Tc} superconducting thin films at 94 GHz and 77 K. Other capabilities of related instruments such as determining dielectric constants and loss tangents of a substrate, high-rf-power surface resistance measurement, etc. will be demonstrated and discussed.

  3. Surface-Plasmon-Polariton Laser based on an Open-Cavity Fabry-Perot Resonator

    CERN Document Server

    Zhu, Wenqi; Agrawal, Amit; Lezec, Henri J

    2016-01-01

    Recent years have witnessed growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface-plasmons, electromagnetic modes evanescently confined to metal-dielectric interfaces, offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain-medium. Here, we achieve visible frequency ultra-narrow linewidth lasing at room-temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically-pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. Low perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high-figure-of-merit refractive-index sensing of analytes interacting with the open cavity.

  4. Enhanced optical immunosensor based on surface plasmon resonance for determination of transferrin.

    Science.gov (United States)

    Liu, Xia; Sun, Ying; Song, Daqian; Zhang, Qinglin; Tian, Yuan; Zhang, Hanqi

    2006-01-15

    Wavelength modulation surface plasmon resonance biosensors (SPR) using colloidal Au nanoparticles and double-linker sensing membrane enhancement are reported for determination of transferrin. The 2-mercaptoethylamine (MEA) was immobilized on the biosensor surface with traditional amine coupling method. The interaction between colloidal Au nanoparticles and MEA was investigated. The anti-transferrin was immobilized on the biosensor surface prepared with staphylococcal protein A (SPA). The interaction of the antibody and antigen was monitored in real time. The good response was obtained in the concentration range 1-20, 0.1-20 and 0.05-20 microg/mL for directly immune assay, double-linker assay and colloidal Au-amplified assay. The result clearly demonstrates that these methods may obtain significantly enhancement of sensitivity for the wavelength modulation SPR biosensor.

  5. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M.; Sendra, Jose Ramón; Lechuga, Laura M.

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  6. A saccharides sensor developed by symmetrical optical waveguide-based surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Ang Li

    2015-03-01

    Full Text Available We proposed a new saccharides sensor developed by symmetrical optical waveguide (SOW-based surface plasmon resonance (SPR. This unique MgF2/Au/MgF2/Analyte film structure results in longer surface plasmon wave (SPW propagation lengths and depths, leading to an increment of resolution. In this paper, we managed to decorate the dielectric interface (MgF2 layer by depositing a thin polydopamine film as surface-adherent that provides a platform for secondary reactions with the probe molecule. 3-Aminophenylboronic acid (3-PBA is chosen to be the saccharides sense probe molecule in the present work. The aqueous humor of Diabetes and Cataract patient whose blood glucose level is normal are analyzed and the results demonstrated that this sensor shows great potential in monitoring the blood sugar and can be adapted in the field of biological monitoring in the future.

  7. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading.

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  8. Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties

    KAUST Repository

    Ben-Sasson, Moshe

    2014-01-07

    Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed. © 2013 American Chemical Society.

  9. Effect of whitening and desensitizing dentifrices on composite surfaces treated with surface sealants.

    Science.gov (United States)

    Dos Santos, Paulo Henrique; Brogin, Fabiana Ferres; Catelan, Anderson; Suzuki, Thaís Yumi Umeda; Guedes, Ana Paula Albuquerque; Pavan, Sabrina; Assunção, Wirley Gonçalves; Briso, André Luiz Fraga

    2013-05-01

    This study evaluated the effect of different dentifrices on the microhardness and surface roughness of composite surfaces covered by surface sealants. Samples of Filtek P60 were made and divided into groups, in accordance with surface treatments: G1 - Fortify; G2 - Fortify Plus; G3 - control (none). For Knoop microhardness evaluation, the specimens were placed in a microdurometer, under a load of 50 g for 15 sec. The analyses of surface roughness were carried out individually in a profilometer. The specimens were submitted to toothbrushing using dentifrices: Colgate Maximum Protection Anti-caries, Colgate Whitening or Sensodyne, diluted in distilled water (1:3) for 30 000 cycles. The results showed that the control group (G3) presented the highest microhardness values. The control group presented, before toothbrushing, the lowest surface roughness values, and after toothbrushing there were no differences among the experimental groups. The maintenance of the lowest values of microhardness demonstrated the effectiveness of these sealant materials to support the abrasive wear. © 2012 Wiley Publishing Asia Pty Ltd.

  10. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.S.G.; Trust, T.J.

    1988-02-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase /sup 125/I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to /sup 125/I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein.

  11. Photoinduced charge carriers in conjugated polymer-fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.C.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties.

  12. High-frequency (95 GHz) electron paramagnetic resonance study of the photoinduced charge transfer in conjugated polymer-fullerene composites

    NARCIS (Netherlands)

    Ceuster, J. De; Goovaerts, E.; Bouwen, A.; Hummelen, J.C.; Dyakonov, V.

    2001-01-01

    Light-induced electron paramagnetic resonance (LEPR) measurements are reported in composites of poly(2-methoxy-5-(3-,7-dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), a soluble derivative of C60. Under illumination of the sample, two

  13. VALIDATION OF AN ALGORITHM FOR NONMETALLIC INTRAOCULAR FOREIGN BODIES' COMPOSITION IDENTIFICATION BASED ON COMPUTED TOMOGRAPHY AND MAGNETIC RESONANCE IMAGING.

    Science.gov (United States)

    Moisseiev, Elad; Barequet, Dana; Zunz, Eran; Barak, Adiel; Mardor, Yael; Last, David; Goez, David; Segal, Zvi; Loewenstein, Anat

    2015-09-01

    To validate and evaluate the accuracy of an algorithm for the identification of nonmetallic intraocular foreign body composition based on computed tomography and magnetic resonance imaging. An algorithm for the identification of 10 nonmetallic materials based on computed tomography and magnetic resonance imaging has been previously determined in an ex vivo porcine model. Materials were classified into 4 groups (plastic, glass, stone, and wood). The algorithm was tested by 40 ophthalmologists, which completed a questionnaire including 10 sets of computed tomography and magnetic resonance images of eyes with intraocular foreign bodies and were asked to use the algorithm to identify their compositions. Rates of exact material identification and group identification were measured. Exact material identification was achieved in 42.75% of the cases, and correct group identification in 65%. Using the algorithm, 6 of the materials were exactly identified by over 50% of the participants, and 7 were correctly classified according to their groups by over 75% of the materials. The algorithm was validated and was found to enable correct identification of nonmetallic intraocular foreign body composition in the majority of cases. This is the first study to report and validate a clinical tool allowing intraocular foreign body composition based on their appearance in computed tomography and magnetic resonance imaging, which was previously impossible.

  14. Photoinduced charge carriers in conjugated polymer-fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.C.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties. Micr

  15. Photoinduced charge carriers in conjugated polymer–fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.; Sariciftci, N.S.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties. Micr

  16. Electronic Noses for Composites Surface Contamination Detection in Aerospace Industry.

    Science.gov (United States)

    Vito, Saverio De; Miglietta, Maria Lucia; Massera, Ettore; Fattoruso, Grazia; Formisano, Fabrizio; Polichetti, Tiziana; Salvato, Maria; Alfano, Brigida; Esposito, Elena; Francia, Girolamo Di

    2017-04-02

    The full exploitation of Composite Fiber Reinforced Polymers (CFRP) in so-called green aircrafts design is still limited by the lack of adequate quality assurance procedures for checking the adhesive bonding assembly, especially in load-critical primary structures. In this respect, contamination of the CFRP panel surface is of significant concern since it may severely affect the bonding and the mechanical properties of the joint. During the last years, the authors have developed and tested an electronic nose as a non-destructive tool for pre-bonding surface inspection for contaminants detection, identification and quantification. Several sensors and sampling architectures have been screened in view of the high Technology Readiness Level (TRL) scenarios requirements. Ad-hoc pattern recognition systems have also been devised to ensure a fast and reliable assessment of the contamination status, by combining real time classifiers and the implementation of a suitable rejection option. Results show that e-noses could be used as first line low cost Non Destructive Test (NDT) tool in aerospace CFRP assembly and maintenance scenarios.

  17. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata

    2016-02-01

    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  18. Synthesis of gold nanorods with a longitudinal surface plasmon resonance peak of around 1250 nm

    Science.gov (United States)

    Nguyen, Thi Nhat Hang; Le Trinh Nguyen, Thi; Thanh Tuyen Luong, Thi; Thang Nguyen, Canh Minh; Nguyen, Thi Phuong Phong

    2016-03-01

    We prepared gold nanorods and joined them to chemicals such as tetrachloauric (III) acid trihydrate, silver nitrate, hydroquinone, hexadecyltrimethylammonium bromide, sodium hydroxide and sodium borohydride using the seed-mediated method. The combination of hydroquinone, with or without salicylic acid, influences the size of the gold nanorods, and this is demonstrated by the results of TEM images, UV-vis spectra and the value of the longitudinal surface plasmon resonance peak with respect to the UV-vis spectra. By changing the Ag+ ion and hydroquinone concentration and the combination of hydroquinone and salicylic acid, the size of the gold nanorods can be controlled and this is manifested by longitudinal surface plasmon resonance peaks forming between 875 and 1278 nm. In particular, sample E2 achieved a longitudinal surface plasmon peak at 1273 nm and an aspect ratio of more than 10 by modifying the hydroquinone to 2.5 mM and salicylic acid to 0.5 mM concentration in the growth solution.

  19. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, MA 01939 (United States)

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7 nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p→3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  20. Detection of glycoprotein using fiber optic surface plasmon resonance sensors with boronic acid

    Science.gov (United States)

    Wang, Fang; Zhang, Yang; Liu, Zigeng; Qian, Siyu; Gu, Yiying; Jing, Zhenguo; Sun, Changsen; Peng, Wei

    2017-04-01

    In this paper, we present a tilted fiber Bragg gratings (TFBG) based surface Plasmon resonance (SPR) label-free sensors with boronic acid derivative (ABA-PBA) as receptor molecule to detect glycoprotein with high sensitivity and selectivity. Tilted fiber Bragg gratings (TFBG) as a near infrared wavelengths detecting element can be able to excite a number of cladding modes whose properties can be detected accurately by measuring the variation of transmitted spectra. A 10° TFBG coated by 50nm gold film was manufactured to stimulate surface plasmon resonance on the surface of the sensor. The sensor was loaded with boronic acid derivative as the recognition molecule which has been widely used in various areas for the recognition matrix of diol-containing biomolecules. The proposed TFBG-SPR sensors exhibit good selectivity and repeatability with the protein concentration sensitivity up to 2.867dB/ (mg/ml) and the limit of detection was 2*10-5g/ml.

  1. Heparinization of gas plasma-modified polystyrene surfaces and the interactions of these surfaces with proteins studied with surface plasmon resonance plasmon resonance

    NARCIS (Netherlands)

    Delden, van C.J.; Lens, J.P.; Kooyman, R.P.H.; Engbers, G.H.M.; Feijen, J.

    1997-01-01

    Polystyrene surfaces obtained by spin-coating a solution of polystyrene in toluene on a gold layer were functionalized with carboxylic acid groups by preadsorption of the sodium salt of undecylenic acid, followed by an argon plasma treatment. A conjugate of albumin and heparin (alb-hep) was covalent

  2. Mapping of plume deposits and surface composition on Enceladus

    Science.gov (United States)

    Nordheim, T. A.; Scipioni, F.; Cruikshank, D. P.; Clark, R. N.,; Hand, K. P.

    2017-01-01

    A major result of the Cassini mission was the discovery that the small mid-sized moon Enceladus is presently geological active[Dougherty et al., 2006; Porco et al., 2006; Spencer et al., 2006; Hansen et al., 2008]. This activity results in plumes of water vapor and ice emanating from a series of fractures ("Tiger Stripes") at the moon's South Pole. Some fraction of plume material escapes the moon's gravity and populates the E-ring as well as ultimately providing a source of fresh plasma in the Saturnian magnetosphere [Pontius and Hill, 2006; Kempf et al., 2010]. However, a significant portion of plume material is redeposited on Enceladus and thus provides a source of surface contaminants. By studying the near-infrared spectral signatures of these contaminants we may put new constraints on the composition of the plumes and, ultimately, their source, which is currently believed to be Enceladus's global sub-surface ocean [Iess et al., 2014]. Here we present preliminary results from our analysis of observations from the Visual and Infrared Mapping Spectrometer (VIMS) [Brown et al., 2005] onboard Cassini and mapping of plume deposits across the surface of Enceladus. We have investigated the global variation of the water ice Fresnel peak at 3.1 μm, which may be used as an indicator of ice crystallinity [Hansen & McCord, 2004; Jaumann et al., 2008; Newman et al., 2008]. We have also investigated the slope of the 1.11-2.25 μm spectral region, which serves as an indicator of water ice grain size for small grains (< 100 μm) as well as the presence of contaminants [e.g. Filacchione et al., 2010]. Finally, we have identified and mapped an absorption feature centered at 3.25 μm that may be related to organic contaminants, represented by the band depth of the fundamental C-H stretch [e.g. Cruikshank et al., 2014; Scipioni et al., 2014].

  3. A Surface Plasmon Resonance-Based Immunosensors for Sensitive Detection of Heroin

    Science.gov (United States)

    Wu, Zhong-cheng; Chen, Wen-ge; Wang, Lian-chao; Ge, Yu; Yu, Cheng-duan; Fang, Ting-jian

    2000-12-01

    A simple technique for sensitive detection of heroin based on surface-plasmon-resonance has been theoretically and experimentally investigated. The experiment was realized by using an anti-MO monoclonal antibody and a morphine (MO)-bovine serum albumin (MO-BSA) conjugate (antigen). The reason for using MO-BSA in the detection of heroine was also discussed. MO-BSA was immobilized on a gold thin film of SPR sensor chip by physical adsorption. The configuration of the device is allowed to be further miniaturized, which is required for the construction of a portable SPR device in the application of in-situ analysis.

  4. Novel piezoelectric effect and surface plasmon resonance-based elements for MEMS applications.

    Science.gov (United States)

    Ponelyte, Sigita; Palevicius, Arvydas

    2014-04-17

    This paper covers research on novel thin films with periodical microstructure--optical elements, exhibiting a combination of piezoelectric and surface plasmon resonance effects. The research results showed that incorporation of Ag nanoparticles in novel piezoelectric--plasmonic elements shift a dominating peak in the visible light spectrum. This optical window is essential in the design of optical elements for sensing systems. Novel optical elements can be tunable under defined bias and change its main grating parameters (depth and width) influencing the response of diffraction efficiencies. These elements allow opening new avenues in the design of more sensitive and multifunctional microdevices.

  5. Research of measurement errors caused by salt solution temperature drift in surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Yingcai Wu; Zhengtian Gu; YifangYuan

    2006-01-01

    @@ Influence of temperature on measurement of surface plasmon resonance (SPR) sensor was investigated.Samples with various concentrations of NaCI were tested at different temperatures. It was shown that if the affection of temperature could be neglected, measurement precision of salt solution was 0.028 wt.-%.But measurement error of salinity caused by temperature was 0.53 wt.-% in average when the temperature drift was 1 ℃. To reduce the error, a double-cell SPR sensor with salt solution and distilled water flowing respectively and at the same temperature was implemented.

  6. Compact surface plasmon resonance biosensor utilizing an injection-molded prism

    Science.gov (United States)

    Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan

    2016-05-01

    Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.

  7. Angle modulated surface plasmon resonance spectrometer for refractive index sensing with enhanced detection resolution

    Science.gov (United States)

    Zhou, Xinlei; Chen, Ke; Li, Li; Peng, Wei; Yu, Qingxu

    2017-01-01

    We design and manufacture an angle modulated surface plasmon resonance (SPR) spectrometer with high detection resolution for refractive index sensing. The presented SPR spectrometer is based on a five-layer Kretchmann configuration. To enhance the sensitivity and resolution of the SPR spectrometer, we introduce a reference beam into the system, which has improved the stability of the system by nearly one order of magnitude. Numerical simulation and experimental study are presented and the results show that a sensitivity of 85 degrees/RIU (refractive index unit) and a good repeatability (standard deviation=3.7×10-6 RIU) have been achieved.

  8. An optical pressure sensor based on π-shaped surface plasmon polariton resonator

    Science.gov (United States)

    Duan, Gaoyan; Lang, Peilin; Wang, Lulu; Yu, Li; Xiao, Jinghua

    2016-07-01

    We propose a metal-insulator-metal (MIM) structure which consists of a π-shaped resonator and a surface plasmon polariton (SPP) waveguide. The finite element method (FEM) is employed in the simulation. The results show that this structure forms an optical pressure sensor. The transmission spectra have a redshift with increasing pressure, and the relation between the wavelength shift and the pressure is linear. The nanoscale pressure sensor shows a high sensitivity and may have potential applications in biological and biomedical engineering.

  9. Design of surface plasmon resonance biosensor with one dimensional photonic crystal for detection of cancer

    Directory of Open Access Journals (Sweden)

    M Sharifi

    2016-09-01

    Full Text Available In recent years, development of highly sensitive biosensors is the main purpose of researchers to diagnose and prevent diseases. Accordingly, in this paper, surface plasmon resonance (SPR biosensor has been designed based on one dimensional layered structures. With regard to the fact that the quality of SPR sensors strongly depends on the reflectance amplitude and full width at half maximum (FWHM of the SPR curves, a novel structure, , is presented using transfer matrix method (TMM, to satisfy these two condition. Besides, the sensitivity of this biosensor has been calculated and it has been employed to diagnose leukemia for Jurkat cells.

  10. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    CERN Document Server

    Lei, Zeyu

    2015-01-01

    We report the design and experimental realization of a kind of miniaturized devices for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two dimensional launching efficiency of about 51%, under the normal illumination of a 5-{\\mu}m waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel and Airy profiles are launched and imaged with leakage radiation microscopy.

  11. High frequency surface acoustic wave resonator-based sensor for particulate matter detection

    OpenAIRE

    Thomas, Sanju; Cole, Marina; Villa-López, Farah Helue; Gardner, J. W.

    2016-01-01

    This paper describes the characterization of high frequency Surface Acoustic Wave Resonator-based (SAWR) sensors, for the detection of micron and sub-micron sized particles. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh wave SAWRs where one is used for particle detection and the other as a reference. Electro-acoustic detection of different sized particles shows a strong relationship between mass sensitivity (Δf/Δm) and particle diameter (Dp). This enables frequency-dependent S...

  12. Surface plasmon resonance biosensors for detection of foodborne pathogens and toxins

    Science.gov (United States)

    Homola, Jiří; Hegnerová, Kateřina; Vala, Milan

    2009-02-01

    In the last decade surface plasmon resonance (SPR) biosensors have made great strides both in terms of technology and its applications. SPR biosensors have become a central tool for study of molecular interactions and have been widely used for detection of chemical and biological analytes. Food analysis belongs to major areas of potential applications of SPR biosensors. Therefore, numerous SPR biosensors for detection of analytes implicated in food safety (e.g. pathogens, toxins, drug residues, vitamins, hormones, chemical contaminants, and allergens) have been developed. This paper reviews recent developments in the field of SPR biosensors for food safety, in particular, for detection of foodborne pathogens and toxins.

  13. Improving the sensitivity limit of surface plasmon resonance biosensors by detecting mixed interference signals

    Science.gov (United States)

    Yuan, W.; Ho, H. P.; Suen, Y. K.; Kong, S. K.; Lin, Chinlon

    2007-11-01

    We demonstrate that the sensitivity limit of intensity-based surface plasmon resonance (SPR) biosensors can be enhanced when we combine the effects of the phase and amplitude contributions instead of detecting the amplitude variation only. Experimental results indicate that an enhancement factor of as much as 20 times is achievable, yet with no compromise in measurement dynamic range. While existing SPR biosensor systems are predominantly based on the angular scheme, which relies on detecting intensity variations associated with amplitude changes only, the proposed scheme may serve as a direct system upgrade approach for these systems. The new measurement scheme may therefore lead to a strong impact in the design of SPR biosensors.

  14. Using surface plasmon resonances to test the durability of silver copper films

    Science.gov (United States)

    Bussjager, Rebecca J.; MacLeod, H. Angus

    1996-09-01

    Silver has high reflectivity in the visible and infrared but cannot be used fully because of its distressing lack of durability. A technique that uses the surface plasmon resonance phenomenon offers a sensitive method for studying the corrosion of silver and assessing improvements. It has been used in the investigation of the effects of flashing a thin layer, approximately 1 nm thick, of copper over silver in an attempt at cathodic protection. Tests include exposing silver and silver-copper films to air, 94% relative humidity, water, and hydrogen sulfide.

  15. Canard explosion and internal signal stochastic bi-resonance in the CO oxidation on platinum surface

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Canard explosion is a kind of complex temporal behavior and is ubiquitous in excitable systems. It is associated with an abrupt change of amplitude and period of an oscillatory trajectory in a very narrow interval of a control parameter. We have analyzed in the present paper the behavior of canard explosion that is near a supercritical Hopf bifurcation and its response to white noise in a temporal model of CO oxidation on platinum surface. We have found that the presence of canard explosion gives rise to internal signal stochastic bi-resonance, thus demonstrating a novel functional feature of noise: selective amplifying signals with different periods.

  16. Resonance Energy Transfer in Hybrid Devices in the Presence of a Surface

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Huck, Alexander; Kadkhodazadeh, Shima

    2014-01-01

    We have studied room-temperature, nonradiative resonant energy transfer from InGaN/GaN quantum wells to CdSe/ZnS nanocrystals separated by aluminum oxide layers of different thicknesses. Nonradiative energy transfer from the quantum wells to the nanocrystals at separation distances of up...... to approximately 10 nm was observed. By comparing the carrier dynamics of the quantum wells and the nanocrystals, we found that nonradiative recombination via surface states, generated during dry etching of the wafer, counteracts the nonradiative energy-transfer process to the nanocrystals and therefore decreases...

  17. Studies of surface plasmon resonance sensor using bi-beam differential measurement approach

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a low-cost measurement approach with bi-beam was presented, which can be used for real-time detection and online analysis of solution refractive index, based on systematical analysis and experiments of conventional detection methods on surface plasmon resonance sensor. This novel method was analyzed theoretically and based on it a sensor system set was established. The factors that affect the sensor's sensitivity and working range were discussed. The angular adjustment setup was simplified, errors produced by movable components were avoided and the maneuverability was enhanced with this new method.The noiseproof feature and stability of the sensor system were greatly improved as well.

  18. The effect of rough surfaces on Nuclear Magnetic Resonance relaxation experiments

    CERN Document Server

    Nordin, Matias

    2015-01-01

    Most theoretical treatments of Nuclear Magnetic Resonance (NMR) assume ideal smooth geometries (i.e. slabs, spheres or cylinders) with well-defined surface-to-volume ratios (S/V). This same assumption is commonly adopted for naturally occurring materials, where the pore geometry can differ substantially from these ideal shapes. In this paper the effect of surface roughness on the T2 relaxation spectrum is studied. By homogenization of the problem using an electrostatic approach it is found that the effective surface relaxivity can increase dramatically in the presence of rough surfaces. This leads to a situation where the system responds as a smooth pore, but with significantly increased surface relaxivity. As a result: the standard approach of assuming an idealized geometry with known surface-to-volume and inverting the T2 relaxation spectrum to a pore size distribution is no longer valid. The effective relaxivity is found to be fairly insensitive to the shape of roughness but strongly dependent on the width...

  19. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance

    Science.gov (United States)

    Parsekian, Andrew D.; Grosse, Guido; Walbrecker, Jan O.; Müller-Petke, Mike; Keating, Kristina; Liu, Lin; Jones, Benjamin M.; Knight, Rosemary

    2013-01-01

    A talik is a layer or body of unfrozen ground that occurs in permafrost due to an anomaly in thermal, hydrological, or hydrochemical conditions. Information about talik geometry is important for understanding regional surface water and groundwater interactions as well as sublacustrine methane production in thermokarst lakes. Due to the direct measurement of unfrozen water content, surface nuclear magnetic resonance (NMR) is a promising geophysical method for noninvasively estimating talik dimensions. We made surface NMR measurements on thermokarst lakes and terrestrial permafrost near Fairbanks, Alaska, and confirmed our results using limited direct measurements. At an 8 m deep lake, we observed thaw bulb at least 22 m below the surface; at a 1.4 m deep lake, we detected a talik extending between 5 and 6 m below the surface. Our study demonstrates the value that surface NMR may have in the cryosphere for studies of thermokarst lake hydrology and their related role in the carbon cycle.

  20. Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms.

    Science.gov (United States)

    Kegel, Laurel L; Boyne, Devon; Booksh, Karl S

    2014-04-01

    Nanohole arrays exhibit unique surface plasmon resonance (SPR) characteristics according to hole periodicity, diameter, and excitation wavelength (λ(SPR)). This contribution investigates the SPR characteristics and surface sensitivity of various nanohole arrays with the aim of tuning the parameters for optimal sensing capability. Both the Bragg surface plasmons (SPs) arising from diffraction by the periodic holes and the traditional propagating SPs are characterized with emphasis on sensing capability of the propagating SPs. Several trends in bulk sensitivity and penetration depth were established, and the surface sensitivity was calculated from bulk sensitivity and penetration depth of the SPs for different analyte thicknesses. Increased accuracy and precision in penetration depth values were achieved by incorporating adsorbate effects on substrate permittivity. The optimal nanohole array conditions for highest surface sensitivity were determined (820 nm periodicity, 0.27 diameter/periodicity, and λ(SPR) = 1550 nm), which demonstrated an increase in surface sensitivity for the 10 nm analyte over continuous gold films at their optimal λ(SPR) (1300 nm) and conventional visible λ(SPR) (700 nm).

  1. Antibody-ligand interactions for hydrophobic charge-induction chromatography: a surface plasmon resonance study.

    Science.gov (United States)

    Cheng, Fang; Li, Ming-Yang; Wang, Han-Qi; Lin, Dong-Qiang; Qu, Jing-Ping

    2015-03-24

    This article describes the use of surface plasmon resonance (SPR) spectroscopy to study antibody-ligand interactions for hydrophobic charge-induction chromatography (HCIC) and its versatility in investigating the surface and solution factors affecting the interactions. Two density model surfaces presenting the HCIC ligand (mercapto-ethyl-pyridine, MEP) were prepared on Au using a self-assembly technique. The surface chemistry and structure, ionization, and protein binding of such model surfaces were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), contact-angle titration, and SPR, respectively. The influences of the surface and solution factors, e.g., ligand density, salt concentration, and solution pH, on protein adsorption were determined by SPR. Our results showed that ligand density affects both equilibrium and dynamic aspects of the interactions. Specifically, a dense ligand leads to an increase in binding strength, rapid adsorption, slow desorption, and low specificity. In addition, both hydrophobic interactions and hydrogen bonding contribute significantly to the protein adsorption at neutral pH, while the electrostatic repulsion is overwhelmed under acidic conditions. The hydrophobic interaction at a high concentration of lyotropic salt would cause drastic conformational changes in the adsorbed protein. Combined with the self-assembly technique, SPR proves to be a powerful tool for studying the interactions between an antibody and a chromatographic ligand.

  2. 750 GeV composite axion as the LHC diphoton resonance

    Directory of Open Access Journals (Sweden)

    Neil D. Barrie

    2016-04-01

    Full Text Available We propose that the 750 GeV resonance, presumably observed in the early LHC Run 2 data, could be a heavy composite axion that results from condensation of a hypothetical quark in a high-colour representation of conventional QCD. The model, motivated by a recently proposed solution to the strong CP problem, is very economical and is essentially defined by the properties of the additional quark – its colour charge, hypercharge and mass. The axion mass and its coupling to two photons (via axial anomaly can be computed in terms of these parameters. The axion is predominantly produced via photon fusion (γγ→A which is followed by Z vector boson fusion and associated production at the LHC. We find that the total diphoton cross section of the axion can be fitted with the observed excess. Combining the requirement on the cross-section, such that it reproduces the diphoton excess events, with the bounds on the total width (Γtot⩽45 GeV, we obtain the effective coupling in the range 1.6×10−4 GeV−1≳CA≳6.5×10−5 GeV−1. Within this window of allowed couplings the model favours a narrow width resonance and yQ2∼O(10. In addition, we observe that the associated production qq¯→Aγ→γγγ can potentially produce a sizeable number of three photon events at future LHC. However, the rare decay Z→A⁎γ→γγγ is found to be too small to be probed at the LHC and e+e− colliders.

  3. 750 GeV composite axion as the LHC diphoton resonance

    Science.gov (United States)

    Barrie, Neil D.; Kobakhidze, Archil; Talia, Matthew; Wu, Lei

    2016-04-01

    We propose that the 750 GeV resonance, presumably observed in the early LHC Run 2 data, could be a heavy composite axion that results from condensation of a hypothetical quark in a high-colour representation of conventional QCD. The model, motivated by a recently proposed solution to the strong CP problem, is very economical and is essentially defined by the properties of the additional quark - its colour charge, hypercharge and mass. The axion mass and its coupling to two photons (via axial anomaly) can be computed in terms of these parameters. The axion is predominantly produced via photon fusion (γγ → A) which is followed by Z vector boson fusion and associated production at the LHC. We find that the total diphoton cross section of the axion can be fitted with the observed excess. Combining the requirement on the cross-section, such that it reproduces the diphoton excess events, with the bounds on the total width (Γtot ⩽ 45 GeV), we obtain the effective coupling in the range 1.6 ×10-4 GeV-1 ≳CA ≳ 6.5 ×10-5 GeV-1. Within this window of allowed couplings the model favours a narrow width resonance and yQ2 ∼ O (10). In addition, we observe that the associated production q q bar → Aγ → γγγ can potentially produce a sizeable number of three photon events at future LHC. However, the rare decay Z →A* γ → γγγ is found to be too small to be probed at the LHC and e+e- colliders.

  4. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects.

    Science.gov (United States)

    Raza, Søren; Yan, Wei; Stenger, Nicolas; Wubs, Martijn; Mortensen, N Asger

    2013-11-04

    We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate on the SP resonance energy to the approach of an effective homogeneous background permittivity. We derive the nonlocal polarizability of a small metal sphere embedded in a homogeneous dielectric environment, leading to the nonlocal generalization of the classical Clausius-Mossotti factor. We also present an exact formalism based on multipole expansions and scattering matrices to determine the optical response of a metal sphere on a dielectric substrate of finite thickness, taking into account retardation and nonlocal effects. We find that the substrate-based calculations show a similar-sized blueshift as calculations based on a sphere in a homogeneous environment, and that they both agree qualitatively with the EELS measurements.

  5. A process for SOI resonators with surface micromachined covers and reduced electrostatic gaps

    Science.gov (United States)

    Dekker, James R.; Alastalo, Ari; Kattelus, Hannu

    2010-04-01

    This paper describes work to fabricate resonators on silicon-on-insulator (SOI) wafers with sub-micron gaps and wafer level encapsulation. Non-aligned, high-temperature fusion bonding of a cover wafer over unreleased structures etched into a SOI wafer is followed by cover wafer stripping to reveal etched resonators beneath an oxide membrane. Reliable bonding is assured by bonding unreleased structures which can withstand the appropriate pre-bond cleaning operations. The bonded oxide membrane serves as the basis of a surface micromachined membrane which incorporates silicon nitride and a porous polysilicon layer to facilitate release and supercritical drying. The cavity pressure is estimated to be in the range of 1 Torr. Encapsulated resonators were also made using a gap reduction process. The process is based on sidewall oxidation of an etched sleeve to reduce the linewidth of the patterned electrostatic gaps by 200 nm before the deep trench etch. Encapsulated and electrically active devices with gaps down to 500 nm were obtained and etched through a 5 µm thick SOI device layer. SEM images showed that gaps of 300 nm could reach through the same thickness, though functional devices were not obtained. In addition, limitations on the anti-notching process limited its use during the trench etch and resulted in severe notch damage.

  6. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration

    Directory of Open Access Journals (Sweden)

    Wenchang Hao

    2016-04-01

    Full Text Available The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM approach was established to extract the coupling-of-modes (COM parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO2 deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device.

  7. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration.

    Science.gov (United States)

    Hao, Wenchang; Liu, Jiuling; Liu, Minghua; Liang, Yong; He, Shitang

    2016-04-20

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO₂) deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device.

  8. Surface Plasmon Resonance Temperature Sensor Based on Photonic Crystal Fibers Randomly Filled with Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Nannan Luan

    2014-08-01

    Full Text Available We propose a temperature sensor design based on surface plasmon resonances (SPRs supported by filling the holes of a six-hole photonic crystal fiber (PCF with a silver nanowire. A liquid mixture (ethanol and chloroform with a large thermo-optic coefficient is filled into the PCF holes as sensing medium. The filled silver nanowires can support resonance peaks and the peak will shift when temperature variations induce changes in the refractive indices of the mixture. By measuring the peak shift, the temperature change can be detected. The resonance peak is extremely sensitive to temperature because the refractive index of the filled mixture is close to that of the PCF material. Our numerical results indicate that a temperature sensitivity as high as 4 nm/K can be achieved and that the most sensitive range of the sensor can be tuned by changing the volume ratios of ethanol and chloroform. Moreover, the maximal sensitivity is relatively stable with random filled nanowires, which will be very convenient for the sensor fabrication.

  9. Near-Infrared Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K.; Luther, Joey; Ewers, Trevor; Alivisatos, A. Paul

    2010-10-12

    Quantum confinement of electronic wavefunctions in semiconductor quantum dots (QDs) yields discrete atom-like and tunable electronic levels, thereby allowing the engineering of excitation and emission spectra. Metal nanoparticles, on the other hand, display strong resonant interactions with light from localized surface plasmon resonance (LSPR) oscillations of free carriers, resulting in enhanced and geometrically tunable absorption and scattering resonances. The complementary attributes of these nanostructures lends strong interest toward integration into hybrid nanostructures to explore enhanced properties or the emergence of unique attributes arising from their interaction. However, the physicochemical interface between the two components can be limiting for energy transfer and synergistic coupling within such a hybrid nanostructure. Therefore, it is advantageous to realize both attributes, i.e., LSPRs and quantum confinement within the same nanostructure. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots. This opens up possibilities for light harvesting, non-linear optics, optical sensing and manipulation of solid-state processes in single nanocrystals.

  10. Storm dissolved organic matter : surface and sub-surface erosion controls its composition

    Science.gov (United States)

    Denis, Marie; Jeanneau, Laurent; Gruau, Gérard; Petitjean, Patrice; Pierson-Wickmann, Anne-Catherine

    2016-04-01

    degraded and more hydrophobic molecules than during base-flow conditions. Flood events were also responsible for contribution to the river of high quantity of runoff solutions containing a high amount of POM, and DOM in high quantity with the same characteristics than soil solutions. In river, the modification of DOM quality is also recorded short time after its appearance in soil solutions. For the first time, the composition of soil solution DOM has been investigated during flood events. Results evidence the concomitant evolution of hydraulic gradient, DOM concentration and composition in runoff, soils solutions and stream water. These results highlight the contribution of surface and sub-surface erosion in the production of storm stream DOM.

  11. Long-range surface plasmon resonance and surface-enhanced Raman scattering on X-shaped gold plasmonic nanohole arrays.

    Science.gov (United States)

    Hou, Chao; Galvan, Daniel David; Meng, Guowen; Yu, Qiuming

    2017-09-13

    A multilayered architecture including a thin Au film supporting an X-shaped nanohole array and a thick continuous Au film separated by a Cytop dielectric layer is reported in this work. Long-range surface plasmon resonance (LR-SPR) was generated at the top Au/water interface, which also resulted in a long-range surface-enhanced Raman scattering (LR-SERS) effect. LR-SPR originates from the coupling of surface plasmons (SPs) propagating along the opposite sides of the thin Au film embedded in a symmetric refractive index environment with Cytop (n = 1.34) and water (n = 1.33). The finite-difference time-domain (FDTD) simulation method was used to investigate the optimal dimensions of the substrate by studying the reflectance spectra and electric field profiles. The calculated optimal structure was then fabricated via electron beam lithography, and its LR-SERS performance was demonstrated by detecting rhodamine 6G and 4-mercaptobenzoic acid in the refractive index-matched environment. We believe that this structure as a LR-SPR or LR-SERS substrate can have broad applications in biosensing.

  12. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.

    Science.gov (United States)

    Liu, C H; Hong, M H; Cheung, H W; Zhang, F; Huang, Z Q; Tan, L S; Hor, T S A

    2008-07-07

    Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

  13. Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection

    Science.gov (United States)

    Tao, Y.; Navaretti, P.; Hauert, R.; Grob, U.; Poggio, M.; Degen, C. L.

    2015-11-01

    We report on mechanical dissipation measurements carried out on thin (˜100 nm), single-crystal silicon cantilevers with varying chemical surface termination. We find that the 1-2 nm-thick native oxide layer of silicon contributes about 85% to the friction of the mechanical resonance. We show that the mechanical friction is proportional to the thickness of the oxide layer and that it crucially depends on oxide formation conditions. We further demonstrate that chemical surface protection by nitridation, liquid-phase hydrosilylation, or gas-phase hydrosilylation can inhibit rapid oxide formation in air and results in a permanent improvement of the mechanical quality factor between three- and five-fold. This improvement extends to cryogenic temperatures. Presented recipes can be directly integrated with standard cleanroom processes and may be especially beneficial for ultrasensitive nanomechanical force- and mass sensors, including silicon cantilevers, membranes, or nanowires.

  14. Calculation of curvature dependent surface plasmon resonance in gold nanospheroid and nanoshell

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jian, E-mail: jianzhusummer@163.co [Xi' an Jiaotong University, Institute of Modern Physics, School of Science (China)

    2009-05-15

    In this paper, theoretical calculations based on dipole-limit are performed to investigate the effects of curvature on the surface plasmon resonance (SPR) properties of nanometer size gold spheroid and shell. By comparing the aspect ratio with the shell thickness, we demonstrated that the curvature radius is a common better factor that can be used to predict the SPR wavelength and shift fashion. For nanospheroid, increasing the ratio of curvature radius corresponding to the climaxes leads to an increase in the ratio of SPR wavelength, whereas increasing the ratio of curvature radius of outer and inner surface in nanoshell leads to an decrease in the ratio of SPR wavelength. As a morphologic factor, curvature radius plays an important role in affecting the distribution of electron density, and consequently controlling the SPR frequency.

  15. Development of a molecularly imprinted polymer based surface plasmon resonance sensor for theophylline monitoring

    Science.gov (United States)

    Zheng, Rui; Cameron, Brent D.

    2011-03-01

    Molecularly imprinted polymer (MIP) thin films and surface plasmon resonance (SPR) sensing technologies were combined to develop a novel sensing platform for monitoring real-time theophylline concentration, which is a compound of interest in environmental monitoring and a molecular probe for phenotyping certain cytochrome P450 enzymes. The MIPs hydrogel is easy to synthesize and provides shape-selective recognition with high affinity to specific target molecules. Different polymerization formulas were tested and optimized. The influence of the monomer sensitive factors were addressed by SPR. SPR is an evanescent wave optics based sensing technique that is suitable for real-time and label free sensing purposes. Gold nanorods (Au NRs) were uniformly immobilized onto a SPR sensing surface for the construction of a fiber optics based prism-free localized SPR (LSPR) measurement. This technique can be also applied to assess the activities of other small organic molecules by adjusting the polymerization formula, thus, this approach also has many other potential applications.

  16. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  17. Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli

    Science.gov (United States)

    Mlalila, Nichrous G; Swai, Hulda Shaidi; Hilonga, Askwar; Kadam, Dattatreya M

    2017-01-01

    This study presents a simple and trouble-free method for determining the antimicrobial properties of silver nanoparticles (AgNPs) based on the surface plasmon resonance (SPR) bands. AgNPs were prepared by chemical reduction method using silver nitrates as a metallic precursor and formaldehyde (HCHO) as a reducing agent and capped by polyethylene glycol. Effects of several processing variables on the size and shape of AgNPs were monitored using an ultraviolet–visible spectrophotometer based on their SPR bands. The formed particles showing various particle shapes and full width at half maximum (FWHM) were tested against Escherichia coli by surface spreading using agar plates containing equal amounts of selected AgNPs samples. The NPs exhibited higher antimicrobial properties; however, monodispersed spherical NPs with narrow FWHM were more effective against E. coli growth. The NPs prepared are promising candidates in diverse applications such as antimicrobial agents in the food and biomedical industries. PMID:28053512

  18. Magnetic Resonance Imaging of Atherosclerotic Lesion with New Devised Animal Surface Coil

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bing-hui; LI Ming-hua; ZHAO Qing; CHENG Ying-sheng; XIAO Yun-feng; ZHAO Jia-min

    2008-01-01

    The ability of dynamic contrast enhanced magnetic resonance imaging (DCE MRI) with a new devised animal surface coil was analyzed in identifying atherosclerotic plaques in the rabbit medium-sized iliac artery (IA).Then a comparative analysis of multi-detector computed tomography (MDCT) and DCE MRI was clone in discerning morphology and components of 80 atherosclerotic plaques identified by histopathology.It shows that the DCE MRI may be an emerging noninvasive and economic way to characterize atherosclerotic plaques at present.What's more,a new devised animal surface coil would further improve the signal-to-noise ratio (SNR) and the quality of imaging.However,CT angiography (CTA) may be better than MR angiography(MRA) in detecting vessel stenosis.

  19. Surface plasmon resonance sensors a materials guide to design and optimization

    CERN Document Server

    Oliveira, Leiva Casemiro; Thirstrup, Carsten; Neff, Helmut Franz

    2015-01-01

    This book addresses the important physical phenomenon of Surface Plasmon Resonance or Surface Plasmon Polaritons in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and outlined in detail. The text covers the selection of nanometer thin metal films, ranging from free-electron to the platinum type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Furthermore, as-yet hardly explored SPR features of selected metal–metal and metal–dielectric super lattices are included in this report. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.

  20. A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber

    Science.gov (United States)

    Gasior, Katarzyna; Martynkien, Tadeusz; Napiorkowski, Maciej; Zolnacz, Kinga; Mergo, Pawel; Urbanczyk, Waclaw

    2017-02-01

    For the first time to our knowledge, we report a successful fabrication of surface plasmon resonance (SPR) sensors in a specially developed single-mode birefringent polymer D-shape fiber with a core made of PMMA/PS copolymer. A small distance between the core and the cladding boundary allows to deposit a gold layer directly onto the flat fiber surface, which significantly simplifies the sensors fabrication process. The developed SPR sensor exhibits a sensitivity of 2765 nm RIU-1 for the refractive index of external medium equal to 1.410, which is similar to the sensitivity of the SPR sensors based on conventional side-polished single-mode silica fibers. Using the finite element method, we also numerically studied the sensor performance. The sensor characteristics obtained in the simulations are in a relatively good agreement with the experimental results.