WorldWideScience

Sample records for composite resin cements

  1. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  2. [Bonding of visible light cured composite resins to glass ionomer and Cermet cements].

    Science.gov (United States)

    Kakaboura, A; Vougiouklakis, G

    1990-04-01

    The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.

  3. Polymerization shrinkage stress of composite resins and resin cements – What do we need to know?

    Directory of Open Access Journals (Sweden)

    Carlos José SOARES

    2017-08-01

    Full Text Available Abstract Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  4. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know?

    Science.gov (United States)

    Soares, Carlos José; Faria-E-Silva, André Luis; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Pfeifer, Carmem Silvia; Tantbirojn, Daranee; Versluis, Antheunis

    2017-08-28

    Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  5. Color change of CAD-CAM materials and composite resin cements after thermocycling.

    Science.gov (United States)

    Gürdal, Isil; Atay, Ayse; Eichberger, Marlis; Cal, Ebru; Üsümez, Aslihan; Stawarczyk, Bogna

    2018-04-24

    The color of resin cements and computer-aided-design and computer-aided-manufacturing (CAD-CAM) restorations may change with aging. The purpose of this in vitro study was to analyze the influence of thermocycling on the color of CAD-CAM materials with underlying resin cement. Seven different CAD-CAM materials, composite resins and glass-ceramics were cut into 0.7-mm and 1.2-mm thicknesses (n=10) and cemented with a dual-polymerizing resin cement, a light-polymerizing resin cement, and a preheated composite resin (N=420). Color values were measured by using spectrophotometry. Specimens were subjected to thermocycling (5°C and 55°C; 5000 cycles). The measured color difference (ΔE) data were analyzed by using descriptive statistics. Normality of data distribution was tested by using the Kolmogorov-Smirnov test. Three-way and 1-way ANOVA followed by the Scheffé post-hoc test and unpaired 2-sample Student t test were computed to determine the significant differences among the tested parameters (α=.05). ΔE values were significantly influenced by the CAD-CAM material (η p 2 =0.85, Pcement (η P 2 =0.03, P=.003) but were not influenced by thickness (P=.179). Significant interactions were present among thickness, cement, and CAD-CAM materials (Pcement showed significantly lower ΔE values than the preheated composite resin (P=.003). Restoration materials and composite resin cement types used for cementation influence the amount of color change due to aging. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  7. Microhardness of dual-polymerizing resin cements and foundation composite resins for luting fiber-reinforced posts.

    Science.gov (United States)

    Yoshida, Keiichi; Meng, Xiangfeng

    2014-06-01

    The optimal luting material for fiber-reinforced posts to ensure the longevity of foundation restorations remains undetermined. The purpose of this study was to evaluate the suitability of 3 dual-polymerizing resin cements and 2 dual-polymerizing foundation composite resins for luting fiber-reinforced posts by assessing their Knoop hardness number. Five specimens of dual-polymerizing resin cements (SA Cement Automix, G-Cem LincAce, and Panavia F2.0) and 5 specimens of dual-polymerizing foundation composite resins (Clearfil DC Core Plus and Unifil Core EM) were polymerized from the top by irradiation for 40 seconds. Knoop hardness numbers were measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours and 7 days after irradiation. Data were statistically analyzed by repeated measures ANOVA, 1-way ANOVA, and the Tukey compromise post hoc test (α=.05). At both times after irradiation, the 5 resins materials showed the highest Knoop hardness numbers at the 0.5-mm depth. At 7 days after irradiation, the Knoop hardness numbers of the resin materials did not differ significantly between the 8.0-mm and 10.0-mm depths (P>.05). For all materials, the Knoop hardness numbers at 7 days after irradiation were significantly higher than those at 0.5 hours after irradiation at all depths (Presin materials were found to decrease in the following order: DC Core Plus, Unifil Core EM, Panavia F2.0, SA Cement Automix, and G-Cem LincAce (Pcomposite resins were higher than those of the 3 dual-polymerizing resin cements, notable differences were seen among the 5 materials at all depths and at both times after irradiation. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. The bond of different post materials to a resin composite cement and a resin composite core material.

    Science.gov (United States)

    Stewardson, D; Shortall, A; Marquis, P

    2012-01-01

    To investigate the bond of endodontic post materials, with and without grit blasting, to a resin composite cement and a core material using push-out bond strength tests. Fiber-reinforced composite (FRC) posts containing carbon (C) or glass (A) fiber and a steel (S) post were cemented into cylinders of polymerized restorative composite without surface treatment (as controls) and after grit blasting for 8, 16, and 32 seconds. Additional steel post samples were sputter-coated with gold before cementation to prevent chemical interaction with the cement. Cylindrical composite cores were bonded to other samples. After sectioning into discs, bond strengths were determined using push-out testing. Profilometry and electron microscopy were used to assess the effect of grit blasting on surface topography. Mean (standard deviation) bond strength values (MPa) for untreated posts to resin cement were 8.41 (2.80) for C, 9.61(1.88) for A, and 19.90 (3.61) for S. Prolonged grit blasting increased bond strength for FRC posts but produced only a minimal increase for S. After 32 seconds, mean values were 20.65 (4.91) for C, 20.41 (2.93) for A, and 22.97 (2.87) for S. Gold-coated steel samples produced the lowest bond strength value, 7.84 (1.40). Mean bond strengths for untreated posts bonded to composite cores were 6.19 (0.95) for C, 13.22 (1.61) for A, and 8.82 (1.18) for S, and after 32 seconds of grit blasting the values were 17.30 (2.02) for C, 26.47 (3.09) for A, and 20.61 (2.67) for S. FRC materials recorded higher roughness values before and after grit blasting than S. With prolonged grit blasting, roughness increased for A and C, but not for S. There was no evidence of significant bonding to untreated FRC posts, but significant bonding occurred between untreated steel posts and the resin cement. Increases in the roughness of FRC samples were material dependent and roughening significantly increased bond strength values (p<0.05). Surface roughening of the tested FRC posts is

  9. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    International Nuclear Information System (INIS)

    Okamoto, Y.; Shintani, H.; Yamaki, M.

    1990-01-01

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy

  10. Effect of Ultrasonic Versus Manual Cementation on the Fracture Strength of Resin Composite Laminates

    NARCIS (Netherlands)

    Ozcan, M.; Mese, A.

    2009-01-01

    This study evaluated the effect of conventional versus ultrasonic cementation techniques on the fracture strength of resin composite laminates. In addition, the failure modes were assessed. Window-type preparations I mm above the cemento-enamel junction were made on intact human maxillary central

  11. Impairment of resin cement application on the bond strength of indirect composite restorations

    Directory of Open Access Journals (Sweden)

    Jovito Adiel SKUPIEN

    2015-01-01

    Full Text Available The aims of this study were to evaluate the effect of immediate and delayed resin cement application on the microtensile bond strength of indirect composite resin restorations and, to evaluate adhesive strategies (for regular resin cement or humidity parameters for self-adhesive resin cement. Forty-five enamel/dentin discs (0.5 mm height and 10 mm of diameter obtained from bovine teeth were divided into nine groups (n = 5. For regular cement, the variation factors were cementation technique at three levels (immediate cementation, 5 or 30 min after adhesive system application; and type of adhesive system at two levels (three- or two-step. For self-adhesive cement, the dentin moisture was the source of variation at three levels (normal, dry, or wet cementation. The specimens were submitted to microtensile bond strength (μTBS testing using a universal testing machine. Data were analyzed by ANOVA, Tukey’s test, and linear regression. Regular cement and three-step etch-and-rinse adhesive system showed the highest values of bond strength (25.21 MPa–30 min of delay. Only for this condition, three-step adhesive showed higher bond strength than the two-step adhesive. Nevertheless, the linear regression showed that irrespective of the strategy, the use of the two-step approach when compared with three-step adhesive system decreased μTBS (p < 0.001. The failure analysis showed predominant adhesive failures for all tested groups. All groups had comparable values of bond strength to bovine dentin when the same materials were used, even in suboptimal clinical conditions.

  12. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2010-01-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43...

  13. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Science.gov (United States)

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wzirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  14. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  15. Assessing degradation of composite resin cements during artificial aging by Martens hardness.

    Science.gov (United States)

    Bürgin, Stefan; Rohr, Nadja; Fischer, Jens

    2017-05-19

    Aim of the study was to verify the efficiency of Martens hardness measurements in detecting the degradation of composite resin cements during artificial aging. Four cements were used: Variolink II (VL2), RelyX Unicem 2 Automix (RUN), PermaFlo DC (PDC), and DuoCem (DCM). Specimens for Martens hardness measurements were light-cured and stored in water at 37 °C for 1 day to allow complete polymerization (baseline). Subsequently the specimens were artificially aged by water storage at 37 °C or thermal cycling (n = 6). Hardness was measured at baseline as well as after 1, 4, 9 and 16 days of aging. Specimens for indirect tensile strength measurements were produced in a similar manner. Indirect tensile strength was measured at baseline and after 16 days of aging (n = 10). The results were statistically analyzed using one-way ANOVA (α = 0.05). After water storage for 16 days hardness was significantly reduced for VL2, RUN and DCM while hardness of PDC as well as indirect tensile strength of all cements were not significantly affected. Thermal cycling significantly reduced both, hardness and indirect tensile strength for all cements. No general correlation was found between Martens hardness and indirect tensile strength. However, when each material was analyzed separately, relative change of hardness and of indirect tensile strength revealed a strong linear correlation. Martens hardness is a sensible test method to assess aging of resin composite cements during thermal cycling that is easy to perform.

  16. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  17. A systematic approach to standardize artificial aging of resin composite cements.

    Science.gov (United States)

    Blumer, Lukas; Schmidli, Fredy; Weiger, Roland; Fischer, Jens

    2015-07-01

    The aim of the investigation was to contribute to the ongoing discussion at the international standardization committee on how to artificially age dental resin composite cements. Indirect tensile strength (n=30) of a dual-cured resin composite cement (Panavia F2.0) was measured to evaluate the effect of water storage at 37°C or thermal cycling (5°C/55°C/1min) for up to 64 days. The influence of water temperature (5-65°C) after 16 days and the effect of 1 day water storage at 37°C prior to aging were assessed. Storage in air at 37°C served as control. Thermal cycling affected the indirect tensile strength most, followed by water storage at 55°C, whereas water storage at 37°C had only little influence. Major deterioration occurred before day 4 (≈6000 cycles). A 1-day pre-treatment by water storage at 37°C prior to thermal cycling attenuated the effect of aging. For the material investigated, thermal cycling for 4 days is the most efficient aging procedure. A 1-day water storage at 37°C prior to thermal cycling is recommended to allow complete polymerization. A 4-day water storage at 55°C may be considered as a viable alternative to thermal cycling. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. The Effect of Resin-modified Glass-ionomer Cement Base and Bulk-fill Resin Composite on Cuspal Deformation.

    Science.gov (United States)

    Nguyen, K V; Wong, R H; Palamara, J; Burrow, M F

    2016-01-01

    This study investigated cuspal deformation in teeth restored with different types of adhesive materials with and without a base. Mesio-occluso-distal slot cavities of moderately large dimension were prepared on extracted maxillary premolars (n=24). Teeth were assigned to one of four groups and restored with either a sonic-activated bulk-fill resin composite (RC) (SonicFill), or a conventional nanohybrid RC (Herculite Ultra). The base materials used were a flowable nanofilled RC (Premise Flowable) and a high-viscosity resin-modified glass-ionomer cement (RMGIC) (Riva Light-Cure HV). Cuspal deflection was measured with two direct current differential transformers, each contacting a buccal and palatal cusp. Cuspal movements were recorded during and after restoration placement. Data for the buccal and palatal cusp deflections were combined to give the net cuspal deflection. Data varied widely. All teeth experienced net inward cuspal movement. No statistically significant differences in cuspal deflection were found among the four test groups. The use of a flowable RC or an RMGIC in closed-laminate restorations produced the same degree of cuspal movement as restorations filled with only a conventional nanohybrid or bulk-fill RC.

  19. Assessment of Tensile Bond Strength of Fiber-Reinforced Composite Resin to Enamel Using Two Types of Resin Cements and Three Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Tahereh Ghaffari

    2015-10-01

    Full Text Available Background: Resin-bonded bridgework with a metal framework is one of the most conservative ways to replace a tooth with intact abutments. Visibility of metal substructure and debonding are the complications of these bridgeworks. Today, with the introduction of fiber-reinforced composite resins, it is possible to overcome these complications. The aim of this study was to evaluate the bond strength of fiber-reinforced composite resin materials (FRC to enamel. Methods: Seventy-two labial cross-sections were prepared from intact extracted teeth. Seventy-two rectangular samples of cured Vectris were prepared and their thickness was increased by adding Targis. The samples were divided into 3 groups for three different surface treatments: sandblasting, etching with 9% hydrofluoric acid, and roughening with a round tapered diamond bur. Each group was then divided into two subgroups for bonding to etched enamel by Enforce and Variolink II resin cements. Instron universal testing machine was used to apply a tensile force. The fracture force was recorded and the mode of failure was identified under a reflective microscope. Results: There were no significant differences in bond strength between the three surface treatment groups (P=0.53. The mean bond strength of Variolink II cement was greater than that of Enforce (P=0.04. There was no relationship between the failure modes (cohesive and adhesive and the two cement types. There was some association between surface treatment and failure mode. There were adhesive failures in sandblasted and diamond-roughened groups and the cohesive failure was dominant in the etched group. Conclusion: It is recommended that restorations made of fiber-reinforced composite resin be cemented with VariolinkII and surface-treated by hydrofluoric acid.   Keywords: Tensile bond strength; surface treatment methods; fiber-reinforced composite resin

  20. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  1. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Restoration of Strip Crown with a Resin-Bonded Composite Cement in Early Childhood Caries

    Directory of Open Access Journals (Sweden)

    Mi-ae Jeong

    2013-01-01

    Full Text Available Background. Early childhood caries is a widely prevalent disease throughout the world. It is necessary to treat this condition in early childhood; however, child behavior management may be particularly challenging during treatment. To overcome this challenge, we used Carigel to remove caries and RelyX Unicem resin cement for strip crown restoration. It not only has the desired aesthetic effect but is also more effective for primary teeth, which are used for a shorter period than permanent teeth are. Case Presentation. We report a case of three pediatric patients with early childhood caries, in whom caries was removed by using Carigel to avoid the risk of pulpal exposure associated with high-speed handpieces. Subsequently, aesthetic restoration was performed using strip crown with RelyX Unicem self-adhesive resin cement. Conclusion. RelyX Unicem has the following advantages: (1 not requiring have any special skills for the dentist for performing the procedure, (2 decreased occurrence of bubbles during injection of the cement, and (3 overall short duration of the procedure. Thus, it is appropriate for the treatment of pediatric patients whose behavior is difficult to manage. However, further studies are required in order to establish the use of RelyX Unicem as a stable restorative material in early childhood caries.

  3. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  4. Characterization of monolith block of spent resin cementation

    International Nuclear Information System (INIS)

    Prayitno; Endro-Kismolo; Isman MT

    1996-01-01

    Spent resin immobilization process with cement was done to prevent release of radionuclide in the ultimate storage or disposal. The varied Composition of water/cement ratio in the cementation process were 0.3; 0.4; 0.5 and the various weight of resin waste are 25 g, 37.5 g and 50 gram. The compressive strength of the various water/cement ratio without spent resin was bigger than 0.3. This investigation proved that the compressive strength of Tiga Roda cement was bigger than those of Gresik cement or Nusantara cement. The compressive of the cement block of were the spent resin cementation was influenced by the water/cement ratio and the total spent resin addition. The best condition reached at the water/cement ratio of 0.3 and 25 gram spent resin, was compressive strength of 17.86 N/mm 2 . Leaching rate of the various weight composition of spent resin cementation for 91 days were between 10 -2 - 10 -4 gram.cm -2 .day -1

  5. A resin composite material containing an eugenol derivative for intracanal post cementation and core build-up restoration.

    Science.gov (United States)

    Almaroof, A; Rojo, L; Mannocci, F; Deb, S

    2016-02-01

    To formulate and evaluate new dual cured resin composite based on the inclusion of eugenyl methacrylate monomer (EgMA) with Bis-GMA/TEGDMA resin systems for intracanal post cementation and core build-up restoration of endodontically treated teeth. EgMA was synthesized and incorporated at 5% (BTEg5) or 10% (BTEg10) into dual-cure formulations. Curing properties, viscosity, Tg, radiopacity, static and dynamic mechanical properties of the composites were determined and compared with Clearfil™DC Core-Plus, a commercial dual-cure, two-component composite. Statistical analysis of the data was performed with ANOVA and the Tukey's post-hoc test. The experimental composites were successfully prepared, which exhibited excellent curing depths of 4.9, 4.7 and 4.2 mm for BTEg0, BTEg5 and BTEg10 respectively, which were significantly higher than Clearfil™DC. However, the inclusion of EgMA initially led to a lower degree of cure, which increased when measured at 24 h with values comparable to formulations without EgMA, indicating post-curing. The inclusion of EgMA also lowered the polymerization exotherm thereby reducing the potential of thermal damage to host tissue. Both thermal and viscoelastic analyses confirmed the ability of the monomer to reduce the stiffness of the composites by forming a branched network. The compressive strength of BTEg5 was significantly higher than the control whilst flexural strength increased significantly from 95.9 to 114.8 MPa (BTEg5) and 121.9 MPa (BTEg10). Radiopacity of the composites was equivalent to ∼3 mm Al allowing efficient diagnosis. The incorporation of EgMA within polymerizable formulations provides a novel approach to prepare reinforced resin composite material for intracanal post cementation and core build-up and the potential to impart antibacterial properties of eugenol to endodontic restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Solidification of ion exchange resin wastes in hydraulic cement

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Kalb, P.; Fuhrmann, M.; Colombo, P.

    1982-01-01

    Work has been conducted to investigate the solidification of ion exchange resin wastes with portland cements. These efforts have been directed toward the development of acceptable formulations for the solidification of ion exchange resin wastes and the characterization of the resultant waste forms. This paper describes formulation development work and defines acceptable formulations in terms of ternary phase compositional diagrams. The effects of cement type, resin type, resin loading, waste/cement ratio and water/cement ratio are described. The leachability of unsolidified and solidified resin waste forms and its relationship to full-scale waste form behavior is discussed. Gamma irradiation was found to improve waste form integrity, apparently as a result of increased resin crosslinking. Modifications to improve waste form integrity are described. 3 tables

  7. Evaluation of degree of conversion and the effect of thermal aging on the color stability of resin cements and flowable composite.

    Science.gov (United States)

    Prieto, Lúcia Trazzi; Pimenta de Araújo, Cíntia Tereza; Araujo Pierote, Josué Junior; Salles de Oliveira, Dayane Carvalho Ramos; Coppini, Erick Kamiya; Sartini Paulillo, Luís Alexandre Maffei

    2018-01-01

    The aim of this in vitro study was to evaluate the color stability and degree of conversion (DC) of dual-cure and light-cure cements and flowable composites after thermal aging. A total of 50 human incisors were prepared and divided into six groups ( n = 10). Veneers were fabricated using IPS Empress Direct composite resin were bonded with three types of luting agents: Light-cured, conventional dual, and flowable composite according to the manufacturer's instructions. The groups were as follows: Filtek Z350XT Flow/Single Bond 2, RelyX ARC/Single Bond 2, RelyX Veneer/Single Bond 2, Tetric N-Flow/Tetric N-Bond, and Variolink II/Tetric N-Bond. Commission Internationale de l'Éclairage L*, a* and b* color coordinates were measured 24 h after cementation procedure with a color spectrophotometer and reevaluated after 10,000 thermal cycles. To evaluate the DC 50 specimens ( n = 10) of each resin material were obtained and Fourier transform infrared spectroscopy was used to evaluate the absorption spectra. Statistical analysis was performed with one-way ANOVA and Tukey's test (α = 0.05). No statistically significant differences in ΔE* occurred after aging. The greatest change in lightness occurred in the Variolink II resin cement. Changes in red-green hue were very small for the same cement and largest in the Tetric N-Flow flowable resin composite, while the greatest change in blue-yellow hue was a yellowing of the RelyX ARC luting cement. RelyX ARC exhibited the highest DC, and there were no statistically significant differences in DC among the other cements. Resin-based luting agent might affect the final of ceramic veneer restorations. The thermal aging affected the final color of the evaluated materials, and these were regarded as clinically unacceptable (ΔE >3.3).

  8. Study of mechanical and physicochemical properties of cementated spent ion-exchange-resins

    International Nuclear Information System (INIS)

    Patek, P.

    1981-09-01

    As first part of a study on the possibilities, to immobilize spent ion exchange resins, for final disposal, the dependence of compressive strength from the composition of cement - resin mixtures was detected. Powdered resins, bead resins and ashes from the incinerator plant and several cement brands were examinated. As result an area was defined in the three-phase diagram of cement, resins and water, in which the following leach tests will be performed. (author)

  9. Curing time effect on the fraction of 137Cs from cement- ion exchange resins-bentonite clay composition

    International Nuclear Information System (INIS)

    Plecas, I.; Dimovic, S.

    2007-01-01

    Curing conditions and time are critically important in leach studies since the extent of hydratation of the cement materials determines how much hydratation product develops and whether it is available to block the pore network, thereby reducing leaching.[1,2]. To assess the safety of disposal of radioactive waste material in cement, curing conditions and time of leaching radionuclide 137 Cs has been studied in this paper. Leaching tests in cement-ion exchange resins-bentonite matrix, were carried out in accordance with a method recommended by IAEA. Curing conditions and curing time prior to commencing the leaching test are critically important in leach studies since the extent of hydration of the cement materials determines how much hydration product develop and whether it is available to block the pore network, thereby reducing leaching. Incremental leaching rates R n (cm/d) of 137 Cs from cement-ion exchange resins-bentonite matrix after 180 days were measured. The results presented in this paper are examples of results obtained in a 20-year concrete testing project which will influence the design of the engineer trenches system for future central Serbian radioactive waste storing center. (author)

  10. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  11. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement, 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the products' properties. (author)

  12. Streptococcus mutans counts in plaque adjacent to orthodontic brackets bonded with resin-modified glass ionomer cement or resin-based composite

    Directory of Open Access Journals (Sweden)

    Solange Machado Mota

    2008-03-01

    Full Text Available This study investigated the number of Streptococcus mutans CFU (colony forming units in the saliva and plaque adjacent to orthodontic brackets bonded with a glass ionomer cement - GIC (Fuji Ortho or a resin-based composite - RC (Concise. Twenty male and female patients, aged 12 to 20 years, participated in the study. Saliva was collected before and after placement of appliances. Plaque was collected from areas adjacent to brackets and saliva was again collected on the 15th, 30th, and 45th day after placement. On the 30th day, 0.4% stannous fluoride gel was applied for 4 minutes. No significant modification in the number of Streptococcus mutans CFU in saliva was observed after placement of the fixed orthodontic appliances. On the 15th day, the percentage of Streptococcus mutans CFU in plaque was statistically lower in sites adjacent to GIC-bonded brackets (mean = 0.365 than in those adjacent to RC-bonded brackets (mean = 0.935. No evidence was found of a contribution of GIC to the reduction of CFU in plaque after the 15th day. Topical application of stannous fluoride gel on the 30th day reduced the number of CFU in saliva, but not in plaque. This study suggests that the antimicrobial activity of GIC occurs only in the initial phase and is not responsible for a long-term anticariogenic property.

  13. Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement.

    Science.gov (United States)

    Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José

    2014-11-01

    The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p cements reduced the bond strength to Panavia self-etching resin cements only (p cements did not interfere in the bond strength to dentin of self-adhesive resin cements.

  14. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-02-01

    Over the last seven years, Low Oxidation State Metal Ion reagents (LOMI) have been used to decontaminate the 100 MW(e) Steam Generating Heavy Water Ractor (SGHWR) at Winfrith. The use of these reagents has resulted in a dilute ionic solution containing activation products which are produced by corrosion of metallic components in the reactor. It has been demonstrated that the amount of activity in the solution can be reduced using organic ion exchanger resins. These resins consist of a cross linked polystyrene with sulphonic acid or quaternary ammonium function groups and can be successfully immobilised in blended cement systems. The formulation which has been developed is produced from a 9 to 1 blend of ground granulated blast furnace slag (BFS) and ordinary Portland cement (OPC) containing 28% ion exchange resin in the water saturated form. If 6% Microsilica is added to the blended cement the waste loading can be increased to 36 w/o. (author)

  15. Effect of Resin Coating and Chlorhexidine on Microleakage of Two Resin Cements after Storage

    Directory of Open Access Journals (Sweden)

    F. Shafie

    2010-03-01

    Full Text Available Objective: Evaluating the effect of resin coating and chlorhexidine on microleakage of two resin cements after water storage.Materials and Methods: Standardized class V cavities were prepared on facial and lingual surfaces of one hundred twenty intact human molars with gingival margins placed 1mm below the cemento-enamel junction. Indirect composite inlays were fabricated and thespecimens were randomly assigned into 6 groups. In Groups 1 to 4, inlays were cemented with Panavia F2.0 cement. G1: according to the manufacturer’s instruction. G2: with light cured resin on the ED primer. G3: chlorhexidine application before priming. G4: withchlorhexidine application before priming and light cured resin on primer. G5: inlays were cemented with Nexus 2 resin cement. G6: chlorhexidine application after etching. Each group was divided into two subgroups based on the 24-hour and 6-month water storagetime. After preparation for microleakage test, the teeth were sectioned and evaluated at both margins under a 20×stereomicroscope. Dye penetration was scored using 0-3 criteria.The data was analyzed using Kruskal-Wallis and complementary Dunn tests.Results: There was significantly less leakage in G2 and G4 than the Panavia F2.0 control group at gingival margins after 6 months (P<0.05. There was no significant differences in leakage between G1 and G3 at both margins after 24 hours and 6 months storage. After 6months, G6 revealed significantly less leakage than G5 at gingival margins (P=0.033. In general, gingival margins showed more leakage than occlusal margins.Conclusion: Additionally, resin coating in self-etch (Panavia F2.0 and chlorhexidine application in etch-rinse (Nexus resin cement reduced microleakage at gingival margins after storage.

  16. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  17. Resistance to fracture of endodontically treated premolars restored with glass ionomer cement or acid etch composite resin: An in vitro study

    Directory of Open Access Journals (Sweden)

    B Ranga

    2010-01-01

    Full Text Available Aim: Due to the weakness of endodontically treated posterior teeth requires more strengthened restoration to withstand occlusal forces. The purpose of the present study was to determine and compare the resistance to fracture of endodontically treated maxillary 1 st premolars restored with different materials in mesio-occluso-distal (MOD cavity preparations. Materials and Methods: MOD cavity preparations in 80 endodontically treated maxillary 1 st premolars were restored using four different methods. Fiber rings were filled with stone plaster and the teeth were placed into the plaster up to the level of cemento-enamel junction. The teeth were grouped according to restorative method, mounted in an Instrom T.T. machine, and the buccal walls subjected to a slowly increasing compressive force until fracture occurred. Result: The force of fracture of the walls of each tooth was recorded and the results in the various groups compared. All teeth fractured in a similar manner irrespective of the restorative method used. Conclusion: The resistance to the fracture of the teeth was the same when they were stored with glass ionomer cement as a base over which composite resin was placed. When the entire cavities were filled with glass ionomer cement, the resistance to fracture of the teeth decreased significantly compared with the acid etch resin technique.

  18. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  19. Formulation study on immobilization of spent ion exchange resins in polymer cement

    International Nuclear Information System (INIS)

    Xia Lili; Lin Meiqiong; Bao Liangjin; Fan Xianhua

    2006-01-01

    The aim of this study is to develop a formulation of cement-solidified spent radioactive ion exchange resin form. The solidified form consists of a sort of composite cement, epoxide resin emulsion, and spent ion exchange resins. The composite cement is made up of quick-setting sulphoaluminate cement, silica powder, zeolite, and fly ash in the proportion 1:0.05:0.10:0.05. Sixteen combinations of composite cement, epoxide resin emulsion and mixed anion-cation exchange resins are selected according to a three-factors-four-levels normal design table with the compression strength as the evaluation criterion. The resulted formulation is as follows: the mass ratio of polymer emulsion to composite cement is 0.55:1, the loading of mixed anion-cation exchange resins is 0.3, and the anionic-to-cationic exchange resins ratio is 2:1. The polymer cement solidified forms were tested after 28 d curing for Cs + and Sr 2+ leaching rates, pH and conductivity of the leaching water, and radiation-resistant property in addition to their compressive strength. The measurement results indicate that the performance of thus prepared solidified forms can meet the requirements of the National Standard GB14569.1-93 for near earth's surface disposal of low radioactive waste. (authors)

  20. Color agreement between nanofluorapatite ceramic discs associated with try-in pastes and with resin cements

    Directory of Open Access Journals (Sweden)

    Paulo Rigoni

    2012-12-01

    Full Text Available The aim of this study was to evaluate the in vitro color agreement between nanofluorapatite ceramic discs (e.max Ceram / Ivoclar Vivadent / A2 associated with try-in pastes and those bonded with resin cements (Vitique / DMG/ try-in shade A2½ and cement shade A2½, Variolink II / Ivoclar Vivadent / try-in shade A1 and cement shade A1, and Choice 2 / Bisco / try-in shade A2 and cement shade A2, and to evaluate the shade stability of the discs bonded with resin cements. The shades of composite resin discs (Lliss / FGM / A2 and nanofluorapatite ceramic discs with try-in pastes or cements were evaluated according to the Vita Classical shade guide by a digital spectrophotometer (Micro EspectroShade, MHT immediately after placing the try-in pastes or resin cements between composite resin discs and ceramic discs. Other evaluations were performed at 2, 5, and 6 day intervals after cementation with the resin cements. All ceramic discs that received try-in pastes presented an A2 shade. There was no statistical difference in the shade of the ceramic specimens fixed with different cements at the different intervals, as evaluated by the Friedman test (p > 0.05. Two try-in pastes presented shade compatibility with those recommended by the manufacturers. There was no similarity of shades between the ceramic discs with try-in pastes and those with the respective resin cements. Shade stability was observed in ceramic discs with resin cements within the intervals evaluated.

  1. In vitro quantitative evaluation of marginal microleakage in class II restorations confected with a glass ionomer cement and two composite resins

    Directory of Open Access Journals (Sweden)

    BIJELLA Maria Fernanda Borro

    2001-01-01

    Full Text Available This study evaluated, in vitro, marginal microleakage in class II restorations confected with the glass ionomer cement Vitremer and with the composite resins Ariston pHc and P-60. The aims of the study were to assess the effect of thermocycling on those materials and to evaluate two methods utilized in the analysis of dye penetration. Sixty premolars divided in three groups were utilized; the teeth had proximal cavities whose cervical walls were located 1 mm below the cementoenamel junction. Half of the test specimens from each group underwent thermocycling; the other half remained in deionized water, at 37ºC. The specimens were immersed, for 24 hours, in a basic 0.5% fuchsin solution at 37ºC. For the analysis of microleakage, the specimens were sectioned in a mesio-distal direction, and the observation was carried out with the software Imagetools. The results were evaluated through the 2-way ANOVA and through the Tukey?s test. All groups presented marginal microleakage. The smallest values were obtained with Vitremer, followed by those obtained with the composite resins P-60 and Ariston pHc. There was no statistically significant difference caused by thermocycling, and the method of maximum infiltration was the best for detecting the extension of microleakage.

  2. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    International Nuclear Information System (INIS)

    Rodrigues, S R; Moraes, M; Youssef, M N; De Souza-Zaroni, W C; Hanashiro, F S; Brugnera Junior, A; Nobre-dos-Santos, M

    2016-01-01

    Although the cariostatic effects of CO 2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO 2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO 2 laser with an energy density of 6.0 J cm −2   +  non-fluoride dentifrice; and L  +  FD, CO 2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey–Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC–C group. It was concluded that CO 2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used. (paper)

  3. The Impact of Plasma Treatment of Cercon® Zirconia Ceramics on Adhesion to Resin Composite Cements and Surface Properties.

    Science.gov (United States)

    Tabari, Kasra; Hosseinpour, Sepanta; Mohammad-Rahimi, Hossein

    2017-01-01

    Introduction: In recent years, the use of ceramic base zirconia is considered in dentistry for all ceramic restorations because of its chemical stability, biocompatibility, and good compressive as well as flexural strength. However, due to its chemical stability, there is a challenge with dental bonding. Several studies have been done to improve zirconia bonding but they are not reliable. The purpose of this research is to study the effect of plasma treatment on bonding strength of zirconia. Methods: In this in vitro study, 180 zirconia discs' (thickness was 0.85-0.9 mm) surfaces were processed with plasma of oxygen, argon, air and oxygen-argon combination with 90-10 and 80-20 ratio (n=30 for each group) after being polished by sandblast. Surface modifications were assessed by measuring the contact angle, surface roughness, and topographical evaluations. Cylindrical Panavia f2 resin-cement and Diafill were used for microshear strength bond measurements. The data analysis was performed by SPSS 20.0 software and one-way analysis of variance (ANOVA) and Tukey test as the post hoc. Results: Plasma treatment in all groups significantly reduces contact angle compare with control ( P =0.001). Topographic evaluations revealed coarseness promotion occurred in all plasma treated groups which was significant when compared to control ( P <0.05), except argon plasma treated group that significantly decreased surface roughness ( P <0.05). In all treated groups, microshear bond strength increased, except oxygen treated plasma group which decreased this strength. Air and argon-oxygen combination (both groups) significantly increased microshear bond strength ( P <0.05). Conclusion: According to this research, plasmatic processing with dielectric barrier method in atmospheric pressure can increase zirconia bonding strength.

  4. The immobilization of anion exchange resins in polymer modified cements

    International Nuclear Information System (INIS)

    Dyer, A.; Morgan, P.D.

    1991-09-01

    Organic anion exchange resins, loaded with 99-Tc as the pertechnate ion, were incorporated into polymer modified cements (Flexocrete Ltd, Preston). BFS/OPC (9:1 mix) also was modified by three polymers from the same source (styrene acrylic (2) styrene butadiene) and loaded with anion exchanger containing the pertechnate. Composites were tested for initial compressive strengths, under water and radiation stability and leach rate. IAEA standard leach testing was with simulated sea and ground waters. Ground water leaching also was carried out on composites subjected to 1.10 9 rads (γ). Leach testing correlated well with compressive strength. Modified composites performed better than the BFS/OPC mix under all conditions studied and were able to encapsulate higher resin loadings. (author)

  5. Immobilization of ion-exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1991-01-01

    The removal of activity from spent decontaminating solutions, can be achieved using organic ion-exchange resins. These resins can be successfully immobilized in cement-based matrices. The optimum cement system contained 10% ordinary Portland cement, 84% gg blast furnace slag, 6% microsilica with a water/cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres, giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. 26 tabs., 22 figs., 29 refs

  6. Immobilisation of ion exchange resins in cement: final report

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1989-03-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% Ordinary Portland Cement 84% gg Blast Furnace Slag, 6% Microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This information was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  7. Bond strength of resin composite to light activated bleached enamel

    African Journals Online (AJOL)

    2015-09-02

    Sep 2, 2015 ... After setting of the cement, a composite resin (Variolink II) block was .... do not completely duplicate the physical and chemical properties of the oral ... peroxide concentrations on the corrosion behavior and surface topography.

  8. Comparing the reinforcing effects of a resin modified glassionomer cement, Flowable compomer, and Flowable composite in the restoration of calcium hydroxide-treated immature roots in vitro

    Directory of Open Access Journals (Sweden)

    S Prathibha Rani

    2011-01-01

    Full Text Available One hundred and sixty human permanent central incisors were enlarged to a 120 file size after crown removal procedure to simulate immature teeth. The root canals were filled with calcium hydroxide and stored for 15 days (phase I, 30 days (phase II, 90 days (phase III, and 180 days (Phase IV. At the end of these selected time periods, calcium hydroxide was cleaned off the root canals of forty teeth that were randomly selected and obturated with gutta-percha points in the apical 2 mm of the root canals with a sealer. The specimens were further equally divided into four groups. Unrestored Group I served as control and the root canals of teeth in the other three group specimens were reinforced with resin modified glassionomer cement (RMGIC (Group II, Flowable Compomer (Group III, and Flowable Composite (Group IV, respectively, using a translucent curing post. All specimens were subjected to compressive force using an Instron Testing machine, until fracture occurred. All the materials evaluated substantially reinforced the root specimens compared to the control. At the end of 180 days, Flowable composites showed maximum reinforcement compared to the other groups; however, no significant differences were found between the reinforcement capabilities of Flowable Compomer and RMGIC.

  9. Effect of different resin luting cements on the marginal fit of lithium disilicate pressed crowns.

    Science.gov (United States)

    Mounajjed, Radek; Salinas, Thomas J; Ingr, Tomas; Azar, Basel

    2017-11-15

    The vertical marginal discrepancy of restorations can increase upon cementation, and poor marginal fit can lead to cement dissolution, marginal discoloration, microleakage, and secondary caries. The amount of increase is related to the type of luting cement used, but how lithium disilicate pressed crowns are affected by different resin cements is unclear. The purpose of this in vitro study was to compare the effect of using different resin luting cements on the vertical marginal discrepancy of lithium disilicate pressed crowns. A total of 18 intact extracted mandibular third molars were disinfected in a solution of 10% formalin for 7 days and were then prepared to receive a ceramic crown. Impressions were made with polyvinyl siloxane and lithium disilicate pressed crowns made and cemented with 1 of 3 resin luting cements. The marginal discrepancy was measured at 4 points on the finishing line of each tooth, with optical microscopy at ×200 magnification before and after cementation. Statistical analysis was done with the Kruskal-Wallis test to compare the median marginal increase among the 3 groups. The least amount of marginal increase after cementation was with Harvard PremiumFlow cement, with an average marginal increase of 42 ±11 μm. RelyX Ultimate cement increased the margins by an average 45 ±29 μm. The highest marginal increase was found in the Enamel Plus HRi preheated composite resin group (116 ±47 μm). The marginal increase of pressed crowns cemented with preheated composite resin (Enamel Plus HRi) exceeded the clinically acceptable range of marginal discrepancy. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Bond strength between zirconium ceramic and dual resinous cement

    Directory of Open Access Journals (Sweden)

    João Galan Junior

    2010-04-01

    Full Text Available Objective: To assess the influence of different surface treatments on the bond strength between the resinous cement Panavia F (Kuraray Co. Ltd., Osaka, Japan and the structure of In-Ceram YZ (Vita Zahnfabrik, Bad Säckingen, Germany. Methods: Fifteen ceramic blocks were assessed: Group 1, finishing with abrasive paper; Group 2, finishing, airborne Al2O3 particle abrasion and silanization; Group 3, finishing, airborne particle abrasion, silicatization and silanization. After treatment, the blocks received cementation of resin composite cylinders with Panavia F (Kuraray Co. Ltd., Osaka, Japan and were submitted to the shear bond strength test in a universal testing machine. Results: The results were statistically analyzed (ANOVA and multiple comparison Student-Newman-Keuls test: Group 1 (9.66 ± 1.67 MPa < Group 2 (16.61 ± 3.38 MPa = Group 3 (19.23 ± 5.69 MPa, with p = 0.007. Conclusion: The structures of the In-Ceram YZ system (Vita Zahnfabrik, Bad Säckingen, Germany associated with Panavia F (Kuraray Co. Ltd., Osaka, Japan require previous etching to achieve greater bond strength between the ceramic and cement, and this treatment may be performed with airborne particle abrasion I or traditional silicatization, both followed by silanization.

  11. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation.

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-12-15

    To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation.

  12. The Translucency Effect of Different Colored Resin Cements used ...

    African Journals Online (AJOL)

    2018-01-30

    Jan 30, 2018 ... color of resin cements and zirconia cores on the translucency parameter (TP) of the restoration that ... physical, mechanical, and esthetic properties. One of the ..... Raptis NV, Michalakis KX, Hirayama H. Optical behavior of.

  13. Cement solidification of spent ion exchange resins produced by the nuclear industry

    International Nuclear Information System (INIS)

    Jaouen, C.; Vigreux, B.

    1988-01-01

    Cement solidification technology has been applied to spent ion exchange resins for many years in countries throughout the world (at reactors, research centers and spent fuel reprocessing plants). Changing specifications for storage of radioactive waste have, however, confronted the operators of such facilities with a number of problems. Problems related both to the cement solidification process (water/cement/resin interactions and chemical interactions) and to its utilization (mixing, process control, variable feed composition, etc.) have often led waste producers to prefer other, polymer-based processes, which are very expensive and virtually incompatible with water. This paper discusses research on cement solidification of ion exchange resins since 1983 and the development of application technologies adapted to nuclear service conditions and stringent finished product quality requirements

  14. Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Patterson, Amanda; Schäfer, Oliver

    2017-09-27

    A composite resin cement and matching self-etch adhesive was developed to simplify the dependable retention of lithium disilicate crowns. The efficacy of this new system is unknown. The purpose of this in vitro study was to determine whether lithium disilicate crowns cemented with a new composite resin and adhesive system and 2 other popular systems provide clinically acceptable crown retention after long-term aging with monthly thermocycling. Extracted human molars were prepared with a flat occlusal surface, 20-degree convergence, and 4 mm axial length. The axio-occlusal line angle was slightly rounded. The preparation surface area was determined by optical scanning and the analysis of the standard tessellation language (STL) files. The specimens were distributed into 3 cement groups (n=12) to obtain equal mean surface areas. Lithium disilicate crowns (IPS e.max Press) were fabricated for each preparation, etched with 9.5% hydrofluoric acid for 15 seconds, and cleaned. Cement systems were RelyX Ultimate with Scotch Bond Universal (3M Dental Products); Monobond S, Multilink Automix with Multilink Primer A and B (Ivoclar Vivadent AG); and NX3 Nexus with OptiBond XTR (Kerr Corp). Each adhesive provided self-etching of the dentin. Before cementation, the prepared specimens were stored in 35°C water. A force of 196 N was used to cement the crowns, and the specimens were polymerized in a 35°C oven at 100% humidity. After 24 hours of storage at 100% humidity, the cemented crowns were thermocycled (5°C to 55°C) for 5000 cycles each month for 6 months. The crowns were removed axially at 0.5 mm/min. The removal force was recorded and the dislodgement stress calculated using the preparation surface area. The type of cement failure was recorded, and the data were analyzed by 1-way ANOVA and the chi-square test (α=.05) after the equality of variances had been assessed with the Levene test. The Levene test was nonsignificant (P=.936). The ANOVA revealed the mean removal

  15. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    Science.gov (United States)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  16. Comparison of shear test methods for evaluating the bond strength of resin cement to zirconia ceramic.

    Science.gov (United States)

    Kim, Jae-Hoon; Chae, Soyeon; Lee, Yunhee; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-11-01

    This study compared the sensitivity of three shear test methods for measuring the shear bond strength (SBS) of resin cement to zirconia ceramic and evaluated the effects of surface treatment methods on the bonding. Polished zirconia ceramic (Cercon base, DeguDent) discs were randomly divided into four surface treatment groups: no treatment (C), airborne-particle abrasion (A), conditioning with Alloy primer (Kuraray Medical Co.) (P) and conditioning with Alloy primer after airborne-particle abrasion (AP). The bond strengths of the resin cement (Multilink N, Ivoclar Vivadent) to the zirconia specimens of each surface treatment group were determined by three SBS test methods: the conventional SBS test with direct filling of the mold (Ø 4 mm × 3 mm) with resin cement (Method 1), the conventional SBS test with cementation of composite cylinders (Ø 4 mm × 3 mm) using resin cement (Method 2) and the microshear bond strength (μSBS) test with cementation of composite cylinders (Ø 0.8 mm × 1 mm) using resin cement (Method 3). Both the test method and the surface treatment significantly influenced the SBS values. In Method 3, as the SBS values increased, the coefficients of variation decreased and the Weibull parameters increased. The AP groups showed the highest SBS in all of the test methods. Only in Method 3 did the P group show a higher SBS than the A group. The μSBS test was more sensitive to differentiating the effects of surface treatment methods than the conventional SBS tests. Primer conditioning was a stronger contributing factor for the resin bond to zirconia ceramic than was airborne-particle abrasion.

  17. Porous structure analysis of radioactive spent resin cementation matrix

    International Nuclear Information System (INIS)

    Zhou Yaozhong; Yun Guichun

    2004-01-01

    According to a cement product microstructure, a radioactive spent resin cementation matrix has the properties of porous matters. The distributing of the pore size and the pore microstructure stability are closely related to many crucial macro properties, including strength and permeability of the matrixes. By using a new computer-controlled Hg pressure test, a experiment methods of the matrix micro-properties was studied. By using porous structure analyses, it was found that the experimental method is useful for the future cementation research. In this test, it was also found that ASC cement matrixes of spent resin have superior microstructure to the OPC's. They have better pore size distribution, more stable structure and higher ability to hold the Hg in the matrixes than OPC's, and these properties are the important factors that make ASC cement matrixes have more stable macro-structure and lower leaching of nuclides. (authors)

  18. Adhesive permeability affects coupling of resin cements that utilise self-etching primers to dentine.

    Science.gov (United States)

    Carvalho, R M; Pegoraro, T A; Tay, F R; Pegoraro, L F; Silva, N R F A; Pashley, D H

    2004-01-01

    To examine the effects of an experimental bonding technique that reduces the permeability of the adhesive layer on the coupling of resin cements to dentine. Extracted human third molars had their mid to deep dentin surface exposed flat by transversally sectioning the crowns. Resin composite overlays were constructed and cemented to the surfaces using either Panavia F (Kuraray) or Bistite II DC (Tokuyama) resin cements mediated by their respective one-step or two-step self-etch adhesives. Experimental groups were prepared in the same way, except that the additional layer of a low-viscosity bonding resin (LVBR, Scotchbond Multi-Purpose Plus, 3M ESPE) was placed on the bonded dentine surface before luting the overlays with the respective resin cements. The bonded assemblies were stored for 24 h in water at 37 degrees C and subsequently prepared for microtensile bond strength testing. Beams of approximately 0.8 mm(2) were tested in tension at 0.5 mm/min in a universal tester. Fractured surfaces were examined under scanning electron microscopy (SEM). Additional specimens were prepared and examined with TEM using a silver nitrate-staining technique. Two-way ANOVA showed significant interactions between materials and bonding protocols (p0.05). SEM observation of the fractured surfaces in Panavia F showed rosette-like features that were exclusive for specimens bonded according to manufacturer's directions. Such features corresponded well with the ultrastructure of the interfaces that showed more nanoleakage associated with the more permeable adhesive interface. The application of the additional layer of the LVBR reduced the amount of silver impregnation for both adhesives suggesting that reduced permeability of the adhesives resulted in improved coupling of the resin cements to dentin. Placement of an intermediate layer of a LVBR between the bonded dentine surface and the resin cements resulted in improved coupling of Panavia F to dentine.

  19. Physical and chemical durability of cement impregnated epoxy resin

    International Nuclear Information System (INIS)

    Suryantoro

    1997-01-01

    Immobilization of simulation radioactive waste contains Cs and Sr with cement impregnated epoxy resin has been done. Low level liquid waste in 30% weight mixed cement homogeneously and then set in its curing time about 28 days. Waste from was impregnated with epoxy resin (Bisphenol-A-diglycidylether) and use Triethylenteramin as catalyst. the sample of cement impregnated epoxy resin 2.5 cm x 2.5 cm in diameter and length was tested by Paul Weber. The compressive strength was obtained of 4.08 kN.cm - 2. The sochxlet apparatus was run on flow rate of 300 ml/hour at 100 o C and during 24 hours. The leaching rate of Cs was round on 5.5 x 10 - 4 g.cm - 2.d - 1 and Sr was 6.1 x 10 - 4 g.cm - 2.d - 1 (author)

  20. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  1. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Coating glass-ionomer cements with a nanofilled resin

    NARCIS (Netherlands)

    Bonifacio, C.C.; Werner, A.; Kleverlaan, C.J.

    2012-01-01

    Objectives. The objective of this study was to investigate the effect of a nanofilled resin coat on the flexural strength (FS) and the early wear (after 50 000 and 200 000 cycles) of the glass-ionomer cements Fuji IX GP Extra (FIXE) and Ketac Molar Aplicap (KM). Materials and methods. Specimens were

  3. The Translucency Effect of Different Colored Resin Cements used ...

    African Journals Online (AJOL)

    Purpose: The purpose of this study was to evaluate the effect of the different color of resin cements and zirconia cores on the translucency parameter (TP) of the restoration that simulates the implant‑supported fixed prosthesis using titanium base on the bottom. Materials and Methods: Zirconia core plates (Zr‑Zahn) were ...

  4. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    Directory of Open Access Journals (Sweden)

    Anne Peutzfeldt

    2016-01-01

    Full Text Available This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM, High Power mode (HPM, or Xtra Power mode (XPM. Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2 (n=17. Vickers hardness (HV and indentation modulus (EIT were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α=0.05. Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p≤0.0001. Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p≤0.0021. However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  5. Additional chemical polymerization of dual resin cements: reality or a goal to be achieved?

    Directory of Open Access Journals (Sweden)

    Luzia Sakaguti UMETSUBO

    Full Text Available Abstract Introduction This study serves as a warning to dentists and researchers that dual-cured resin cements may not polymerize completely under some prosthetic crowns. Objective The aim of this study was to analyse the polymerization degree of dual-cured resin cements under prosthetic barrier, by microhardness test. Material and method Three cements (Bistite II, RelyX ARC and Variolink II were light-cured through different barriers, placed between the cement and the light source: G1: without barrier; G2: composite resin (Cesead; G3: Inceram alumina; G4: IPS Empress; G5: Inceram zirconia; G6: tooth fragment. Photopolymerization was carried out using a halogen light unit (650 mW/cm2; microhardness was evaluated using the Microhardness Tester FM 700, under a load of 50gf with a dwell time of 15s, at two evaluation times (30min and 24h. Result The results were submitted to ANOVA and Tukey tests (5%. Both Inceram alumina and Inceram zirconia ceramic barriers hindered polymerization. Bistite, followed by RelyX and Variolink, exhibited the highest microhardness values (p<0.05. As the highest values were obtained without a barrier, it was determined that the barrier, followed by the tooth, influenced microhardness. Both Empress and Cesead had the smallest microhardness values but with no statistically significant difference between them. Conclusion The barrier negatively affected the microhardness of dual-cured resin cements; evaluation time did not affect microhardness values for most of the conditions tested. There is a limited effect of the chemical activator on the polymerization of some dual-cured cements, and their performance is product specific.

  6. Mixture Design and Its Application in Cement Solidification for Spent Resin

    International Nuclear Information System (INIS)

    Gan, Xueying; Lin, Meiqing; Chen, Hui

    1994-01-01

    The study is aimed to assess the usefulness of the mixture design for spent resin immobilization in cement. Although a considerable amount of research has been carried out to determine the limits for the composition of an acceptable resin-cement mixture, no efficient experimental strategy exists that explores the full properties of waste form against composition relationship. In order to gain an overall view, this report introduces the method of mixture design and mixture analysis, and describes the design of experiment of the 5-component mixture with the constraint conditions. The mathematic models of 28-day compressive strength varying with the ingredients are fitted, and the main effect and interaction effect of two ingredients are identified quantitatively along with the graphical interpretation using the response trace plot and contour plots

  7. Effect of Sandblasting on Shear Bond Strength Composite Resin Veneer

    Directory of Open Access Journals (Sweden)

    Octarina Octarina

    2013-07-01

    Full Text Available Attachment between restoration and enamel surface in indirect resin composite veneer restoration (IRCV is obtained using multi-step (MS resin cement. Recently, a one step self-adhesive dual-cured resin cement (SADRC was introduced. Objective: To determine the effect of sandblasting on shear bond strength (SBS of IRCV to enamel using MS resin cement and SADRC. Methods: Forty specimens of buccal surface of enamel human were light-cured in Solidilite chamber and were divided into two groups: IRCV without sandblasting (n=20 and with sandblasting for 10 seconds (n=20 and then bonded to enamel using MS (n=10 and SADRC (n=10, respectively. After 24h SBS of specimens were tested using a Universal Testing Machine. Data were analyzed statistically by one-way ANOVA. Results: The average SBS value of IRCV without SB and bonded with MS was 18.95+7.80MPa and MS with SB was 19.30+ SB (4.85+2.12MPa and SADRC with SB (9.57+3.45MPa(p<0.05. Conclusion: increased SBS VIRK to enamel using MS resin cement than SADRC.  

  8. Composite cements benefit from light-curing.

    Science.gov (United States)

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To investigate the effect of curing of composite cements and a new ceramic silanization pre-treatment on the micro-tensile bond strength (μTBS). Feldspathic ceramic blocks were luted onto dentin using either Optibond XTR/Nexus 3 (XTR/NX3; Kerr), the silane-incorporated 'universal' adhesive Scotchbond Universal/RelyX Ultimate (SBU/RXU; 3M ESPE), or ED Primer II/Panavia F2.0 (ED/PAF; Kuraray Noritake). Besides 'composite cement', experimental variables were 'curing mode' ('AA': complete auto-cure at 21°C; 'AA*': complete auto-cure at 37°C; 'LA': light-curing of adhesive and auto-cure of cement; 'LL': complete light-curing) and 'ceramic surface pre-treatment' ('HF/S/HB': hydrofluoric acid ('HF': IPS Ceramic Etching Gel, Ivoclar-Vivadent), silanization ('S': Monobond Plus, Ivoclar-Vivadent) and application of an adhesive resin ('HB': Heliobond, Ivoclar-Vivadent); 'HF/SBU': 'HF' and application of the 'universal' adhesive Scotchbond Universal ('SBU'; 3M ESPE, only for SBU/RXU)). After water storage (7 days at 37°C), ceramic-dentin sticks were subjected to μTBS testing. Regarding the 'composite cement', the significantly lowest μTBSs were measured for ED/PAF. Regarding 'curing mode', the significantly highest μTBS was recorded when at least the adhesive was light-cured ('LA' and 'LL'). Complete auto-cure ('AA') revealed the significantly lowest μTBS. The higher auto-curing temperature ('AA*') increased the μTBS only for ED/PAF. Regarding 'ceramic surface pre-treatment', only for 'LA' the μTBS was significantly higher for 'HF/S/HB' than for 'HF/SBU'. Complete auto-cure led to inferior μTBS than when either the adhesive (on dentin) or both adhesive and composite cement were light-cured. The use of a silane-incorporated adhesive did not decrease luting effectiveness when also the composite cement was light-cured. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  10. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic.

    Science.gov (United States)

    Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc

    2016-02-01

    This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.

  11. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  12. Desensitizing bioactive agents improves bond strength of indirect resin-cemented restorations: preliminary results

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2007-04-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. MATERIALS AND METHOD: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5: Group I: acid etching + Prime & Bond NT (Dentsply; Group II: application of a bioactive glass (Biosilicato®+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita; Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer cylinders (6x10mm were fabricated and cemented to the teeth with a dual-cure resin-based cement (Enforce, Dentsply. After cementation, the specimens were stored in artificial saliva at 37ºC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence. RESULTS: Groups I, II and III had statistically similar results (p>0.05. Group IV had statistically significant higher bond strength means (p<0.05 than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. CONCLUSION: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems.

  13. CURING EFFICIENCY OF DUAL-CURE RESIN CEMENT UNDER ZIRCONIA WITH TWO DIFFERENT LIGHT CURING UNITS

    Directory of Open Access Journals (Sweden)

    Pınar GÜLTEKİN

    2015-04-01

    Full Text Available Purpose: Adequate polymerization is a crucial factor in obtaining optimal physical properties and a satisfying clinical performance from composite resin materials. The aim of this study was to evaluate the polymerization efficiency of dual-cure resin cement cured with two different light curing units under zirconia structures having differing thicknesses. Materials and Methods: 4 zirconia discs framework in 4 mm diameter and in 0.5 mm, 1 mm and 1.5 mm thickness were prepared using computer-aided design system. One of the 0.5 mm-thick substructures was left as mono-layered whereas others were layered with feldspathic porcelain of same thickness and ceramic samples with 4 different thicknesses (0.5, 1, 1.5 and 2.0 mm were prepared. For each group (n=12 resin cement was light cured in polytetrafluoroethylene molds using Light Emitting Diode (LED or Quartz-Tungsten Halogen (QHT light curing units under each of 4 zirconia based discs (n=96. The values of depth of cure (in mm and the Vickers Hardness Number values (VHN were evaluated for each specimen. Results: The use of LED curing unit produced a greater depth of cure compared to QTH under ceramic discs with 0.5 and 1 mm thickness (p<0.05.At 100μm and 300 μm depth, the LED unit produced significantly greater VHN values compared to the QTH unit (p<0.05. At 500 μm depth, the difference between the VHN values of LED and QTH groups were not statistically significant. Conclusion: Light curing may not result in adequate resin cement polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations.

  14. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    Science.gov (United States)

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups. Key words:CAD/CAM ceramic, alumina, zirconia, resin cement, surface pre-treatment, sandblasting, silica-coating, chemical aging, bond degradation, microtensile bond strength. PMID:22322517

  15. Immobilisation Of Spent Ion Exchange Resins Using Portland Cement Blending With Organic Material

    International Nuclear Information System (INIS)

    Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud

    2014-01-01

    Immobilisation of spent ion exchange resins (spent resins) using Portland cement blending with organic material for example bio char was investigated. The performance of cement-bio char matrix for immobilisation of spent ion exchange resins was evaluated based on their compression strength and leachability under different experimental conditions. The results showed that the amount of bio char and spent resins loading effect the compressive strength of the waste form. Several factors affecting the leaching behaviour of immobilised spent resins in cement-bio char matrix. (author)

  16. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Directory of Open Access Journals (Sweden)

    Lucas Pradebon BRONDANI

    2017-04-01

    Full Text Available Abstract Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding, resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  17. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Science.gov (United States)

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  18. Immobilization in cement of ion exchange resins from Spanish nuclear reactors

    International Nuclear Information System (INIS)

    Huebra, A.G. de la; Murillo, R.; Ortiz, S.J.

    1990-01-01

    Ion exchange materials used at nuclear power plants can be immobilized in cements less expensive than polymer matrices. Cement solidification of spent ion exchange resins shows swelling and cracking troubles (during setting time, or of storage). The objective of this study was to select the types of cement that produce the best quality on immobilization of three kinds of resins and to set up cement formulations containing the maximum possible loading of resin. Four cements were selected to carried out the study. After a study of hydration-dehydration phenomena of ion exchange resins, a systematic work has been carried out on immobilization. Tests were performed to study compressive strength and underwater stability by changing water/cement ratio and resin/cement ratio. Mixtures made with water, cement and resin only were loaded with 10% by weight dry resin. Mixtures with higher loadings show poor workability. Tests were carried out by adding organic plasticizers and silica products to improve waste loading. Plasticizers reduced water demand and silica products permit the use of more water. Leaching tests have been performed at 40 O C. In conclusion Blast Furnace Slag is the best cement for immobilization of ion exchange resin both bead and powdered form for mechanical strength, stability and leaching

  19. Propriedades mecânicas de materiais compósitos à base de cimento Portland e resina epoxi Mechanical properties of composite materials based on portland cement and epoxy resin

    Directory of Open Access Journals (Sweden)

    T. H. Panzera

    2010-03-01

    Full Text Available O estudo de materiais de alto desempenho e multifuncionais, como os compósitos poliméricos cimentícios, tem sido o foco de inúmeras pesquisas na indústria da construção civil. Este trabalho investiga o efeito da combinação de uma fase polimérica termorrígida, uma resina epóxi, com cimento Portland branco estrutural, seguido da avaliação da resistência à compressão e módulo de elasticidade. Este compósito, quando comparado individualmente com as suas matérias-prima originais, promove um aumento da resistência mecânica à compressão, redução da massa específica e, também uma mudança significativa do comportamento mecânico. As mudanças nas propriedades mecânicas estão associadas à hidratação da fase cimentícia na presença da resina, fato comprovado através da análise espectroscópica na região do infravermelho.The study of multi-functional materials of high performance, as the polymeric-cementitious composites, has been the focus of several researches in the industry of the civil engineering. This work investigates the effect of the combination of a thermorigid epoxy phase and the white Portland cement, followed by the evaluation of its compressive strength and modulus of elasticity. This composite, when the phases are individually compared, provides an increase of the compressive strength, a reduction of the density, and a significant change of the mechanical behaviour. The changes in mechanical behaviour are associated with the hydration of cement in the presence of resin, which was evident after infrared spectroscopy analysis.

  20. The Comparison of Sorption and Solubility Behavior of Four Different Resin Luting Cements in Different Storage Media.

    Science.gov (United States)

    Giti, Rashin; Vojdani, Mahroo; Abduo, Jaafar; Bagheri, Rafat

    2016-06-01

    Structural integrity and dimensional stability are the key factors that determine the clinical success and durability of luting cements in the oral cavity. Sorption and solubility of self-adhesive resin luting cements in food-simulating solutions has not been studied sufficiently. This study aimed to compare the sorption and solubility of 2 conventional and 2 self-adhesive resin-based luting cements immersed in four different storage media. A total of 32 disc-shaped specimens were prepared from each of four resin luting cements; seT (SDI), Panavia F (Kuraray), Clearfil SA Cement (Kuraray), and Choice 2 (Bisco). Eight specimens of each material were immersed in all tested solutions including n-heptane 97%, distilled water, apple juice, or Listerine mouth wash. Sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed by SPSS version 18, using two-way ANOVA and Tukey's HSD test with p≤ 0.05 set as the level of significance. There was a statistically significant interaction between the materials and solutions. The effect of media on the sorption and solubility was material-dependent. While seT showed the highest values of the sorption in almost all solutions, Choice 2 showed the least values of sorption and solubility. Immersion in apple juice caused more sorption than other solutions (p≤ 0.05). The sorption and solubility behavior of the studied cements were significantly affected by their composition and the storage media. The more hydrophobic materials with higher filler content like Choice 2 resin cement showed the least sorption and solubility. Due to their lower sorption and solubility, these types of resin-based luting cements are recommended to be used clinically.

  1. Bond strength of adhesive resin cement with different adhesive systems

    OpenAIRE

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; S?, Marcus-Vinicius-Reis; Pereira, Jefferson-Ricardo

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder? Scotchbond? Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-s...

  2. Marginal adaptation of lithium disilicate ceramic crowns cemented with three different resin cements.

    Science.gov (United States)

    Peroz, Ingrid; Mitsas, Triantafyllos; Erdelt, Kurt; Kopsahilis, Niko

    2018-04-17

    The cementation process and cementation materials have an influence on the marginal adaptation of restorations. The gap could be affected by thermal and mechanical loading (TCML). The computerized x-ray microtomography (μCT) method offers the possibility of measuring the marginal gap without destruction of the restoration. The aim of this study was to evaluate the marginal gap (MG) and the absolute marginal discrepancy (AMD) before and after TCML. Thirty-nine human premolars were prepared for full ceramic crowns made of lithium disilicate. The crowns were cemented by three different resins-Panavia F 2.0, Variolink II, and Relyx Unicem. The MG and AMD were evaluated by μCT before and after TCML. Panavia F 2.0 had the lowest MG (before 118 μm-after TMCL 124 μm) and AMD (before 145 μm-after TMCL 154 μm), followed by Relyx Unicem (MG: before 164 μm-after TCML 155 μm; AMD: before 213 μm-after TMCL 209 μm) and Variolink II (MG: before 317 μm-after TMCL 320 μm; AMD: before 412 μm-after TMCL 406 μm). The differences were statistically significant before and after TCML. Rather than TCML, it appeared the resin cement was responsible for differences between the MG and AMD before and after TCML. μCT is an accurate technique for assessing cemented restorations. Panavia F 2.0 has the lowest MG and AMD before and after TCML. The resin material that features a three-step protocol (Variolink II) produced higher MG and AMG values than the Panavia or Relyx Unicem varieties with less or no intermediate steps at all.

  3. Comparison of the Amount of Fluoride Release from Nanofilled Resin Modified Glass Ionomer Conventional and Resin Modified Glass Ionomer Cements

    Directory of Open Access Journals (Sweden)

    Sumitha Upadhyay

    2013-01-01

    Full Text Available Objective: To investigate and compare the amount of fluoride release of conventional, resin modified and nanofilled resin modified glass ionomer cements.Materials and Methods: Tablets of glass-ionomer cements were immersed in deionized water and incubated at 37◦C. After 1, 2, 7, 15 and 30 days, fluoride ion was measured under normal atmospheric conditions by fluoride ion selective electrode. Buffer (TISAB II was used to decomplex the fluoride ion and to provide a constant background ionic strength and to maintain the pH of water between 5.0 and 5.5 as the fluoride electrode is sensitive to changes in pH. Statistical evaluation was carried out by one way ANOVA (Analysis of Variance using SPSS 11.0. The significance level was set at p< 0.05.Results: The release of fluoride was highest on day 1 and there was a sudden fall on day 2 in all three groups. Initially fluoride release from conven-tional glass-ionomer cement was highest compared to the other two glass-ionomer cements, but the amount drastically reduced over the period. Although the amount of fluoride release was less than both the resin modified and nanofilled resin modified glass-ionomer cement, the release was sustained consistently for 30 daysConclusion: The cumulative fluoride release of nanofilled resin modified glass ionomer cement was very less compared to the conventional and resin modified glass ionomer cements and Nanofilled resin modified glass ionomer cement released less but steady fluoride as compared to other resin modified glass ionomer cements.

  4. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  5. Bonding of Glass Ceramic and Indirect Composite to Non-aged and Aged Resin Composite

    NARCIS (Netherlands)

    Gresnigt, Marco; Ozcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-01-01

    Purpose: Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged

  6. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-11-01

    Full Text Available Objectives It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of CO2 and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness were assigned to 3 groups (n = 15. In control group (CNT no laser treatment was used. In groups COL and EYL, CO2 and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were 8.65 ± 1.75, 12.12 ± 3.02, and 5.97 ± 1.14 MPa, respectively. Data showed that application of CO2 and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001. The highest bond strength was recorded in the COL group (p < 0.0001. In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions Pretreatment of zirconia ceramic via CO2 and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the CO2 laser treated samples.

  7. Investigations on cement/polymer Waste packages containing intermediate level waste and organic exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    ELsourougy, M R; Zaki, A A; Aly, H F [Atomic energy authority, hot laboratory center, Cairo, (Egypt); Khalil, M Y [Nuclear engineering department, Alexandria university. Alexandria, (Egypt)

    1995-10-01

    Polymers can be added to cements to improve its nuclear waste immobilization properties. This trend in cementation processes is attracting attention and requiring through investigations. In this work, polymers of different kinds were added to ordinary portland cement for the purpose of solidifying intermediate level liquid wastes and organic ion exchange resins. Epoxy polymer such as Kemapoxy-150 reduced the leaching rate of cesium compared to cement alone. Latex to cement ratio less than 4% caused an increase in leaching rate of cesium. When cesium was absorbed to an organic resin its leachability was improved. 5 figs., 4 tabs.

  8. Investigations on cement/polymer Waste packages containing intermediate level waste and organic exchange resins

    International Nuclear Information System (INIS)

    ELsourougy, M.R.; Zaki, A.A.; Aly, H.F.; Khalil, M.Y.

    1995-01-01

    Polymers can be added to cements to improve its nuclear waste immobilization properties. This trend in cementation processes is attracting attention and requiring through investigations. In this work, polymers of different kinds were added to ordinary portland cement for the purpose of solidifying intermediate level liquid wastes and organic ion exchange resins. Epoxy polymer such as Kemapoxy-150 reduced the leaching rate of cesium compared to cement alone. Latex to cement ratio less than 4% caused an increase in leaching rate of cesium. When cesium was absorbed to an organic resin its leachability was improved. 5 figs., 4 tabs

  9. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  10. Effect of a bonding agent on in vitro biochemical activities of remineralizing resin-based calcium phosphate cements.

    Science.gov (United States)

    Dickens, Sabine H; Flaim, Glenn M

    2008-09-01

    To test whether fluoride in a resin-based Ca-PO4 ion releasing cement or coating with an acidic bonding agent for improved adhesion compromised the cement remineralization potential. Cements were formulated without fluoride (Cement A) or with fluoride (Cement B). The treatment groups were A=Cement A; A2=Cement A+bonding agent; B=Cement B; B2=Cement B+bonding agent. The calcium, phosphate, and fluoride ion release in saliva-like solution (SLS) was determined from hardened cement disks without or with a coating of bonding agent. For the remineralization, two cavities were prepared in dentin of extracted human molars and demineralized. One cavity received composite resin (control); the other received treatment A, A2, B or B2. After 6 week incubation in SLS, 180 microm cross-sections were cut. The percentage remineralization was determined by transverse microradiography comparing the dentin mineral density under the cement to that under the control. The percentage of remineralization (mean+/-S.D.) was A (39+/-14)=B (37+/-18), A2 (23+/-13), B2 (14+/-7). Two-way analysis of variance (ANOVA) and Holm-Sidak test showed a significant effect from the presence of bonding agent (p0.05). The ion solution concentrations of all groups showed undersaturation with respect to dicalcium phosphate dihydrate and calcium fluoride and supersaturation for fluorapatite and hydroxyapatite suggesting a positive remineralization potential. Compared to the control all treatments resulted in mineral increase. The remineralization was negatively affected by the presence of the bonding agent.

  11. Influence of matrix metalloproteinase synthetic inhibitors on dentin microtensile bond strength of resin cements.

    Science.gov (United States)

    Stape, T H S; Menezes, M S; Barreto, B C F; Aguiar, F H B; Martins, L R; Quagliatto, P S

    2012-01-01

    This study evaluated the effect of dentin pretreatment with 2% chlorhexidine (CHX) or 24% ethylenediamine tetra-acetic acid gel (EDTA) on the dentin microtensile bond strength (μTBS) of resin cements. Composite blocks were luted to superficial noncarious human dentin (n=10) using two resin cements (RelyX ARC [ARC] and RelyX U100 [U100]) and three dentin pretreatments (without pretreatment-control, CHX, and EDTA). CHX was applied for 60 seconds on the acid-etched dentin in the ARC/CHX group, and for the same time on smear layer-covered dentin in the U100/CHX group. EDTA was applied for 45 seconds on smear-covered dentin in the U100/EDTA group, and it replaced phosphoric acid conditioning in the ARC/EDTA group for 60 seconds. After storage in water for 24 hours, specimens were prepared for microtensile bond strength testing. The results were submitted to two-way analysis of variance (ANOVA) followed by Tukey test. ARC produced significantly higher μTBS (pEDTA was used. For ARC, no pretreatment and CHX produced higher μTBS than EDTA. For U100, EDTA produced higher μTBS; no statistical difference occurred between CHX pretreatment and when no pretreatment was performed. While CHX did not affect immediate dentin bond strength of both cements, EDTA improved bond strength of U100, but it reduced dentin bond strength of ARC.

  12. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    Science.gov (United States)

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  13. Lateral-access Class II restoration using resin-modified glass-ionomer or silver-cermet cement.

    Science.gov (United States)

    Croll, T P

    1995-02-01

    Direct-access preparation of a carious proximal surface is perhaps the most conservative approach to restoration. Physical properties and handling characteristics of silver amalgam and of resin composite and lack of fluoride ion release make these materials unsuitable for direct buccal- or lingual-access proximal restoration. Insufficient strengths and radiolucency of self-hardening glass-ionomer cements preclude their use for Class II restorations. However, glass-ionomer silver-cermet cement and some resin-modified glass-ionomer materials are proving useful for non-stress-bearing Class II restorations and may have applications in preventive dentistry. This article describes lateral-access Class II restoration with modified glass-ionomer cements. Emphasis is placed on careful handling of materials, maintenance of an ideal operative field, and conservation of tooth structure.

  14. IPS Empress inlays luted with a self-adhesive resin cement after 1 year.

    Science.gov (United States)

    Taschner, Michael; Frankenberger, Roland; García-Godoy, Franklin; Rosenbusch, Silke; Petschelt, Anselm; Krämer, Norbert

    2009-02-01

    To prospectively compare the clinical performance of two different resin composites for luting IPS Empress inlays and onlays. 83 IPS Empress restorations were placed in 30 subjects. All restorations were inserted under rubber dam. 43 inlays/onlays were luted with a self-adhesive resin cement [RelyX Unicem (RX)]. A multistep adhesive (Syntac) was used with Variolink II low viscosity (SV) and served as control (n=40). The restorations were evaluated after 2 weeks: Baseline = 1st recall (R1), after 6 months (R2) and after 1 year (R3) by two calibrated examiners using the modified USPHS criteria. From R1 to R3, one failure was noticed in the SV group (R2) due to marginal enamel chipping. After 1 year of clinical service, SV revealed significantly better results regarding color match and integrity inlay (Mann-Whitney U-test, P0.05).

  15. Influence of Photoinitiator on Accelerated Artificial Aging and Bond Strength of Experimental Resin Cements.

    Science.gov (United States)

    Righi, Helouise; Costa, Ana Rosa; Oliveira, Dayane Carvalho Ramos Salles de; Abuna, Gabriel Flores; Sinhoreti, Mario Alexandre Coelho; Naufel, Fabiana Scarparo

    2018-01-01

    The goal of this study was to evaluate in vitro the effect of the photoinitiator phenylpropanedione (PPD), alone or combined with camphorquinone (CQ), on color stability of photoactivated resin cements and their bond strength to ceramics using a micro-shear test. Four resin cements were used: a commercial brand cement (RelyX Veneer®) and 3 experimental cements with different types and concentration of photoinitiators. For color analysis, ceramic discs were cemented on bovine dentin specimens to simulate indirect restorations (n=8) and were exposed to UV for 120 h and tested for color alteration using a reflectance spectrophotometer and the CIEL*a*b* system. Data were analyzed by Anova and Tukey's test at 5% significance level. The color test results did not present statistically significant difference for the ∆E for all the studied cements, neither for ∆L, ∆a and ∆b. For the bond strength, all the studied cements showed statistically significant differences to each other, with the highest result for the RelyX Veneer® (29.07 MPa) cement, followed by the cement with CQ (21.74 MPa) and CQ+PPD (19.09 MPa) cement; the lowest result was obtained by the cement using only PPD as a photoinitiator (13.99 MPa). So, based on the studied parameters, PPD was not advantageous as photoinitiator of resin cements, because it showed a low value of bond strength to the ceramics and no superior color stability.

  16. Measurement of opalescence of resin composites.

    Science.gov (United States)

    Lee, Yong-Keun; Lu, Huan; Powers, John M

    2005-11-01

    Opalescence is an optical property, where there is light scattering of the shorter wavelengths of the visible spectrum, giving the material a bluish appearance under reflected light and an orange/brown appearance under transmitted light. The objective of this study was to determine the opalescence of resin composites with a color measuring spectrophotometer. Colors of A2 and enamel or translucent shades of four resin composites and of an unfilled resin measured in the reflectance and transmittance modes were compared, and the opalescence parameter (OP) was calculated as the difference in blue-yellow coordinate (Deltab*) and red-green parameter (Deltaa*) between the reflected and transmitted colors of 1-mm thick specimens. The masking effect was calculated as the color difference between the color of a black background and the color of specimen over the black background. The range of OP in resin composites was 5.7-23.7, which was higher than that of the unfilled resin. However, there were significant differences among the brands and shades of the resin composites. Opalescence varied by brand and shade of the resin composites, and contributed to the masking of background color along with translucency parameter. Some of the resin composites actually displayed opalescence.

  17. SEM and elemental analysis of composite resins

    International Nuclear Information System (INIS)

    Hosoda, H.; Yamada, T.; Inokoshi, S.

    1990-01-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use

  18. Leaching of tritium from a cement composite

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Ito, Akihiko

    1978-10-01

    Leaching of tritium from cement composites into an aqueous phase has been studied to evaluate the safety of incorporation of the tritiated liquid waste into cement. Leaching tests were performed by the method recommended by the International Atomic Energy Agency. The Leaching fraction was measured as functions of waste-cement ratio (Wa/C), temperature of leachant and curing time. The tritium leachability of cement in the long term test follows the order: alumina cement portland cement slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than synthetic sea water. The amount leached of tritium from a 200 l drum size specimen was estimated on the basis of the above results. (author)

  19. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    Science.gov (United States)

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, padhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  20. Posterior bulk-filled resin composite restorations.

    DEFF Research Database (Denmark)

    van Dijken, Jan WV; Pallesen, Ulla

    2016-01-01

    up to 4mm as needed to fill the cavity 2mm short of the occlusal cavosurface. The occlusal part was completed with the nano-hybrid resin composite (Ceram X mono+). In the other cavity, the resin composite-only (Ceram X mono+) was placed in 2mm increments. The restorations were evaluated using...... Class II, 4 SDR-CeramX mono+ and 6 CeramXmono+-only restorations. The main reasons for failurewere tooth fracture (6) and secondary caries (4). The annual failure rate (AFR) for all restorations (Class I and II) was for the bulk-filled-1.1% and for the resin composite-only restorations 1...

  1. Modeling of the interaction between chemical and mechanical behavior of ion exchange resins encapsulated into a cement-based matrix

    International Nuclear Information System (INIS)

    Neji, Mejdi

    2014-01-01

    Ion exchange resins (IER) are widely used in the nuclear industry to purge non directly storable infected effluents. IER then become a solid waste which could be stored as any classical nuclear waste. One way of conditioning consists in embedding it into a cement paste matrix. This process raises some concerns regarding the cohesiveness of the composite. Once embedded, the IER might indeed interact with the cement paste which would lead, in some cases, to the swelling of the composite. This thesis has been set up to address this potential issue, with the aim to develop a numerical tool able to predict the mechanical behavior of this kind of material. This work only focuses on the long term behavior and more specifically on the potential degradations of the cement paste/IER composite due to cationic IER. (author)

  2. Cement waste form development for ion-exchange resins and fine particles ILW of AREVA La Hague Reprocessing Plant

    International Nuclear Information System (INIS)

    Chartier, D.; Sanchez-Canet, J.; Avril, D.; Roussel, C.; Pineau, J.N.

    2015-01-01

    Wastes have been temporarily stored in dedicated silos in La Hague reprocessing plant. These wastes are to be retrieved in the near future and to be conditioned for final disposal. Some of these wastes are supposed to be encapsulated in cement matrix and, depending on the chemical composition of the waste streams, several projects are presently ongoing. The present article aims to focus on one amongst these cement encapsulation relevant projects, namely the conditioning of a mix of spent ion-exchange resins (from filtration of pool) and fine particles (insoluble fission products from spent fuel dissolution and Zircaloy and stainless steel fines from cladding shearing). The project, aims to retrieve these wastes from a silo, separate the resins and fine particles from the other waste (hulls and end pieces), in order to encapsulate the intermediate-level fines and resins in a cement matrix. The waste forms will be produced in AREVA's La Hague reprocessing plant, prior to being sent as intermediate-level waste to a long-term repository. The cement formulation developments were initially carried out at a small scale at C.E.A. Marcoule on surrogate wastes. One of the main issues that were considered was the chemical compatibility between waste and cement matrix. Indeed, swelling phenomena are sometimes reported when ion exchange resins are embedded in cement matrixes such as Portland cement. This kind of destructive phenomenon has been prevented by the use of cement containing a high amount of ground granulated blast furnace slag. The impact of the variability of ionic charge of the resins on the waste form's properties has also been addressed in order to comfort the results obtained on the reference ionic charge of resins NaNO 3 . Once the results obtained were satisfactory, intermediate scale and full scale tests were performed by AREVA. These tests have focused on adjusting the mixing process and controlling the thermal properties of the mix during setting

  3. Evaluation of stainless steel crowns cemented with glass-ionomer and resin-modified glass-ionomer luting cements.

    Science.gov (United States)

    Yilmaz, Yucel; Simsek, Sera; Dalmis, Anya; Gurbuz, Taskin; Kocogullari, M Elcin

    2006-04-01

    To evaluate in vitro and in vivo conditions of stainless steel crowns (SSC) cemented using one luting glass-ionomer cement (Aqua Meron) and one luting resin-modified glass-ionomer cement (Vitremer). In the in vitro part of this study, retentive properties of SSCs cemented using Aqua Meron and Vitremer on extracted primary first molars were tested. In addition, two specimens of each group were used to evaluate the tooth hard tissue-cement, within the cement itself, cement-SSC, and tooth hard tissue-cement-SSC under scanning electron microscope (SEM). In the in vivo part of this study, 152 SSCs were placed on the first or second primary molars of 86 children, and cemented using either Aqua Meron or Vitremer. The crowns were examined for retention. In addition, the clinical views of the crowns were recorded with an intraoral camera. No significant difference was found between the mean retentive forces of Aqua Meron and Vitremer (P> 0.05). SSCs cemented with Aqua Meron and Vitremer had an average lifespan of 26.44 and 24.07 months respectively. Only one (0.66%) of 152 SSCs was lost from the Aqua Meron group during post-cementation periods. Nineteen of the 152 SSCs (12.5%) had dents or perforations.

  4. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    Directory of Open Access Journals (Sweden)

    Grace DE SOUZA

    2015-08-01

    Full Text Available AbstractResin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used.

  5. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  6. Bond strength of orthodontic light-cured resin-modified glass ionomer cement.

    Science.gov (United States)

    Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan

    2011-04-01

    The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.

  7. The behavior of implant-supported dentures and abutments using the cemented cylinder technique with different resinous cements

    Directory of Open Access Journals (Sweden)

    Ivete Aparecida de Mathias Sartori

    2008-01-01

    Full Text Available Objective: Evaluate the behavior of implant-supported dentures and their components, made by cemented cylinder technique, using threetypes of resin cements. Methods: Fifty three patients, of whom 26 were women and 27 men, aged between 25 and 82 years. Results: With partial (54.43% and total (45.57% implant-supported dentures, of the Cone Morse, external and internal hexagon types (Neodent®, Curitiba, Brazil, totaling 237 fixations, were analyzed. The resin cements used were Panavia® (21.94%, EnForce® (58.23% and Rely X® (19.83% and the components were used in accordance with the Laboratory Immediate Loading - Neodent® sequence. The period of time of denture use ranged between 1 and 5 years. The results reported that 5(2.1% cylinders were loosened from metal structure (both belonging to Rely X group, 2(0.48% implants were lost after the first year of use, 16(6.75% denture retention screws wereloosened and 31(13.08% abutment screws were unloosened.Conclusion: The reasons for these failures probably are: metal structure internal retention failure, occlusal pattern, cementation technique and loading conditions. The cemented cylinder technique was effective when used in partial and total implant-supported rehabilitations, keeping prosthetic components stable, despite the resin cement utilized. However, further clinical studies must be conducted.

  8. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    Science.gov (United States)

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-10-01

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (pceramics (pceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Titanium dioxide nanotubes addition to self-adhesive resin cement: Effect on physical and biological properties.

    Science.gov (United States)

    Ramos-Tonello, Carla M; Lisboa-Filho, Paulo N; Arruda, Larisa B; Tokuhara, Cintia K; Oliveira, Rodrigo C; Furuse, Adilson Y; Rubo, José H; Borges, Ana Flávia S

    2017-07-01

    This study has investigated the influence of Titanium dioxide nanotubes (TiO 2 -nt) addition to self-adhesive resin cement on the degree of conversion, water sorption, and water solubility, mechanical and biological properties. A commercially available auto-adhesive resin cement (RelyX U200™, 3M ESPE) was reinforced with varying amounts of nanotubes (0.3, 0.6, 0.9wt%) and evaluated at different curing modes (self- and dual cure). The DC in different times (3, 6, 9, 12 and 15min), water sorption (Ws) and solubility (Sl), 3-point flexural strength (σf), elastic modulus (E), Knoop microhardness (H) and viability of NIH/3T3 fibroblasts were performed to characterize the resin cement. Reinforced self-adhesive resin cement, regardless of concentration, increased the DC for the self- and dual-curing modes at all times studied. The concentration of the TiO 2 -nt and the curing mode did not influence the Ws and Sl. Regarding σf, concentrations of both 0.3 and 0.9wt% for self-curing mode resulted in data similar to that of dual-curing unreinforced cement. The E increased with the addition of 0.9wt% for self-cure mode and H increased with 0.6 and 0.9wt% for both curing modes. Cytotoxicity assays revealed that reinforced cements were biocompatible. TiO 2 -nt reinforced self-adhesive resin cement are promising materials for use in indirect dental restorations. Taken together, self-adhesive resin cement reinforced with TiO 2 -nt exhibited physicochemical and mechanical properties superior to those of unreinforced cements, without compromising their cellular viability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Influence of storage times on bond strength of resin cements to root canal

    Directory of Open Access Journals (Sweden)

    Matheus Coêlho Bandéca

    2010-03-01

    Full Text Available The resin cements are responsible to retention of the indirect materials decreasing marginal leakage, increasing failure resistance compared with conventional cementation. The cementation within root canal is very hard due unfavorable conditions regarding the application of adhesive techniques caused by inadequate access. Therefore, considering the possibility to decrease steps of cementation, this study was performed to evaluate the bond strength of self-adhesive resin cement (RelyX TM U100, 3M ESPE and resin cement combined with self-ecthing adhesive system (Panavia® F 2.0, Kuraray light-cured with Quartz Tungsten Halogen (QTH following storage at 37 °C immediately after light-curing, 24 and 48 hours and 7 days. The root canals were prepared to receive the glass fiber post in the depth of 10 mm, irrigated with 17% EDTA and NaOCl, rinsed with distilled water and dried using paper points. The roots were perpendicularly sectioned into approximately 1 mm thick sections, obtaining ninety-six slices (n = 12. The slices were trimmed using a cylindrical diamond bur in the proximal surfaces until it touched the post and attached into a device, which were mounted on a strength tester (Bisco and loaded in tension at a speed of 0.5 mm/min until failure occurred at specimens. The analysis of variance (ANOVA and Tukey's post-hoc tests showed significant statistical differences (P .05. The resin cements 24 and 48 hours after light-curing were statistically similar among themselves (P > .05. The both resin cement showed similar bond strength into root canal on different storage times. The highest bond strength values of the resin cements were showed 7 days after curing.

  11. Coating glass-ionomer cements with a nanofilled resin.

    Science.gov (United States)

    Bonifácio, Clarissa Calil; Werner, Arie; Kleverlaan, Cornelis Johanes

    2012-12-01

    The objective of this study was to investigate the effect of a nanofilled resin coat on the flexural strength (FS) and the early wear (after 50,000 and 200,000 cycles) of the glass-ionomer cements Fuji IX GP Extra (FIXE) and Ketac Molar Aplicap (KM). Specimens were prepared and half of them were coated with G-Coat plus. The uncoated specimens were used as controls. Flexural strength (n = 10) was evaluated after 24 h using a 3-point bending test on a universal testing machine (ISO 9917-2). Wear (n = 20) was evaluated after 50,000 and 200,000 cycles using the ACTA wear machine. One-way, two-way ANOVA and Tukey post-hoc tests were used to analyze differences in FS and wear. For FIXE the coat significantly increased the FS and the wear along the two time spans. KM did not show a significant difference in FS with the coat. Improvements in wear were observed only after 50,000 cycles. Based on these laboratory results, it is concluded that G-coat Plus is indicated in association with GP IX Extra with the aim to improve the mechanical properties of the former. However, this study is limited to a short-term observation.

  12. Influence of Resin Cements on Color Stability of Different Ceramic Systems.

    Science.gov (United States)

    Rodrigues, Renata Borges; Lima, Erick de; Roscoe, Marina Guimarães; Soares, Carlos José; Cesar, Paulo Francisco; Novais, Veridiana Resende

    2017-01-01

    The purpose of this study was to evaluate color stability of two dental ceramics cemented with two resin cements, assessing the color difference (ΔE00) by the measurement of L*, a*, b*, c* and h* of transmittance. The combination of two ceramic system (feldspathic and lithium disilicate) and two resin cements - color A3 (RelyX ARC and Variolink II) resulted in 4 groups (n=5). Ten disks-shaped specimens were fabricated for each ceramic system (10x1.5 mm), etched with hydrofluoric acid (10%) and silanized prior to cementation. The color analysis was performed 24 h after cementation of the samples and after 6 months of storage in relative humidity by means of spectrophotometry. The ΔE00 values were analyzed statistically by two-way ANOVA followed by the Tukey test (p<0.05). One-way ANOVA were calculated for the means of individual color coordinates (L*, a*, b*, c* and h*). Two-way ANOVA showed that only the ceramic factor was significant (p=0.003), but there was no difference for the cement factor (p=0.275) nor for the ceramic/cement interaction (p=0.161). The feldspathic ceramic showed the highest values of ΔE00. Variations in L*, a*, b*, c* and h* were more significant for feldspathic ceramic. In conclusion, storage alters similarly the optical properties of the resin cements and feldspathic porcelain was more susceptible to cement color change after aging.

  13. Modelling of the interaction between chemical and mechanical behaviour of ion exchange resins incorporated into a cement-based matrix

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available In this paper, we present a predictive model, based on experimental data, to determine the macroscopic mechanical behavior of a material made up of ion exchange resins solidified into a CEM III cement paste. Some observations have shown that in some cases, a significant macroscopic expansion of this composite material may be expected, due to internal pressures generated in the resin. To build the model, we made the choice to break down the problem in two scale’s studies. The first deals with the mechanical behavior of the different heterogeneities of the composite, i.e. the resin and the cement paste. The second upscales the information from the heterogeneities to the Representative Elementary Volume (REV of the composite. The heterogeneities effects are taken into account in the REV by applying a homogenization method derived from the Eshelby theory combined with an interaction coefficient drawn from the poroelasticity theory. At the first scale, from the second thermodynamic law, a formulation is developed to estimate the resin microscopic swelling. The model response is illustrated on a simple example showing the impact of the calculated internal pressure, on the macroscopic strain.

  14. Understanding of the color in composite resin

    Directory of Open Access Journals (Sweden)

    Jeong-Won Park

    2011-07-01

    Full Text Available In clinic, esthetic restoration of a defective natural tooth with composite resin is challenging procedure and needs complete understanding of the color of tooth itself and materials used. The optical characteristics of the composites are different because the chemical compositions and microstructures are not same. This review provided basic knowledge of the color and the color measurement devices, and analyze the color of the natural tooth. Further, the accuracy of the shade tab, color of the composite resins before and after curing, effect of the water, food and bleaching agent, and translucency, opalescence, and fluorescence effects were evaluated.

  15. Effect of surface treatment of prefabricated posts on bonding of resin cement

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeld, Anne; Asmussen, Erik

    2004-01-01

    This in vitro study evaluated the effect of various surface treatments of prefabricated posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White) and zirconia (Cerapost) on the bonding of two resin cements: ParaPost Cement and Panavia F by a diametral tensile strength (DTS) test...... the start of mixing the resin cement, the specimen was freed from the mold and stored in water at 37 degrees C for seven days. Following water storage, the specimen was wet-ground to a final length of approximately 3 mm. The DTS of specimens was determined in a Universal Testing Machine. The bonding...

  16. Effect of Anatomical Customization of the Fiber Post on the Bond Strength of a Self-Adhesive Resin Cement.

    Science.gov (United States)

    Rocha, Adricyla Teixeira; Gonçalves, Leticia Machado; Vasconcelos, Ana Júlia de Carvalho; Matos Maia Filho, Etevaldo; Nunes Carvalho, Ceci; De Jesus Tavarez, Rudys Rodolfo

    2017-01-01

    The aim of the study was to evaluate, by means of the push-out test, the effect of the anatomical customization of the fiber post on the bond strength of a self-adhesive resin cement. Twelve endodontically treated, human, upper central incisors were randomly divided into two groups ( n = 6): control (glass fiber posts cemented with Relyx® U200) and customized (glass fiber posts anatomically customized with translucent composite resin cemented with Relyx U200). The roots were sectioned into three slices, cervical, middle, and apical, and photographed with a digital camera attached to a stereomicroscopic loupe. The images were analyzed by software, for evaluation of the cement line. The slices were subsequently submitted to the push-out test until the post had completely extruded, and the fracture mode was analyzed with a stereomicroscopic loupe. The results showed significant differences between the groups in the different root thirds in relation to the area occupied by air bubbles ( p customized group. The customized group showed greater bond resistance than the control group and a more uniform cement layer.

  17. Treatment of a Vertical Root Fracture Using Dual-Curing Resin Cement: A Case Report

    Directory of Open Access Journals (Sweden)

    Nima Moradi Majd

    2012-01-01

    Full Text Available Introduction. Vertical root fracture (VRF is one of the most frustrating complications of root canal treatment. The prognosis of the root with VRF is poor therefore tooth extraction and root amputation are usually the only treatment options. However, bonding of the fracture line with adhesive resin cement during the intentional replantation procedure was recently suggested as an alternative to tooth extraction. Methods. A vertically fractured left maxillary incisor was carefully extracted, fracture line was treated with adhesive resin cement, a retrograde cavity was produced and filled with calcium-enriched mixture (CEM cement, and tooth was replanted. Results. After 12 months the tooth was asymptomatic. The size of periapical radiolucency was noticeably reduced and there was no clinical sign of ankylosis. Conclusion. Using adhesive resin cement to bond the fracture lines extraorally in roots with VRF and intentional replantation of the reconstructed teeth could be considered as an alternative to tooth extraction, especially for anterior teeth.

  18. Effects of layering technique on the shade of resin overlays and the microhardness of dual cure resin cement

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2014-06-01

    Full Text Available The purpose of this study was to assess the color of layered resin overlays and to test the early microhardness of dual cure resin cement (DCRC light cured through the layered resin overlays. Resin overlays of 1.5 mm thickness were fabricated with the A3 shade of Z350 (Group 1L, the A3B and A3E shades of Supreme XT (Group 2L, and the A3, E3, and T1 shades of Sinfony (Group 3L using one, two, and three layers, respectively (n = 7. Each layer of the resin overlays was set in equal thickness. The color of the resin overlays was measured with a colorimeter and compared with an A3 shade resin denture tooth. DCRC was light cured through the resin overlays, and the early microhardness of the DCRC was measured. The ΔE value between the denture tooth and the resin overlays and the Vickers hardness number (VHN of the DCRC were analyzed with one-way ANOVA and Tukey’s HSD test. The color differences were 8.9 ± 0.5, 5.3 ± 1.0, and 7.3 ± 0.5 and the VHNs were 19.4 ± 1.1, 21.1 ± 0.9, and 29.3 ± 0.6 for Groups 1L, 2L, and 3L, respectively. Therefore, to match the designated tooth color of resin inlays and to increase the early microhardness of DCRC, layered resin inlays are more appropriate than single-dentin-layer resin inlays. However, the translucent layer should be used cautiously because the color difference of resin inlays with a translucent layer was affected more than those without a translucent layer.

  19. Color management of porcelain veneers: influence of dentin and resin cement colors.

    Science.gov (United States)

    Dozic, Alma; Tsagkari, Maria; Khashayar, Ghazal; Aboushelib, Moustafa

    2010-01-01

    Porcelain veneers have become an interesting treatment option to correct the shape and color of anterior teeth. Because of their limited thickness and high translucency, achieving a good color match is influenced by several variables. The aim of this work was to investigate the influence of natural dentin and resin cement colors on final color match of porcelain veneers. A preselected shade tab (A1) was chosen as the target color for a maxillary central incisor, and its color parameters (L*a*b*) were measured using a digital spectrophotometer (SpectroShade, MHT). Nine natural dentin colors (Natural Die Material, Ivoclar Vivadent) representing a wide range of tooth colors were used to prepare resin replicas of the maxillary central incisor with a standard preparation for porcelain veneers. The prepared porcelain veneers (IPS Empress Esthetic, A1, 0.6 mm thick, Ivoclar Vivadent) were cemented on the resin dies (nine groups of natural dentin colors) using seven shades of resin cement (Variolink Veneers, Ivoclar Vivadent). The L*a*b* values of the cemented veneers were measured, and DE values were calculated against the preselected target color (A1). DE greater than 3.3 was considered as a significant color mismatch detectable by the human eye. The seven shades of resin cement had no significant influence on the final color of the veneers, as the measured DE values were almost identical for every test group. On the other hand, the color of natural dentin was a significant factor that influenced final color match. None of the 63 tested combinations (nine natural dentin colors and seven resin cement colors) produced an acceptable color match. Thin porcelain veneers cannot mask underlying tooth color even when different shades of resin cement are used. Incorporation of opaque porcelain (high chroma) may improve final color match.

  20. Sulphur cement pre-composition and process for preparing such sulphur cement pre-composition

    NARCIS (Netherlands)

    2013-01-01

    The invention provides a process for the preparation of a sulphur cement pre-composition comprising reacting sulphur modifier with polysulphide-containing organosilane to obtain in the presence of sulphur the sulphur cement pre-composition, wherein the organosilane has the general molecular formula:

  1. Cement matrix for immobilisation of spent anionic resins in borate form arising from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2005-11-01

    In water cooled reactors boron is added as boric acid to control nuclear reactor power levels. The boric acid concentration in coolant/moderator water, is controlled by using strongly basic anionic resins in borate (H 2 BO 3 - ) form. The spent anionic resins in borate form contain 131 Iodine, 99 Technitium and 137 Cesium activities. Direct immobilisation of anionic resins in borate form in Ordinary Portland Cement (OPC) and Slag Cement was investigated using vermiculite, bentonite, calcium oxide and silica as admixtures. The cumulative fraction of 137 Cesium leached and 137 Cesium leach rate for slag cement matrix were 0.029 and 0.00064 g.cm 2 .d -1 respectively for 95 days of leaching. The volume reduction factor achieved by direct immobilisation of anionic resins in borate form was 0.48. Immobilisation of pyrolysis residues from these resins in OPC matrix was also studied. Leaching of matrix blocks was carried out for 180 days in DM water to optimise the matrix formulation. The cumulative fraction of 137 Cesium leached and 137 Cesium leach rate were 0.076 and 0.00054 respectively for 180 days leaching. The volume reduction factor achieved by immobilisation of pyrolysis residues was 2.4. OPC is non compatible to cationic resins loaded with alkali in absence of specific admixtures. Hence cationic resins loaded with alkali and anionic resins in borate form can not be immobilised together. (author)

  2. Profile of Fluoride Release from a Nanohybrid Composite Resin

    Directory of Open Access Journals (Sweden)

    Raquel Assed Bezerra Silva

    2015-02-01

    Full Text Available The aim of this study was to evaluate in vitro the amount and profile of fluoride release from a fluoride-containing nanohybrid composite resin (Tetric® N-Ceram by direct potentiometry. Thirty specimens (5 mm diameter x 3 mm high; n=10/material were made of Tetric® N-Ceram, Vitremer® resin-modified glass ionomer cement (RMGIC (positive control or Filtek® Z350 nanofill composite resin (negative control. The specimens were stored individually in plastic tubes containing 1 mL of artificial saliva at 37°C, which was daily renewed during 15 days. At each renewal of saliva, the amount of fluoride ions released in the solution was measured using a fluoride ion-selective electrode with ion analyzer, and the values obtained in mV were converted to ppm (µg/mL. Data were analyzed statistically by ANOVA and Tukey’s post-hoc test at a significance level of 5%. The results showed that the resins Tetric® N-Ceram and Filtek® Z350 did not release significant amounts of fluoride during the whole period of evaluation (p>0.05. Only Vitremer® released significant amounts of fluoride ions during the 15 days of the experiment, with greater release in first 2 days (p0.05. In conclusion, the nanohybrid composite resin Tetric® N-Ceram did not present in vitro fluoride-releasing capacity throughout the 15 days of study.

  3. Reinforcing of Cement Composites by Estabragh Fibres

    Science.gov (United States)

    Merati, A. A.

    2014-04-01

    The influence of Estabragh fibres has been studied to improve the performance characteristics of the reinforced cement composites. The concrete shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of concrete specimens. Although, the Estabragh fibres lose their strength in an alkali environment of cement composites, but, the ability of Estabragh fibres to bridge on the micro cracks in the concrete matrix causes to decrease the width of the cracks on the surface of the concrete samples in comparison with the plain concrete. However, considering the mechanical properties of specimens such as bending strength and impact resistance, the specimens with 0.25 % of Estabragh fibre performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of concrete. Consequently, by adding 0.25 % of Estabragh fibres to the cement composite of concrete, a remarkable improvement in physical and mechanical properties of fibre-containing cement composite is achieved.

  4. Solidification of radioactive waste resins using cement mixed with organic material

    International Nuclear Information System (INIS)

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-01-01

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins

  5. Solidification of radioactive waste resins using cement mixed with organic material

    Energy Technology Data Exchange (ETDEWEB)

    Laili, Zalina, E-mail: liena@nm.gov.my [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor Malaysia (Malaysia); Waste and Environmental Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Yasir, Muhamad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor Malaysia (Malaysia); Wahab, Mohd Abdul [Waste and Environmental Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  6. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  7. Effect of surface treatment of FRC-Post on bonding strength to resin cements

    Directory of Open Access Journals (Sweden)

    Chan-Hyun Park,

    2011-03-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of surface treatment of FRC-Post on bonding strength to resin cements. Materials and Methods Pre-surface treated LuxaPost (DMG, Rely-X Fiber Post (3M ESPE and self adhesive resin cement Rely-X Unicem (3M ESPE, conventional resin cement Rely-X ARC (3M ESPE, and Rely-X Ceramic Primer (3M ESPE were used. After completing the surface treatments of the posts, posts and resin cement were placed in clear molds and photo-activation was performed. The specimens were sectioned perpendicular to the FRC-Post into 2 mm-thick segments, and push-out strength were measured. The results of bond strength value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test. Results Silanization of posts affect to the bond strength in LuxaPost, and did not affect in Rely-X Fiber Post. Rely-X ARC showed higher value than Rely-X Unicem. Conclusions Silanization is needed to enhance the bond strength between LuxaPost and resin cements.

  8. Evaluation of the Compressive Strength of Cement-Spent Resins Matrix Mixed with Bio char

    International Nuclear Information System (INIS)

    Zalina Laili; Muhamad Samudi Yasir; Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud; Nurfazlina Zainal Abidin

    2015-01-01

    The evaluation of compressive strength of cement-spent resins matrix mixed with bio char was investigated. In this study, bio char with different percentage (5 %, 8 %, 11 % 14 % and 18 %) was used as alternative admixture material for cement solidification of spent resins. Some properties of the physical and chemical of spent resins and bio char were also investigated. The performance of cemented spent resins with the addition of bio char was evaluated based on their compressive strength and the water resistance test. The compressive strength was evaluated at three different curing periods of 7, 14 and 28 days, while 4 weeks of immersion in distilled water was chosen for water resistance test. The result indicated that the compressive strength at 7, 14 and 28 days of curing periods were above the minimum criterion for example > 3.45 MPa of acceptable level for cemented waste form. Statistical analysis showed that there was no significant relationship between the compressive strength of the specimen and the percentage of bio char content. Result from the water resistance test showed that only one specimen that contained of 5 % of bio char failed the water resistance test due to the high of spent resins/ bio char ratio. The compressive strength of cement solidified spent resins was found increased after the water resistance test indicating further hydration occurred after immersed in water. The results of this study also suggest that the specimen with 8 %, 11 %, 14 % and 18 % of bio char content were resistance in water and suitable for the leaching study of radionuclides from cement-bio char-spent resins matrix. (author)

  9. Restoration of traumatized teeth with resin composites

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan WV

    2018-01-01

    For a long time, the primary choice for initial restoration of a crown-fractured front tooth has been resin composite material. The restoration can in most cases be performed immediately after injury if there is no sign of periodontal injury. The method’s adhesive character is conservative to tooth...... present an aesthetic problem due to exposure of un-aesthetic crown-margins. The invasive permanent crown restorations are therefore often not suc-cessful on a long-term scale. On the other hand, a conservative direct restoration of an extensively fractured incisor crown with resin composite may......-structure and with minimal risk of pulpal complication. In addition, it offers an aesthetic solution to the patient immediately after an injury, which may bring a little comfort in a sad situation. The resin composite build-up is often changed or repaired a couple of times, before the tooth is restored with a porcelain...

  10. Aspects of bonding between resin luting cements and glass ceramic materials.

    Science.gov (United States)

    Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F

    2014-07-01

    The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Nanoscaled Mechanical Properties of Cement Composites Reinforced with Carbon Nanofibers

    OpenAIRE

    Barbhuiya, Salim; Chow, PengLoy

    2017-01-01

    This paper reports the effects of carbon nanofibers (CNFs) on nanoscaled mechanical properties of cement composites. CNFs were added to cement composites at the filler loading of 0.2 wt % (by wt. of cement). Micrographs based on scanning electron microscopy (SEM) show that CNFs are capable of forming strong interfacial bonding with cement matrices. Experimental results using nanoindentation reveal that the addition of CNFs in cement composites increases the proportions of high-density calcium...

  12. Effect of Cement Composition in Lampung on Concrete Strength

    OpenAIRE

    Riyanto, Hery

    2014-01-01

    The strength and durability of concrete depends on the composition of its constituent materials ie fine aggregate, coarse aggregate, cement, water and other additives. The cement composition is about 10% acting as a binder paste material fine and coarse aggregates. In the Lampung market there are several brands of portland cement used by the community to make concrete construction. Although there is a standard of the government of portland cement composition, yet each brand of cement has diff...

  13. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    Science.gov (United States)

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (pzirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  14. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. Chemical analysis

    International Nuclear Information System (INIS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.

    2015-01-01

    This paper presents the first part of a theoretical and experimental work aiming at modeling the chemo-mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C_3S). Because of ion exchange processes, the volume change of the IER may cause internal pressures leading to the degradation of the material. In this study, a predictive modeling is developed for describing the chemical behavior of such material. It is based on thermodynamic equilibria to determine the evolution of the ion exchange processes, and the potential precipitation of portlandite in the composite. In parallel, a phenomenological study has been set up to understand chemical phenomena related to the swelling mechanisms. The model created has been finally implemented in a finite elements software; the simulation of a laboratory test has been performed and the results compared to experimental data. - Highlights: • Ion exchange theory to model the swelling behavior of Ion exchange resin. • Experimental phenomenon analysis about Chemo-mechanical interaction between IER and cement paste matrix. • Chemo-Transport modeling on a composite material made with IER embedded into cement paste matrix.

  15. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement.

    Science.gov (United States)

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC(®) Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink(®) II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus(®) (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Combination of CEREC(®) Blocs PC and Variolink(®) II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Variolink(®) II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used.

  16. Bond strength durability of self-etching adhesives and resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Carolina de Andrade Lima Chaves

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate the microtensile bond strength (µTBS of one- (Xeno III, Dentsply and two-step (Tyrian-One Step Plus, Bisco self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar within a short (24 h and long period of evaluation (90 days. MATERIAL AND METHODS: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10. The restored teeth were stored in distilled water at 37ºC for 7 days. The teeth were then cut along two axes (x and y, producing beam-shaped specimens with 0.8 mm² cross-sectional area, which were subjected to µTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The µTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05. RESULTS: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001. All eight experimental means (MPa were compared by the Tukey's test (p<0.05 and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4±7.3; Tyrian-One Step Plus /Variolink II/24 h (39.4±11.6; Xeno III/C&B/24 h (40.3±12.9; Xeno III/Variolink II/24 h (25.8±10.5; Tyrian-One Step Plus /C&B/90 d (22.1±12.8 Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2; Xeno III/C&B/90 d (27.0±13.5; Xeno III/Variolink II/90 d (33.0±8.9. CONCLUSIONS: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

  17. Effect of light-curing method and indirect veneering materials on the Knoop hardness of a resin cement

    Directory of Open Access Journals (Sweden)

    Nelson Tetsu Iriyama

    2009-06-01

    Full Text Available This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC activated solely by chemical reaction (control group or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram or composite (Artglass disc. Light curing was carried out using conventional halogen light (XL2500 for 40 s (QTH; light emitting diodes (Ultrablue Is for 40 s (LED; and Xenon plasma arc (Apollo 95E for 3 s (PAC. Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C, the samples (n = 5 were sectioned for hardness (KHN measurements, taken in a microhardness tester (50 gF load 15 s. The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05. The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values.

  18. Casting granular ion exchange resins with medium-active waste in cement

    International Nuclear Information System (INIS)

    Beijer, O.

    1980-01-01

    Medium active waste from nuclear power stations in Sweden is trapped in granular ion exchange resins. The resin is mixed with cement paste and cast in a concrete shell which is cubic and has an edge dimension of 1.2 m. In some cases the ion exchange cement mortar has cracked. The report presents laboratory sutdies of the properties of the ion exchange resin and the mortar. Also the leaching of the moulds has been investigated. It was shown that a mixture with a water cement ratio higher than about 0.5 swells considerably during the first weeks after casting. The diffusion constant for cesium 137 has been determined at 3.10 -4 cm 2 /24-hour period in conjunction with exposure of the mould and mortar to sea water. The Swedish language report has 400 pages with 90 figures and 30 tables. (author)

  19. Effect of Different Liners on Fracture Resistance of Premolars Restored with Conventional and Short Fiber-Reinforced Composite Resins.

    Science.gov (United States)

    Shafiei, Fereshteh; Doozandeh, Maryam; Ghaffaripour, Dordaneh

    2018-01-11

    To see whether applying four different liners under short fiber-reinforced composite (SFRC), everX Posterior, compared to conventional composite resin, Z250, affected their strengthening property in premolar MOD cavities. Mesio-occluso-distal (MOD) cavities were prepared in 120 sound maxillary premolars divided into 10 groups (n = 12) in terms of two composite resin types and 4 liners or no liner. For each composite resin, in 5 groups no liner, resin-modified glass ionomer (RMGI), conventional flowable composite (COFL), self-adhesive flowable composite resin (SAFL), and self-adhesive resin cement (SARC) were applied prior to restoring incrementally. After water storage and thermocycling, static fracture resistance was tested. Data (in Newtons) were analyzed using two-way ANOVA (α = 0.05). Fracture resistance was significantly affected by composite resin type (p = 0.02), but not by the liner (p > 0.05). The interaction of the two factors was not statistically significant (p > 0.05). SFRC exhibited higher fracture strength (1470 ± 200 N) compared to conventional composite resin (1350 ± 290), irrespective of the application of liners. Application of SARC and SAFL liners led to a higher number of restorable fractures for both composite resins. The four liners can be used without interfering with the higher efficacy of SFRC, compared to conventional composite resins, to improve the fracture strength of premolar MOD cavities. © 2018 by the American College of Prosthodontists.

  20. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation.

    Science.gov (United States)

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Thimoty F; Toledano, Manuel

    2012-09-01

    Collagen dentin matrix may represent a suitable scaffold to be remineralized in the presence of bioactive materials. The purpose of this study was to determine if experimental resin cements containing bioactive fillers may modulate matrix metalloproteinase-mediated collagen degradation of etched dentin. Human dentin beams demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (Sylc; OSspray Ltd, London, UK), and (3) resin with β-tricalcium phosphate-modified calcium silicate cement (HCAT-β) particles. The filler/resin ratio was 40/60 wt%. The specimens were stored in artificial saliva, and the determination of C-terminal telopeptide (ICTP) was performed by radioimmunoassay after 24 hours, 1 week, and 4 weeks. Scanning electron microscopic analysis of dentin surfaces after 4 weeks of storage was also executed. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced the MMP activity in demineralized dentin. Resin-containing Bioglass 45S5 particles exerted higher and more stable protection of collagen at all tested dentin states and time points. HCAT-β induced collagen protection from MMPs only in EDTA-treated specimens. Dentin remineralization was achieved when dentin was infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced in resin-infiltrated dentin. The inclusion of Bioglass 45S5 particles exerted an additional protection of collagen during dentin remineralization. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Use of an Italian pozzolanic cement for the solidification of bead ion exchange resins

    International Nuclear Information System (INIS)

    De Angelis, G.

    1988-05-01

    Granular ion-exchange resins represent a large portion of the medium-active wastes generated at nuclear power stations. The most common practice for their confinement is to mix them with cement paste and cast the mixture in a concrete shell. Such a procedure however does not prove successful in many cases, because of the extreme swelling to which the embedded resin can give rise. This phenomenon has been investigated carefully. In particular, measurements of the swelling pressure have been made together with evaluation of the volume changes of the resin beads due to ion exchange and of the weight increase as a function of relative humidity. The ion exchange capacity, which continues even after incorporation in the cement matrix has also been put into evidence. The conclusion was drawn that a three component diagram (water - dry resin- cement) has to be prepared every time in order to identify the region corresponding to the better formulations. With this in mind the optimum waste loading of 11.5 wt% of dry resin was chosen to incorporate a mixed bed resin (Amberlite IR 120 Na + and IRA 400 Cl - in the weight ratio of 1:1) into an Italian pozzolanic cement (425 type). Several properties of the final waste form have been investigated, ranging from mechanical (crushing strength, tensile strength, flexural strength, ultrasonic pulse velocity, elastic modulus and Poisson ratio), to thermal stability, radiation stability, permeability, leachability and resistance to bacterial attack. Dimensional stability was also measured with the aim of examining the expansion phenomena which can take place in the presence of resin beads. The data obtained are encouraging for future application of the type 425 cement tested in the field of radwastes. An attempt to explain the performance of this binder, based on its intrinsic properties, was also made. (author)

  2. Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement.

    Science.gov (United States)

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Tim F; Toledano, Manuel

    2014-11-01

    Matrix metalloproteinase (MMP) inhibition may improve endodontic treatment prognosis. The purpose of this study was to determine if zinc incorporation into experimental resin cements containing bioactive fillers may modulate MMP-mediated collagen degradation of dentin. Human dentin samples untreated and demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (OSspray, London, UK), (3) resin with beta-tricalcium silicate particles (βTCS), (4) resin with zinc-doped Bioglass 45S5, and (5) resin with zinc-doped βTCS particles. The specimens were stored in artificial saliva (for 24 hours, 1 week, and 4 weeks) and submitted to radioimmunoassay to quantify C-terminal telopeptide. Scanning electron microscopy analysis was also undertaken on dentin samples after 4 weeks of storage. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced MMP activity in demineralized dentin. Resin containing Bioglass 45S5 particles exerted higher and stable protection of collagen. The presence of zinc in βTCS particles increases MMP inhibition. Different mineral precipitation was attained in dentin infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced after resin infiltration of dentin. Zinc incorporation in βTCS particles exerted an additional protection against MMP-mediated collagen degradation. However, it did not occur in resin containing Bioglass 45S5 particles, probably because of the formation of phosphate-zinc compounds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Composite resin fillings and inlays: An 11-year evaluation

    DEFF Research Database (Denmark)

    Pallesen, U.; Qvist, V.

    2003-01-01

    Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth......Clinical trial, composite resin, direct restorations, indirect restorations, long-term behaviour, posterior teeth...

  4. Effect of adhesive resin cements on bond strength of ceramic core materials to dentin.

    Science.gov (United States)

    Gundogdu, M; Aladag, L I

    2018-03-01

    The aim of the present study was to evaluate the effects of self-etch and self-adhesive resin cements on the shear bond strength of ceramic core materials bonded to dentin. Extracted, caries-free, human central maxillary incisor teeth were selected, and the vestibule surfaces were cut flat to obtain dentin surfaces. Ceramic core materials (IPS e.max Press and Prettau Zirconia) were luted to the dentin surfaces using three self-etch adhesive systems (Duo-Link, Panavia F 2.0, and RelyX Ultimate Clicker) and two self-adhesive resin systems (RelyX U200 Automix and Maxcem Elite). A shear bond strength test was performed using a universal testing machine. Failure modes were observed under a stereomicroscope, and bonding interfaces between the adhesive resin cements and the teeth were evaluated with a scanning electron microscope. Data were analyzed with Student's t-test and one-way analysis of variance followed by Tukey's test (α = 0.05). The type of adhesive resin cement significantly affected the shear bond strengths of ceramic core materials bonded to dentin (P materials when the specimens were luted with self-adhesive resin cements (P materials.

  5. Photoactive glazed polymer-cement composite

    Science.gov (United States)

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  6. Leach testing of simulated ion-exchange resin waste solidified in cement

    International Nuclear Information System (INIS)

    Muurinen, A.K.; Uotila, P.I.; Ovaskainen, R.M.

    Leach tests were carried out on ion-exchange resins solidified in cement. Three product mixtures, two isotopes and four leachants at two temperatures, were tested. The increase of resin content increased the leaching of Cs-137; the effect of silix admixture was negligible. The type of the leachant has a stronger influence on Co-60 than on Cs-137. The increase of temperature usually also increased leaching. (author)

  7. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  8. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  9. Influence of Pre-Sintered Zirconia Surface Conditioning on Shear Bond Strength to Resin Cement

    Directory of Open Access Journals (Sweden)

    Tomofumi Sawada

    2016-06-01

    Full Text Available This study analyzed the shear bond strength (SBS of resin composite on zirconia surface to which a specific conditioner was applied before sintering. After sintering of either conditioner-coated or uncoated specimens, both groups were divided into three subgroups by their respective surface modifications (n = 10 per group: no further treatment; etched with hydrofluoric acid; and sandblasted with 50 µm Al2O3 particles. Surfaces were characterized by measuring different surface roughness parameters (e.g., Ra and Rmax and water contact angles. Half of the specimens underwent thermocycling (10,000 cycles, 5–55 °C after self-adhesive resin cement build-up. The SBSs were measured using a universal testing machine, and the failure modes were analyzed by microscopy. Data were analyzed by nonparametric and parametric tests followed by post-hoc comparisons (α = 0.05. Conditioner-coated specimens increased both surface roughness and hydrophilicity (p < 0.01. In the non-thermocycled condition, sandblasted surfaces showed higher SBSs than other modifications, irrespective of conditioner application (p < 0.05. Adhesive fractures were commonly observed in the specimens. Thermocycling favored debonding and decreased SBSs. However, conditioner-coated specimens upon sandblasting showed the highest SBS (p < 0.05 and mixed fractures were partially observed. The combination of conditioner application before sintering and sandblasting after sintering showed the highest shear bond strength and indicated improvements concerning the failure mode.

  10. Synthesis and characterization of cement slurries additives with epoxy resins - kinetics, thermodynamic and calorimetric analysis

    International Nuclear Information System (INIS)

    Tavares, A.M.G.; Andrade Junior, M.A.S.; Cestari, A.R.; Vieira, E.F.S.

    2010-01-01

    Cement has been used in the world, presenting a wide versatility. However, due to its chemical nature, it is subject to several types of chemical damages, especially for agents of acidic nature. With the purpose of increase its life-time, new cement slurries have been modified with the addition of specific additives. The objective of this work is to modify cement slurries with epoxy resins, which promote higher resistance of those materials in relation to acid attacks. Three cement slurries were synthesized with epoxy resins and a standard slurries, which was composed by cement and water. After 30 days of hydration, the samples were characterized by XDR, FTIR and thermal analysis (TG and DSC). The hydration processes of the cement slurries were studied by heat-conduction microcalorimetry. A kinetic study of HCl interaction with the new slurries were performed by the batch methodology at 25, 35, 45 e 55 deg C. It was verified that the addition of the polymers delayed the processes of hydration of the slurries, decreasing the flow of heat released as a function of the amount of added resin and, increased the resistance of those slurries to the acid attack. (author)

  11. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    Science.gov (United States)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  12. Processable polyimide adhesive and matrix composite resin

    Science.gov (United States)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  13. CEMENT BONDED COMPOSITES – A MECHANICAL REVIEW

    Directory of Open Access Journals (Sweden)

    Stephan Frybort

    2008-05-01

    Full Text Available Over the last years promising cement bonded wood composites for structural purposes have evolved. Durability, toughness, high dimen-sional stability, resistance against environmental influences such as biodegradation or weathering but also availability of the raw material as well as economic factors are features which can make cement-bonded composites superior to conventionally bonded composites. This paper reviews the relationship of diverse parameters, including density and particle size on mechanical and physical properties of cement bonded composites, based on published sources from the last 60 years. For general and recent information about bonding mechanisms, compatibility and setting problems, determination and improvement of compatibility, the used raw materials as well as accelerators are discussed. The main part deals with failure mechanisms in connection with several production parameters. Furthermore, the influence of particle size and geometry, orientation of the particles, cement-wood ratio and the effect of accelerators and treatment of the particles on modulus of elasticity, modulus of rupture as well as thickness swelling are discussed.

  14. [Effect of ceramic thickness and resin cement shades on final color of heat-pressed ceramic veneers].

    Science.gov (United States)

    Ren, D F; Zhan, K R; Chen, X D; Xing, W Z

    2017-02-09

    Objective: To analyze the effect of ceramic materials thickness and resin cement shades on the final color of ceramic veneers in the discolored teeth, and to investigate the color agreement of try-in pastes to the corresponding resin cements. Methods: Sixty artificial maxillary central incisor teeth (C2 shade) were used to simulate the natural discolored teeth and prepared according to veneer tooth preparation protocol. Veneers of different thickness in the body region (0.50 and 0.75 mm) were fabricated using ceramic materials (LT A2 shade, IPS e.max Press). The ceramic veneer specimens were bonded to the artificial teeth using the 6 shades of resin cements (Variolink Veneer: shades of LV-3, LV-2, HV+3; RelyX™ Veneer: shades of TR, A3, WO) ( n= 5). A clinical spectrophotometer was used to measure the color parameters of ceramic veneers at the cervical, body and incisal regions. Color changes of veneers before and after cementation were calculated and registered as ΔE1, and the changes between try-in paste and the corresponding resin cements were registered as ΔE2. Results: Three-way ANOVA indicated that ΔE1 and ΔE2 values were significantly affected by the ceramic thickness, resin cement shades and measuring regions ( Pceramic veneers were cemented with resin cements in shades of HV+3 and WO. The ΔE2 values of six shades ranged from 0.60-2.56. The shades of HV+3, WO and A3 resin cements were more than 1.60. Conclusions: Different thickness of ceramic materials, resin cement shades and measuring regions could affect the final color of ceramic veneers. The color differences of some resin cements and corresponding try-in pastes might be observed in clinical practice.

  15. Color change of composite resins subjected to accelerated artificial aging

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2013-01-01

    Conclusions: All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2 and after (B2. It was also observed color difference within a group of the same composite resin and same hue.

  16. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    Science.gov (United States)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  17. Influence of Er,Cr: YSGG laser on bond strength of self-adhesive resin cement

    Directory of Open Access Journals (Sweden)

    Matheus Coelho Bandéca

    2012-08-01

    Full Text Available The purpose of this study was to investigate the bond strength of fiber post previously laser treated root canals. Forty single-rooted bovine teeth were endodontically treated, randomly and equally divided into two main groups according to the type of pretreatment: G1: 2.5% NaOCl (control group; and G2: Er,Cr:YSGG laser. Each group was further subdivided into 2 groups based on the category of adhesive systems/ luting materials used: a: an etch-and-rinse resin cement (Single Bond/RelyX ARC; 3M ESPE, and b: a self-adhesive resin cement (Rely X Unicem; 3M ESPE. Three 1.5 mm thick slabs were obtained per root and the push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. Data were analyzed by ANOVA and post-hoc Tukey's test at a pre-set alpha of 0.05. Analysis of variance showed no statistically significant difference (p > 0.05 among the groups G1a (25.44 ± 2.35 and G1b (23.62 ± 3.48, G2a (11.77 ± 2.67 and G2b (9.93 ± 3.37. Fractures were observed at the interface between the dentin and the resin in all groups. The Er,Cr:YSGG laser irradiation did not influence on the bond strength of the resin cements and the etch-and-rinse resin cement had better results on bond strength than self-adhesive resin cement.

  18. Carbon-14 behavior in a cement-dominated environment: Implications for spent CANDU resin waste disposal

    International Nuclear Information System (INIS)

    Dayal, R.; Reardon, E.J.

    1994-01-01

    Cement based waste forms and concrete engineered barriers are expected to play a key role in providing 14 C waste containment and control 14 C migration for time periods commensurate with its hazardous life of about 50,000 years. The main thrust of this study was, therefore, to evaluate the performance of cement based waste forms with regard to 14 C containment. Of particular importance are the geochemical processes controlling 14 C solubility and release under anticipated cement dominated low and intermediate level waste repository conditions. Immobilization of carbonate-form exchange resin in grout involves transfer of sorbed 14 CO 3 2- ions, through exchange for hydroxyl ions from the grout slurry, followed by localized precipitation of solid calcium carbonate at the cement/resin interface in the grout matrix. Carbon-14 release behavior can be attributed to the dissolution characteristics and solubility of calcite present in the cement based waste form. The groundwater flow regime can exert a pronounced effect both on the near-field chemistry and the leaching behavior of 14 C. For a cement dominated repository, at relatively low-flow or stagnant groundwater conditions, the alkaline near-field chemical environments inhibits the release of 14 C from the cemented waste form. Under high flow conditions, the near-field environment is characterized by relatively neutral pH conditions which promote calcite dissolution, thus resulting in 14 C release from the waste form

  19. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    Science.gov (United States)

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture

  20. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    Science.gov (United States)

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

  1. Pre-heated dual-cured resin cements: analysis of the degree of conversion and ultimate tensile strength

    Directory of Open Access Journals (Sweden)

    Flávio Álvares França

    2011-04-01

    Full Text Available This study evaluated the degree of conversion (DC and ultimate tensile strength (UTS of dual-cured resin cements heated to 50º C prior to and during polymerization. Disc- and hourglass-shaped specimens of Rely X ARC (RX and Variolink II (VII were obtained using addition silicon molds. The products were manipulated at 25º C or 50º C and were subjected to 3 curing conditions: light-activation through a glass slide or through a pre-cured 2-mm thick resin composite disc, or they were allowed to self-cure (SC. All specimens were dark-stored dry for 15 days. For DC analysis, the resin cements were placed into the mold located on the center of a horizontal diamond on the attenuated total reflectance element in the optical bench of a Fourier Transformed Infrared spectrometer. Infrared spectra (n = 6 were collected between 1680 and 1500 cm-1, and DC was calculated by standard methods using changes in ratios of aliphatic-to-aromatic C=C absorption peaks from uncured and cured states. For UTS test, specimens (n = 10 were tested in tension in a universal testing machine (crosshead speed of 1 mm/min until failure. DC and UTS data were submitted to 2-way ANOVA, followed by Tukey's test (α= 5%. Both products showed higher DC at 50º C than at 25º C in all curing conditions. No significant difference in UTS was noted between most light-activated groups at 25º C and those at 50º C. VII SC groups showed higher UTS at 50º C than at 25º C (p < 0.05. Increased temperature led to higher DC, but its effects on resin cement UTS depended on the curing condition.

  2. UV irradiation improves the bond strength of resin cement to fiber posts.

    Science.gov (United States)

    Zhong, Bo; Zhang, Yong; Zhou, Jianfeng; Chen, Li; Li, Deli; Tan, Jianguo

    2011-01-01

    The purpose is to evaluate the effect of UV irradiation on the bond strength between epoxy-based glass fiber posts and resin cement. Twelve epoxy-based glass fiber posts were randomly divided into three groups. Group 1 (Cont.): No surface treatment. Group 2 (Low-UV): UV irradiation was conducted from a distance of 10 cm for 10 min. Group 3 (High-UV): UV irradiation was conducted from a distance of 1 cm for 3 min. A resin cement (CLEARFIL SA LUTING) was used for the post cementation to form resin slabs which contained fiber posts in the center. Microtensile bond strengths were tested and the mean bond strengths (MPa) were 18.81 for Cont. group, 23.65 for Low-UV group, 34.75 for High-UV group. UV irradiation had a significant effect on the bond strength (pUV irradiation demonstrates its capability to improve the bond strength between epoxy-based glass fiber posts and resin cement.

  3. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.

    Science.gov (United States)

    Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco

    2007-08-01

    Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.

  4. DESIGN OF CEMENT COMPOSITES WITH INCREASED IMPERMEABILITY

    Directory of Open Access Journals (Sweden)

    Fedyuk Roman Sergeevich

    2016-05-01

    Full Text Available The paper deals with the development of composite binders for producing concrete with improved characteristics of gas, water and vapor permeability. The authors investigate the processes of composite materials formation in order of decreasing scale levels from macro to nanostructures. The criteria for optimization of the volume of dispersed additives in concrete are offered. The authors theoretically studied the technological features of the formation of hydrated cement stone structure. A positive effect of nanodispersed additives on the structure and physico-mechanical properties of cement composite materials are predicted. Thanks to its improved features, such as good ratio of strength and body density, high density and lifetime, the modified concrete may be used when solving various practical tasks of the construction branch.

  5. Impact of bleaching agents on water sorption and solubility of resin luting cements.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Atashkar, Berivan; Bagheri, Rafat; Burrow, Michael F

    2017-08-01

    The aim of the present study was to evaluate the effect of distilled water and home and office bleaching agents on the sorption and solubility of resin luting cements. A total of 18 disc-shaped specimens were prepared from each of four resin cements: G-CEM LinkAce, Panavia F, Rely X Unicem, and seT. Specimens were cured according to the manufacturers' instructions and randomly divided into three groups of six, where they were treated with either an office or home bleaching agent or immersed in distilled water (control). Water sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed using Pearson correlation coefficient, two-way analysis of variance (ANOVA) and Tukey's test. There was a significant, positive correlation between sorption and solubility. Two-way anova showed significant differences among all resin cements tested for either sorption or solubility. Water sorption and solubility of all cements were affected significantly by office bleaching, and even more by home bleaching agents. Sorption and solubility behavior of the studied cements were highly correlated and significantly affected by applying either office or home bleaching agents; seT showed the highest sorption and solubility, whereas Rely X Unicem revealed the lowest. © 2016 John Wiley & Sons Australia, Ltd.

  6. A critical analysis of the degree of conversion of resin-based luting cements

    Science.gov (United States)

    NORONHA FILHO, Jaime Dutra; BRANDÃO, Natasha Lamego; POSKUS, Laiza Tatiana; GUIMARÃES, José Guilherme Antunes; da SILVA, Eduardo Moreira

    2010-01-01

    Objective This study analyzed the degree of conversion (DC%) of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II) activated by two modes (chemical and dual), and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. Material and Methods In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm2 for 40 s. In a third group, the cements were lightactivated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR). The data were analyzed by two-way ANOVA and Tukey's HSD test. Results For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (pEmpress 2 disc (pEmpress 2. PMID:21085798

  7. Micro-shear bond strength of resin cement to dentin after application of desensitizing toothpastes.

    Science.gov (United States)

    Bavbek, Andac Barkin; Goktas, Baris; Cekic-Nagas, Isil; Egilmez, Ferhan; Ergun, Gulfem; Eskitascioglu, Gurcan

    2013-01-01

    The aim of the study was to evaluate the effect of three desensitizing toothpastes on bonding of resin cements to dentin. The occlusal surfaces of 72 maxillary third molars were ground to obtain flat dentin surfaces and then divided into three groups according to three desensitizing toothpastes used: Sensodyne Rapid Relief (GlaxoSmithKline, SmithKline Beecham Ltd., Slough, UK), Signal Sensitive Expert (Unilever Sanayi ve Ticaret Türk A.Ş., Ümraniye, İstanbul, Turkey) and Colgate Sensitive Pro-Relief (Colgate Palmolive, New York, NY). Following bonding of the resin cement (Clearfil™ SA Cement, Kuraray Co, Osaka, Japan) to dentin, the specimens were light cured for 40 s with a LED (Elipar S10, 3M Espe, St. Paul, MN). The strength measurements were accomplished with a micro-shear testing machine (Bisco, Schaumburg, IL) at a cross-head speed of 0.5 mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). ANOVA revealed that the application of desensitizing toothpastes had significant effects on bond strength of the resin cement tested to dentin (p < 0.05). Mixed failures were observed in all of the groups. The use of a desensitizing toothpaste before cementation might alter the bond strength of adhesively luted restorations.

  8. Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

    LENUS (Irish Health Repository)

    Hooi, Paul

    2013-01-01

    To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating.

  9. Nanomechanical properties of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Akhtar, R; Silikas, N; Watts, D C

    2012-12-01

    To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic

  10. The bonding effectiveness of five luting resin cements to the IPS Empress 2 all ceramic system.

    Science.gov (United States)

    Bookhan, V; Essop, A R M; Du Preez, I C

    2005-04-01

    Variolink II is the only resin cement used for bonding IPS (Ivoclar Porcelain System) Empress 2 ceramic restorations. Alternative luting resin cements need to be investigated for their bonding effectiveness with the IPS Empress 2 ceramic. To determine the shear bond strength (SBS) and the effect of thermocycling, on the bonding effectiveness, of five resin cements to IPS Empress 2 ceramic. The projecting surfaces of one hundred ceramic discs were ground wet on silicone carbide paper. The specimens were divided into 5 groups of 20. The resin cements were bonded to the prepared ceramic surfaces, in the form of a stub. The specimens were stored under distilled water at 37 degrees C in an oven for 24 hours. Ten specimens in each group were thermocycled for 300 cycles between 5 degrees C and 55 degrees C. All the specimens were stressed to failure in an Instron Materials Testing Machine. The results were subjected to a one-way analysis of variance (ANOVA). Statistically similar mean SBS values were grouped using the Bonferroni (Dunn) multiple comparison test. The means for the non-thermocycled group were: 26.21, 19.41, 17.69, 17.43, and 15.76. The means for the thermocycled group were: 22.90, 15.72, 14.34, 13.96 and 13.45. The differences between the means were highly significant (p Empress 2 ceramic was effective. Thermocycling had a significant effect on the mean SBS values of Calibra. Thermocycling had no significant effect on the mean SBS values of the other resin cements.

  11. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  12. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  13. A critical analysis of the degree of conversion of resin-based luting cements

    Directory of Open Access Journals (Sweden)

    Jaime Dutra Noronha Filho

    2010-10-01

    Full Text Available OBJECTIVE: This study analyzed the degree of conversion (DC% of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II activated by two modes (chemical and dual, and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. MATERIAL AND METHODS: In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm² for 40 s. In a third group, the cements were light-activated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR. The data were analyzed by two-way ANOVA and Tukey's HSD test. RESULTS: For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (p<0.05. Irrespective of the activation mode, Rely X presented the highest DC% (p<0.05. Chemically activated Variolink and All Ceram showed the worst results (p<0.05. The DC% decreased significantly when activation was performed through a 2.0-mm-thick IPS Empress 2 disc (p<0.05. CONCLUSION: The results of the present study suggest that resin-based cements could present low DC% when the materials are dually activated through 2.0 mm of reinforced ceramic materials with translucency equal to or less than that of IPS-Empress 2.

  14. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    International Nuclear Information System (INIS)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na + form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic. - Highlights: • Solidification of cationic resins in the Na + -form is investigated. • Portland and blast furnace slag cements are compared. • Deleterious expansion is observed with Portland cement only. • Resin swelling is due to a decrease in the osmotic pressure of the pore solution. • The consolidation rate of the matrix is a key parameter to prevent damage.

  15. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: II. Mechanical analysis

    International Nuclear Information System (INIS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.

    2015-01-01

    This paper presents the second part of a study aiming at modelling the mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C_3S). Such composites may be subjected to internal pressures due to ion exchange processes between ionic species which are in IER and interstitial solution of the cement paste. The reactive transport model developed in the companion paper is coupled in this study to a multi-scale approach describing the mechanical behavior of the material. It is based on an analogy with thermomechanics for taking in account the IER internal pressures, and on Eshelby-based homogenization techniques to estimate both mechanical and coupling parameters. A laboratory test has been set up to measure the macroscopic strain caused by the swelling phenomenon. The model has been finally implemented in a finite elements software. The simulation of the laboratory tests has been performed and the results have been analyzed and compared to experimental data. - Highlights: • Experimental analysis about mechanical behavior of a composite material. • Chemo-Mechanical-Transport modeling on a composite material made up with IER embedded into cement paste matrix. • Multi-scale modeling.

  16. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity

  17. Polymerization of dual cure resin cements applied for luting tooth colored fiber posts

    Directory of Open Access Journals (Sweden)

    Ghavam M.

    2007-05-01

    Full Text Available Background and Aim: Insufficient polymerization of resin cements is of considerable clinical importance, because of mechanical deficiencies and biological side effects of uncured resin. Dual cure resin cements are getting popular in luting tooth colored posts and although their curing is claimed to proceed chemically, polymerization efficiency in deep areas of canal is uncertain. The aim of this study was to evaluate degree of polymerization of dual-cure resin cements used for luting translucent and opaque fiber posts in different distances from the light tip. Materials and Methods: In this experimental in vitro study, degree of conversion of two dual cured resin cements, Rely X ARC (3M, ESPE and Nexus 2 (Kerr, USA were measured when used with DT-Light and DT-White posts (RTD, France. The light curing unit used was Optilux 501, with output of 650-700 mw/cm2 with emitting time of 60 seconds. Degree of conversion was measured in three different depths (4, 6, 8 mm by FTIR. The data were analyzed using ANOVA and Post hoc tests. P0.05. Nexus used with DT-Light had lower DC% in 8 mm depth (P<0.05. Nexus used with DT-White showed lower DC% in 8 mm depth compared to 4 mm depth. The control groups of both cements showed significant increased DC% in 4 mm depth compared to 6 and 8 mm depths (P<0.05. DT-White caused decreased DC% in both cements in 4 mm. DT-Light caused increased DC% of Rely X in 6 mm depth compared to DT-White and control. DT-Light increased DC% of Nexus in 6 and 8 mm depths, compared to DT-White and control groups. Conclusion: Based on the results of this study, application of translucent fiber posts has a significant effect on degree of polymerization in dual-cure resin cements, compared to opaque types. Their better light transmission to deep areas due to the effect of optical fibers, can lead to better results.

  18. Effect of curing mode on the hardness of dual-cured composite resin core build-up materials

    Directory of Open Access Journals (Sweden)

    César Augusto Galvão Arrais

    2010-06-01

    Full Text Available This study evaluated the Knoop Hardness (KHN values of two dual-cured composite resin core build-up materials and one resin cement exposed to different curing conditions. Two dual-cured core build-up composite resins (LuxaCore®-Dual, DMG; and FluoroCore®2, Dentsply Caulk, and one dual-cured resin cement (Rely X ARC, 3M ESPE were used in the present study. The composite materials were placed into a cylindrical matrix (2 mm in height and 3 mm in diameter, and the specimens thus produced were either light-activated for 40 s (Optilux 501, Demetron Kerr or were allowed to self-cure for 10 min in the dark (n = 5. All specimens were then stored in humidity at 37°C for 24 h in the dark and were subjected to KHN analysis. The results were submitted to 2-way ANOVA and Tukey's post-hoc test at a pre-set alpha of 5%. All the light-activated groups exhibited higher KHN values than the self-cured ones (p = 0.00001, regardless of product. Among the self-cured groups, both composite resin core build-up materials showed higher KHN values than the dual-cured resin cement (p = 0.00001. LuxaCore®-Dual exhibited higher KHN values than FluoroCore®2 (p = 0.00001 when they were allowed to self-cure, while no significant differences in KHN values were observed among the light-activated products. The results suggest that dual-cured composite resin core build-up materials may be more reliable than dual-cured resin cements when curing light is not available.

  19. Tensile bond strength between different glass ionomer cement and composite resin using three adhesive systems Avaliação da resistência de união interfacial entre diferentes cimentos de ionômero de vidro e resina composta, usando três sistemas adesivos

    Directory of Open Access Journals (Sweden)

    Patrícia Dias

    2005-10-01

    Full Text Available The purpose of this study was to evaluate the tensile bond strength (TBS among a Composite Resin (Filtek Z250 and six conventional Glass Ionomer Cements, three used for lining (Bioglass F, Vidrion F and Glass Ionomer L.C. and three for restorations (Ketac Fil, Vidrion R and Glass Ionomer type II etched and non etched, using three adhesive systems (Single Bond, Bond 1 and Stae. Thirty-six groups were made, ten samples for each group, totalizing 360 specimens. There were significant differences on TBS among groups. Group 31 (Glass Ionomer Cement type II showed the highest TBS (9.65 MPa in comparison to other tested groups. Group 16 (Glass Ionomer L.C presented the lowest TBS (2.72 MPa in comparison to all the other groups. Therefore, it can be concluded that the acid etching of the Glass Ionomer Cement is not necessary. Foi avaliada, ">in vitro, a resistência de união, por tração, entre uma Resina Composta micro-híbrida (Filtek Z-250 e seis Cimentos de Ionômero de Vidro (CIV convencionais: três utilizados para base/forramento (Bioglass F, Vidrion F e Glass Ionomer Lining Cement e três para restauração (Ketac Fil, Vidrion R e Glass Ionomer Cement type II, sem e com condicionamento ácido ortofosfórico a 37%, usando três sistemas adesivos (Single Bond, Bond 1 e Stae. Foram confeccionados 36 grupos de 10 corpos-de-prova cada, totalizando 360 espécimes. Para análise estatística, foi utilizado o teste de Tukey-Kramer. Dentre os três CIV de base/forramento, os grupos 2 e 5 (Bioglass F apresentaram valores mais altos de adesividade à resina (7,24 e 6,03 MPa respectivamente. Quanto aos três CIV de restauração, todos apresentaram maior resistência de união, superior aos de base/forramento, sendo que o Glass Ionomer Cement type II (Grupo 31 e Vidrion R apresentaram maior força de adesão (9,65 e 7,47 MPa à resina composta. O grupo 16 (Glass Ionomer L.C. mostrou menor adesividade à resina (2,72 MPa. Houve diferenças significantes

  20. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  1. Push-out strength of modified Portland cements and resins.

    Science.gov (United States)

    Iacono, Francesco; Gandolfi, Maria Giovanna; Huffman, Bradford; Sword, Jeremy; Agee, Kelli; Siboni, Francesco; Tay, Franklin; Prati, Carlo; Pashley, David

    2010-02-01

    Modified calcium-silicate cements derived from white Portland cement (PC) were formulated to test their push-out strength from radicular dentin after immersion for 1 month. Slabs obtained from 42 single-rooted extracted teeth were prepared with 0.6 mm diameter holes, then enlarged with rotary instruments. After immersion in EDTA and NaOC1, the holes were filled with modified PCs or ProRoot MTA, Vitrebond and Clearfil SE. Different concentrations of phyllosilicate (montmorillonite-MMT) were added to experimental cements. ProRoot MTA was also included as reference material. Vitrebond and Clearfil SE were included as controls. Each group was tested after 1 month of immersion in water or PBS. A thin-slice push-out test on a universal testing machine served to test the push-out strength of materials. Results were statistically analyzed using the least squares means (LSM) method. The modified PCs had push-out strengths of 3-9.5 MPa after 1 month of immersion in water, while ProRoot MTA had 4.8 MPa. The push-out strength of PC fell after incubation in PBS for 1 month, while the push-out strength of ProRoot MTA increased. There were no significant changes in Clearfil SE Bond or Vitrebond after water or PBS storage.

  2. Fracture Resistance of Lithium Disilicate Ceramics Bonded to Enamel or Dentin Using Different Resin Cement Types and Film Thicknesses.

    Science.gov (United States)

    Rojpaibool, Thitithorn; Leevailoj, Chalermpol

    2017-02-01

    To investigate the influence of cement film thickness, cement type, and substrate (enamel or dentin) on ceramic fracture resistance. One hundred extracted human third molars were polished to obtain 50 enamel and 50 dentin specimens. The specimens were cemented to 1-mm-thick lithium disilicate ceramic plates with different cement film thicknesses (100 and 300 μm) using metal strips as spacers. The cements used were etch-and-rinse (RelyX Ultimate) and self-adhesive (RelyX U200) resin cements. Compressive load was applied on the ceramic plates using a universal testing machine, and fracture loads were recorded in Newtons (N). Statistical analysis was performed by multiple regression (p enamel showed the highest mean fracture load (MFL; 1591 ± 172.59 N). The RelyX Ultimate groups MFLs were significantly higher than the corresponding RelyX U200 groups (p enamel (p enamel. Reduced resin film thickness could reduce lithium disilicate restoration fracture. Etch-and-rinse resin cements are recommended for cementing on either enamel or dentin, compared with self-adhesive resin cement, for improved fracture resistance. © 2015 by the American College of Prosthodontists.

  3. Influence of the bracket on bonding and physical behavior of orthodontic resin cements.

    Science.gov (United States)

    Bolaños-Carmona, Victoria; Zein, Bilal; Menéndez-Núñez, Mario; Sánchez-Sánchez, Purificación; Ceballos-García, Laura; González-López, Santiago

    2015-01-01

    The aim of the study is to determine the influence of the type of bracket, on bond strength, microhardness and conversion degree (CD) of four resin orthodontic cements. Micro-tensile bond strength (µTBS) test between the bracket base and the cement was carried out on glass-hour-shaped specimens (n=20). Vickers Hardness Number (VHN) and micro-Raman spectra were recorded in situ under the bracket base. Weibull distribution, ANOVA and non-parametric test were applied for data analysis (pcement showing the worst performance. The CD was from 80% to 62.5%.

  4. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  5. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    Science.gov (United States)

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

  6. The influence of silane evaporation procedures on microtensile bond strength between a dental ceramic and a resin cement

    Directory of Open Access Journals (Sweden)

    Pereira Carolina

    2010-01-01

    Full Text Available Aim: To assess the influence of silane evaporation procedures on bond strength between a dental ceramic and a chemically activated resin cement. Materials and Methods: Eighteen blocks (6 mm Χ 14 mm Χ 14 mm of ceramic IPS Empress 2 were cemented (C and B to composite resin (InTen-S blocks using a chemical adhesive system (Lok. Six groups were analyzed, each with three blocks divided according to ceramic surface treatment: two control groups (no treatment, NT; 10% hydrofluoric acid plus silane Monobond-S dried at room temperature, HFS; the other four groups comprised different evaporation patterns (silane rinsed and dried at room temperature, SRT; silane rinsed in boiling water and dried as before, SBRT; silane rinsed with boiling water and heat dried at 50°C, SBH; silane dried at 50 ± 5°C, rinsed in boiling water and dried at room temperature, SHBRT. The cemented blocks were sectioned to obtain specimens for microtensile test 7 days after cementation and were stored in water for 30 days prior to testing. Fracture patterns were analyzed by optical and scanning electron microscopy. Statistics and Results: All blocks of NT debonded during sectioning. One way ANOVA tests showed higher bond strengths for HFS than for the other groups. SBRT and SBH were statistically similar, with higher bond strengths than SRT and SHBRT. Failures were 100% adhesive in SRT and SHBRT. Cohesive failures within the "adhesive zone" were detected in HFS (30%, SBRT (24% and SBH (40%. Conclusion: Silane treatment enhanced bond strength in all conditions evaluated, showing best results with HF etching.

  7. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing time.

    Science.gov (United States)

    Yap, A U J; Ong, S B; Yap, W Y; Tan, W S; Yeo, J C

    2002-01-01

    This study compared the surface texture of resin-modified glass ionomer cements after immediate and delayed finishing with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of 64 freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (3M-ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-fluted tungsten carbide burs. The teeth were then randomly divided into four groups of 16 teeth. Half of the teeth in each group were finished immediately, while the remaining half were finished after one-week storage in distilled water at 37 degrees C. The following finishing/polishing systems were employed: (a) Robot Carbides; (b) Super-Snap system; (c) OneGloss and (d) CompoSite Polishers. The mean surface roughness (microm; n=8) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Ra values were generally lower in both vertical and horizontal axis with delayed finishing/polishing. Although significant differences in RaV and RaH values were observed among several systems with immediate finishing/polishing, only one (Fuji II LC: RaH - Super-Snap < Robot Carbides) was observed with delayed finishing.

  8. Physical, chemical and antimicrobial evaluation of a composite material containing quaternary ammonium salt for braces cementation

    Energy Technology Data Exchange (ETDEWEB)

    Sugii, Mari Miura [Departamento de Odontologia Restaurativa, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Ferreira, Fábio Augusto de Souza, E-mail: ferreira.fabio.a.s@gmail.com [Grupo de Química de Materiais Híbridos e Inorgânicos, Instituto de Química de São Carlos – Universidade de São Paulo, São Carlos, SP 13563-120 (Brazil); Müller, Karina Cogo [Departamento de Ciências Fisiológicas, Área de Farmacologia, Anestesiologia e Terapeutica, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Lima, Debora Alves Nunes Leite [Departamento de Odontologia Restaurativa, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Groppo, Francisco Carlos [Departamento de Ciências Fisiológicas, Área de Farmacologia, Anestesiologia e Terapeutica, Faculdade de Odontologia de Piracicaba – Universidade de Campinas, Piracicaba, SP 13414-903 (Brazil); Imasato, Hidetake; Rodrigues-Filho, Ubirajara Pereira [Grupo de Química de Materiais Híbridos e Inorgânicos, Instituto de Química de São Carlos – Universidade de São Paulo, São Carlos, SP 13563-120 (Brazil); and others

    2017-04-01

    The antibiofilm effect of iodide quaternary ammonium methacryloxy silicate (IQAMS) in Transbond XT Light Cure Adhesive resin used for braces cementation was evaluated. Fourier Transform Infrared (FTIR) spectroscopy confirmed IQAMS formation and Scanning Electron Microscopy coupled to Energy-Dispersive X-ray Spectroscopy (SEM-EDS) revealed that as coating, the quaternary ammonium groups from IQAMS were homogeneously dispersed throughout the surface. When incorporated, the composite material presented homogeneous dispersion throughout the resin. Assays with Streptococcus mutans demonstrated enhanced antibiofilm effect for the IQAMS coated resin, with much lower colony-forming units (CFU), in comparison to incorporated IQAMS. Such a difference was assigned to low availability of quaternary ammonium groups at the surface of resin when IQAMS was incorporated, hindering its antibiofilm effect. Additionally, the incorporation of IQAMS led to slight decrease in ultimate bond strength (UBS) and shear bond strength (SBS), in comparison to the neat commercial resin. Thus, the synthesized IQAMS displays great potential as antibiofilm coating or sealant to prevent oral infections in brackets during orthodontic treatment. - Highlights: • Synthesis of ORMOSIL-based material with antibiofilm activity is performed. • Antibiofilm activity of the ORMOSIL-based material on commercial available resin for braces cementation is evaluated. • Antibiofilm ORMOSIL-based coating with potential application as varnish or sealant in orthodontic appliances is presented.

  9. Physical, chemical and antimicrobial evaluation of a composite material containing quaternary ammonium salt for braces cementation

    International Nuclear Information System (INIS)

    Sugii, Mari Miura; Ferreira, Fábio Augusto de Souza; Müller, Karina Cogo; Lima, Debora Alves Nunes Leite; Groppo, Francisco Carlos; Imasato, Hidetake; Rodrigues-Filho, Ubirajara Pereira

    2017-01-01

    The antibiofilm effect of iodide quaternary ammonium methacryloxy silicate (IQAMS) in Transbond XT Light Cure Adhesive resin used for braces cementation was evaluated. Fourier Transform Infrared (FTIR) spectroscopy confirmed IQAMS formation and Scanning Electron Microscopy coupled to Energy-Dispersive X-ray Spectroscopy (SEM-EDS) revealed that as coating, the quaternary ammonium groups from IQAMS were homogeneously dispersed throughout the surface. When incorporated, the composite material presented homogeneous dispersion throughout the resin. Assays with Streptococcus mutans demonstrated enhanced antibiofilm effect for the IQAMS coated resin, with much lower colony-forming units (CFU), in comparison to incorporated IQAMS. Such a difference was assigned to low availability of quaternary ammonium groups at the surface of resin when IQAMS was incorporated, hindering its antibiofilm effect. Additionally, the incorporation of IQAMS led to slight decrease in ultimate bond strength (UBS) and shear bond strength (SBS), in comparison to the neat commercial resin. Thus, the synthesized IQAMS displays great potential as antibiofilm coating or sealant to prevent oral infections in brackets during orthodontic treatment. - Highlights: • Synthesis of ORMOSIL-based material with antibiofilm activity is performed. • Antibiofilm activity of the ORMOSIL-based material on commercial available resin for braces cementation is evaluated. • Antibiofilm ORMOSIL-based coating with potential application as varnish or sealant in orthodontic appliances is presented.

  10. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Directory of Open Access Journals (Sweden)

    Veridiana Resende NOVAIS

    Full Text Available Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC and one light-cured (Variolink Veneer. The dual-cured resin cements were tested by using the dual activation mode (base and catalyst and light-activation mode (base paste only. For degree of conversion (DC (n=5, a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR. For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05. Scanning electron microscopy (SEM was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  11. Versatile composite resins simplifying the practice of restorative dentistry.

    Science.gov (United States)

    Margeas, Robert

    2014-01-01

    After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.

  12. [Comparative studies on fissure sealing: composite versus Cermet cement].

    Science.gov (United States)

    Hickel, R; Voss, A

    1989-06-01

    Fifty two molars sealed with either composite or Cermet cement were compared. The composite sealant was applied after enamel etching using a rubber dam. Before sealing with Cermet cement the enamel was only cleaned with pumice powder and sodium hypochlorie and the material was applied without enamel etching. After an average follow-up of 1.6 years composite sealants proved to be significantly more reliable. Cermet cement sealings showed defects more frequently.

  13. Method for curing alkyd resin compositions by applying ionizing radiation

    International Nuclear Information System (INIS)

    Watanabe, T.; Murata, K.; Maruyama, T.

    1975-01-01

    An alkyd resin composition is prepared by dissolving a polymerizable alkyd resin having from 10 to 50 percent of oil length into a vinyl monomer. The polymerizable alkyd resin is obtained by a half-esterification reaction of an acid anhydride having a polymerizable unsaturated group and an alkyd resin modified with conjugated unsaturated oil having at least one reactive hydroxyl group per one molecule. The alkyd resin composition thus obtained is coated on an article, and ionizing radiation is applied on the article to cure the coated film thereon. (U.S.)

  14. Color of bulk-fill composite resin restorative materials.

    Science.gov (United States)

    Barutcigil, Çağatay; Barutcigil, Kubilay; Özarslan, Mehmet Mustafa; Dündar, Ayşe; Yilmaz, Burak

    2018-03-01

    To evaluate the color stability of novel bulk-fill composite resins. Color measurements of a nanohybrid composite resin (Z550) and 3 bulk-fill composite resins (BLK, AFX, XTF; n = 45) were performed before polymerization. After polymerization, color measurements were repeated and specimens were immersed in distilled water or red wine, or coffee. Color change [CIEDE2000 (ΔE 00 )] was calculated after 24 h, 1 and 3 weeks. Data were analyzed with Kruskal-Wallis, Mann-Whitney U and Wilcoxon tests (α = 0.05). Color changes observed after polymerization were significant for all groups. Color changes observed in distilled water for Z550 and AFX were significant. Color changes after stored in red wine and coffee were significant for all groups. Bulk-fill composite resin color change increased over time for all groups in red wine and coffee (P composite resin and bulk-fill composite resins. AFX had the highest color change in distilled water. The color of tested bulk-fill composite resins significantly changed after immersion in beverages and over time. Color change observed with the nanohybrid composite resin after 1 week was stable. Clinicians should keep in mind that tested composite resins may change color when exposed to water and significantly change color immediately after they are polymerized. In addition, the color change continues over time should the patient is a coffee and/or red wine consumer. © 2017 Wiley Periodicals, Inc.

  15. Evaluation of compatibility between different types of adhesives and dual-cured resin cement.

    Science.gov (United States)

    Franco, Eduardo B; Lopes, Lawrence G; D'alpino, Paulo H P; Pereira, José C; Mondelli, Rafael F L; Navarro, Maria F L

    2002-01-01

    The objective of this in vitro study was to evaluate the bonding compatibility between different adhesives and a dual-cured resin cement, using a conventional tensile bond test. The adhesives used were: Prime & Bond (PB) (Dentsply) (PB), Scotchbond Multi Purpose (SB) (3M), and the activator Self Cure (SC) (Dentsply). The dual-curing resin cement used was Enforce (EF) (Dentsply). Six groups with five specimens in each were tested: G1: EF/PB/EF (light cured); G2: EF/SB/EF (light cured); G3: EF/PB+SC/EF (light cured); G4: EF/PB+SC/EF (only chemically cured); G5: EF/EF (light cured); G6: EF/EF (only chemically cured). The resin cement was applied in two stainless steel molds with a cone-shaped perforation measuring 4 mm in diameter and 1 mm in thickness, and the adhesive was applied between them. Ten minutes after specimens were cured, the tensile strength was measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The mean values (MPa) +/- SD obtained in each experimental group were: G1: 1.4 +/- 0.2; G2: 1.3 +/- 0.2; G3: 1.2 +/- 0.4; G4: 0.8 +/- 0.2; G5: 1.2 +/- 0.1; G6: 0.7 +/- 0.1. The results were statistically evaluated using nonparametric Kruskal-Wallis and Dunn tests (p adhesives used with dual-cured resin cement. The lowest tensile bond strength values occurred in the absence of photoactivation.

  16. Does hybridized dentin affect bond strength of self-adhesive resin cement?

    OpenAIRE

    Pamato, Saulo; do Valle, Acc?cio-Lins; de Andrade, Gustavo-Henrique-Barbosa; Vidotti, Hugo-Alberto; S?, Marcus-Vin?cius-Reis; Pereira, Jefferson-Ricardo

    2016-01-01

    Background Evaluate the influence of different hybridization bonding techniques of a self-adhesive resin cement. Material and Methods 30 human health molars were divided into six groups (n=10). The specimens received three longitudinal sections, allowing insertion of central cuts in PVC matrices. Each group received a different dentin pretreatment according to the manufacturer?s recommendations, except the control group (G1), as follows. G2 - a 3-step total-etch adhesive system (Optibond? FL,...

  17. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    OpenAIRE

    Choi, Yun-Wang; Oh, Sung-Rok; Choi, Byung-Keol

    2017-01-01

    We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite m...

  18. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    OpenAIRE

    Bediako, Mark; Amankwah, Eric Opoku

    2015-01-01

    The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC) and Portland limestone cement (PLC), CSIR-BRRI Pozzomix, Dangote OPC, a...

  19. Characterization of Composite Fan Case Resins

    Science.gov (United States)

    Dvoracek, Charlene M.

    2004-01-01

    The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis

  20. Safety evaluation of the radioactive waste-cement composites, (4)

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Wadachi, Yoshiki; Ito, Akihiko

    1976-10-01

    The leaching behavior of 137 Cs has been studied to evaluate safety of sea and ground disposal of the cement composites. The rate depends on flow rate of the external solution, particle radius and composition of the cement composite. The rate-determining step of the leaching in the dynamic condition is the internal diffusion through the matrix cement composite. The rate in the static condition, on the other hand is controlled by external diffusion through the interface layer between solid and liquid. The cement composites containing mineral zeolite(25%) give very low leachability; the leaching fraction is 0.001 - 0.02 for the portland cement and 0.001 - 0.002 for the slag cement. (auth.)

  1. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium.

    Science.gov (United States)

    Ates, Sabit Melih; Korkmaz, Fatih Mehmet; Caglar, Ipek Satıroglu; Duymus, Zeynep Yeşil; Turgut, Sedanur; Bagis, Elif Arslan

    2017-07-01

    The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey's HSD post hoc test were used to analyse the data (P < 0.05). The highest bond strength values were observed in the laser application group, while the lowest values were observed in the grinding group. Sandblasting and laser application resulted in significantly higher bond strengths than control treatment (P < 0.05). Ultrafast fiber laser treatment and sandblasting may improve the bond strength between resin cement and titanium.

  2. Effect of Enamel and Dentin Surface Treatment on the Self-Adhesive Resin Cement Bond Strength.

    Science.gov (United States)

    Mushashe, Amanda Mahmmad; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Moro, Alexandre; Correr, Gisele Maria

    2016-01-01

    The aim of this study was to evaluate the effect of enamel and dentin surface treatment on the micro-shear bond strength of self-adhesive cement. Seventy-two extracted third molars had their crowns embedded in acrylic resin and worn to obtain a flat enamel or dentin surface. The enamel and dentin specimens were randomly assigned to 8 groups (n=12) that were based on surface treatment (11.5% polyacrylic acid solution or no treatment), substrate condition (wet or dry) and storage period (1 day or 90 days), and treated accordingly. Cylinders (1 × 1 mm) were fabricated using self-adhesive resin cement (RelyX U200) following the manufacturer's instructions. The specimens were stored in distilled water at 37 °C for either 1 day or 90 days and subjected to micro-shear bond strength test (EMIC DL 2000 at 0.5 mm/min). After this, the failure type of the specimens was determined. Data were subjected to statistical analysis (a=0.05). According to the results, the 11.5% polyacrylic acid application decreased the bond strength in both enamel and dentin samples. The moist groups showed higher bond strength than the dry ones, regardless of the substrate and surface treatment. Storage period did not influence bond strength. In conclusion, surface treatment with 11.5% polyacrylic acid and absence of moisture decreased the bond strength of the resin-cement (RelyU200), regardless of the storage period.

  3. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Hesaraki, S., E-mail: S-hesaraki@merc.ac.ir

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~ 32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. - Highlights: • Light cure cement based on SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass and polymer-like matrix was formed. • The matrix includes poly(acrylic/maleic acid) and poly(hydroxyethyl methacrylate). • The cement is as strong as polymethylmethacrylate bone cement. • The cement exhibits apatite formation ability in simulated body fluid. • The cement is biodegradable and supports proliferation of osteoblastic cells.

  4. Transient and residual stresses in a pressable glass-ceramic before and after resin-cement coating determined using profilometry.

    LENUS (Irish Health Repository)

    2011-05-01

    The effect of heat-pressing and subsequent pre-cementation (acid-etching) and resin-cementation operative techniques on the development of transient and residual stresses in different thicknesses of a lithium disilicate glass-ceramic were characterised using profilometry prior to biaxial flexure strength (BFS) determination.

  5. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  6. Influence of post pattern and resin cement curing mode on the retention of glass fibre posts.

    Science.gov (United States)

    Poskus, L T; Sgura, R; Paragó, F E M; Silva, E M; Guimarães, J G A

    2010-04-01

    To evaluate the influence of post design and roughness and cement system (dual- or self-cured) on the retention of glass fibre posts. Two tapered and smooth posts (Exacto Cônico No. 2 and White Post No. 1) and two parallel-sided and serrated posts (Fibrekor 1.25 mm and Reforpost No. 2) were adhesively luted with two different resin cements--a dual-cured (Rely-X ARC) and a self-cured (Cement Post)--in 40 single-rooted teeth. The teeth were divided into eight experimental groups (n = 5): PFD--Parallel-serrated-Fibrekor/dual-cured; PRD--Parallel-serrated-Reforpost/dual-cured; TED--Tapered-smooth-Exacto Cônico/dual-cured; TWD--Tapered-smooth-White Post/dual-cured; PFS--Parallel-serrated-Fibrekor/self-cured; PRS--Parallel-serrated-Reforpost/self-cured; TES--Tapered-smooth-Exacto Cônico/self-cured; TWS--Tapered-smooth-White Post/self-cured. The specimens were submitted to a pull-out test at a crosshead speed of 0.5 mm min(-1). Data were analysed using analysis of variance and Bonferroni's multiple comparison test (alpha = 0.05). Pull-out results (MPa) were: PFD = 8.13 (+/-1.71); PRD = 8.30 (+/-0.46); TED = 8.68 (+/-1.71); TWD = 9.35 (+/-1.99); PFS = 8.54 (+/-2.23); PRS = 7.09 (+/-1.96); TES = 8.27 (+/-3.92); TWS = 7.57 (+/-2.35). No statistical significant difference was detected for posts and cement factors and their interaction. The retention of glass fibre posts was not affected by post design or surface roughness nor by resin cement-curing mode. These results imply that the choice for serrated posts and self-cured cements is not related to an improvement in retention.

  7. Cytotoxicity Comparison of Harvard Zinc Phosphate Cement Versus Panavia F2 and Rely X Plus Resin Cements on Rat L929-fibroblasts.

    Science.gov (United States)

    Mahasti, Sahabi; Sattari, Mandana; Romoozi, Elham; Akbar-Zadeh Baghban, Alireza

    2011-01-01

    Resin cements, regardless of their biocompatibility, have been widely used in restorative dentistry during the recent years. These cements contain hydroxy ethyl methacrylate (HEMA) molecules which are claimed to penetrate into dentinal tubules and may affect dental pulp. Since tooth preparation for metal ceramic restorations involves a large surface of the tooth, cytotoxicity of these cements would be more important in fixed prosthodontic treatments. The purpose of this study was to compare the cytotoxicity of two resin cements (Panavia F2 and Rely X Plus) versus zinc phosphate cement (Harvard) using rat L929-fibroblasts in vitro. In this experimental study, ninety hollow glass cylinders (internal diameter 5-mm, height 2-mm) were made and divided into three groups. Each group was filled with one of three experimental cements; Harvard Zinc Phosphate cement, Panavia F2 resin cement and Rely X Plus resin cement. L929- Fibroblast were passaged and subsequently cultured in 6-well plates of 5×10(5) cells each. The culture medium was RPMI_ 1640. All samples were incubated in CO2. Using enzyme-linked immune-sorbent assay (ELISA) and (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (MTT) assay, the cytotoxicity of the cements was investigated at 1 hour, 24 hours and one week post exposure. Statistical analyses were performed via two-way ANOVA and honestly significant difference (HSD) Tukey tests. This study revealed significant differences between the three cements at the different time intervals. Harvard cement displayed the greatest cytotoxicity at all three intervals. After 1 hour Panavia F2 showed the next greatest cytotoxicity, but after 24-hours and oneweek intervals Rely X Plus showed the next greatest cytotoxicity. The results further showed that cytotoxicity decreased significantly in the Panavia F2 group with time (pHarvard cement group failed to showed no noticeable change in cytotoxicity with time. Although this study has limitations, it provides

  8. Comparison of resin cement adhesion to Y-TZP ceramic following manufacturers' instructions of the cements only

    NARCIS (Netherlands)

    Ozcan, Mutlu; Kerkdijk, Sandra; Valandro, Luiz Felipe

    The objectives of this study were (1) to evaluate the bond strength of four resin materials with various chemical compositions following the manufacturers' instructions only and (2) to test their durability in dry and thermal aged conditions when they were bonded to zirconia ceramic. Four types of

  9. Physico-Chemical Studies Involving Incorporation of Radioactive and Industrial Waste In Cement-Epoxy Resin Matrix

    International Nuclear Information System (INIS)

    Sayed, M.S.; Hafez, N.

    1999-01-01

    Cement and epoxy resin as chemical additives are proposed to incorporate different types of wastes. The study was extended to prepare different mixtures of cement and epoxy resin in presence of some toxic ions. The studied ions were Cd II, Ni II, Cu II, Fe III, Ce IV, 154+152 Eu, phenol and toluene. The physical, mechanical and leaching properties of the mixtures were studied. The thermal analysis and infrared spectra were also investigated. It was observed that all the studied properties of the epoxy modified cement as a disposal matrix was improved

  10. Effect of various teas on color stability of resin composites.

    Science.gov (United States)

    Dinç Ata, Gül; Gokay, Osman; Müjdeci, Arzu; Kivrak, Tugba Congara; Mokhtari Tavana, Armin

    2017-12-01

    To investigate the effect of various teas on color stability of resin composites. Two methacrylate-based (Arabesk Top, Grandio) and a silorane-based (Filtek Silorane) resin composites were used. 110 cylindrical samples of each resin composite were prepared (2 mm thickness and 8 mm diameter), polished and stored in distilled water (37°C for 24 hours). They were randomly divided into 11 groups (n= 10) and color measurements were taken. Then the samples were immersed in tap water (control), a black tea, a green tea or one of the eight herbal-fruit teas (37°C for 1 week) and subsequently subjected to the final color measurements. The color change of samples (ΔE*) was calculated, data were subjected to two-way ANOVA and Tukey's HSD tests. Teas, resin composites and their interactions were significant (P= 0.000). All the teas and control caused color changes in all three resin composites. Rosehip tea caused the most color changes, while tap water showed the least in all resin composites. Arabesk Top had the most staining potential in all the teas and control, whereas Filtek Silorane was the most stain resistant except Grandio immersed in sage tea. Color stability of all resin composites used were affected from both structure of resin materials and constituents of teas used. All resin composites were susceptible to staining by all teas especially rosehip tea. Arabesk Top composite showed the greatest color susceptibility in all teas and Filtek Silorane the least with one exception. Color of resin composites can be negatively affected from teas consumed. Clinicians should advise patients that drinking different kind of teas could intensify surface staining of resin based restorations.

  11. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  12. Deflection hardening of sustainable fiber–cement composites

    OpenAIRE

    Lima, P. R. L.; Santos, D. O. J.; Fontes, C. M. A.; Barros, Joaquim A. O.; Toledo Filho, R. D.

    2016-01-01

    In the present study sisal fiber–cement composites reinforced with 4% and 6% of short fibers were developed and their physical–mechanical behavior was characterized. To ensure the composite sustainability and durability, the ordinary Portland cement matrix was modified by adding fly ash and metakaolin, and the natural aggregate was substituted by 10% and 20% of recycled concrete aggregate. Flat sheets were cast in a self-compacted cement matrix and bending tests were performed ...

  13. Immobilisation in cement of ion exchange resins arising from the purification of reagents used for the decontamination of reactor circuits

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.; Lee, D.J.

    1988-04-01

    The aim of the programme is to show that ion exchange resins used to remove activity from decontaminating agents used in water reactors can be successfully immobilised in cement. To achieve this, blends of Ordinary Portland Cement and ground granulated Blast Furnace Slag (ratio 9:1) have been used. Improvements in the properties of the product and the waste loading of 50 w/o damp resin can be achieved using microsilica, a finely divided form of silicon dioxide, as an additive to the blended cement. This report contains data on the effects of anion resins, and mixed anion/cation resins, on the performance of the cemented product. The effects of organic acids, especially picolinic and formic acids, bound to anion resins have also been investigated. In addition, formulations developed have been assessed at commercial scale (200 litres of cemented product) for their process and product characteristics. The final part of the report deals with the long-term product performance of samples prepared from cation resins which are now nearly one year old. (author)

  14. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    Directory of Open Access Journals (Sweden)

    Renata Andreza Talaveira da Silva

    2011-08-01

    Full Text Available During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. OBJECTIVE: this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C, medium (M and apical (A thirds of the root. MATERIAL AND METHODS: Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group: group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37°C for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. RESULTS: Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05. Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3% than in AC (C=85.9%, M=81.8% and A=76.0%, ARC (C=83.8%, M=82.4% and A=75.0% and U100 (C=84.1%, M=82.4% and A=77.3% (Kruskal-Wallis test, p<0.05. CONCLUSIONS: Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity.

  15. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    Science.gov (United States)

    da SILVA, Renata Andreza Talaveira; COUTINHO, Margareth; CARDOZO, Pedro Igor; da SILVA, Larissa Alves; ZORZATTO, José Roberto

    2011-01-01

    During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. Objective this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C), medium (M) and apical (A) thirds of the root. Material and methods Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group): group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37ºC for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. Results Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05). Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3%) than in AC (C=85.9%, M=81.8% and A=76.0%), ARC (C=83.8%, M=82.4% and A=75.0%) and U100 (C=84.1%, M=82.4% and A=77.3%) (Kruskal-Wallis test, p<0.05). Conclusions Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity. PMID:21710099

  16. Cementation of secondary wastes generated from carbonisation of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2004-07-01

    The spent IX resins containing radioactive fission and activation products from power reactors are highly active solid wastes generated during operations of nuclear reactors. Process for carbonization of IX resins to achieve weight and volume reduction has been optimized on 50 dm 3 /batch pilot test rig. The process generates carbonaceous residue, organic liquid condensates (predominantly styrene) and aqueous alkaline scrubber solutions as secondary wastes. The report discusses laboratory tests on leaching of 137 Cs from cement matrix incorporating carbonaceous residues and extrapolation of results to 200 liter matrix block. The cumulative fraction of 137 Cs leached from 200 liter cement matrix was estimated to be 0.0021 in 200 days and 0.0418 over a period of 30 years. Incorporation of organic liquid condensates into cement matrix has been tried out successfully. Thus two types of secondary wastes generated during carbonization of spent IX resins can be immobilized in cement matrix. (author)

  17. A study on the radiopacity of cavity lining materials for posterior composite resin restoration

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hoon [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Chosun University, Kwangju (Korea, Republic of); Choi, Eui Hwan [Dept. of Conservative Dentistry, College of Dentistry, Chosun University, Kwangju (Korea, Republic of)

    2000-12-15

    The aim of this study was to determine the relative radiopacities of cavity lining materials (Resin-modified Glass Ionomer cement, Compomer and Flowable resin) for posterior composite resin restoration. Resin-modified glass ionomer cement (Fuji II LC, Vitrebond (TM)), Compomers (Dyract , Compoglass, F2000, Dyract(R) flow Compoglass Flow) and Flowable resins (Tetric (R) flow, Aeliteflo (TM) Revolution (TM)) were used. Five specimens of 5 mm in diameter and 2 mm thick were fabricated with each material. Human molars were horizontally sectioned 2 mm thick to include both enamel and dentin. The radiopacities of enamel, dentin, cavity lining materials, aluminum step wedge were obtained from conventional radiograph and NIH image program. All the tested lining materials showed levels of radiopacity the same as or greater than that of dentin. All compomer tested (Dyract (R), Compoglass, F2000, Dyract (R) flow, Compoglass Flow) and Vitrebond (TM), Tetric (R) flow were more radiopaque than enamel. The radiopacities of Fuji II LC and Revolution (TM) were between enamel and dentin and resin-modified glass ionomer cement, Compomer and Tetric (R) flow were greater than those of Revolution (TM), Aeliteflo (TM) or dentin. The level of radiopacity of the tested materials was variable; those with low radiopacity should be avoided in class II restorations, where a clear determination of recurrent caries by the examining clinician could be compromised. Clinician should be able to distinguish these cavity lining materials radiographically from recurrent decay, voids, gaps, or other defects that lead to clinical failure. Utilization of materials ranked more radiopaque than enamel would enable clinicians to distinguish the lining material from tooth structure.

  18. A study on the radiopacity of cavity lining materials for posterior composite resin restoration

    International Nuclear Information System (INIS)

    Moon, Joo Hoon; Choi, Eui Hwan

    2000-01-01

    The aim of this study was to determine the relative radiopacities of cavity lining materials (Resin-modified Glass Ionomer cement, Compomer and Flowable resin) for posterior composite resin restoration. Resin-modified glass ionomer cement (Fuji II LC, Vitrebond (TM)), Compomers (Dyract , Compoglass, F2000, Dyract(R) flow Compoglass Flow) and Flowable resins (Tetric (R) flow, Aeliteflo (TM) Revolution (TM)) were used. Five specimens of 5 mm in diameter and 2 mm thick were fabricated with each material. Human molars were horizontally sectioned 2 mm thick to include both enamel and dentin. The radiopacities of enamel, dentin, cavity lining materials, aluminum step wedge were obtained from conventional radiograph and NIH image program. All the tested lining materials showed levels of radiopacity the same as or greater than that of dentin. All compomer tested (Dyract (R), Compoglass, F2000, Dyract (R) flow, Compoglass Flow) and Vitrebond (TM), Tetric (R) flow were more radiopaque than enamel. The radiopacities of Fuji II LC and Revolution (TM) were between enamel and dentin and resin-modified glass ionomer cement, Compomer and Tetric (R) flow were greater than those of Revolution (TM), Aeliteflo (TM) or dentin. The level of radiopacity of the tested materials was variable; those with low radiopacity should be avoided in class II restorations, where a clear determination of recurrent caries by the examining clinician could be compromised. Clinician should be able to distinguish these cavity lining materials radiographically from recurrent decay, voids, gaps, or other defects that lead to clinical failure. Utilization of materials ranked more radiopaque than enamel would enable clinicians to distinguish the lining material from tooth structure.

  19. Color change of composite resins subjected to accelerated artificial aging.

    Science.gov (United States)

    Tornavoi, Denise Cremonezzi; Agnelli, José Augusto Marcondes; Panzeri, Heitor; Dos Reis, Andréa Cândido

    2013-01-01

    The aim of this study was to evaluate the influence of accelerated artificial aging (AAA) on the color change of composite resins used in dentistry. Three composite resins were evaluated: Two microhybrids and one hybrid of higher viscosity, with different amounts and sizes of filler particles, shades C2 and B2. A total of 54 specimens were obtained (18 for each composite resin), made of a Teflon matrix (15 mm in diameter and 2 mm in height). The color measurements were obtained with a Spectrophotometer, (PCB 6807 BYK Gardner) before and after AAA. Data were submitted to the Kolmogorov-Smirnov test (α >0.05), ANOVA and Tukey test (α 3). Considering the variable ∆E, it was observed that the color tone C2 was already statistically different for the microhybrid composite resin prior to AAA (P aging the composite resin hybrid of higher viscosity B2 showed the highest color variation rate and microhybrid with zirconium/silica C2 showed the lowest. All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2) and after (B2). It was also observed color difference within a group of the same composite resin and same hue.

  20. Effect of photoactivation on the reduction of composite resin contamination.

    Science.gov (United States)

    Pauletti, Natalia A; Girotto, Luiza P S; Leite, Françoise H S; Mario, Débora N

    2017-06-01

    Composite resins are predominantly marketed in developing countries in tube form, and the contents of the tube may be used in numerous procedures for different patients. This represents a problem because of the risk of cross-contamination. This study aimed to evaluate contamination in vitro of the internal contents of composite resin tubes in the dental clinics of a higher-education institution, as well as the effect of photoactivation on the level of contamination. Twenty-five tubes containing composite resin were randomly chosen (by lottery). From each tube, two samples of approximately 2 mm of composite resin were removed, and then one sample, but not the other, was photoactivated. These samples were plated on Brain-Heart Infusion (BHI), Sabouraud and MacConkey agars, and the plates were incubated at 37°C for 24-48 h. Colony counting and Gram staining were performed for subsequent microscopic identification of fungi and bacteria. The non-photoactivated composite resin group presented significantly higher microbial contamination in relation to the photoactivated composite resin group. The photoactivation of camphorquinone present in composite resin produces reactive oxygen species, which might promote cell death of contaminant microorganisms. Thus, although the same tube of composite resin may be used for a number of different patients in the dental clinics of developing countries, the photoactivation process potentially reduces the risk of cross-contamination. © 2017 Eur J Oral Sci.

  1. Fatigue resistance of CAD/CAM resin composite molar crowns.

    NARCIS (Netherlands)

    Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.M.; Zhang, Y.

    2016-01-01

    OBJECTIVE: To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. METHODS: Fully anatomically shaped monolithic resin composite molar crowns (Lava

  2. Influence of light-curing units and restorative materials on the micro hardness of resin cements

    Directory of Open Access Journals (Sweden)

    Kuguimiya Rosiane

    2010-01-01

    Full Text Available Aim: The aim of this study was to evaluate the effect of indirect restorative materials (IRMs and light-curing units (LCUs on the micro hardness of dual-cured resin cement. Materials and Methods: A total of 36 cylindrical samples (2 mm thick were prepared with dual-cured resin cement (Relyx ARC photo-activated with either a QTH (Optilight Plus for 40s or a LED (Radii light-curing unit for 65s. Photo-activation was performed through the 2-mm- thick IRMs and the samples were divided into six groups (n=6 according to the combination of veneering materials (without, ceramic and indirect resin and LCUs (QTH and LED. In the control group, the samples were light-cured with a QTH unit without the interposition of any restorative material. Vickers micro hardness test was performed on the top and bottom surfaces of each sample (load of 50 g for 15 secs. The data were statistically analyzed using a three-way ANOVA followed by Tukey x s post-hoc test ( P < 0.05. Results: There were no statistically significant differences on the top surface between the light curing-units ( P > 0.05; however, the LED provided greater hardness on the bottom surface when a ceramic material was used ( P < 0.05. The mean hardness in photo-activated samples, in which there was no interposition of indirect materials, was significantly greater ( P < 0.01. Conclusions: It may be concluded that the interposition of the restorative material decreased the micro hardness in the deeper cement layer. Such decrease, however, was lower when the ceramic was interposed and the cement light-cured with LED.

  3. Effect of root canal rinsing protocol on dentin bond strength of two resin cements using three different method of test.

    Science.gov (United States)

    Khoroushi, Maryam; Sheikhi, Mohammadreza; Khalilian-Gourtani, Amirhossein; Soleimani, Bahram

    2016-07-01

    Different studies have used different tests to evaluate bond strength of resin cements to root dentin. In this in vitrostudy, three different tests were used to evaluate the bond strength of two resin cements to root dentin using two root dentin irrigation protocols. Ninety-six intact single-rooted teeth were selected for this study. Forty-eight teeth, with a root length of 15mm, were randomly divided into two groups and irrigated with normal saline or 2.5% sodium hypochlorite solutions during root canal preparation, respectively. For each 12 specimens from each group, fiber post #1 was bonded using an etch-and-rinse (Duo-Link) and a self-adhesive (BisCem) resin cement, respectively. After incubation, two specimens were prepared for the push-out test from the middle thirds of the roots. In another 24 teeth, after two 1.5-mm sections were prepared from the middle thirds of the prepared roots, sections of the post were bonded in two subgroups with each of the cements mentioned above and the samples were prepared for the pull-out test. For shear test, the crowns of 48 teeth were cut away, the dentin surfaces were prepared, the two irrigation solutions were used, and the resin cements were bonded. Data collected from the three tests were evaluated by ANOVA, post-hoc Tukey and Weibull tests (α=0.05). There were significant differences in the mean bond strength values between the three bond strength tests (Pstrength in all tests (P>0.05). Under the limitations of the present study, the method of the test used had an effect on the recorded bond strength between the resin cement and root dentin. Cement type and irrigation protocol resulted in similar variations with all the tests. Push-out and shear tests exhibited more coherent results. Bond strength, endodontically treated tooth, fiber post, resin cement, sodium hypochlorite.

  4. Bracket bond strength and cariostatic potential of an experimental resin adhesive system containing Portland cement.

    Science.gov (United States)

    Iijima, Masahiro; Hashimoto, Masanori; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Endo, Kazuhiko; Mizoguchi, Itaru

    2012-09-01

    To determine if a new experimental resin-based material containing Portland cement (PC) can help prevent enamel caries while providing adequate shear bond strength (SBS). Brackets were bonded to human premolars with experimental resin-based adhesive pastes composed of three weight rations of resin and PC powder (PC 30, 7:3; PC 50, 5:5; PC 70, 3:7; n  =  7). Self-etching primer (SEP) adhesive (Transbond Plus) and resin-modified glass ionomer cement (RMGIC) adhesive (Fuji Ortho FC Automix) were used for comparison. All of the bonded teeth were subjected to alternating immersion in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 days. The SBS for each sample was examined, and the Adhesive Remnant Index (ARI) score was calculated. The hardness and elastic modulus of the enamel were determined by a nanoindenter at 20 equidistant depths from the external surface at 100 µm from the bracket edge. Data were compared by one-way analysis of variance and a chi-square test. PC 50 and PC 70 showed significantly greater SBS than Fuji Ortho FC Automix, although Transbond Plus showed significantly greater SBS than other bonding systems. No significant difference in the ARI category was observed among the five groups. For specimens bonded with PC 50 and PC 70, the hardness and elastic modulus values in most locations were equivalent to those of Fuji Ortho FC Automix. Experimental resin-based bonding material containing PC provides adequate SBS and a caries-preventive effect equivalent to that of the RMGIC adhesive system.

  5. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Surface roughness of orthodontic band cements with different compositions

    Directory of Open Access Journals (Sweden)

    Françoise Hélène van de Sande

    2011-06-01

    Full Text Available OBJECTIVES: The present study evaluated comparatively the surface roughness of four orthodontic band cements after storage in various solutions. MATERIAL AND METHODS: Eight standardized cylinders were made from 4 materials: zinc phosphate cement (ZP, compomer (C, resin-modified glass ionomer cement (RMGIC and resin cement (RC. Specimens were stored for 24 h in deionized water and immersed in saline (pH 7.0 or 0.1 M lactic acid solution (pH 4.0 for 15 days. Surface roughness readings were taken with a profilometer (Surfcorder SE1200 before and after the storage period. Data were analyzed by two-way ANOVA and Tukey's test (comparison among cements and storage solutions or paired t-test (comparison before and after the storage period at 5% significance level. RESULTS: The values for average surface roughness were statistically different (pRMGIC>C>R (p0.05. Compared to the current threshold (0.2 µm related to biofilm accumulation, both RC and C remained below the threshold, even after acidic challenge by immersion in lactic acid solution. CONCLUSIONS: Storage time and immersion in lactic acid solution increased the surface roughness of the majority of the tested cements. RC presented the smoothest surface and it was not influenced by storage conditions.

  7. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins.

    Science.gov (United States)

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G

    2014-11-01

    Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P composites (filled resins) can be used instead of unfilled resins in bonding composite resins to enamel and porcelain substrates.

  8. Effects of instrumentation time on microleakage of resin-modified glass ionomer cements.

    Science.gov (United States)

    Yap, Adrian U J; Yeo, Egwin J C; Yap, W Y; Ong, Debbie S B; Tan, Jane W S

    2003-01-01

    This study investigated the effect of instrumentation time on the microleakage of resin-modified glass ionomer cements (RMGICs). Class V cavities were prepared on buccal and lingual/ palatal surfaces of 64 freshly extracted non-carious premolars. The cavities on each tooth were restored with Fuji II LC (FT [GC]) and Photac-Fil Quick (PF [3M-ESPE]). The restored teeth were randomly divided into two groups of 32 teeth. Finishing/polishing was done immediately after light-polymerization in one group and was delayed for one week in the other group. The following finishing/polishing systems were evaluated: (a) Robot Carbides (RC); (b) SuperSnap (SS); (c) OneGloss (OG) and (d) CompoSite Polishers (CS). The sample size for each instrumentation time, material and finishing/polishing system combination was 8. Storage medium for both immediate and delayed instrumentation groups was distilled water at 37 degrees C during the hiatus period. The teeth were subsequently subjected to dye penetration testing (0.5% basic fushcin), sectioned and scored. Data were analyzed using Kruskal-Wallis and Mann-Whitney U tests at significance level 0.05. For PF, significant difference in enamel leakage was observed between immediate and delayed instrumentation with SS and CS. Significant differences in dentin leakage were also observed between the two instrumentation times for SS. For FT, significant differences in leakage between instrumentation times were observed only in dentin and with RC. Where significant differences in dye penetration scores existed, delayed finishing/polishing resulted in less microleakage.

  9. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing systems.

    Science.gov (United States)

    Yap, Adrian U J; Tan, W S; Yeo, J C; Yap, W Y; Ong, S B

    2002-01-01

    This study investigated the surface texture of two resin-modified glass ionomer cements (RMGICs) in the vertical and horizontal axis after treatment with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-flute tungsten carbide burs. The teeth were then randomly divided into four groups and finished/polished with (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Points (CS). The sample size for each material-finishing/polishing system combination was eight. The mean surface roughness (microm) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Mean RaV ranged from 0.59-1.31 and 0.83-1.52, while mean RaH ranged from 0.80-1.43 and 0.85-1.58 for Fuji II LC and Photac-Fil, respectively. Results of statistical analysis were as follows: Fuji II LC: RaV-RC, SS

  10. In vitro shear bond strength of Y-TZP ceramics to different core materials with the use of three primer/resin cement systems.

    Science.gov (United States)

    Al-Harbi, Fahad A; Ayad, Neveen M; Khan, Zahid A; Mahrous, Amr A; Morgano, Steven M

    2016-01-01

    Durability of the bond between different core materials and zirconia retainers is an important predictor of the success of a dental prosthesis. Nevertheless, because of its polycrystalline structure, zirconia cannot be etched and bonded to a conventional resin cement. The purpose of this in vitro study was to compare the effects of 3 metal primer/resin cement systems on the shear bond strength (SBS) of 3 core materials bonded to yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic retainers. Zirconia ceramic (Cercon) disks (5×3 mm) were airborne-particle abraded, rinsed, and air-dried. Disk-shaped core specimens (7×7 mm) that were prepared of composite resin, Ni-Cr, and zirconia were bonded to the zirconia ceramic disks by using one of 3 metal primer/cement systems: (Z-Prime Plus/BisCem, Zirconia Primer/Multilink Automix, or Clearfil Ceramic Primer/Clearfil SA). SBS was tested in a universal testing machine. Stereomicroscopy was used to evaluate the failure mode of debonded specimens. Data were analyzed using 2-way ANOVA and post hoc analysis using the Scheffe procedure (α=.05). Clearfil SA/Clearfil Ceramic Primer system with an Ni-Cr core yielded the highest SBS value (19.03 MPa), whereas the lowest SBS value was obtained when Multilink Automix/Zirconia Primer system was used with the zirconia core group (4.09 MPa). Differences in mean SBS values among the cement/primer groups were statistically significant, except for Clearfil SA and BisCem with both composite resin and zirconia cores. Differences in mean SBS values among the core subgroups were not statistically significant, except for zirconia core with BisCem, Multilink, and Clearfil SA. The predominant failure mode was adhesive, except for Clearfil SA and BisCem luting agents with composite resin cores, which displayed cohesive failure, and Multilink Automix with a composite resin, core as well as Clearfil SA with Ni-Cr cores, where the debonded specimens of each group displayed a mixed

  11. Crown and bridge cements: clinical applications.

    Science.gov (United States)

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  12. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement.

    Science.gov (United States)

    Lin, Jun; Zhu, Jiajun; Gu, Xiaoxia; Wen, Wenjian; Li, Qingshan; Fischer-Brandies, Helge; Wang, Huiming; Mehl, Christian

    2011-03-01

    This study aimed to investigate the fluoride release properties and the effect on bond strength of two experimental adhesive cements. Synthesized particles of nano-fluorapatite (nano-FA) or nano-fluorohydroxyapatite (nano-FHA) were incorporated into a resin-modified glass ionomer cement (Fuji Ortho LC) and characterized using X-ray diffraction and scanning electron microscopy. Blocks with six different concentrations of nano-FA or nano-FHA were manufactured and their fluoride release properties evaluated by ultraviolet spectrophotometry. The unaltered glass ionomer cement Fuji Ortho LC (GC, control) and the two experimental cements with the highest fluoride release capacities (nano-FA+Fuji Ortho LC (GFA) and nano-FHA+Fuji Ortho LC (GFHA)) were used to bond composite blocks and orthodontic brackets to human enamel. After 24 h water storage all specimens were debonded, measuring the micro-tensile bond strength (μTBS) and the shear bond strength (SBS), respectively. The optimal concentration of added nano-FA and nano-FHA for maximum fluoride release was 25 wt.%, which nearly tripled fluoride release after 70 days compared with the control group. GC exhibited a significantly higher SBS than GFHA/GFA, with GFHA and GFA not differing significantly (P>0.05). The μTBS of GC and GFA were significantly higher than that of GFHA (P≤0.05). The results seem to indicate that the fluoride release properties of Fuji Ortho LC are improved by incorporating nano-FA or nano-FHA, simultaneously maintaining a clinically sufficient bond strength when nano-FA was added. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Influence of power density and primer application on polymerization of dual-cured resin cements monitored by ultrasonic measurement.

    Science.gov (United States)

    Takubo, Chikako; Yasuda, Genta; Murayama, Ryosuke; Ogura, Yukari; Tonegawa, Motoka; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2010-08-01

    We used ultrasonic measurements to monitor the influence of power density and primer application on the polymerization reaction of dual-cured resin cements. The ultrasonic equipment comprised a pulser-receiver, transducers, and an oscilloscope. Resin cements were mixed and inserted into a transparent mould, and specimens were placed on the sample stage, onto which the primer, if used, was also applied. Power densities of 0 (no irradiation), 200, or 600 mW cm(-2) were used for curing. The transit time through the cement disk was divided by the specimen thickness to obtain the longitudinal sound velocity. When resin cements were light-irradiated, each curve displayed an initial plateau of approximately 1,500 m s(-1), which rapidly increased to a second plateau of 2,300-2,900 m s(-1). The rate of sound velocity increase was retarded when the cements were light-irradiated at lower power densities, and increased when the primer was applied. The polymerization behaviour of dual-cured resin cements was therefore shown to be affected by the power density of the curing unit and the application of self-etching primer. (c) 2010 The Authors. Journal compilation (c) 2010 Eur J Oral Sci.

  14. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    Science.gov (United States)

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  15. Degree of conversion and surface hardness of resin cement cured with different curing units.

    Science.gov (United States)

    Ozturk, Nilgun; Usumez, Aslihan; Usumez, Serdar; Ozturk, Bora

    2005-01-01

    The aim of this study was to evaluate the degree of conversion and Vickers surface hardness of resin cement under a simulated ceramic restoration with 3 different curing units: a conventional halogen unit, a high-intensity halogen unit, and a light-emitting diode system. A conventional halogen curing unit (Hilux 550) (40 s), a high-intensity halogen curing unit used in conventional and ramp mode (Optilux 501) (10 s and 20 s, respectively), and a light-emitting diode system (Elipar FreeLight) (20 s, 40 s) were used in this study. The dual-curing resin cement (Variolink II) was cured under a simulated ceramic restoration (diameter 5 mm, height 2 mm), and the degree of conversion and Vickers surface hardness were measured. For degree of conversion measurement, 10 specimens were prepared for each group. The absorbance peaks were recorded using the diffuse-reflection mode of Fourier transformation infrared spectroscopy. For Vickers surface hardness measurement, 10 specimens were prepared for each group. A load of 200 N was applied for 15 seconds, and 3 evaluations of each of the samples were performed. Degree of conversion achieved with Optilux 501 (20 s) was significantly higher than those of Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). For Vickers surface hardness measurement, Optilux 501 (20 s) produced the highest surface hardness value. No significant differences were found among the Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). The high-intensity halogen curing unit used in ramp mode (20 s) produced harder resin cement surfaces than did the conventional halogen curing unit, high-intensity halogen curing unit used in conventional mode (10 s) and light-emitting diode system (20 s, 40 s), when cured through a simulated ceramic restoration.

  16. Leachability of cesium from cemented evaporator concentrates and ion-exchange resins

    International Nuclear Information System (INIS)

    Muurinen, A.

    1985-03-01

    Leachabilities of cesium from cemented evaporator concentrates and ion-exchange resins were measured. The standard draft of the International Organization for Standardization (ISO, 1979) for long-term leach testing was followed in the research. Three resin concretes and three concentrate concretes were tested. Deionized water and groundwater were used as leachants. The leaching temperature was 20-23 deg C. The incremental leach rate at the end of the three and a half year test varied between 5x10 -12 - 15x10 -12 m/s and the cumulative activity fraction leached between 1.5x10 -3 - 6x10 -3 m. The apparent diffusion coefficients in groundwater varied between 10 -9 - 10 -8 m/day. Because of the cracking the specimens cannot, however, be regarded as whole blocks, but the effects of cracking should be taken into account. (author)

  17. Effect of phototherapy on shear bond strength of resin cements to zirconia ceramics: a systematic review and meta-analysis of in-vitro studies.

    Science.gov (United States)

    Al-Aali, Khulud Abdulrahman

    2018-05-11

    The present study systematically reviewed the literature to investigate the effect of phototherapy on the shear bond strength (SBS) of resin cement to zirconia ceramic. electronic databases including MEDLINE (PubMed), ISI Web of Science, Scopus, ScIELO, LILACS and EMBASE until April 2018. The addressed focused question was: Does phototherapy increase the SBS of resin cement to zirconia ceramics?" A total of 8 in-vitro studies were included in the qualitative and quantitative analysis. The mean SBS for phototherapy ranged from 4.1 to 18.95 MPa while mean SBS for sandblasted zirconia-composite specimens ranged from 3.98 to 23.35 MPa in the included studies. Qualitative analysis showed 3 studies favoured application of phototherapy in significantly increasing SBS, while 4 studies indicated sandblasting showed significantly greater SBS of resin cement to zirconia ceramics. Considering the effects of phototherapy, significant heterogeneity for SBS (Q value = 136.37, p<0.0001, I 2  = 94.87%) was noticed among both the groups. The overall mean difference for SBS (SMD = -0.59, 95% CI = -1.99 to -0.80, p = 0.402) was not significant between phototherapy and sandblast (control) groups. Whether the effect of phototherapy on increasing the SBS of resin cement to zirconia ceramic is debatable. Further in-vitro studies should be performed in order to obtain strong conclusions. Copyright © 2018. Published by Elsevier B.V.

  18. Influence of resin cement shade on the color and translucency of ceramic veneers

    Science.gov (United States)

    HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211

  19. Influence of resin cement shade on the color and translucency of ceramic veneers

    Directory of Open Access Journals (Sweden)

    Daiana Kelly Lopes HERNANDES

    Full Text Available ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3 layer on color change, translucency parameter (TP, and chroma of low (LT and high (HT translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B and white (W background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  20. Influence of resin cement shade on the color and translucency of ceramic veneers.

    Science.gov (United States)

    Hernandes, Daiana Kelly Lopes; Arrais, Cesar Augusto Galvão; Lima, Erick de; Cesar, Paulo Francisco; Rodrigues, José Augusto

    2016-01-01

    This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  1. Ballistic properties of bidirectional fiber/resin composites

    International Nuclear Information System (INIS)

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaluation of the ballistic strength of four different fiber/resin composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ballistic nylon, aramid and HPPE (High Performance Polyethylene) plainly woven fabric based composites. As a matrix system, in all cases, polyvinylbutyral modified phenolic resin was used. For the investigation, areal weight range 2 - 9 kg/m 2 chosen was, which is applicable for personal ballistic protection and the ultimate resin content range 20 - 50 vol.%. Ballistic test of the composites has shown that the best results exhibit HPPE based composites; aramid based composites have been the second best followed by the polyamide based composites. The worst results have been shown by the glass based composites. All composites with lower resin content (20%) have performed much better than their counterparts with higher resin content (50 %).The plot of the ballistic strength (V 50 ) versus areal weight has shown a linear increase of V 50 with the increase of areal weight. The ballistic strength of the composites is highly dependant on the fiber/resin ratio and increases with the increase of the fiber content. (Author)

  2. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  3. A review of devices used for photocuring resin-based composites.

    Science.gov (United States)

    Small, B W

    2001-01-01

    Composite resin shrinks up to 5% by volume upon curing. This shrinkage and the associated contraction stress remain the two most significant clinical problems with curing resin composite restorations. Many patients continue to experience sensitivity following placement of direct composites and seating of indirect restorations utilizing resin cements. Unfortunately, some claims made by manufacturers or certain clinicians that promise to alleviate these problems are made from a marketing standpoint, with no refereed literature to support those claims. Even within the literature, contradictory results have been reported, perpetuating the confusion. It is of utmost importance that all practicing dentists be aware of the various types of curing systems available and the advantages and disadvantages of each system. It is the opinion of the author that no existing system will alleviate every problem. Until new composite systems are perfected, such as the cyclopolymerizable resins and expanding polymers, we will continue to have shrinkage and stress. Be aware of false claims, read and interpret the literature, and, most importantly, do what is best for your patients.

  4. Maleimido substituted cyclotriphosphazene resins for fire and heat resistant composites

    Science.gov (United States)

    Kumar, D.; Fohlen, G. M.; Parker, J. A.

    1983-01-01

    A new class of fire- and heat-resistant matrix resins have been synthesized by the thermal polymerization of maleimido substituted phenoxycyclotriphosphazenes. The resins have exhibited a char yield of 82 percent at 800 C in nitrogen and 81 percent at 700 C in air. Graphite-fabric laminates based on a resin of this class have shown a limiting oxygen index of 100 percent even at 300 C. Details of the fabrication of the resins and the composites and testing procedures are discussed.

  5. Aerospace Composite Materials Delivery Order 0003: Nanocomposite Polymeric Resin Enhancements for Improved Composite Performance

    National Research Council Canada - National Science Library

    Chen, Chenggang

    2002-01-01

    .... The addition of clays does not significantly alter the viscosity or cure kinetics so that the modified resin will still be suitable for liquid composite molding techniques such as resin transfer molding...

  6. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions

    Directory of Open Access Journals (Sweden)

    S. P. Dunuweera

    2018-01-01

    Full Text Available We first discuss cement production and special nomenclature used by cement industrialists in expressing the composition of their cement products. We reveal different types of cement products, their compositions, properties, and typical uses. Wherever possible, we tend to give reasons as to why a particular cement type is more suitable for a given purpose than other types. Cement manufacturing processes are associated with emissions of large quantities of greenhouse gases and environmental pollutants. We give below quantitative and qualitative analyses of environmental impact of cement manufacturing. Controlling pollution is a mandatory legal and social requirement pertinent to any industry. As cement industry is one of the biggest CO2 emitters, it is appropriate to discuss different ways and means of CO2 capture, which will be done next. Finally, we give an account of production of nanocement and advantages associated with nanocement. Nanofillers such as nanotitania, nanosilica, and nanoalumina can be produced in large industrial scale via top-down approach of reducing size of naturally available bulk raw materials to those in the nanorange of 1 nm–100 nm. We mention the preparation of nanotitania and nanosilica from Sri Lankan mineral sands and quartz deposits, respectively, for the use as additives in cement products to improve performance and reduce the amount and cost of cement production and consequent environmental impacts. As of now, mineral sands and other treasures of minerals are exported without much value addition. Simple chemical modifications or physical treatments would add enormous value to these natural materials. Sri Lanka is gifted with highly pure quartz and graphite from which silica and graphite nanoparticles, respectively, can be prepared by simple size reduction processes. These can be used as additives in cements. Separation of constituents of mineral sands is already an ongoing process.

  7. The Effect of Lithium Disilicate Ceramic Thickness and Translucency on Shear Bond Strength of Light-cured Resin Cement

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Moghaddas

    2017-09-01

    Full Text Available Introduction: To achieve acceptable clinical performance, a ceramic veneer must be bonded to enamel by well-polymerized resin cement. Among different factors, thickness and translucency of the ceramic may affect the resin cement polymerization. Thus, the current study evaluated the effect of the thickness and translucency of lithium disilicate ceramic on light-cured resin cement bond strength to enamel. Methods: In this laboratory study, 208 sound bovine incisors were equally divided into 16 groups (n = 13. The lithium disilicate ceramic cubes in four thicknesses (0.4, 0.6, 0.8 and 1 mm with four translucencies (high and medium opaque, high and low translucent were fabricated and bonded to prepared enamel surfaces using a light-cured translucent resin cement according to manufacturer recommendations. After 5000 cycles of thermocycling, the bonded specimens were placed in a universal testing machine and loaded to the point of fracture. To determine the mode of failure, each sample was observed under a stereomicroscope. Data were recorded and analyzed by Shapiro-Wilk test and two-way analysis of variance (ANOVA. Results: The ceramic thickness and translucency could not significantly affect shear bond strength (SBS of resin cement to enamel (p = 0.17 and p = 0.097, respectively.  The Adhesive and ceramic cohesive failures were reported as the maximum and minimum mode of failure, respectively. Conclusion: The SBS of the light-cured resin cement bonding to enamel and lithium disilicate ceramic was not affected by the translucency of ceramics having a thickness of less than 1 mm.

  8. SUSTENTAÇÃO DE ESMALTE COM IONÔMEROS DE VIDRO E RESINA COMPOSTA: EFEITO NA RESISTÊNCIA À FRATURA DAS CÚSPIDES DE DENTES RESTAURADOS SUPPORTING ENAMEL WITH GLASS IONOMER CEMENT AND COMPOSITE RESIN: EFFECT ON FRACTURE RESISTANCE OF CUSPS OF RESTORED TEETH

    Directory of Open Access Journals (Sweden)

    Angelo Stefano SECCO

    1997-10-01

    Full Text Available Este estudo determinou a resistência e o tipo de fratura do esmalte suportado pelos materiais restauradores ionômeros de vidro convencional e modificado por resina e resina composta, bem como a influência dessa técnica restauradora na resistência das cúspides dos dentes. A remoção da estrutura dental para o preparo de cavidades tipo classe II e a presença de esmalte socavado diminuiram significativamente a resistência das cúspides dos dentes em relação ao dente hígido (p This study determined the resistance to fracture and its pattern for enamel supported with conventional and modified glass ionomer cements, and composite resin restorative materials, as well as the influence of these restorative techniques on cuspal strength of teeth. Removal of dental structure by class II cavity preparations and unsupported enamel had decreased significantly the cuspal strength in relation to healthy teeth (p < 0.01. Restorative materials used to support enamel reduced the fracture rate of restored cusps, but did not increase the fracture resistance values statistically. All tested groups presented alterations in the fracture pattern

  9. Study on Cr(VI) Leaching from Cement and Cement Composites

    Science.gov (United States)

    Palascakova, Lenka; Kanuchova, Maria

    2018-01-01

    This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55–80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time. PMID:29690550

  10. Influence of light curing unit and ceramic thickness on temperature rise during resin cement photo-activation.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Mastrofrancisco, Sarina; Consani, Rafael Leonardo Xediek; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-11-01

    The aim of this study was to determine the effect of different ceramic thickness on heat generation during resin cement photo-activation by QTH (quartz-tungsten-halogen), LED (light emitting diode), and PAC (plasma arc-curing) LCUs (light curing units). The resin cement used was Rely X ARC (3M-ESPE), and the ceramic was IPS Empress Esthetic (Ivoclar-Vivadent), of which 0.7-, 1.4- and 2.0-mm thick disks, 0.8 mm in diameter were made. Temperature increase was recorded with a type-K thermocouple connected to a digital thermometer (Iopetherm 46). An acrylic resin base was built to guide the thermocouple and support the 1.0-mm thick dentin disk. A 0.1-mm thick black adhesive paper matrix with a perforation 6 mm in diameter was placed on the dentin to contain the resin cement and support the ceramic disks of different thicknesses. Three LCUs were used: QTH, LED and PAC. Nine groups were formed (n=10) according to the interaction: 3 ceramic thicknesses, 1 resin cement and 3 photo-activation methods. Temperature increase data were submitted to Tukey's test (5%). For all ceramic thicknesses, a statistically significant difference in temperature increase was observed among the LCUs, with the highest mean value for the QTH LCU (p0.05). The interaction of higher energy density with smaller ceramic thickness showed higher temperature increase values.

  11. Relationship between Color and Translucency of Multishaded Dental Composite Resins

    Directory of Open Access Journals (Sweden)

    Homan Naeimi Akbar

    2012-01-01

    Full Text Available The aim of the present study was to compare the translucency of different shades of two highly aesthetic multilayered restorative composite resins. In total nine shades from Esthet.X and ten shades from Filtek Supreme composite resins were chosen. Discs of each shade were prepared (N=3 and light-cured. Total and diffuse transmittance values for each sample were measured. Statistical analysis showed that the opaque dentine shades of both composites were the least translucent and the enamel shades had the highest translucency. There was a significant decrease in translucency from A2 to C2 of regular body shades and also from A4 to C4 of opaque dentine shades of Esthet.X composite resin. Grey enamel shade had a significantly higher diffuse translucency compared to clear and yellow enamel shades. There was a significant decrease in translucency from A2B to D2B and also in diffuse translucency from A4D to C6D shades of Filtek Supreme composite resin. It can be concluded that the color of the composite resins tested in this study had a significant effect on their translucency. Information on the translucency of different shades of composite resins can be very useful for the clinicians in achieving optimal esthetic restorative outcome.

  12. Surface roughness of etched composite resin in light of composite repair

    NARCIS (Netherlands)

    Loomans, B.A.C.; Cardoso, M.V.; Opdam, N.J.M.; Roeters, F.J.M.; Munck, J. De; Huysmans, M.C.D.N.J.M.; Meerbeek, B. Van

    2011-01-01

    OBJECTIVES: In search for clinically effective composite repair protocols, the effect of various etching protocols on the surface roughness of composite resins with different filler composition were investigated. METHODS: Of two composite resins (hybrid-filled Clearfil AP-X; nano-filled Filtek

  13. Resin flow/fiber deformation model for composites

    International Nuclear Information System (INIS)

    Gutowski, T.G.

    1985-01-01

    This paper presents a resin flow/fiber deformation model that can be used to predict the behavior of composites during the molding cycle. The model can take into account time varying pressure and viscosity and output the time history of the fiber volume fraction. With this known, the composite thickness, resin pressure, and fiber pressure can all be determined as a function of time. The results of this model are in good agreement with experimentally measured values. 10 references, 9 figures

  14. Surface discoloration of composite resins: Effects of staining and bleaching.

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2012-09-01

    The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet•X HD, Clearfil AP-X, Gradia Direct) and five nanohybrid composite resins (Ceram•X, GC Kalore, G-aenial, Grandio, GrandioSO), after staining and bleaching procedures. The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany) into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness) to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h), for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco). The color of specimens was measured with a spectrophotometer according to the CIE L(*)a(*)b(*) system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DEab(*)) between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA). All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested.

  15. Leaching behaviour of strontium-90 in cement composites

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Ito, A.

    1977-01-01

    The leaching of 90 Sr from a cement composite into an aqueous phase has been studied by the method recommended by IAEA. The amount leached was measured as functions of waste to cement ratio (Wa/C), salt content of waste, temperature of leachant and curing time of specimens. The leach coefficient of 90 Sr varies from ca. 6 x 10 -8 to 4 x 10 -7 cm 2 /day depending on the composition of specimen and the leaching conditions. The leachability depends on such factors as Wa/C, temperature of leachant and curing time. The Portland cement composite gives a higher leaching fraction than the slag cement one. Additives used have no significant effect on the leachability. The amount leached in deionized water as a leachant is higher than in synthetic sea water. On the basis of the results obtained, the amount of 90 Sr leached from a composite of 200 1 drum size for an extended period was estimated. (author)

  16. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature.

    Science.gov (United States)

    Spitznagel, Frank A; Horvath, Sebastian D; Guess, Petra C; Blatz, Markus B

    2014-01-01

    Resin bonding is essential for clinical longevity of indirect restorations. Especially in light of the increasing popularity of computer-aided design/computer-aided manufacturing-fabricated indirect restorations, there is a need to assess optimal bonding protocols for new ceramic/polymer materials and indirect composites. The aim of this article was to review and assess the current scientific evidence on the resin bond to indirect composite and new ceramic/polymer materials. An electronic PubMed database search was conducted from 1966 to September 2013 for in vitro studies pertaining the resin bond to indirect composite and new ceramic/polymer materials. The search revealed 198 titles. Full-text screening was carried out for 43 studies, yielding 18 relevant articles that complied with inclusion criteria. No relevant studies could be identified regarding new ceramic/polymer materials. Most common surface treatments are aluminum-oxide air-abrasion, silane treatment, and hydrofluoric acid-etching for indirect composite restoration. Self-adhesive cements achieve lower bond strengths in comparison with etch-and-rinse systems. Thermocycling has a greater impact on bonding behavior than water storage. Air-particle abrasion and additional silane treatment should be applied to enhance the resin bond to laboratory-processed composites. However, there is an urgent need for in vitro studies that evaluate the bond strength to new ceramic/polymer materials. This article reviews the available dental literature on resin bond of laboratory composites and gives scientifically based guidance for their successful placement. Furthermore, this review demonstrated that future research for new ceramic/polymer materials is required. © 2014 Wiley Periodicals, Inc.

  17. Marginal adaptation of composite resins under two adhesive techniques.

    Science.gov (United States)

    Dačić, Stefan; Veselinović, Aleksandar M; Mitić, Aleksandar; Nikolić, Marija; Cenić, Milica; Dačić-Simonović, Dragica

    2016-11-01

    In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek Ultimate-ASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy One-AEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self-etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied. © 2016 Wiley Periodicals, Inc.

  18. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    Directory of Open Access Journals (Sweden)

    Yunsu Lee

    2018-04-01

    Full Text Available This paper presents the effect of anion exchange resin (AER on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  19. Effect of Various Surface Treatment on Repair Strength of Composite Resin

    Directory of Open Access Journals (Sweden)

    Y. Alizade

    2004-12-01

    Full Text Available Statement of Problem: In some clinical situations, repair of composite restorations is treatment of choice. Improving the bond strength between one new and old composite usually requires increased surface roughness to promote mechanical interlocking sincechemical bonding might not be adequate. Similarly, the treatment of a laboratory fabricated resin composite restoration involves the same procedures, and there is a need to create the strongest possible bond of a resin cement to a previously polymerized composite.Purpose: The aim of this study was to evaluate the effect of various surface treatments on the shear bond strength of repaired to aged composite resin.Materials and Methods: Eighty four cylindrical specimens of a composite resin were fabricated and stored in distilled water for 100 days prior to surface treatment. Surface treatment of old composite was done in 6 groups as follow:1- Air abrasion with CoJet sand particles with micoretcher + silane + dentin bonding agent2- Air abrasion with 50μm Al2O3 particles+ phosphoric acid+ silane+ dentin bonding agent3- Air abrasion with 50μm Al2O3 particles + phosphoric acid + dentin bonding agent4- Diamond bur + phosphoric acid + silane + dentin bonding agent5- Diamond bur + phosphoric acid + dentin bonding agent6- Diamond bur + phosphoric acid + composite activator + dentin bonding agentThen fresh composite resin was bonded to treated surfaces. Twelve specimens were also fabricated as control group with the same diameter but with the height twice as much as other specimens. All of the specimens were thermocycled prior to testing for shear bondstrength. The bond strength data were analyzed statistically using one way ANOVA test, t test and Duncan's grouping test.Results: One-way ANOVA indicated no significant difference between 7 groups (P=0.059. One-way ANOVA indicated significant difference between the three diamond bur groups (P=0.036. Silane had a significant effect on the repair bond

  20. Self-healing polymer cement composites for geothermal wellbore applications

    Science.gov (United States)

    Rod, K. A.; Fernandez, C.; Childers, I.; Koech, P.; Um, W.; Roosendaal, T.; Nguyen, M.; Huerta, N. J.; Chun, J.; Glezakou, V. A.

    2017-12-01

    Cement is vital for controlling leaks from wellbores employed in oil, gas, and geothermal operations by sealing the annulus between the wellbore casing and geologic formation. Wellbore cement failure due to physical and chemical stresses is common and can result in significant environmental consequences and ultimately significant financial costs due to remediation efforts. To date numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This research investigates novel polymer-cement composites which could function at most geothermal temperatures. Thermal stability and mechanical strength of the polymer is attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. It has been demonstrated that the bonding between cement and casing is more predictable when polymer is added to cement and can even improve healing of adhesion break when subjected to stresses such as thermal shock. Fractures have also been healed, effectively reducing permeability with fractures up to 0.3-0.5mm apertures, which is two orders of magnitude larger than typical wellbore fractures. Additionally, tomography analysis was used to determine internal structure of the cement polymer composite and imaging reveals that polymers fill fractures in the cement and between the cement and casing. By plugging fractures that occur in wellbore cement, reducing permeability of fractures, both environmental safety and economics of subsurface operations will be improved for geothermal energy and oil and gas production.

  1. Assessment of polymerization contraction stress of three composite resins

    NARCIS (Netherlands)

    Cadenaro, M.; Biasotto, M.; Scuor, N.; Breschi, L.; Davidson, C.L.; Di Lenarda, R.

    2008-01-01

    Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN,

  2. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  3. Matrix resin effects in composite delamination - Mode I fracture aspects

    Science.gov (United States)

    Hunston, Donald L.; Moulton, Richard J.; Johnston, Norman J.; Bascom, Willard D.

    1987-01-01

    A number of thermoset, toughened thermoset, and thermoplastic resin matrix systems were characterized for Mode I critical strain energy release rates, and their composites were tested for interlaminar critical strain energy release rates using the double cantilever beam method. A clear correlation is found between the two sets of data. With brittle resins, the interlaminar critical strain energy release rates are somewhat larger than the neat resin values due to a full transfer of the neat resin toughness to the composite and toughening mechanisms associated with crack growth. With tougher matrices, the higher critical strain energy release rates are only partially transferred to the composites, presumably because the fibers restrict the crack-tip deformation zones.

  4. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  5. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  6. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  7. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  8. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin.

    Science.gov (United States)

    Hallmann, Lubica; Ulmer, Peter; Lehmann, Frank; Wille, Sebastian; Polonskyi, Oleksander; Johannes, Martina; Köbel, Stefan; Trottenberg, Thomas; Bornholdt, Sven; Haase, Fabian; Kersten, Holger; Kern, Matthias

    2016-05-01

    Purpose of this in vitro study was to evaluate the effect of surface modifications on the tensile bond strength between zirconia ceramic and resin. Zirconia ceramic surfaces were treated with 150-μm abrasive alumina particles, 150-μm abrasive zirconia particles, argon-ion bombardment, gas plasma, and piranha solution (H2SO4:H2O2=3:1). In addition, slip casting surfaces were examined. Untreated surfaces were used as the control group. Tensile bond strengths (TBS) were measured after water storage for 3 days or 150 days with additional 37,500 thermal cycling for artificial aging. Statistical analyses were performed with 1-way and 3-way ANOVA, followed by comparison of means with the Tukey HSD test. After storage in distilled water for three days at 37 °C, the highest mean tensile bond strengths (TBS) were observed for zirconia ceramic surfaces abraded with 150-μm abrasive alumina particles (TBS(AAP)=37.3 MPa, TBS(CAAP)=40.4 MPa), and 150-μm abrasive zirconia particles (TBS(AZP)=34.8 MPa, TBS(CAZP)=35.8 MPa). Also a high TBS was observed for specimens treated with argon-ion bombardment (TBS(BAI)=37.8 MPa). After 150 days of storage, specimens abraded with 150-μm abrasive alumina particles and 150-μm abrasive zirconia particles revealed high TBS (TBS(AAP)=37.6 MPa, TBS(CAAP)=33.0 MPa, TBS(AZP)=22.1 MPa and TBS(CAZP)=22.8 MPa). A high TBS was observed also for specimens prepared with slip casting (TBS(SC)=30.0 MPa). A decrease of TBS was observed for control specimens (TBS(UNT)=12.5 MPa, TBS(CUNT)=9.0 MPa), specimens treated with argon-ion bombardment (TBS(BAI)=10.3 MPa) and gas plasma (TBS(GP)=11.0 MPa). A decrease of TBS was observed also for specimens treated with piranha solution (TBS(PS)=3.9 MPa, TBS(CPS)=4.1 MPa). A significant difference in TBS after three days storage was observed for specimens treated with different methods (p0.05), CAAP(p>0.05) and SC(p>0.05). However, the failure patterns of debonded specimens prepared with 150-μm abrasive zirconia

  9. The adhesive system and root canal region do not influence the degree of conversion of dual resin cement

    Directory of Open Access Journals (Sweden)

    Priscilla Cristoforides Pereira

    2010-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate the influence of two adhesive systems and the post space region on the degree of conversion of dual resin cement and its bond strength to root dentin. MATERIAL AND METHODS: One three-step etch-and-rinse (All-bond 2, Bisco and another one-step self-etch (Xeno III, Dentsply adhesive systems were applied on 20 (n=10 crownless bovine incisors, at 12-mm-deep post space preparation, and a fiber post (FRC Postec, Ivoclar was cemented using a dual cure resin cement (Duo-Link, Bisco. Three transverse sections (3 mm were obtained, being one from each study region (cervical, middle and apical. The degree of conversion of the dual cure resin cement was determined by a micro-Raman spectrometer. The data (% were submitted to repeated-measures analysis of variance and Tukey's test (p<0.05. RESULTS: For both groups, the degree of conversion means (% (All bond 2cervical = 69.3; All bond 2middle = 55.1; All bond 2apical= 56; Xeno III cervical = 68.7; Xeno IIImiddle = 68.8; Xeno III apical = 54.3 were not significantly different along the post space regions (p<0.05. CONCLUSION: Neither the adhesive nor the post space region influenced the degree of conversion of the cement layer.

  10. Analysis of surface hardness of artificially aged resin composites

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2012-02-01

    Full Text Available This study evaluated the effect of artificially accelerated aging (AAA on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05, ANOVA and Tukey test (p < 0.05. With regard to hardness (F = 86.74, p < 0.0001 the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53. In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002. It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

  11. [Effects of different surface treatments on the zirconia-resin cement bond strength].

    Science.gov (United States)

    Liao, Y; Liu, X Q; Chen, L; Zhou, J F; Tan, J G

    2018-02-18

    To evaluate the effects of different surface treatments on the shear bond strength between zirconia and resin cement. Forty zirconia discs were randomly divided into four groups (10 discs in each group) for different surface treatments: control, no surface treatment; sandblast, applied air abrasion with aluminum oxide particles; ultraviolet (UV), the zirconia sample was placed in the UV sterilizer at the bottom of the UV lamp at 10 mm, and irradiated for 48 h; cold plasma, the discs were put in the cold plasma cabinet with the cold plasma generated from the gas of He for 30 s. Specimens of all the groups were surface treated prior to cementation with Panavia F 2.0 cement. The surface morphology and contact angle of water were measured. The shear bond strengths were tested and the failure modes were examined with a stereomicroscope. Surface morphology showed no difference between the UV/cold plasma group and the control group. Sandblasted zirconia displayed an overall heterogeneous distribution of micropores. The contact angle of the control group was 64.1°±2.0°. After sandblasting, UV irradiation and cold plasma exposure, the values significantly decreased to 48.8°±2.6°, 27.1°±3.6° and 32.0°±3.3°. The values of shear bond strength of the specimens with sandblasted (14.82±2.01) MPa were higher than those with no treatment (9.41±1.07) MPa with statistically significant difference (Pbond strength of the specimens with UV irradiation (10.02±0.64) MPa were higher than those with no treatment (9.41±1.07) MPa, but without statistically significant difference (P>0.05). The values of cold plasma group (18.34±3.05) MPa were significantly higher than those of control group (9.41±1.07) MPa, even more than those with sandblast(14.82±2.01) MPa (PUV and cold plasma treatment. The surface C/O ratio also decreased after UV and cold plasma treatment. Zirconia specimens treated with UV and cold plasma could significantly improve the hydrophilicity. The surface

  12. Expansive failure reactions and their prevention in the encapsulation of phenol formaldehyde type ion exchange resins in cement based systems

    Energy Technology Data Exchange (ETDEWEB)

    Constable, M.; Howard, C.G.; Johnson, M.A.; Jolliffe, C.B. (AEA Decommissioning and Waste Management, Winfrith (United Kingdom)); Sellers, R.M. (Nuclear Electric plc, Barnwood (United Kingdom))

    1992-01-01

    Lewatit DN is a phenol formaldehyde based ion exchange resin used to remove radioactive caesium from liquid waste streams such as fuel cooling ponds and effluents. This paper presents the results of a study of the encapsulation of the bead form of the resin in cement with particular reference to the mechanisms of its interaction with the encapsulant. When incorporated in pure ordinary Portland cement (OPC) at loadings in excess of 15 wt % an unstable product results due to expansion of the systems and at higher waste loadings failure results after only a few days. Evidence from differential scanning calorimetry, X-ray diffraction and scanning electron microscopy all indicate the cause of the expansive reaction to be the formation of crystals of calcium salts around and within the resin beads. Addition of BFS and sodium hydroxide prevent the formation of these salts by removal of calcium hydroxide from the system in other reactions. (author).

  13. Resin infusion of large composite structures modeling and manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  14. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  15. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-01-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  16. Effect of different light curing methods on mechanical and physical properties of resin-cements polymerized through ceramic discs

    Directory of Open Access Journals (Sweden)

    Isil Cekic-nagas

    2011-08-01

    Full Text Available OBJECTIVE: The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc and their exposure modes (high-intensity and soft-start by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. Material and methods: A total of 720 disc-shaped samples (1 mm height and 5 mm diameter were prepared from different dual-curing resin cements (Duolink, Nexus, Bifix-QM, Panavia F and RelyX Unicem. Photoactivation was performed by using quartz tungsten halogen (high-power and soft-up modes, light-emitting diode (standard and exponential modes and plasma arc (normal and ramp-curing modes curing units through ceramic discs. Then the samples (n=8/per group were stored dry in the dark at 37°C for 24 h. The Vickers hardness test was performed on the resin cement layer with a microhardness tester (Shimadzu HMV. For sorption and solubility tests; the samples were stored in a desiccator at 37°C and weighed to a constant mass. The samples were weighed both before and after being immersed in deionized water for different periods of time (24 h and 7 days and being desiccated. The diametral tensile strength of the samples was tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by nonparametric Kruskal Wallis and Mann-Whitney U tests at 5% significance level. RESULTS: Resin cement and light-curing unit had significant effects (p0.05 were obtained with different modes of LCUs. Conclusion: The study indicates that polymerization of resin cements with different light-curing units may result in various polymer structures, and consequently different mechanical and physical properties.

  17. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    International Nuclear Information System (INIS)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's ''Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs

  18. Ultrasonic measurement of the effects of light irradiation and presence of water on the polymerization of self-adhesive resin cement.

    Science.gov (United States)

    Takenaka, Hirotaka; Ouchi, Hajime; Sai, Keiichi; Kawamoto, Ryo; Murayama, Ryosuke; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2015-08-14

    Self-adhesive resin cements are useful in restorations because they reduce the number of clinical steps involved in the restoration process. This study evaluated, using ultrasonic measurements, the influence of light irradiation and the presence of water on the polymerization behavior and elastic modulus of a self-adhesive resin cement. A self-adhesive resin cement (RelyX Unicem 2 Automix) or a resin cement (RelyX ARC) was inserted into a transparent mold on a sample stage, and the presence of water and effect of light-irradiation were evaluated. The transit time of a sonic wave through the cement disk was divided by the specimen thickness to obtain the sonic velocity, and longitudinal and shear waves were used to determine the elastic modulus. When the resin cements were light-irradiated, the sonic velocity rapidly increased and plateaued at 2,500-2,700 m s -1 . When the cements were not irradiated, the rates of increase in the sonic velocity were reduced. When water was applied to the sample stage, the sonic velocity was reduced. The elastic modulus values of the specimens ranged from 9.9 to 15.9 GPa after 24 h. The polymerization behavior of self-adhesive resin cements is affected by the polymerization mode and the presence of water. © 2015 Eur J Oral Sci.

  19. Effect of Endodontic Retreatment on Push-out Bond Strength and Quality of Fiber Postbonding Interface of Resin Cements.

    Science.gov (United States)

    Pelegrine, Rina Andréa; Paulillo, Luís Alexandre Maffei Sartini; Kato, Augusto Shoji; Fontana, Carlos Eduardo; Pinheiro, Sérgio Luiz; De Martin, Alexandre Sigrist; Bueno, Carlos Eduardo da Silveira

    2016-01-01

    The aim of this study is to evaluate the impact of endodontic retreatment on push-out bond strength and dentin interface of two resin cements used for fiber postcementation during endodontic retreatment. The root canals of 40 extracted human canines were prepared, obturated and divided into four groups (n = 10). Gutta-percha was partially removed and fiber posts were immediately cemented in groups 1 and 2 using Panavia F with ED Primer and RelyX™ U200, respectively. In groups 3 and 4, the root canal access was sealed with temporary restorative cement, specimens were stored for 30 days, endodontically retreated, and fiber posts were cemented using the resin cements applied to groups 1 and 2, respectively. Push-out tests and scanning electron microscopy analyses of different areas were performed. Data from push-out bond strengths were analyzed by one-way analysis of variance and Tukey's tests. Higher bond strength values were detected in the apical third for group 1 than group 3 (p 0.05). Comparisons between different thirds in the same group revealed a higher bond strength in the apical third for group 1. Scanning electron microscopy showed formation of hybrid layer and extensive resin tags in group 1. No hybrid layer was observed in groups 2 and 4. Endodontic retreatment had adverse effects on the push-out bond strength and dentinal interface of Panavia F with ED Primer when used for fiber postcementation specifically in the apical third, but not on RelyX™ U200. A significant interaction was detected between endodontic retreatment and resin cement, which indicated that endodontic retreatment might adversely affect the push-out bond strength and dentinal interface of Panavia F with ED Primer when used for fiber postcementation specifically in the apical third.

  20. Solidification of ion exchange resins saturated with Na{sup +} ions: Comparison of matrices based on Portland and blast furnace slag cement

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, E. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Cau dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Gauffinet, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université de Bourgogne, Dijon, France, 9 Av Alain Savary, BP 47870, 21078 Dijon cedex (France); Chartier, D. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Stefan, L. [AREVA, Back End Business Group, Dismantling & Services, 1 Place Jean Millier, 92084 Paris La Défense (France); Le Bescop, P. [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France)

    2017-01-15

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na{sup +} form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic. - Highlights: • Solidification of cationic resins in the Na{sup +}-form is investigated. • Portland and blast furnace slag cements are compared. • Deleterious expansion is observed with Portland cement only. • Resin swelling is due to a decrease in the osmotic pressure of the pore solution. • The consolidation rate of the matrix is a key parameter to prevent damage.

  1. The effects of shelf life on the compressive strength of resin-modified glass ionomer cement

    Science.gov (United States)

    Wajong, K. H.; Damiyanti, M.; Irawan, B.

    2017-08-01

    Resin-modified glass ionomer cement (RMGIC) is a restoration material composed of powder and liquid whose stability is affected by its shelf life. This is an issue that has not been taken into consideration by customers or sellers. To observe the effects of shelf life on the compressive strength of RMGIC, 30 cylindrical (d = 4mm and t = 6mm) specimens of RMGIC (Fuji II LC, GC, Tokyo, Japan) were divided into three groups with different storage times and their compressive strength was tested with a universal testing machine. Results were statistically analyzed with the one-way ANOVA test. There were significant differences (p<0.05) between the three groups of RMGIC. There is a decrease in the compressive strength value along with the duration of storage time.

  2. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

    Directory of Open Access Journals (Sweden)

    Adriano Fonseca Lima

    2016-11-01

    Full Text Available Objectives In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs on the degree of conversion (DC and the mechanical properties of resin cements. Materials and Methods Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG, according to the different radiant exposures (5, 10, and 20 J/cm2 and two LCUs (single-peak and polywave. The specimens were made (7 mm in length × 2 mm in width × 1 mm in height using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA and post hoc Tukey's test were performed. Results No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  3. Microleakage of IPS empress 2 inlay restorations luted with self-adhesive resin cements.

    Science.gov (United States)

    Cal, E; Celik, E U; Turkun, M

    2012-01-01

    To assess the microleakage of three self-adhesive and one etch-and-rinse resin cements when luting IPS Empress 2 (Ivoclar Vivadent, Liechtenstein) all-ceramic inlay restorations to the prepared cavities in extracted human molars. The cylindrical Class V cavities were prepared on the buccal surfaces of 40 extracted human third molars using diamond burs. The IPS Empress 2 ceramic inlays were placed with Multilink Sprint (Ivoclar Vivadent), RelyX Unicem (3M ESPE, USA), G-Cem (GC, Japan), or Variolink II (Ivoclar Vivadent) as the control group. After storage in distilled water at 37°C for 24 hours, samples were subjected to 1000 thermal cycles between baths of 5°C and 55°C, with a dwell time of 30 seconds. The microleakage scores were examined on the occlusal and gingival margins at 30× magnification after each sample was stained with 0.5% basic fuchsin and sectioned into three parts using a thin diamond blade (Isomet, Buehler, USA) (n=40). The extent of microleakage on both occlusal and gingival margins of the restorations was scored and recorded. The microleakage data were analyzed using Kruskall-Wallis and Mann-Whitney U-tests. Statistically significant differences were observed between the groups in both margins according to the Kruskall-Wallis and Mann-Whitney U-tests (p<0.05). Microleakage scores on the occlusal margins were Variolink II < RelyX Unicem < G-Cem = Multilink Sprint. Microleakage scores on the gingival margins are Variolink II = RelyX Unicem < G-Cem < Multilink Sprint. Self-adhesive resin cements displayed higher microleakage scores on the occlusal margins, whereas on the gingival margins RelyX Unicem showed comparable microleakage results with the control samples.

  4. Sisal organosolv pulp as reinforcement for cement based composites

    OpenAIRE

    Joaquim, Ana Paula; Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco Dos; Savastano Junior, Holmer

    2009-01-01

    The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressin...

  5. Studies on the incorporation of spent ion exchange resins from nuclear power plants into bitumen and cement

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Tallberg, K.; Aittola, P.; Tollbaeck, H.

    1976-01-01

    The joint Nordic incorporation experiments should provide technical data needed for the assessment of solidification techniques for wastes from nuclear reactors in the Nordic countries. Spent ion exchange resins are a main fraction of such wastes, and more knowledge about their incorporation is wanted. The effects of simulated and real ion exchange wastes on the quality of bitumen and cement incorporation products were studied. Blown and distilled bitumen and three Portland cement qualities were used. Product characterizations were based on properties relevant for safe waste management, storage, transport and disposal. The applicability and relevance of established and suggested tests is discussed. Up to 40-60% dry resin could be incorporated into bitumen without impairing product qualities. Products with higher resin contents were found to swell in contact with water. The products had a high leach resistance. Their form stability was improved by incorporated resins. Product qualities appeared to be less affected by physico-chemical variables than by mechanical process parameters. Pure resin-cement products tend to decompose in water. Product qualities were strongly affected by a variety of physico-chemical process parameters, and integer products were only obtained within narrow tolerance limits. Caesium was rapidly leached out. To attain integer products and improved leach resistance within technically acceptable tolerance limits it was necessary to utilize stabilizing and caesium-retaining additives such as Silix and vermiculite. Under the present conditions the water content of the resins limited the amounts that could be incorporated in 40-50wt% or about 70vol.% water-saturated (containing 20-40% dry) resin. (author)

  6. Characteristics of novel root-end filling material using epoxy resin and Portland cement.

    Science.gov (United States)

    Lee, Sang-Jin; Chung, Jin; Na, Hee-Sam; Park, Eun-Joo; Jeon, Hyo-Jin; Kim, Hyeon-Cheol

    2013-04-01

    The aim of this study was to evaluate the physical properties and cytotoxicity of a novel root-end filling material (EPC) which is made from epoxy resin and Portland cement as a mineral trioxide aggregate (MTA) substitute. EPC, developed as a root-end filling material, was compared with MTA and a mixture of AH Plus sealer and MTA (AMTA) with regard to the setting time, radio-opacity, and microleakage. Setting times were evaluated using Vicat apparatus. Digital radiographs were taken to evaluate the aluminium equivalent radio-opacity using an aluminium step wedge. Extracted single-rooted teeth were used for leakage test using methylene blue dye. After canal shaping and obturation, the apical 3-mm root was resected, and a root-end cavity with a depth of 3 mm was prepared. The root-end cavities were filled with MTA, AMTA, and EPC for 15 specimens in each of three groups. After setting in humid conditions for 24 h, the specimens were tested for apical leakage. For evaluation of the biocompatibility of EPC, cell (human gingival fibroblast) viability was compared for MTA and Portland cement by MTT assay, and cell morphological changes were compared for MTA and AH Plus by fluorescence microscopy using DAPI and F-actin staining. The setting time, radio-opacity, and microleakage were compared using one-way ANOVA and Scheffe's post hoc comparison, and the cytotoxicity was compared using the nonparametric Kruskal-Wallis rank sum test. Statistical significance was set at 95%. EPC had a shorter setting time and less microleakage compared with MTA (p Portland cement, was found to be a useful material for root-end filling, with favourable radio-opacity, short setting time, low microleakage, and clinically acceptable low cytotoxicity. The novel root-end filling material would be a potentially useful material for a surgical endodontic procedure with favourable properties.

  7. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    Science.gov (United States)

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by

  8. Effect of reinforcement with resin composite on fracture strength of structurally compromised roots.

    Science.gov (United States)

    Fukui, Yuji; Komada, Wataru; Yoshida, Keiichi; Otake, Shiho; Okada, Daizo; Miura, Hiroyuki

    2009-09-01

    This study was aimed at evaluating the fracture resistance of structurally compromised roots restored with four different post and core systems. Thirty-two bovine roots were uniformly shaped to simulate human mandibular premolar roots. The roots were divided into four groups based on the type of restoration: cemented cast post and core (Group MC), resin composite build-up (Group CR), resin composite and prefabricated glass fiber post build-up (Group FRC), and thick-layer dual-cured resin composite-reinforced small-diameter tapered cast post and core (Group CRM). After a static loading test, the failure mode and fracture resistance were recorded. Group CRM (719.38+/-196.73 N) exhibited a significantly high fracture resistance compared with the other groups (Group MC: 429.56+/-82.43 N; Group CR: 349.56+/-66.21 N; Group FRC: 398.94+/-112.71 N; pCRM exhibited better mechanical properties for structurally compromised roots with no ferrules, although all types of restorations showed non-restorable fracture modes.

  9. [The influence of the chemo-mechanical removal of the smear-layer and the use of a dentin adhesive on microleakage of composite resin restorations].

    Science.gov (United States)

    de la Macorra García, J C; Gómez Martínez, A; Gutiérrez Argumosa, B

    1989-02-01

    We present an "in vitro" study of microfiltration in composite resin restorations with a perimetral seal placed totally in cement. We compare the sealing capability of a dentin adhesive (ScotchBond I) used in two ways: habitual, without conditioning dentin and conditioning it by means of the Caridex system. This produced no increasing of sealing capability under the study conditions.

  10. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    International Nuclear Information System (INIS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-01-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  11. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yudovin-Farber, Ira [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel); Beyth, Nurit; Weiss, Ervin I. [Hebrew University of Jerusalem, Department of Prosthodontics, Faculty of Dentistry (Israel); Domb, Abraham J., E-mail: avid@ekmd.huji.ac.i [Hebrew University of Jerusalem, Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine (Israel)

    2010-02-15

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  12. Resin-composite blocks for dental CAD/CAM applications.

    Science.gov (United States)

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.

  13. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  14. Bisphenol A Release: Survey of the Composition of Dental Composite Resins.

    Science.gov (United States)

    Dursun, Elisabeth; Fron-Chabouis, Hélène; Attal, Jean-Pierre; Raskin, Anne

    2016-01-01

    Bisphenol A (BPA) is an endocrine disruptor with potential toxicity. Composite resins may not contain pure BPA, but its derivatives are widely used. Several studies found doses of BPA or its derivatives in saliva or urine of patients after composite resin placement. The aims of this study were to establish an exhaustive list of composite resins marketed in Europe and their composition, and to assess the extent of BPA derivatives used. A research on manufacturers' websites was performed to reference all composite resins marketed in Europe, then their composition was determined from both material safety data sheets and a standardized questionnaire sent to manufacturers. Manufacturers had to indicate whether their product contained the monomers listed, add other monomers if necessary, or indicate "not disclosed". 160 composite resins were identified from 31 manufacturers and 23 manufacturers (74.2%) responded to the survey. From the survey and websites, the composition of 130 composite resins (81.2%) was: 112 (86.2%) based on BPA derivatives, 97 (74.7%) on bis-GMA, 17 (13.1%) without monomer derived from BPA (UDMA, sometimes with TEGDMA) and 6 (4.6%) with UDMA (only); 1 (0.8%) did not contain a BPA derivative or UDMA or TEGDMA. Pure BPA was never reported. This work has established a list of 18 composite resins that contain no BPA derivative. Manufacturers should be required to report the exact composition of their products as it often remains unclear or incomplete.

  15. Crack path and fracture surface modifications in cement composites

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmad

    2015-10-01

    Full Text Available There is a tremendous increase in the use of high strength and high performance self-consolidating cementitious composites due to their superior workability and mechanical strengths. Cement composites are quasi-brittle in nature and possess extremely low tensile strength as compared to their compressive strength. Due to the low tensile strength capacity, cracks develop in cementitious composites due to the drying shrinkage, plastic settlements and/or stress concentrations (due to external restrains and/or applied stresses etc. These cracks developed at the nanoscale may grow rapidly due to the applied stresses and join together to form micro and macro cracks. The growth of cracks from nanoscale to micro and macro scale is very rapid and may lead to sudden failure of the cement composites. The present paper reports the modifications in the crack growth pattern of the high performance cement composites to achieve enhanced ductility and toughness. The objective was accomplished by the incorporation of the micro sized inert particulates in the cement composite matrix. The results indicate that the incorporation of micro sized inert particles acted as the obstacles in the growth of the cracks thus improving the ductility and the energy absorption capacity of the self-consolidating cementitious composites.

  16. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  17. Properties of cement based composites modified using diatomaceous earth

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek

    2017-07-01

    Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.

  18. A Study of Metal-Cement Composites with Additives

    Directory of Open Access Journals (Sweden)

    Mironov Victor

    2014-12-01

    Full Text Available The application of small-sized metal fillers (SMF provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction. Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers.

  19. Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro Cárie secundária adjacente a restaurações de cimento de ionômero de vidro, resina composta e amálgama induzida por Streptococcus mutans in vitro

    Directory of Open Access Journals (Sweden)

    Adriana Gama-Teixeira

    2007-12-01

    Full Text Available The aim of this study was to define, in vitro, the potential to inhibit secondary caries of restorative materials currently used in dental practice. Standard cavities were prepared on the buccal and lingual surfaces of fifty extracted human third molars. The teeth were randomly divided into five groups, each one restored with one of the following materials: glass ionomer cement (GIC; amalgam; light-cured composite resin; ion-releasing composite; and light-cured, fluoride-containing composite resin. The teeth were thermocycled, sterilized with gamma irradiation, exposed to a cariogenic challenge using a bacterial system using Streptococcus mutans, and then prepared for microscopic observation. The following parameters were measured in each lesion formed: extension, depth, and caries inhibition area. The outer lesions developed showed an intact surface layer and had a rectangular shape. Wall lesions were not observed inside the cavities. After Analysis of Variance and Component of Variance Models Analysis, it was observed that the GIC group had the smallest lesions and the greatest number of caries inhibition areas. The lesions developed around Amalgam and Ariston pHc restorations had an intermediate size and the largest lesions were observed around Z-100 and Heliomolar restorations. It may be concluded that the restorative materials GIC, amalgam and ion-releasing composites may reduce secondary caries formation.O objetivo deste estudo foi definir, in vitro, o potencial de materiais restauradores, usados rotineiramente na prática clínica, na inibição da cárie secundária. Cavidades padronizadas foram preparadas nas faces vestibulares e linguais de 50 terceiros molares humanos extraídos. Os dentes foram divididos aleatoriamente em 5 grupos, cada um restaurado com um dos seguintes materiais: cimento de ionômero de vidro (CIV; amálgama; resina composta fotopolimerizável; compósito que libera íons, e resina composta fotopolimeriz

  20. Ultraviolet light and ultraviolet light-activated composite resins

    International Nuclear Information System (INIS)

    Murray, G.A.; Yates, J.L.; Newman, S.M.

    1981-01-01

    In a comparison of the UV light--activated composite resins, Estilux was polymerized to a significantly greater depth than the other composite resins. In general, Lee-fill polymerized the least. When comparing the UV light sources, the Lee light and the Duralux light did not significantly differ from each other, but both polymerized the materials tested to a significantly greater depth than the other light sources. Of the two time exposures, 60-second exposure provided a significantly greater depth of polymerization than 20 seconds for each light with each material

  1. Light curing through glass ceramics: effect of curing mode on micromechanical properties of dual-curing resin cements.

    Science.gov (United States)

    Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta

    2014-04-01

    The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high

  2. Modeling the curing process of thermosetting resin matrix composites

    Science.gov (United States)

    Loos, A. C.

    1986-01-01

    A model is presented for simulating the curing process of a thermosetting resin matrix composite. The model relates the cure temperature, the cure pressure, and the properties of the prepreg to the thermal, chemical, and rheological processes occurring in the composite during cure. The results calculated with the computer code developed on the basis of the model were compared with the experimental data obtained from autoclave-curved composite laminates. Good agreement between the two sets of results was obtained.

  3. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2016-01-01

    Full Text Available Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3 specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3.

  4. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Directory of Open Access Journals (Sweden)

    Andrea Mello de Andrade

    2010-12-01

    Full Text Available OBJECTIVES: The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350 and adhesive system [(Solobond Plus, Futurabond NR (VOCO and Adper Single Bond (3M ESPE] on the microtensile (μTBS and microshear bond strength (μSBS tests on enamel, and to correlate the bond strength means between them. MATERIAL AND METHODS: Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for μTBS and the other one for μSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37(0C/24 h specimens were stressed (0.5 mm/min. Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05. RESULTS: The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05. For both tests only the main factor resin composite was statistically significant (p<0.05. The correlation test detected a positive (r=0.91 and significant (p=0.01 correlation between the tests. CONCLUSIONS: The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.

  5. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik

    2003-01-01

    PURPOSE: To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. MATERIALS AND METHODS: After embedding, planar surfaces...... of posts (n = 9 to 14) and human dentin (n = 10) were obtained by grinding. The posts received one of three surface treatments: 1. roughening (sandblasting, hydrofluoric acid etching), 2. application of primer (Alloy Primer, Metalprimer II, silane), or 3. roughening followed by application of primer...

  6. IPS Empress onlays luted with two dual-cured resin cements for endodontically treated teeth: a 3-year clinical evaluation.

    Science.gov (United States)

    Atali, Pinar Yilmaz; Cakmakcioglu, Ozcan; Topbasi, Bulent; Turkmen, Cafer; Suslen, Ozlem

    2011-01-01

    The aim of this study was to evaluate the performance of IPS Empress ceramic onlays luted with two dual-cured adhesive resin cements for endodontically treated teeth. Twenty molar teeth were restored with all-ceramic restorations luted randomly with Maxcem or Clearfil Esthetic Cement and DC Bond Kit luting systems (n = 10 each) in 20 patients. The restorations were assessed using modified US Public Health Service criteria at baseline, 6 months, and 1, 2, and 3 years. A statistically significant deterioration was found for the criteria marginal integrity, anatomical form, and surface roughness. For luting of ceramic onlays, no difference between the two luting systems was detected.

  7. Polymerization shrinkage of different types of composite resins and microleakage with and without liner in class II cavities.

    Science.gov (United States)

    Karaman, E; Ozgunaltay, G

    2014-01-01

    To determine the volumetric polymerization shrinkage of four different types of composite resin and to evaluate microleakage of these materials in class II (MOD) cavities with and without a resin-modified glass ionomer cement (RMGIC) liner, in vitro. One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized MOD cavities were prepared. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P 60, Filtek Silorane, Filtek Z 250) with and without a RMGIC liner (Vitrebond). The restorations were finished and polished after 24 hours. Following thermocycling, the teeth were immersed in 0.5% basic fuchsin for 24 hours, then midsagitally sectioned in a mesiodistal plane and examined for microleakage using a stereomicroscope. The volumetric polymerization shrinkage of materials was measured using a video imaging device (Acuvol, Bisco, Inc). Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U-tests. All teeth showed microleakage, but placement of RMGIC liner reduced microleakage. No statistically significant differences were found in microleakage between the teeth restored without RMGIC liner (p>0.05). Filtek Silorane showed significantly less volumetric polymerization shrinkage than the methacrylate-based composite resins (pcomposite resin restorations resulted in reduced microleakage. The volumetric polymerization shrinkage was least with the silorane-based composite.

  8. High performance dental resin composites with hydrolytically stable monomers.

    Science.gov (United States)

    Wang, Xiaohong; Huyang, George; Palagummi, Sri Vikram; Liu, Xiaohui; Skrtic, Drago; Beauchamp, Carlos; Bowen, Rafael; Sun, Jirun

    2018-02-01

    The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications. New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5wt% of micro and 7.5wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (K IC ) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (W sp ) and solubility (W su ) (gravimetry); polymerization shrinkage (S v ; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite. UDMA/TEG-DBVE composites exhibited n, E, W sp , W su and S v equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), K IC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in

  9. [Effect of carbamide peroxide bleaching agents on micro-leakage of composite resin interface in vitro].

    Science.gov (United States)

    Wang, Xiao-ling; Xu, Juan; Zhao, Xin-yi; He, Hui-ming

    2011-01-01

    To evaluate the effect of carbamide peroxide (CP) bleaching agents at different concentrations and with different carriers on the micro-leakage of composite resin interface. Class V cavity (2 mm in diameter and 2 mm in depth) preparations were made at the enamelo-cemental junction on the buccal and lingual surfaces of 35 extracted human premolars. The cavities were filled with hybrid composite resin. The teeth were stored for 24 h in distilled water at 37 degrees celsius; before thermocyling for 500 times between 5 and 55 degrees celsius;. The teeth were then randomly assigned into 7 groups, and in groups 1-6, the bleaching gels containing 10% or 20% of CP were applied on the buccal and lingual surface of the teeth for two weeks (6-8 h/day, 37 degrees celsius;, 100% relative humidity) using Carbopol, PVP or Poloxamer as the thickening carriers, respectively. The seventh group served as the control without bleaching treatment. Nail polish was applied to the surface of the tooth, and all the teeth were immersed in ammoniacal silver nitrate solution followed by developing solution. The teeth were finally sectioned through the midline of the restoration and observed under stereomicroscope. SEM micrographs were also made to observe the interface. With the same bleaching agent, the micro-leakage in the gingival wall was slightly greater than in the occlusive wall, but the difference was not significant. Only 20% CP with Poloxamer as the thickening agent significantly increased the leakage of dentine-resin composite interface, and 10% and 20% CP with Carbopol or PVP as the thickening agents and 10% CP with Poloxamer produced minimal effects on filling the micro-leakage. Thickening carriers and the concentration of CP (20% or below) have no significant effect on micro-leakage of composite resin.

  10. Immobilisation in cement of ion exchange resins arising from the purification of reagents used for the decontamination of reactor circuits

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1988-09-01

    The process developed previously for the immobilisation of Ion Exchange resin in cement has been scaled up to 200 litres. Large scale samples produced exhibit acceptable compressive strengths and dimensional stabilities. Destructive examination has shown that these samples are homogeneous and monolithic. A number of samples have been stored under water, this appears to have no detrimental effects on the dimensional stability and elastic modulus when compared to samples stored in air. Finally, a description of leach test work initiated using waste ion exchange resin treated with LOMI from the reactor at Winfrith is given. This work will be performed in accordance with the ISO leach test procedure. (author)

  11. Effect of Ingested Liquids on Color Change of Composite Resins.

    Science.gov (United States)

    Malek Afzali, Beheshteh; Ghasemi, Amir; Mirani, Asrin; Abdolazimi, Zahra; Akbarzade Baghban, Alireza; Kharazifard, Mohammad Javad

    2015-08-01

    Color change of composite restorations is well known to dentists. However, the effect of commonly consumed drinks on discoloration of composite resins has yet to be determined. This study sought to assess the color change of a nanofilled (Premise) and a flowable composite resin (Premise flowable) following simulated consumption of tea, cola, iron drops and multivitamin syrup. Forty disk-shaped specimens (7 mm in diameter and 2 mm thick) were fabricated from each composite resin. The baseline color values were measured according to the CIE L*a*b* system using digital imaging. The specimens of each restorative material were randomly divided into five groups (eight each) according to the storage media namely tea, cola, iron drops, multivitamin syrup or distilled water (control). The specimens were immersed in staining solutions for three hours daily over a 40-day test period. Following this, the color change values (ΔE*) were calculated. For statistical analyses, the color differences were analyzed using two-way ANOVA and Tukey's test (Pcomposite resins (P>0.05). In both composite materials, the difference among the solutions was not significant (P>0.05). Under the tested experimental conditions, both restorative materials were susceptible to discoloration by all four staining solutions. The color change values were not related to the solution or the type of material used.

  12. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  13. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  14. Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.

    Science.gov (United States)

    Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey

    2008-12-01

    Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.

  15. Thio-urethanes improve properties of dual-cured composite cements.

    Science.gov (United States)

    Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S

    2014-12-01

    This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and

  16. Physico-chemical studies of gamma-irradiated polyester. Impregnated cement mortar composite

    International Nuclear Information System (INIS)

    Ismail, M.R.; Afifi, M.S.

    1998-01-01

    The effect of impregnation time on the physico-chemical and mechanical properties of polyester-cement mortar composite has been investigated. The samples were soaked in unsaturated polyester resin containing 40% styrene monomer at impregnation times ranging from 1-15 hours and then exposed to 50 kGy of γ-irradiation. The effects on polymer loading, compressive strength, apparent porosity, and water absorption in addition to IR spectra and TGA of the samples were studied. It was found that, the polymer loading and compressive strength increase with the increased of soaking time up to 4 hours and there is no significant improvement of the polymer loading and strength. Whereas, the apparent porosity and water absorption behave in an opposite direction. These are attributed to the presence of polymer in the pores of the samples. IR spectra showed that, new bands appeared as result of the reaction between polyester and set cement. TGA showed that, the polyester cement composite has higher thermal stability as a compared to irradiated polyester. (author)

  17. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2017-01-01

    Full Text Available We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite materials because they are protected from moisture by the wall material. Therefore, the untreated cement is present in the form of a capsule within the cement composite, and hydration can be induced by moisture penetrating the crack surface in the event of cracking. In the process of granulating the cement, it is important to obtain a suitable consistency through the kneading agent and to maintain the moisture barrier performance of the wall material. We can utilize the results of this study as a basis for advanced self-healing capsule technology for cement composites.

  18. New acrylic resin composite with improved thermal diffusivity.

    Science.gov (United States)

    Messersmith, P B; Obrez, A; Lindberg, S

    1998-03-01

    Studies have shown that physical characteristics of denture base materials may affect patient acceptance of denture prostheses by altering sensory experience of food during mastication. Thermal diffusivity is one material property that has been cited as being important in determining gustatory response, with denture base acrylic resins having low thermal diffusivity compared with denture base metal alloys. This study prepared and characterized experimental acrylic resin composite material with increased thermal diffusivity. Sapphire (Al2O3) whiskers were added to conventional denture base acrylic resin during processing to achieve loadings of 9.35% and 15% by volume. Cylindrical test specimens containing an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 degree to 70 degrees C). Thermal diffusivities of the sapphire containing composites were found to be significantly higher than the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the volume percentage of sapphire filler, which suggested that the high aspect ratio ceramic particles formed a pathway for heat conduction through the insulating polymer matrix. The thermal diffusivity of denture base acrylic resin was increased by the addition of thermally conducting sapphire whiskers.

  19. Leaching behavior of some radionuclides from cement matrix incorporating exhausted polymeric resins

    International Nuclear Information System (INIS)

    Abou-Mesalam, M.M.

    2002-01-01

    Exhausted poly(acrylamide-acrylic acid) impregnated with zirconium phosphate {P(AM-AA)-ZrP} produced from the treatment process of radioactive liquid waste was incorporated in different types of cement to prevent widespreading of radionuclides into the human environment. The rates at which 60 Co, 65 Zn and 152,154 Eu are leached from Ordinary Portland Cement (OPC) and Blast Furnace Slag Cement (BFSC) were measured. From the leaching data the leach coefficients of 60 Co, 65 Zn and 152,154 Eu were determined and were found to vary between 1.62 x 10 -8 to 7.06 x 10 -10 cm 2 /day and 1.01 x 10 -8 to 8.93 x 10 -9 cm 2 /day in OPC and BFSC, respectively. In general, the radionuclide leaching rates followed the order: 152,154 Eu > 65 Zn > 60 Co. The leach coefficient was found to be dependent on the composition of the leachants and varied in the order: distilled water > ground water > synthetic sea water. The effect of NaNo 3 concentration in the wastes on the leach coefficient of 60 Co from OPC was also studied. (author)

  20. Resin transfer molding for advanced composite primary aircraft structures

    Science.gov (United States)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  1. Bond strength of resin composite to differently conditioned amalgam

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Huysmans, MC; Kalk, W; Vahlberg, T

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N

  2. BACTERIAL ADHESION TO DENTAL AMALGAM AND 3 RESIN COMPOSITES

    NARCIS (Netherlands)

    SULJAK, JP; REID, G; WOOD, SM; MCCONNELL, RJ; VANDERMEI, HC; BUSSCHER, HJ

    Objectives: The ability of three oral bacteria to adhere to hydrophobic amalgam (water contact angle 60 degrees) and hydrophobic resin composites (Prisma-AP.H 56 degrees, Herculite XRV 82 degrees and Z100 89 degrees) was compared using an in vitro assay. Methods and results: Following preincubation

  3. Amalgam stained dentin: a proper substrate for bonding resin composite?

    NARCIS (Netherlands)

    Scholtanus, J.D.

    2016-01-01

    Nowadays the use of dental amalgam is mostly abandoned and substituted by tooth colored resin composites that can be bonded to teeth tissues by adhesive techniques. The aim of this thesis was to find out whether dark stained dentin, as often observed after removal of amalgam restorations and

  4. Composite Resin – A Versatile Restorative Tool | Koleoso | Nigerian ...

    African Journals Online (AJOL)

    ... the use of composite resin restorations as a treatment option in several situations where conventional aesthetic restorations such as porcelain veneers, crowns and cream-metal crown could otherwise be placed. Methods and Materials: Patients who presented with restoration aesthetic challenges over a six months period ...

  5. Degradation of dental resin composites during intra-oral wear

    NARCIS (Netherlands)

    Yulianto, Heribertus Dedy Kusuma

    2017-01-01

    Dental resin composites have become an integral part of modern dentistry and used worldwide to restore missing tooth structures, to modify tooth color and anatomical contour, and to enhance aesthetics and function. The dentist should be aware that, the aggressive complexity of the oral environment

  6. Repair of Defective Composite Resin Restoration: Current Trend ...

    African Journals Online (AJOL)

    Background: Repair of defective composite resins restorations is being increasingly recognized as a viable alternative to replacement. there is however no consensus yet on the treatment protocol. Objective: To determine the views and practice of specialists in Conservative Dentistry in Nigeria as regard to repair procedure ...

  7. Long-term degradation of resin-based cements in substances present in the oral environment: influence of activation mode

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira da SILVA

    2013-06-01

    Full Text Available Indirect restorations in contact with free gingival margins or principally within the gingival sulcus, where the presence of organic acids produced by oral biofilm is higher, may present faster degradation of the resin-based cement pellicle. Objectives To investigate the degradation of four resin-based cements: Rely X ARC (R, Variolink II (V, Enforce (E and All Cem (A, after immersion in distilled water (DW, lactic acid (LA and artificial saliva (AS and to analyze the influence of the activation mode on this response. Material and Methods Two activation modes were evaluated: chemical (Ch and dual (D. In the dual activation, a two-millimeter thick ceramic disk (IPS Empress System was interposed between the specimen and light-curing unit tip. Specimens were desiccated, immersed in distilled water, artificial saliva and lactic acid 0.1 M at 37°C for 180 days, weighed daily for the first 7 days, and after 14, 21, 28, 90 and 180 days and were desiccated again. Sorption and solubility (µg/mm 3 were calculated based on ISO 4049. The data were submitted to multifactor analysis of variance (MANOVA and Tukey's HSD test for media comparisons (α=0.05. Results Sorption was higher after immersion in LA (pD (p<0.05. The lowest solubility was presented by R (p<0.05. Conclusions Lactic acid increased the degradation of resin-based cements. Moreover, the physical component of activation, i.e., light-activation, contributed to a low degradation of resin-based cements.

  8. The shear bond strength of self-adhesive resin cements to dentin and enamel: an in vitro study.

    Science.gov (United States)

    Rodrigues, Raphaela F; Ramos, Carla M; Francisconi, Paulo A S; Borges, Ana Flávia S

    2015-03-01

    Clinicians continue to search for ways to simplify bonding procedures without compromising clinical efficacy. The purpose of this study was to evaluate the shear strength of self-adhesive cements RelyX U100 and RelyX U200, and conventional resin cement RelyX ARC to enamel and dentin after different surface treatments. The crowns of 120 bovine incisor teeth were separated from the roots and embedded in epoxy resin in polyvinyl chloride tubes. In each tooth, the area to be cemented was delimited with central holed adhesive tape. The teeth were distributed into 12 groups (n=10) according to the substrate; etched or not with 37% phosphoric acid; and cement type of enamel-U100, enamel-phosphoric acid-U100, enamel-U200, enamel-phosphoric acid-U200, enamel-ARC, enamel-phosphoric acid-ARC, dentin-U100, dentin-phosphoric acid-U100, dentin-U200, dentin-phosphoric acid-U200, dentin-ARC, and dentin-phosphoric acid-ARC. After 7 days of storage in artificial saliva, shear strength tests were performed by using a universal testing machine (0.5 mm/min). The data were analyzed with 3-way ANOVA and the Tukey test (α=.05). Fracture analysis was performed with a light microscope. Two specimens from each group were analyzed with a scanning electron microscope. In enamel, ARC (9.96 MPa) had higher shear strength (P=.038) than U100 (5.14 MPa); however, after surface etching, U100 (17.81 MPa) and U200 (17.52 MPa) had higher shear strength (Padhesive type. U200 self-adhesive cement had similar bond strength to the ARC in enamel, but the combination with phosphoric acid had the best bond strength. For dentin, self-adhesive resin cements are equally effective alternatives to conventional resin cement. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Cement-Polymer Composite Containers for Radioactive Wastes Disposal

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.; Bayoumi, T.A.; Saleh, H.M.

    2009-01-01

    Improving cement-composite containers using polymer as organic additives was studied extensively. Both unsaturated styrenated polyester (SPE) and polymethyl methacrylate (PMMA) were used to fill the pores in cement containers that used for disposal of radioactive wastes. Two different techniques were adopted for the addition of organic polymers based on their viscosity. The low density PMMA was added using impregnation technique. On the other hand high density SPE was mixed with cement paste as a premix process. Predetermined weight of dried borate radioactive powder waste simulate was introduced into the Cement-polymer composite (CPC) container and then closed before subjecting it to leaching characterization. The effect of the organic polymers on the hydration of cement matrix and on the properties of the obtained CPC container has been studied using X-ray diffraction, IR-analysis, thermal effects and weight loss. Porosity, pore parameters and rate of release were also determined. The results obtained showed that for the candidate CPC container positive effect of polymer dominates and an improvement in the retardation rate of PMMA release radionuclides was observed

  10. Reinforcing graphene oxide/cement composite with NH2 ...

    Indian Academy of Sciences (India)

    Reinforcing graphene oxide/cement composite with NH2 functionalizing group. M EBRAHIMIZADEH ABRISHAMI1,∗ and V ZAHABI2. 1Materials and Electroceramics Laboratory, Department of Physics, Ferdowsi University of Mashhad, Mashhad. 9177948974, Iran. 2Department of Civil Engineering, Islamic Azad University, ...

  11. Rational design of cement composites containing pozzolanic additions

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Urbanová, Martina; Brus, Jiří; Čáchová, M.; Fořt, J.; Trník, A.; Scheinherrová, L.; Záleská, M.; Černý, R.

    2017-01-01

    Roč. 148, 1 September (2017), s. 411-418 ISSN 0950-0618 R&D Projects: GA ČR(CZ) GA16-13778S Institutional support: RVO:61389013 Keywords : cement composites * pozzolanic additions * XRD analysis Subject RIV: JN - Civil Engineering OBOR OECD: Civil engineering Impact factor: 3.169, year: 2016

  12. Effect of light-curing units, post-cured time and shade of resin cement on knoop hardness.

    Science.gov (United States)

    Reges, Rogério Vieira; Costa, Ana Rosa; Correr, Américo Bortolazzo; Piva, Evandro; Puppin-Rontani, Regina Maria; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2009-01-01

    The aim of this study was to evaluate the Knoop hardness after 15 min and 24 h of different shades of a dual-cured resin-based cement after indirect photoactivation (ceramic restoration) with 2 light-curing units (LCUs). The resin cement Variolink II (Ivoclar Vivadent) shade XL, A2, A3 and opaque were mixed with the catalyst paste and inserted into a black Teflon mold (5 mm diameter x 1 mm high). A transparent strip was placed over the mold and a ceramic disc (Duceram Plus, shade A3) was positioned over the resin cement. Light-activation was performed through the ceramic for 40 s using quartz-tungsten-halogen (QTH) (XL 2500; 3M ESPE) or light-emitting diode (LED) (Ultrablue Is, DMC) LCUs with power density of 615 and 610 mW/cm(2), respectively. The Koop hardness was measured using a microhardness tester HMV 2 (Shimadzu) after 15 min or 24 h. Four indentations were made in each specimen. Data were subjected to ANOVA and Tukey's test (alpha=0.05). The QTH LCU provided significantly higher (pcement showed lower Knoop hardness than the other shades for both LCUs and post-cure times.

  13. Effect of energy density and delay time on the degree of conversion and Knoop microhardness of a dual resin cement.

    Science.gov (United States)

    Mainardi, Maria do Carmo A J; Giorgi, Maria Cecília C; Lima, Débora A N L; Marchi, Giselle M; Ambrosano, Gláucia M; Paulillo, Luiz A M S; Aguiar, Flávio H B

    2015-02-01

    In the present study, we evaluated the influence of the photo-curing delay time and energy density on the degree of conversion and the Knoop microhardness of a resin cement. Seventy-eight samples were assigned to 13 groups (n = 6), one of which received no light curing (control). The samples were made of a dual-cured resin cement (RelyX ARC) with the aid of a Teflon matrix, submitted to one of the following energy densities (J/cm²): 7, 14, 20, and 28. Delay times were immediate (0), 1 min, or 2 min. After 24 h, the degree of conversion and microhardness were measured at three segments: cervical, medium, and apical. Data were submitted to three-way anova and Tukey's and Dunnett's tests, the latest of which was used to compare the control to the experimental groups. No interaction was observed between delay time and energy density regarding the degree of conversion. The cervical segment showed the highest values, while the apical showed the lowest. Microhardness values concerning the cervical segment in all groups were statistically different from that obtained for the control. A high-irradiance light-curing unit allows for a reduced irradiation exposure time with a short delay time, aimed at tooth restorations using a dual-cured resin cement. © 2014 Wiley Publishing Asia Pty Ltd.

  14. Influence of energy density of different light sources on Knoop hardness of a dual-cured resin cement.

    Science.gov (United States)

    Piva, Evandro; Correr-Sobrinho, Lourenço; Sinhoreti, Mario Alexandre Coelho; Consani, Simonides; Demarco, Flávio Fernando; Powers, John Michael

    2008-01-01

    The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs) were tested: tungsten halogen light (HAL), light-emitting diode (LED) and xenon plasma-arc (PAC) lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce). Three energy doses were used by modifying the irradiance (I) of each LCU and the irradiation time (T): 24 Jcm(-2) (I/2x2T), 24 Jcm(-2) (IxT) and 48 Jcm(-2) (Ix2T). Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus). Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10). Knoop hardness number (KHN) means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (alpha=5%). Application of 48 J.cm(-2) energy dose through the ceramic using LED (50.5+/-2.8) and HAL (50.9+/-3.7) produced significantly higher KHN means (p<0.05) than the control (44.7+/-3.8). LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  15. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    Science.gov (United States)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  16. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  17. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  18. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  19. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  20. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement.

    Science.gov (United States)

    Diem, Vu Thi Kieu; Tyas, Martin J; Ngo, Hien C; Phuong, Lam Hoai; Khanh, Ngo Dong

    2014-04-01

    The main aim of the study was to compare the clinical performance of the conventional high-powder/liquid ratio glass-ionomer cement (GIC) Fuji IX GP Extra (F IX), Fuji IX GP Extra with a low-viscosity nano-filled resin coating, G-Coat Plus (F IX+GCP), and a resin composite, Solare (S), as a comparison material. Moderate-depth occlusal cavities in the first permanent molars of 91 11-12-year-old children (1-4 restorations per child) were restored with either F IX (87 restorations), F IX+GCP (84 restorations) or S (83 restorations). Direct clinical assessment, photographic assessment and assessment of stone casts of the restorations were carried out at 6 months, 1 year, 2 years and 3 years. The colour match with the tooth of the GIC restorations improved over the 3 years of the study. Marginal staining and marginal adaptation were minimal for all restorations; three restorations exhibited secondary caries at 3 years. From the assessment of the casts, at 2 years, there was significantly less wear of the F IX GP Extra+GCP restorations than the F IX GP Extra restorations (P G-Coat Plus showed acceptable clinical performance in occlusal cavities in children, the application of G-Coat Plus gave some protection against wear. The application of G-Coat Plus to Fuji IX GP Extra glass-ionomer cement may be beneficial in reducing wear in occlusal cavities.

  1. Accelerated weathering of composite cements used for immobilisation

    International Nuclear Information System (INIS)

    Borges, P. H. R.; Milestone, N. B.; Streatfield, R. E.

    2008-01-01

    Trying to estimate the long-term durability of cemented waste-forms is a difficult task as the cement matrix is a reactive medium and interactions can occur with the encapsulated waste as well as with the environment. There are few studies of samples that have been stored under controlled conditions for more than 10-15 years. waste-forms are now being expected to last hundreds of years, much of that likely to be in some form of storage where sample integrity is important. There is also the concern that results from any long-term samples may only be indicative as both formulations and materials change with time. This paper discusses changes in physical properties that occur in composite cements when some of the short-term accelerated procedures employed in construction testing are applied to encapsulating matrices. Changes after increased temperature of curing, wetting/drying and accelerated carbonation are discussed. Many of the encapsulating formulations currently used are composite cements where large replacement levels of OPC with supplementary cementing materials (SCMs) such as PFA or BFS are made, primarily to reduce heat output. Accelerating the exposure conditions, either by increasing temperature or through wetting/drying has the effect of changing the hydration pattern of the composite cement by generating more hydration in the SCMs than would normally occur. The large amount of porosity that occurs because of limited hydration allows intrusion of gases and ready movement of water, so the samples subjected to accelerated testing do not appear as durable as expected if stored at ambient. (authors)

  2. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  3. 3.4. Chemical additives and granulometric composition influence on soils armed by cement

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    Purpose of this work was to evaluate an influence of various chemical additives on soils armed by portland cement. Experimental research of kinetics of soil cements structure formation after adding the chemicals was carried out. According to the investigations it was determined that structure formation process of soil cements depended on granulometric composition of armed soil, cement quantity, type and quantity of chemical additives.

  4. Immobilisation in cement of ion exchange resins arising from the purification of reagents used for the decontamination of reactor circuits

    International Nuclear Information System (INIS)

    Donoghue, S.J.; Howard, C.G.; Lee, D.J.

    1987-06-01

    An account of the annual decontaminations undertaken on the SGHWR at Winfrith is given with reasons for changing from Citrox reagents to LOMI plus the effects of using nitric acid permanganate solution as a preoxidising agent. Safe disposal of these reagents after use is a problem concerning many water cooled reactor operators. A brief review of the various methods of disposal is given. The proposed method of disposing of LOMI wastes generated at Winfrith is to remove the activity onto ion exchange resins then immobilize them in a cement matrix. Duolite C225 (a cross linked polystyrene with sulphonic acid functional groups) has been identified as a suitable ion exchanger. Duolite C225 in the sodium form can be successfully immobilised in blended cement systems. The formulation which appears acceptable is manufactured from a 9 to 1 blend of Blast Furnace Slag and Ordinary Portland Cement, containing 40% ion exchange resin by weight, in the form of a slurry. The product has adequate strength for handling and shows little dimensional change with time. Experiments show that above 50% waste loading the product becomes unstable and its strength is unacceptably low. Changes in the metal cation have shown little effect on the properties of the product. Increasing the waste loading appears to have little effect on the hydration rate of the product. Preliminary calculations show that a volume reduction factor of 4 is obtained by taking the active LOMI effluent, removing the activity onto the Duolite C225 and then immobilising in cement. (author)

  5. Microleakage of conventional, resin-modified, and nano-ionomer glass ionomer cement as primary teeth filling material

    Directory of Open Access Journals (Sweden)

    Dita Madyarani

    2014-12-01

    Full Text Available Background: Glass ionomer cements are one of many dental materials that widely used in pediatric dentistry due to their advantage of fluoride release and chemical bond to tooth structure. Adherence of the filling material to the cavity walls is one of the most important characteristic that need to be examined its effect on microleakage. Purpose: This study was conducted to examine the microleakage of nano-ionomer glass ionomer cement compared with the conventional and resin-modified glass ionomer cements. Methods: Standard class V cavities sized 3 mm x 2 mm x 2 mm were made on a total of 21 extracted maxillary primary canine teeth and restored with the conventional, resin-modified, dan nano-ionomer glass ionomer cements. All the teeth were immersed in a 2% methylene blue dye for 4 hours. The depth of dye penetration was assessed using digital microscope after sectioning the teeth labio-palatally. The results were statistically analyzed using Kruskal-Wallis test. Results: All type of glass ionomer material showed microleakage. Conventional glass ionomer cement demonstrated the least microleakage with mean score 1.29. the resin-modified glass ionomer cements (mean score 1.57 and nano-ionomer glass ionomer cement (mean score 2.57. Conclusion: The conventional glassionomer, resin modified glassionomer, and nano-ionomer glassionomer showed micro leakage as filling material in primary teeth cavity. The micro leakage among three types was not significant difference. All three material were comparable in performance and can be used for filling material but still needs a coating material to fill the microleakage.Latar belakang: Semen ionomer kaca adalah salah satu dari banyak bahan gigi yang banyak digunakan dalam praktek kedokteran gigi anak karena bahan tersebut merilis fluoride dan berikatan kimia dengan struktur gigi. Perlekatan bahan tumpatan pada dinding kavitas adalah salah satu karakteristik paling penting yang perlu diteliti efeknya terhadap

  6. A qualitative chemometric study of resin composite polymerization

    Directory of Open Access Journals (Sweden)

    Regina Ferraz Mendes

    2008-01-01

    Full Text Available Objective: An experiment was carried out to assess the effect produced by different polymerization techniques on resin composite color after it has been immersed in coffee. Methods: Samples were manufactured using TPH Spectrum composite. It was polymerized for 10 or 40 seconds, with the light tip at one or zero millimeters from the resin surface, and afterwards the samples were immersed in coffee for 24 hours or 7 days. Ten different evaluators classified the samples according to their degree of staining. Results: The samples that were polymerized for 10 seconds were more susceptible to staining than the ones polymerized by 40 seconds. Samples immersed in coffee for 7 days were more susceptible to staining than the ones immersed for 24 hours. Conclusion: The variables polymerization time and immersion time were determinant in the staining susceptibility of the studied composite by coffee. However, there was no significant difference, irrespective of whether the resin was polymerized 10 or zero millimeters away from the resin surface.

  7. Evaluation of the bond strength of resin cements used to lute ceramics on laser-etched dentin.

    Science.gov (United States)

    Giray, Figen Eren; Duzdar, Lale; Oksuz, Mustafa; Tanboga, Ilknur

    2014-07-01

    The purpose of this study was to investigate the shear bond strength (SBS) of two different adhesive resin cements used to lute ceramics on laser-etched dentin. Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation has been claimed to improve the adhesive properties of dentin, but results to date have been controversial, and its compatibility with existing adhesive resin cements has not been conclusively determined. Two adhesive cements, one "etch-and-rinse" [Variolink II (V)] and one "self-etch" [Clearfil Esthetic Cement (C)] luting cement, were used to lute ceramic blocks (Vita Celay Blanks, Vita) onto dentin surfaces. In total, 80 dentin specimens were distributed randomly into eight experimental groups according to the dentin surface-etching technique used Er,Cr:YSGG laser and Er:YAG laser: (1) 37% orthophosphoric acid+V (control group), (2) Er,Cr:YSGG laser+V, (3) Er,Cr:YSGG laser+acid+V, (4) Er:YAG laser+V, (5) Er:YAG laser+acid+V, (6) C, (7) Er,Cr:YSGG laser+C, and (8) Er:YAG laser+C. Following these applications, the ceramic discs were bonded to prepared surfaces and were shear loaded in a universal testing machine until fracture. SBS was recorded for each group in MPa. Shear test values were evaluated statistically using the Mann-Whitney U test. No statistically significant differences were evident between the control group and the other groups (p>0.05). The Er,Cr:YSGG laser+A+V group demonstrated significantly higher SBS than did the Er,Cr:YSGG laser+V group (p=0.034). The Er,Cr:YSGG laser+C and Er:YAG laser+C groups demonstrated significantly lower SBS than did the C group (pceramic bond strengths, depending upon the adhesive cement used.

  8. Development of new addition-type composite resins

    Science.gov (United States)

    Kray, R. J.

    1981-01-01

    The most promising of a number of new addition type polyimides and polyaromatic melamine (NCNS) resins for use in high performance composite materials. Three different cure temperature ranges were of interest: 530-560 K (500-550 F), 475-530 K (400-500 F), and 450 K (350 F). Examined were a wide variety of polyimide precursors terminated with 5 norbornene groups and addition polymerized at 560 K similar to PMR-15 and LARC-160 polyimides. In addition, a number of lower curing cinnamal end capped polyimides and a bismaleimide were investigated but were not found promising. A group of NCNS resins were investigated and some were found to be superior to current epoxy resins in moisture resistance, oxidative aging and flame and smoke properties.

  9. Effect of light energy density on conversion degree and hardness of dual-cured resin cement.

    Science.gov (United States)

    Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2010-01-01

    This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.

  10. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  11. Additives for cement compositions based on modified peat

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com; Demyanenko, Olga, E-mail: angel-n@sibmail.com [Tomsk State University of Architecture and Building, 2, Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  12. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Science.gov (United States)

    de ANDRADE, Andrea Mello; MOURA, Sandra Kiss; REIS, Alessandra; LOGUERCIO, Alessandro Dourado; GARCIA, Eugenio Jose; GRANDE, Rosa Helena Miranda

    2010-01-01

    Objectives The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (µTBS) and microshear bond strength (µSBS) tests on enamel, and to correlate the bond strength means between them. Material and methods Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for µTBS and the other one for µSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37ºC/24 h) specimens were stressed (0.5 mm/ min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). Results The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (padhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions. PMID:21308290

  13. Terpenoid composition and class of Tertiary resins from India

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa; Mathews, Runcie Paul [Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Bertram, Norbert [LTA-Labor fuer Toxikologie und Analytik, Friedrichshoeher Str. 28, D-53639 Koenigswinter (Germany); Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemitry Centres (M090), The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009 (Australia); WA - Organic and Isotope Geochemistry Centre, Curtin University of Technology, Kent St., Bentley 6102 (Australia)

    2009-10-01

    The terpenoid composition and class of Tertiary resins preserved within lignites of Cambay, Kutch and Cauvery Basins of India have been characterized using Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) and Fourier Transform Infrared (FTIR) Spectroscopy. Major pyrolysis products include cadalene-based C{sub 15}-bicyclic sesquiterpenoids with some C{sub 30} and C{sub 31} bicadinanes and bicadinenes typical of Class II or dammar resin. The occurrence of these terpenoids in Early Eocene sediments may extend the first appearance of Dipterocarpaceae angiosperms, the predominant source of this resin class, back to the Early Eocene epoch in India. The same terpenoid biomarkers have been detected in many SE Asian oils reflecting a close source relationship with these resins. Strong CH{sub 3} (1377 cm{sup -} {sup 1}) and other CH{sub x} (3000-2800 and 1460-1450 cm{sup -} {sup 1}) aliphatic absorptions of much larger intensity than the aromatic C = C (1560-1650 cm{sup -} {sup 1}) absorption were detected in the Indian resins by FTIR Spectroscopy, confirming the quantitative significance of the terpenoid pyrolysates. (author)

  14. Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites.

    Science.gov (United States)

    Shin, Eeseul; Ju, Sung Won; An, Larry; Ahn, Eungjin; Ahn, Jin-Soo; Kim, Byeong-Su; Ahn, B Kollbe

    2018-01-17

    In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.

  15. Radiopacity of 28 Composite Resins for Teeth Restorations.

    Science.gov (United States)

    Raitz, Ricardo; Moruzzi, Patrizia Dubinskas; Vieira, Glauco; Fenyo-Pereira, Marlene

    2016-02-01

    Radiopacity is a fundamental requisite to check marginal adaptation of restorations. Our objective was to assess the radiopacity of 28 brands of light-cured composite resins and compare their radiopacity with that of enamel, dentin, and aluminum of equivalent thickness. Composite resin disks (0.2, 0.5, and 1 mm) were radiographed by the digital method, together with an aluminum penetrometer and a human tooth equivalent tooth section. The degree of radiopacity of each image was quantified using digital image processing. Wilcoxon nonparametric test was used for comparison of the mean thickness of each material. All of the materials tested had an equal or greater radiopacity than that of aluminum of equivalent thickness. Similar results for enamel were found with the exception of Durafill, which was less radiopaque than enamel (p composite resins comply with specification #27 of the American Dental Association. The radiopacity of Amelogen Plus, Aph, Brilhiante, Charisma, Concept Advanced, Evolux X, Exthet X, Inten S, Llis, Master Fill, Natural Look, Opallis, P60, Tetric, Tph, Z100, and Z250 was significantly higher than that of enamel (p composites, it is possible to observe the boundaries between restoration and tooth structure, thus allowing clinicians to establish the presence of microleakage or restoration gap. Suitable radiopacity is an essential requisite for good-quality esthetic restorative materials. We demonstrate that only some composites have the sufficient radiopacity to observe the boundaries between restoration and tooth structure, which is the main cause of restoration failure.

  16. Does the light source affect the repairability of composite resins?

    Science.gov (United States)

    Karaman, Emel; Gönülol, Nihan

    2014-01-01

    The aim of this study was to examine the effect of the light source on the microshear bond strength of different composite resins repaired with the same substrate. Thirty cylindrical specimens of each composite resin--Filtek Silorane, Filtek Z550 (3M ESPE), Gradia Direct Anterior (GC), and Aelite Posterior (BISCO)--were prepared and light-cured with a QTH light curing unit (LCU). The specimens were aged by thermal cycling and divided into three subgroups according to the light source used--QTH, LED, or PAC (n = 10). They were repaired with the same substrate and a Clearfil Repair Kit (Kuraray). The specimens were light-cured and aged for 1 week in distilled water at 37 °C. The microshear bond strength and failure modes were assessed. There was no significant difference in the microshear bond strength values among the composite resins, except for the Filtek Silorane group that showed significantly lower bond strength values when polymerized with the PAC unit compared to the QTH or LED unit. In conclusion, previously placed dimethacrylate-based composites can be repaired with different light sources; however, if the composite to be repaired is silorane-based, then using a QTH or LED device may be the best option.

  17. Study on thermal conductive BN/novolac resin composites

    International Nuclear Information System (INIS)

    Li, Shasha; Qi, Shuhua; Liu, Nailiang; Cao, Peng

    2011-01-01

    Highlights: → Boron nitride (BN) particles were used to modify novolac resin. → BN particles were pretreated by γ-aminopropyltriethoxysilane. → The thermal conductivity trend of composite almost agrees with the predicted data from the Maxwell-Eucken model. → At BN concentration of 80 wt.%, thermal conductivity value of composite is 4.5 times that of pure novolac resin. → Combined use of the larger and smaller particles with a mass ratio of 1:2 provides the composites with the maximum thermal conductivity among the testing systems. → The composite thermal property also increases with an increase in the BN concentration. - Abstract: In this study, γ-aminopropyltriethoxysilane-treated boron nitride (BN) particles were used to modify novolac resin. The effect of varying the BN concentration, particle size, and hybrid BN fillers with the binary particle size distribution on the thermal conductivity of the composites was investigated. Scanning electron microscopy (SEM) imaging showed homogeneously dispersed treated BN particles in the matrix. Furthermore, the thermal conductivity increased as the BN concentration was increased. This behavior was also observed when the filler size was increased. Experimentally obtained thermal conductivity values agree with the predicted data from the Maxwell-Eucken model well at less than 70 wt.% BN loading. A larger particle size BN-filled novolac resin exhibits a higher thermal conductivity than a smaller particle size BN-filled one. The combined use of 0.5 and 15 μm particles with a mass ratio of 2:1 achieved the maximum thermal conductivity among the testing systems. The thermal resistance properties of the composites were also studied.

  18. Interactions between resin monomers and commercial composite resins with human saliva derived esterases.

    Science.gov (United States)

    Jaffer, F; Finer, Y; Santerre, J P

    2002-04-01

    Cholesterol esterase (CE) and pseudocholinesterase (PCE) have been reported to degrade commercial and model composite resins containing bisphenylglycidyl dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) or the latter in combination with urethane modified BisGMA monomer systems. In addition, human saliva has been shown to contain esterase like activities similar to CE and PCE. Hence, it was the aim of the current study to determine to what extent human saliva could degrade two common commercial composite resins (Z250 from 3M Inc. and Spectrum TPH from L.D. Caulk) which contain the above monomer systems. Saliva samples from different volunteers were collected, processed, pooled, and freeze-dried. TEGDMA and BisGMA monomers were incubated with human saliva derived esterase activity (HSDEA) and their respective hydrolysis was monitored using high performance liquid chromatography (HPLC). Both monomers were completely hydrolyzed within 25 h by HSDEA. Photopolymerized composites were incubated with buffer or human saliva (pH 7.0 and 37 C) for 2, 8 and 16 days. The incubation solutions were analyzed using HPLC and mass spectrometry. Surface morphology characterization was carried out using scanning electron microscopy. Upon biodegradation, the Z250 composite yielded higher amounts of BisGMA and TEGDMA related products relative to the TPH composite. However, there were higher amounts of ethoxylated bis-phenol A released from the TPH material. In terms of total mass of products released, human saliva demonstrated a greater ability to degrade Z250. In summary, HSDEA has been shown to contain esterase activities that can readily catalyze the biodegradation of current commercial composite resins.

  19. Impact performance of the fibre-cement composites

    International Nuclear Information System (INIS)

    Agopyan, V.; Savastano Junior, H.

    1995-01-01

    The transition zone of short filament fibres randomly dispersed in a paste of ordinary portland cement is analysed. Composites of vegetable fibres (malva, sisal and coir) are compared with those containing chrysotile asbestos and polypropylene fibres. The series of composites are prepared to be tested at the ages of 7, 28, 90 and 180 days. The water-cement ratio is 0.38 and at the age of 28 days specimens with ratio of 0.30 and 0.46 are also tested. The backscattered electron image and energy dispersive spectroscopy identify the major properties of the fibre-matrix interface. The microstructural characteristics are directly associated with the toughness of the composites, once the energy dissipation at transition zone is confirmed. (author). 8 refs., 4 figs., 1 tab

  20. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  1. Influence of polymerization time and depth of cure of resin composites determined by Vickers hardness

    Directory of Open Access Journals (Sweden)

    Marco Lombardini

    2012-01-01

    Conclusion: Among the materials tested, the nanofilled and the nanohybrid resin composites were rather insensible to thickness variations. Miicrohybrid composites, instead, had features different from one another.

  2. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    Science.gov (United States)

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Boron/aluminum graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  4. Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors

    Directory of Open Access Journals (Sweden)

    Akimasa Tsujimoto

    2018-05-01

    Full Text Available Summary: The application of resin composites in dentistry has become increasingly widespread due to the increased aesthetic demands of patients, improvements in the formulation of resin composites, and the ability of these materials to bond to tooth structures, together with concerns about dental amalgam fillings. As resistance to wear is an important factor in determining the clinical success of resin composite restoratives, this review article defines what constitutes wear and describes the major underlying phenomena involved in this process. Insights are further included on both in vivo and in vitro tests used to determine the wear resistance of resin composite and the relationships between these tests. The discussion focuses on factors that contribute to the wear of resin composite. Finally, future perspectives are included on both clinical and laboratory tests and on the development of resin composite restorations. Keywords: Resin composites, Wear resistance, Wear testing

  5. Surface roughness of composite resins subjected to hydrochloric acid.

    Science.gov (United States)

    Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez

    2015-01-01

    The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.

  6. Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

    Science.gov (United States)

    Kameyama, Atsushi; Bonroy, Kim; Elsen, Caroline; Lührs, Anne-Katrin; Suyama, Yuji; Peumans, Marleen; Van Meerbeek, Bart; De Munck, Jan

    2015-01-01

    The aim of this study was to investigate bonding effectiveness in direct restorations. A two-step self-etch adhesive and a light-cure resin composite was compared with luting with a conventional dual-cure resin cement and a two-step etch and rinse adhesive. Class-I box-type cavities were prepared. Identical ceramic inlays were designed and fabricated with a computer-aided design/computer-aided manufacturing (CAD/CAM) device. The inlays were seated with Clearfil SE Bond/Clearfil AP-X (Kuraray Medical) or ExciTE F DSC/Variolink II (Ivoclar Vivadent), each by two operators (five teeth per group). The inlays were stored in water for one week at 37°C, whereafter micro-tensile bond strength testing was conducted. The micro-tensile bond strength of the direct composite was significantly higher than that from conventional luting, and was independent of the operator (P<0.0001). Pre-testing failures were only observed with the conventional method. High-power light-curing of a direct composite may be a viable alternative to luting lithium disilicate glass-ceramic CAD/CAM restorations.

  7. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  8. The Influence of Hydroxylated Carbon Nanotubes on Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jiaoxia Zhang

    2012-01-01

    Full Text Available Hydroxylated multiwall carbon nanotubes (MWNTs/epoxy resin nanocomposites were prepared with ultrasonic dispersion and casting molding. The effect of hydroxylated MWNTs content on reactive activity of composites is discussed. Then the flexural and electrical properties were studied. Transmission electron microscope was employed to characterize the microstructure of nanocomposites. As a result, the reactive activity of nanocomposites obtained increases with the increasing content of MWNTs. When MWNTs content of the composites is 1 wt%, as compared to neat resin, the flexural strength increases from 143 Mpa to 156 MPa, the modulus increases from 3563 Mpa to 3691 MPa, and the volume and surface resistance of nanocomposites decrease by two orders of magnitude, respectively.

  9. Mechanical properties of cement concrete composites containing nano-metakaolin

    Science.gov (United States)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  10. Effects of polishing procedures on color stability of composite resins

    Directory of Open Access Journals (Sweden)

    Ahmet Umut Güler

    2009-04-01

    Full Text Available The purpose of this study was to investigate the effect of different polishing methods on color stability of posterior, universal and nanohybrid composite resin restorative materials upon exposure to a staining agent. Twenty-five specimens were prepared for each of 5 different composite resins (Filtek Z250, Filtek P60, Quadrant LC, Grandio and Filtek Supreme. Specimens were divided into 5 groups and different polishing procedures, including polishing discs (Pd, polishing discs then diamond polishing paste (PdP, polishing discs then a liquid polishing system (Biscover (PdB, and combinations of these (PdPB were used. Unpolished specimens served as the control (C. The specimens were stored for 48 h in a coffee solution. The color of all specimens was measured before and after exposure with a colorimeter, and total color change (DE* were calculated. The data were analyzed with a two-way ANOVA and the means were compared by Tukey HSD test (a=0.05. The lowest color difference was observed in the groups PdP and C, while the highest color difference was observed in PdPB, and PdB. When comparing the five different restorative materials, no significant difference was observed between FiltekP60 and FiltekZ250, and these materials demonstrated significantly less color change than Quadrant LC and the nanohybrid materials (Grandio, Filtek Supreme. The posterior (Filtek P60 and universal (Filtek Z250 composite resin restorative materials, which do not contain tetraethyleneglycol dimethacrylate (TEGDMA, were found to be less stainable than the nanohybrid (Grandio, Filtek Supreme and universal (Quadrant LC composite resins, which contain TEGDMA. The use of diamond polishing paste after polishing with polishing discs significantly decreased staining when compared to the groups that used polishing discs alone, for all restorative materials tested. The highest color change values were obtained for the specimens that were polished with the Biscover liquid polish

  11. Use of coir pith particles in composites with Portland cement.

    Science.gov (United States)

    Brasileiro, Gisela Azevedo Menezes; Vieira, Jhonatas Augusto Rocha; Barreto, Ledjane Silva

    2013-12-15

    Brazil is the fourth largest world's producer of coconut (Cocos nucifera L.). Coconut crops generate several wastes, including, coir pith. Coir pith and short fibers are the byproducts of extracting the long fibers and account for approximately 70% of the mature coconut husk. The main use of coir pith is as an agricultural substrate. Due to its shape and small size (0.075-1.2 mm), this material can be considered as a particulate material. The aim of this study was to evaluate the use of coir pith as an aggregate in cementitious composites and to evaluate the effect of the presence of sand in the performance of these composites. Some composites were produced exclusively with coir pith particles and other composites with coir pith partially substituting the natural sand. The cementitious composites developed were tested for their physical and mechanical properties and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy to evaluate the effect of coir pith particles addition in cement paste and sand-cement-mortar. The statistical significance of the results was evaluated by one-way analysis of variance (ANOVA) test followed by multiple comparisons of the means by Tukey's test that showed that the composites with coir pith particles, with or without natural sand, had similar mechanical results, i.e., means were not statistically different at 5% significance level. There was a reduction in bulk density and an improved post-cracking behavior in the composites with coir pith particles compared to conventional mortar and to cement paste. These composites can be used for the production of lightweight, nonstructural building materials, according to the values of compressive strength (3.97-4.35 MPa) and low bulk density (0.99-1.26 g/cm(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Physical and thermal behavior of cement composites reinforced with recycled waste paper fibers

    Science.gov (United States)

    Hospodarova, Viola; Stevulova, Nadezda; Vaclavik, Vojtech; Dvorsky, Tomas

    2017-07-01

    In this study, three types of recycled waste paper fibers were used to manufacture cement composites reinforced with recycled cellulosic fibers. Waste cellulosic fibers in quantity of 0.2, 0.3, and 0.5 wt.% were added to cement mixtures. Physical properties such as density, water capillarity, water absorbability and thermal conductivity of fiber cement composites were studied after 28 days of hardening. However, durability of composites was tested after their water storage up to 90 days. Final results of tested properties of fiber cement composites were compared with cement reference sample without cellulosic fibers.

  13. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement.

    Science.gov (United States)

    Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin; Tulga, Ayça

    2017-12-01

    To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) ( P CAD/CAM restorative materials was modified after treatments. The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials.

  14. Do blood contamination and haemostatic agents affect microtensile bond strength of dual cured resin cement to dentin?

    Directory of Open Access Journals (Sweden)

    Kerem KiLiC

    2013-01-01

    Full Text Available Objective The purpose of this study was to evaluate the effects of blood contamination and haemostatic agents such as Ankaferd Blood Stopper (ABS and hydrogen peroxide (H2O2 on the microtensile bond strength between dual cured resin cement-dentin interface. Material and Methods Twelve pressed lithium disilicate glass ceramics were luted to flat occlusal dentin surfaces with Panavia F under the following conditions: Control Group: no contamination, Group Blood: blood contamination, Group ABS: ABS contamination Group H2O2: H2O2 contamination. The specimens were sectioned to the beams and microtensile testing was carried out. Failure modes were classified under stereomicroscope. Two specimens were randomly selected from each group, and SEM analyses were performed. Results There were significant differences in microtensile bond strengths (µTBS between the control and blood-contaminated groups (p0.05. Conclusions Contamination by blood of dentin surface prior to bonding reduced the bond strength between resin cement and the dentin. Ankaferd Blood Stoper and H2O2 could be used safely as blood stopping agents during cementation of all-ceramics to dentin to prevent bond failure due to blood contamination.

  15. Replacement of Anterior Composite Resin Restorations Using Conservative Ceramics for Occlusal and Periodontal Rehabilitation: An 18-Month Clinical Follow-Up

    Directory of Open Access Journals (Sweden)

    Leonardo Fernandes da Cunha

    2016-01-01

    Full Text Available This case report describes a patient with discolored and fractured composite resin restorations on the anterior teeth in whom substitution was indicated. After wax-up and mock-up, the composite was removed and replaced with minimally invasive ceramic laminates. An established and predictable protocol was performed using resin cement. Minimally invasive ceramic restorations are increasingly being used to replace composite restorations. This treatment improves the occlusal and periodontal aspects during the planning and restorative phases, such as anterior guides, and laterality can be restored easily with ceramic laminates. In addition, the surface smoothness and contour of ceramic restorations do not affect the health of the surrounding periodontal tissues. Here we present the outcome after 18 months of clinical follow-up in a patient in whom composite resin restorations in the anterior teeth were replaced with minimally invasive ceramic laminates.

  16. Repair bond strength of resin composite to bilayer dental ceramics

    Science.gov (United States)

    2018-01-01

    PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430

  17. Initial polishing time affects gloss retention in resin composites.

    Science.gov (United States)

    Waheeb, Nehal; Silikas, Nick; Watts, David

    2012-10-01

    To determine the effect of finishing and polishing time on the surface gloss of various resin-composites before and after simulated toothbrushing. Eight representative resin-composites (Ceram X mono, Ceram X duo, Tetric EvoCeram, Venus Diamond, EsteliteSigma Quick, Esthet.X HD, Filtek Supreme XT and Spectrum TPH) were used to prepare 80 disc-shaped (12 mm x 2 mm) specimens. The two step system Venus Supra was used for polishing the specimens for 3 minutes (Group A) and 10 minutes (Group B). All specimens were subjected to 16,000 cycles of simulated toothbrushing. The surface gloss was measured after polishing and after brushing using the gloss meter. Results were evaluated using one way ANOVA, two ways ANOVA and Dennett's post hoc test (P = 0.05). Group B (10-minute polishing) resulted in higher gloss values (GV) for all specimens compared to Group A (3 minutes). Also Group B showed better gloss retention compared to Group A after simulated toothbrushing. In each group, there was a significant difference between the polished composite resins (P gloss after the simulated toothbrushing.

  18. Polymer-Cement Composites Containing Waste Perlite Powder

    Directory of Open Access Journals (Sweden)

    Paweł Łukowski

    2016-10-01

    Full Text Available Polymer-cement composites (PCCs are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  19. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    Science.gov (United States)

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  20. Influence of different degrees of acetylation in the physical and mechanical properties of particleboards and wood-cement composites

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2014-12-01

    Full Text Available Chemical modified wood particles used to particleboards manufacture may, at the same time, improve the dimensional stability and damage the internal bond. The aim of this research was find the optimal point of acetylation for particleboards. Pinus taeda particles with different degrees of acetylation, 8, 15 and 20% of weight percentage gain (WGP, were used in the production of particleboards with urea-formaldehyde resin and wood-cement composites produced by mechanical and vibratory compaction. It was evaluated the water absorption, thickness swelling and internal bind of the particleboards according to the European standards EN 317 and EN 319. Particleboards produced with 15 WPG showed the lowest water absorption and thickness swelling values. However, the use of chemically modified wood had a negative influence in the internal bind of the boards. This phenomenon can be explain due to the similar behavior between resin and water, that way, the high degree acetylation stops the adhesive and adherent bind. In the case of wood-cement composites, the internal bind improves as the acetylation degrees get higher. Nevertheless the inhibition of acetylated wood particles to the cement hydration got higher when the WPG was higher than 8%.

  1. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    Directory of Open Access Journals (Sweden)

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  2. POTENTIAL ANTISTATIC PROPERTIES OF A CEMENT COMPOSITION MODIFIED BY CHITOSAN

    Directory of Open Access Journals (Sweden)

    Darchiya Valentina Ivanovna

    2012-10-01

    Full Text Available Environmental compatibility of construction materials and their impact onto the human organism and the environment are the essential factors to be taken account of in the course of construction. Therefore, natural renewable biological polymers arouse interest. Polysaccharide chitin takes a special position among them. It represents one of the most widely spread biological polymers; it is extracted from 100% renewable materials. It is part of the external skeleton of crustaceans and insects, and it also part of cell walls of mushrooms and algae. Any research of potential materials to be generated from chitin and its derivative chitosan may involve a practical implementation. The research of the antistatic properties followed the introduction of 1% of chitosan into the cement composition. Electrostatic field intensity was measured by Electrostatic Field Intensity Meter ST-01. The electrostatic property of the sample modified by chitosan turned out to be lower than the one of the benchmark sample by 5.6 times. The presence of chitosan in the cement composition makes no impact on strength-related properties of the construction material. The cement composition modified by chitosan may be used in the manufacturing of antistatic self-leveling floors.

  3. Anterior makeover on fractured teeth by simple composite resin restoration

    Directory of Open Access Journals (Sweden)

    Eric Priyo Prasetyo

    2011-09-01

    Full Text Available Background: In daily practice dentists usually treat tooth fractures with more invasive treatments such as crown, veneer and bridges which preparation require more tooth structure removal. While currently there is trend toward minimal invasive dentistry which conserves more tooth structure. This is enhanced with the vast supply of dental materials and equipment in the market, including restorative materials. Provided with these supporting materials and equipment and greater patient’s demand for esthetic treatment, dentists must aware of the esthetics and basic principle of conserving tooth which should retain tooth longevity. Purpose: This article showed that a simple and less invasive composite resin restoration can successfully restore anterior esthetic and function of fractured teeth which generally treated with more invasive treatment options. Case: A 19 year-old female patient came with fracture on 21 and 22. This patient had a previous history of dental trauma about nine years before and was brought to a local dentist for debridement and was given analgesic, the involved teeth were not given any restorative treatment. Case management: The fractured 21 and 22 were conventionally restored with simple composite resin restoration. Conclusion: Fracture anterior teeth would certainly disturbs patient’s appearance, but these teeth could be managed conservatively and economically by simple composite resin restoration.Latar belakang: Dalam praktek sehari-hari pada umumnya dokter gigi merawat fraktur dengan restorasi invasif seperti mahkota, veneer dan jembatan yang semuanya memerlukan pengambilan jaringan gigi lebih banyak, sedangkan saat ini trend perawatan gigi lebih menuju kearah invasif minimal yang mempertahankan jaringan gigi sebanyak mungkin. Keadaan ini ditunjang oleh tersedianya berbagai macam bahan dan peralatan kedokteran gigi di pasaran, termasuk bahan restorasi. Dengan tersedianya bahan dan peralatan yang mendukung serta tingginya

  4. The effect of continuous application of MDP-containing primer and luting resin cement on bond strength to tribochemical silica-coated Y-TZP.

    Science.gov (United States)

    Lim, Myung-Jin; Yu, Mi-Kyung; Lee, Kwang-Won

    2018-05-01

    This study investigated the effect of continuous application of 10-methacryloyloxydecyldihydrogen phosphate (MDP)-containing primer and luting resin cement on bond strength to tribochemical silica-coated yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Forty bovine teeth and Y-TZP specimens were prepared. The dentin specimens were embedded in molds, with one side of the dentin exposed for cementation with the zirconia specimen. The Y-TZP specimen was prepared in the form of a cylinder with a diameter of 3 mm and a height of 10 mm. The bonding surface of the Y-TZP specimen was sandblasted with silica-coated aluminium oxide particles. The forty tribochemical silica-coated Y-TZP specimens were cemented to the bovine dentin (4 groups; n = 10) with either an MDP-free primer or an MDP-containing primer and either an MDP-free resin cement or an MDP-containing resin cement. After a shear bond strength (SBS) test, the data were analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The group with MDP-free primer and resin cement showed significantly lower SBS values than the MDP-containing groups ( p Y-TZP was the best choice among the alternatives tested in this study.

  5. Process for curing ionizing radiation-highly sensitive resin composition

    International Nuclear Information System (INIS)

    Araki, K.; Sasaki, T.; Tabei, K.; Goto, K.

    1979-01-01

    A process is described for curing a radiation curable composition consisting essentially of (a) an amide represented by the formula R,CONR 2 R 3 and (b) an unsaturated polyester resin by irradiating the composition with an ionizing radiation. R 1 is H, an alkyl groups having from 1 to 17 carbon atoms or an alkenyl groups having from 1 to 17 carbon atoms, and R 2 and R 3 are each -H, -CH 3 , or -CH 2 OH. R 1 and R 2 taken together represent alkylene having 2 to 5 carbon atoms

  6. Agricultural residues based composites part II: Hydration characteristics of cement- cellulosic fibers composites

    International Nuclear Information System (INIS)

    Hekal, E.E.; Kishar, E.A.; Abd-El-Khader, A.H.; Ibrahim, A.A.; Mobarak, F.M.

    2005-01-01

    The aim of this study is the utilization of the local agricultural wastes, such as ice straw bagasse, cotton stalks and linen fibers, which cause a big environmental problem. Different cement-fiber composites were prepared using 1.5, 3, 4.5 and 6% fibers by weight of cement. The lengths of the fibers used were 0.5, 0.8, and 1.25 mm. Hydration of the different, composites was carried out at room temperature for various lime intervals namely, 1.3,7 .28 and 90 days. Combined water contents, compressive strength and phase composition of the different prepared composites were examined

  7. Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements.

    Science.gov (United States)

    Lise, Diogo Pedrollo; Van Ende, Annelies; De Munck, Jan; Yoshihara, Kumiko; Nagaoka, Noriyuki; Cardoso Vieira, Luiz Clovis; Van Meerbeek, Bart

    2018-02-01

    To assess light irradiance (LI) delivered by two light-curing units (LCU's) and to measure the degree of conversion (DC) of three composite cements, when cured through different thicknesses of two novel CAD-CAM block materials. 100-μm-thick films of a dual-curable composite cement (G-CEM LinkAce, GC), a light-curable flowable resin-based composite (RBC) (G-ænial Universal Flo, GC) and a micro-hybrid RBC (G-ænial Posterior, GC) were investigated as luting agents. Two 'polymer-ceramic' CAD-CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were sectioned in slabs with different thicknesses (1, 3 and 5mm). LI at the bottom of the specimens was measured using a calibrated spectrometer, while being light-cured through the CAD-CAM block slabs for 40s with a low- (±500mW/cm 2 ) or high- (±1,600mW/cm 2 ) irradiance LCU (n=5). After light-curing, micro-Raman spectra of the composite films were acquired to determine DC at 5min, 10min, 1h and 24h. LI data were statistically analyzed by Kruskal-Wallis followed by post-hoc comparisons, while a linear mixed-effect model was applied for the DC analysis. In addition, the CAD-CAM blocks ultrastructure was characterized upon argon-ion slicing using scanning transmission electron microscopy (STEM). Finally, light transmission (LT) through each CAD-CAM block material was assessed using a spectrophotometer. Curing-light attenuation and DC were significantly influenced by thickness and type of the overlying material. LCU only had a significant effect on DC of the micro-hybrid RBC. DC significantly increased over time for all composite cements. CAD-CAM block structural analysis revealed a relatively small and homogenous filler configuration (mean filler size of 0.2-0.5μm) for Cerasmart, while Enamic contained ceramic grains varying in shape and size (1-10μm), which were interconnected by the polymer-based network. LT was much higher at a wavelength range of 300-800nm for Cerasmart than for Enamic. Light-curable composite cements

  8. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction

    International Nuclear Information System (INIS)

    Guo, H; Wei, J; Liu, C S

    2006-01-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement

  9. Controlled, prospective, randomized, clinical split-mouth evaluation of partial ceramic crowns luted with a new, universal adhesive system/resin cement: results after 18 months.

    Science.gov (United States)

    Vogl, Vanessa; Hiller, Karl-Anton; Buchalla, Wolfgang; Federlin, Marianne; Schmalz, Gottfried

    2016-12-01

    A new universal adhesive with corresponding luting composite was recently marketed which can be used both, in a self-etch or in an etch-and-rinse mode. In this study, the clinical performance of partial ceramic crowns (PCCs) inserted with this adhesive and the corresponding luting material used in a self-etch or selective etch approach was compared with a self-adhesive universal luting material. Three PCCs were placed in a split-mouth design in 50 patients. Two PCCs were luted with a combination of a universal adhesive/resin cement (Scotchbond Universal/RelyX Ultimate, 3M ESPE) with (SB+E)/without (SB-E) selective enamel etching. Another PCC was luted with a self-adhesive resin cement (RelyX Unicem 2, 3M ESPE). Forty-eight patients were evaluated clinically according to FDI criteria at baseline and 6, 12 and 18 months. For statistical analyses, the chi-square test (α = 0.05) and Kaplan-Meier analysis were applied. Clinically, no statistically significant differences between groups were detected over time. Within groups, clinically significant increase for criterion "marginal staining" was detected for SB-E over 18 months. Kaplan-Meier analysis revealed significantly higher retention rates for SB+E (97.8 %) and SB-E (95.6 %) in comparison to RXU2 (75.6 %). The 18-month clinical performance of a new universal adhesive/composite combination showed no differences with respect to bonding strategy and may be recommended for luting PCCs. Longer-term evaluation is needed to confirm superiority of SB+E over SB-E. At 18 months, the new multi-mode adhesive, Scotchbond Universal, showed clinically reliable results when used for luting PCCs.

  10. In vitro antibacterial activity of a novel resin-based pulp capping material containing the quaternary ammonium salt MAE-DB and Portland cement.

    Science.gov (United States)

    Yang, Yanwei; Huang, Li; Dong, Yan; Zhang, Hongchen; Zhou, Wei; Ban, Jinghao; Wei, Jingjing; Liu, Yan; Gao, Jing; Chen, Jihua

    2014-01-01

    Vital pulp preservation in the treatment of deep caries is challenging due to bacterial infection. The objectives of this study were to synthesize a novel, light-cured composite material containing bioactive calcium-silicate (Portland cement, PC) and the antimicrobial quaternary ammonium salt monomer 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB) and to evaluate its effects on Streptococcus mutans growth in vitro. The experimental material was prepared from a 2 : 1 ratio of PC mixed with a resin of 2-hydroxyethylmethacrylate, bisphenol glycerolate dimethacrylate, and triethylene glycol dimethacrylate (4 : 3 : 1) containing 5 wt% MAE-DB. Cured resin containing 5% MAE-DB without PC served as the positive control material, and resin without MAE-DB or PC served as the negative control material. Mineral trioxide aggregate (MTA) and calcium hydroxide (Dycal) served as commercial controls. S. mutans biofilm formation on material surfaces and growth in the culture medium were tested according to colony-forming units (CFUs) and metabolic activity after 24 h incubation over freshly prepared samples or samples aged in water for 6 months. Biofilm formation was also assessed by Live/Dead staining and scanning electron microscopy. S. mutans biofilm formation on the experimental material was significantly inhibited, with CFU counts, metabolic activity, viability staining, and morphology similar to those of biofilms on the positive control material. None of the materials affected bacterial growth in solution. Contact-inhibition of biofilm formation was retained by the aged experimental material. Significant biofilm formation was observed on MTA and Dycal. The synthesized material containing HEMA-BisGMA-TEGDMA resin with MAE-DB as the antimicrobial agent and PC to support mineralized tissue formation inhibited S. mutans biofilm formation even after aging in water for 6 months, but had no inhibitory effect on bacteria in solution. Therefore, this material shows

  11. Influence of energy density of different light sources on knoop hardness of a dual-cured resin cement

    Directory of Open Access Journals (Sweden)

    Evandro Piva

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs were tested: tungsten halogen light (HAL, light-emitting diode (LED and xenon plasma-arc (PAC lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce. Three energy doses were used by modifying the irradiance (I of each LCU and the irradiation time (T: 24 Jcm-2 (I/2x2T, 24 Jcm-2 (IxT and 48 Jcm-2 (Ix2T. Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus. Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10. Knoop hardness number (KHN means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (a=5%. Application of 48 J.cm-2 energy dose through the ceramic using LED (50.5±2.8 and HAL (50.9±3.7 produced significantly higher KHN means (p<0.05 than the control (44.7±3.8. LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  12. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    Science.gov (United States)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  13. Elution of monomer from different bulk fill dental composite resins.

    Science.gov (United States)

    Cebe, Mehmet Ata; Cebe, Fatma; Cengiz, Mehmet Fatih; Cetin, Ali Rıza; Arpag, Osman Fatih; Ozturk, Bora

    2015-07-01

    The purpose of this study was to evaluate the elution of Bis-GMA, TEGDMA, HEMA, and Bis-EMA monomers from six bulk fill composite resins over four different time periods, using HPLC. Six different composite resin materials were used in the present study: Tetric Evo Ceram Bulk Fill (Ivoclar Vivadent, Amherst, NY), X-tra Fill (VOCO, Cuxhaven, Germany), Sonic Fill (Kerr, Orange, CA, USA), Filtek Bulk Fill (3M ESPE Dental Product, St. Paul, MN), SDR (Dentsply, Konstanz, Germany), EQUIA (GC America INC, Alsip, IL). The samples (4mm thickness, 5mm diameter) were prepared and polymerized for 20s with a light emitted diode unit. After fabrication, each sample was immediately immersed in 75wt% ethanol/water solution used as extraction fluid and stored in the amber colored bottles at room temperature. Ethanol/water samples were taken (0.5mL) at predefined time intervals:10m (T1), 1h (T2), 24h (T3) and 30 days (T4). These samples were analyzed by HPLC. The obtained data were analyzed with one-way ANOVA and Tukey HSD at significance level of pcomposites (pcomposite resins in all time periods and the amount of eluted monomers was increased with time. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Durability of cement and geopolimer composites

    Science.gov (United States)

    Błaszczyński, T.; Król, M.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. This main feature depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used a highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in a chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcium ash from the burning of lignite.

  15. Composite resin as an implant material in bone. Histologic, radiologic, microradiologic and oxytetracycline fluorescence examination of rats

    Energy Technology Data Exchange (ETDEWEB)

    Vainio, J; Rokkanen, P [Tampere Univ. (Finland). Inst. of Clinical Sciences; Central Hospital, Tampere (Finland))

    1978-01-01

    The potential of a bis-GMA composite resin as implant material in bone is evaluated. The material is claimed to have mechanical and physical properties superior to those of the bone cements used today. A groove made in the cortex of the tibia in 18 rats was filled with bis-GMA, while a similar was left empty in the contralateral tibia. The reaction of the bone to this material was evaluated by histologic, radiologic, microradiograph and OTC-fluorescence methods. The material was well tolerated by the bone; after 1,3 and 6 weeks no reaction to the material was observed.

  16. Effect of various amounts of nanosilver incorporation on the mechanical properties of resin modified glass-ionomer cement

    Directory of Open Access Journals (Sweden)

    Roza Haghgoo

    2013-08-01

    Full Text Available   Background and Aims: Metallic nano-particles show exclusive biological, chemical and physical characteristic. The purpose of this research was to evaluate the effect of various amounts of nanosilver incorporation (0 (as control, 20, 40, 80, 120, 200 ppm on the mechanical Properties ( compressive and flexural strength of resin modified Glass ionomer Cement.   Materials and Methods: Based on ISO 4049 and ISO 9971 for polyalkenoid cements, 90 cases in each group were prepared for the flexural and compressive strength. Specimens in 6 groups with different amounts of nanosilver (20, 40, 80, 120 and 200 ppm and control (Fuji II LC improved, stored in distilled water at 37 ° C for 1 day and 30 days. Flexural strength, using a three-point bending method, Modulus of elasticity and the compressive strength were measured by universal testing machine (Zwick with crosshead speed of 0.5 mm/min. Data were analyzed using two-way ANOVA and Tukey post HOC test.   Results: The flexural strength and modulus of various amounts of nanosilver incorporation of resin modified glass-ionomer cement were not significantly different (P>0.05. The compressive strength of incorporating of20 ppm compared with control (P=0.01, 40 ppm (P=0.02 and 80 ppm compared with control (P<0.001 were increased. The flexural strength and compressive strength of Fuji II LC, containing nanosilver particles were increased after 1 day and 1 month significantly (P<0.001.   Conclusion: Incorporation of 20 to 80 ppm nanosilver into Fuji II LC had increased mechanical properties compared to the original cement.

  17. Sisal organosolv pulp as reinforcement for cement based composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  18. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins.

    Science.gov (United States)

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (Pcomposite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (Pcomposite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.

  19. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    Science.gov (United States)

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (poptimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  20. Thermal stability relationships between PMR-15 resin and its composites

    Science.gov (United States)

    Bowles, Kenneth J.; Jayne, Douglas; Leonhardt, Todd A.; Bors, Dennis

    1993-01-01

    A study was conducted to investigate the relationship between the thermo-oxidative stability of PMR-15 matrix resin and the stability of graphite-fiber-reinforced composites that contain this resin as the matrix material. Three areas were investigated. The first was the effect of fiber/matrix interfacial bond strength on the isothermal aging weight loss of composites. By using type-A graphite fibers produced by Hercules, it was possible to study composites reinforced with fibers that were processed to receive different surface treatments. One of the fibers was untreated, a second fiber was treated by oxidation to enhance fiber/matrix bonding, and the third type of fiber was coated with an epoxy sizing. These treatments produced three significantly different interfacial bond strengths. The epoxy sizing on the third fiber was quickly oxidized from the bare fiber surfaces at 288, 316, and 343 C. The weight loss due to the removal of the sizing was constant at 1.5 percent. This initial weight loss was not observed in thermo-oxidative stability studies of composites. The PMR-15 matrix satisfactorily protected the reinforcemnt at all three temperatures.

  1. Polishing and toothbrushing alters the surface roughness and gloss of composite resins.

    Science.gov (United States)

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu; Kanehira, Masafumi; Finger, Werner J

    2014-01-01

    This study aimed to investigate the surface roughness and gloss of composite resins after using two polishing systems and toothbrushing. Six composite resins (Durafill VS, Filtek Z250, Filtek Z350 XT, Kalore, Venus Diamond, and Venus Pearl) were evaluated after polishing with two polishing systems (Sof-Lex, Venus Supra) and after toothbrushing up to 40,000 cycles. Surface roughness (Ra) and gloss were determined for each composite resin group (n=6) after silicon carbide paper grinding, polishing, and toothbrushing. Two-way ANOVA indicated significant differences in both Ra and gloss between measuring stages for the composite resins tested, except Venus Pearl, which showed significant differences only in gloss. After polishing, the Filtek Z350 XT, Kalore, and Venus Diamond showed significant increases in Ra, while all composite resin groups except the Filtek Z350 XT and Durafill VS with Sof-Lex showed increases in gloss. After toothbrushing, all composite resin demonstrated increases in Ra and decreases in gloss.

  2. Literature survey on phase composition of hardened cement paste containing fly ash

    International Nuclear Information System (INIS)

    Otsuka, Taku; Yamamoto, Takeshi

    2015-01-01

    The purpose of this literature survey is to collect the knowledge on the effect of fly ash in hardened cement paste and the information about evaluation of physicochemical performance based on phase composition of hardened cement paste. The performance of hardened cement paste containing fly ash is affected by the property of fly ash, hydration of cement and pozzolanic reaction of fly ash. Some properties of fly ash such as density and chemical composition are reflected in phase composition, showing the progress of cement hydration and pozzolanic reaction. Therefore clarification of the relationship of phase composition and performance will lead to appropriate evaluation of the property of fly ash. The amount of pore, chemical shrinkage, pore solution, compressive strength, Young modulus and alkali silica reaction have relations to the phase composition of hardened cement paste. It is considered as future subject to clarify the relationship of phase composition and performance for various properties of fly ash. (author)

  3. Resin cements formulated with thio-urethanes can strengthen porcelain and increase bond strength to ceramics.

    Science.gov (United States)

    Bacchi, Atais; Spazzin, Aloisio Oro; de Oliveira, Gabriel Rodrigues; Pfeifer, Carmem; Cesar, Paulo Francisco

    2018-06-01

    The use of thio-urethane oligomers has been shown to significantly improve the mechanical properties of resin cements (RCs). The aim of this study was to use thio-urethane-modified RC to potentially reinforce the porcelain-RC structure and to improve the bond strength to zirconia and lithium disilicate. Six oligomers were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP, P) or trimethylol-tris-3-mercaptopropionate (TMP, T) - with di-functional isocyanates - 1,6-Hexanediol-diissocyante (HDDI) (aliphatic, AL) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic, AR) or Dicyclohexylmethane 4,4'-Diisocyanate (HMDI) (cyclic, CC). Thio-urethanes (20 wt%) were added to a BisGMA/UDMA/TEGDMA organic matrix. Filler was introduced at 60 wt%. The microshear bond strength (μSBS), Weibull modulus (m), and failure pattern of RCs bonded to zirconia (ZR) and lithium disilicate (LD) ceramics was evaluated. Biaxial flexural test and fractographic analysis of porcelain discs bonded to RCs were also performed. The biaxial flexural strength (σ bf ) and m were calculated in the tensile surfaces of porcelain and RC structures (Z = 0 and Z = -t 2 , respectively). The μSBS was improved with RCs formulated with oligomers P_AL or T_AL bonded to LD and P_AL, P_AR or T_CC bonded to zirconia in comparison to controls. Mixed failures predominated in all groups. σ bf had superior values at Z = 0 with RCs formulated with oligomers P_AL, P_AR, T_AL, or T_CC in comparison to control; σ bf increased with all RCs composed by thio-urethanes at Z = -t 2 . Fractographic analysis revealed all fracture origins at Z = 0. The use of specific thio-urethane oligomers as components of RCs increased both the biaxial flexural strength of the porcelain-RC structure and the μSBS to LD and ZR. The current investigation suggests that it is possible to reinforce the porcelain-RC pair and obtain higher bond strength to LD and ZR with RCs

  4. A Novel Composite PMMA-based Bone Cement with Reduced Potential for Thermal Necrosis.

    Science.gov (United States)

    Lv, Yang; Li, Ailing; Zhou, Fang; Pan, Xiaoyu; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong

    2015-06-03

    Percutaneous vertebroplasty (VP) and balloon kyphoplasty (BKP) are now widely used to treat patients who suffer painful vertebral compression fractures. In each of these treatments, a bone cement paste is injected into the fractured vertebral body/bodies, and the cement of choice is a poly(methyl methacrylate) (PMMA) bone cement. One drawback of this cement is the very high exothermic temperature, which, it has been suggested, causes thermal necrosis of surrounding tissue. In the present work, we prepared novel composite PMMA bone cement where microcapsules containing a phase change material (paraffin) (PCMc) were mixed with the powder of the cement. A PCM absorbs generated heat and, as such, its presence in the cement may lead to reduction in thermal necrosis. We determined a number of properties of the composite cement. Compared to the values for a control cement (a commercially available PMMA cement used in VP and BKP), each composite cement was found to have significantly lower maximum exothermic temperature, increased setting time, significantly lower compressive strength, significantly lower compressive modulus, comparable biocompatibility, and significantly smaller thermal necrosis zone. Composite cement containing 20% PCMc may be suitable for use in VP and BKP and thus deserves further evaluation.

  5. Diffusion through composite materials made with thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-08-01

    Medium and low-level radioactive wastes may be coated in a solid matrix mainly made with thermosetting resins: the study of water and cesium migration through composite materials made with thermosetting resins is usefull to compare the water tightness of different coatings. Disks with a thickness of two millimeters were used to measure the water absorption. Diffusion cells including a plane membrane the thickness of which was at least 70μ were used to measure the diffusion of cesium 137. The diffusion coefficient of water in pure thermosetting resins, polyester or epoxyde, is about 10 -9 cm 2 .s -1 ; the diffusion coefficients of cesium in the same materials are about 10 -12 cm 2 .s -1 ; the introduction of solid particles in these polymers generally induces an acceleration of the diffusion process: the diffusion coefficient may reach 10 -8 cm 2 .s -1 . This lost of water-tightness may be reduced either by rendering insoluble the filler mixed to the polymer, or by diminushing the porosity of the interfacial zones by improving the bonding between the polymer and the filler [fr

  6. Comparison of mineral trioxide aggregate's composition with Portland cements and a new endodontic cement.

    Science.gov (United States)

    Asgary, Saeed; Eghbal, Mohammad Jafar; Parirokh, Masoud; Ghoddusi, Jamileh; Kheirieh, Sanam; Brink, Frank

    2009-02-01

    The aim of this study was to compare the compositions of mineral trioxide aggregates (MTAs), Portland cements (PCs), and a new endodontic cement (NEC). Our study also investigated the surface characteristics of MTA and NEC root-end fillings when immersed in normal saline. For part I, we prepared samples of 9 brands of MTAs, PCs, and NEC. The materials were imaged and analyzed by scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA). In part II, 3-mm-deep root-end preparations were filled with MTA or NEC and stored in normal saline for 1 week. Samples were imaged and analyzed by SEM and electron probe microanalysis (EPMA). EDXA investigations revealed differences in the dominant compounds of NEC, PCs, and MTAs. The major components of MTA and PC are the same except for bismuth. The most significant difference was the presence of higher concentrations of Fe (minor element) in gray MTA and PC when compared with white ones. EPMA results revealed remarkably different elements in MTA compared with surrounding dentin, whereas in the NEC group the distribution patterns of calcium, phosphorous, and oxygen were comparable. NEC differs chemically from MTAs and PCs and demonstrates comparable surface composition with adjacent dentin as a root-end filling material.

  7. Polymerization Behavior and Mechanical Properties of High-Viscosity Bulk Fill and Low Shrinkage Resin Composites.

    Science.gov (United States)

    Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M

    The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and

  8. Effects of 35% Carbamide Peroxide Gel on Surface Roughness and Hardness of Composite Resins

    OpenAIRE

    Sharafeddin, F.; Jamalipour, GR.

    2010-01-01

    Objective: Bleaching agents may not be safe for dental materials. The purpose of this in-vitro study was to evaluate the effects of Opalescent Quick ?in-office bleaching gel? containing 35% carbamide peroxide on the surface roughness and hardness of microfilled (Heliomolar) and hybride (Spectrum TPH) composite resins. Materials and Methods: Twenty specimens of Spectrum TPH composite resins and twenty Heliomolar composite resins were fabricated using a metallic ring (6.5 mm diameter and 2.5 mm...

  9. Failure in a composite resin-dentin adhesive bond

    Energy Technology Data Exchange (ETDEWEB)

    Rezgui, B. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Abdennagi, H. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia)); Sahtout, S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia)); Belkhir, M.S. (Dept. de Genie Mecanique, Ecole Nationale d' Ingenieurs de Monastir, Monastir (Tunisia) Dept. d' Odontologie, Faculte de Chirurgie Dentaire de Monastir (Tunisia))

    1993-11-01

    Composites are drawing more and more attention as preferred materials for teeth restoration. The success of teeth restoration has been generally limited by the Composite Resin-Dentin bond strength. A testing device has been developped to allow a satisfactory testing method for evaluating bonding strength in tension and shear, which led to reproducible results. A comparaison between different bond systems has shown no significant difference in the tensile and the shear strength as well as in the fracture behavior. Moreover, results showed difference between tensile and shear strength, when considering one same bond system. Failure mode examination turned out to be, either cohesive (composite rupture), or adhesive (interface rupture) or both (mixed rupture). (orig.).

  10. Unsaturated polyester resin composition curable with ionizing radiations

    International Nuclear Information System (INIS)

    Maruyama, Tsutomu; Murata, Koichiro.

    1971-01-01

    An unsaturated polyester resin composition curable with ionizing radiations and excellent in weather resistance is provided. The composition is obtained by reacting 10-12 moles of a polyhydric alcohol (e.g. ethylene glycol) with 10 moles of an acid mixture (25.45% by mole of endo-cis-bicyclo (2,2,1)-5-heptene-2-3-dicarboxylic acid (A), 20-40% of unsaturated dibasic acid and 15-55% of saturated dibasic acid) so that the acid value reaches 4-11. The composition is useful as coating, laminating and molding materials. As a coating material it is excellent in surface hardening property. The ionizing radiation used is preferably β-, α-rays or electron beams. In one example, and unsaturated polyester was prepared by reacting 3 moles of fumaric acid, 2 moles of phthalic anhydride, 3 moles of adipic acid 3, moles of (A), 10 moles of neopentyl glycol and 1 mole of trimethylolpropane. The resin was dissolved into a mixture of styrene, methyl methacrylate and butyl acrylate (50:8:42) and incorporated with titanium white. An ABS plate was coated with the enamel thus obtained and irradiated with electron beams (12 Mrad). In exposure test at 60 0 C, luster of the film was 92 before exposure and 83 after 30 months. In a comparative run in which (A) was not used, luster of the film decreased from 90 to 45 in 30 months. (Sakaichi, S.)

  11. Surface characterization of modern resin composites: a multitechnique approach.

    Science.gov (United States)

    Silikas, Nick; Kavvadia, Katerina; Eliades, George; Watts, David

    2005-04-01

    To characterize the surface properties of some modern resin composites employing a series of physicochemical methods. Specimens from three microhybrid (Palfique Estellite-PE, Z250 Filtek-ZF, Tetric Ceram-TC) and one nanofilled (Supreme Filtek-SF) conventionally photo-cured resin composites polished with Soflex disks were studied for the following properties: Surface chemical composition and degree of C=C conversion (FTIR), surface energetics (contact angles), surface texture (AFM), surface roughness (AFM, stylus profilometry) and gloss (60 degrees-, 20 degrees-angle specular gloss). Polar and non polar molecular groups were identified in all products including NH and CONH (SF, ZF, TC). SF and ZF demonstrated higher conversion than PE and TC (P 0.05) were found in critical surface tension, total work of adhesion and its polar and dispersion components, the latter being the highest in all products. AFM showed the smoothest surface texture in PE. The ranking of Sa, Sq, Ra and Rz roughness parameters was PEgloss measurements (PE, SF>ZF>TC, PTC, Pgloss differences. A positive correlation was found between Sa and Ra and a negative one between Sa and 20 degree-angle gloss.

  12. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement

    Science.gov (United States)

    Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin

    2017-01-01

    PURPOSE To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. MATERIALS AND METHODS The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. RESULTS The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) (Pcementation of the novel CAD/CAM restorative materials. PMID:29279763

  13. The effect of chemically adjusting cement compositions on leachabilities of waste ions

    International Nuclear Information System (INIS)

    Barnes, M.W.; Scheetz, B.E.; Roy, D.M.

    1986-01-01

    The chemical composition of both portland and aluminate cements was adjusted by adding amorphous silica. In the case of portland cement, the object was to react with excess portlandite and obtain an overall composition compatible with C-S-H gel or C-S-H gel + silica at low temperatures, and to obtain the tobermorite composition in order to be in equilibrium with this phase at temperatures above normal ambient. In the case of aluminate cement, the object was to be in equilibrium with more silica-rich phases. These silica-adjusted cements were used to make composites with nuclear waste forms. Leach tests showed that the silica-adjusted composites were chemically more stable than those made with as-received cement. Leach rates were lower in the case of the adjusted cements for Rb, Cs, Ca, Sr, Ba, La, Ce, Nd, Gd, Al, and Si. Only Na in the case of both portland and aluminate cements, and Mg and U in the case of aluminate cements, had greater leach rates in adjusted cements. Adjusting the composition of cements with silica is concluded to be beneficial when making composites to encapsulate nuclear waste forms

  14. Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Li-gang; Li, Ai-ju; Yin, Qiang [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Shandong Key Laboratory of Engineering Ceramics, Shandong University, Jinan 250061 (China); Wang, Wei-qiang [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Lin, Heng; Zhao, Yi-bo [School of Material Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-03-15

    In the paper, a kind of polyphenylene sulfide (PPS) resin/graphite (G) composite for bipolar plate was prepared by using the PPS resin as adhesive and simple hot pressing. The influences of the resin content, the molding temperature and holding time on the conductivity and the bending strength of the PPS/G composite bipolar plate were investigated firstly and then the optimum content and the preparing conditions of the composite were obtained. The experimental results show that the electrical conductivity decreases and the bending strength reveals a serrated variation with increase in PPS resin content; when the holding time is certain, the conductivity decreases and the bending strength increases with the molding temperature increasing. The experimental results further show that the effect of the holding time on the properties of the composite is different at different molding temperatures. The PPS/G composite with 20% PPS resin content has electrical conductivity of 118.9 S cm{sup -1} and bending strength of 52.4 MPa when it molded at 380 C for 30 min, and has electrical conductivity of 105 S cm{sup -1}, bending strength of 55.7 MPa when it molded at 390 C for 30 min. The properties of the composites can meet the requirements of United States Department of Energy (DOE). (author)

  15. 21 CFR 888.3500 - Knee joint femorotibial metal/composite semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite semi... § 888.3500 Knee joint femorotibial metal/composite semi-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite semi-constrained cemented prosthesis is a two-part...

  16. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...

  17. Surface roughness comparison of methacrylate and silorane-based composite resins after 40% hydrogen peroxide application

    Directory of Open Access Journals (Sweden)

    Rori Sasmita

    2018-01-01

    Full Text Available The change of the tooth colour could be restored with bleaching. The tooth bleaching will affects the surface roughness of the composite resins. Recently, the material basis for composite resins has developed, among others are methacrylate-based and silorane based composite resins. The objective of this study was to distinguish the surface roughness value of methacrylate-based composite resin and silorane based composite resins. This research was quasi-experimental. The sample used in this study were methacrylate and silorane based composite resins in discs form, with the size of 6 mm and the thickness of 3 mm, manufactured into 20 specimens and divided into 2 groups. The control group was immersed in the artificial saliva, and the treatment group was applied with 40% hydrogen peroxide. The result of the experiment analyzed using unpaired sample t-test showed significant differences in the average value of the surface roughness after the application of 40% hydrogen peroxide. The average value of methacrylate and silorane based composite resins were 2.744 μm and 3.417 μm, respectively. There was a difference in the surface roughness of methacrylate and silorane based composite resin compounds after the application of 40% hydrogen peroxide. The surface roughness value of the silorane-based composite resin was higher than the methacrylate-based.

  18. Effectiveness of bleaching agent on composite resin discoloration

    Directory of Open Access Journals (Sweden)

    Galih Sampoerno

    2012-03-01

    Full Text Available Background: The discoloration of teeth, especially anterior teeth, is one of aesthetic problems. The use of tooth bleaching agents for discolored natural teeth is becoming increasingly popular. Many dentists, however, get many problems when they conduct bleaching process since there is much composite filling on patient’s anterior teeth. Although many research have focused on the discoloration of composite resin after bleaching process, the problem still becomes debatable. Purpose: The purpose of this study was to investigate the difference of the discoloration between hybrid composite and nano composite before and after the application of tooth bleaching agent, 38% hydrogen peroxide. Methods: Eighteen disk-shaped specimens (5 mm of each of two composite resins, hybrid and nano filler, were prepared. The each group was treated 3 times and the specimens were divided into two groups consisted of 9 specimens for each, and then immersed in black tea solutions for 72 hours. Next, after having staining and bleaching processes, the color of the specimens was measured with a optic spectrophotometer by using photo with type BPY-47 and digital microvolt. The differences of the light intensity among three measurements were then calculated. Afterwards, GLM MANOVA Repeated Measure and parametric analysis (Independent t-test and Paired t-test were then used to analyze the data. Results: After staining process, it is then known that the nano composite had more discoloration and more affected by the black tea solution than the hybrid one. Conclusion: After bleaching, the discoloration was finally removed completely from both hybride and nano filler composite resins and became brighter from the baseline color.Latar belakang: Salah satu problem estetik adalah adanya perubahan warna pada gigi anterior. Peningkatan pemakaian bahan bleaching semakin popular. Banyak dokter gigi mempunyai problem ketika mereka akan melakukan proses bleaching dan ditemukan banyak

  19. Flowable Resin Composites: A Systematic Review and Clinical Considerations

    Science.gov (United States)

    Rodrigues, Jean C.

    2015-01-01

    Background Little is known about flowable composite materials. Most literature mentions conventional composite materials at large, giving minimal emphasis to flowables in particular. This paper briefly gives an in depth insight to the multiple facets of this versatile material. Aim To exclusively review the most salient features of flowable composite materials in comparison to conventional composites and to give clinicians a detailed understanding of the advantages, drawbacks, indications and contraindications based on composition and physical/mechanical properties. Methodology Data Sources: A thorough literature search from the year 1996 up to January 2015 was done on PubMed Central, The Cochrane Library, Science Direct, Wiley Online Library, and Google Scholar. Grey literature (pending patents, technical reports etc.) was also screened. The search terms used were “dental flowable resin composites”. Search Strategy After omitting the duplicates/repetitions, a total of 491 full text articles were assessed. As including all articles were out of the scope of this paper. Only relevant articles that fulfilled the reviewer’s objectives {mentioning indications, contraindications, applications, assessment of physical/mechanical/biological properties (in vitro/ in vivo /ex vivo)} were considered. A total of 92 full text articles were selected. Conclusion Flowable composites exhibit a variable composition and consequently variable mechanical/ physical properties. Clinicians must be aware of this aspect to make a proper material selection based on specific properties and indications of each material relevant to a particular clinical situation. PMID:26266238

  20. Hydration Phenomena of Functionalized Carbon Nanotubes (CNT/Cement Composites

    Directory of Open Access Journals (Sweden)

    Bhuvaneshwari Balasubramaniam

    2017-10-01

    Full Text Available The exciting features of carbon nanotubes (CNTs, such as high elastic modulus, high thermal and electrical conductivities, robustness, and nanoscopic surface properties make them attractive candidates for the cement industry. They have the potential to significantly enhanceengineering properties. CNTs play an important and critical role as nano-anchors in concrete, which enhance the strength by bridging pores in the composite matrix, thereby ensuring robust mechanical strength. The diameter, dispersion, aspect ratio, and interfacial surface interaction of CNTs affect the physical and mechanical properties of concrete, if due care is not taken. In this paper, the usable amount of CNT is scaled down considerably from 0.5% to 0.025% by weight of the cement and the fluctuation caused by these phenomena is assessed. It is observed that the properties and exact quantities of incorporated CNTs influence the hydration and consistency of the composites. In order to address these issues, the surface functionalization of CNTs and rheological studies of the composites are performed. The hydration products and functional groups are carefully optimized and characterized by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and a Zeta potential analyzer. For Mixes 6 and 7, the compressive and tensile strength of CNTs incorporated in mortar specimens caused77% and 48% increases in split tensile strength, respectively, and 17% and 35% increases in compressive strength, respectively, after 28 days of curing and compared withthe control Mix.

  1. Leaching of 60 Co and 137 Cs from spent ion exchange resins in ...

    Indian Academy of Sciences (India)

    Cement; radioactive waste; composite; waste management. Abstract. The leaching rate of 60Co and 137Cs from the spent cation exchange resins in cement–bentonite matrix has been studied. The solidification matrix was a standard Portland cement mixed with 290–350 (kg/m3) spent cation exchange resins, with or ...

  2. Comparative evaluation of shear bond strength, between IPS-Empress2 ceramics and three dual-cured resin cements

    Directory of Open Access Journals (Sweden)

    Hajimiragha H

    2006-06-01

    Full Text Available Background and Aim: Cementation is one of the most critical steps of the porcelain restoration technique. However, limited information is available concerning the bond strength of current ceramic bonding systems. The aim of this study was to evaluate the shear bond strength of three dual-cure resin cements to IPS-Empress2 ceramics. Materials and Methods: In this experimental study, 30 pairs of IPS-Empress 2 ceramic discs were fabricated with 10 and 8 mm diameters and 2.5 mm thickness. After sandblasting and ultrasonic cleaning, the surfaces of all specimens were etched with 9% hydrofluoric acid for 60 seconds. Then, the three groups of 10 bonded specimens were prepared ceramic bonding resin systems including Panavia F2, Variolink II and Rely X ARC. After storage in 37±1c water for 24 hours and thermocycling in 5c and 55c water for 500 cycles with 1-minute dwell time, the shear bond strengths were determined using Instron machine at speed of 0.5mm/min. Data were analyzed by One Way ANOVA test. For multiple paired comparisons, the Tukey HSD method was used. The mode of failure was evaluated by scanning electro microscope (SEM. P<0.05 was considered as the limit of significance. Result: Significant differences were found between different cement types (P<0.05. Variolink II provided the highest bonding values with IPS-Empress2. A combination of different modes of failure was observed. Conclusion: Based on the results of this study, according to the highest mode of cohesive failure, Variolink II seems to have the strongest bond with IPS-Empress2 ceramics.

  3. Effect of sealant agents on the color stability and surface roughness of nanohybrid composite resins.

    Science.gov (United States)

    Dede, Doğu Ömür; Şahin, Onur; Koroglu, Aysegül; Yilmaz, Burak

    2016-07-01

    The effect of sealant agents on the surface roughness and color stability of nanohybrid composite resins is unknown. The purpose of this in vitro study was to evaluate the effect of sealant agents on the surface roughness and color stability of 4 nanohybrid composite resin materials. Forty disks (10×2 mm) were fabricated for each nanohybrid composite resin material (Z-550, Tetric EvoCeram, Clearfill Majesty, Ice) (N=160) and divided into 4 surface treatment groups: 1 conventional polishing (control) and 3 different sealant agent (Palaseal, Optiglaze, BisCover) coupling groups (n=10). The specimens were thermocycled, and surface roughness (Ra) values were obtained with a profilometer. Scanning electron microscope images were also recorded. CIELab color parameters of each specimen were measured with a spectrophotometer before and after 7 days of storage in a coffee solution. Color differences were calculated by the CIEDE 2000 (ΔE00) formula. The data were statistically analyzed by 2-way ANOVA and by the Tukey HSD test (α=.05). The surface treatment technique significantly affected the Ra values of the composite resins tested (Pcomposite resin material was also significant for ΔE00 values (Pcomposite resin groups, significant decreases in Ra were observed only for the Palaseal agent coupled composite resin groups (except Ice) compared with the control groups (Pcomposite resin group, except for BisCover applied Clearfill Majesty (Pcomposite resin groups, significant differences were observed between the color change seen with BisCover and other sealants for Clearfill Majesty composite resin (Pcomposite resins except for Ice produced smoother surfaces. All surface sealant agents provided less discoloration of nanohybrid composite resins after coffee staining compared with conventional polishing except for BisCover applied Clearfill Majesty composite resin. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All

  4. Strength and wear resistance of a dental glass-ionomer cement with a novel nanofilled resin coating.

    Science.gov (United States)

    Lohbauer, Ulrich; Krämer, Norbert; Siedschlag, Gustavo; Schubert, Edward W; Lauerer, Brigitte; Müller, Frank A; Petschelt, Anselm; Ebert, Johannes

    2011-04-01

    To evaluate the influence of different resin coating protocols on the fracture strength and wear resistance of a commercial glass-ionomer cement (GIC). A new restorative concept [Equia (GC Europe)] has been introduced as a system application consisting of a condensable GIC (Fuji IX GP Extra) and a novel nanofilled resin coating material (G-Coat Plus). Four-point fracture strength (FS, 2 x 2 x 25 mm, 14-day storage, distilled water, 37 degrees C) were produced and measured from three experimental protocols: no coating GIC (Group 1), GIC coating before water contamination (Group 2), GIC coating after water contamination (Group 3). The strength data were analyzed using Weibull statistics. Three-body wear resistance (Group 1 vs. Group 2) was measured after each 10,000 wear cycles up to a total of 200,000 cycles using the ACTA method. GIC microstructure and interfaces between GIC and coating materials were investigated under SEM and CLSM. The highest FS of 26.1 MPa and the most homogenous behavior (m = 7.7) has been observed in Group 2. The coated and uncoated GIC showed similar wear resistance until 90,000 cycles. After 200,000 wear cycles, the coated version showed significantly higher wear rate (ANOVA, P< 0.05). The coating protocol has been shown to determine the GIC fracture strength. Coating after water contamination and air drying is leading to surface crack formation thus significantly reducing the FS. The resin coating showed a proper sealing of GIC surface porosities and cracks. In terms of wear, the coating did not improve the wear resistance of the underlying cement as similar or higher wear rates have been measured for Group 1 versus Group 2.

  5. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    International Nuclear Information System (INIS)

    Dongyu, Xu; Xin, Cheng; Shifeng, Huang; Banerjee, Sourav

    2014-01-01

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer

  6. Epoxy Resin Based Composites, Mechanical and Tribological Properties: A Review

    Directory of Open Access Journals (Sweden)

    S.A. Bello

    2015-12-01

    Full Text Available High fuel consumption by automobile and aerospace vehicles built from legacy alloys has been a great challenge to global design and material engineers. This has called for researches into material development for the production of lighter materials of the same or even superior mechanical properties to the existing materials in this area of applications. This forms a part of efforts to achieve the global vision 2025 i.e to reduce the fuel consumption by automobile and aerospace vehicles by at least 75 %. Many researchers have identified advanced composites as suitable materials in this regard. Among the common matrices used for the development of advanced composites, epoxy resin has attained a dominance among its counterparts because of its excellent properties including chemical, thermal and electrical resistance properties, mechanical properties and dimensional stability. This review is a reflection of the extensive study on the currently ongoing research aimed at development of epoxy resin hybrid nanocomposites for engineering applications. In this paper, brief explanation has been given to different terms related to the research work and also, some previous works (in accordance with materials within authors’ reach in the area of the ongoing research have been reported.

  7. Treatment planning and smile design using composite resin.

    Science.gov (United States)

    Marus, Robert

    2006-05-01

    Recent advances in dental materials and adhesive protocols have expanded the restorative procedures available to today's clinicians. Used in combination with proper treatment planning, these innovations enable dental professionals to provide enhanced aesthetic care that achieves the increasing expectations of their patients. Using a case presentation, this article will document the steps required to harmoniously integrate smile design, material selection, and patient communication that are involved in the provisional of aesthetic dental care. This article discusses the utilization of composite resin as a tool to enhance the patient's smile. Upon reading this article, the reader should: Become familiar with a smile-enhancing technique which can be completed in one office visit. Realize the benefits that intraoral composite mockups offer in terms of prototyping and confirming patient satisfaction.

  8. Microwave absorption properties of barium titanate/epoxide resin composites

    International Nuclear Information System (INIS)

    Chen Xiaodong; Wang Guiqin; Duan Yuping; Liu Shunhua

    2007-01-01

    Nano-barium titanate (BT) was prepared by a sol-gel method. The prepared powders were characterized by x-ray powder diffraction and transmission electron microscopy. The complex relative dielectric permittivity (ε = ε' - jε-prime) and magnetic permeability (μ = μ' - jμ-prime) of the BT powders were measured in the frequency range 8 ∼ 18 GHz. The BT/epoxide resin (EP) composite with different volume contents was investigated. The effects of thickness on the BT/EP composite were studied. It was found that an optimum thickness and contents of the absorber can yield the maximum reflection loss which could be obtained over a broad frequency region in the X and Ku bands. Our results indicate that BT could be a promising microwave absorption material

  9. Thermal and Electrical Characterization of the Carbon Nanofibers Based Cement Composites

    Directory of Open Access Journals (Sweden)

    Agnieszka ŚLOSARCZYK

    2017-08-01

    Full Text Available The paper describes the influence of chemical modification of vapor grown carbon nanofibers (VGCnFs on the thermal and electrical properties of the cement composites. The surface modification of nanofibers was performed by means of ozone and nitric acid treatments. It was shown that the oxidized carbon nanofibers surface plays an important role in shaping the mechanical and especially electrical properties of cement composite. For cement matrix modified with carbon nanofibers subjected to oxidized treatment, the slightly increase of cement paste resistivity was observed. It confirms the better adhesion of carbon nanofibers to cement paste. However, independently of carbon nanofibers modification, the occurrence of VGCnFs in cement paste increased the electrical conductivity of the composite in comparison to the cement paste without fibers. The obtained values of electrical resistivity were comparable with values of cement composites modified with 4 mm long carbon fibers. Moreover, it was shown that the chemical modification of carbon nanofibers surface does not influence on the thermal properties of cement composites. In case of cement paste with unmodified and modified carbon nanofibers, the Seebeck voltage was proportional to the temperature difference and was independent of the oxidation degree of carbon nanofibers.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.14993

  10. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    Science.gov (United States)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  11. Comparison of stabilities in translucency, fluorescence and opalescence of direct and indirect composite resins.

    Science.gov (United States)

    Yu, Bin; Lee, Young-Keun

    2013-01-01

    To evaluate translucency, fluorescence and opalescence stabilities of direct and indirect composite resins after aging. One direct (16 shades) and two indirect composite resins (16 and 26 shades) were investigated. Resins were filled in a mold (1 mm thick) and light cured; post-curings were performed for indirect resins. Color was measured before and after 5,000 cycles of thermocycling on a reflection spectrophotometer in reflectance and transmittance modes to calculate parameters for translucency (TP), fluorescence (FL) and opalescence (OP). Differences in the changes of TP, FL and OP after aging by the type of resin were determined by t test, and those were also determined by one-way ANOVA with the factor of the brand or the shade group (P resins; and were -2.0 to 1.8, -0.9 to 0.4 and -2.9 to 3.7, respectively, for indirect resins. Changes in TP were not significantly different by the type of resin, but those in FL and OP were different (P = 0.05). Changes in optical parameters were influenced by the brand or the shade group of the resins (P resins varied depending on type, brand or shade group. Aging significantly affected fluorescence and opalescence, but not translucency, of indirect resins compared to those of direct resins.

  12. Application of Some Synthesized Polymeric Composite Resins for Removal of Some Metal Ions

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The ion-exchange and sorption characteristic of new polymeric composite resins, prepared by gamma radiation were experimentally studied. The composite resins shows high uptake for Co(II) and Eu(III) ions in aqueous solutions in wide range of ph. The selectivity of the resins to Co (II) or Eu (III) species in the presence of some competing ions and complexing agents (as Na + , Fe 3+ , EDTA Na 2 , etc.) was compared. Various factors that could affect the sorption behaviors of metal ions (Co (II) and Eu (III)) on the prepared polymeric composite resins were studied such as ionic strength, Contact time, volume mass ratio

  13. The effect of processing on autohesive strength development in thermoplastic resins and composites

    Science.gov (United States)

    Howes, Jeremy C.; Loos, Alfred C.; Hinkley, Jeffrey A.

    1989-01-01

    In the present investigation of processing effects on the autohesive bond strength of neat polysulfone resin and graphite-reinforced polysulfone-matrix composites measured resin bond strength development in precracked compact tension specimens 'healed' by heating over a contact period at a given temperature. The critical strain energy release rate of refractured composite specimens did not exhibit the strong time or temperature dependence of the neat resin tests; only 80-90 percent of the undamaged fracture energy is recoverable.

  14. Advanced resin systems and 3D textile preforms for low cost composite structures

    Science.gov (United States)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  15. Evaluation of the resin cement thicknesses and push-out bond strengths of circular and oval fiber posts in oval-shapes canals

    Science.gov (United States)

    Er, Özgür; Kılıç, Kerem; Kılınç, Halil İbrahim; Sağsen, Burak

    2015-01-01

    PURPOSE The aim of this study was to evaluate whether the push-out bond strength varies between oval and circular fiber posts, and to examine the effect on the resin cement thicknesses around the posts. MATERIALS AND METHODS Eighteen mandibular premolar roots were separated into two groups for oval and circular fiber posts systems. Post spaces were prepared and fiber posts were luted to the post spaces. Roots were cut horizontally to produce 1-mm-thick specimens. Resin cement thicknesses were determined with a metallographic optical microscope and push-out tests were done. RESULTS No significant differences were observed in terms of push-out bond strength between the oval and circular fiber posts (P>.05) The resin cement thicknesses of the oval posts were greater than those of the circular posts group in the coronal, middle and apical specimens (P<.05). CONCLUSION In the light of these results, it can be stated that resin cement thickness does not affect the push-out bond strength. PMID:25722832

  16. In vitro enamel remineralization capacity of composite resins containing sodium trimetaphosphate and fluoride.

    Science.gov (United States)

    Tiveron, Adelisa Rodolfo Ferreira; Delbem, Alberto Carlos Botazzo; Gaban, Gabriel; Sassaki, Kikue Takebayashi; Pedrini, Denise

    2015-11-01

    This study evaluated the in vitro enamel remineralization capacity of experimental composite resins containing sodium trimetaphosphate (TMP) combined or not with fluoride (F). Bovine enamel slabs were selected upon analysis of initial surface hardness (SH1) and after induction of artificial carious lesions (SH2). Experimental resins were as follows: resin C (control—no sodium fluoride (NaF) or TMP), resin F (with 1.6% NaF), resin TMP (with 14.1% TMP), and resin TMP/F (with NaF and TMP). Resin samples were made and attached to enamel slabs (n = 12 slabs per material). Those specimens (resin/enamel slab) were subjected to pH cycling to promote remineralization, and then final surface hardness (SH3) was measured to calculate the percentage of surface hardness recovery (%SH). The integrated recovery of subsurface hardness (ΔKHN) and F concentration in enamel were also determined. Data was analyzed by ANOVA and Student-Newman-Keuls test (p Resins F and TMP/F showed similar SH3 values (p = 0.478) and %SH (p = 0.336) and differed significantly from the other resins (p resin TMP/F presented the lowest area of lesion (p resins (p = 0.042), but higher than in the other resins (p composite resin enhanced its capacity for remineralization of enamel in vitro. The combination of two agents with action on enamel favored remineralization, suggesting that composite resins containing sodium trimetaphosphate and fluoride could be indicated for clinical procedures in situations with higher cariogenic challenges.

  17. Bond Strength of Resin Cements to Dentin Using New Universal Bonding Agents

    Science.gov (United States)

    2015-06-30

    and acidic simplified adhesives is a well-studied phenomenon (Kanehira et al., 2006). A chemical incompatibility may occur in the oxygen-inhibited...not completely eliminate this incompatibility (Tay et al., 2003). Recently, new “universal adhesives ” have been introduced. These universal...potential incompatibilities with self-curing resin materials. Low bond strength between self-curing resin materials and acidic simplified adhesives is

  18. Effect of resin chemistry on depth of cure and cytotoxicity of dental resin composites

    International Nuclear Information System (INIS)

    Susila Anand, V.; Balasubramanian, Venkatesh

    2014-01-01

    Highlights: • Dental composites have differences in polymerization within 2 mm thickness. • Degree of conversion alone may not affect the biocompatibility of composite. • Unreacted double bonds in dental composites may influence biocompatibility. • Magnitude of double bonds depends on the polymerization and chemical composition. • These influence biocompatibility especially if they possess lipophylic properties. -- Abstract: New dental composite restorative materials are being introduced aiming to overcome the disadvantages of contemporary materials. Hence there is a need to analyze the critical properties of these composites to aid in clinical application. This study aims to comparatively analyze the degree of conversion (DC), residual reactivity (DBC/reactivity) and cytotoxicity of 2 composites based on different resin chemistry. Ceram X and Filtek P90 were used in the study to prepare disc shaped samples of 2 mm thickness and 4 mm diameter. The samples for cytotoxicity were cured for 40 s and those of Fourier Transform Infra-red Spectroscopy (FTIR) (DBC/reactivity and DC) for 5 s, 10 s, 20 s and 40 s, at an average intensity of 800 mW/cm 2 with Quartz–Tungsten–Halogen (QTH) light. DC was calculated in 60–100 μm thick and 6 mm diameter samples. Double bonds concentration/reactivity was measured in approximately 80 μm thick sections prepared from the 2 mm thick discs using a hard tissue microtome. The cell viability was scored by Trypan blue exclusion staining technique at 24 h and 48 h. Both composites showed a progressive increase in double bonds/reactivity as the distance from curing probe increased which was inversely proportional to the curing time. The DC of Filtek P90 was 20% and 96% and that of Ceram X 33% and 50% at 5 s and 40 s, respectively. Ceram X showed statistically significantly higher cell viability score at both 24 h and 48 h than Filtek P90. The results were statistically analyzed using non-parametric Kruskal–Wallis, Mann

  19. Effect of resin chemistry on depth of cure and cytotoxicity of dental resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Susila Anand, V. [Rehabilitation Bioengineering Group, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha University, Chennai 600077 (India); Balasubramanian, Venkatesh, E-mail: chanakya@iitm.ac.in [Rehabilitation Bioengineering Group, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-02-15

    Highlights: • Dental composites have differences in polymerization within 2 mm thickness. • Degree of conversion alone may not affect the biocompatibility of composite. • Unreacted double bonds in dental composites may influence biocompatibility. • Magnitude of double bonds depends on the polymerization and chemical composition. • These influence biocompatibility especially if they possess lipophylic properties. -- Abstract: New dental composite restorative materials are being introduced aiming to overcome the disadvantages of contemporary materials. Hence there is a need to analyze the critical properties of these composites to aid in clinical application. This study aims to comparatively analyze the degree of conversion (DC), residual reactivity (DBC/reactivity) and cytotoxicity of 2 composites based on different resin chemistry. Ceram X and Filtek P90 were used in the study to prepare disc shaped samples of 2 mm thickness and 4 mm diameter. The samples for cytotoxicity were cured for 40 s and those of Fourier Transform Infra-red Spectroscopy (FTIR) (DBC/reactivity and DC) for 5 s, 10 s, 20 s and 40 s, at an average intensity of 800 mW/cm{sup 2} with Quartz–Tungsten–Halogen (QTH) light. DC was calculated in 60–100 μm thick and 6 mm diameter samples. Double bonds concentration/reactivity was measured in approximately 80 μm thick sections prepared from the 2 mm thick discs using a hard tissue microtome. The cell viability was scored by Trypan blue exclusion staining technique at 24 h and 48 h. Both composites showed a progressive increase in double bonds/reactivity as the distance from curing probe increased which was inversely proportional to the curing time. The DC of Filtek P90 was 20% and 96% and that of Ceram X 33% and 50% at 5 s and 40 s, respectively. Ceram X showed statistically significantly higher cell viability score at both 24 h and 48 h than Filtek P90. The results were statistically analyzed using non-parametric Kruskal

  20. Mechanical behaviour of composite materials made by resin film infusion

    Directory of Open Access Journals (Sweden)

    Casavola C.

    2010-06-01

    Full Text Available Innovative composite materials are frequently used in designing aerospace, naval and automotive components. In the typical structure of composites, multiple layers are stacked together with a particular sequence in order to give specific mechanical properties. Layers are organized with different angles, different sequences and different technological process to obtain a new and innovative material. From the standpoint of engineering designer it is useful to consider the single layer of composite as macroscopically homogeneous material. However, composites are non homogeneous bodies. Moreover, layers are not often perfectly bonded together and delamination often occurs. Other violations of lamination theory hypotheses, such as plane stress and thin material, are not unusual and in many cases the transverse shear flexibility and the thickness-normal stiffness should be considered. Therefore the real behaviour of composite materials is quite different from the predictions coming from the traditional lamination theory. Due to the increasing structural performance required to innovative composites, the knowledge of the mechanical properties for different loading cases is a fundamental source of concern. Experimental characterization of materials and structures in different environmental conditions is extremely important to understand the mechanical behaviour of these new materials. The purpose of the present work is to characterize a composite material developed for aerospace applications and produced by means of the resin film infusion process (RFI. Different tests have been carried out: tensile, open-hole and filled-hole tensile, compressive, openhole and filled-hole compressive. The experimental campaign has the aim to define mechanical characteristics of this RFI composite material in different conditions: environmental temperature, Hot/Wet and Cold.

  1. Effects of finishing/polishing techniques on microleakage of resin-modified glass ilonomer cement restorations.

    Science.gov (United States)

    Yap, Adrian U J; Yap, W Y; Yeo, Egwin J C; Tan, Jane W S; Ong, Debbie S B

    2003-01-01

    This study investigated the effect of finishing/polishing techniques on the microleakage of resin-modified glass ionomer restorations. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (FT [GC]) and Photac-Fil Quick (PF [3M-ESPE]) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with eight-fluted tungsten carbide burs. The teeth were then randomly divided into four groups and finishing/polishing was done with one of the following systems: (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Polishers (CS). The sample size for each material-finishing/polishing system combination was eight. After finishing/polishing, the teeth were stored in distilled water at 37 degrees C for one week. The root apices were then sealed with acrylic and two coats of varnish was applied 1 mm beyond the restoration margins. The teeth were subsequently subjected to dye penetration testing (0.5% basic fuchsin), sectioned and scored. Data was analyzed using Kruskal-Wallis and Mann-Whitney U tests at a significance level of 0.05. Results of statistical analysis were as follows: Enamel margins: PF-OG

  2. An in situ evaluation of the polymerization shrinkage, degree of conversion, and bond strength of resin cements used for luting fiber posts.

    Science.gov (United States)

    Pulido, Camilo Andrés; de Oliveira Franco, Ana Paula Gebert; Gomes, Giovana Mongruel; Bittencourt, Bruna Fortes; Kalinowski, Hypolito José; Gomes, João Carlos; Gomes, Osnara Maria Mongruel

    2016-10-01

    The behavior and magnitude of the deformations that occur during polymerization and the behavior of the luting agents of glass fiber posts inside the root canal require quantification. The purpose of this in vitro study was to investigate the in situ polymerization shrinkage, degree of conversion, and bond strength inside the root canal of resin cements used to lute fiber posts. Thirty maxillary canines were prepared to lute fiber posts. The teeth were randomly divided into 2 groups (n=15) according to the cementation system used, which included ARC, the conventional dual-polymerized resin cement RelyX ARC, and the U200 system, a self-adhesive resin cement, RelyX U200. Two fiber optic sensors with recorded Bragg gratings (FBG) were attached to each post before inserting the resin cement inside the root canal to measure the polymerization shrinkage (PS) of the cements in the cervical and apical root regions (με). Specimens were sectioned (into cervical and apical regions) to evaluate bond strength (BS) with a push-out test and degree of conversion (DC) with micro-Raman spectroscopy. Data were statistically analyzed with 2-way ANOVA and the Tukey honestly significant difference post hoc test (α=.05). The ARC and U200 system showed similar PS values (-276.4 ±129.2 με and -252.1 ±119.2 με, respectively). DC values from ARC were higher (87.5 ±2.7%) than those of U200 (55.9 ±9.7%). The cervical region showed higher DC values (74.8 ±15.2%) and PS values (-381.6 ±53.0 με) than those of the apical region (68.5 ±20.1% and -146.9 ±43.5 με, respectively) for both of the resin cements. BS was only statistically different between the cervical and apical regions for ARC (P<.05). The ARC system showed the highest PS and DC values compared with U200; and for both of the resin cements, the PS and DC values were higher at the cervical region than at the apical region of the canal root. BS was higher in the cervical region only for ARC. Copyright © 2016

  3. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Science.gov (United States)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Bismaleimide (BMI) resins are an attractive new addition to world-wide composite applications. This type of thermosetting polyimide provides several unique characteristics such as excellent physical property retention at elevated temperatures and in wet environments, constant electrical properties over a vast array of temperature settings, and nonflammability properties as well. This makes BMI a popular choice in advance composites and electronics applications [I]. Bismaleimide-2 (BMI-2) resin was used to infuse intermediate modulus 7 (IM7) based carbon fiber. Two panel configurations consisting of 4 plies with [+45deg, 90deg]2 and [0deg]4 orientations were fabricated. For tensile testing, a [90deg]4 configuration was tested by rotating the [0deg]4 configirration to lie orthogonal with the load direction of the test fixture. Curing of the BMI-2/IM7 system utilized an optimal infusion process which focused on the integration of the manufacturer-recommended ramp rates,. hold times, and cure temperatures. Completion of the cure cycle for the BMI-2/IM7 composite yielded a product with multiple surface voids determined through visual and metallographic observation. Although the curing cycle was the same for the three panellayups, the surface voids that remained within the material post-cure were different in abundance, shape, and size. For tensile testing, the [0deg]4 layup had a 19.9% and 21.7% greater average tensile strain performance compared to the [90deg]4 and [+45deg, 90deg, 90deg,-45degg] layups, respectively, at failure. For tensile stress performance, the [0deg]4 layup had a 5.8% and 34.0% greater average performance% than the [90deg]4 and [+45deg, 90deg, 90deg,-45deg] layups.

  4. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    Keulemans, F.; Palav, P.; Aboushelib, M.M.N.; van Dalen, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a

  5. Influence of salivary enzymes and alkaline pH environment on fatigue behavior of resin composites

    NARCIS (Netherlands)

    Mirmohammadi, H.; Kleverlaan, C.J.; Aboushelib, M.N.; Feilzer, A.J.

    2011-01-01

    Purpose: To evaluate the effect of enzymatic activity and alkaline medium on flexural strength and rotary fatigue resistance of direct and indirect resin composite restorative materials. Methods: Three direct resin composite materials Filtek Z100, Filtek Z250 and Filtek Silorane (3M ESPE), and two

  6. Composite panels made with biofiber or office wastepaper bonded with thermoplastic and/or thermosetting resin

    Science.gov (United States)

    James H. Muehl; Andrzej M. Krzysik; Poo Chow

    2004-01-01

    The purpose of this study was to evaluate two groups of composite panels made from two types of underutilized natural fiber sources, kenaf bast fiber and office wastepaper, for their suitability in composite panels. All panels were made with 5% thermosetting phenol-formaldehyde (PF) resin and 1.5% wax. Also, an additional 10% polypropylene (PP) thermoplastic resin was...

  7. [Effect of bleaching agents on the color of indirect and direct composite resins].

    Science.gov (United States)

    Xing, Wenzhong; Jiang, Tao; Chen, Xiaodong; Wang, Yining

    2014-09-01

    To evaluate the effect of bleaching agents on the color of indirect and direct composite resins. Five resin composite materials were tested in this in vitro study. The five composites were as follow: two indirect composite resins (Adoro SR, Ceramage) and three direct composite resins (Filtek Z350, Clearfil Majesty Esthetic, and Gradia Direct Anterior). For each material, twenty disk-shaped specimens were prepared and randomly divided into five groups according to the color parameters of specimens before bleaching treatment. The composite resin specimens were treated by one of five sample solutions which were at-home bleaching agents (10% and 15% carbarmide peroxide), in- office bleaching agents (38% H(2)O(2) and 35%H(2)O(2)) and deionized water (control group). The color parameters of specimens were measured by spectrophotometer at baseline and after bleaching treatments. The color differences (ΔE values) between baseline and post-treatments were calculated. The data of color differences were evaluated statistically using two-way analysis with a significance level of 0.05. The color changes of the resin composites were less than 2.0 after bleaching agent treatment, therefore were not perceptible. Slight increase of L(*) values and decrease of C(*)ab values in color parameters of specimens were observed. There were statistically significant differences in ΔE values for different bleaching treatments and resin materials (P = 0.001). The bleaching agents did not affect the color of indirect and direct composite resins tested.

  8. Longevity of posterior resin composite restorations in permanent teeth in Public Dental Health Service

    DEFF Research Database (Denmark)

    Pallesen, Ulla; van Dijken, Jan W V; Halken, Jette

    2013-01-01

    To investigate in a prospective follow up the longevity of posterior resin composites (RC) placed in permanent teeth of children and adolescents attending Public Dental Health Service.......To investigate in a prospective follow up the longevity of posterior resin composites (RC) placed in permanent teeth of children and adolescents attending Public Dental Health Service....

  9. The effectiveness of different polymerization protocols for class II composite resin restorations.

    NARCIS (Netherlands)

    Jong, L.C.G. de; Opdam, N.J.M.; Bronkhorst, E.M.; Roeters, F.J.M.; Wolke, J.G.C.; Geitenbeek, B.

    2007-01-01

    OBJECTIVES: To investigate the effect of reduced light exposure times on Vickers hardness (VH) of class II composite resin restorations. METHODS: Class II restorations were made in vitro in three 2mm thick increments in a human molar. Two composite resins (Clearfil AP-X; Esthet-X) were polymerized

  10. The effect of proximal contour on marginal ridge fracture of Class II composite resin restorations.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Roeters, F.J.M.; Opdam, N.J.M.; Kuijs, R.H.

    2008-01-01

    OBJECTIVES: To compare the marginal ridge fracture strength of Class II composite resin restorations placed with a straight or contoured matrix band using composite resins with different modulus of elasticity. METHODS: In 60 artificial first molars standardized MO-preparations were ground. Two

  11. Effect of Self-Adhesive and Separate Etch Adhesive Dual Cure Resin Cements on the Bond Strength of Fiber Post to Dentin at Different Parts of the Root

    Directory of Open Access Journals (Sweden)

    Ehsan Mohamadian Amiri

    2017-10-01

    Full Text Available Objectives: Bonding of fiber posts to intracanal dentin is challenging in the clinical setting. This study aimed to compare the effect of self-adhesive and separate etch adhesive dual cure resin cements on the bond strength of fiber post to dentin at different parts of the root.Materials and Methods: This in-vitro experimental study was conducted on 20 single-rooted premolars. The teeth were decoronated at 1mm coronal to the cementoenamel junction (CEJ, and the roots underwent root canal treatment. Post space was prepared in the roots. Afterwards, the samples were randomly divided into two groups. In group 1, the fiber posts were cemented using Rely X Unicem cement, while in group 2, the fiber posts were cemented using Duo-Link cement, according to the manufacturer's instructions. The intracanal post in each root was sectioned into three segments of coronal, middle, and apical, and each cross-section was subjected to push-out bond strength test at a crosshead speed of 1mm/minute until failure. Push-out bond strength data were analyzed using independent t-test and repeated measures ANOVA.Results: The bond strength at the middle and coronal segments in separate etch adhesive cement group was higher than that in self-adhesive cement group. However, the bond strength at the apical segment was higher in self-adhesive cement group compared to that in the other group. Overall, the bond strength in separate etch adhesive cement group was significantly higher than that in self-adhesive cement group (P<0.001.Conclusions: Bond strength of fiber post to intracanal dentin is higher after the use of separate etch adhesive cement compared to self-adhesive cement.

  12. Adhesion of resin composite core materials to dentin.

    Science.gov (United States)

    O'Keefe, K L; Powers, J M

    2001-01-01

    This study determined (1) the effect of polymerization mode of resin composite core materials and dental adhesives on the bond strength to dentin, and (2) if dental adhesives perform as well to dentin etched with phosphoric acid as to dentin etched with self-etching primer. Human third molars were sectioned 2 mm from the highest pulp horn and polished. Three core materials (Fluorocore [dual cured], Core Paste [self-cured], and Clearfil Photo Core [light cured]) and two adhesives (Prime & Bond NT Dual Cure and Clearfil SE Bond [light cured]) were bonded to dentin using two dentin etching conditions. After storage, specimens were debonded in microtension and bond strengths were calculated. Scanning electron micrographs of representative bonding interfaces were analyzed. Analysis showed differences among core materials, adhesives, and etching conditions. Among core materials, dual-cured Fluorocore had the highest bond strengths. There were incompatibilities between self-cured Core Paste and Prime & Bond NT in both etched (0 MPa) and nonetched (3.0 MPa) dentin. Among adhesives, in most cases Clearfil SE Bond had higher bond strengths than Prime & Bond NT and bond strengths were higher to self-etched than to phosphoric acid-etched dentin. Scanning electron micrographs did not show a relationship between resin tags and bond strengths. There were incompatibilities between a self-cured core material and a dual-cured adhesive. All other combinations of core materials and adhesives produced strong in vitro bond strengths both in the self-etched and phosphoric acid-etched conditions.

  13. Treatment of low level radioactive liquid wastes using composite ion-exchange resins based on polyurethane foam

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lekshmi, R.; Mani, A.G.S.; Sinha, P.K.

    2010-01-01

    Composite ion-exchange resins were prepared by coating copper-ferrocyanide (CFC) and hydrous manganese oxide (HMO) powders on polyurethane (PU) foam. Polyvinyl acetate/Acetone was used as a binder. The foam was loaded with about five times its weight with CFC and HMO powders. The distribution coefficients of CFC-PU foam and HMO-PU foam for cesium and strontium respectively were estimated. Under similar conditions the HMO-PU foam showed higher capacity as well as better kinetics for removal of strontium than CFC-PU foam for Cs. The pilot plant scale studies were conducted using a mixed composite ion-exchange resin bed. About 1000 bed volumes could be passed before attaining a DF of 10 from an initial value of 60-80. The spent resin was digested in alkaline KMnO 4 and the digested liquid was fixed in cement matrix. The matrices were characterized with respect to compressive strength and leach resistance. (author)

  14. Interfacial morphology and domain configurations in 0-3 PZT-Portland cement composites

    International Nuclear Information System (INIS)

    Jaitanong, N.; Zeng, H.R.; Li, G.R.; Yin, Q.R.; Vittayakorn, W.C.; Yimnirun, R.; Chaipanich, A.

    2010-01-01

    Cement-based piezoelectric composites have attracted great attention recently due to their promising applications as sensors in smart structures. Lead zirconate titanate (PZT) and Portland cement (PC) composite were fabricated using 60% of PZT by volume. Scanning Electron Microscope and piezoresponse force microscope were used to investigate the morphology and domain configurations at the interfacial zone of PZT-Portland cement composites. Angular PZT ceramic grains were found to bind well with the cement matrix. The submicro-scale domains were clearly observed by piezoresponse force microscope at the interfacial regions between the piezoelectric PZT phase and Portland cement phase, and are clearer than the images obtained for pure PZT. This is thought to be due to the applied internal stress of cement to the PZT ceramic particle which resulted to clearer images.

  15. Effect of in-office bleaching agents on physical properties of dental composite resins.

    Science.gov (United States)

    Mourouzis, Petros; Koulaouzidou, Elisabeth A; Helvatjoglu-Antoniades, Maria

    2013-04-01

    The physical properties of dental restorative materials have a crucial effect on the longevity of restorations and moreover on the esthetic demands of patients, but they may be compromised by bleaching treatments. The purpose of this study was to evaluate the effects of in-office bleaching agents on the physical properties of three composite resin restorative materials. The bleaching agents used were hydrogen peroxide and carbamide peroxide at high concentrations. Specimens of each material were prepared, cured, and polished. Measurements of color difference, microhardness, and surface roughness were recorded before and after bleaching and data were examined statistically by analysis of variance (ANOVA) and Tukey HSD post-hoc test at P composite resin altered after the bleaching procedure (P composite resins tested (P > .05). The silorane-based composite resin tested showed some color alteration after bleaching procedures. The bleaching procedure did not alter the microhardness and the surface roughness of all composite resins tested.

  16. A self-sensing carbon nanotube/cement composite for traffic monitoring

    International Nuclear Information System (INIS)

    Han Baoguo; Yu Xun; Kwon, Eil

    2009-01-01

    In this paper, a self-sensing carbon nanotube (CNT)/cement composite is investigated for traffic monitoring. The cement composite is filled with multi-walled carbon nanotubes whose piezoresistive properties enable the detection of mechanical stresses induced by traffic flow. The sensing capability of the self-sensing CNT/cement composite is explored in laboratory tests and road tests. Experimental results show that the fabricated self-sensing CNT/cement composite presents sensitive and stable responses to repeated compressive loadings and impulsive loadings, and has remarkable responses to vehicular loadings. These findings indicate that the self-sensing CNT/cement composite has great potential for traffic monitoring use, such as in traffic flow detection, weigh-in-motion measurement and vehicle speed detection.

  17. A comparison of stresses in molar teeth restored with inlays and direct restorations, including polymerization shrinkage of composite resin and tooth loading during mastication.

    Science.gov (United States)

    Dejak, Beata; Młotkowski, Andrzej

    2015-03-01

    Polymerization shrinkage of composites is one of the main causes of leakage around dental restorations. Despite the large numbers of studies there is no consensus, what kind of teeth reconstruction--direct or indirect composite restorations are the most beneficial and the most durable. The aim was to compare equivalent stresses and contact adhesive stresses in molar teeth with class II MOD cavities, which were restored with inlays and direct restorations (taking into account polymerization shrinkage of composite resin) during simulated mastication. The study was conducted using the finite elements method with the application of contact elements. Three 3D models of first molars were created: model A was an intact tooth; model B--a tooth with a composite inlay, and model C--a tooth with a direct composite restoration. Polymerization linear shrinkage 0.7% of a direct composite restoration and resin luting cement was simulated (load 1). A computer simulation of mastication was performed (load 2). In these 2 situations, equivalent stresses according to the modified von Mises criterion (mvM) in the materials of mandibular first molar models with different restorations were calculated and compared. Contact stresses in the luting cement-tooth tissue adhesive interface around the restorations were also assessed and analyzed. Equivalent stresses in a tooth with a direct composite restoration (the entire volume of which was affected by polymerization shrinkage) were many times higher than in the tooth restored with a composite inlay (where shrinkage was present only in a thin layer of the luting cement). In dentin and enamel the stress values were 8-14 times higher, and were 13 times higher in the direct restoration than in the inlay. Likewise, contact stresses in the adhesive bond around the direct restoration were 6.5-7.7 times higher compared to an extraorally cured restoration. In the masticatory simulation, shear contact stresses in the adhesive bond around the direct

  18. Compatibility between dental adhesive systems and dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; MacKenzie, Alexandra

    2016-10-01

    Information is lacking about incompatibilities between certain types of adhesive systems and dual-polymerizing composite resins, and universal adhesives have yet to be tested with these resins. The purpose of this in vitro study was to investigate the bonding outcome of dual-polymerizing foundation composite resins by using different categories of adhesive solutions and to determine whether incompatibilities were present. One hundred and eighty caries-free, extracted third molar teeth were allocated to 9 groups (n=20), in which 3 different bonding agents (Single Bond Plus [SB]), Scotchbond Multi-purpose [MP], and Scotchbond Universal [SU]) were used to bond 3 different composite resins (CompCore AF [CC], Core Paste XP [CP], and Filtek Supreme Ultra [FS]). After restorations had been fabricated using an Ultradent device, the specimens were stored in water at 37°C for 24 hours. The specimens were tested under shear force at a rate of 0.5 mm/min. The data were analyzed with Kruskal-Wallis tests and post hoc pairwise comparisons (α=.05). All 3 composite resins produced comparable shear bond strengths when used with MP (P=.076). However, when either SB or SU was used, the light-polymerized composite resin (FS) and 1 dual-polymerized foundation composite resin (CC) bonded significantly better than the other dual-polymerized foundation composite resin (CP) (Pincompatibilities exist between different products. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Grinding efficiency of abutment tooth with both dentin and core composite resin on axial plane.

    Science.gov (United States)

    Miho, Otoaki; Sato, Toru; Matsukubo, Takashi

    2015-01-01

    The purpose of this study was to evaluate grinding efficiency in abutment teeth comprising both dentin and core composite resin in the axial plane. Grinding was performed over 5 runs at two loads (0.5 or 0.25 N) and two feed rates (1 or 2 mm/sec). The grinding surface was observed with a 3-D laser microscope. Tomographic images of the grinding surfaces captured perpendicular to the feed direction were also analyzed. Using a non-ground surface as a reference, areas comprising only dentin, both dentin and core composite resin, or only core composite resin were analyzed to determine the angle of the grinding surface. Composite resins were subjected to the Vickers hardness test and scanning electron microscopy. Data were statistically analyzed using a one-way analysis of variance and multiple comparison tests. Multiple regression analysis was performed for load, feed rate, and Vickers hardness of the build-up material depending on number of runs. When grinding was performed at a constant load and feed rate, a greater grinding angle was observed in areas comprising both dentin and composite resin or only composite resin than in areas consisting of dentin alone. A correlation was found between machinability and load or feed rate in areas comprising both dentin and composite resin or composite resin alone, with a particularly high correlation being observed between machinability and load. These results suggest that great caution should be exercised in a clinical setting when the boundary between the dentin and composite resin is to be ground, as the angle of the grinding surface changes when the rotating diamond point begins grinding the composite resin.

  20. Fracture toughness of dentin/resin-composite adhesive interfaces.

    Science.gov (United States)

    Tam, L E; Pilliar, R M

    1993-05-01

    The reliability and validity of tensile and shear bond strength determinations of dentin-bonded interfaces have been questioned. The fracture toughness value (KIC) reflects the ability of a material to resist crack initiation and unstable propagation. When applied to an adhesive interface, it should account for both interfacial bond strength and inherent defects at or near the interface, and should therefore be more appropriate for characterization of interface fracture resistance. This study introduced a fracture toughness test for the assessment of dentin/resin-composite bonded interfaces. The miniature short-rod specimen geometry was used for fracture toughness testing. Each specimen contained a tooth slice, sectioned from a bovine incisor, to form the bonded interface. The fracture toughness of an enamel-bonded interface was assessed in addition to the dentin-bonded interfaces. Tensile bond strength specimens were also prepared from the dentin surfaces of the cut bovine incisors. A minimum of ten specimens was fabricated for each group of materials tested. After the specimens were aged for 24 h in distilled water at 37 degrees C, the specimens were loaded to failure in an Instron universal testing machine. There were significant differences (p adhesives tested. Generally, both the fracture toughness and tensile bond strength measurements were highest for AllBond 2, intermediate for 3M MultiPurpose, and lowest for Scotchbond 2. Scanning electron microscopy of the fractured specimen halves confirmed that crack propagation occurred along the bond interface during the fracture toughness test. It was therefore concluded that the mini-short-rod fracture toughness test provided a valid method for characterization of the fracture resistance of the dentin-resin composite interface.