WorldWideScience

Sample records for composite particles prepared

  1. MAIN FACTORS IN PREPARATION OF ANTIBACTERIAL PARTICLES/PVC COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    Xuehua Chen; Chunzhong Li; Ling Zhang; Shoufang Xu; Qiuling Zhou; Yihua Zhu; Xianzhang Qu

    2004-01-01

    Zirconium phosphate containing silver was chosen as antibacterial particles in preparing antibacterial particles/PVC composite. The effect of surface property of the antibacterial particles and of their filler content on the properties of antibacterial particles/PVC composite was studied. The effect of the interfacial compatibility on mechanical properties of the composite was also discussed. Experimental results showed that the antibacterial PVC composite had good antibacterial property, reaching almost 100% bacteriostatic level at an antibacterial powder filler content of 1.5 phr.

  2. Preparation of Silver-Coated Polystyrene Composite Particles

    Institute of Scientific and Technical Information of China (English)

    陈卓; 詹鹏; 章建辉; 王振林; 章维益; 闵乃本

    2003-01-01

    We report a feasible approach to the preparation of monodispersed metal-shell composite microspheres based on a combination of surface reaction and surface seeding techniques. The method was implemented for coating polystyrene (PS) spheres with silver shell having a variable thickness by controlling the amount of reagents in the reaction procedure. These composite spherical particles in dimensions of the submicrometer range may become attractive building blocks for the creation of metallo-dielectric photonic band gap materials when they are organized into crystals.

  3. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  4. Review on preparation techniques of particle reinforced metal matrix composites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparatior techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  5. Preparation of cast aluminum alloy-mica particle composites

    Science.gov (United States)

    Deonath, MR.; Bhat, R. T.; Rohatgi, P. K.

    1980-01-01

    A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

  6. Preparation of cast aluminum alloy-mica particle composites

    Science.gov (United States)

    Deonath, MR.; Bhat, R. T.; Rohatgi, P. K.

    1980-01-01

    A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

  7. Biodegradable and magnetic core-shell composite particle prepared by emulsion solvent diffusion method

    Science.gov (United States)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2016-02-01

    The present paper describes optimization of preparation conditions of a core-shell composite particle, and its heat generation by alternating magnetic fields. The composite particles are prepared with a modified emulsion solvent diffusion method, which is combined with Pickering emulsion stabilized by magnetic nanoparticles. In this method, the magnetic nanoparticles act as an emulsifier, and its amount and size are crucial to morphology of the composite particles. The magnetic nanoparticles of 8-9 nm would be strongly adsorbed at a liquid-liquid interface rather than the larger nanoparticles. At the optimized concentration of the magnetic nanoparticle’s suspension for the preparation, small and uniform composite particles are obtained since the amount of the nanoparticles is enough to prevent coalescence of droplets during the formation of the composites. The heat generation by alternating magnetic fields emerged certainly. This result suggests the composite particles have a property as a heat-generating carrier for hyperthermia treatment.

  8. Novel titanium particles reinforced Zr-based bulk metallic glass composites prepared by infiltration casting

    Institute of Scientific and Technical Information of China (English)

    Cuimei Zhang; Xidong Hui; Meiling Wang; Guoliang Chen

    2008-01-01

    A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase in elastic strain to 3% and an enhancement of the strength up to 2.1 GPa. High specific strength has been obtained because of the decrease in density of the composite. It is suggested that an improvement in the mechanical properties of the composite may be attributed to the generation of multiple shear bands and some deformation in the Ti particles.

  9. Rheological properties of magnetorheological fluid prepared by gelatin-carbonyl iron composite particles

    Institute of Scientific and Technical Information of China (English)

    PAN Hua-jin; HUANG Hong-jun; ZHANG Ling-zhen; QI Jian-ying; CAO Shao-kun

    2005-01-01

    Gelatin-carbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average sizes of particles are 3-10 μm. The specific saturation magnetization σs is 130.9 A·m2/kg, coercivity Hc is 0.823 A/m, and residual magnetism r is 4.98 Am2/kg for the composite particles. It is shown that the particles possess properties of soft magnetic. The yield stress of magnetorheological fluid(MRF) with composite particle reaches 70 kPa at 0.5 T magnetic induction. Magnetorheological effects are superior in lower magnetic field intensity and the subsidence stability of the MRF is excellent compared with pure carbonyl iron powder.

  10. Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite

    Science.gov (United States)

    Zhou, Yingying; Zhou, Wancheng; Li, Rong; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2016-03-01

    To solve the serious electromagnetic interference problems at elevated temperature, one thin microwave-absorbing sheet employing Co-coated carbonyl iron particles and polyimide was prepared. The Co-coated carbonyl iron particles were successfully prepared using an electroless plating method. The microstructure, composition, phase and static magnetic properties of Co-coated carbonyl iron particles were characterized by combination of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The electromagnetic parameters of Co-coated carbonyl iron particles/polyimide composite were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanism of the material-obtained was discussed. The microwave absorption properties of composites before and after heat treatment at 300 °C for 100 h were characterized in 2-18 GHz frequency range. It was established that composites based on Co-coated carbonyl iron demonstrate thermomagnetic stability, indicating that Co coating reduces the oxidation of carbonyl iron. Thus, Co-coated carbonyl iron particles/polyimide composites are useful in the design of microwave absorbers operating at temperatures up to 300 °C.

  11. Preparation and Characterization of Titania-silica Composite Particles by Pechini Sol-gel Method

    Directory of Open Access Journals (Sweden)

    Wu Yuanting

    2016-01-01

    Full Text Available Two Pechini sol-gel processes were used to prepare titania-silica composite particles. The dynamic oxidation behavior of the TiO2-SiO2 powders has been characterized by thermogravimetry-differential scanning calorimetry (TG-DTG-DSC. The crystal phase and microstructure of the composite particles were investigated by X-ray diffraction (XRD and field emission scanning electron microscope (FE-SEM. The effects of Si:Ti molar ratio and sol-gel process on the TiO2-SiO2 powders were studied. The preparation of the polymeric precursors can influence the morphology of obtained TiO2-SiO2 composite particles. The spherical TiO2-SiO2 composite particles which are 20 nm~400 nm in diameter appear in gel-1 system. However, the TiO2-SiO2 powders obtained by gel-2 system are irregular in shape and 2~15 μm in diameter which show a loose porous structure consisted of very fine granules.

  12. Preparation and characterization of Fe3O4/Au composite particles

    Institute of Scientific and Technical Information of China (English)

    CUI; Yali; HUI; Wenli; WANG; Huirong; WANG; Lijun; CHEN; Ch

    2004-01-01

    Using Fe3O4 nano-particles as seeds, a new type of Fe3O4/Au composite particles with core/shell structure and diameter of about 170 nm was prepared by reduction of Au3+ with hydroxylamine in an aqueous solution. Particle size analyzer and transmission electron microscope were used to analyze the size distribution and microstructure of the particles in different conditions. The result showed that the magnetically responsive property and suspension stability of Fe3O4 seeds as well as reduction conditions of Au3+ to Au0 are the main factors which are crucial for obtaining a colloid of the Fe3O4/Au composite particles with uniform particle dispersion,excellent stability, homogeneity in particle sizes, and effective response to an external magnet in aqueous suspension solutions. UV-Vis analysis revealed that there is a characteristic peak of Fe3O4/Au fluid. For particles with d(0.5)=168 nm, the λmax is 625 nm.

  13. Preparation of graphite dispersed copper composite with intruding graphite particles in copper plate

    Science.gov (United States)

    Noor, Abdul Muizz Mohd; Ishikawa, Yoshikazu; Yokoyama, Seiji

    2017-01-01

    In this study, it was attempted that copper-graphite composite was prepared locally on the surface of a copper plate with using a spot welding machine. Experiments were carried out with changing the compressive load, the repetition number of the compression and the electrical current in order to study the effect of them on carbon content and Vickers hardness on the copper plate surface. When the graphite was pushed into copper plate only with the compressive load, the composite was mainly hardened by the work hardening. The Vickers hardness increased linearly with an increase in the carbon content. When an electrical current was energized through the composite at the compression, the copper around the graphite particles were heated to the temperature above approximately 2100 K and melted. The graphite particles partially or entirely dissolved into the melt. The graphite particles were precipitated from the melt under solidification. In addition, this high temperature caused the improvement of wetting of copper to graphite. This high temperature caused the annealing, and reduced the Vickers hardness. Even in this case, the Vickers hardness increased with an increase in the carbon content. This resulted from the dispersion hardening.

  14. Preparation and photocatalytic activity of composite films containing clustered TiO2 particles and mineral tourmaline powders

    Institute of Scientific and Technical Information of China (English)

    LIANG Jin-sheng; MENG Jun-ping; LIANG Guang-chuan; FENG Yan-wen; DING Yan

    2006-01-01

    The novel composite films containing clustered TiO2 particles and fine tourmaline particles on the surface of copper webs were prepared by the sol-gel method. The microstructures of the composite films were investigated by scanning electron microscopy (SEM),and the photocatalytic activity of the films was evaluated by photocatalytic degradation of methyl orange,respectively. The results indicate that tourmaline particles can obviously influence the microstructures of TiO2 films and enhance the photocatalytic activity due to their spontaneous permanent polarity and high radiotechnology of far infrared. During preparing the composite films,the clustered TiO2 particles with lots of nano-sized ladder layers can grow on the surface of fine tourmaline particles,the thickness of ladder layer is 10 nm,and the average diameter of nano-sized TiO2 particles is 15 nm.

  15. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy.

    Science.gov (United States)

    Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai

    2011-10-01

    The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.

  16. Specimen Preparation for Metal Matrix Composites with a High Volume Fraction of Reinforcing Particles for EBSD Analysis

    Science.gov (United States)

    Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.

    2016-07-01

    The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.

  17. Temperature- and moisture-induced crystallization of amorphous lactose in composite particles with sodium alginate prepared by spray-drying.

    Science.gov (United States)

    Takeuchi, H; Yasuji, T; Yamamoto, H; Kawashima, Y

    2000-01-01

    The purpose of this study was to investigate the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles prepared by spray-drying an aqueous solution of crystalline lactose and sodium alginate. The temperature-induced crystallization of amorphous lactose in the composite particles was suppressed by increasing the amount of sodium alginate in the particles. The stabilizing effect of sodium alginate on amorphous lactose in the composite particles was greater than that in physical mixtures having the same formulating ratios. The improved stability of amorphous lactose in the composite particles was attributed to an increase in the glass transition temperature (Tg) of the mixture. Moisture-induced crystallization of amorphous lactose was also retarded by increasing the amount of sodium alginate in composite particles. Although the Tg of the mixture was reduced by increasing the water content of the particles, the values were higher than that of 100% amorphous lactose when particles of the same water content were compared. The change in the Tg of the composite particles with increasing water content was interpreted as involving three components of the Gordon-Taylor equation. In the amorphous lactose-sodium alginate systems, the Tg values of the composite particles containing sodium alginate were higher than the theoretical line predicted by two components of the Gordon-Taylor equation. These results suggested that there was a specific interaction between the sodium alginate and lactose molecules. This specific interaction was suggested by the fact that only very little amorphous lactose was measured in the spray-dried composite particles stored under humid conditions using differential scanning calorimetry. This molecular interaction may also be partly responsible for the suppression of both the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles.

  18. Sol-Gel Preparation of Graphite/TiO2 Composite Particles and Their Electrorheological Effect

    Institute of Scientific and Technical Information of China (English)

    Ling ZHENG; Yinong LI

    2005-01-01

    Graphite/TiO2 composite particles were obtained by sol-gel technique in this paper. The structure and characteristic of the composite particles are analyzed by XRD, SEM and TG-DTA. The electrorheological properties of the ER fluid containing the particles were measured by a Couette-type rheometer under shear rates of 1~136 s-1 and AC electric fields of 0~3 kV/mm. The experimental results show that the leaking current density of the ER fluid is higher than that of pure titanium dioxide particles dispersed in damping oil. The shear yield stress of the ER fluid increases with increasing electric field and exhibits a typical Bingham flow behavior. The suspension demonstrates an excellent ER performance (τ/τ0=1200) compared with conventional ER fluids (τ/τ0 ≤500). The sedimentation of the ER fluid is improved obviously due to the coating effect of the particles.

  19. Chemical and Mechanical Evaluation of Bio-composites Based on Thermoplastic Starch and Wood Particles Prepared by Thermal Compression

    Directory of Open Access Journals (Sweden)

    María Guadalupe Lomelí-Ramírez

    2014-04-01

    Full Text Available The present work inspects the preparation of bio-composites of cassava starch with particles of eucalyptus wood through the application of a novel method of thermal compression. Bio-composites with different amounts of wood particles (5 to 30%, with particle sizes of 4 and 8 mm, were obtained. Chemical and mechanical evaluation of these samples was carried out using optical microscopy, infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM, and the moisture absorption effect. The effect of the amount and size of the wood particles was tested by comparison with a thermoplastic matrix sample. Results from these evaluations demonstrated that the thermo-compression method produced bio-composites with a distribution of particles in the matrix that contributed to an increase in their tensile strength. This mechanical property is also enhanced by interfacial adhesion between the matrix and particles, as confirmed by SEM. Furthermore, the maximum amount of particles in the bio-composites (30% showed the maximum resistance to moisture absorption. Temperature and time parameters contributed to the formation of diffraction patterns VH and EH as a consequence of the structural disruption of native starch. Finally, FTIR showed the chemical compatibility between the starch, glycerol, and wood particles.

  20. Preparation and Mechanical Properties of HIPS Composites Containing PS-grafted-hydroxyapatite Particles

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The surfaces of the micron-sized HA particles were modified by in situ copolymerization of vinyl triethoxyl silane (VTES) and styrene (St). Then, the modified HA particles were compounded with HIPS. The results showed that the polystyrene (PS) macromolecules were grafted on the surfaces of HA particles during in situ copolymerization of VTES and St. Thereby, PS chains grafted on the HA surface enhance the compatibility between HA and HIPS, improve the dispersion of HA particles in HIPS matrix, and enhance the interfacial adhesion between HA and matrix. The stiffness, tensile strength and notch impact strength of HIPS/HA composites are improved at the same time. And there is a critical coating thickness of PS to the HA surf ace for the optimum mechanical properties of HIPS/HA composites.

  1. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    Science.gov (United States)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  2. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  3. Preparation of BAP Composite Particles and Their Effects on Rheological Properties of HTPB/B/AP Slurries

    Science.gov (United States)

    Yun-Fei, Liu; Yu, Chen; Liang, Shi; Wei-Shang, Yao

    2014-04-01

    Composite particles (BAP) of boron (B) coated with ammonium perchlorate (AP) were prepared by recrystallization and their structures were characterized using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and laser particle size analyses. The results indicated that AP was well coated on the boron surface. The effects of different contents of BAP coated with different amounts of AP on the rheological properties of HTPB/B/AP composite slurries were also studied. The results show that addition of BAP distinctly decreased the slurries' viscosities and improved their processing properties, which were more obvious when 9.73% AP was coated on the surface of boron and the amount of BAP was 20%.

  4. RELATION BETWEEN PARTICLES SIZE OF RAW MATERIALS AND PROPERTIES OF MULLITE–ZrO2 COMPOSITES PREPARED BY REACTION-SINTERING

    Directory of Open Access Journals (Sweden)

    M. RAHMANI

    2012-09-01

    Full Text Available In this investigation, the mullite–zirconia composites were prepared by reaction-sintering of alumina and zircon powder. Besides, the slip casting method was employed for fabrication of these composites and different times of milling process were used for reducing the particles size of raw materials. Then, the effect of raw materials particles size on the properties of these composites was investigated. The physical properties, fracture toughness, flexural strength, phase composition and microstructure of these composites after firing at 1600°C were studied. The results showed that the milling time and then, particles size of raw materials have a great effect on the phase composition and properties of mullite–zirconia composites. The formation of tetragonal-zirconia is favored by reducing of particle size which, leads to increasing of the fracture toughness and flexural strength of these composites.

  5. Facile preparation of superparamagnetic Fe3O4/poly(St-co-MPS)/SiO2 composite particles with high magnetization by introduction of silanol groups.

    Science.gov (United States)

    Yan, Feng; Li, Jun; Fu, Rong; Lu, Ziyang; Yang, Wensheng

    2009-10-01

    Fe3O4/poly(St-co-MPS) particles were prepared by encapsulation of Fe3O4 nanoparticles into copolymers of styrene (St) and 3-trimethoxysilylpropylmethacrylate (MPS) (poly(St-co-MPS)) prepared by miniemulsion copolymerization. It is found that the structure of the Fe3O4/poly(St-co-MPS)/SiO2 composite particles prepared by direct silica deposition on surface of the Fe3O4/poly(St-co-MPS) particles is dependent on the volume fraction of MPS used in the copolymerization. It is identified that the surface of the Fe3O4/poly(St-co-MPS) particles becomes more negatively charged with increased volume fraction of MPS used in the copolymerization, attributed to the increased amount of the silanol groups on the particles surface. Introduction of silanol groups on the particle surface is effective to improve the dispersibility of the Fe3O4/poly(St-co-MPS) particles and their compatibility with silica, allowing the facile preparation of Fe3O4/poly(St-co-MPS)/SiO2 composite particles with defined core-shell structure. The as-prepared Fe3O4/poly(St-co-MPS)/SiO2 composite particles show high magnetization, for example, saturation magnetization of the particles with average size of 140 nm and 6 nm silica shell is as high as 45 emu/g at 300 K.

  6. Preparation and microwave properties of lamellar Fe/BaFeO2.5 composite particles with hydrogen-thermal reduction method

    Science.gov (United States)

    Gong, Yuanxun; Zhou, Zhongxiang; Jiang, Jiantang; Zhao, Hongjie

    2016-06-01

    Fe/BaFeO2.5 laminated composite particles were successfully prepared by hydrogen-thermal reducing BaFe12O19 particles. The average diameter of Fe/BaFeO2.5 composite particles is about 1 μm and the lamellar thickness is about 100 nm. The effective permittivity and permeability of Fe/BaFeO2.5 laminated composite particles were measured and EMA performance was evaluated. Compared with Fe particles with a similar diameter, the permeability of Fe/BaFeO2.5 composite particles is remarkably improved by the induction of insulator BaFeO2.5 phase. Due to the unique 2-dimension shape characteristic, ε‧ and μ‧ of Fe/BaFeO2.5 laminated composite particles is obviously higher than that of Fe/BaFeO2.5 composite particles without lamellar structure. EMA performance of coating containing Fe/BaFeO2.5 laminated composite particles as fillers is excellent, and a maximum reflection loss (RLmax) up to -29.94 dB was achieved in a coating of 1.36 mm. Meanwhile, the operation frequency band of coating containing Fe/BaFeO2.5 laminated composite particles as fillers covers completely X-band and Ku-band, which considerably wider than most of reported EMA coatings.

  7. Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    CHU Ke; JIA Chengchang; LIANG Xuebing; CHEN Hui; GAO Wenjia

    2009-01-01

    Spark plasma sintering (SPS) was used to fabricate Al/diamond composites. The influence of diamond particle size on the microstrueture and thermal conductivity (TC) of composites was investigated by combining experimental results with model prediction. The results show that both composites with 40 μm particles and 70 μm particles exhibit high density and good TC, and the composite with 70 μm particles indi-cates an excellent TC of 325 W·m~(-1)·K~(-1). Their TCs lay between the theoretical estimated bounds. In contrast, the composite with 100 μm particles demonstrates low density as well as poor TC due to its high porosity and weak interfacial bonding. Its TC is even considerably less than the lower bound of the predicted value. Using larger diamond particles can further enhance thermal conductive performance only based on the premise that highly dense composites of strong interfacial bonding can be obtained.

  8. Preparation of Sheet-like Polymer-Encapsulated Composite Particles by Seeded Polymerization from Sub-micrometer Sheets.

    Science.gov (United States)

    Huang, Ting; Yao, Kuncheng; Wu, Teng; Qiu, Dong

    2015-07-01

    Seeded polymerization has been widely used to fabricate polymer-encapsulated inorganic particles (IPs). The most frequently used seeds are spherical, whereas nonspherical particles are not well documented. Recently, sheet-like IPs have attracted much attention in the context of polymer composites. This article is therefore dedicated to understanding seeded polymerization from submicron sheets and focuses on the control of the overall morphology of the composite particles obtained. However, it was found that the composite particles only maintained the sheet-like morphology of the seeds at a low polymer content, whereas they became hamburger-like at a high polymer content owing to minimization of the interfacial energy. Interestingly, when cross-linked, the sheet-like morphology could be well preserved, even at a rather high polymer content. With the encapsulating polymer layer, the obtained sheet-like composite particles showed improved compatibility with the polymer matrix and could be well dispersed in polymer matrix when simply blended.

  9. Microstructure and properties of mechanical alloying particles reinforced aluminum matrix composites prepared by semisolid stirring pouring method

    Directory of Open Access Journals (Sweden)

    Yao-qiang Si

    2016-05-01

    Full Text Available Aluminum matrix composites reinforced with mechanical alloying particles (SiCp were fabricated by the semisolid stirring pouring method. The influence of mechanical alloying particles and Mg on the microstructure and mechanical properties of the composites was investigated by means of optical microscopy (OM, X-ray diffraction scanning (XRD, electron microscopy (SEM and energy dispersive spectroscopy (EDS. Results show that the addition of Mg converts the agglomerate mechanical alloying particles in ZL101 matrix composites into dispersed distribution in ZL101-Mg matrix composites, large matrix grains into fine equiaxed matrix grains, and eutectic phase into fine particles. So the mechanical properties of ZL101-Mg matrix composites are better than those of ZL101 matrix composites. The mechanical properties of ZL101/ZL101-Mg matrix composites are gradually increased with the increase of the volume fraction of mechanical alloying particles. When the volume fraction of mechanical alloying particles is 3%, the Vickers hardness and ultimate tensile strength of the ZL101/ZL101-Mg matrix composites reach their maximum values.

  10. The preparation of composite microsphere with hollow core/porous shell structure by self-assembling of latex particles at emulsion droplet interface.

    Science.gov (United States)

    He, Xiao Dong; Ge, Xue Wu; Wang, Mo Zhen; Zhang, Zhi Cheng

    2006-07-15

    A submicrometer-scaled polystyrene/melamine-formaldehyde hollow microsphere composite was prepared by self-assembling of sulfonated polystyrene (SPS) latex particles at the interface of emulsion droplets and then being fixed in place using a hard melamine-formaldehyde (MF) composite layer. For control-released purposes, the influential factors that control the size and uniformity of the packed-droplets and the permeability of the composite shell, including the initial particle location, the hydrophilicity and the size of colloidal templates, the oil phase solvent and reserving time of emulsions after the addition of MF prepolymer, were further studied. Relatively uniform sized particle packed-droplets with an average diameter of 10 microm were obtained. The assembled SPS particles kept ordering and minimal conglutination after the preparation of composite microspheres, which allows of controlling the permeability from the interstices between the particles. Porous-mesh-structured MF composite layer was formed to further control the permeability. The morphology of emulsions and composite microspheres were characterized by optical microscopy, scanning and transmission electron microscopy.

  11. Effects of MgO Nano Particles on Microstructural and Mechanical Properties of Aluminum Matrix Composite prepared via Powder Metallurgy Route

    Science.gov (United States)

    Baghchesara, Mohammad Amin; Abdizadeh, Hossein; Baharvandi, Hamid Reza

    The objective of the present investigation was to evaluate the microstructural and mechanical properties of Al/nano MgO composite prepared via powder metallurgy method. Pure atomized aluminum powder with an average particle size of 1μm and MgO particulate with an average particle size between 60 to 80 nm were used. Composites containing 1.5, 2.5 and 5 percent of volume fraction of MgO were prepared by powder metallurgy method. The specimens were pressed by Cold Isostatic Press machine (CIP), subsequently were sintered at 575, 600 and 625°C. After sintering and preparing the samples, mechanical properties were measured. The results of microstructure, compression and hardness tests indicated that addition of MgO particulates to aluminum matrix composites improves the mechanical properties.

  12. Preparation of soft magnetic composites for Fe particles coated with (NiZn)Fe{sub 2}O{sub 4} via microwave treatment

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yuandong, E-mail: pengyuandong@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); NBTM New Materials Group Co., Ltd., Ningbo 315191 (China); Nie, Junwu; Zhang, Wenjun; Bao, Chongxi; Ma, Jian; Cao, Yang [NBTM New Materials Group Co., Ltd., Ningbo 315191 (China)

    2015-12-01

    Soft magnetic composites (SMCs) of Fe particles coated with fine particle Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrite were prepared via microwave heat treatment, and the magnetic properties and microstructures of these composites were investigated. The results show that a well-distributed Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} coating layer was formed on the surface of the Fe particles upon microwave annealing. The SMCs sample treated by microwave heating at 800 °C for 30 min under N{sub 2} had a perfect insulation layer between the Fe particles and showed stable permeability and low core loss as well as good magnetic characteristics over a wide frequency range. - Graphical abstract: SEM imaging of the composite powder after microwave treatment at 800 °C for 30 min shows that the surface of the Fe particles adhered well to the ferrite particles to form a dense and uniform insulation coating layer. - Highlights: • Insolution coating material is ferrimagnetic ferrite particles. • Fe particles were coated with fine particle NiZn ferrite via microwave treatment. • Coating layer was uniform and dense. • SMCs annealed had stable permeability and low core loss.

  13. Composites of Eu(3+)-doped calcium apatite nanoparticles and silica particles: comparative study of two preparation methods.

    Science.gov (United States)

    Isobe, Ayumu; Takeshita, Satoru; Isobe, Tetsuhiko

    2015-02-10

    We synthesized composites of Eu(3+)-doped calcium apatite (CaAp:Eu(3+)) nanoparticles and silica particles via two methods: (i) in situ synthesis of CaAp:Eu(3+) in the presence of silica particles and (ii) electrostatic adsorption of CaAp:Eu(3+) nanoparticles on silica particle surfaces. In both methods, submicrometer spherical silica particles were covered with CaAp:Eu(3+) nanoparticles without forming any impurity phases, as confirmed by X-ray diffractometry, Fourier-transform infrared spectroscopy, and scanning electron microscopy. In method i, part of the silica surface acted as a nucleation site for apatite crystals and silica particles were inhomogeneously covered with CaAp:Eu(3+) nanoparticles. In method ii, positively charged CaAp:Eu(3+) nanoparticles were homogeneously adsorbed on the negatively charged silica surface through electrostatic interactions. The bonds between the silica surface and CaAp:Eu(3+) nanoparticles are strong enough not to break under ultrasonic irradiation, irrespective of the synthetic method used. The composite particles showed red photoluminescence corresponding to 4f → 4f transitions of Eu(3+) under near-UV irradiation. Although the absorption coefficient of the forbidden 4f → 4f transitions of Eu(3+) was small, the red emission was detectable with a commercial fluorescence microscope because the CaAp:Eu(3+) nanoparticles accumulated on the silica particle surfaces.

  14. {gamma}-Fe{sub 3}/Zn O composite particles prepared by a two step chemical soft method

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, S.; Morales L, F., E-mail: sebas@servidor.unam.m [UNAM, Instituto de Investigaciones en Materiales, Apdo. Postal 70-360, 04510 Mexico D. F. (Mexico)

    2011-07-01

    Composite iron oxide-zinc oxide ({gamma}-Fe{sub 2}O{sub 3}/Zn O) was synthesized by two step method: in the first one step {gamma}-Fe{sub 2}O{sub 3} particles were obtained by a cetyltrimethylammonium hydroxide assisted hydrothermal method at low temperature (60 C). In the second step, the {gamma}-Fe{sub 2}O{sub 3} particles were included in the Zn O particles synthesis, which were obtained by a hexamethylenetetramine assisted hydrothermal method at low temperature (90 C). Sem study of the samples revealed that the the {gamma}Fe{sub 2}O{sub 3}/Zn O composites present a compact morphology. The {gamma}Fe{sub 2}O{sub 3} and Zn O phases were identified by XRD, energy dispersive X-ray analysis and analysis of the IR spectrum. The composite exhibit the characteristic emissions of Zn O under UV radiation and ferromagnetic behavior of {gamma}Fe{sub 2}O{sub 3} under an external magnetic field. (Author)

  15. Preparation of ZrC nano-particles reinforced amorphous carbon composite coating by atmospheric pressure chemical vapor deposition

    Science.gov (United States)

    Sun, W.; Xiong, X.; Huang, B. Y.; Li, G. D.; Zhang, H. B.; Xiao, P.; Chen, Z. K.; Zheng, X. L.

    2009-05-01

    To eliminate cracks caused by thermal expansion mismatch between ZrC coating and carbon-carbon composites, a kind of ZrC/C composite coating was designed as an interlayer. The atmospheric pressure chemical vapor deposition was used as a method to achieve co-deposition of ZrC and C from ZrCl 4-C 3H 6-H 2-Ar source. Zirconium tetrachloride (ZrCl 4) powder carrier was especially made to control accurately the flow rate. The microstructure of ZrC/C composite coating was studied using analytical techniques. ZrC/C coating shows same morphology as pyrolytic carbon. Transmission electron microscopy (TEM) shows ZrC grains with size of 10-50 nm embed in turbostratic carbon. The formation mechanism is that the growth of ZrC crystals was inhibited by surrounding pyrolytic carbon and kept as nano-particles. Fracture morphologies imply good combination between coating and substrate. The ZrC crystals have stoichiometric proportion near 1, with good crystalline but no clear preferred orientation while pyrolytic carbon is amorphous. The heating-up oxidation of ZrC/C coating shows 11.58 wt.% loss. It can be calculated that the coating consists of 74.04 wt.% ZrC and 25.96 wt.% pyrolytic carbon. The average density of the composite coating is 5.892 g/cm 3 by Archimedes' principle.

  16. Optimizing Preparation of Micron SiO2-based Phase Change and Humidity Controlling Composites with Uniform Particle Size Distribution Based on RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Hao

    2017-08-01

    Full Text Available With SiO2 as the carrier, decanoic acid-palmitic acid as a phase change material,the micron SiO2-based phase change and humidity controlling composite materials were prepared by sol-gel method. The scheme was optimized by uniform design in a combination with RBF neural network to optimizing preparation of micron SiO2-based phase change and humidity controlling composite materials. The performance of micron SiO2-based phase change and humidity controlling composite materials with optimal uniform particle size distribution were tested and characterized. The results show that RBF neural network has the best approximation effect, when spread is 0.5; optimization technology parameters are solution pH value 4.27, amount of deionized water (mole ratio between deionized water and tetraethyl orthosilicate is 8.58, amount of absolute alcohol (mole ratio between absolute alcohol and tetraethyl orthosilicate is 4.83 and ultrasonic wave power is 316W; micron SiO2-based phase change and humidity controlling composite materials with optimal uniform particle size distribution' d10 is 383.51nm, d50 is 511.63nm and d90 is 658.76nm, measured value of d90-d10 is 275.25nm, the measured value and the predicted value are in good agreement (relative error is -2.64%; micron SiO2-based phase change and humidity controlling composite materials with optimal uniform particle size distribution' equilibrium moisture content in the relative humidity of 40%-60% is 0.0925-0.1493g/g, phase transition temperature is 20.02-23.45℃ and phase change enthalpy is 54.06-60.78J/g.

  17. PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Ana Stanković

    2016-01-01

    Full Text Available Copolymer poly (DL-lactide-co-glycolide (PLGA is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans.

  18. Preparation and optimization of CdWO4-polymer nano-composite film as an alpha particle counter

    Science.gov (United States)

    Ziluei, Hossein; Azimirad, Rouhollah; Mojtahedzadeh Larijani, Majid; Ziaie, Farhoud

    2017-04-01

    In this research work, CdWO4/polymer composite films with different thicknesses were prepared using Poly-methyl acrylate polymer and synthesized CdWO4 powder. The CdWO4 powder was synthesized by a simple co-precipitation method in the laboratory. X-ray diffraction, photoluminescence, Fourier transformed infrared spectroscopy and energy-dispersive X-ray spectroscopy proved that the CdWO4 powder was successfully prepared. Moreover, photoluminescence analysis showed that adding polymer does not change the emission peak of CdWO4. Also, the responses of all samples were measured using an 241Am alpha source with 1860 Bq activity. Results showed that the sample having thickness of 177 mg/cm2 has the best counting efficiency (over 2π geometry) among the others. The efficiency measurement was further evaluated using a 230Th source whose activity is 190.7 Bq. It revealed that the counting efficiency of this sample for both 241Am and 230Th was nearly equal.

  19. Study on characteristics of Ni-W-B composites containing CeO2 nano-particles prepared by pulse electrodeposition

    Institute of Scientific and Technical Information of China (English)

    WANG Junli; XU Ruidong; ZHANG Yuzhi

    2012-01-01

    Ni-W-B composites containing CeO2 nano-particles on the surface of 45 steel were prepared by pulse electrodeposition,and the influence of pulse frequency,pulse duty circle and heat treatment temperature on the structures and properties were investigated.The results indicated that the pulse co-deposition of Ni,W,B and CeO2 nano-particles led to Ni-W-B/CeO2 composites possessing higher microhardness and better wear resistance when heat-treated at 400 ℃ for 1 h.The microhardness of 636 HV and the deposition rate of 0.0281 mm/h of the as-deposited alloy were the highest at pulse frequency of 1000 Hz,pulse duty circle of 10% and pulse average current density of 10 A/dm2.The composites were mainly in the amorphous state and were partially crystallized as-deposited,and the crystallization trend was strengthened when heat-treated at 400 ℃.Decreasing pulse duty cycle from 75% to 10% was favorable to the refinement in grain strctures and improvement ofmicrostructures.The crystal sizes of the composites were smaller by means of pulse electrodeposition.

  20. PREPARATION OF LEUCITE-BASED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Alexandra Kloužková

    2012-12-01

    Full Text Available The aim of this study was to prepare leucite dental composites from two separately synthesized components - tetragonal leucite and glassy matrix. The newly developed procedure is based on the preparation of crystalline tetragonal leucite powder by relatively low temperature synthesis under hydrothermal conditions. Matrix powder was prepared by a classical melting process and subsequent milling of the quenched glass. The dental composites were prepared by mixing of 10 wt. %, 20 wt. % and 30 wt. % of synthesized tetragonal leucite with glass powder followed by pressing and firing. The sintering process was observed by optical microscope and the optimal firing temperature for each composite was determined. Optical and electron microscopy was used to characterise the microstructure of the composites, especially the distribution of the leucite particles in the matrix. Dilatometric measurements proved that the coefficient of thermal expansion of the composites increased up to 44 % in comparison with the basic matrix.

  1. Electrochemistry, a technique to prepare redox nano-structured composite materials (polymer/nano-particles) - Characterizations - Applications; L'electrochimie, un outil pour elaborer des materiaux composites redox nanostructures (polymere/nanoparticules) - Caracterisations - Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chardon-Noblat, S. [Grenoble-1 Univ. Joseph Fourier, Lab. d' Electrochimie Organique et de Photochimie Redox, UMR 5630, Institut de Chimie Moleculaire de Grenoble, FR CNRS 2607, 38 - Grenoble (France)

    2006-07-01

    In this work is presented at first the preparation by an electrochemical way of bi functional nano-structured composite materials. It is shown that with the pulsed electrolysis techniques, it is possible to obtain metallic particles whose size and organization are controlled at the nano-scopic scale in redox matrices. Then, are presented the physico-chemical characterizations of these nano-objects (coupled in situ or ex situ at the electrochemistry). The first results relative to the catalytic activation of CO{sub 2} with these materials used as composite cathodes are indicated. (O.M.)

  2. Effect of pH on film structure and electrical property of PMMA–Au composite particles prepared by redox transmetalation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong-Mao; Lin, Kuan-Ju [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Yu, Yi-Hsiuan; Ho, Chan-Yuan; Wei, Ming-Hsiung [Chemical System Research Division, Chung-Shan Institute of Science and Technology, Long-Tan, Tao-Yuan 325, Taiwan (China); Lu, Fu-Hsing [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Tseng, Wenjea J., E-mail: wenjea@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2014-01-15

    Surface-selective deposition of gold (Au) on electroless plated poly(methyl methacrylate)–nickel (PMMA–Ni) beads was prepared chemically by a facile redox-transmetalation route in which the Ni atoms on the PMMA surface were reacted with Au precursors, i.e., chloroauric acid (HAuCl{sub 4}), in water to form predominately core-shell PMMA–Au composite particles without the need of reducing agent. The Ni layer acted as a sacrificial template to facilitate the selective transmetalation deposition of a metallic Au film. When pH of the precursor solution was adjusted from 6 to 9, morphology of the Au film changed from a uniform particulate film consisting of assemblies of Au nanoparticles, to densely packed, continuous film with platelet Au crystals, and finally to isolated Au islands on the PMMA surface with a raspberry-like core–shell morphology. Uniformly dense Au coating with a thickness of about 200 nm was formed on the PMMA beads at pH of 7 to 8, which gave rise to an electrical resistivity as low as 3 × 10{sup −2} Ω cm.

  3. Preparation of spherical hollow alumina particles by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonkyung [Department of Chemical Engineering, INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of); Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of); Choi, Sooseok [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151‐742 (Korea, Republic of); Oh, Seung-Min [Daejoo Electronic Materials Co., 1236‐10 Jeongwang-dong, Siheung-si, Kyunggi-do 429‐848 (Korea, Republic of); Park, Dong-Wha, E-mail: dwpark@inha.ac.kr [Department of Chemical Engineering, INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of); Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), INHA University, 253 Yonghyun-dong, Nam-gu, Incheon 402‐751 (Korea, Republic of)

    2013-02-01

    Spherical hollow particles were prepared from solid alumina powders using DC arc thermal plasma, and then spray coating was performed with the as-prepared particles. Operating variables for the hollow particle preparation process were additional plasma gas, input power, and carrier gas flow rate. The spherical hollow alumina particles were produced in the case of using additive gas of H{sub 2} or N{sub 2}, while alumina surface was hardly molten in the pure argon thermal plasma. In addition, the hollow particles were well produced in high power and low carrier gas conditions due to high melting point of alumina. Hollow structure was confirmed by focused ion beam-scanning electron microscopy analysis. Morphology and size distribution of the prepared particles that were examined by field emission-scanning electron microscopy and phase composition of the particles was characterized by X-ray diffraction. In the spray coating process, the as-prepared hollow particles showed higher deposition rate. - Highlights: ► Spherical hollow alumina powder was prepared by non-transferred DC arc plasma. ► Diatomic gasses were added in Ar plasma for high power. ► Prepared hollow alumina powder was efficient for the plasma spray coating.

  4. Method for preparing ceramic composite

    Science.gov (United States)

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    A process for preparing ceramic composite comprising blending TiC particulates, Al.sub.2 O.sub.3 particulates and nickle aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m.sup.1/2, a hardness equal to or greater than 18 GPa.

  5. Use of hybrid composite particles prepared using alkoxysilane-functionalized amphiphilic polymer precursors for simultaneous removal of various pollutants from water.

    Science.gov (United States)

    Cho, Seulki; Kim, Nahae; Lee, Soonjae; Lee, Hoseok; Lee, Sang-Hyup; Kim, Juyoung; Choi, Jae-Woo

    2016-08-01

    In this study, we present new inorganic-organic hybrid particles and their possible application as an adsorbent for simultaneous removal of hydrophobic and hydrophilic pollutants from water. These hybrid particles were prepared using tailor-made alkoxysilane-functionalized amphiphilic polymer precursors (M-APAS), which have amphiphilic polymers and reactive alkoxysilane groups attached to the same backbone. Through a single conventional sol-gel process, the polymerization of M-APAS and the chemical conjugation of M-APAS onto silica nanoparticles was simultaneous, resulting in the formation of hybrid particles (M-APAS-SiO2) comprised of hyperbranch-like amphiphilic polymers bonded onto silica nanoparticles with a relatively high grafting efficiency. A test for the adsorption of water-soluble dye (organe-16) and water insoluble dye (solvent blue-35) onto the hybrid particles was performed to evaluate the possibility of adsorbing hydrophilic and hydrophobic compound within the same particle. The hybrid particle was also evaluated as an adsorbent for the removal of contaminated water containing various pollutants by wastewater treatment test. The hybrid particle could remove phenolic compounds from wastewater and the azo dye reactive orange-16 from aqueous solutions, and it was easily separated from the treated wastewater because of the different densities involved. These results demonstrate that the hybrid particles are a promising sorbent for hydrophilic and/or hydrophobic pollutants in water.

  6. 内嵌碳纳米管铜复合颗粒的制备%Preparation of Copper Composite Particles Inner-Embedded with Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    王伟; 陈小华; 刘云泉; 易斌; 颜海梅

    2011-01-01

    采用混酸纯化法在碳纳米管表面引入羟基、羧基等基团,利用明胶使碳纳米管分散在硫酸铜溶液中,和葡萄糖在碱性条件下还原得到内嵌碳纳米管的氧化亚铜复合颗粒,再利用氢气将其还原成为内嵌碳纳米管的铜复合颗粒,通过SEM和TEM观察复合颗粒的形貌,用XRD分析了复合颗粒的物相.结果表明:制备的内嵌碳纳米管的铜复合颗粒粒径在几百纳米到几微米之间,每个颗粒表面均匀分布毛刺状的碳纳米管;纯化后的碳纳米管在硫酸铜溶液中的分散性有所改善,使复合颗粒的纯净度及碳纳米管在铜颗粒内的分散均匀性较好.%Using purification in a mixed acid, hydroxyl groups and carboxyl groups were introduced on the surface of carbon nanotubes (CNTs). Gelatin was used to disperse CNTs uniformly in the CuSO44 solution. CuO2 composite particles inner-embedded with CNTs (CNTs/CuO2) were obtained through reducing the Cu2+ with glucose in alkaline condition. Then copper composite particles inner-embedded with CNTs (CNTs/Cu) were formed using H2 as reducing agent. The morphology of the composite particles was observed by means of SEM and TEM.Phase analysis for the composite particles was performed using XRD. The results show that the particle size of the CNTs/Cu composites was several hundreds nanometers to several microns. There were burr-like CNTs uniformly distributed on the surface of every particle. The dispersion of the CNTs after purified in CuSO4 solution was improved, which made the purification of the composite particles and the dispersible uniformity of the CNTs in Cu particles better.

  7. Preparation and application of streptavidin magnetic particles

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZhiFeng; ZHU HongLi; TANG YiTong; CUI Ting; GENG TingTing; CHEN Chao; CUI YaLi

    2007-01-01

    Two kinds of streptavidin magnetic particles, namely streptavidin GoldMag particles and streptavidin amino terminal particles were prepared by the methods of physical adsorption and covalent interaction respectively. The streptavidin coated on magnetic particle surface, crucial to many applications, was greatly influenced by the choice of the different buffer. Compared with Dynalbeads(r)M-270 streptavidin, the binding capacity for biotin of different streptavidin magnetic particles was determined by enzyme inhibition method, and the coupling capacity and activity of biotinylated oligonucleotide on their surface were also analyzed. The results indicated that the streptavidin GoldMag particle prepared by physical adsorption was stable in STE (NaCl-Tris-EDTA) buffer that was frequently used in nucleic acid hybridization and detection. The streptavidin amino terminal particles prepared by covalent interaction could be used both in STE buffer and PBS (phosphate buffered saline) buffer. The biotin binding capacity for 1 mg of streptavidin GoldMag particles and streptavidin amino terminal particles was 4950 and 5115 pmol respectively. The capacity of biotinylated oligonucleotide (24 bp) coupled on 1 mg of GoldMag and amino terminal magnetic particles was 2839 and 2978 pmol separately. These data were about 6-7 times higher than those of Dynabeads(r)M-270 streptavidin. The hybridization results with FITC-labeled complementary probe on magnetic particle surface demonstrated that the oligonucleotide coupled on streptavidin magnetic particles had high biological activity.

  8. Preparation and application of streptavidin magnetic particles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two kinds of streptavidin magnetic particles,namely streptavidin GoldMag particles and streptavidin amino terminal particles were prepared by the methods of physical adsorption and covalent interaction respectively.The streptavidin coated on magnetic particle surface,crucial to many applications,was greatly influenced by the choice of the different buffer.Compared with DynalbeadsM-270 streptavidin, the binding capacity for biotin of different streptavidin magnetic particles was determined by enzyme inhibition method,and the coupling capacity and activity of biotinylated oligonucleotide on their sur- face were also analyzed.The results indicated that the streptavidin GoldMag particle prepared by physical adsorption was stable in STE(NaCl-Tris-EDTA)buffer that was frequently used in nucleic acid hybridization and detection.The streptavidin amino terminal particles prepared by covalent interaction could be used both in STE buffer and PBS(phosphate buffered saline)buffer.The biotin binding ca- pacity for 1 mg of streptavidin GoldMag particles and streptavidin amino terminal particles was 4950 and 5115 pmol respectively.The capacity of biotinylated oligonucleotide(24 bp)coupled on 1 mg of GoldMag and amino terminal magnetic particles was 2839 and 2978 pmol separately.These data were about 6-7 times higher than those of DynabeadsM-270 streptavidin.The hybridization results with FITC-labeled complementary probe on magnetic particle surface demonstrated that the oligonucleotide coupled on streptavidin magnetic particles had high biological activity.

  9. Effects of Rice Hull Particle Size and Content on the Mechanical Properties and Visual Appearance of Wood Plastic Composites Prepared from Poly(vinyl chloride)

    Institute of Scientific and Technical Information of China (English)

    Nawadon Petchwattana; Sirijutaratana Covavisaruch

    2013-01-01

    This research aims to develop Wood Plastic Composites (WPCs) from rice hull and poly(vinyl chloride) (PVC).The influences of the rice hull particle size and content on the mechanical properties and the visual appearance of the WPC decking board were investigated.The experimental results revealed that the impact strength tended to decrease with increasing rice hull content.The composites with larger particle sizes exhibited higher impact strength.Under tensile and flexure load,higher rice hull content induced greater modulus and ultimate strength when the rice hull was applied at less than 60 phr.Beyond this concentration,the modulus and the strength dropped due to the formation of rice hull agglomerates.The smaller particles of the milled rice hull,the greater tendency there was for them to act as a pigment to form a darker shade close that of the rice hull on the composite decking board.The larger particle sizes were 106 μm and beyond simply embedded in the white PVC matrix.

  10. PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES

    Science.gov (United States)

    Levey, R.P. Jr.; Smith, A.E.

    1963-04-30

    This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)

  11. Magnetic properties of nano-composite particles

    Science.gov (United States)

    Xu, Xia

    Chemical synthesis routes for hollow spherical BaFe12O 19, hollow mesoporous spherical BaFe12O19, worm-shape BaFe12O19 and FeCo particles were developed. These structured particles have great potentials for the applications including magnetic recording medium, catalyst support, and energy storage. Magnetically exchange coupled hard/soft SrFe12O19/FeCo and MnBi/FeCo composites were synthesized through a newly proposed process of magnetic self-assembly. These exchange coupled composites can be potentially used as rare-earth free permanent magnets. Hollow spherical BaFe12O19 particles (shell thickness ˜5 nm) were synthesized from eth-ylene glycol assisted spray pyrolysis. Hollow mesoporous spherical BaFe12O19 particles (shell thickness ˜100 nm) were synthesized from ethanol assisted spray pyrolysis, followed by alkaline ethylene glycol etching at 185 °C. An alpha-Fe2O3 and BaCO3 nanoparticle mixture was synthesized with reverse microemulsion, followed by annealing at 900 °C for 2 hours to get worm-shape BaFe 12O19 particles, which consisted of 3-7 stacked hexagonal plates. FeCo nanoparticles were synthesized by reducing FeCl2 and CoCl2 in diphenyl ether with n-butyllithium at 200 °C in an inert gas environment. The surfactant of oleic acid was used in the synthesis to make particles well dispersed in nonpolar solvents (such as hexane). SrFe12O19/FeCo core/shell particles were prepared through a magnetic self-assembly process. The as-synthesized soft FeCo nanoparticles were magnetically attracted by hard SrFe12O19 parti-cles, forming a SrFe12O19/FeCo core/shell structure. The magnetic self-assembly mechanism was confirmed by applying alternating-current demagnetization to the core/shell particles, which re-sulted in a separation of SrFe 12O19 and FeCo particles. MnBi/FeCo composites were synthesized, and the exchange coupling between MnBi and FeCo phases was demonstrated by smooth magnetic hysteresis loop of MnBi/FeCo composites. The thermal stability of Mn

  12. Idealization Second Quantization of Composite Particles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Duan-Lu; YU Si-Xia; SUN Chang-Pu

    2001-01-01

    A practical method is developed to deal with the second quantization of the many-body system containing the composite particles.In our treatment,the modes associated with composite particles are regarded approximately as independent ones compared with those of unbound particles.The field operators of the composite particles thus arise naturally in the second quantization Hamiltonian.To be emphasized,the second quantization Hamiltonian has the regular structures which correspond clearly to different physical processes.``

  13. Preparation of Micrometer Core-shell Composite Particles via Dispersion Polymerization%分散聚合法制备微米级核壳复合粒子

    Institute of Scientific and Technical Information of China (English)

    张星; 郑玉婴; 陈德贤

    2012-01-01

    在硬脂酸改性纳米CaCO3存在下进行了苯乙烯(St)和丙烯酸正丁酯(nBA)的分散共聚合,制备了平均粒径为1.76 μm、单分散性较好的CaCO3/P(St-co-nBA)核壳复合粒子.包覆层聚合物P(St-co-nBA)与CaCO3粒子之间存在物理吸附和化学键合作用,使其热分解温度比共聚物P(St-co-nBA)高.经热二甲苯抽提后复合物中仍有共聚物存在,这部分共聚物与CaCO3通过化学键牢固的结合.热失重结果表明,CaCO3的稳定包覆率为6.6%.%Narrow dispersed CaCO3/poly ( styrene-co-n-butylacrylate ) ( CaCO3/P ( St-co-nBA ) ) composite particles with average diameter of 1. 76 μm were obtained via a dispersion copolymerization of St and nBA in the presence of stearic acid modified nano-CaCO3 particles. The products were characterized by transmission electron microscopy ( TEM ) , optical microscope ( OM ) , Courier transfer infrared spectroscopy ( FT-IR ) , thermogravimetric analysis ( TGA ) , and X-ray diffraction ( XRD ). The TEM images indicated the composite particles had nano-CaCO3 core and P ( St-co-nBA ) shell structure. The TGA analysis results of composite particles before and after being extracted with dimethylbenzene showed the thermal decomposition temperature of the cladding polymer was higher than that of pure copolymer P( St-co-nBA) , and some copolymer couldn't be extracted. The FT-IR spectra also confirmed the existence of copolymer on the composite particles after extracting. It suggested that the copolymer had chemical bonding with nano-CaCO3. The mass proportion of P( St-co-nBA) which couldn't be extracted with accounted for 6. 6% based on the mass of nano-CaCO3.

  14. Polymer-nanoinorganic particles composite membranes: a brief overview

    Institute of Scientific and Technical Information of China (English)

    Zhenliang XU; Liyun YU; Lingfeng HAN

    2009-01-01

    Polymer-nanoinorganic particles composite membranes present an interesting approach for improving the physical and chemical, as well as separation properties of polymer membranes, because they possess character-istics of both organic and inorganic membranes such as good permeability, selectivity, mechanical strength, ther-mal stability and so on. The preparations and structures of polymer-nanoinorganic particles composite membranes and their unique properties are reviewed.

  15. Influence of volume percentage of NanoTiB2 particles on tribological & mechanical behaviour of 6061-T6 Al alloy nano-surface composite layer prepared via friction stir process

    Directory of Open Access Journals (Sweden)

    V. Kishan

    2017-02-01

    Full Text Available The aim of present study is to analyze the influence of volume percentage (vol.% of nano-sized particles (TiB2: average size is 35 nm on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surface nano composite prepared via Friction stir process (FSP. The microstructure of the fabricated surface nanocomposites is examined using optical microscopy (OM and scanning electron microscope (SEM for distribution of TiB2 nano reinforcement particles, thickness of nano composite layer formed on the Aluminum alloy substrate and fracture features. The depth of surface nano composite layer is measured as 3683.82 μm along the cross section of stir zone of nano composite perpendicular to FSP. It was observed that increase in volume percentage of TiB2 particles, the microhardness is increased up to 132 Hv and it is greater than as-received Al alloy's microhardness (104 Hv. It is also observed that at 4 volume percentage higher tensile properties exhibited as compared with the 2 and 8 vol. %. It is found that high wear resistance exhibited at 4 volume percentage as-compared with the 2 and 8 vol. %. The observed wear and mechanical properties are interrelated with microstructure, fractography and worn morphology.

  16. Reinforced polypropylene composites: effects of chemical compositions and particle size.

    Science.gov (United States)

    Ashori, Alireza; Nourbakhsh, Amir

    2010-04-01

    In this work, the effects of wood species, particle sizes and hot-water treatment on some physical and mechanical properties of wood-plastic composites were studied. Composites of thermoplastic reinforced with oak (Quercus castaneifolia) and pine (Pinus eldarica) wood were prepared. Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were used as the polymer matrix and coupling agent, respectively. The results showed that pine fiber had significant effect on the mechanical properties considered in this study. This effect is explained by the higher fiber length and aspect ratio of pine compared to the oak fiber. The hot-water treated (extractive-free) samples, in both wood species, improved the tensile, flexural and impact properties, but increased the water absorption for 24h. This work clearly showed that lignocellulosic materials in both forms of fiber and flour could be effectively used as reinforcing elements in PP matrix. Furthermore, extractives have marked effects on the mechanical and physical properties.

  17. Fracture in brittle matrix particle composites with varying particle content

    NARCIS (Netherlands)

    Vliet, M.R.A. van; Mier, J.G.M. van

    1999-01-01

    Fracture in brittle matrix particle and fibre composites can be conveniently modelled by means of lattice models where the particle and/or fibre structure is incorporated directly in the model. The particles, fibres and matrix, as well as the interfacial transition zone are assumed to behave as a

  18. Fracture in brittle matrix particle composites with varying particle content

    NARCIS (Netherlands)

    Vliet, M.R.A. van; Mier, J.G.M. van

    1999-01-01

    Fracture in brittle matrix particle and fibre composites can be conveniently modelled by means of lattice models where the particle and/or fibre structure is incorporated directly in the model. The particles, fibres and matrix, as well as the interfacial transition zone are assumed to behave as a co

  19. Pickering Particles Prepared from Food Waste

    Science.gov (United States)

    Gould, Joanne; Garcia-Garcia, Guillermo; Wolf, Bettina

    2016-01-01

    In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w) and water-in-oil (w/o) emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C). Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3–pH 9). Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings. PMID:28773909

  20. Pickering Particles Prepared from Food Waste

    Directory of Open Access Journals (Sweden)

    Joanne Gould

    2016-09-01

    Full Text Available In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w and water-in-oil (w/o emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C. Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3–pH 9. Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings.

  1. Pickering Particles Prepared from Food Waste.

    Science.gov (United States)

    Gould, Joanne; Garcia-Garcia, Guillermo; Wolf, Bettina

    2016-09-21

    In this paper, we demonstrate the functionality and functionalisation of waste particles as an emulsifier for oil-in-water (o/w) and water-in-oil (w/o) emulsions. Ground coffee waste was chosen as a candidate waste material due to its naturally high content of lignin, a chemical component imparting emulsifying ability. The waste coffee particles readily stabilised o/w emulsions and following hydrothermal treatment adapted from the bioenergy field they also stabilised w/o emulsions. The hydrothermal treatment relocated the lignin component of the cell walls within the coffee particles onto the particle surface thereby increasing the surface hydrophobicity of the particles as demonstrated by an emulsion assay. Emulsion droplet sizes were comparable to those found in processed foods in the case of hydrophilic waste coffee particles stabilizing o/w emulsions. These emulsions were stable against coalescence for at least 12 weeks, flocculated but stable against coalescence in shear and stable to pasteurisation conditions (10 min at 80 °C). Emulsion droplet size was also insensitive to pH of the aqueous phase during preparation (pH 3-pH 9). Stable against coalescence, the water droplets in w/o emulsions prepared with hydrothermally treated waste coffee particles were considerably larger and microscopic examination showed evidence of arrested coalescence indicative of particle jamming at the surface of the emulsion droplets. Refinement of the hydrothermal treatment and broadening out to other lignin-rich plant or plant based food waste material are promising routes to bring closer the development of commercially relevant lignin based food Pickering particles applicable to emulsion based processed foods ranging from fat continuous spreads and fillings to salad dressings.

  2. ) Composites Containing Nanoparticles and Larger Particles

    Science.gov (United States)

    Ghanaraja, S.; Nath, S. K.; Ray, S.

    2014-07-01

    The composites reinforced with nanoparticles result in improved strength and ductility while those containing coarser particles of micron size have limited ductility. The present study investigates the outcome of mechanical properties in a composite reinforced simultaneously with coarse and fine particles. High energy milling of manganese dioxide particles with excess of aluminum powder ensures that nanoparticles generated, either of MnO2 or alumina, are mostly separate and surrounded by aluminum particles. The milled powder when added to aluminum alloy melt, the excess aluminum particles will melt leaving behind separate oxide nanoparticles without significant agglomeration. Different amounts of milled powder mix have been stirred into molten aluminum alloy where nanoparticles of MnO2 react with melt to form alumina. The resulting slurry is cast into composites, which also contains coarser (nearly micron size) alumina particles formed by internal oxidation of the melt during processing. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The oxide particles are primarily γ-alumina in a matrix of aluminum-magnesium-manganese alloy containing some iron picked up from the stirrer. These composites fail during tensile test by ductile fracture due to debonding of coarser particles. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably, presumably due to delay in debonding of coarser particles to higher stress because of reduced mismatch in extension caused by increased strain hardening in presence of nanoparticles in the matrix. The composites containing only coarser oxide particles show limited strength and ductility attributed to early debonding of particles at a relatively lower stress due to larger mismatch in extension between matrix and larger particles. Higher addition of powder mix beyond a limit, however

  3. Preparation technique of SiCp reinforced Al matrix composite

    Institute of Scientific and Technical Information of China (English)

    HAO Bin; CUI Hua; YU Zhi-yong; TAO Kai; YANG Bin; ZHANG Ji-shan

    2006-01-01

    A new preparation technique-"block dispersal and cast" method is introduced, and three kinds of powd.er mixing methods, vertical, horizontal and inclining styles, are compared. The results demonstrate that the inclining style is the best way to mix powders. The Al and nano SiC powders are pressed into blocks, dipped into molten Al, stirred into mold so that SiC/Al matrix composites can be obtained at last. The microstructure of SiC particle reinforced Al matrix composite prepared by "block dispersal and cast" method have been studied using scanning electron microscopy (SEM). Phase analysis has also been conducted by means of X-ray diffraction (XRD). The results show that nano SiC particles can be dispersed uniformly in Al matrix. Thus, it is feasible to prepare SiC particle reinforced Al matrix composites by this method.

  4. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  5. Preparation of Ni-Cr overlay weld alloy with finely dispersed NbC particles from (Ni-Cr)/NbC composite powder. Fukugo funmatsu wo mochiita bisai NbC ryushi bunsan Ni-Cr nikumori gokin no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, T.; Takatani, Y. (Hyogo Prefectural Inst. of Industrial Research, Hyogo (Japan)); Harada, Y.; Nagai, K. (Tocalo Co. Ltd., Kobe (Japan))

    1992-11-20

    In previous studies, Ni-Cr overlay alloy containing NbC particles, formed by the plasma powder welding process, was found to exhibit excellent wear and corrosion resistances. However, any overlay alloy with dispersed NbC particles having a diameter below a few micron, has not been yet obtained. In this study, a composite powder was prepared by compounding 40 vol.% of NbC powder having an average grain diameter of 1.3 [mu]m into Ni-50 mass% Cr alloy powder, and then mixing, granulating and sintering. Plasma powder weddings were carried out on a mild steel plate using this complex powder, and the effect of plasma arc current on melting of complex powder particles and dispersion behavior of NbC particles was studied by structure observation and X-ray diffractometry. As a result, it was clarified that by selecting the proper plasma arc current and controlling the heat input, uniform dispersion of fine NbC particles having a diameter of a few micron into the matrix was possible. 18 refs., 8 figs., 3 tabs.

  6. 用于肿瘤靶向性MRI对比剂双亲性超顺磁复合物的制备%Preparation of amphiphilic superparamagnetic composite particles with tumor targeted MRI contrast agent

    Institute of Scientific and Technical Information of China (English)

    顾隽珩; 张庆云; 张伟; 杨新林

    2014-01-01

    BACKGROUND:Superparamagnetic iron oxide nanoparticles (Fe3O4 NPs) have been widely used in MRI. It is vital to prepare the superparamagnetic MRI contrast agent with high stability, biocompatibility and tumor targeting in order to prevent the aggregation of Fe 3 O 4 NPs and realize the high-precision diagnose of tumor. OBJECTIVE:To prepare the amphiphilic superparamagnetic composite particles with tumor targeting mediated by folate receptor. METHODS:The stable amphiphilic superparamagnetic composite particles with tumor targeting function were prepared by coating the Fe3O4 NPs with a Pluronic F127-folic acid conjugate, which was synthesized via an esterification reaction between the carboxyl group of the tumor targeting molecule, folic acid and the hydroxyl group of an amphiphilic triblock copolymer, Pluronic F127. The resultant Pluronic F127-folic acid-Fe3O4 composite particles were characterized by transmission electron microscopy, Fourier transform infrared-spectra, UV-vis absorption spectra, thermal gravimetric analysis, vibrating sample magnetometer and T2-weighted imaging. WST assay was used to characterize their cytotoxicity preliminarily. RESULTS AND CONCLUSION:The Pluronic F127-folic acid conjugates were prepared via esterification reaction. Then Fe 3 O 4 NPs were wrapped with Pluronic F127-folic acid to result in the superparamagnetic composite particles with wel dispersion and biocompatibility. The size of most superparamagnetic composite particles was less than 200 nm and the size of Fe 3 O 4 core was 10-20 nm from the observation of transmission electron microscopy. The results from the Fourier transform infrared-spectra and UV-vis absorption spectroscop confirmed that folic acid molecules were modified on the surface of the superparamagnetic composite particles successful y. The mass ratio of Pluronic F127-folic acid conjugate was determined by thermal gravimetric analysis as 27.2 wt%in the resultant Pluronic F127-folic acid-Fe 3 O 4 composite

  7. 超音速电弧喷射雾化制备AgNi15复合颗粒%AgNi15 composite particles prepared by ultrasonic arc spray atomization method

    Institute of Scientific and Technical Information of China (English)

    谢建斌; 温春明; 秦国义; 许思勇; 郭锦新

    2014-01-01

    Ultrasonic arc spray atomization (UASA) method was used to prepare high-melting-point, immiscible AgNi15 (mass fraction, %) composite particles. Sieving was used to determine the size distribution of the AgNi15 particles. The morphology, rapidly solidified structure and metastable solution expansion of the AgNi15 particles were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The results show that the AgNi15 composite particles are spherical and well-dispersed, and the mass fractions of the particles with diameters <74μm and <55 µm are 99.5% and 98%, respectively. The rapidly solidified structure of the AgNi15 particles consists of spherical nickel-richβ(Ni)-phase particles dispersed throughout a silver-richα(Ag)-phase matrix andα(Ag)-phase nanoparticles dispersed throughout largerβ(Ni)-phase particles. The silver and nickel in the AgNi15 particles form a reciprocally extended metastable solution, and the solid solubility of nickel in the silver matrix at room temperature is in the range of 0.16%−0.36% (mole fraction).%采用超音速电弧喷射雾化法(UASA)制备高熔点、难互溶的AgNi15复合颗粒,采用筛分法测量复合颗粒粒度分布,使用SEM、EDS和XRD分析颗粒形貌、凝固组织结构和亚稳固溶扩展。结果表明:采用UASA制备的AgNi15复合颗粒具有球形度高和分散性好的特点,直径小于74和55µm颗粒的质量分数分别为99.5%和98%。复合颗粒凝固组织结构为富镍相β(Ni)球形颗粒弥散分布在富银相α(Ag)基体中,而较大的β(Ni)颗粒中又弥散分布着α(Ag)颗粒。Ag和Ni相互实现了亚稳固溶扩展,在室温条件Ni在Ag中的固溶度在0.16%~0.3%之间(摩尔分数)。

  8. Preparation and characterization of rice husk/ferrite composites

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel ferrite composite using rice husk as substrate has been prepared via high temperature treatment under nitrogen atmosphere.The rice husk substrate consists of porous activated carbon and silica,where spinel ferrite particles with average diameter of 59 nm are distributed.The surface area of the composite is greater than 170 m~2 g~(-1) and the bulk density is less than 0.6 g cm~(-3).Inert atmosphere is indispensable for the synthesis of pure ferrite composites,while different preparation temperatur...

  9. Preparation and corrosion behavior evaluation of amalgam/titania nano composite

    Directory of Open Access Journals (Sweden)

    Neda Bahremandi Tolou

    2011-01-01

    Conclusion: By adding nano particles of titania and preparing amalgam/titania nano composite as a dental amalgam, corrosion behavior and mercury release during the 2 st h after preparation could be improved.

  10. The Preparation and Properties of RDX-Composition A

    Science.gov (United States)

    1945-12-29

    accordingly RDX particles adhere to wax globules and re- tain them in the slurry. The RDX is neither capable of acting as an efficient powder- emulsifier for...prepared by the addition of extra wax and aluminum, plus lecithin , to a rollod Composition A. "ith a total of 12fr wax, such a mixture can be poured, but

  11. Investigations on cementitious composites based on rubber particle waste additions

    Directory of Open Access Journals (Sweden)

    Glaucio Laun Nacif

    2013-04-01

    Full Text Available The amount of waste rubber has gradually increased over recent years because of over-growing use of rubber products. The disposal of waste rubber has caused serious environmental problems. The incorporation of recycled materials into cementitious composites is a feasible alternative that has gained ground in civil construction. The performance of such materials is much affected not only by the rubber addition, but also the particle size which has been controversially reported in the literature. In order to investigate the single effect of rubber particles into cement based materials, rubber cementitious composites were prepared with no silica particle additions. A full factorial design has been conducted to assess the influence of the rubber particle size (0.84/0.58 mm and 0.28/0.18 mm; mass fraction used (5, 15 and 30%; and water/cement ratio (0.35 and 0.50 on the physic-mechanical properties of the composites. The materials were characterized through apparent density, porosity, compressive strength, flexural strength, modulus of elasticity and microstructural analysis. The interactions of rubber particle size, rubber fraction and water/cement ratio affected significantly the density and compressive strength of the composites. The apparent porosity was influenced mainly by the rubber particle size. The flexural strength was affected by the main factors and the modulus of elasticity was affected by the interaction factors rubber particle size and fraction, and rubber fraction and w/c ratio.

  12. AP的安全制备%Safe Preparations of Fine Ammonium Perchlorate Particles

    Institute of Scientific and Technical Information of China (English)

    Makoto Kohga

    2006-01-01

    Fine AP particles are required to manufacture the AP-based composite propellants with a wide burning rate range for various applications,especially high burning rate propellants. However,it is difficult to prepare a fine AP safely. Some safe methods for preparing the fine AP particles are reported such as the spray-dry method and freeze-dry method. It is shown that the crystal habit modified AP particle is an effective oxidizer to enhance the burning rate.

  13. Preparation of Iron Matrix Composite Reinforced by In-situ Al203 Particles%自生氧化铝颗粒增强铁基复合材料的制备

    Institute of Scientific and Technical Information of China (English)

    周玉成; 魏世忠; 王利敏; 徐流杰

    2011-01-01

    Ethanol was used as reaction media, the ammonia was slowly dropped, constantly stirring into aluminum nitrate ethanol solution to neutralize. By washing with ethanol, filtering and drying, some aluminum hydroxide was obtained. Aluminum hydroxide powder and iron powder, in a certain proportion, were fully mixed. By pressing and sintering, iron matrix composite reinforced with in-situ A12O3 particle was prepared.%采用乙醇作为反应介质,将氨水滴入硝酸铝乙醇溶液中进行中和反应,经洗涤、过滤和烘干后得到氢氧化铝超细粉.将制得的超细氢氧化铝粉与铁粉按一定比例充分混合,经压制、烧结制得氧化铝颗粒增强铁基复合材料.

  14. Preparation of calcium carbonate particles coated with titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    Hai Lin; Ying-bo Dong; Le-yong Jiang

    2009-01-01

    The preparation of a new mineral composite material, calcium carbonate particles coated with titanium dioxide, was stud-ied. The mechanism of the preparation process was proposed. The new mineral composite material was made by the mechanochemi-eal method under the optimum condition that the mass ratio of calcium carbonate particles to titanium dioxide was 6.5:3.5. The mass ratios of two different types of titanium dioxide (anatase to rutile) and grinding media to grinded materials were 8:2 and 4:1 respec-tively, and the modified density was 60%. Under this condition, the new material was capable of forming after 120-min modification.The hiding power and oil absorption of this new material were 29.12 g/m~2 and 23.30%, respectively. The results show that the modi-fication is based on surface hydroxylation. After coating with titanium dioxide, the hiding power of calcium carbonate can be im-proved greatly. The new mineral composite materials can be used as the substitute for titanium dioxide.

  15. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  16. Do elementary particles survive composite systems?

    CERN Document Server

    Nagahiro, Hideko

    2014-01-01

    The "compositeness" or "elementarity" is investigated for s-wave composite states dynamically generated by energy-dependent and independent interactions. The bare mass of the corresponding fictitious elementary particle in an equivalent Yukawa model is shown to be infinite, indicating that the wave function renormalization constant Z is equal to zero. The idea can be equally applied to both resonant and bound states. In a special case of zero-energy bound states, the condition Z = 0 does not necessarily mean that the elementary particle has the infinite bare mass. We also emphasize arbitrariness in the "elementarity" leading to multiple interpretations of a physical state, which can be either a pure composite state with Z = 0 or an elementary particle with Z \

  17. Preparation and characterization of sintered molybdenum doped with MoSi{sub 2}/La{sub 2}O{sub 3}/Y{sub 2}O{sub 3} composite particle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Dezhi, E-mail: dzwang68@yahoo.com.cn [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Liu, Huayan; Zhu, Wei [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Zan, Xiuqi [Zigong Cemented Carbide Corporation Limited, Zigong 643010 (China)

    2012-12-15

    The effect of MoSi{sub 2}/La{sub 2}O{sub 3}/Y{sub 2}O{sub 3} (SiLY) composite particle on microstructure and mechanical properties of sintered molybdenum was surveyed in this research. The SiLY was obtained by mechanical milling and then doped into molybdenum by the solid-solid method. The sintered molybdenum (MSiLY) with the addition of SiLY was prepared via the process of powder metallurgy. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), optical microscope (OM), scanning electron microscopy (SEM), mechanical properties' testing were carried out to characterize the samples. The EDS results showed that elements of the SiLY in sintered molybdenum are composed of O, La, Si, Y and Mo. Microstructural observations showed that the MSiLY has a fine equiaxed grain, and SiLY dispersively distributed in grain interior and at grain boundary. Mechanical properties of sintered molybdenum have been improved significantly by the addition of SiLY. The fine grain structure and the particles distributed in the matrix can improve strength and toughness of sintered molybdenum.

  18. Electrostaticspray preparation and properties of RDX/DOS composites

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2017-08-01

    Full Text Available A composite explosive based on 1, 3, 5-trinitro-1, 3, 5-triazinane (RDX was prepared by electrostaticspray method with dioctyl sebacate (DOS as desensitizer. After preparation, the particle size and crystal structure were characterized and chemical features, such as chemical bonds, functional groups, thermal decomposition parameters and mechanical sensitivity were investigated as well. In terms of the morphologies of the composites, the particle sizes were in the range of 1–3 μm. Compared with RDX, the crystal types, chemical bonds and functional groups of the RDX/DOS composites were unchanged. The activation energy of the composites was lower than that of raw RDX, and the 3wt % DOS composites had the lowest activation energy. The impact sensitivity and friction sensitivity of the RDX/DOS composites were lower than those of raw RDX, and the 10wt% DOS composites had the highest H50 (125.9 cm and the lowest friction sensitivity (8%.

  19. Investigation of Mechanical Properties of Basalt Particle-Filled SMC Composites

    OpenAIRE

    2016-01-01

    Basalt particles have been investigated as a novel additive for the production of glass fibre reinforced composite using sheet moulding compound (SMC) method. Compared to the CaCO3 that are widely used as filler in the SMC composite, the resulting composites exhibit improved mechanical properties. The tensile strength increased by approximately 15%, whereas the flexural strength was enhanced by 8% in SMC composites prepared by basalt particles. Examination of the surface morphology and interf...

  20. Dielectrophoretically structured piezoelectric composites with high aspect ratio piezoelectric particles inclusions

    NARCIS (Netherlands)

    Ende, D.A. van den; Kempen, S.E. van; Wu, X.; Groen, W.A.; Randall, C.A.; Zwaag, S. van der

    2012-01-01

    Piezoelectric composites were prepared by dielectrophoretic alignment of high aspect ratio piezoelectric particles in a thermosetting polymer matrix. A high level of alignment was achieved in the cured composite from a resin containing randomly oriented high aspect ratio particles. Upon application

  1. Amorphous TM1−xBx alloy particles prepared by chemical reduction (invited)

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1991-01-01

    Amorphous transition-metal boron (TM-B) alloy particles can be prepared by chemical reduction of TM ions by borohydride in aqueous solutions. ln the last few years systematic studies of the parameters which control the composition, and, in turn, many of the properties of the alloy particles, have...... been performed and are reviewed in the present paper. The most important preparation parameters which influence the composition are the concentration of the borohydride solution and the pH of the TM salt solution. By controlling these parameters it is possible to prepare amorphous alloy samples...

  2. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Science.gov (United States)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  3. Preparation of Conductive Polymer Graphite (PG) Composites

    Science.gov (United States)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  4. 聚酰亚胺/无机粒子复合材料的制备及其性能研究进展%Research progress of preparation and properties of polyimide/inorganic particles composites

    Institute of Scientific and Technical Information of China (English)

    张颖; 沈杰; 徐祖顺; 易昌凤; 徐明

    2013-01-01

    综述了聚酰亚胺(PI)与无机粒子复合的研究进展,着重介绍了复合材料的溶胶-凝胶法、插层复合法、机械共混法三种制备方法.将PI与无机材料复合可得到集有机材料和无机材料优异性能于一体的复合材料,改善了传统PI存在的不足.无机粒子改性后的PI在不明显降低材料的热性能和力学性能的同时富集了无机小分子高模量、耐氧化、耐摩擦等性能,优化了材料的性能.引入无机纳米粒子,材料的内部分子堆积、相互作用等发生改变,对气体的选择透过性有很大的改善.改性后的PI具有可控的介电性能、膨胀性能等.%The research progress of polyimide (PI) /inorganic particles composites was reviewed with the emphasis on the methods of preparation, that is, sol-gel method, layer interpolation method and mechanical blending method. Introducing the inorganic articles to the PI matrix could generate composites with excellent properties of both organic and inorganic materials, which remedied the shortages of classic PI materials. PI modified by inorganic particles was endowed with properties including high modulus, oxidation resisting, friction resisting, etc. of inorganic micro-molecule materials but did not display obvious descent in thermal and mechanical properties. As a result, the properties of PI materials were optimized. The molecular structure of PI materials, such as package and interaction of polymer chains, were changed by the introduction of nano-inorganic particles, which contributed to the great improvement in gas permselectivity of PI. The modified PI exhibited controllable dielectric and thermal expansion properties.

  5. Influence of particle structure on electrochemical character of composite graphite

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The natural graphite has been used as the anode material for Lithium-Ion batteries, because of its low cost, chemical stability and excellent reversibility for Li+ insertion. However, the slow diffusion rate of lithium ion and poor compatibility with electrolyte solutions make it difficult to use in some conditions. In order to solve these problems, an epoxy-coke/graphite composite has been manufactured. The particle of composite carbonaceous material coated on non-graphitizable (hard) carbon matrix. Due to the disordered structure,the diffusion rate of lithium species in the non-graphitzable carbon is remarkably fast and less anisotropic. The process for preparing a composite carbon powder provides a promising new anode material with superior electrochemical properties for Li-ion batteries. The unique structure of epoxy-coke/graphite composite electrodes results in much better kinetics, also better recharge ability and initial charge/discharge efficiency.

  6. Preparation and properties of gluten/calcium carbonate composites

    Institute of Scientific and Technical Information of China (English)

    Min Zuo; Zheng Zheng Lai; Yi Hu Song; Qiang Zheng

    2008-01-01

    Environment friendly thermosetting composites were prepared by blending wheat gluten (WG) as matrix, calcium carbonate (CaCO3) as filler and glycerol as plasticizer followed by compression molding the mixture at 120 ℃ to crosslink the WG matrix. Morphology observation showed that the CaCO3 particles were finely dispersed in matrix. Incorporation of CaCO3 up to 10 wt% into the composites caused Young's modulus and tensile strength to increase markedly. On the other hand, the moisture absorption and elongation at break decreased slightly.

  7. Nano polypeptide particles reinforced polymer composite fibers.

    Science.gov (United States)

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  8. Preparation of ibuprofen/lipid composite microparticles by supercritical fluid technique

    Institute of Scientific and Technical Information of China (English)

    Xia WANG; Hui CHEN; Yanni GUO; Yuzhong SU; Hongtao WANG; Jun LI

    2008-01-01

    Using the CO2-and N2-assisted atomization processes, the production of ibuprofen/lipid composite microparticles is investigated, in which the lipid includes myristic acid and tripalmitin. The produced composite particles show similar morphology to that of the pure lipids obtained by the same process. In the case of the N2-assisted process, the average size of composite part-icles is slightly larger than that of the pure lipid particles due to the difficulty of solidification when using N2. In the case of the CO2-assisted process, the average size of com-posite particles is slightly smaller than that of the pure myr-istic acid particles, but slightly larger than that of the pure tripalmitin particles. The dissolution study reveals that the drug release from the ibuprofen/myristic acid particles is enhanced in comparison with that of the unprocessed ibu-profen. For the particles produced by the N2-assisted pro-cess, the X-ray diffraction (XRD) patterns clearly indicate the encapsulation of ibuprofen into myristic acid. The obtained ibuprofen/tripalmitin composite particles with 5% or 20% of ibuprofen (in mass) evidently show the con-trolled drug release: only about 20% of the drug is released in 500 min from the ibuprofen/tripalmitin composite part-icles consisting of 20% ibuprofen prepared by the CO2-assisted process, and the same release is obtained from the ibuprofen/tripalmitin composite particles containing 5% ibuprofen prepared by the N2-assisted process.

  9. Methods of analyzing composition of aerosol particles

    Science.gov (United States)

    Reilly, Peter T.A.

    2013-02-12

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  10. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    OpenAIRE

    Zhang Peng; Zeng Shaolian; Zhang Zhiguo

    2013-01-01

    In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS), electron probe microanalysis (EPMA), scanning electron microscope (SEM) and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle...

  11. Preparation of Co/SiC Composite Particles Using Electroless Plating Method%化学镀法制备钴包覆碳化硅复合粉末的研究

    Institute of Scientific and Technical Information of China (English)

    周超兰; 张高科; 甘慧慧

    2011-01-01

    Electroless plating method was employed to prepare Co/SiC composite particles. In the process of electro-less deposition, the optimal conditions of electroless cobalt can be obtained through studying on the influence factors of the deposition rate, such as cobaltic salt concentration, deoxidizer concentration, complexing agent concentration, buffering agent concentration, temperature and pH value, etc. The composite particles were characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM) and Energy dispersive x-ray analysis (EDAX). The experimental results indicate that the deposition rate is faster and the powder surface is coated by cobalt evenly when the concentration of sul-furic acid cobalt is varied form 30 g/L to 50 g/L, the concentration of sodium hypophosphite is set as 40 g/L, the concentration of sodium citrate is between 60 g/L and 70 g/L, the temperature is controlled in 50 ~ 70℃and pH value is adjusted as 8.%采用化学镀法制备钴包覆碳化硅复合粉末,通过研究化学镀过程中钴盐浓度、还原剂浓度、络合剂浓度、缓冲剂浓度、温度以及pH值等因素对沉积速率的影响规律,得到化学镀钴的优化条件.利用XRD、SEM和EDAX等测试手段对该复合粉末的组分及形貌进行了表征.实验和表征结果表明,当硫酸钴浓度为30~50 g/L,次磷酸钠浓度为40 g/L,柠檬酸钠浓度为60~70 g/L,控制温度为50~70℃以及调节pH值等于8时,镀层沉积速度较快,所得粉体表面被钴均匀包覆.

  12. Synthesis of TiNi/Ti2Ni Composite Particles in Molten Salts

    Institute of Scientific and Technical Information of China (English)

    YANG Rui-song; CUI Li-shan; ZHENG Yan-jun

    2006-01-01

    A new process of synthesizing TiNi/Ti2Ni composite particles, high temperature molten salts method, is introduced. This method uses molten salts as a reaction medium that does not take part in the chemical reaction and can be easily dissolved in rinsing water. According this method, the composite particles were prepared in molten salts at 700 ℃-900 ℃. By means of differential scanning calorimetry (DSC), the reversible martensitic transformation of TiNi particles in these composite particles was confirmed.

  13. Particle Size Distribution, Mineral Composition Distribution and Performance of Cement Prepared by Different Grinding Technology%不同粉磨工艺水泥的颗粒、矿物组成分布及性能

    Institute of Scientific and Technical Information of China (English)

    吴笑梅; 樊粤明; 郭文瑛

    2004-01-01

    研究了采用不同粉磨工艺制备的水泥的颗粒分布及矿物组成分布对水泥与混凝土物理性能的影响.研究结果表明:水泥颗粒分布与粉磨设备条件及工艺参数密切相关,选用高效选粉机,增大循环负荷及控制适当的比表面积,可获得较窄的颗粒分布;由于C3S易磨性较好,易富集于水泥细颗粒中,通过提高水泥颗粒的集中程度及适当增大比表面积,可有效地把熟料中的C3S富集于30μm以下的水泥颗粒中;当水泥熟料质量、混合材质量、水泥比表面积控制水平较接近,水泥颗粒分布集中(主要集中在5~30μm范围)时,水泥的标准稠度需水量较大,凝结时间较长,1 d强度较低,但3 d,28d抗压强度较高,在混凝土中则表现为新拌混凝土泌水较严重,1 d抗压强度偏低,3 d,28d抗压强度增幅较大.%The influences of the particle size distribution (PSD) and the mineral composition distribution of cement prepared by different grinding technology on the physical performances of cement and concrete were investigated. The results show that there is a close relationship between PSD and grinding conditions as well as grinding system parameters. Narrower PSD can be obtained by using the high-efficiency separator with higher circulating-load and proper specific surface area. With narrower PSD and higher specific surface area,most of C3 S in clinker can efficiently enrich in particles smaller than 30 μm, due to the good grindability and enrichment of C3S in cement particles. When the qualities of clinker and admixtures, as well as the specific surface area of cement are kept stable, narrower PSD ( most particles are in the size range of 0 ~ 30 μm)results in higher water demand for normal consistency of cement paste, longer setting time, lower 1-day compressive strength and higher 3- and 28-day compressive strengths. The concrete prepared from this cement will be of great bleeding and low 1-day compressive strength and

  14. Preparation and Properties of Polyaniline Composite Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-hua

    2002-01-01

    Polyaniline (PAn) was synthesized by chemical oxidation polymerization. The conductive polymer doped by camphor sulfonic acid (CSA) and a matrix polymer,polyamide- 66, polyamide - 1010 or polyamide- 11, were dissolved in m-cresol and the blend solution was cast in a glass and dried for preparing polyaniline composite films.Conductivity was from 10 -6 to 10 0Ω-1·cm-1 with different weight fraction of PAn-CSA. The crystallizttion of the films was studied by means of differential scanning calorimeter (DSC). The treatment of the composite films in different pH value solution would result in decrease of conductivity, especially in an alkaline solution.

  15. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.

    Science.gov (United States)

    Luo, Xiao Gang; Le Wu, Min; Wang, Xiao Xia; Zhong, Xin Hua; Zhao, Ke; Wang, Jian Nong

    2016-02-08

    Realizing the continuous and large scale preparation of particle/carbon nanotube (CNT) composites with enhanced functionalities, and broad applications in energy conversion, harvesting, and storage systems, remains as a big challenge. Here, we report a scalable strategy to continuously prepare particle/CNT composite films in which particles are confined by CNT films. This is achieved by the continuous condensation and deposition of a cylindrical assembly of CNTs on a paper strip and the in situ incorporation of particles during the layer-by-layer deposition process. A Cu/CNT composite film is prepared as an example; such a film exhibits very high power conversion efficiency when it is used as a counter electrode in a solar cell, compared with previous materials under otherwise identical conditions. The proposed method can be extended to other CNT-based composite films with excellent functionalities for wide applications.

  16. Solid particle erosion of polymers and composites

    Science.gov (United States)

    Friedrich, K.; Almajid, A. A.

    2014-05-01

    After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60°. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.

  17. Preparation and Application as the Filler for Elastomers of Flake-Shaped Cellulose Particles and Nanofibers

    Science.gov (United States)

    Nagatani, Asahiro; Lee, Seung-Hwan; Endo, Takashi; Tanaka, Tatsuya

    Fibrous cellulose made from wood pulp was mechanically milled into flake-shaped cellulose particles(FS-CPs) using a planetary ball mill with additives under several conditions. The average particle diameter of the FS-CPs was ca. 15μm, and the particles were available in a variety of thicknesses by changing the kind of the additives used in the milling process. FS-CPs-reinforced olefinic thermoplastic elastomer composites were prepared under melt mixing and passed through an open roll to orient the particles. The tensile modulus of the composites with a compatibilizer increased with increasing the particle content. The damping properties of the composites improved, compared to the neat elastomer. On the other hand, the fibrous cellulose was suspended in water, followed by wet disk-milled to prepare cellulose nanofibers(CNFs). The wet ground products showed nanoscopic fine morphology. CNFs-reinforced natural rubber(NR) composites were prepared by mixing the water suspension of CNFs with NR latex using a homogenizer. Then, it was dried in an oven and mixed again with vulcanizing ingredients of rubber using an open roll. The tensile properties of the composites improved remarkably by the addition of small amount of CNFs.

  18. Preparation of ultrafine chitosan particles by reverse microemulsion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ultrafine chitosan particles were prepared by reverse microemulsion consisting of water, Triton X-100, octanol and cyclohexane. Two methods of preparing ultrafine chitosan particles were adopted and compared using TEM and IR, and possible mechanisms for the formation of ultrafine chitosan particles were proposed. Experimental results show that the method which combined ionic gelation and cross-linking gave uniformly sized chitosan nanoparticles with an average diameter of 92 nm, while the cross-linking without ionic gelation produced spindly chitosan particles with an average length of 943 nm and width of 188 nm.

  19. Composite Vector Particles in External Electromagnetic Fields

    CERN Document Server

    Davoudi, Zohreh

    2015-01-01

    Lattice quantum chromodynamics (QCD) studies of electromagnetic properties of hadrons and light nuclei, such as magnetic moments and polarizabilities, have proven successful with the use of background field methods. With an implementation of nonuniform background electromagnetic fields, properties such as charge radii and higher electromagnetic multipole moments (for states of higher spin) can be additionally obtained. This can be achieved by matching lattice QCD calculations to a corresponding low-energy effective theory that describes the static and quasi-static response of hadrons and nuclei to weak external fields. With particular interest in the case of vector mesons and spin-1 nuclei such as the deuteron, we present an effective field theory of spin-1 particles coupled to external electromagnetic fields. To constrain the charge radius and the electric quadrupole moment of the composite spin-1 field, the single-particle Green's functions in a linearly varying electric field in space are obtained within t...

  20. Method of preparing cross-linked enzyme particles

    NARCIS (Netherlands)

    Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.

    2004-01-01

    The invention relates to a method of preparing cross-linked enzyme particles using a cross-linking agent. According to the invention, the enzyme particles are formed and subsequently cross-linked using a cross-linking agent having at least n reactive groups where N>=3 and a molecular weight of

  1. Preparation and Characterization of Colloidal Silica Particles under Mild Conditions

    Science.gov (United States)

    Neville, Frances; Zin, Azrinawati Mohd.; Jameson, Graeme J.; Wanless, Erica J.

    2012-01-01

    A microscale laboratory experiment for the preparation and characterization of silica particles at neutral pH and ambient temperature conditions is described. Students first employ experimental fabrication methods to make spherical submicrometer silica particles via the condensation of an alkoxysilane and polyethyleneimine, which act to catalyze…

  2. Method of preparing cross-linked enzyme particles

    NARCIS (Netherlands)

    Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.

    2004-01-01

    The invention relates to a method of preparing cross-linked enzyme particles using a cross-linking agent. According to the invention, the enzyme particles are formed and subsequently cross-linked using a cross-linking agent having at least n reactive groups where N>=3 and a molecular weight of >2,00

  3. Ferromagnetism in co-doped zno particles prepared by vaporization condensation in a solar image furnace

    Science.gov (United States)

    Martínez, B.; Sandiumenge, F.; Balcells, Ll.; Fontcuberta, J.; Sibieude, F.; Monty, C.

    2005-04-01

    We report on the structural and magnetic properties of Co-doped ZnO particles prepared by vaporization-condensation in the solar furnace in Odeillo. X-ray diffraction data show no traces of Co segregation or any other phase different from ZnO. High-resolution electron microscopy (HREM) and transmision electron microscopy (TEM) techniques have also been used to characterize particles. Irrespective of their composition, the shape and size of the obtained particles, as well as their magnetic properties, clearly depend on the preparation conditions. The samples prepared in vacuum exhibit hysteretic behavior with low coercivity (about 100 Oe) at T = 5 K and saturation magnetization well below that expecte for Co2+ in a tetrahedral crystal field. On the other hand, samples prepared at high pressure (70-100 Torr inside the balloon) are paramagnetic.

  4. Preparation of Dysprosium Ferrite/Polyacrylamide Magnetic Composite Microsphere and Its Characterization

    Institute of Scientific and Technical Information of China (English)

    Hidehiro Kumazawa; Wang Zhifeng; Zhou Lanxiang; Zhang Hong; Li Yourong; Zhang Ming

    2005-01-01

    Using the technique of microemulsion polymerization with nano-reactor, dysprosium ferrite/polyacrylamide magnetic composite microsphere was prepared by one-step method in a single inverse microemulsion. The structure, average particle size, morphology of composite microsphere were characterized by FTIR, XRD, TEM and TGA. The magnetic responsibility of composite microsphere was also investigated. The results indicate that the magnetic composite microsphere possess high magnetic responsibility and suspension stability.

  5. Chemical preparation and investigation of Fe-P-B ultrafine amorphous alloy particles

    Institute of Scientific and Technical Information of China (English)

    胡征; 吴勇; 范以宁; 颜其洁; 陈懿

    1997-01-01

    A series of Fe-P-B ultrafine amorphous alloy particles has been prepared by the chemical reduction method The composition and size of the particles have been effectively adjusted.Mossbauer spectroscopy in addition to sonic other techniques has been used to investigate the reaction process,the factors that influence the preparation,the crystallization of the particles,and the interactions between the components within them.The results indicate that the co-deposition of iron,phosphorus and boron atoms in the solution at room temperature forms Fe-P-B amorphous alloy particles,and a preferential bonding of Fe-P bond to Fe-B one exists in the particles.

  6. Dependence of dielectric properties on BT particle size in EP/BT composites

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaojun; YANG Zhimin; MAO Changhui; DU Jun

    2006-01-01

    The polymer-ceramic composites of epoxy resin (EP) and barium titanate (BT) were prepared.BT powders of different BT particle sizes from 100 nm to 1 μm were used in the preparation.The dielectric properties, such as dielectric constant, dielectric loss and electrical breakdown strength, of the EP/BT composites were studied.The morphology of the composites was characterized by the means of scanning electron microscopy (SEM).The results show that the dielectric constant of the composites is much higher than the epoxy matrix at frequency range from 1 kHz to 10 MHz, and it is also obviously dependent on the size of BT particles.The electrical breakdown strength of the composites decreases with the increase of the BT content.The dependence of electrical breakdown strength on BT particle sizes was also discussed.

  7. Preparation of notoginseng total saponins-tanshinone composite particles by solvent deposition method and their characterization%三七总皂苷-丹参酮复合粒子的溶剂沉积法制备及其表征

    Institute of Scientific and Technical Information of China (English)

    付廷明; 杨丰云; 王天瑶; 王华美; 郭立玮

    2011-01-01

    目的 为了解决粒子作为吸入载药系统,药物复方能同步传递的效果,制备出核/壳三七总皂苷-丹参酮复合粒子.方法 在三七总皂苷粒子表面利用溶剂沉积法包覆一层丹参酮.分别利用扫描电镜(SEM)、X射线衍射(XRD)、差热分析(DTA)、激光光散射粒径扫描、高效液相色谱(HPLC)对复合粒子进行表征.结果 通过上述表征,证明采用溶剂沉积法可成功制备包覆式复合粒子,即丹参酮包裹三七总皂苷复合粒子.结论 复合粒子的有效制备为粒子载药系统复方药物的同步传递提供了有力保障,为复方粉雾剂的制备提供了技术支持.%Objective To synchronously inhale Chinese materia medica compound using particle as inhalation drug delivery system, notoginseng total saponins-tanshinone composite particle was prepared. Methods The composite particle of notoginseng total saponins-tanshinone was prepared by solvent deposition method and was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA), particle size analysis, and high-performance liquid chromatography (HPLC). Results The notoginseng total saponins-tanshinone composite particle was successfully prepared by solvent deposition method, the results of characterization proved that tanshinone was coated on the notoginseng total saponins core particle. Conclusion The preparation of composite particle provides an effective way for synchronous inhalation of Chinese materia medica compound prescription and technical support for the preparation of compound dry powder inhalations.

  8. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability.

    Science.gov (United States)

    Ji, Jing; Shu, Shi; Wang, Feng; Li, Zhilin; Liu, Jingjun; Song, Ye; Jia, Yi

    2014-01-01

    This work reports a new evidence of the versatility of silica sol as a stabilizer for Pickering emulsions. The organization of silica particles at the oil-water interface is a function of the nucleation model. The present results show that nucleation model, together with monomer hydrophobicity, can be used as a trigger to modify the packing density of silica particles at the oil-water interface: Less hydrophobic methylmethacrylate, more wettable with silica particles, favors the formation of core-shell-structured composite when the composite particles are prepared by miniemulsion polymerization in which monomers are fed in batch (droplet nucleation). By contrast, hydrophobic butylacrylate promotes the encapsulating efficiency of silica when monomers are fed dropwise (homogeneous nucleation). The morphologies of polyacrylate-nano-SiO2 composites prepared from different feed ratio of methylmethacrylate/butylacrylate (with different hydrophobicity) and by different feed processes are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The results from SEM and TEM show that the morphologies of the as-prepared polyacrylate/nano-SiO2 composite can be a core-shell structure or a bare acrylic sphere. The stability of resulting emulsions composed of these composite particles is strongly dependent on the surface coverage of silica particles. The emulsion stability is improved by densely silica-packed composite particles.

  9. Conductive ceramic composition and method of preparation

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  10. Preparation of QTi4.3-4Graghite Composite by Semi-solid Casting Technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; DU Yunhui; LIU Hanwu; ZENG Daben; BA Limin

    2005-01-01

    The electromagnetic-mechanical stirring technology was employed for preparing QTi4.3-4 graghite composite slurry, and QTi4.3-4 graghite composite with uniform distribution of graphite particles was prepared using the semi-solid casting technology successfully. The structure of this QTi4.3-4 graghite composite was studied and the condition for uniform distribution of graphite particles was got. The experimental results show that there exists a linear relationship between the solid fraction aud the stirring temperature of QTi4.3-4 graphite slurry. With the decreasing of stirring temperature, the solid fraction of QTi4.3-4 graghite slurry increases constantly. In casting, with the iucreasing of solid fraction of QTi4.3-4graghite slurry, the agglomeration of graphite particles is removed gradually. When the solid fraction is higher than 40% , graphite particles can distribute evenly in QTi4.3-4 graghite composite.

  11. PREPARATION OF HOLLOW LATEX PARTICLES BY ALKALI-ACID TREATMENT

    Institute of Scientific and Technical Information of China (English)

    郝冬梅; 王新灵; 朱卫华; 唐小真; 刘成岑; 施凯

    2001-01-01

    Hollow polymer latex particles were prepared by seeded emulsion polymerization. A seed latex consisting of styrene (St), butyl acrylate(BA) copolymer was first prepared, and seeded terpolymerization of St-BA-MA(methacrylic acid) were then carried out in the absence of surfactant. Final latex was treated by a two-step treatment under alkaline and acidic conditions, thus, the particles with hollow structure were obtained. We discussed the effects of pH value, temperature and time in alkali and acid treatment processes on hollow structure within the polymer latex particles and amount of carboxylic group on particle surface. The results show that the hollow polymer latex particles with the largest hollow size can be obtained under a certain condition (pH12.5, 90°C, 3 h in alkali treatment stage and pH2.5, 85°C, 3 h in acid treatment stage).

  12. Composite particles and bubbles in Weyl space

    Science.gov (United States)

    Wood, W. R.; Mobed, N.; Papini, G.

    1993-11-01

    A composite particle model that exhibits a number of features of a generic hadronic bag model is derived from a conformally invariant theory in Weyl space. The Gauss-Mainardi-Codazzi formalism facilitates the description of the interior and exterior vacuum phases. Boundary conditions between the two regions are chosen such that the same complex scalar field that is responsible for a dynamical wave equation in the exterior space also provides the surface tension of the bubble. The conformal invariance is broken in the interior space where fluctuations in the scalar field possess a bound-state energy spectrum. Reality conditions dictate that the interior space be anti-de Sitter. Finally, it is pointed out that the bubble may experience collective excitations.

  13. Composite particles and bubbles in Weyl space

    Energy Technology Data Exchange (ETDEWEB)

    Wood, W.R. (Faculty of Natural and Applied Sciences, Trinity Western University, 7600 Glover Road, Langley, British Columbia, V3A 6H4 (Canada)); Mobed, N.; Papini, G. (Department of Physics, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada))

    1993-11-15

    A composite particle model that exhibits a number of features of a generic hadronic bag model is derived from a conformally invariant theory in Weyl space. The Gauss-Mainardi-Codazzi formalism facilitates the description of the interior and exterior vacuum phases. Boundary conditions between the two regions are chosen such that the same complex scalar field that is responsible for a dynamical wave equation in the exterior space also provides the surface tension of the bubble. The conformal invariance is broken in the interior space where fluctuations in the scalar field possess a bound-state energy spectrum. Reality conditions dictate that the interior space be anti--de Sitter. Finally, it is pointed out that the bubble may experience collective excitations.

  14. Preparation of magnetic polymer particles with nanoparticles of Fe(0).

    Science.gov (United States)

    Buendía, S; Cabañas, G; Alvarez-Lucio, G; Montiel-Sánchez, H; Navarro-Clemente, M E; Corea, M

    2011-02-01

    Iron nanoparticles (Fe(0)), were encapsulated into polymethyl methacrylate (PMMA), by means of emulsion polymerization techniques in a semicontinuous process. The final average diameter of the composite particle was calculated until three times of average particle of iron particles and were stabilized with a non-ionic surfactant. They were then characterized by scanning electron microscopy and dynamic light scattering. Their magnetic properties were determined by parallel field vibrating-sample magnetometry method. The results indicated that the magnetic properties are a function of polymer concentration in the nanocomposite particle.

  15. Composite vector particles in external electromagnetic fields

    Science.gov (United States)

    Davoudi, Zohreh; Detmold, William

    2016-01-01

    Lattice quantum chromodynamics (QCD) studies of electromagnetic properties of hadrons and light nuclei, such as magnetic moments and polarizabilities, have proven successful with the use of background field methods. With an implementation of nonuniform background electromagnetic fields, properties such as charge radii and higher electromagnetic multipole moments (for states of higher spin) can additionally be obtained. This can be achieved by matching lattice QCD calculations to a corresponding low-energy effective theory that describes the static and quasistatic responses of hadrons and nuclei to weak external fields. With particular interest in the case of vector mesons and spin-1 nuclei such as the deuteron, we present an effective field theory of spin-1 particles coupled to external electromagnetic fields. To constrain the charge radius and the electric quadrupole moment of the composite spin-1 field, the single-particle Green's functions in a linearly varying electric field in space are obtained within the effective theory, providing explicit expressions that can be used to match directly onto lattice QCD correlation functions. The viability of an extraction of the charge radius and the electric quadrupole moment of the deuteron from the upcoming lattice QCD calculations of this nucleus is discussed.

  16. Preparation of modified waterworks sludge particles as adsorbent to enhance coagulation of slightly polluted source water.

    Science.gov (United States)

    Chen, Wei; Gao, Xiaohong; Xu, Hang; Wang, Kang; Chen, Taoyuan

    2017-07-04

    Without treatment, waterworks sludge is ineffective as an adsorbent. In this study, raw waterworks sludge was used as the raw material to prepare modified sludge particles through high-temperature calcination and alkali modification. The feasibility of using a combination of modified particles and polyaluminum chloride (PAC) as a coagulant for treatment of slightly polluted source water was also investigated. The composition, structure, and surface properties of the modified particles were characterized, and their capabilities for removing ammonia nitrogen and turbidity were determined. The results indicate that the optimal preparation conditions for the modified sludge particles were achieved by preparing the particles with a roasting temperature of 483.12 °C, a roasting time of 3.32 h, and a lye concentration of 3.75%. Furthermore, enhanced coagulation is strengthened with the addition of modified sludge particles, which is reflected by reduction of the required PAC dose and enhancement of the removal efficiency of ammonia nitrogen and turbidity by over 80 and 93%, respectively. Additional factors such as pH, temperature, dose, and dosing sequence were also evaluated. The optimum doses of modified particles and PAC were 40 and 15 mg/L, respectively, and adding modified particles at the same time as or prior to adding PAC improves removal efficiency.

  17. Preparation of Silver Nanoshells on Silica Particles by a Simple Two-step Process

    Institute of Scientific and Technical Information of China (English)

    Yu ZHANG; Ming MA; Ning GU; Ling XU; Kun Ji CHEN

    2004-01-01

    A simple two-step method was developed to prepare silver nanoshells coated on silica paticles.The method involves two steps: concentration of reaction precursor (AgNO3) on particle surfaces and subsequent reduction by formaldehyde.The obtained composite particles were characterized by TEM, ED, and SEM-EDS measurements.The results show that the silver nanoshell is coated on silica particle surface in the form of a polycrystalline (cubic structure) layer with average thickness of 20 nm and weight percentage of 19%.

  18. Preparation of composite electroheat carbon film

    Institute of Scientific and Technical Information of China (English)

    XIA Jin-tong; TU Chuan-jun; LI Yan; HU Li-min; DENG Jiu-hua

    2005-01-01

    A kind of conductive and heating unit, which can reach a high surface electroheat temperature at a low voltage, was developed in view of the traditional electroheat coating which has a low surface electroheat temperature and an insufficient heat resistance of its binder. The coating molded electroheat carbon film(CMECF) was prepared by carbonizing the coating which was prepared by adding modified resin into flake graphite and carbon fiber, coating molded onto the surface of the heat resisting matrix after dried, while the hot pressing molded electroheat thick carbon film(HPMETCF) was prepared by carbonizing the bodies whose powders were hot pressing molded directly.The surface and inner microstructure of the carbon film was characterized and analyzed by SEM and DSC/TG, while electroheat property was tested by voltage-current volume resistivity tester and electrical parameter tester. The results show that, close-packed carbon network configuration is formed within the composite electroheat carbon film film after anti-oxidizable treatment reaches a higher surface electroheat temperature than that of the existing electroheat coatings at a low voltage, and has excellent electroheat property, high thermal efficiency as well as stable physicochemical property. It is found that, at room temperature(19± 2 ℃) and 22 V for 5 min, the surface electroheat temperature of the self-produced CMECF (mfiller/mresin = 1. 8/1) reaches 112 ℃ while HPMETCF (mfiller/mresin = 3. 6/1) reaches 265 ℃.

  19. Preparation and Characterization of InAs/Si Composite Film

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; LI Guang-Hai; ZHENG Mao-Jun; ZHANG Li-De

    2000-01-01

    Composite thin films consisting of nanosized InAs particles embedded in amorphous Si matrices were prepared by radio frequency co-sputtering of InAs and Si. X-ray diffraction spectra show that the particle size of InAs increases with the increasing annealing temperature, while the particle sizes of In and As reach their maximum values at the temperature of 200℃, and decrease with the further increase of the annealing temperature. In and As can not exist in the 500℃ sample due to the sublimation of In and As and the reaction In+As→InAs. The composition of the film in different levels was analyzed. We found that only in the deep level, the mole contents of As and In conform to the stoichiometric ratio and the oxidation occurs only a few nanometers from the surface. We believe that the scarcity of In and As near the surface is due to the sublimation of In and the oxide of As.

  20. Zirconia matrix composite dispersed with stainless steel particles: Processing and oxidation behavior

    OpenAIRE

    Tarabay, Jinane; Peres, Véronique; Serris, Eric; Valdivieso, François; Pijolat, Michèle

    2013-01-01

    International audience; Materials with non uniform properties are being developed to optimize several functions of industrial components in severe atmospheres at high temperature. These composites called M(p)-CMC(s): "ceramic matrix composites dispersed with metal particles" are candidates for high-temperature structure materials as functionally graded materials (FGMs) such as intermediate components between electrolyte and interconnecting components in SOFC. Preparation of a model composite ...

  1. Preparation of SiO2/TiO2 composite particles by Pechini sol-gel method%Pechini溶胶-凝胶法制备SiO2/TiO2复合微粒

    Institute of Scientific and Technical Information of China (English)

    伍媛婷; 王秀峰; 宋峰涛; 仝小飞

    2012-01-01

    Monodisperse SiO2 particles were synthesized by Stober method using ultrasound field. The SiO2/TiO2 core - shell particles were prepared by Pechini sol - gel method. The crystal phases and mi-cromorphology were characterized by X - ray diffraction ( XRD) and Scanning electron microscope ( SEM) . The results show that the SiO2 particles are monodisperse non - crystalline solid particles about 300nm. The SEM images of TiO2 powders show wide distribution of TiO2 particles having varied shape. And the large TiO2 particles are larger than 10μm. The micromorphology of SiO2/TiO2 particles changes significantly with the increment of Ti/Si (mol/mol) . SiO2/TiO2 core - shell particles could be obtained when Ti/Si = 1:3.%采用超声St(o)ber法制备了单分散性的纳米载体SiO2,再采用Pechini溶胶-凝胶制备法制备出SiO2/TiO2复合微球.通过X射线衍射仪、场发射扫描电子显微镜(FESEM)对粉体的晶型和显微形貌进行测试分析.结果表明:纳米载体SiO2球形颗粒为无定形态,Ti02粉体为形貌多样的块状颗粒,大颗粒粒径大于10μm;Ti/Si(摩尔比)的变化明显影响合成复合粉体的形貌和粒径,当Ti/Si=1∶3时可获得球形复合微球,且不存在块状颗粒.

  2. Composite perfluorohydrocarbon membranes, their preparation and use

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  3. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials.

    Science.gov (United States)

    Kocaman, Suheyla; Karaman, Mustafa; Gursoy, Mehmet; Ahmetli, Gulnare

    2017-03-01

    In this study, surface-modified grinded coconut waste (CW) particles were used as bio-fillers to prepare polymeric composite materials with enhanced properties. Epoxy resin modified with acrylated and epoxidized soybean oil (AESO) was used as the polymer matrix. Two different strategies, namely chemical treatment and plasma enhanced chemical vapor deposition (PECVD) were utilized to modify the surface of CW particles for using them as compatible bio-fillers in composite preparation. Chemical modification involved the treatment of CW particles in a highly alkali NaOH solution, while PECVD modification involved coating of a thin film of hydrophobic poly(hexafluorobutyl acrylate) (PHFBA) around individual CW particle surfaces. Untreated and surface-modified CW particles were used in 10-50wt% for preparation of epoxy composites. FTIR analysis was performed to study the effect of modification on the structures of particles and as-prepared composites. The composite morphologies were investigated by XRD and SE. TGA test was conducted to study the thermal behavior of the composites. Also, the effects of CW particle surface modification on the mechanical and water sorption properties of epoxy resin composites were investigated in detail. It was observed that PECVD-treated CW particles had much more positive effects on the thermal, mechanical, wettability and flammability properties of composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization.

    Science.gov (United States)

    Kaewsaneha, Chariya; Bitar, Ahmad; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2014-06-15

    Anisotropic polymeric colloidal or Janus particles possessing simultaneous magnetic and fluorescent properties were successfully prepared via the swelling-diffusion or the in situ emulsion polymerization method. In the swelling-diffusion process, magnetic emulsions (an organic ferrofluid dispersed in aqueous medium) were synthesized and used for seeds of submicron magnetic Janus particles. After swelling the anisotropic particles obtained by 1-pyrene-carboxaldehyde fluorescent dye dissolved in tetrahydrofuran, well-defined fluorescent-magnetic Janus particles were produced. In the in situ emulsion polymerization, styrene monomer mixed with fluorescent dye monomers, i.e., 1-pyrenylmethyl methacrylate (PyMMA) or fluorescein dimethacrylate (FDMA), and an oil-soluble initiator (2,2'-azobis(2-isobutyronitrile)) were emulsified in the presence of magnetic seed emulsions. The confocal microscopic images showed the fluorescent-magnetic Janus particles with high fluorescent intensity when a fluorescent crosslinker monomer FDMA was employed.

  5. Ultrasmall iron particles prepared by use of sodium amalgam

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1990-01-01

    Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe ha...

  6. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    Science.gov (United States)

    Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638

  7. Study on the genotoxicity of HA/ZrO{sub 2} composite particles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Renfu, E-mail: quanrenfu8@yahoo.com [Xiaoshan Traditional Chinese Medical Hospital, ZhengJiang Province 311200 (China); Tang, Yanghua; Huang, Zhongming; Xu, Jinwei [Xiaoshan Traditional Chinese Medical Hospital, ZhengJiang Province 311200 (China); Wu, Xiaochen [School of Materials Science and Engineering, Shanghai University, Shanghai (China); Yang, Disheng [Department of Orthopedics, the second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009 (China)

    2013-04-01

    To evaluate the genotoxicity of the HA/ZrO{sub 2} composite particles by using the micronucleus test (MNT) in vitro. HA/ZrO{sub 2} composite particles prepared by sintering at high temperature and pressure, that used powder of HA and ZrO{sub 2} of different proportions, were compared with pure HA particles and pure ZrO{sub 2} particles. The effect of the composite particles on cell proliferation of rabbit mesenchymal stem cells, and its the genotoxicity to rabbit mesenchymal stem cells were detected by MNT method. The MTT test showed that both pure HA particles and composite particles which contained HA promoted cell proliferation of rabbit mesenchymal stem cells, while pure ZrO{sub 2} particles did not, and there was a significant difference (P < 0.05). The MNT test showed no significant difference between the HA group and the negative control group (P > 0.05), but a significant difference between the HA group and the positive control group (P < 0.05). The difference between the ZrO{sub 2} group and the negative control group was significant (P < 0.01), while the difference between the ZrO{sub 2} group and the positive control group was insignificant (P > 0.05). The genotoxicity of the HA/ZrO{sub 2} composite particle increased with a higher proportion of ZrO{sub 2} and an increase in the concentration of the composite, and the 30 wt.% HA/70% ZrO{sub 2} composite with 200 μg/mL concentration showed significant genotoxicity (P < 0.01). - Highlights: ► HA/ZrO{sub 2} composite particles were prepared by sintering used powder of HA and ZrO{sub 2} of different proportions. ► Evaluate the genotoxicity of the HA/ZrO{sub 2} composite particle in vitro micronucleus test (MNT). ► The genotoxicity of the HA/ZrO{sub 2} composite particle increased with an increase in the proportion of ZrO{sub 2}. ► The 30%wtHA/70% ZrO{sub 2} composite with 200 μg/mL concentration showed significant genotoxicity.

  8. Fracture Resistance of Composite Veneers with Different Preparation Designs

    OpenAIRE

    Zlatanovska, Katerina; Guguvcevski, Ljuben; Popovski, Risto; Dimova, Cena; Minovska, Ana; Mijoska, Aneta

    2016-01-01

    Background: The aim of this in vitro study was to examine the fracture load of composite veneers using three different preparation designs. Material and methods: Fifteen extracted, intact, human maxillary central incisors were selected. Teeth were divided into three groups with different preparation design: 1) feather preparation, 2) bevel preparation, and 3) incisal overlap- palatal chamfer. Teeth were restored with composite veneers, and the specimens were loaded to failure. The localizatio...

  9. Metal-Matrix Composites Prepared by Paper-Manufacturing Technology

    Science.gov (United States)

    Wenzel, Claudia; Aneziris, Christos G.; Pranke, Katja

    2016-01-01

    In this work, metal-matrix composites were prepared via paper-manufacturing technology using metastable austenitic steel powder of type 16-7-3 (Cr-Mn-Ni in wt pct) and magnesia partially stabilized zirconia reinforcing particles. The influence of the process parameters on the paper web formation and the resulting properties of the MMCs were studied and solids retention of >90 wt pct was achieved. During filtration of the aqueous fiber-filler suspension, the steel particles were incorporated in the fiber network, and steel clusters were formed. Calendering had a positive influence on the porosity, bulk density, and tensile strength of the green paper sheets. Within this contribution, the debinding process for the metal-matrix paper sheets was in focus. A debinding rate of 0.5 K/min to 733 K (460 °C) with a dwell time of 90 minutes was sufficient to completely remove cellulose fibers. The sintered composites attained a tensile strength of up to 177 N/mm2 at a total porosity of 66 pct.

  10. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  11. Photoactive composite films prepared from mixtures of polystyrene microgel dispersions and poly(3-hexylthiophene) solutions.

    Science.gov (United States)

    Chen, Mu; Cui, Zhengxing; Edmondson, Steve; Hodson, Nigel; Zhou, Mi; Yan, Junfeng; O'Brien, Paul; Saunders, Brian R

    2015-11-14

    Whilst polystyrene microgels belong to the oldest family of microgel particles, their behaviours when deposited onto substrates or prepared as composites have received little attention. Because polystyrene microgels are solvent-swellable, and inherently colloidally stable, they are well suited to form composites with conjugated polymers. Here, we investigate the morphology and light absorption properties of spin coated composite films prepared from mixed dispersions of polystyrene microgels and poly(3-hexylthiophene) (P3HT) for the first time. We compare the morphologies of the composite films to spin coated microgel films. The films were studied using optical microscopy, SEM, AFM, wide-angle X-ray diffraction and UV-visible spectroscopy. The films contained flattened microgel particles with an aspect ratio of ∼10. Microgel islands containing hexagonally close packed particles were evident for both the pure microgel and microgel/P3HT composite films. The latter were electrically conducting. The composite film morphology was dependent on the microgel and P3HT concentration used for film preparation and a morphology phase diagram was constructed. The P3HT phase acted as an electrically conducting cement and increased the robustness of the films to solvent washing. The composite films were photoactive due to the P3HT component. The absorbance for the films was tuneable and increased linearly with both microgel and P3HT concentration. The results of the study should apply to other organic swellable microgel/conjugated polymer combinations and may lead to new colloidal composites for future optoelectronic applications.

  12. Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane.

    Science.gov (United States)

    Zhang, Yuqing; Jin, Zhenhua; Shan, Xing; Sunarso, Jaka; Cui, Ping

    2011-02-15

    Polysulfone (PSF) membranes are broadly applied in many fields owing to good physicochemical stability, resistance to oxidation and chlorine. But when treated with wastewater containing oil, PSF membranes are easy to be contaminated for its hydrophobicity, which can result in the declining of flux and lifespan of the membrane and limit their application in large scale. To enhance the capability of PSF membrane in the above circumstances, phosphorylated Zr-doped hybrid silica particles (SZP particles) were firstly prepared. SZP particles have various point defects inside their structure and lots of hydroxide radicals on their surface. SZP particles were added to the porous matrix of PSF to prepare a novel composite membrane (SZP/PSF) through a phase inversion process. Finally, the optimum preparation conditions of SZP/PSF composite membranes were determined. The optimum conditions are: the mass ratio of PSF, PEG400 and SZP is 12:10:10; ultrasound 10 min inside each 30 min; the pre-evaporating time is 10s. Optimized SZP/PSF composite membrane was characterized by scanning electron microscope (SEM) and ultrafiltration experiment. The results indicate that SZP particles can be uniformly dispersed in SZP/PSF composite membranes with excellent hydrophilic property, antifouling capability and tensile strength. Therefore, it can be concluded that the optimized SZP/PSF composite membrane is desirable in the treatment of wastewater containing oil and wastewater.

  13. Particle compositions with a pre-selected cell internalization mode

    Science.gov (United States)

    Decuzzi, Paolo (Inventor); Ferrari, Mauro (Inventor)

    2012-01-01

    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.

  14. Preparation and Powdering Mechanism of Nano Calcium Carbonate Filled Powdered Rubber Composite Particle%纳米CaCO3填充型粉末橡胶复合粒子的制备及成粉机理

    Institute of Scientific and Technical Information of China (English)

    张周达; 陈雪梅; 马新胜

    2012-01-01

    以纳米CaCO3浆料和丁苯胶乳(SBR)为原料,将两者直接混合制得了纳米CaCO3填充型粉末橡胶复合粒子。研究表明,当粉末化体系中纳米CaCO3和SBR的重量比≥1时,纳米CaCO3兼具隔离剂和凝聚剂的作用。复合粒子的粒径随着纳米CaCO3填充量的增加而减小,所制得的复合粒子的颗粒尺寸均小于200tLm,纳米CaCO3以50nm原始粒径均匀分散在复合粒子中;其成粉机理为纳米CaCO3表面的钙离子和胶乳粒子表面的负离子发生键合作用,破乳而形成粉末橡胶复合粒子。%Powdered rubber composite particle with nano-calcium carbonate filled was prpeared by simply blending nano-CaCOa slurry and styrene-butadiene latex. It was demonstrated that nano-CaCO3 could served as both separant and coagulant in the powdering system when the weight ratio of nano-CaCO3 to SBR was greater than 1. The size of the composite particle decreased with increasing nano-CaCOa loading and was always smaller than 200htm, the nano-CaCO3 dispersed uniformly with the original size of 50nm in the composite particle matrix. The powdering mechanism could be described as the demulsification due to the attractive interaction of dissolved positive ion and the anion originating from the surface of CaCOa and latex respectively.

  15. Preparation and Characterization of Stainless Steel/TiC Nanocomposite Particles by Ball-milling Method

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenyi; ZHOU Jian

    2009-01-01

    A stainless steel/10wt%TiC nanocomposite particles were prepared by high-energy ball-milling method using stainless steel, carbon and titanium as raw materials. The evolution of phase composition, microstructure and specific surface area of the stainless steel/TiC nanocomposite particles with increasing ball-milling time in the range of 0-100 h were investigated by XRD, SEM, TEM and BET techniques. The results showed that the stainless steel/TiC nano-composite particles were fabricated when the ball-milling time was longer than 20 h. However, the nanocomposite particles were soldered and agglomerated again when the ball-milling time was longer than 60 h. The microstructure of the composite particles transformed from lamellar structure to nanostructure during the repeated process of the cold welding and cracking. TEM image reveals clearly that the in-situ TiC nanoparticles with grain size of 3-8 nm are in the interior of the stainless steel/TiC nanocomposite particles obtained by ball-milling 100 h.

  16. Preparation, microstructure and magnetic properties of Sm(Co,Hf){sub 7}/Co nanocomposite particles by polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Shao-Jing; Duan, Xiu-Li; Han, Xu-Hao; Sun, Ji-Bing, E-mail: hbgdsjb@126.com; Chi, Xiang; Cui, Chun-Xiang

    2017-02-01

    Hard/soft Sm-Co/Co nanocomposite particles were prepared by reducing CoCl{sub 2}·6H{sub 2}O in the solution containing ball-milled Sm(Co, Hf){sub 7} particles by a simple polyol method with ethylene glycol as the solvent. Phase composition, microstructure and magnetic properties of the particles were analyzed by XRD, TEM (HRTEM) and VSM, respectively. It has been found that Sm-Co/Co core/shell structure is formed in which the Co shell is 3–5 nm in thickness and mainly exists in hcp-Co phase. At the same time, fcc-Co tends to nucleate and grow independently between Sm-Co particles. The formation mechanism of Sm-Co/Co composite particles is discussed and corresponding model is established. Sm-Co/Co composite particles perform obvious remanence enhancement effects especially after being heated at 450 °C for 15 min.

  17. Preparation, microstructure and magnetic properties of Sm(Co,Hf)7/Co nanocomposite particles by polyol method

    Science.gov (United States)

    Bu, Shao-Jing; Duan, Xiu-Li; Han, Xu-Hao; Sun, Ji-Bing; Chi, Xiang; Cui, Chun-Xiang

    2017-02-01

    Hard/soft Sm-Co/Co nanocomposite particles were prepared by reducing CoCl2·6H2O in the solution containing ball-milled Sm(Co, Hf)7 particles by a simple polyol method with ethylene glycol as the solvent. Phase composition, microstructure and magnetic properties of the particles were analyzed by XRD, TEM (HRTEM) and VSM, respectively. It has been found that Sm-Co/Co core/shell structure is formed in which the Co shell is 3-5 nm in thickness and mainly exists in hcp-Co phase. At the same time, fcc-Co tends to nucleate and grow independently between Sm-Co particles. The formation mechanism of Sm-Co/Co composite particles is discussed and corresponding model is established. Sm-Co/Co composite particles perform obvious remanence enhancement effects especially after being heated at 450 °C for 15 min

  18. Properties of hybrid resin composite systems containing prepolymerized filler particles.

    Science.gov (United States)

    Blackham, Jason T; Vandewalle, Kraig S; Lien, Wen

    2009-01-01

    This study compared the properties of newer hybrid resin composites with prepolymerized-filler particles to traditional hybrids and a microfill composite. The following properties were examined per composite: diametral tensile strength, flexural strength/modulus, Knoop microhardness and polymerization shrinkage. Physical properties were determined for each Jason T Blackham, DMD, USAF, General Dentistry, Tyndall composite group (n = 8), showing significant differences between groups per property (p hybrid composites (Z250, Esthet-X) had higher strength, composites containing pre-polymerized fillers (Gradia Direct Posterior, Premise) performed more moderately and the microfill composite (Durafill VS) had lower strength. Premise and Durafill VS had the lowest polymerization shrinkage.

  19. Preparation and characterization of energetic materials coated superfine aluminum particles

    Science.gov (United States)

    Liu, Songsong; Ye, Mingquan; Han, Aijun; Chen, Xin

    2014-01-01

    This work is devoted to protect the activity of aluminum in solid rocket propellants by means of solvent/non-solvent method in which nitrocellulose (NC) and Double-11 (shortened form of double-base gun propellant, model 11) have been used as coating materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of coated Al particles. Other characterization data of coated and uncoated Al particles, such as infrared absorption spectrum, laser particle size analysis and the active aluminum content were also studied. The thermal behavior of pure and coated aluminum samples have also been studied by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The results indicated that: superfine aluminum particles could be effectively coated with nitrocellulose and Double-11 through a solvent/non-solvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 20-50 nm. The active aluminum content of different coated samples was measured by means of oxidation-reduction titration method. The results showed that after being stored in room temperature and under 50% humidity condition for about 4months the active aluminum content of coated Al particles decreased from 99.8 to 95.8% (NC coating) and 99.2% (Double-11 coating) respectively. Double-11 coating layer had a much better protective effect. The TG-DTA and DSC results showed that the energy amount and energy release rate of NC coated and Double-11 coated Al particles were larger than those of the raw Al particles. Double-11 coated Al particles have more significant catalytic effect on the thermal decomposition characters of AP than that of NC coated Al particles. These features accorded with the energy release characteristics of solid propellant.

  20. Preparation and characterization of energetic materials coated superfine aluminum particles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Songsong; Ye, Mingquan, E-mail: liusong8366@gmail.com; Han, Aijun; Chen, Xin

    2014-01-01

    This work is devoted to protect the activity of aluminum in solid rocket propellants by means of solvent/non-solvent method in which nitrocellulose (NC) and Double-11 (shortened form of double-base gun propellant, model 11) have been used as coating materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of coated Al particles. Other characterization data of coated and uncoated Al particles, such as infrared absorption spectrum, laser particle size analysis and the active aluminum content were also studied. The thermal behavior of pure and coated aluminum samples have also been studied by simultaneous thermogravimetry–differential thermal analysis (TG–DTA) and differential scanning calorimetry (DSC). The results indicated that: superfine aluminum particles could be effectively coated with nitrocellulose and Double-11 through a solvent/non-solvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 20–50 nm. The active aluminum content of different coated samples was measured by means of oxidation–reduction titration method. The results showed that after being stored in room temperature and under 50% humidity condition for about 4months the active aluminum content of coated Al particles decreased from 99.8 to 95.8% (NC coating) and 99.2% (Double-11 coating) respectively. Double-11 coating layer had a much better protective effect. The TG–DTA and DSC results showed that the energy amount and energy release rate of NC coated and Double-11 coated Al particles were larger than those of the raw Al particles. Double-11 coated Al particles have more significant catalytic effect on the thermal decomposition characters of AP than that of NC coated Al particles. These features accorded with the energy release characteristics of solid propellant.

  1. Morphology, composition, and atmospheric processing of soot particles

    Science.gov (United States)

    Slowik, Jay G.

    Combustion-generated soot aerosols play an important role in climate forcing due to their strong light-absorbing properties. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. The task is further complicated because of the lack of an unambiguous chemical definition of the material. Here we present the development and application of a new technique for determining particle morphology and composition. Simultaneous measurements of mobility diameter, vacuum aerodynamic diameter, and non-refractory composition were used to determine the particle mass, volume, density, composition, dynamic shape factor, and fractal dimension. Under certain conditions, particle surface area and the number and size of the primary spherules composing the soot fractal aggregates were also determined. The particle characterization technique described above was applied to the following four studies: (1) Characterization of flame-generated soot particles. Depending on flame conditions, either fractal or near-spherical particles were generated and their properties interpreted in terms of the mechanism for soot formation. (2) Coating and denuding experiments were performed on soot particles. The results yielded information about morphology changes to the entire soot particle and to the internal black carbon structure due to atmospheric processing. The denuding experiments also provided particle surface area, which was used to determine the atmospheric lifetime of fractal soot particles relative to spheres. (3) An inter-comparison study of instruments measuring the black carbon content of soot particles was conducted. The detailed characterization of soot particles enabled a number of assumptions about the operation of the selected instruments to be tested. (4) Ambient particles were sampled in Mexico City. In the early morning, ambient particles were detected with a fractal morphology similar to that of diesel

  2. PREPARATION AND CHARACTERIZATION OF CHITOSAN-ZnO/Al2O3 COMPOSITE

    Directory of Open Access Journals (Sweden)

    Dina Kartika Maharani

    2015-11-01

    Full Text Available The purpose of this research was to prepare novel composite based on biopolymer and nontoxic inorganic materials that can be applied for many uses such as coating agent on textile for antibacterial purposes. In this research, Chitosan-ZnO/ Al2O3 composites were prepared by mixing chitosan solution with ZnO particles and Al2O3 (alumina sol produced by sol-gel method. The products were characterized with Fourier Transform Infra Red (FTIR Spectrophotometer and X-Ray Diffractometer (XRD. The result of this research showed that composites exist as transparent solution that was suitable for coating agent application. The result of FTIR Spectrophotometer analysis showed that there were interactions between chitosan, ZnO particles and Al2O3 particles which indicated from absorption bands in the region of wave number 3500-3400 cm-1, 1600-1500 cm-1 and 600-450 cm-1. It mean that chitosan interacted to ZnO particles and alumina particles . The XRD analysis of composites showed that there were change in the diffraction peak in the 2 theta value of 10o and 19o which indicated interaction of chitosan with ZnO particles and alumina particles

  3. PREPARATION OF PUZZOLANA ACTIVE TWO COMPONENT COMPOSITE FOR LATENT HEAT STORAGE

    Directory of Open Access Journals (Sweden)

    Jan Fort

    2016-10-01

    Full Text Available Application of Phase Change Materials (PCMs represents promising way for an increase of energy efficiency of industrial devices, reduction of energy demands for heating and cooling, waste heat recovery, solar energy storage and smart control of buildings interior climate. In this paper, the potential of diatomite as the bearer for the shape stable PCM was studied in order to develop material applicable in the mix composition of composite materials. Considering availability, endurance and compatibility of diatomite with the cement and lime based materials, preparation of diatomite/wax composite brings pozzolana active PCM with great promises at a reasonable cost. Prepared composite was analysed in detail using laser diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Also the pozzolanic activity was measured. The prepared two components composite exhibits high latent heat storage and particle size distribution compatible with cement and hydrated lime.

  4. Preparation and optimization of calcium fluoride particles for dental applications.

    Science.gov (United States)

    Koeser, Joachim; Carvalho, Thiago Saads; Pieles, Uwe; Lussi, Adrian

    2014-07-01

    Fluorides are used in dental care due to their beneficial effect in tooth enamel de-/remineralization cycles. To achieve a desired constant supply of soluble fluorides in the oral cavity, different approaches have been followed. Here we present results on the preparation of CaF2 particles and their characterization with respect to a potential application as enamel associated fluoride releasing reservoirs. CaF2 particles were synthesized by precipitation from soluble NaF and CaCl2 salt solutions of defined concentrations and their morphology analyzed by scanning electron microscopy. CaF2 particles with defined sizes and shapes could be synthesized by adjusting the concentrations of the precursor salt solutions. Such particles interacted with enamel surfaces when applied at fluoride concentrations correlating to typical dental care products. Fluoride release from the synthesized CaF2 particles was observed to be largely influenced by the concentration of phosphate in the solution. Physiological solutions with phosphate concentration similar to saliva (3.5 mM) reduced the fluoride release from pure CaF2 particles by a factor of 10-20 × as compared to phosphate free buffer solutions. Fluoride release was even lower in human saliva. The fluoride release could be increased by the addition of phosphate in substoichiometric amounts during CaF2 particle synthesis. The presented results demonstrate that the morphology and fluoride release characteristics of CaF2 particles can be tuned and provide evidence of the suitability of synthetic CaF2 particles as enamel associated fluoride reservoirs.

  5. Preparation and characteristics of CNT-metal composites

    CSIR Research Space (South Africa)

    Pityana, SL

    2006-01-01

    Full Text Available The success in keeping carbon nanotubes (CNT) bonded to stainless steel provides a possible method for the preparation of CNT-metal composites. Alternative methods for the preparation of CNT-metal composites include hot pressing, sintering, etc...

  6. Novel Ag/Si composite particles through galvanic displacement and its conductive application.

    Science.gov (United States)

    Yang, Chenfan; Liu, Xuelong; Lv, Tiezheng; Zhao, Lili; Cui, Can; Wang, Yuying; Cha, Limei

    2016-01-01

    Here we synthesized a novel Ag/Si composite sub-micro particle using galvanic displacement by capitalizing on the active chemical surface of Si particles sludge from wafer-slicing process. Si works as chemical reactant, as well as reaction site to form composite particles. Sequent structural characterizations and analysis which include X-ray diffraction, transmission electron microscopy, scanning electron microscope, energy dispersive X-ray and electrical properties of this composite particle were done. A well-proved hetero-epitaxial growth mechanism could explain Ag nano-island/layer with a satisfactory bond property deposited on the Si surface. Since these Si are mechanically cleaved from crystal, formed conductive Ag/Si composites retain the flake shape from Si sludge particles, and narrow size distribution. They are preferred as conductive fillers, an Ag/Si composite-based conductive ink was prepared, its conductance was tested through screen printing, film thickness and resistivity were measured. The resistivity reached the µΩ cm level, even without optimizing the ink formulation. Our methods not only convert this Si sludge into highly conductive composite particles as filler for applications, but also considerably reduce the consumption of precious metal.

  7. Experiments and Modeling of the Preparation of Ultrafine Calcium Carbonate in Spouted Beds with Inert Particles

    Institute of Scientific and Technical Information of China (English)

    林诚; 朱涛; 朱跃姿; 张济宇

    2003-01-01

    A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.

  8. Garnet composite films with Au particles fabricated by repetitive formation for enhancement of Faraday effect

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H; Nakai, Y [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, 35-1 Yagiyama-Kasumi, Taihaku, Sendai, Miyagi 982-8577 (Japan); Mizutani, Y; Inoue, M [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Fedyanin, A A, E-mail: uchida_hn@tohtech.ac.jp [Faculty of Physics, Moscow State University, Moscow 119992 (Russian Federation)

    2011-02-16

    To prepare garnet (Bi : YIG) composite films with Au particles, we used a repetitive formation method to increase the number density of particles. On increasing the number of repetitions, the diameter distribution of the particles changed. After five repetitions using 5 nm Au films, the diameter distribution separated into two size groups. Shift of wavelength-excited localized surface plasmon resonance is discussed relative to the diameter distribution. In the composite films, enhancement of Faraday rotation associated with surface plasmons was observed. With six repetitions, a maximum enhanced rotation of -1.2{sup 0} was obtained, which is 20 times larger than that of a single Bi : YIG film. The figures of merit for the composite films are discussed. The thickness of a Bi : YIG composite film working for enhanced Faraday rotation was examined using an ion milling method.

  9. Preparation and corrosion behavior evaluation of amalgam/titania nano composite

    OpenAIRE

    Neda Bahremandi Tolou; Mohammadhossein Fathi; Ahmad Monshi; Vajihesadat Mortazavi; Farzaneh Shirani

    2011-01-01

    Background: Many attempts have been performed and continued for improvement of dental amalgam properties during last decades. The aim of present research was fabrication and characterization of amalgam/titania nano composite and evaluation of its corrosion behavior. Materials and Methods: In this experimental research, nano particles of titania were added to initial amalgam alloy powder and then, dental amalgam was prepared. In order to investigate the effect of nano particle amounts on p...

  10. Thermal, structural and morphological properties of High Density Polyethylene matrix composites reinforced with submicron agro silica particles and Titania particles

    Directory of Open Access Journals (Sweden)

    Oluyemi O. Daramola

    2017-07-01

    Full Text Available HDPE—based composites samples filled with 2, 4, 6, 8 and 10 wt.% submicron agro-waste silica particles extracted from rice husk ash (RHA at constant 0.3 wt.% Titania loading were prepared using rapra single screw extruder at temperature of 200–230 °C. The extrudates were compressed with a laboratory carver press at a temperature of 230 °C for 10 min under applied pressure of 0.2 kPa and water cooled at 20 °C min−1. Thermal, structural and morphological properties of the composites were studied. The results of the thermogravimetric analysis (TGA revealed that the composites with 10 wt.% SiO2 have the best maximum thermal degradation temperature of 438.73 °C. The crystal structure of neat HDPE, and the siliceous composites developed revealed two obvious diffractive peaks of about 21.3° and 23.7° corresponding to typical crystal plane (1 1 0 and (2 0 0 of orthorhombic phase respectively. The diffractive peaks do not shift with the addition of silica particles; this clearly indicates that the addition of silica particles did not exert much effect on the crystalline structure of HDPE. There is no much difference in the interplanar distance (d-value. Lamellar thickness (L of HDPE increases with the addition of silica particles, which implies that silica particles aid the formation of more perfect crystals. Scanning electron microscopy studies indicated that there were chains inter diffusion and entanglement between HDPE matrix and the silica particles at lower weight fraction (2–4 wt.% of submicron silica particles which resulted into homogeneous dispersion of the particles within the matrix.

  11. Preparation of Entangled States of Three Particles by Adiabatic Passage

    Institute of Scientific and Technical Information of China (English)

    郭建友

    2002-01-01

    We propose a novel technique for the creation of entangled states of three particles, based upon an adiabatic passage induced by a suitably crafted time-dependent external field. We derive the corresponding adiabatic and bare conditions for the preparation of entangled states. We obtain the time evolutions of the energy of the system and the populations involving the initial state and target entangled state.

  12. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    Science.gov (United States)

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites.

  13. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  14. The structure and properties of Fe3O4/P (NaUA-St-BA) magnetic composite nano particles

    Institute of Scientific and Technical Information of China (English)

    周春华; 张书香; 刘威; 王英姿; 杨鸿昌

    2004-01-01

    Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and XRD analysis demonstrated that the desired polymer chains have been covalently bonded to the surface of Fe3 O4 nano particles. The morphology analysis by TEM confirmed that the composite particles have the core-shell structure and a relatively uniform diameter of about 100nm. The magnetic properties of the obtained composite latex particles were measured by VSM and found that they exhibited super paramagnetic properties.Finally, the prepared magnetic composite particles latex is stable for several months.

  15. Preparation of Panel and Charged Particles for Electrophoretic Display

    Science.gov (United States)

    Choi, Hyung Suk; Park, Jin Woo; Park, Lee Soon; Lee, Jung Kyung; Han, Yoon Soo; Kwon, Younghwan

    Studies on the formulation of photosensitive paste for transparent soft mold press (TSMP) method have been performed. With the optimum formulation of the photosensitive paste the box-type barrier rib with good flexibility and high solvent resistance was fabricated, suitable for the panel material of the electrophoretic display. Cationically-charged white particles were prepared by using TiO2 nanoparticles, silane coupling agent with amino groups, dispersant and acetic acid. The cationically charged TiO2 particles exhibited 74.09 mV of zeta potential and 3.11 × 10-5 cm2/Vs of mobility. Electrophoretic display fabricated with the charged TiO2 particles exhibited 10 V of low driving voltage and maximum contrast ratio (5.3/1) at 30 V.

  16. Preparation and Characterization of Nano-particle Substituted Barium Hexaferrite

    CERN Document Server

    Atassi, Yomen; Tally, Mohammad

    2014-01-01

    High density magnetic recording requires high coercivity magnetic media and small particle size. Barium hexaferrite has been considered as a leading candidate material because of its chemical stability, fairly large crystal anisotropy and suitable magnetic characteristics. In this work, we present the preparation of the hexagonal ferrite BaFe12O19 and one of its derivative; the Zn-Sn substituted hexaferrite by the chemical co-precipitation method. The main advantage of this method on the conventional glass-ceramic one, resides in providing a small enough particle size for magnetic recording. We demonstrate using the X-ray diffraction patterns that the particle size decreases when substituting the hexaferrite by the Zn-Sn combination. This may improve the magnetic properties of the hexaferrite as a medium for HD magnetic recording

  17. The Influence of the Particle Size on the Adhesion Between Ceramic Particles and Metal Matrix in MMC Composites

    Science.gov (United States)

    Jarzabek, Dariusz M.; Chmielewski, Marcin; Dulnik, Judyta; Strojny-Nedza, Agata

    2016-08-01

    This study investigated the influence of the particle size on the adhesion force between ceramic particles and metal matrix in ceramic-reinforced metal matrix composites. The Cu-Al2O3 composites with 5 vol.% of ceramic phase were prepared by a powder metallurgy process. Alumina oxide powder as an electrocorundum (Al2O3) powder with different particle sizes, i.e., fine powder <3 µm and coarse powder of 180 µm was used as a reinforcement. Microstructural investigations included analyses using scanning electron microscopy with an integrated EDS microanalysis system and transmission microscopy. In order to measure the adhesion force (interface strength), we prepared the microwires made of the investigated materials and carried out the experiments with the use of the self-made tensile tester. We have observed that the interface strength is higher for the sample with coarse particles and is equal to 74 ± 4 MPa and it is equal to 68 ± 3 MPa for the sample with fine ceramic particles.

  18. Preparation of Mordenite Composite Membranes with Seeding

    Institute of Scientific and Technical Information of China (English)

    Su Xiaohui; Li Gang; Lin Ruisen; Kikuchi Eiichi; Matsukata Masahiko

    2006-01-01

    Mordenite composite membranes were prepared by means of coating a porous α-alumina support with nanosized mordenite seeds followed by hydrothermal crystallization.A systematic investigation was performed on the influence of several factors such as ageing of the reaction mixture,alkalinity,salt addition and temperature on the formation of a mordenite membrane on the seeded support.The ageing of the reaction mixture reduces the growth rate of mordenite crystal along a-axis and b-axis but hardly influences the growth rate along c-axis.As a result,the boundaries between the surface crystals become a little larger with prolonging the period of ageing time.The growth rate of the mordenite crystal along individual axes increases first and then decreases with increasing concentration of sodium hydroxide.A higher alkalinity is unfavorable for the formation of a continuous mordenite membrane.The addition of salt in the reaction mixture has different effect on the growth rate of the mordenite crystal along each axis.With increasing the amount of salt,there was hardly influence on the growth rate along c-axis,whereas an obvious decline was observed in the growth rate along either a-axis or b-axis,which enlarges the boundaries between the surface crystals.The growth rate of the mordenite crystal increases more along c-axis than that along a-axis or b-axis with increasing temperature for hydrothermal crystallization.The use of a temperature as high as 473 K produces a membrane composed of bar-like crystals with larger boundaries.

  19. Preparation and Properties of Graphene Straw Retardant Composites

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available This article was prepared by spin-coating the evaporation process graphene oxide having a shell core structure GO/straw flame retardant composite materials, through the oxygen index apparatus and SEM measured the relationship between the flame retardant properties and the morphological structure of the flame retardant composite material, the experiment preparation process is simple, environmentally friendly non-toxic, and the resulting GO/straw flame retardant composite material having a high fire retardant properties.

  20. Particle size distribution and physico-chemical composition of clay.

    African Journals Online (AJOL)

    HP USER

    obtained after acid digestion of clay samples were used in determining the elements by Atomic. Absorption ... ignition (LOI) reveal a general reduction in composition as particles sizes reduces. However, Mg .... Murray, H.H. Diagnostic Tests for.

  1. Influence of Particle Size on Piezoelectricity of Piezo-composites

    Institute of Scientific and Technical Information of China (English)

    LUO Dabing; LIU Hanxing; HAO Hua; LI Yanfeng; OUYANG Shixi

    2007-01-01

    Serial material model (Dilute model)and Limited Units (LU)method were employed to analyze the performance of binary piezo-composite system. The reckoned electric potential deployments illustrated difference while the particles were different. Their piezoelectricities were also calculated according to the model,and furthermore comparation suggested that small particles living in the tolerance improve the piezoelectricity of piezo-composite. Experiments coinciding with analyses were processed simultaneously.Ceramics were milled for different time in order to control the concentration of particle size.The results showed that the filled particles enhanced the piezoelectricity of binary piezo-composite system efficiently whereas too many chips deteriorated the performance of piezo-composites.

  2. Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Trueblood, Jonathan; Estillore, Armando D.; Morris, Holly S.; Jayarathne, Thilina; Sultana, Camile M.; Lee, Christopher; Lin, Peng; Laskin, Julia; Laskin, Alexander; Dowling, Jackie; Qin, Zhen; Cappa, Christopher; Bertram, Timothy; Tivanski, Alexei V.; Stone, Elizabeth; Prather, Kimberly; Grassian, Vicki H.

    2017-05-01

    The impact of sea spray aerosol (SSA) on climate depends on the size and chemical composition of individual particles that make-up the total SSA ensemble. While the organic fraction of SSA has been characterized from a bulk perspective, there remains a lack of understanding as to the composition of individual particles within the SSA ensemble. To better understand the molecular components within SSA particles and how SSA composition changes with ocean biology, simultaneous measurements of seawater and SSA were made during a month-long mesocosm experiment performed in an ocean-atmosphere facility. Herein, we deconvolute the composition of freshly emitted SSA devoid of anthropogenic and terrestrial influences by characterizing classes of organic compounds as well as specific molecules within individual SSA particles. Analysis of SSA particles show that the diversity of molecules within the organic fraction varies between two size fractions (submicron and supermicron) with contributions from fatty acids, monosaccharides, polysaccharides and siliceous material. Significant changes in the distribution of these compounds within individual particles are observed to coincide with the rise and fall of phytoplankton and bacterial populations within the seawater. Furthermore, water uptake is impacted as shown by hygroscopicity measurements of model systems composed of representative organic compounds. Thus, the how changes in the hygroscopic growth of SSA evolves with composition can be elucidated. Overall, this study provides an important connection between biological processes that control the composition of seawater and changes in single particle composition which will enhances our ability to predict the impact of SSA on climate.

  3. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    Science.gov (United States)

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-05

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification.

  4. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    OpenAIRE

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extracts were obta...

  5. Investigations on the magnetization behavior of magnetic composite particles

    Science.gov (United States)

    Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann

    2014-11-01

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments.

  6. Methanol oxidation at platinized copper particles prepared by galvanic replacement

    Directory of Open Access Journals (Sweden)

    Ioanna Mintsouli

    2016-04-01

    Full Text Available Bimetallic Pt-Cu particles have been prepared by galvanic replacement of Cu precursor nanoparticles, upon the treatment of the latter with a chloro-platinate acidic solution. The resulting particles, typically a few tens of nm large, were supported on high surface area carbon (Vulcan® XC–72R, Cabot and tested as electrodes. Surface electrochemistry in deaerated acid solutions was similar to that of pure Pt, indicating the existence of a Pt shell (hence the particles are denoted as Pt(Cu. Pt(Cu/C supported catalysts exhibit superior carbon monoxide and methanol oxidation activity with respect to their Pt/C analogues when compared on a per electroactive surface area basis, due to the modification of Pt activity by Cu residing in the particle core. However, as a result of large particle size and agglomeration phenomena, Pt(Cu/C are still inferior to Pt/C when compared on a mass specific activity basis.

  7. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  8. General many-body formalism for composite quantum particles.

    Science.gov (United States)

    Combescot, M; Betbeder-Matibet, O

    2010-05-21

    This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion particles. This formalism is based on an operator algebra made of commutators and anticommutators which contrasts with the usual scalar formalism of Green functions developed half a century ago for elementary quantum particles. We also provide the diagrams which visualize the very specific many-body physics induced by fermion exchanges between composite quantum particles.

  9. Preparation and characterization of photoactive composite kaolinite/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mamulova Kutlakova, K., E-mail: katerina.mamulova.kutlakova@vsb.cz [Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Tokarsky, J. [Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Kovar, P. [Czech Technological Centre for Inorganic Pigments a.s., Prerov (Czech Republic); Vojteskova, S. [Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Kovarova, A. [Czech Technological Centre for Inorganic Pigments a.s., Prerov (Czech Republic); Smetana, B. [Department of Physical Chemistry and the Theory of Technological Processes, VSB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Kukutschova, J.; Capkova, P.; Matejka, V. [Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic)

    2011-04-15

    Preparation of nanocomposite kaolinite/TiO{sub 2}, using hydrolysis of titanyl sulfate in the presence of kaolin was addressed. A variable (kaolin)/(titanyl sulfate) ratio has been used in order to achieve the desired TiO{sub 2} content in prepared nanocomposites. Calcination of the composites at 600 deg, C led to the transformation of the kaolinite to metakaolinite and to origination of metakaolinite/TiO{sub 2} composites. The prepared samples were investigated using X-ray fluorescence spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetry and diffuse reflectance spectroscopy in the UV-VIS region. Structural ordering of TiO{sub 2} on the kaolinite particle surface was modeled using empirical force field atomistic simulations in the Material Studio modeling environment. Photodegradation activity of the composites prepared was evaluated by the discoloration of Acid Orange 7 aqueous solution.

  10. Core-corona PSt/P(BA-AA) composite particles by two-stage emulsion polymerization

    Science.gov (United States)

    Xie, Delong; Ren, Xiaolin; Zhang, Xinya; Liao, Shijun

    2016-03-01

    Raspberry-shaped composite particles with polystyrene (PSt) as core and poly(n-butyl acrylate-co-acrylic acid) (P(BA-AA)) as corona were synthesized via emulsion polymerization. The random copolymer, P(BA-AA), was pre-prepared and used as a polymeric surfactant, its emulsifying properties adjusted by changing the mass ratio of BA and AA. The morphology of the resulting core-corona composite particles, P(St/P(BA-AA)), could be regulated and controlled by varying the concentrations of P(BA-AA) or the mass ratio of BA:AA in P(BA-AA). The experimental results indicate that 3.0-6.0 wt% of P(BA-AA) is required to obtain stable composite emulsions, and P(BA-AA) with a mass ratio of BA:AA = 1:2 is able to generate distinct core-corona structures. A mechanism of composite particle formation is proposed based on the high affinity between the PSt core and the hydrophobic segments of P(BA-A). The regular morphology of the colloidal film is expected to facilitate potential application of core-corona particles in the field of light scattering. Furthermore, the diversity of core-corona particles can be expanded by replacing P(BA-AA) corona particles with other amphiphilic particles.

  11. Synthesis and study of properties of dental resin composites with different nanosilica particles size.

    Science.gov (United States)

    Karabela, Maria M; Sideridou, Irini D

    2011-08-01

    The aim of this work was the synthesis of light-cured resin nanocomposites using nanosilica particles with different particle size and the study of some physical-mechanical properties of the composites. Various types of silica nanoparticles (Aerosil) with average particle size of 40, 20, 16, 14, and 7 nm, used as filler were silanized with the silane 3-methacryloxypropyl-trimethoxysilane (MPS). The total amount of silane used was kept constant at 10 wt% relative to the filler weight to ensure the complete silanization of nanoparticles. The silanizated silica nanoparticles were identified by FT-IR spectroscopy and thermogravimetric analysis (TGA). Then the silanized nanoparticles (55 wt%) were mixed with a photoactivated Bis-GMA/TEGDMA (50/50 wt/wt) matrix. Degree of conversion of composites was determined by FT-IR analysis. The static flexural strength and flexural modulus were measured using a three-point bending set up. The dynamic thermomechanical properties were determined by dynamic mechanical analyzer (DMA). Sorption, solubility and volumetric change were determined after storage of composites in water or ethanol/water solution 75 vol% for 30 days. The TGA for composites was performed in nitrogen atmosphere from 30 to 700 °C. As the average silica particle size decreases, the percentage amount of MPS attached on the silica surface increases. However, the number of MPS molecules attached on the silica surface area of 1 nm(2) is independent of filler particle size. As the average filler particles size decreases a progressive increase in the degree of conversion of composites and an increase in the amount of sorbed water is observed. The prepared composites containing different amount of silica filler, with different particle size, but with the same amount of silanized silica and organic matrix showed similar flexural strength and flexural modulus, except composite with the lowest filler particle size, which showed lower flexural modulus. Copyright © 2011

  12. The Preparation of Soft Magnetic Composites Based on FeSi and Ferrite Fibers

    Science.gov (United States)

    Strečková, Magdaléna; Fáberová, Mária; Bureš, Radovan; Kurek, Pavel

    2016-12-01

    The fields of soft magnetic composites and powder metallurgy technologies have a powerful potential to redesign the way of electric motor preparation, and will continue to grow for years to come. A design of the novel soft microcomposite material composed of spherical FeSi particles and Ni0.3Zn0.7Fe2O4 ferrite nanofibers is reported together with a characterization of basic mechanical and electrical properties. The needle-less electrospinning method was used for a preparation of Ni0.3Zn0.7Fe2O4 ferrite nanofibers, which has a spinel-type crystal structure as verified by XRD and TEM analysis. The dielectric coating was prepared by mixing of nanofibers with glycerol and ethanol because of safe manipulation with fumed fibers and homogeneous distribution of the coating around the FeSi particle surface. The final microcomposite samples were prepared by a combination of the traditional PM compaction technique supplemented with a conventional sintering process of the prepared green compacts. The composition and distribution of the secondary phase formed by the spinel ferrite fibers were examined by SEM. It is demonstrated that the prepared composite material has a tight arrangement without any significant porosity, which manifest itself through superior mechanical properties (high mechanical hardness, Young modulus, and transverse rupture strength) and specific electric resistivity compared to the related composite materials including resin as the organic binder.

  13. Novel ZnO-Al2O3 composite particles as sorbent for low temperature H2S removal

    Institute of Scientific and Technical Information of China (English)

    Hamid Tajizadegan; Mehdi Rashidzadeh; Majid Jafari; Reza Ebrahimi-Kahrizsangi

    2013-01-01

    ZnO-Al2O3 composite particles composed of ZnO nanosheets (thickness of 40-80 nm) on alumina particles were prepared by heterogeneous precipitation method using bayerite seed particles.The asprepared composite particles were characterized in terms of crystal structure,morphology,surface area and pore volume.The composite particles were used as sorbent for H2S adsorption at low temperature,and were compared with pure ZnO sorbent.The composite sorbent showed a greater sulfur adsorption capacity (0.052 g/g) than pure form of ZnO (0.028 g/g).This significant improvement was mainly attributed to higher surface area,more pore volume and unique morphology in nanoscale,which were also obtained by low cost presented method in this work for synthesis of ZnO sorbent supported on alumina particles.

  14. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    Science.gov (United States)

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  15. Asymmetric Bidirectional Controlled Remote State Preparation by Using a Seven-Particle Entangled State

    Science.gov (United States)

    Sang, Zhi-wen

    2017-07-01

    We demonstrate that a seven-particle entangled state can be used to realize the deterministic asymmetric bidirectional controlled remote state preparation. That is to say Alice can remotely prepare an arbitrary known single-particle state for Bob and at the same time Bob can remotely prepare an arbitrary known two-particle state for Alice with the help of the supervisor Charlie. In our scheme, only single-particle projective measurements and two-particle projective measurement are needed.

  16. Synthesis of Silver Particle onto Bamboo Charcoal by Tripropylene Glycol and the Composites Characterization

    Directory of Open Access Journals (Sweden)

    Tzu Hsuan Chiang

    2014-01-01

    Full Text Available In this study, tripropylene glycol was used as a reducting agent in the polyol process to reduce silver nitrate to the form of silver particles deposited onto the surface of bamboo charcoal (BC. The reduction temperature and time were critical parameters as they control the size of the silver particles formed as well as their distribution onto the surface of the BC. The reduction of silver nitrate by the tripropylene glycol occurred at a temperature of 120 °C for 3 h, and the silver particles, which had a face-centered cubic lattice structure, were distributed onto the surface of the BC. These synthesis conditions should work well with tripropylene glycol as reducing agent that can be helpful in the convenient preparation of Ag/BC particles. When Ag/BC powders were manufactured using 3 g of silver nitrate content, the prepared composites had the largest thermal conductivity at 0.2490 W/(m·K.

  17. NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANO-PARTICLE MIXED ALCOHOL CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Seetala V. Naidu; Upali Siriwardane; Akundi N. Murty

    2004-02-23

    The preparation of Cu, Co, Fe, Cu/Co, Cu/Fe and Co/Fe nano-particle metal loaded mesoporous 1 mm spherical granular {gamma}-Al{sub 2}O{sub 3} catalysts, by combined sol-gel/oil-drop methods followed by calcination and hydrogenation steps, is accomplished. Parameters for calcination process were optimized using DTA. The properties of metal loaded {gamma}-Al{sub 2}O{sub 3} granules were compared for the preparations starting with two precursors: aluminum tri-sec-butoxide (ALTSB) and aluminum tri-iso-propoxide (ALTIP). Three sol-gel/oil-drop catalyst preparation methods; (1) Metal nitrate solutions co-entrapped-sol-gel (2) nano-particle metal oxide co-entrapped-sol-gel, and (3) Metal impregnation on preformed alumina granules, were used. Structure and composition of metal-loaded-granules were investigated using XRD, SEM, EDX, and surface area measurements (BET method). The nano-particle nature of catalysts was confirmed using SEM and X-ray diffraction. The reduction efficiency of hydrogenation of catalysts was examined by magnetic studies using a vibrating sample magnetometer (VSM). Catalysts could be effectively calcined at 450 C and the surface area values obtained were between 200-350 m{sup 2}/g, indicating the mesoporous nature of catalyst support. Parameters affecting the metal loading process were also studied, and the optimum conditions were identified and reported for reproducible synthesis of the metal loaded {gamma}-alumina granular particles. The catalyst activities of Fe, Co, and Co/Fe on alumina for the conversion of CO/H{sub 2} and CO{sub 2}/H{sub 2} mixtures were investigated using Gas chromatography (GC) with N{sub 2} as a standard carrier gas. Both, slurry-phase-batch and gas-phase-continuous-flow, reactors were used. Magnetization studies on reduced, CO/H{sub 2} post-reaction catalyst in both gas and slurry phase were performed using vibrating sample magnetometer (VSM). Magnetic studies of post-reaction Co and Fe nano-catalysts showed that the

  18. Preparation research of Nano-SiC/Ni-P composite coating under a compound field

    Science.gov (United States)

    Zhou, H. Z.; Wang, W. H.; Gu, Y. Q.; Liu, R.; Zhao, M. L.

    2016-07-01

    In this paper, the preparation process of Ni-P-SiC composite coatings on 45 steel surfaces with the assistance of magnetic and ultrasound fields was researched. The influence of external field on the surface morphology and performance of the composite layer is also discussed. Experimental results showed that when prepared under magnetic and ultrasonic fields, composite layers are significantly more dense and uniform than coatings made without external fields. Nano-SiC particles, dispersed uniformly in the layer, significantly improve the hardness of the composite layer, and the composite layer under the external field had the highest hardness at 680 HV The external fields can also accelerate deposition and increase the thickness of the layer. Compared to layers processed without the assistance of external fields, the thickness of the layers increased by nearly ten µm.

  19. A Facile Synthesis of Silver-Coated Composite Particles by Swelling Surface Method

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-Bing; LI Neng; WANG Si-Zhen; ZHANG Jian-Hui; WANG Zhen-Lin

    2005-01-01

    @@ We report a facile and rapid method for fabrication of composite particles consisting of a polystyrene (PS) core and a uniform silver shell.The process involves the PS colloid surface swelling, the anchoring of silver ions and nanoparticles onto the surfaces, and the subsequent growth of metal seeds in a short period.The present approach has the advantages of simplicity and high efficiency.The TEM images show the morphology of the obtained PS core-silver shell particles, and their chemical composition and crystallinity are analysed by x-ray diffraction.To our knowledge, this is the first study based on swelling PS surface for synthesis of silver-coated PS particles and may be implemented for preparing other metal-coated PS particles.

  20. Preparation of nano-sized Fe2O3-SiO2 composite particles and the O2/N2 separation performance of their PU blend membrane%Fe2O3-SiO2复合粒子的制备及其PU共混膜的氧氮分离性能

    Institute of Scientific and Technical Information of China (English)

    白云翔; 石丽; 张春芳; 顾瑾; 孙余凭

    2013-01-01

    Nano-sized Fe2O3-SiO2 composite particles were prepared by coprecipitation method and mixed method. Further PU blend membrane were prepared by blending composite particles with PU and their O2 and N2 permeation properties were investigated. Results showed that Fe2O3-SiO2 prepared by the co-precipitating method had smaller and more uniform particle size than Fe2O3/SiO2 prepared by blending Fe2O3 with SiO2. Due to the Si/Fe solid solution structure in Fe2O3-SiO2 particle, PU/Fe2O3-SiO2 membrane had better mechanical and oxygen and nitrogen separation properties compared to PU/Fe2O3/SiO2 membrane. Meanwhile, at 10% Fe2O3-SiO2content, the O2 permeability coefficients of PU/Fe2O3-SiO2blend membrane is 13.35 Barrer, the ideal selectivity of O2/N2 is 7.14.%采用共沉淀与复配2种方法制备了Fe2O3-SiO2复合纳米粒子,将其添加到聚氨酯(PU)膜中,研究了粒子复合方式对PU共混膜力学性能和O2、N2分离性能的影响.结果表明,通过共沉淀法制备的Fe2O3-SiO2粒子粒径小且均匀,内部存在硅铁固溶体结构,其PU共混膜的机械强度和氧氮分离性能优于复配法制备的Fe2O3/SiO2粒子;当Fe2O3-SiO2添加量为10%时,PU共混膜的O2渗透系数为13.35 Barrer,O2/N2理论分离因子为7.14.

  1. Preparation of porous carbon particle with shell/core structure

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available Porous carbon particles with a shell/core structure have been prepared successfully by controlled precipitation of the polymer from droplets of oil-in-water emulsion, followed by curing and carbonization. The droplets of the oil phase are composed of phenolic resin (PFR, a good solvent (ethyl acetate and porogen (Poly(methyl methacrylate, PMMA. The microstructure was characterized in detail by scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, and thermo gravimetric analysis (TGA. The obtained carbon particles have a capsular structure with a microporous carbon shell and a mesoporous carbon core. The BET surface area and porous volume are calculated to be 499 m2g-1 and 0.56 cm3g-1, respectively. The effects of the amount of porogen (PMMA, co-solvent (acetone and surfactant on the resultant structure were studied in detail.

  2. Mechanical, dielectric and optical assessment of glass composites prepared using milling technique

    Indian Academy of Sciences (India)

    Gurbinder Kaur; G Pickrell; V Kumar; O P Pandey; K Singh; S K Arya

    2015-08-01

    In the present investigation, mechanical and spectroscopic properties of glass composites have been investigated. The glass composites have been prepared by the milling technique instead of using any filler particle. Due to the presence of different alkaline earth modifiers in composites, marked difference in their strength and optical properties is observed. The band gap, Urbach energy and the extinction coefficient of the glass composites have been calculated using UV–visible spectroscopy. Moreover, the real and imaginary dielectric constants have also been calculated for all the composites in addition to the Weibull statistics and cumulative probability of failure. The results have been discussed in light of comparison between the glass composites and the individual glasses. The mechanical and optical properties indicate marked effect on the mechanical strength, band gap and Urbach energy for glass composites as compared with the individual glasses.

  3. Enhanced properties of an AA7075 based metal matrix composite prepared using mechanical alloying

    OpenAIRE

    Nazik, C.; Tarakcioglu, N.; Canakci, A.; Varol, T.; , S. Ozkaya

    2014-01-01

    In this study, firstly, AA7075 metal powder which average particle size 43.9 µm were manufactured by using gas atomization method. Thereafter with mechanical alloying method which powder metallurgy manufacturing methods, 10% B4C particle reinforcements that average particle size of 49.5 µm by participating into AA7075 metal matrix composite powder mixtures were prepared. They were milled for different durations (0-8 hrs) in a high energy planetary ball mill. From these milled powders; 550°C a...

  4. Preparation of bismuth titanate/calcium alginate composite bead and its photocatalytic degradation of dye pollutants

    Science.gov (United States)

    Gan, Huihui; Dong, Nanyang; Lu, Linxiao; Fu, Yan; Zhang, Huining; Qian, Yongxin; Zhang, Kefeng; Jin, Huixia

    2017-08-01

    In this study, the bismuth titanate/calcium alginate composite bead was synthesized by immobilizing bismuth titanate Bi4Ti3O12 particles into 1.5% sodium alginate (SA) matrix. The Bi4Ti3O12 particles were characterized by X-ray diffraction (XRD). The photocatalytic activity for the degradation of dye Rhodamine B in solution by as-prepared bismuth titanate/calcium alginate composite bead was investigated. The as-prepared composite beads CA/BTO-700 exhibited best photocatalytic efficiency for the degradation of RhB compared with CA/BTO-800 and CA/BTO-900 under simulated solar light. After 4 cycles in photocatalytic degradation of RhB, the degradation rate of the CA/BTO-700 nearly remained unchanged.

  5. STUDY ON PREPARATION OF UNIFORM POLYSTYRENE HOLLOW PARTICLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    IntmductionHOllow Particles have many attractivecharacteristiCS, for example, low dewi and thermalinsulation due to itS small air void, and Ope opacitywhich is used for paint formulation, resin comPOrts,and face foundation. They can be used in variousfields such as Paint, ink, and paper industrics. Hollowparticles have been Prepared by utilizing Phaseseparation in the Presence Of a cyDSS-linking agent byseeded POlymerization. Okubo et al.lll used their"dynamic swelling teChaique" followed by seededPOlymeriz...

  6. Inter-particle Interactions in Composites of Antiferromagnetic Nanoparticles

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Mørup, Steen

    2003-01-01

    We have prepared mixtures of alpha-Fe2O3, CoO, and NiO nanoparticles by drying aqueous suspensions of the particles. The magnetic properties were studied by Mossbauer spectroscopy. The measurements showed that interactions with CoO particles suppress the superparamagnetic relaxation of both alpha......-Fe2O3 and Fe-57-doped NiO particles. The effect of NiO particles on alpha-FeA particles was a shorter relaxation time and an induced Morin transition, which usually is absent in alpha-Fe2O3 nanoparticles. Spectra of alpha-Fe2O3 particles, prepared by drying suspensions with added Co2+ and Ni2+ ions......, showed that the suspension medium can affect the magnetic properties of the alpha-FeA particles significantly, but not in the same way as the CoO or NiO nanoparticles. Therefore, a strong inter-particle exchange interaction between particles of different materials seems to be responsible for the magnetic...

  7. Preparation and characterization of dense graphite/glassy carbon composite coating for sealing application

    Science.gov (United States)

    Wang, Yang; Chen, Zhaofeng; Yu, Shengjie; Pan, Ning; Liao, Jiahao

    2017-09-01

    Glassy carbon (GC), characterized by a homogeneous structure and glass-like fracture surface once broken, has attracted increasing attention because of its excellent performance. In this paper, a dense graphite/glassy carbon composite coating with low gas permeability was introduced. In this composite coating, small graphite particles acting as second phase were wrapped by glassy carbon matrix. The composite coatings with different mass fractions of graphite particles were prepared. The mass loss of phenolic resin was determined by TG (thermogravimetry) analysis to determine the pyrolysis process. Raman spectrum analysis indicates that graphite content in composite coatings affected the G/D ratio significantly. The permeability of composite coatings with 50% and 100% graphite particles was almost same, which was ranged from 6  ×  10‑13 m3 · µm/m2 · s · Pa to 3  ×  10‑13 m3 · µm/m2 · s · Pa within the differential pressure from 100 kPa to 70 kPa. While the composite coating with 150% graphite particles had higher gas permeability due to the tiny micro-cracks and micro-pores produced. What was more, the densification mechanism of graphite/glassy carbon composite coating was also discussed in detail.

  8. Incorporation of ovalbumin into ISCOMs and related colloidal particles prepared by the lipid film hydration method.

    Science.gov (United States)

    Demana, Patrick H; Davies, Nigel M; Berger, Bianca; Rades, Thomas

    2004-07-08

    The aim of this study was to investigate the incorporation of a model antigen, fluorescently labelled ovalbumin (FITC-OVA), into various colloidal particles including immune stimulating complexes (ISCOMs), liposomes, ring and worm-like micelles, lamellae and lipidic/layered structures that are formed from various combinations of the triterpene saponin Quil A, cholesterol and phosphatidylethanolamine (PE) following hydration of PE/cholesterol lipid films with aqueous solutions of Quil A. Colloidal dispersions of these three components were also prepared by the dialysis method for comparison. FITC-OVA was conjugated with palmitic acid (P) and PE to produce P-FITC-OVA and PE-FITC-OVA, respectively. Both P-FITC-OVA and PE-FITC-OVA could be incorporated in all colloidal structures whereas FITC-OVA was incorporated only into liposomes. The incorporation of PE-FITC-OVA into all colloidal structures was significantly higher than P-FITC-OVA (P < 0.05). The degree of incorporation of protein was in the order: ring and worm-like micelles < liposomes and lipidic/layered structures < ISCOMs and lamellae. The incorporation of protein into the various particles prepared by the lipid film hydration method was similar to those for colloidal particles prepared by the dialysis method (provided both methods lead to the formation of the same colloidal structures). In the case of different colloidal structures arising due to the preparation method, differences in encapsulation efficiency were found (P < 0.05) for formulations with the same polar lipid composition. This study demonstrates that the various colloidal particles formed as a result of hydrating PE/cholesterol lipid films with different amounts of Quil A are capable of incorporating antigen, provided it is amphipathic. Some of these colloidal particles may be used as effective vaccine delivery systems.

  9. Ferromagnetism in co-doped zno particles prepared by vaporization-condensation in a solar image furnace

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, B. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain)]. E-mail: ben.martinez@icmab.es; Sandiumenge, F. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain); Balcells, Ll. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain); Fontcuberta, J. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain); Sibieude, F. [CNRS/Institut de science et genie des Materiaux et Procedes, BP5 Odeillo, 66125-cedex Font Romeu (France); Monty, C. [CNRS/Institut de science et genie des Materiaux et Procedes, BP5 Odeillo, 66125-cedex Font Romeu (France)

    2005-04-15

    We report on the structural and magnetic properties of Co-doped ZnO particles prepared by vaporization-condensation in the solar furnace in Odeillo. X-ray diffraction data show no traces of Co segregation or any other phase different from ZnO. High-resolution electron microscopy (HREM) and transmision electron microscopy (TEM) techniques have also been used to characterize particles. Irrespective of their composition, the shape and size of the obtained particles, as well as their magnetic properties, clearly depend on the preparation conditions. The samples prepared in vacuum exhibit hysteretic behavior with low coercivity (about 100Oe) at T=5K and saturation magnetization well below that expecte for Co{sup 2+} in a tetrahedral crystal field. On the other hand, samples prepared at high pressure (70-100Torr inside the balloon) are paramagnetic.

  10. Effect the Grain Size on the Polymer Matrix Composites Reinforced by Reenia Particles

    Directory of Open Access Journals (Sweden)

    Kdhim khaion kahlol

    2013-01-01

    Full Text Available Synthetic polymers such as polyurethane are used widely in the field of biomedical applications such as implants or part of implant systems.This paper focuses on the preparation of base polymer matrix composite materials by (Hand Lay-Up method, and studying the effect of selected grain size (32, 53, 63, 75, and 90 µm of (Reenia particles on some properties of the prepared composite.Mechanical tests were used to evaluate the prepared system (Tensile, Compression, Impact, and Hardness tests, and a physical test of (Water absorption %, and all tests were accomplished at room temperature.Where results showed tensile test (maximum tensile strength and modulus of elasticity high at small grain size while the percentage of elongation decreased with increasing size. As the compressive strength increased with small grain size. And also the values of hardness and fracture energy affected by particle size where the hardness and fracture energy increased at small particles size of compared to larger particles size. While the percentage of water absorption increased at large particle size.In general the results showed clear improvement in properties and maximum values which get it of tensile strength, Modulus of elasticity, elongation percentage, compression strength, fracture energy, hardness and water absorption were as follows ((34.8 MPa, (10%, (268 N/mm2, ( 54.2 MPa,( o.408 J, (78.9 Shor (D, (0.2668 % at using (32µm except water absorption was at (90µm .

  11. Investigating on Effect of Particle Form and Mixing Method on applied Properties Green Composite

    Directory of Open Access Journals (Sweden)

    Sahar Daii

    2014-05-01

    Full Text Available Nowadays Paulownia as the fast growing species has noticed for wood industry in the world. In this research, Paulownia fortuni planted in Shaskolateh forest of Gorgan were studied. Two particle form, flour (60 mesh size and fiber (RMP, L/D= 21/54 were prepared. 60 percent of this material with 37% of HDPE , 3% of MAPE were blended separately. Part from this material by internal mixer and other part by extruder blended. Output was prepared like pellets. Samples were prepared in dimensions of 30cm×30cm×1cm, and nominal density 1 g/cm3 by hot press. The mechanical testing of the panels (flexural, hardness, unnotched impact strength and the physical testing of the panels (thickness swelling and water absorption after 2 & 24 hours immersion in water were measured. The result showed that modulus of rupture, hardness, unnotched impact strength of composite made of fiber-PE were lower than composite made of flour-PE. Flexural elastic modulus of composite made of fiber-PE were higher than flour-PE. Water absorption and thickness swelling of composite made of fiber-PE were higher than flour-PE. Also physical and mechanical properties of composites blended by internal mixer improved in compared composites blended by extruder. Physical and mechanical properties of composite made of fiber-PE blended by internal mixer improved in compared composite made of fiber-PE blended by extruder.

  12. The preparation of dental glass-ceramic composites with controlled fraction of leucite crystals

    Directory of Open Access Journals (Sweden)

    Martina Mrázová

    2008-06-01

    Full Text Available This work is dealing with synthesis of leucite powder, which can be used for the preparation of dental glassceramic composites by subsequent thermal treatment. Newly developed procedure is based on preparation of dental raw material as a mixture of two separate compounds: the crystalline leucite powder prepared at relatively low temperature and a commercial matrix powder.Hydrothermal synthesis of tetragonal leucite particles (KAlSi2O6 with the average size of about 3 μm was developed in our laboratory. The leucite dental raw material was prepared by mixing of 20 wt.% of synthetic tetragonal leucite with commercial matrix. Dental composites were prepared from the dental raw material by uniaxial pressing and firing up to 960°C. Dilatometric measurements confirmed that the coefficient of thermal expansion increased by 32% when 20 wt.% of the tetragonal leucite was added into the basic matrix. In addition, it was showed that the synthesized leucite powder was suitable for the preparation of leucite composites with controlled coefficient of thermal expansion. High value of the thermal expansion coefficient enables application of prepared composite in metal-ceramics restorations.

  13. Ionic liquid-facilitated preparation of lignocellulosic composites

    Science.gov (United States)

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  14. Preparation and characterization of nano hydroxyapatite/polymeric composites materials. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); El-Rashidy, Zenab M. [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); Salama, Aida A. [Biophysics Dept., Faulty of Science, El-Azhar Univ., Cairo (Egypt)

    2011-10-17

    Highlights: {yields} The formation and coating of CHA increased by increasing polymer content. {yields} The size of the prepared CHA was within nano-range scale. {yields} The composites had homogeneity and CHA formed within the polymeric matrix. - Abstract: The present study is focused on preparation of nano composite materials and the effect of citric acid on their different properties. The formation of nano HA and its interaction with chitosan (C), gelatin (G) polymers and citric acid (CA) materials were studied. The Fourier Transformed Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), and scanning electron microscope (SEM) were used to characterize these composite materials. The compressive strength (CS) was also measured to know the reinforcement of the prepared composites. The results show that carboxylic and amino groups play crucial role for HA formation on chitosan-gelatin polymeric matrix in the presence of citric acid (CA). The formation of nano HA particles and its average size of crystallite is increased with increase of CG content and decreased with addition of CA. Also, the HA formation and binding strength between its particles are improved into the composites especially with CA. The nano-composites containing the best ratio of nHA (70%) with CA (0.2 M) are promising for medical applications in the future.

  15. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste

    Directory of Open Access Journals (Sweden)

    L. Francis Xavier

    2016-01-01

    Full Text Available With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  16. Copper-containing polyvinyl alcohol composite systems: Preparation, characterization and biological activity

    Science.gov (United States)

    Reza Hajipour, Abdol; Mohammadsaleh, Fatemeh; Reza Sabzalian, Mohammad

    2015-08-01

    The present investigation reports, the complex formation of Cu(II) with polyvinyl alcohol (PVA) and the synthesis of PVA-stabilized Cu2O particles. This PVA-Cu2O composite has been prepared via chemical reduction method using PVA-Cu(II) complex as precursor. At first, Cu(II) ions were stabilized in PVA matrix via complex formation with OH groups; subsequently, this PVA-Cu(II) macromolecular complex as precursor reacted with ascorbic acid as reducing agent at pH=12 to prepare PVA-Cu2O composite. The products were characterized by FTIR, XRD, FE-SEM, HRTEM, Visible Spectroscopy and atomic absorption. In the following, the antibacterial properties of as-prepared composites were examined against Gram-positive (Bacillus thuringiensis) and Gram-negative bacteria (Escherichia coli), and the results showed excellent antibacterial activity of these materials.

  17. Evolution of particle composition in CLOUD nucleation experiments

    CERN Document Server

    Keskinen, H; Joutsensaari, J; Tsagkogeorgas, G; Duplissy, J; Schobesberger, S; Gysel, M; Riccobono, F; Bianchi, F; Yli-Juuti, T; Lehtipalo, K; Rondo, L; Breitenlechner, M; Kupc, A; Almeida, J; Amorim, A; Dunne, E M; Downard, A J; Ehrhart, S; Franchin, A; Kajos, M K; Kirkby, J; Kurten, A; Nieminen, T; Makhmutov, V; Mathot, S; Miettinen, P; Onnela, A; Petaja, T; Praplan, A; Santos, F D; Schallhart, S; Sipila, M; Stozhkov, Y; Tome, A; Vaattovaara, P; Wimmer, D; Prevot, A; Dommen, J; Donahue, N M; Flagan, R C; Weingartner, E; Viisanen, Y; Riipinen, I; Hansel, A; Curtius, J; Kulmala, M; Worsnop, D R; Baltensperger, U; Wex, H; Stratmann, F; Laaksonen, A; Slowik, J G

    2013-01-01

    Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets) chamber experiments at CERN (Centre europ ́ een pour la recherche nucl ́ eaire). The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during theirgrowth from sizes of a few nanometers to tens of nanometers was derived from measured hygros...

  18. Survey of composite particle models of electroweak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mahiko

    1992-05-01

    Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t{sub R}-quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, {sub t}{sub 2}/4{pi} = 0.1 for m{sub t} = 200 GeV, is too small for a coupling of a composite particle.

  19. Polymer blend compositions and methods of preparation

    Science.gov (United States)

    Naskar, Amit K.

    2016-09-27

    A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  20. Preparation of La-Ti Composite Oxide Nanocrystal and Examination of Their Surface Topography with Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With sol-gel method, nanometer La-Ti composite oxide was successfully prepared at a low temperature (750~800℃) using polyethylene glycol as dispersant. By means of atomic force microscope, the surface pattern, particle size distribution, and specific surface area were studied. The compound particle surface appears as a smooth sheet, the mean size of the compound is 25.38 nm. On the specific surface, the particle erects at a height of 4.69 nm. The surface area is 58.90 nm2. The La-Ti composite oxide nanocrystal prefers to narrow and even particle size distribution and the homogeneity of surface topography.

  1. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  2. Preparation of Porous Mullite Composite by Microwave Sintering

    Institute of Scientific and Technical Information of China (English)

    FAN Bingbing; ZHANG Rui; SUN Bing; LI Xuqin; LI Chunguang

    2012-01-01

    Microwave sintering method was carried out to prepare porous mullite composite.An insulation structure based on hybrid heating mode was well designed with the wall of mullite and the aided heaters of SiC.The obtained samples were characterized by XRD analysis,apparent porosity detection,and bending strength measurement.SEM was used to observe the microstructure of the sample.It is found that the porous mullite composite could be prepared through the microwave sintering within 2 h at relatively low temperatures around 1000 ℃.The lasted samples show comparatively superior properties to the products prepared by conventional processing.

  3. Evolution of particle composition in CLOUD nucleation experiments

    Directory of Open Access Journals (Sweden)

    H. Keskinen

    2013-06-01

    Full Text Available Sulphuric acid, ammonia, amines, and oxidised organics play a crucial role in nanoparticle formation in the atmosphere. In this study, we investigate the composition of nucleated nanoparticles formed from these compounds in the CLOUD (Cosmics Leaving Outdoor Droplets chamber experiments at CERN (Centre européen pour la recherche nucléaire. The investigation was carried out via analysis of the particle hygroscopicity, ethanol affinity, oxidation state, and ion composition. Hygroscopicity was studied by a hygroscopic tandem differential mobility analyser and a cloud condensation nuclei counter, ethanol affinity by an organic differential mobility analyser and particle oxidation level by a high-resolution time-of-flight aerosol mass spectrometer. The ion composition was studied by an atmospheric pressure interface time-of-flight mass spectrometer. The volume fraction of the organics in the particles during their growth from sizes of a few nanometers to tens of nanometers was derived from measured hygroscopicity assuming the Zdanovskii–Stokes–Robinson relationship, and compared to values gained from the spectrometers. The ZSR-relationship was also applied to obtain the measured ethanol affinities during the particle growth, which were used to derive the volume fractions of sulphuric acid and the other inorganics (e.g. ammonium salts. In the presence of sulphuric acid and ammonia, particles with a mobility diameter of 150 nm were chemically neutralised to ammonium sulphate. In the presence of oxidation products of pinanediol, the organic volume fraction of freshly nucleated particles increased from 0.4 to ~0.9, with an increase in diameter from 2 to 63 nm. Conversely, the sulphuric acid volume fraction decreased from 0.6 to 0.1 when the particle diameter increased from 2 to 50 nm. The results provide information on the composition of nucleated aerosol particles during their growth in the presence of various combinations of sulphuric acid

  4. Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology.

    Science.gov (United States)

    Perez, Aurora; Hernández, Rebeca; Velasco, Diego; Voicu, Dan; Mijangos, Carmen

    2015-03-01

    Microfluidic techniques are expected to provide narrower particle size distribution than conventional methods for the preparation of poly (lactic-co-glycolic acid) (PLGA) microparticles. Besides, it is hypothesized that the particle size distribution of poly (lactic-co-glycolic acid) microparticles influences the settling behavior and rheological properties of its aqueous dispersions. For the preparation of PLGA particles, two different methods, microfluidic and conventional oil-in-water emulsification methods were employed. The particle size and particle size distribution of PLGA particles prepared by microfluidics were studied as a function of the flow rate of the organic phase while particles prepared by conventional methods were studied as a function of stirring rate. In order to study the stability and structural organization of colloidal dispersions, settling experiments and oscillatory rheological measurements were carried out on aqueous dispersions of PLGA particles with different particle size distributions. Microfluidics technique allowed the control of size and size distribution of the droplets formed in the process of emulsification. This resulted in a narrower particle size distribution for samples prepared by MF with respect to samples prepared by conventional methods. Polydisperse samples showed a larger tendency to aggregate, thus confirming the advantages of microfluidics over conventional methods, especially if biomedical applications are envisaged. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Mechanical properties of silver matrix composites reinfroced with ceramic particles

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2006-04-01

    Full Text Available Purpose: Silver, silver alloys, as well as silver matrix based composites have been well known and applied in the electrotechnical and electronics industry for several decades. For many applications in electrotechnology, including electric contacts and brushes, unreinforced sliver alloys do not meet the requirements concerning mainly durability and wear resistance, first of all to tribological and electroerosive wear. These wear processes may be prevented by introducing to silver reinforcement particles and alloys. The target of the research included basic mechanical properties determination of the silver matrix composites reinforced with ceramic particles, manufactured with the use of suspension methods.Design/methodology/approach: In the presented paper the authors demonstrate possibilities of manufacturing of silver matrix composites on the way of casting technology utilization.Findings: The results of the research prove that applied suspension technology, based on introducing of agglomerated foundry alloy which is the carrier for reinforcement particles (SiC lub Al2O3 allows to produce in an effective and, what is important, in an economically attractive way, sliver alloys based composites.Research limitations/implications: The researches on the structure of manufactured composites and their mechanical properties that are presented in the paper prove the possibilities of mechanical mixing technology application for producing mechanical and stable connection between silver matrix and ceramic particles of aluminium oxide and silicon carbide.Originality/value: The manufacturing of this type of composites is based most of all on the utilization of powder metallurgy techniques. However the obtained results of the research prove that there is a possibility of silver matrix composites forming in the casting and plastic working processes. Extrusion process carried out in the hydraulic press KOBO has its favourably influence on ceramic reinforcement

  6. Composite particle and field theory in atomic quantum Hall effect

    Institute of Scientific and Technical Information of China (English)

    Zhao Bo; Chen Zeng-Bing

    2005-01-01

    In this paper, we explore the composite particle description of the atomic quantum Hall (QH) effect. We further give the Chern-Simon-Gross-Pitaevskii (CSGP) effective theory for the atomic Hall liquid, which is the counterpart of Chern-Simon theory in electron Hall effect. What we obtained is equivalent to the Laughlin wavefunction approach.Our results show that in terms of composite particles, the atomic Hall effect is really the same as the electronic QH effect. The CSGP effective theory would shed new light on the atomic QH effect.

  7. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  8. Sources and composition of urban aerosol particles

    Science.gov (United States)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2011-09-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and reveal that for non-volatile particulate matter in the 0.25 to 0.6 μm Dp range, the EFHDV is approximately twice as high as the EFLDV, the difference not being statistically significant.

  9. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    Science.gov (United States)

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (Pdental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  10. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2013-12-01

    Full Text Available Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2 nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM. The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05. There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001. L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  11. A novel composite sound absorber with recycled rubber particles

    Science.gov (United States)

    Hong, Zhou; Bo, Li; Guangsu, Huang; Jia, He

    2007-07-01

    A new kind of composite sound absorber has been fabricated, using recycled rubber particles with good attenuation property as sound energy attenuation layer, low characteristic impedance materials such as polymer porous foam or perforated panel as matching layer. Its' attractive characteristics include: low-cost, broad-band sound absorption, thin in thickness and relatively simple processing. An acoustic transmission analytical model is developed and successfully applied to evaluate the sound absorption of the composite absorber.

  12. Use of coir pith particles in composites with Portland cement.

    Science.gov (United States)

    Brasileiro, Gisela Azevedo Menezes; Vieira, Jhonatas Augusto Rocha; Barreto, Ledjane Silva

    2013-12-15

    Brazil is the fourth largest world's producer of coconut (Cocos nucifera L.). Coconut crops generate several wastes, including, coir pith. Coir pith and short fibers are the byproducts of extracting the long fibers and account for approximately 70% of the mature coconut husk. The main use of coir pith is as an agricultural substrate. Due to its shape and small size (0.075-1.2 mm), this material can be considered as a particulate material. The aim of this study was to evaluate the use of coir pith as an aggregate in cementitious composites and to evaluate the effect of the presence of sand in the performance of these composites. Some composites were produced exclusively with coir pith particles and other composites with coir pith partially substituting the natural sand. The cementitious composites developed were tested for their physical and mechanical properties and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy to evaluate the effect of coir pith particles addition in cement paste and sand-cement-mortar. The statistical significance of the results was evaluated by one-way analysis of variance (ANOVA) test followed by multiple comparisons of the means by Tukey's test that showed that the composites with coir pith particles, with or without natural sand, had similar mechanical results, i.e., means were not statistically different at 5% significance level. There was a reduction in bulk density and an improved post-cracking behavior in the composites with coir pith particles compared to conventional mortar and to cement paste. These composites can be used for the production of lightweight, nonstructural building materials, according to the values of compressive strength (3.97-4.35 MPa) and low bulk density (0.99-1.26 g/cm(3)).

  13. Production and Properties of Composite Material Comprising Gd Multiscale Particles

    Directory of Open Access Journals (Sweden)

    Jaworski Jacek

    2015-02-01

    Full Text Available The article presents a novel method of producing Gd particles and preserving them from oxidation. The particles were produced in liquid paraffin by means of AC electric discharge and stored in the solidified paraffin. After seven months, the surface of the Gd was found to be exempt of oxidation. Moreover a composite material formed from mixing paraffin with Gd particles was conductive and magnetic and also presented photovoltaic effect. This method is a promising means of producing, at an industrial scale, particles from materials extremely sensitive to environment such as rare earth materials. Also the new material consisted of Gd particles in a paraffin matrix can find applications in many branches of industry.

  14. Characterization of aluminium matrix composites reinforced by Al–Cu–Fe quasicrystalline particles

    Energy Technology Data Exchange (ETDEWEB)

    Lityńska-Dobrzyńska, L.; Dutkiewicz, J.; Stan-Głowińska, K.; Wajda, W. [Institute of Metallurgy and Materials Science Polish Academy of Sciences, 30-059 Kraków, 25 Reymonta St. (Poland); Dembinski, L.; Langlade, C.; Coddet, C. [Universite de Technologie de Belfort-Montbeliard, Site de Sevenans 90010, Belfort (France)

    2015-09-15

    Highlights: • Al powder and atomised Al{sub 65}Cu{sub 20}Fe{sub 15} powder were consolidated by vacuum hot pressing. • No changes in microstructure of Al{sub 65}Cu{sub 20}Fe{sub 15} powder in 20% and 40% composites. • Al{sub 2}Cu precipitates at the interfaces and inside the matrix in the 60% composite. • Increase of microhardness and compressive strength with content of reinforcement. • The friction coefficient were in the range 0.5–0.7. - Abstract: Aluminium matrix composites were consolidated from elemental Al powder and atomised Al{sub 65}Cu{sub 20}Fe{sub 15} particles by vacuum hot pressing technique. The spherical Al{sub 65}Cu{sub 20}Fe{sub 15} particles consisted of icosahedral quasicrystalline dendrites or cells and cubic τ-AlCu(Fe) phase located in interdendritic areas. The composites with different content of the reinforcement particles (20, 40 and 60 wt%) were prepared. All composites showed density about 99% and a good bonding between the Al{sub 65}Cu{sub 20}Fe{sub 15} particles and the matrix. It was shown that the phase composition of the atomised particles did not change after consolidation for the composite containing 20% and 40% added particles while Al{sub 2}Cu precipitates formed at the Al/Al{sub 65}Cu{sub 20}Fe{sub 15} interfaces and inside the matrix in the composite with 60% of Al{sub 65}Cu{sub 20}Fe{sub 15} particles. With the increase of the volume fraction of the reinforcement in the composite the hardness as well as compressive strength increased reaching the value of 173 HV{sub 0.5} and 370 MPa, respectively for 60% of Al{sub 65}Cu{sub 20}Fe{sub 15} particles. The friction coefficient slightly varied in the range 0.5–0.7 depending on the composition.

  15. Sources and composition of urban aerosol particles

    Directory of Open Access Journals (Sweden)

    M. Vogt

    2011-09-01

    Full Text Available From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass <1 μm Dp (PM1 with water soluble soil contributing 11% and water insoluble soil 47%. Carbonaceous compounds were at the most 27% of PM1 mass. It was found that heating the air from the tower to 200 °C resulted in the loss of approximately 60% of the aerosol volume at 0.25 μm Dp whereas only 40% of the aerosol volume was removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses <0.6 μm Dp. The chemical analysis did not include carbonaceous compounds, but based on the difference between the total mass concentration and the sum of the analyzed non-carbonaceous materials, it can be assumed that the non-volatile particulate material (heated to 300 °C consists mainly of carbonaceous compounds, including elemental carbon. Furthermore, it was found that the non-volatile particle fraction <0.6 μm Dp correlated (r2 = 0.4 with the BC concentration at roof level in the city, supporting the assumption that the non-volatile material consists of carbonaceous compounds. The average diurnal cycles of the BC emissions from road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx and BC measured on a densely trafficked street and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs for non

  16. Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics.

    Science.gov (United States)

    Zhang, Wen Ling; Choi, Hyoung Jin

    2012-05-01

    Silica-graphene oxide (Si-GO) hybrid composite particles were prepared by the hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of hydrophilic GO obtained from a modified Hummers method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images provided visible evidence of the silica nanoparticles grafted on the surface of GO, resulting in Si-GO hybrid composite particles. Energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) spectra indicated the coexistence of silica and GO in the composite particles. The Si-GO hybrid composite particles showed better thermal stability than that of GO according to thermogravimetric analysis (TGA). The electrorheological (ER) characteristics of the Si-GO hybrid composite based ER fluid were examined further by optical microscopy and a rotational rheometer in controlled shear rate mode under various electric field strengths. Shear stress curves were fitted using both conventional Bingham model and a constitutive Cho-Choi-Jhon model. The polarizability and relaxation time of the ER fluid from dielectric spectra measured using an LCR meter showed a good correlation with its ER characteristics.

  17. STUDY ON NYLON 6/SUPERFINE RUBBER PARTICLES COMPOSITES VIA IN SITU POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Ying Li; Jian Yu; Zhao-xia Guo; Jin-liang Qiao

    2003-01-01

    Two highly cross-linked superfine styrene-butadiene rubber particles, one with 1 wt% of carboxyl groups and the other without such groups having particle sizes of 130-150 nm and 80-100 nm respectively, were used to prepare nylon 6/rubber composites via in situ polymerization. It was found that carboxylic styrene-butadiene dispersed uniformly in nylon matrix and there was strong interfacial interaction because of the graft polymer formed by the reaction of nylon with carboxyl group of the rubber, resulting in considerably improved impact strength with almost unchanged tensile strength. However,the addition of styrene-butadiene without carboxyl groups showed intensive agglomeration of the rubber particles and weak interfacial interactions, and the toughness of the materials was improved slightly. The crystallization and rheological behavior of the composites were also discussed.

  18. On the matrix-particle interphase in epoxy-based composites

    Energy Technology Data Exchange (ETDEWEB)

    Tognana, S., E-mail: stognana@exa.unicen.edu.a [IFIMAT - Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Tandil (Argentina); Salgueiro, W. [IFIMAT - Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Somoza, A. [IFIMAT - Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Tandil (Argentina)

    2010-04-16

    A study on the interphase morphology in epoxy-based composites is presented. Composite samples containing a volume fraction of aluminum particles (typical sizes of 100 {mu}m ca.) between 0% and 30% were prepared. As main experimental technique, differential scanning calorimetry (DSC) was used. Specifically, from the thermograms obtained for each composite, the differences between the heat flow at temperatures above and below the glass transition temperature were determined. From these data, for each composite, and following ideas suggested in the literature, the different thicknesses and volumetric fractions of interphase were estimated. The results obtained show that both morphological parameters strongly increase for a filler volume fraction above 15%. On the other hand, using positron annihilation lifetime spectroscopy technique, additional evidence allowed us to confirm the presence of an interphase region in the composites and estimate the associated free volume which was smaller than that corresponding to the epoxy matrix.

  19. Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang; Li, Li; Li, Jing-Hong; Xu, Bo-Qing [Innovative Catalysis Program, Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2006-04-21

    Conducting polymer composite films comprised of polyaniline (PANI) and single wall carbon nanotubes (SWNT) was prepared by electrochemical codeposition during the electropolymerization in an aniline solution with suspending SWNT. The fabricated composite films are assessed with respect to their potential application as support materials in Pt electrocatalyst for electrochemical oxidation of methanol. The PANI/SWNT composite film incorporated with SWNT has a higher polymeric degree and lower defect density in PANI structure than PANI film. Furthermore, the incorporation of SWNT also leads to higher electrochemically accessible surface areas (S{sub a}), electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which make higher dispersion and utilization for deposited Pt. Therefore, the Pt particles electrodeposited on PANI/SWNT composite polymer film exhibits excellent catalytic activity and stability for the electrooxidation of methanol in comparison to Pt supported on PANI film, which reveals that the composite film is more promising for application in electrocatalyst as a support material. (author)

  20. High frequency complex permeability of flake-shaped Fe74Cr2Mo2Sn2P10Si4B4C2 particle composite material

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A composite consisting of flake-shaped Fe74Cr2Mo2Sn2P10Si4B4C2 particles was prepared.The flake-shaped particles included in the composite were prepared by planetary ball milling.The complex permeability of the composite material was measured at frequency range from 10 MHz to 8.5 GHz.The permeability of the composite containing flake-shaped particles was much higher than that of the spherical particles.The permeability of particles was improved by means of heat-treatment.In contrast to the random-spatial-distributed flake-shaped particle composites,the oriented-distributed ones had a higher effective permeability.A model was proposed considering the orientation ratio,and our calculation agreed well with the experimental data.

  1. A new fluorescent particle prepared by chemical stabilized phycobilisome

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Guo Ping Ma; Li Sun

    2009-01-01

    Natural phycobilisomes (PBSs) were isolated and purified from a red macroalga, Polysiphonia urceolata, by multi-step of sucrose gradient centrifugation, and were chemically stabilized by small molecule cross-linker formaldehyde. The stabilized PBSs showed similar absorption and fluorescent properties at room temperature compared to natural PBSs and kept a steady F672/F580 value during more than 3 months of storage in 0.45 mol/L phosphate buffer (pH 6.8) or at low temperature at 77 K. The stabilized PBS migrated as a single band at mild PAGE and in 14-18 h of sucrose gradient centdfiagation. All these characters indicated that the stabilized PBSs were stable, soluble, homogenous fluorescent particles with favorable spectroscopic features prepared under present conditions.

  2. 25th Anniversary Article: Polymer-Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage

    KAUST Repository

    Srivastava, Samanvaya

    2013-12-09

    Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created. In favorable situations, the spatial distribution of these interfaces can be controlled to create new hybrid materials with physical and transport properties inaccessible in their constituents or poorly prepared mixtures. This review surveys progress in the last decade in understanding phase behavior, structure, and properties of nanoparticle-polymer composites. The review takes a decidedly polymers perspective and explores how physical and chemical approaches may be employed to create hybrids with controlled distribution of particles. Applications are studied in two contexts of contemporary interest: battery electrolytes and electrodes. In the former, the role of dispersed and aggregated particles on ion-transport is considered. In the latter, the polymer is employed in such small quantities that it has been historically given titles such as binder and carbon precursor that underscore its perceived secondary role. Considering the myriad functions the binder plays in an electrode, it is surprising that highly filled composites have not received more attention. Opportunities in this and related areas are highlighted where recent advances in synthesis and polymer science are inspiring new approaches, and where newcomers to the field could make important contributions. Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created that can be exploited for applications. The fundamental approaches and bottom-up synthesis strategies for understanding and controlling nanoparticle dispersion in polymers are reviewed. Applications of these approaches for creating polymer-particle composite electrolytes and electrodes for energy storage are also considered. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang; Zhang, Deyuan [Bionic and Micro/Nano/Bio-Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Cai, Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio-Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Yuan, Liming; Zhang, Wenqiang [Bionic and Micro/Nano/Bio-Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2013-02-15

    Silicone rubber composites filled with carbonyl iron particles (CIPs) and graphite platelet (GP) were prepared using non-coating or coating processes. The complex permittivity and permeability of the composites were measured using a vector network analyzer in the frequency range of 1-18 GHz and dc electric conductivity was measured by the standard four-point contact method. The results showed that CIPs/GP composites fabricated in the coating process had the highest permittivity and permeability due to the particle orientation and interactions between the two absorbents. The coating process resulted in a decreased effective eccentricity of the absorbents, and the dc conductivity increased according to Neelakanta's equations. The reflection loss (RL) value showed that the composites had an excellent absorbing property in the L-band, minimum -11.85 dB at 1.5 mm and -15.02 dB at 2 mm. Thus, GP could be an effective additive in preparing thin absorbing composites in the L-band. - Highlights: Black-Right-Pointing-Pointer The added GP increased the permittivity and permeability of composites filled with CIPs. Black-Right-Pointing-Pointer The enhancement was owing to interactions of the two absorbents and the fabrication process. Black-Right-Pointing-Pointer The coating process decreased the effective eccentricity of the particles, and increased the conductivity of the composites. Black-Right-Pointing-Pointer The composites to which CIPs/GP were added in coating process had excellent absorbing properties in the L-band.

  4. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres.

    Science.gov (United States)

    Sivakumar, M; Rao, K Panduranga

    2003-05-01

    In this work, composite microspheres were prepared from bioactive ceramics such as coralline hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] granules, a biodegradable polymer, sodium alginate, and an antibiotic, gentamicin. Previously, we have shown a gentamicin release from coralline hydroxyapatite granules-chitosan composite microspheres. In the present investigation, we attempted to prepare composite microspheres containing coralline hydroxyapatite granules and sodium alginate by the dispersion polymerization technique with gentamicin incorporated by absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. Fourier transform infrared spectra clearly indicated the presence of per-acid of sodium alginate, phosphate, and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs showed that the composite microspheres were spherical in shape and porous in nature. The particle size of composite microspheres was analyzed, and the average size was found to be 15 microns. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns.

  5. Effective dielectric response of graded composite materials containing anisotropic particles

    Institute of Scientific and Technical Information of China (English)

    Sang Zhi-Fang; Li Zhen-Ya

    2005-01-01

    The effective dielectric response of granular composites, in which spheroidal particles with graded shells are randomly distributed in a host matrix, is investigated. General expressions for the effective dielectric constant of the composites and partial resonant condition are obtained in the dilute limit by use of a quasi-static approximation. In particular, spheroidal particles with a power-law gradation profile in the shells are studied in detail. We find that, by adjusting the dielectric gradient profile in the shells, the shape and structure of particles, it is possible to enhance the effective dielectric constant of the composite and to realize partial resonance. Under the partial resonant conditions,the coated spheroidal particles with graded shells within the host matrix can be regarded as equivalent homogeneous spheroids embedded in the same host. The equivalent spheroids have the same dielectric constant as the original cores and semiaxes equal to those of the original shells: i.e., the partial resonant system behaves as if the cores of the particles were enlarged and the shells were absent.

  6. Synthesis of silicon carbide-silicon nitride composite ultrafine particles using a carbon dioxide laser

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masaaki; Maniette, Yves; Nakata, Yoshinori; Okutani, Takeshi (Government Industrial Development Lab., Hokkaido, Sapporo (Japan))

    1993-05-01

    The synthesis and the structure of silicon carbide-silicon nitride (SiC-Si[sub 3]N[sub 4]) composite ultrafine particles have been studied. SiC-Si[sub 3]N[sub 4] composite ultrafine particles were prepared by irradiating a SiH[sub 4], C[sub 2]H[sub 4], and NH[sub 3] gas mixture with a CO[sub 2] laser at atmospheric pressure. The composition of composite powders changed with the reactant gas flow rate. The carbon and nitrogen content of the powder could be controlled in a wide range from 0 to 30 wt%. The composite powder, which contained 25.3 wt% carbon and 5.8 wt% nitrogen, had a [beta]-SiC structure. As the nitrogen content increased, SiC decreased and amorphous phase, Si[sub 3]N[sub 4], Si appeared. The results of XPS and lattice constant measurements suggested that Si, C, and N atoms were intimately mixed in the composite particles.

  7. Solution electrospinning of particle-polymer composite fibres

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Fojan, Peter

    2016-01-01

    into scaffolds. The formation of a particle/polymer composite results in improved mechanical stability, without compromising the porosity. In the presented study, aerogel and poly(ethylene oxide) are mixed into a solution, and spun to thin fibres. Thereby a porous membrane, on the micro- and nano...

  8. Deposition of composite coatings from particle-particle and particle-yeast blends by convective-sedimentation assembly.

    Science.gov (United States)

    Jenkins, Jessica S; Flickinger, Michael C; Velev, Orlin D

    2012-08-15

    The structures resulting from convective-sedimentation assembly (CSA) of bimodal suspensions (4.1-10% solids) of strongly charged sulfate latex microspheres (zeta potential -55.9±1.8 mV at pH 8.0) and weakly charged Saccharomyces cerevisiae (zeta potential -18.7±0.71 mV at pH 8.0) on glass, polyester, polypropylene, and aluminum foil substrates was evaluated. This study shows how substrate wettability, suspension composition, particle size ratio and surface charge affect the deposition process and resulting coating microstructure (particle ordering and void space). Size ratio and charge influence deposition, convective mixing or demixing and relative particle locations. Substrate wettability and suspension composition influence coating microstructure by controlling suspension delivery and spreading across the substrate. S. cerevisiae behave like negatively-charged colloidal particles during CSA. CSA of particle-yeast blends result in open-packed structures (15-45% mean void space), instead of tightly packed coatings attainable with single component systems, confirming the existence of significant polymer particle-yeast interactions and formation of particle aggregates that disrupt coating microstructure during deposition. Further optimization of the process should allow void space reduction and deposition of cells plus adhesive polymer particles into tightly packed adhesive monolayer coatings for biosensors, biophotoabsorbers, energy applications, and highly reactive microbial absorbers. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Study on preparation and performances of CDPVC/Ag3PO4 composite photocatalyst

    Directory of Open Access Journals (Sweden)

    Peng WANG

    2016-04-01

    Full Text Available PVC/Ag3PO4 composites are prepared by solution-dipping method, and the as-prepared composites are heat-treated to release HCl from PVC molecules to obtain conjugated derivative of PVC/Ag3PO4(CDPVC/Ag3PO4 composites. The CDPVC/Ag3PO4 composites are characterized by XRD, SEM, UV-vis DRS, PL and XPS. The effects of preparation conditions on the visible-light photocatalytic performances of CDPVC/Ag3PO4 composites are investigated by evaluating the decomposition of methyl orange under visible light irradiation. The results reveal that the modification of CDPVC is beneficial to the dispersion of Ag3PO4 particles, and it can obviously improve the absorbance of the CDPVC/Ag3PO4 composites in the range of visible light and the charge separation efficiency. The CDPVC/Ag3PO4 composites exhibit excellent visible-light photocatalytic acitivity and stability when the mass percentage of PVC to Ag3PO4, heat-treatment temperature and time are 0.03%, 130 ℃, and 2 h, respectively.

  10. Preparation and characterization of fibrous NiO particles by thermal decomposition of nickelous complex precursors

    Institute of Scientific and Technical Information of China (English)

    张传福; 湛菁; 邬建辉; 黎昌俊

    2004-01-01

    The influences of pyrolytic conditions, including temperature, time, the flow rate of air, and the heating rate, on the morphology, average size and specific surface area of the NiO particles were investigated, and the composition and morphologies of the products were characterized by using of XRD, SEM and BET. It is found that fibrous NiO particles were produced under the optimal conditions. A suitable range of pH for preparing dispersive precursors was chosen according to analysis of zeta potential. Based on the observations of NiO precursors growth and SEM morphology of the precursor, the oriented attachment was proposed for the well-aligned growth of the NiO precursor fibres. The final product NiO inherits the morphology of the precursor.

  11. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chu, Xiaobing [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Cai, Yurong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Tong, Peijian [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic.

  12. Preparation and properties of PAn/ATTP/PE conductive composites

    Institute of Scientific and Technical Information of China (English)

    QIU Jian-hui; FENG Hui-xia

    2006-01-01

    Polyaniline/Attapugite/ PE(PAn-ATTP/PE)composites containing particles with core-shell structure were obtained via the two-step blending processs. The experimental condition is as follows: Organo-attapulgite and PAn was obtained by modifying attapulgite with laury benzenesulfonic acid sodium salt and,then added to PE. The electrical conductivity,structure and properties of the composites were studied. Under the function of shear stress,core-shell structure particles with ATTP as the core and PAn as the shell were formed in the composites. The structure of PAn-ATTP/PE composites were characterized by FTIR,XRD,SEM,etc,respectively. The effects of concentration of doping agent on the conductivity and mechanical property of the composites were investigated. The mechanical properties and impact fracture surface of the ternary composites were studied by means of the tensile tester,SEM,etc. The results show that polyaniline encapsulated ATTP enhances the strength of the PE. And the conductivity of PAn-ATTP/PE composites of is improved effectively when polyaniline encapsulated ATTP is added. The composite have good conductivity when 10% polyaniline encapsulated ATTP is added.

  13. 十六烷基膦酸表面修饰纳米镍粉及其复合材料的制备和性能%Preparation and Properties of Surface Modified Nano-Ni Particles with n-Hexadecylphosphonic and Its Composites

    Institute of Scientific and Technical Information of China (English)

    尚光远; 李明

    2014-01-01

    以十六烷基膦酸作为修饰剂,对纳米镍粉进行表面改性处理,通过溶液共混的方法制备改性镍粉与聚丙烯的聚合物基复合材料。利用X射线光电子能谱( XPS)、 X射线衍射( XRD)及透射电子显微镜( TEM)等测试手段研究改性镍粉的表面形态;利用扫描电子显微镜( SEM)研究复合材料断面形貌;利用介电频谱分析系统对复合材料的介电常数和介电损耗等进行了测试。结果表明,纳米镍粉表面形成厚度为2~4 nm的十六烷基膦酸包覆层,使纳米镍粉由亲水性变为亲油性;聚丙烯基复合材料中,改性镍粉均匀分散;复合材料的介电常数在镍填充量为40%时,可以达到纯聚丙烯的近10倍。%Through the modification of nano-Ni particles with n-hexadecylphosphonic acid( HDPA) as surface modifier, Ni/HDPA hybrid particles were prepared. Composite of polypropylene( PP) and Ni/HDPA was pre-pared by solution blending. The dispersion of Ni in PP, the compatibility and stability of Ni and PP, the die-lectric performance of composite were discussed. The X-ray photoelectron spectroscopy( XPS) , X-ray diffrac-tion( XRD) and transmission electron microscope( TEM) results showed the surface morphology of Ni/HDPA, while the fracture surface morphology and the dielectric properties of composite were demonstrated by scanning electron microscope ( SEM) and the dielectric spectrum analysis system. It is found that a coverage layer, which is 2-4 nm thick, of n-hexadecylphosphonic can be formed on the surface of nano-Ni. In the presence of the coverage layer, nano-Ni was changed from hydrophilicity into lipophilicity, in results of which the Ni/HDPA disperses well in the PP matrix. At the Ni/HDPA volume fraction of 40%, permittivity of composite can be as high as 10 times of pure PP.

  14. Strain-dependent conductivity of granular metals prepared by focused particle beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Christina; Baranowski, Markus; Huth, Michael [Physikalisches Institut, Goethe-Universitaet, Frankfurt am Main (Germany); Voelklein, Friedemann [Institut fuer Mikrotechnologien, Hochschule RheinMain, Ruesselsheim (Germany)

    2010-07-01

    We report on the strain-dependence of the electrical conductivity of granular metals prepared by focused particle beam induced deposition. The samples were prepared in a dual-beam electron / Ga ion scanning microscope using selected precursors, such as W(CO){sub 6}. Stripe-like deposits were fabricated on dedicated cantilevers pre-patterned with contact pads made from Cr/Au. The cantilever deflection was induced in-situ by means of a four axes nano-manipulator and the conductivity change was recorded by lock-in technique employing a Wheatstone resistance bridge. Current-voltage characteristics and strain-dependence were measured for samples of various thicknesses and composition. For selected samples time-dependent conductivity data were taken as the samples were slowly exposed to air.

  15. Copper/bamboo fabric composite prepared via a silver catalytic electroless deposition process for electromagnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qian; Lu, Yinxiang [Fudan Univ., Shanghai (China). Dept. of Materials Science

    2013-09-15

    Copper/bamboo fabric composite prepared via a silver catalytic electroless plating process is reported. The microstructure of the composite was analyzed by means of scanning electron microscopy, which illustrated that the copper coating was composed of spherical particles and clusters. The composition and chemical state of the metal layer were measured using X-ray diffraction and energy-dispersive X-ray analysis spectra; copper and a small amount of nickel were detected. Mechanical properties were measured based on a standard (ISO 13934-1:1999) for the fabrics with and without copper coating. The breaking force for the composite was improved by about 16.8% compared to uncoated bamboo fabric. The electromagnetic interference shielding effectiveness of the composite was more than 40 dB at frequencies ranging from 0.2 to 1000MHz. The copper coating on bamboo fabric passed the Scotch {sup registered} -tape test. (orig.)

  16. Indium tin oxide nanosized composite powder prepared using waste ITO target

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaxiang; GAN Yong; ZENG Shengnan

    2005-01-01

    Indium tin oxide (TTO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolved in acid, filtrated, neutralized, manipulated through azeotropic distillation and finally dried, and in this way the precursor of indium tin hydroxide was obtained. The nanosized ITO composite powder was prepared after the precursor heat-treated at 500C for 2h. TEM images show a narrow distribution of particle size is 5-20 nm and the particle size can be controlled. Its granule has a spherical shape and the dispersion of the particle is well. X-ray diffraction (XRD) patterns indicate the only cubic In2O3 phase in the ITO powder heat-treated at 500C. The purity of ITO composite powder is 99.9907%. The content of indium within filtrate was detected by using the EDTA titration of determination of indium in the ITO powder and ITO target. Apfully prepared by heat-treating.

  17. Research on Brazability of SiC Particle Reinforced Aluminium-based Composite Prepared by Vacuum Brazing Process%SiC颗粒增强铝基复合材料的真空钎焊性研究

    Institute of Scientific and Technical Information of China (English)

    徐冬霞; 陈龙; 牛济泰; 薛行雁; 孙华为

    2013-01-01

    选用Pb80Sn20钎料,对体积分数20%的SiCP/A356复合材料进行真空钎焊,分析了表面镀镍和不镀镍对其真空钎焊性的影响,并通过金相显微、能谱分析等手段研究了保温时间对其钎焊接头组织的影响.研究结果表明:体积分数20%的SiCdA356复合材料表面不镀镍进行钎焊时,焊接性很差,镀镍后焊接性显著提高;对比6、8和10 min保温时间下钎焊接头硬度,8min保温时间最好.%Using Pb80Sn20 alloy as filler metal, SKVA356 composite containing 20% (volume fraction) SiC was brazed by vacuum brazing process. The influences on the brazability of the composite were analyzed after nickel chemical-plating on the surface of composite and without nickel chemical-plating process. The effects of holding time on the microstructure of the brazed joints of the composite were studied by metallographic microscope, SEM and energy spectrum analysis. The results show that the nickel plating on the surface of the composite can improve the brazability of SiCp/A356 composite, while the inferior brazability is demonstrated if the surface of the composite without nickel plating process. The hardness of the welded joints which are brazed at holding time for 6 min, 8 min and 10 min was contrasted. The hardness of the weld seam region is highest when the holding time is 8 min.

  18. Composite bone substitutes prepared by two methods

    Science.gov (United States)

    Lee, Hoe Y.

    A variety of ceramics and polymers exists that can be used as bone substitute materials with desirable properties such as biocompatibility and osteoconductivity. A key feature missing in these bone substitutes, or scaffolds, is the ability to bear loads. This work explored two methods for solving this problem. The first used cancellous bone taken from bovine femoral bone to create a natural scaffold through a heat treating process that eliminated the organic components and sintered the bone minerals, known as hydroxyapatite, together. The strength and Young's modulus of the natural scaffold were greatly improved after polymer infiltration with polymethylmethacrylate. Unfortunately, compression testing revealed that there was not a good interfacial bond between the mineral and polymer phases. The second method employed a freeze-casting technique to create synthetic hydroxyapatite scaffolds that have an aligned lamellar microstructure. By varying the amount of hydroxyapatite in the initial slurry mixture and the cooling rate, synthetic scaffolds with a range of porosities and strengths was produced. The highest solid loading and fastest cooling rate produced a scaffold with a strength and modulus approaching that of cortical bone. Further study is required to produce a two phase composite that is chemically bonded together for optimal performance. The synthetic scaffolds, with their tunable mechanical properties and ease of fabrication, make them a promising material for a load-bearing bone substitute.

  19. Preparation and Characterization Analysis of Hydroxyapatite/Gelatin Composite

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The hydroxyapatite (HAp)/gelatin composite was prepared by self-assembly method. X-ray diffraction confirmed that the inorganic phase in the composite was HAp. The Fourier transform infra-red spectrum(FT-IR) indicated the presence of amide and hydroxyl groups in the composite. The organic-inorganic ratio of the composite is similar to that of the human bone, which was determined by differential thermal analysis ( DTA )and thermogravimetric analysis ( TGA ). Transmission Electron Microscopy (TEM) showed that the composite is composed by spindly grains and the multilayer nanostructure can also be seen. Gelatin in the composite assembled orderly and directionally ; and the HAp crystals grew along the gelatin molecule at nearly the same direction. A model was established to explain the process of the interaction between gelatin and HAp.

  20. Preparation and characterization of bioglass/polyvinyl alcohol composite hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Xu Hong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Zheng Yudong [College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chen Xiaofeng [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ren Li [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wu Gang [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Huang Xiaoshan [College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2007-06-01

    In order to form firm active fixation with the adjacent bone, a new kind of bioactive composite hydrogel was prepared with polyvinyl alcohol (PVA) and bioglass (BG) through ultrasonic dispersion, heat-high-pressure and freeze/thawed technique. A digital speckle correlation method (DSCM) was utilized to characterize the mechanical properties of the series of BG/PVA composites. Results showed that at different load pressures, the composite hydrogel displayed different displacement and deformation in the V field. Results also showed that an increase of PVA percentage (15-30 wt%) or of bioglass percentage (2-10 wt%) in composite hydrogel could lead to an increase in the elastic compression modulus. Scanning electron microscope results indicated that bioglass was uniformly dispersed in the BG/PVA composite hydrogel. The BG/PVA composite hydrogel shows a promising prospect as a new bionic cartilage implantation material.

  1. Study of Al composites prepared by high-energy ball milling; Effect of processing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Duarte, J.M.; Estrada-Guel, I.; Carreño-Gallardo, C.; Martínez-Sánchez, R.

    2015-09-15

    The present work deals with the synthesis of some Al-based composites prepared by mechanical milling and processing by powder metallurgy followed by the evaluation of process conditions as: type of additive, their concentration and milling intensity studying its effect on the characteristics of the powder composite and mechanical performance of the composite. Powder samples were microstructural characterized by electronic microscopy (SEM–TEM) and the mechanical response was followed by hardness and compressive tests. A pronounced effect on the mechanical response of the specimens was evident after the addition of reinforced particles and milling intensity. Microscopy studies showed a uniform dispersion of the reinforcing particles in the metallic matrix at nanometric scale and an important grain refinement of the Al matrix was confirmed. After processing, a 66% increase on the mechanical response was reached with 1% of additive complemented with short milling intensities.

  2. Preparation and characterization of gold-decorated graphite nanosheet composites.

    Science.gov (United States)

    Kim, Jungsoo; Nam, Dae Geun; Oh, Weon Tae

    2013-05-01

    Some composites of gold nanoparticles and graphite nanosheets were prepared by electrostatic interaction, and structurally and electrochemically characterized using X-ray diffraction, X-ray photoelectron spectroscopy, UVNis spectroscopy, transmission electron microscopy, and cyclic-voltammetry. Pristine graphite was chemically treated using aqueous acid solution, and dispersed inpoly(diallyldimethylammonium) chloride aqueous solution to prepare positively charged graphite nanosheets. The gold nanoparticles (GNPs) in this work were stabilized by sodium dodecyl sulfate, poly(sodium 4-styrene sulfonate), or poly(vinylpyrrolidone). Gold nanoparticles and graphite nanosheet composites with gold nanoparticles showed the characteristic surface plasmon band at -530 nm. The electrochemical properties of the graphite nanosheet composites with gold nanoparticles were studied by cyclic voltammetry, in which reduction potential and reduction current of gold nanoparticles were strongly dependent on the gold-wrapped stabilizer in the composites.

  3. Preparation of Nano/Micron Composite Materials by Process Method

    Institute of Scientific and Technical Information of China (English)

    GAN Ai-feng; WEI Qi; JI; Yuan; HU Chuan-xin; YAO Jun-min

    2004-01-01

    This thesis put forward a method that controls the process of synthesizing nanomaterial to realize the composite of nanomaterial and micronmaterial. This thesis realizes the composite of nanomaterial and micronmaterial by adding micronmaterial during production of nanomaterial through sol-gel method, also introduces the technique and experiment's process preparation of nanocomposite material, and successfully prepared nanocomposite materials with nano-PbTiO3 covered on the surface of micron-Ni. According to the sample's SEM-pictures, the core-shell can be observed plate microstructure, and it is uniform, tight, full and good.

  4. Characterization of Al-Si alloy - TiB2 particles composite structure by STEM

    Energy Technology Data Exchange (ETDEWEB)

    Grzonka, Justyna; Plocinski, Tomasz; Kurzydlowski, Krzysztof [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Egizabal, Pedro [TECNALAI Foundation, San Sebastian (Spain)

    2011-07-01

    The paper describes results of structural characterization of an Al-Si alloy matrix composite reinforced with TiB2 particles produced by in situ reaction. The properties of such composites, developed for weight reducing and wear resistant applications, critically depend on the inter-phase boundaries between Al-Si alloy matrix and TiB2 particles. In order to study Al-Si alloy - TiB2 inter-phase boundaries High Resolution Scanning Transmission Electron Microscopy (HRSTEM) was used. Samples representative of the material before and after thermal treatment were prepared using Focused Ion Beam technique (FIB). The Energy Dispersive X-ray Spectroscopy (EDS) was used to map the spatial distribution of the key chemical elements. Phase analyses were performed using X-ray and electron diffraction patterns. The results of the investigations show that the Si and TiB2 particles do not change with the applied heat treatment. However, other particles appearing in the composite matrix do. In particular, the heat treatment results in formation of Al2O3 and magnesium oxide particles at the inter-phase boundaries between Al alloy and TiB2.

  5. Aluminum Matrix Composites Strengthened with CuZrAgAl Amorphous Atomized Powder Particles

    Science.gov (United States)

    Dutkiewicz, Jan; Rogal, Łukasz; Wajda, Wojciech; Kukuła-Kurzyniec, Agata; Coddet, Christian; Dembinski, Lucas

    2015-06-01

    The Al-matrix composites were prepared by hot pressing in vacuum of an aluminum powder with 20 and 40 wt.% addition of the amorphous Cu43Zr43Ag7Al7 alloy (numbers indicate at.%) obtained using gas atomization method. The amorphous structure of the powder was confirmed using x-ray diffraction, DSC, and TEM. The average size of mostly spherical particles was 100 μm, so the powder was sieved to obtain maximum size of 60 μm. The composites were prepared using uniaxial cold pressing in vacuum and at a temperature of 400 °C. The composites of hardness from 43 to 53 HV were obtained for both additions of the amorphous phase. They reached compression strength of 150 MPa for 20% of amorphous phase and 250 MPa for the higher content. The modest hardening effect was caused by crack initiation at Al/amorphous interfaces. The amorphous phase was only partially crystallized in the hot-pressed composites, what did not cause hardness decrease. The application of nanocrystalline aluminum powders obtained by high-energy ball milling for the matrix of composites allowed obtaining nanocrystalline aluminum matrix composites of size near 150 nm, strengthened with the amorphous powders, whose compression strength was near 550 MPa for the composite containing 40% of the amorphous phase and slightly lower for the composite containing 20% of the phase. They showed much higher ductility of 23% in comparison with 7% for the composite containing 40% amorphous phase. The distribution of the strengthening phase in the nanocrystalline matrix was not homogeneous; the amorphous particles formed bands, where majority of cracks nucleated during compression test.

  6. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  7. Friction Stir Processing of Particle Reinforced Composite Materials

    Directory of Open Access Journals (Sweden)

    Daniel Solomon

    2010-01-01

    Full Text Available The objective of this article is to provide a review of friction stir processing (FSP technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesium, titanium, and copper. It is shown that FSP technology is very effective in microstructure modification of reinforced metal matrix composite materials. FSP has also been used in the processing and structure modification of polymeric composite materials. Compared with other manufacturing processes, friction stir processing has the advantage of reducing distortion and defects in materials. The layout of this paper is as follows. The friction stir processing technology will be presented first. Then, the application of this technology in manufacturing and structure modification of particle reinforced composite materials will be introduced. Future application of friction stir processing in energy field, for example, for vanadium alloy and composites will be discussed. Finally, the challenges for improving friction stir processing technology will be mentioned.

  8. Preparation of Cu-based Bulk Metallic Glass Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    Yufeng SUN; Yuren WANG; Bingchen WEI; Weihuo LI

    2006-01-01

    Cu47Ti34Zr11Ni8 bulk metallic glass (BMG) matrix composites containing in situ formed TiC particles and δ-TiCu dendrite phase were developed by copper mold cast. The thermal stability and microstructure of the composites are investigated. Room temperature compression tests reveal that the composite samples exhibit higher fracture strength and distinct plastic strain of 0.2%~0.5%, comparing with that of the corresponding Cu47Ti34Zr11 Ni8 monolithic BMG.

  9. Chemical composition modulates the adverse effects of particles on the mucociliary epithelium

    Directory of Open Access Journals (Sweden)

    Regiani Carvalho-Oliveira

    2015-10-01

    Full Text Available OBJECTIVE:We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance.METHOD:Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL, particulate matter 2.5 µm 0.1 mg/mL (PM0.1 or 3.0 mg/mL (PM3.0 and amphibian Ringer’s solution (control. Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry.RESULTS:Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds.CONCLUSION:Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.

  10. Preparation and Characterization of Conducting Polybutadiene/ Polythiophene Composites

    OpenAIRE

    KIRALP, Senem; Küçükyavuz, Zuhal

    2003-01-01

    Conductive composite films of cis-1,4-polybutadiene (PBD) with polythiophene (PTh) were prepared electrochemically. Thiophene was polymerized on PBD-coated platinium electrodes. The composites with different PTh percentages showed conductivity in the order of 10-3 (W cm)-1. The characterization of the films was performed using FTIR, scanning electron microscope and differential scanning calorimetry techniques. In order to understand the dominant transport mechanism, the temperature...

  11. Composite polysaccharide fibers prepared by electrospinning and coating

    OpenAIRE

    2013-01-01

    Composite polysaccharide fibers composed two oppositely charged natural polysaccharides, chitosan and hyaluronic acid, were prepared by electrospinning and subsequent coating The fiber size distribution was characterized by scanning electron microscopy. Chitosan/hyaluronic acid composite fibers were stable in water but showed controlled release of hyaluronic acid into phosphate buffered saline, and the presence of 3-wt% hyaluronic acid coating improved the swelling ratio to 30%. The resulting...

  12. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Wang; Jun-jie Hao; Zhi-meng Guo; Song Wang

    2015-01-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced us-ing a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense struc-ture, and the fine sub-micron TiC particles were homogeneously distributed in theα-Fe matrix. A TiC–Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature;the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  13. Effects of particle size on the mechanical properties of particle-reinforced Sn-Ag composite solder joint

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Particulate size has significant influenced on the mechanical properties of particle-reinforced composite solder joints. In this current research, Cu or Ni reinforcement particles were mechanically added to the Sn-3.5Ag eutectic solder, and the effects of the particle size on the mechanical properties of particle-reinforced composite solder joint were systematically studied. This investigation touched on how mechanical properties of the solder joints are affected by particles size. A quantitative formula was set up to correlate the mechanical property of the solder joint with particle size in different processing conditions. Besides, the fracture mechanism of the composite solder joint was analyzed.

  14. Catalytic effect of nano-particle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling

    OpenAIRE

    Hanada, Nobuko; Ichikawa, Takayuki; Fujii, Hironobu

    2004-01-01

    We examined the catalytic effect of nano-particle 3d-transition metals on hydrogen desorption (HD) properties of MgH2 prepared by mechanical ball milling method. All the MgH2 composites prepared by adding a small amount of nano-particle Fenano, Conano, Ninano and Cunano metals and by ball milling for 2h showed much better HD properties than the pure ball-milled MgH2 itself. Especially, the 2 mol% Ninano-doped MgH2 composite prepared by soft milling for a short milling time of 15 min under a s...

  15. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    Madhuchhanda Sarkar; Kausik Dana; Sankar Ghatak; Amarnath Banerjee

    2008-02-01

    In the present work, a set of experimental polypropylene (PP) clay composites containing pristine bentonite clay of Indian origin has been prepared and then characterized. The polymer clay composites are processed by solution mixing of polypropylene with bentonite clay using a solvent xylene and high speed electric stirrer at a temperature around 130°C and then by compression molding at 170°C. The mechanical properties of PP–clay composites like tensile strength, hardness and impact resistance have been investigated. Microstructural studies were carried out using scanning electron microscope and transmission electron microscope and the thermal properties were studied using differential scanning calorimeter. Mechanical properties of the prepared composites showed highest reinforcing and toughening effects of the clay filler at a loading of only 5 mass % in PP matrix. Tensile strength was observed to be highest in case of 5 mass % of clay loading and it was more than 14% of that of the neat PP, while toughness increased by more than 80%. Bentonite clay–PP composite (5 mass %) also showed 60% increase in impact energy value. However, no significant change was observed in case of hardness and tensile modulus. Higher percentages of bentonite clay did not further improve the properties with respect to pristine polypropylene. The study of the microstructure of the prepared polymer layered silicate clay composites showed a mixed morphology with multiple stacks of clay layers and tactoids of different thicknesses.

  16. Preparation and thermal properties of chitosan/bentonite composite beads

    Directory of Open Access Journals (Sweden)

    Teofilović Vesna

    2014-01-01

    Full Text Available Due to their biodegradable and nontoxic nature, biopolymer composites are often used as remarkable adsorbents in treatment of wastewater. In this study chitosan/bentonite composite beads were obtained by addition of clay into the polymer using solution process. Before the composite preparation, bentonite was modified with surfactant cetyltrimethyl ammonium bromide (CTAB. The morphology of beads was examined by scanning electron microscopy (SEM. Thermal properties of the composite beads were studied by simultaneous thermogravimetry coupled with differential scanning calorimetry (SDT and differential scanning calorimetry (DSC. TG results showed that the complex decomposition mechanism of the composites depends on the preparation procedure. It was observed that the concentration of NaOH used for composites precipitation affects the final structure of beads. The influence of preparation procedure on the glass transition temperature Tg of chitosan/bentonite samples was not found (Tg values for all samples were about 144 °C. [Projekat Ministarstva nauke Republike Srbije, br. III45022 and ON172014 and Provincial Secretariat of Vojvodina for Science and Technological Development 114-451-2396/2011-01.

  17. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  18. A New Route for Preparation of β-TCP/PLLA Composite

    Institute of Scientific and Technical Information of China (English)

    Feng ZHANG; Fang MEI; Xin Zhi WANG; Xiao Yang HU; Yong Ming LUO; Xu Liang DENG

    2006-01-01

    A new facile route for preparation of β-TCP/PLLA composites is reported in this letter.SEM images display that β-TCP particles with average diameter of 400 nm were well bonded and distributed within the pore walls of the PLLA scaffolds. The mixture of the novel complex and human dental pulp cells was transplanted subcutaneously into the dorsal surface of a nude mouse.Two months later histological examination showed that new collagen and new dentin formed.The results revealed that the new nano β-TCP/PLLA composite combined with human pulp cells could induce dentin formation, offering a new way to dental tissue engineering.

  19. The preparation of the nonlinear optical quantum dots in organic polymer composite

    Science.gov (United States)

    Huang, Guochang; Yu, Dabin; Zhang, Jinhua; Zhao, Minghui; Zhao, Dapeng; Pan, Maosen

    2016-11-01

    Quantum dots (QDs) is some material which particle size is between 1 to 10 nanometers. Because of the unique nonlinear optical properties, QDs has been widely applied in optical, electrical, magnetic, biological fields etc. Though the size of the nanoscale is bringing the QDs a series of characteristic advantages, it has also brought some problems for further application, such as QDs are easily degenerative according to their small size. However, The preparation of quantum dots with special polymer composite film can avoid this phenomenon, This means that the composite is usually with inert matrix can be realized for further application.

  20. Alginate Hydrogel: A Shapeable and Versatile Platform for in Situ Preparation of Metal-Organic Framework-Polymer Composites.

    Science.gov (United States)

    Zhu, He; Zhang, Qi; Zhu, Shiping

    2016-07-13

    This work reports a novel in situ growth approach for incorporating metal-organic framework (MOF) materials into an alginate substrate, which overcomes the challenges of processing MOF particles into specially shaped structures for real industrial applications. The MOF-alginate composites are prepared through the post-treatment of a metal ion cross-linked alginate hydrogel with a MOF ligand solution. MOF particles are well distributed and embedded in and on the surface of the composites. The macroscopic shape of the composite can be designed by controlling the shape of the corresponding hydrogel; thus MOF-alginate beads, fibers, and membranes are obtained. In addition, four different MOF-alginate composites, including HKUST-1-, ZIF-8-, MIL-100(Fe)-, and ZIF-67-alginate, were successfully prepared using different metal ion cross-linked alginate hydrogels. The mechanism of formation is revealed, and the composite is demonstrated to be an effective absorbent for water purification.

  1. Major element compositions of Luna 20 glass particles.

    Science.gov (United States)

    Glass, B. P.

    1973-01-01

    Major element analyses of nineteen Luna 20 glass particles indicate that most of the Luna 20 glasses have Al2O3 contents greater than 21 wt % and compositions similar to Apollo 16 and Luna 20 rocks and soils. Three of the glass particles have low Al2O3 (less than 13 wt %) and high FeO (greater than 18 wt %) contents and were probably derived from one of the adjacent maria. The low glass content of the Luna 20 soil indicates that it is relatively young or less mature than most mare soils that have been studied.

  2. Preparation and characterization of polyimide/silica/silver composite films

    Institute of Scientific and Technical Information of China (English)

    Ning LUO; Zhanpeng WU; Nanxiang MOU; Lizhong JIANG; Dezhen WU

    2008-01-01

    Polyimide/silica/silver hybrid films were pre-pared by the sol-gel method combined with in situ single-stage self-metallization technique.The structure of polyi-mide films in the thermal curing process and the influence of silica content on the migration and aggregation of silver particles to the surface of hybrid films were investigated.The hybrid films were characterized by transmission elec-tron microscopy,dynamic mechanical thermal analysis,Fourier transform infrared spectroscopy,ultraviolet visible spectroscopy and mechanical measurements.The results indicated that there was no degradation of the polyimide matrix after the formation of silica and silver particles.Silica acted as the nucleus for the silver particles.With increasing silica content,more and more silver particles were kept in the hybrid films instead of being migrated onto the surface of the hybrid films and the reflections of hybrid films decreased gradually.

  3. Composite polysaccharide fibers prepared by electrospinning and coating.

    Science.gov (United States)

    Maeda, N; Miao, J; Simmons, T J; Dordick, J S; Linhardt, R J

    2014-02-15

    Composite polysaccharide fibers composed two oppositely charged natural polysaccharides, chitosan and hyaluronic acid, were prepared by electrospinning and subsequent coating. The fiber size distribution was characterized by scanning electron microscopy. Chitosan/hyaluronic acid composite fibers were stable in water but showed controlled release of hyaluronic acid into phosphate buffered saline, and the presence of 3-wt% hyaluronic acid coating improved the swelling ratio to 30%. The resulting composite polysaccharide fibers have a number of potential biomedical applications in wound healing applications and in drug delivery systems.

  4. Mechanical properties of polymeric composites with carbon dioxide particles

    Science.gov (United States)

    Moskalyuk, O. A.; Samsonov, A. M.; Semenova, I. V.; Smirnova, V. E.; Yudin, V. E.

    2017-02-01

    Nanocomposites consisting of a polymethylmethacrylate or polystyrene matrix with embedded silicon dioxide nanoparticles surface-modified by silazanes have been prepared by melting technology. The influence of particles on viscoelastic properties of the nanocomposites has been studied using dynamic mechanical analysis. It has been revealed that the addition of 20 wt % of SiO2 raises the flexural modulus of the nanocomposites by 30%.

  5. Squalane and isosqualane compositions and methods for preparing the same

    Science.gov (United States)

    Fisher, Karl; Schofer, Susan Jessica; Kanne, David B

    2013-11-19

    Provided herein are methods comprising catalytic dimerization of .beta.-farnesene to obtain squalane and/or isosqualane. Compositions comprising squalane and/or isosqualane are provided. In certain embodiments, squalane and isosqualane prepared by the methods provided herein can be useful for applications in cosmetic industry and/or in the lubricants industry.

  6. Squalane and isosqualane compositions and methods for preparing the same

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl; Schofer, Susan Jessica; Kanne, David B

    2013-11-19

    Provided herein are methods comprising catalytic dimerization of .beta.-farnesene to obtain squalane and/or isosqualane. Compositions comprising squalane and/or isosqualane are provided. In certain embodiments, squalane and isosqualane prepared by the methods provided herein can be useful for applications in cosmetic industry and/or in the lubricants industry.

  7. 用于化学复合镀的Ni3.1B非晶态纳米合金粉体的制备%Preparation of Ni3.1B Amorphous Nano Alloy Particles for Electroless Composite Plating

    Institute of Scientific and Technical Information of China (English)

    王钰蓉; 王文昌; 石建华; 光崎尚利; 陈智栋

    2013-01-01

    Ni3.1B amorphous nano alloy particles used for electroless (Ni-P)-Ni3.1 B composite plating were prepared by chemical reducing method with borohydride(KBH4) as reducing agent.After investigted the effect of KBH4,thiourea and PVP concentration on the size of Ni3.1 B particle,the optimized preparation conditions were obtained as 0.02 mol/L NiCl2-6H2O,0.06 g/L KBH4,2 mg/L thiourea and 0.25 g/L PVP.By analyzing the dispersity and stability of Ni3.1 B particle in the Ni-P-B electrolyte,it was found that sodium alginate has a better coating effect to Ni3.1B particle.%利用化学还原法,以硼氢化钾为还原剂,制备了Ni3.1B非晶态纳米合金粉末,用于化学镀(Ni-P)-Ni3.1B合金镀层.通过对还原剂硼氢化钾、稳定剂硫脲和表面活性剂聚乙烯吡咯烷酮对Ni3.B纳米合金粉末的粒径的影响,确定化学还原法制备Ni3.1B的最佳条件为0.02 mol/L NiCl2 ·6H2O,0.06 g/L KBH4,2mg/L硫脲,0.25 g/L聚乙烯吡咯烷酮.通过对Ni3.1B粉体分散性和在化学镀Ni-P-B合金镀液中的稳定性的研究,发现海藻酸钠对Ni3.1B具有良好的包覆效果.

  8. 纳米TiO2/碳纳米管复合颗粒的制备及光催化降解TNT废水%Preparation of TiO2/CNT Composite Particles and Application in the Photo-catalytic Degradation of TNT Wastewater

    Institute of Scientific and Technical Information of China (English)

    杜仕国; 闫军; 汪明球; 王彬

    2014-01-01

    以钛酸丁酯为主要原料,利用胶溶-回流的方法在碳纳米管(CNT)表面制备了纳米 TiO2。通过扫描电子显微镜(SEM)、透射电子显微镜( TEM)观察了纳米 TiO2/碳纳米管( CNT)复合颗粒的形貌特征,X 射线光电子能谱( XPS)分析显示复合颗粒表面存在 Ti—O及—OH 基团,Ti2p3/2和 Ti2p1/2电子结合能差约为5.7eV。以 TNT溶液为目标降解物,研究了复合颗粒的光催化性能,建立了吸附降解的动力学模型,结果表明 TiO2/CNT复合颗粒对 TNT溶液的光催化降解符合一级反应动力学方程,在实验范围内降解速率随着 TNT溶液初始浓度的增加而增加,降解动力学关系较好地遵循 L-H 模型。%By using tetra-butyl titanate as raw material ,TiO2/CNT composite particles were prepared by peptization- reflux meth-od. Morphology of the samples was observed by scanning electron microscope( SEM ) and transmission electron microscope (TEM). X-ray Photoelectron Spectroscopy(XPS)analysis show that Ti-O and —OH groups exist on the surfaces of TiO2/CNT composite particles,and the difference between binding energies of Ti2p3/2 and Ti2p1/2 is about 5. 7 eV. The photo-catalytic activi-ty of composite particles was studied,and a degradation kinetic model was established by using TNT waste water as target pollu-tant. Results show that the process of degradation reaction accords with one order reaction kinetics equation. The degradation rate increases with the increase of the initial concentration of TNT in the experimental range,and the kinetic data match well with the L-H model.

  9. Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst

    Institute of Scientific and Technical Information of China (English)

    LI Yuxiang; ZHANG Mei; GUO Min; WANG Xidong

    2009-01-01

    Nano TiO2/Fe3O4 composite particles with different molar ratios of TiO2 to Fe3O4 wefe prepared via sol-gel method. X-ray diffraction, transmission electron microscopy, and vibration sample magnetometry were used to characterize the TiO2/Fe3O4 particles. The photocatalytic activity of the particles was tested by degrading methyl blue solution under UV illumination (254 nm). The results indicate that with the con-tent of TiO2 increasing, the photocatalytic activity of the composite particles enhances, while the magnetism of the particles decreases. When the molar ratio of TiO2 to Fe3O4 is about 8, both the photocatalytic activity and magnetism of the TiO2/Fe3O4 particles are relatively high, and their photocatalytic activity remains well after repeated use.

  10. Preparation and Characterization of Chitosan—Agarose Composite Films

    Directory of Open Access Journals (Sweden)

    Zhang Hu

    2016-09-01

    Full Text Available Nowadays, there is a growing interest to develop biodegradable functional composite materials for food packaging and biomedicine applications from renewable sources. Some composite films were prepared by the casting method using chitosan (CS and agarose (AG in different mass ratios. The composite films were analyzed for physical-chemical-mechanical properties including tensile strength (TS, elongation-at-break (EB, water vapor transmission rate (WVTR, swelling ratio, Fourier-transform infrared spectroscopy, and morphology observations. The antibacterial properties of the composite films were also evaluated. The obtained results reveal that an addition of AG in varied proportions to a CS solution leads to an enhancement of the composite film’s tensile strength, elongation-at-break, and water vapor transmission rate. The composite film with an agarose mass concentration of 60% was of the highest water uptake capacity. These improvements can be explained by the chemical structures of the new composite films, which contain hydrogen bonding interactions between the chitosan and agarose as shown by Fourier-transform infrared spectroscopy (FTIR analysis and the micro-pore structures as observed with optical microscopes and scanning electron microscopy (SEM. The antibacterial results demonstrated that the films with agarose mass concentrations ranging from 0% to 60% possessed antibacterial properties. These results indicate that these composite films, especially the composite film with an agarose mass concentration of 60%, exhibit excellent potential to be used in food packaging and biomedical materials.

  11. Preparation and Characterization of Chitosan-Agarose Composite Films.

    Science.gov (United States)

    Hu, Zhang; Hong, Pengzhi; Liao, Mingneng; Kong, Songzhi; Huang, Na; Ou, Chunyan; Li, Sidong

    2016-09-30

    Nowadays, there is a growing interest to develop biodegradable functional composite materials for food packaging and biomedicine applications from renewable sources. Some composite films were prepared by the casting method using chitosan (CS) and agarose (AG) in different mass ratios. The composite films were analyzed for physical-chemical-mechanical properties including tensile strength (TS), elongation-at-break (EB), water vapor transmission rate (WVTR), swelling ratio, Fourier-transform infrared spectroscopy, and morphology observations. The antibacterial properties of the composite films were also evaluated. The obtained results reveal that an addition of AG in varied proportions to a CS solution leads to an enhancement of the composite film's tensile strength, elongation-at-break, and water vapor transmission rate. The composite film with an agarose mass concentration of 60% was of the highest water uptake capacity. These improvements can be explained by the chemical structures of the new composite films, which contain hydrogen bonding interactions between the chitosan and agarose as shown by Fourier-transform infrared spectroscopy (FTIR) analysis and the micro-pore structures as observed with optical microscopes and scanning electron microscopy (SEM). The antibacterial results demonstrated that the films with agarose mass concentrations ranging from 0% to 60% possessed antibacterial properties. These results indicate that these composite films, especially the composite film with an agarose mass concentration of 60%, exhibit excellent potential to be used in food packaging and biomedical materials.

  12. 多孔Al2O3陶瓷/纳米ZrO2颗粒/环氧树脂复合材料的制备及性能研究%Preparation and Property Study of Porous Al2O3 Cramic/nano-ZrO2 Particles/epoxy Resin Composites

    Institute of Scientific and Technical Information of China (English)

    王俏俏; 李强; 于景媛

    2015-01-01

    Epoxy resin, firming agent, porous Al2O3ceramic and nano-ZrO2 particles were used to have prepared epoxy resin and its composites at room temperature. The effects of the contents of nano-ZrO2 particles and porous Al2O3ceramic on compressive and flexural stability at high temperature and friction properties of epoxy resin composites were researched in this paper. The results show that at the content of nano-ZrO2 particles of 3wt% and porous Al2O3ceramic of 83% porosity, the new composites have better mechanical properties. The compressive strength, compressive modulus, flexural strength and flexural modulus of the new composites are 187.9MPa, 2.55 GPa, 121.3 MPa and 3.61GPa, respectively. The new epoxy resin composites have better dimensional stability at the high temperature, and no deformation at 180℃. . Wear experiments show the new composites have lowered the wear loss and much better wear behaviors as compared with other epoxy resin composites at the same friction time.%以环氧树脂、固化剂、多孔Al 2 O 3陶瓷、纳米ZrO 2颗粒为主要原料,采用常温固化的方法制备环氧树脂及其复合材料,研究纳米ZrO2颗粒和多孔Al2O3陶瓷含量对环氧树脂及其复合材料弯曲、压缩、高温尺寸稳定性和摩擦性能的影响。研究结果表明:当纳米ZrO 2含量为3wt%,多孔Al 2 O 3陶瓷孔隙度为83%时,新型复合材料的综合力学性能达到最佳,抗压强度、抗压模量、抗弯强度和抗弯模量分别为187.9 MPa、2.55 GPa、121.3 MPa和3.61 GPa,该复合材料具有良好的高温稳定性180℃时未出现明显变形。摩擦磨损试验表明,与其他环氧树脂基复合相比,在相同摩擦时间内该新型复合材料的磨损量最低,具有更好的耐磨性。

  13. PREPARATION AND PROPERTIES OF CHITOSAN/LIGNIN COMPOSITE FILMS

    Institute of Scientific and Technical Information of China (English)

    Long Chen; Chang-yu Tang; Nan-ying Ning; Chao-yu Wang; Qiang Fu; Qin Zhang

    2009-01-01

    Biodegradable composite films based on chitosan and lignin with various composition were prepared via the solution-casting technique.FT-IR results indicate the existence of hydrogen bonding between chitosan and lignin,and SEM images show that lignin could be well dispersed in chitosan when the content of lignin is below 20 wt% due to the strong interfacial interaction.As a result of strong interaction and good dispersion,the tensile strength,storage modulus,thermal degradation temperature and glass transition temperature of chitosan have been largely improved by adding lignin.Our work provides a simple and cheap way to prepare fully biodegradable chitosan/lignin composites,which could be used as packaging films or wound dressings.

  14. Exciton-Dependent Pre-formation Probability of Composite Particles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Shang; WANG Ji-Min; DUAN Jun-Feng

    2007-01-01

    In Iwamoto-Harada model the whole phase space is full of fermions. When the momentum distributions of the exciton states are taken into account, the pre-formation probability of light composite particles could be improved,and the exciton state-dependent pre-formation probability has been proposed. The calculated results indicate that the consideration of the momentum distribution enhances the pre-formation probability of [1,m] configuration, and suppresses that of [l > 1, m] configurations seriously.

  15. Preparation, Characterization and Mechanical Properties of Cu-Sn Alloy/Graphite Composites

    Science.gov (United States)

    Dong, Ruifeng; Cui, Zhenduo; Zhu, Shengli; Xu, Xu; Yang, Xianjin

    2014-10-01

    Ni-B coating was prepared on the surface of graphite particles using the electroless plating method. The Ni-B coating was composed of spherical grains with average diameter of 80 nm. The phases of Ni-B coating were indexed as nanosized crystal Ni phase and amorphous Ni-B phase. Cu-Sn alloy/graphite composites with 0.5, 1.0, 1.5, and 2.0 wt pct graphite contents were synthesized by the powder metallurgy method. Ni-B coating improved the wettability and bonding strength between the Cu-Sn alloy and graphite. The composite with Ni-B coated graphite exhibited higher density, hardness, and compression strength compared with the composites with bare graphite. The crack propagation mechanism of the composites was also analyzed.

  16. Quantification of aerosol chemical composition using continuous single particle measurements

    Science.gov (United States)

    Jeong, C.-H.; McGuire, M. L.; Godri, K. J.; Slowik, J. G.; Rehbein, P. J. G.; Evans, G. J.

    2011-07-01

    Mass concentrations of sulphate, nitrate, ammonium, organic carbon (OC), elemental carbon (EC) were determined from real time single particle data in the size range 0.1-3.0 μm measured by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) at urban and rural sites in Canada. To quantify chemical species within individual particles measured by an ATOFMS, ion peak intensity of m/z -97 for sulphate, -62 for nitrate, +18 for ammonium, +43 for OC, and +36 for EC were scaled using the number and size distribution data by an Aerodynamic Particle Sizer (APS) and a Fast Mobility Particle Sizer (FMPS). Hourly quantified chemical species from ATOFMS single-particle analysis were compared with collocated fine particulate matter (aerodynamic diameter PM2.5) chemical composition measurements by an Aerosol Mass Spectrometer (AMS) at a rural site, a Gas-Particle Ion Chromatograph (GPIC) at an urban site, and a Sunset Lab field OCEC analyzer at both sites. The highest correlation was found for nitrate, with correlation coefficients (Pearson r) of 0.89 (ATOFMS vs. GPIC) and 0.85 (ATOFMS vs. AMS). ATOFMS mass calibration factors, determined for the urban site, were used to calculate mass concentrations of the major PM2.5 chemical components at the rural site near the US border in southern Ontario. Mass reconstruction using the ATOFMS mass calibration factors agreed very well with the PM2.5 mass concentrations measured by a Tapered Element Oscillating Microbalance (TEOM, r = 0.86) at the urban site and a light scattering monitor (DustTrak, r = 0.87) at the rural site. In the urban area nitrate was the largest contributor to PM2.5 mass in the winter, while organics and sulphate contributed ~64 % of the summer PM2.5 in the rural area, suggesting a strong influence of regional/trans-boundary pollution. The mass concentrations of five major species in ten size-resolved particle-types and aerosol acidity of each particle-type were determined for the rural site. On a mass basis sulphate

  17. Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles

    Science.gov (United States)

    Wang, Lung-Shuo; Wang, Chih-Yu; Yang, Chih-Hui; Hsieh, Chen-Ling; Chen, Szu-Yu; Shen, Chi-Yen; Wang, Jia-Jung; Huang, Keng-Shiang

    2015-01-01

    Silver nanoparticles have been used in various fields, and several synthesis processes have been developed. The stability and dispersion of the synthesized nanoparticles is vital. The present article describes a novel approach for one-step synthesis of silver nanoparticles–embedded chitosan particles. The proposed approach was applied to simultaneously obtain and stabilize silver nanoparticles in a chitosan polymer matrix in-situ. The diameter of the synthesized chitosan composite particles ranged from 1.7 mm to 2.5 mm, and the embedded silver nanoparticles were measured to be 15±3.3 nm. Further, the analyses of ultraviolet-visible spectroscopy, energy dispersive spectroscopy, and X-ray diffraction were employed to characterize the prepared composites. The results show that the silver nanoparticles were distributed over the surface and interior of the chitosan spheres. The fabricated spheres had macroporous property, and could be used for many applications such as fungicidal agents in the future. PMID:25878501

  18. Particle Size Effect in Granular Composite Aluminum/tungsten

    Science.gov (United States)

    Chiu, Po-Hsun; Wang, Sophia; Vitali, Efrem; Herbold, Eric B.; Benson, David J.; Nesterenko, Vitali F.

    2009-12-01

    Compressive dynamic strength and fracture pattern of Al-W granular composites with an identical weight ratio of Al (23.8 wt%) and W (76.2 wt%) with different porosities, size and shape of W component were investigated at strain rates 1000-1500 l/s. Samples were fabricated by Cold Isostatic Pressing. A dynamic strength of composites with fine W particles (100 MPa) was significantly larger than the strength of composite with the coarse W particles (75 MPa) at the same porosity 26% (samples with porosity 15% with coarse W particles exhibited a higher strength of 175 MPa). Morphology of W inclusions had a strong effect on dynamic strength. Samples with W wires arranged in axial direction (diameter 100 microns) and porosity 16%) with the same volume content of components had a dynamic strength of 350 MPa. Dynamic behavior was numerically simulated using computer code Raven, demonstrating a strain hardening effect due to in situ densification which was observed experimentally for cold isostatically pressed Al and Al-coarse W powders.

  19. 25th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage.

    Science.gov (United States)

    Srivastava, Samanvaya; Schaefer, Jennifer L; Yang, Zichao; Tu, Zhengyuan; Archer, Lynden A

    2014-01-15

    Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created. In favorable situations, the spatial distribution of these interfaces can be controlled to create new hybrid materials with physical and transport properties inaccessible in their constituents or poorly prepared mixtures. This review surveys progress in the last decade in understanding phase behavior, structure, and properties of nanoparticle-polymer composites. The review takes a decidedly polymers perspective and explores how physical and chemical approaches may be employed to create hybrids with controlled distribution of particles. Applications are studied in two contexts of contemporary interest: battery electrolytes and electrodes. In the former, the role of dispersed and aggregated particles on ion-transport is considered. In the latter, the polymer is employed in such small quantities that it has been historically given titles such as binder and carbon precursor that underscore its perceived secondary role. Considering the myriad functions the binder plays in an electrode, it is surprising that highly filled composites have not received more attention. Opportunities in this and related areas are highlighted where recent advances in synthesis and polymer science are inspiring new approaches, and where newcomers to the field could make important contributions.

  20. Nano-Ammonium Perchlorate: Preparation, Characterization, and Evaluation in Composite Propellant Formulation

    Science.gov (United States)

    Kumari, A.; Mehilal; Jain, S.; Jain, M. K.; Bhattacharya, B.

    2013-07-01

    Nanomaterials are finding applications in explosives and propellant formulations due to their large surface area and high surface energy. This high surface energy is responsible for the low activation energy and increase in burning rate of the composition. Therefore, a successful attempt has been made to prepare nano-ammonium perchlorate using a nonaqueous method by dissolving ammonium perchlorate (AP) in methanol followed by adding the dissolved AP to the hydroxyl-terminated polybutadiene (HTPB), homogenization, and vacuum distillation of the solvent. The nano-AP thus formed was characterized using a NANOPHOX particle size analyzer (Sympatec, Germany), transmission electron microscopy (FEI, Hillsboro, OR), X-ray diffraction (PANalytical B.V., The Netherlands) and scanning electron microscopy (Ikon Analytical Equipment Pvt. Ltd., Mumbai, India) for particle size, purity, and morphology, respectively. The thermal behavior of nano-AP was also studied using differential thermal analysis-thermo gravimetric analysis (DTA-TGA). The data indicated that the particle size of the prepared AP was in the range of 21-52 nm and the thermal decomposition temperature was lower than that of coarse AP. Characterized nano-AP was subsequently used in composite propellant formulation up to 5% with 86% solid loading and studied for different properties. The results showed a 14% increase in burning rate in comparison to standard propellant composition with desired mechanical properties.

  1. Preparation and characterization of EPDM/silica composites prepared through non-hydrolytic sol-gel method in the absence and presence of a coupling agent

    Directory of Open Access Journals (Sweden)

    T. H. Mokhothu

    2014-11-01

    Full Text Available Ethylene propylene diene monomer (EPDM rubber composites containing in situ generated silica particles was prepared through a non-hydrolytic sol-gel (NHSG method with silicon tetrachloride as precursor. The silica particles were homogenously dispersed in the EPDM matrix, but there were agglomerates at high silica contents. The swelling experiments showed a decrease in the crosslinking density of the vulcanized rubber due to the presence of the silica particles for both the composites prepared in the presence and absence of a coupling agent, bis-[-3-(triethoxysilyl-propyl]-tetrasulfide (TESPT. Unlike the composites prepared through a hydrolytic sol-gel (HSG method with TEOS as precursor, the TESPT did not seem to take part in the sol-gel reaction. The presence of TESPT influenced the interaction and dispersion of the silica particles in the EPDM matrix, which gave rise to increased thermal stability of the EPDM when compared to the composites prepared in the absence of TESPT. However, ethylene chloride and TESPT evaporated from the samples at temperatures below the EPDM decomposition range. The values of the Nielsen model parameters, that gave rise to a good agreement with the experimentally determined Young’s modulus values, indicated improved dispersion and reduced size of the silica aggregates in the EPDM matrix. There was also good agreement between the storage modulus and Young’s modulus values. The filler effectiveness (Factor C indicated a mechanical stiffening effect and a thermal stability contribution by the filler, while the damping reduction (DR values confirmed that the EPDM interacted strongly with the well dispersed silica particles and the polymer chain mobility was restricted. The tensile properties, however, were in some cases worse than those for the samples prepared through the HSG method in the presence of TEOS.

  2. Nanosilica reinforced epoxy floor coating composites: preparation and thermophysical characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2012-01-01

    Full Text Available In this study, flooring grade epoxy/nanoSiO2 nanocomposites were prepared by in-situ polymerization method. Nano silica was treated by coupling agent in order to surface treating and introducing of reactive functional groups to achieving adequate bonding between polar inorganic nano particles and epoxy organic polymer. γ-Aminopropyltriethoxysilane (Amino A-100 was used as an effective and commercially available coupling agent and nano silica treated in acetone media. SEM observations of cured samples revealed that the nano silica was completely dispersed into polymer matrix into nanoscale particles. Thermal and physical properties of prepared samples were investigated and data showed improvements in physical and mechanical properties of the flooring samples in comparison with unfilled resin.

  3. Self-assembly of monolayer-thick alumina particle-epoxy composite films.

    Science.gov (United States)

    Jackson, Bryan R; Liu, Xiangyuan; McCandlish, Elizabeth F; Riman, Richard E

    2007-11-06

    Monolayer-thick composite films composed of alpha-alumina and Spurr's epoxy were prepared via a self-assembly process known as fluid forming. The process makes use of a high-spreading-tension fluid composed of volatile and nonvolatile components to propel particles across the air-water interface within a water bath. Continuous addition of the particle suspension builds a 2D particle film at the air-water interface. The spreading fluid compresses the film into a densely packed array against a submerged substrate. The assembled monolayer is deposited onto the substrate by removing the substrate from the bath. A dispersion containing a narrow size distribution, 10 microm alpha-alumina particles, light mineral oil, and 2-propanol was spread at the air-water interface and the alumina particles were assembled into densely packed arrays with an aerial packing fraction (APF) of 0.88. However, when mineral oil was replaced by Spurr's epoxy nonuniform films with low packing density resulted. It was found that replacing 2-propanol with a mixture of 2-propanol and 1-butanol with a volume ratio of 4:1 produced uniform, densely packed alumina/epoxy composite films. The role of the solvent mixture will be discussed.

  4. Effective nonlinear AC response to composite with spherical particles

    Institute of Scientific and Technical Information of China (English)

    Chen Xiao-Gang; Liang Fang-Chu; Wei En-Bo

    2005-01-01

    An effective nonlinear alternative-current (AC) response to granular nonlinear-composite with spherical inclusions embedded in a host medium under the action of an external AC field is investigated by using a perturbation approach.The local potentials of composite at higher harmonics are derived both in a region of local inclusion particles and in a local host region under the action of a sinusoidal field E1 sinωt + E3sin3ωt. An effective nonlinear-response to composite and the relationship between the effective nonlinear-responses at the fundamental frequency and the third harmonics are also studied for the spherical inclusions in a dilute limit.

  5. Evaluating the Microshear Bond Strength and Microleakage of Flowable Composites Containing Zinc Oxide Nano-particles

    Science.gov (United States)

    Teymoornezhad, Koorosh; Alaghehmand, Homayoun; Daryakenari, Ghazaleh; Khafri, Soraya; Tabari, Mitra

    2016-01-01

    Introduction Preventive resin restorations (PRR) are the conservative choice for the most common carious lesions in children. Thus, new age flowable resin composites with higher filler content are readily used. The aim of this study was to evaluate the microshear bond strength and microleakage of two flowable resin composites containing different percentages of nano zinc oxide (NZnO) particles, which have proven to have antimicrobial properties. Methods This experimental in-vitro study was carried out in the Dental Material Research Center of Babol University of Medical Sciences in 2015. One nanohybrid and one nanofill flowable resin composite were chosen and modified with the incorporation of 1% and 3% Wt NZnO particles. Six groups (n=10, 0%, 1%, and 3%) of resin composite sticks on dental enamel (2×2mm) were prepared to be placed in the microtensile tester. The microshear bond strength magnitude (MPa) was recorded at the point of failure. A class I box (3×0.8×1 mm) was prepared on 60 premolars and filled using the resin composites (6 groups, n=10). The specimens were immersed in a 5% basic fuschin solution and sectioned bucco-lingually to view the microleakage using a stereomicroscope. One-way ANOVA and Tukey tests for microshear and Wilcoxon and Kruskal–Wallis tests for microleakage were used to analyze the data in the IBM SPSS Statistics version 22 software. Results The bond strength of the 3% clearfill group significantly decreased while no significant change occurred in the bond strength in other groups. The Z-350 group had significantly lower microleakage as nanoparticles increased. No significant difference was observed in the clearfill group. Conclusion Up to 3% Wt incorporation of NZnO particles will not diversely alter the bond strength, but it will be beneficial in providing antimicrobial effects with lower microleakage rates. PMID:28070263

  6. Preparation and characterization of organic polymer modified composite polyaluminum chloride

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Compared with traditional aluminum salts, polyaluminum chloride (PACl) has better coagulation-flocculation performance in turbidity removal. However, it is still inferior to organic polymers in terms of bridging function. In order to improve the aggregating property of PACl, different composite PACl flocculants were prepared with various organic polymers. The effect of organic polymer on the distribution of Al (Ⅲ) species in composite flocculants was studied using 27Al NMR and Al-ferron complexation methods. The charge neutralization and surface adsorption characteristics of composite flocculants were also investigated. Jar tests were conducted to evaluate the turbidity removal efficacy of organic polymer modified composite flocculants. The study shows that cationic polymer and anionic polymer have significant influences on the coagulation-flocculation behaviors of PACl. Both cationic and anionic polymers can improve the turbidity removal performance of PACl but the mechanisms are much different: cationic organic polymer mainly increases the charge neutralization ability, but anionic polymer mainly enhances the bridging function.

  7. Preparation and performance of novel thermal stable composite nanofiltration membrane

    Institute of Scientific and Technical Information of China (English)

    Chunrui WU; Shouhai ZHANG; Fajie YANG; Chun YAN; Xigao JIAN

    2008-01-01

    The novel thermal stable composite nanofiltra-tion membranes were prepared through the interfacial polymerization of piperazine and trimesoyl chloride on the poly (phthalazinone ether) ultrafiltration substrate. The effects of polymerization and testing conditions on membrane performance were studied. The surface morphologies of the substrate and the composite mem-branes were observed by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The separation properties of membranes for dyes and salts were tested. The composite membranes show good ther-mal stability. The rejection for Na2SO4 was kept over 96%, 1.0 MPa and 80℃. When tested at 1.0 MPa and 60℃, the rejection of the composite membrane for dyes was kept at the rejection for NaCl was lower than 20%.

  8. Preparation of Antibacterial Nanofibre/Nanoparticle Covered Composite Yarns

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2016-01-01

    Full Text Available The antibacterial efficiency of nanofibre composite yarns with an immobilized antibacterial agent was tested. This novel type of nanofibrous composite material combines the good mechanical properties of the core yarn with the high specific surface of the nanofibre shell to gain specific targeted qualities. The main advantages of nanofibre covered composite yarns over the standard planar nanofibre membranes include high tensile strength, a high production rate, and their ability to be processed by standard textile techniques. The presented paper describes a study of the immobilization of an antibacterial agent and its interaction with two types of bacterial colonies. The aim of the study is to assess the applicability of the new composite nanomaterial in antibacterial filtration. During the experimental tests copper(II oxide particles were immobilized in the polyurethane and polyvinyl butyral nanofibre components of a composite yarn. The antibacterial efficiency was evaluated by using both Gram-negative Escherichia coli and Gram-positive Staphylococcus gallinarum bacteria. The results showed that the composite yarn with polyvinyl butyral nanofibres incorporating copper(II oxide nanoparticles exhibited better antibacterial efficiency compared to the yarn containing the polyurethane nanofibres. The nanofibre/nanoparticle covered composite yarns displayed good antibacterial activity against a number of bacteria.

  9. Preparation and Electrocatalytic Performance of Bi-Modified Quartz Column Particle Electrode for Phenol Degradation

    Directory of Open Access Journals (Sweden)

    Jiguo Huang

    2015-01-01

    Full Text Available Bismuth oxide (Bi2O3 and its composites have good electrocatalytic performance. Quartz column is a good kind of catalyst carrier with the characteristics of high mechanical strength and good stability. A novel Bi-modified quartz column particle electrode (BQP was prepared by the dipping-calcination method. The characterization results revealed that Bi2O3 was successfully loaded on quartz column. The optimum preparation condition was calcining at 550°C for 4 h. Electrocatalytic performance was evaluated by the degradation of phenol and the results indicated that the triclinic phase of Bi2O3 showed the best electrocatalytic property. Besides, when the dosage concentration of the particle electrode was 125 g/L and the electrolytic voltage was 12 V, the degradation rate of phenol (200 mg/L reached the highest (94.25%, compared with 70.00% of that in two-dimensional (2D system. In addition, the removal rate of chemical oxygen demand (COD was 75.50%, compared with 53.30% of that in 2D system. The reusability and regeneration of BQP were investigated and the results were good. Mechanism of enhanced electrochemical oxidation by BQP was evaluated by the capture of hydroxyl radical.

  10. Properties and microstructures of 7075/SiCp composites prepared by spray deposition

    Institute of Scientific and Technical Information of China (English)

    袁武华; 陈振华; 徐海洋; 张福全; 傅定发

    2003-01-01

    The 7075/SiCp composites were prepared by spray deposition, extrusion and heat treatment technologies. The microstructures of the deposit, the extruded and heat-treated bars were analyzed. And the mechanical properties and wearing resistance were tested and compared with other aluminum alloys. The results show that the spray deposited preform presents fine microstructure and uniformly distributed SiC particles. Compared with the matrix alloy, the yield strength, modulus and wearing resistance of the peak-aged composites are improved markedly with 50% reduction of elongation. It indicates that the addition of SiC particles greatly contributes to the refining of microstructure and the altering of fracture and wearing mechanisms.

  11. Preparation and applications of a variety of fluoroalkyl end-capped oligomer/hydroxyapatite composites.

    Science.gov (United States)

    Takashima, Hiroki; Iwaki, Ken-Ichi; Furukuwa, Rika; Takishita, Katsuhisa; Sawada, Hideo

    2008-04-15

    A variety of fluoroalkyl end-capped oligomers were applied to the preparation of fluorinated oligomer/hydroxyapatite (HAp) composites (particle size: 38-356 nm), which exhibit a good dispersibility in water and traditional organic solvents. These fluoroalkyl end-capped oligomer/HAp composites were easily prepared by the reactions of disodium hydrogen phosphate and calcium chloride in the presence of self-assembled molecular aggregates formed by fluoroalkyl end-capped oligomers in aqueous solutions. In these fluorinated HAp composites thus obtained, fluoroalkyl end-capped acrylic acid oligomers and 2-methacryloyloxyethanesulfonic acid oligomer/HAp nanocomposites afforded transparent colorless solutions toward water; however, fluoroalkyl end-capped N,N-dimethylacrylamide oligomer and acryloylmorpholine oligomer were found to afford transparent colorless solutions with trace amounts of white-colored HAp precipitants under similar conditions. HAp could be encapsulated more effectively into fluorinated 2-methacryloyloxyethanesulfonic acid oligomeric aggregate cores to afford colloidal stable fluorinated oligomer/HAp composites, compared to that of fluorinated acrylic acid oligomers. These fluorinated oligomer/HAp composites were applied to the surface modification of glass and PVA to exhibit a good oleophobicity imparted by fluorine. HAp formation was newly observed on the modified polyethylene terephthalate film surface treated with fluorinated 2-methacryloyloxyethanesulfonic acid oligomers and acrylic acid oligomer/HAp composites by soaking these films into the simulated body fluid.

  12. Preparation and Properties of Orthogonal Piezoelectric Composite Materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Lu Ying; Zhang Xingguo; Shen Yi; Chen Chun

    2004-01-01

    . PZT piezoelectric ceramic with La2O3, SrCO3, BaO and Sb2O5 was prepared. It has high value of the piezoelectric strain constant d33 ( -681 PC/N) and high value of-d33/d31 (2.65). Orthogonal piezoelectric composite materials was designed and prepared by PZT, DAD- 40 electric conductive adhesive and E51 epoxy resin. The OPCM shows obvious orthogonal anisotropy. The matching property of the interface between piezoelectric ceramic and polymer of OPCM relies on the defects of interface. The proper conductive mid-layer could improve the matching property of the interface.

  13. Preparation and property of graphene oxide core-shell hybrid particles/silicone rubber dielectric elastomer composites%氧化石墨烯核-壳杂化粒子/硅橡胶介电弹性体复合材料的制备与性能

    Institute of Scientific and Technical Information of China (English)

    王明路; 宁南英; 张静; 张立群; 田明

    2016-01-01

    采用阳离子聚电解质聚二烯丙基二甲基氯化铵(PDDA)改性 SiO2,再通过静电自组装制备了 SiO2-PD-DA-氧化石墨烯(GO)核-壳杂化粒子。采用溶液共混法将 SiO2-PDDA-GO引入到高温硫化硅橡胶(SR)中,制备了SiO2-PDDA-GO/SR介电弹性体复合材料。结果表明:该方法能实现 GO 在 SiO2表面大面积的包覆,解决了 GO容易自聚集的问题,且PDDA具有还原 GO的作用,无需再对 GO核-壳杂化粒子/SR复合材料进行原位热还原,简化了实验方案,节能环保。SiO2-PDDA-GO填充量为60wt%时,在100 Hz 频率下,SiO2-PDDA-GO/SR 介电弹性体复合材料的介电常数为21.53,是 SR的11.6倍,介电损耗保持较低值,同时,复合材料的模量保持在较低水平。在电场强度为2.48 kV/mm时,60wt%的SiO2-PDDA-GO/SR介电弹性体复合材料横向电致形变在同一电场强度下与 SR相比增加了15倍。%Cationic polyelectrolyte poly(diallyldimethylammonium chloride)(PDDA)was used to modify SiO2 ,and SiO2-PDDA-graphite oxide (GO)core-shell hybrid particles were prepared by electrostatic self-assembly.By intro-ducing SiO2-PDDA-GO into high-temperature vulcanization silicone rubber (SR)with solution blending method, SiO2-PDDA-GO/SR dielectric elastomer composites were prepared.Results show that this method can realize GO large surface coating on surface of SiO2 to prevent GO from self-agglomerating.GO core-shell hybrid particles/SR composites were obtained without in-situ thermal reduction because PDDA can reduce GO,made experimental scheme simple and environmental protection.The dielectric constant of SiO2-PDDA-GO/SR dielectric composite at 100 Hz increases to 21.53 with 60wt% SiO2-PDDA-GO which is 11.6 times than SR,and dielectric loss remains at low level.Meanwhile,modulus of composites remains low level.The lateral actuation strain of SiO2-PDDA-GO/SR dielectric elastomer composites with 60wt% SiO2-PDDA-GO at 2.48 kV/mm compared with pure SR increases 15 fold under same

  14. Properties of composition sinter prepared from fibrous barium titanate and nanometer zirconia

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fibrous Batium Titanate particles,30-50 μm long,prepared by a hydrothermal reaction,and the monoclinic phase and nanometer Zirconia,11.6 nm long were prepared by citric acid reaction respectively.Then,the two were composite sintered to produce a new functional material by making full use of crystal-axis orientation of fibers and the activity of nanometer powder.The analydid of composition and microstructure of the new material in terms of XRD and SEM.shows that the solid solution was formed between fibers and nanometer powder,and the distance between lattice(d value)of Barium Titanate changed.But the crystal-axis orientations of fibers remain unchanged.

  15. Preparation and characterization of a novel bone graft composite containing bone ash and egg shell powder

    Indian Academy of Sciences (India)

    Gunasekaran Krithiga; Thotapalli P Sastry

    2011-02-01

    Egg shells which were hitherto discarded as wastes were collected, purified and powdered into a particle size in the range of 5–50 m. A composite bone graft material in cylindrical form was prepared using egg shell powder (ESP), bone ash (BA) and gelatin. These bone grafts were characterized for their FT–IR, TGA, XRD, SEM and mechanical properties. The mechanical studies indicate that the composite having a stoichiometric ratio of BA (3 g) and ESP (7 g) has shown better mechanical properties. X-ray diffraction (XRD) data indicated the crystallographic nature of BA is akin to hydroxyapatite (HA) and both BA and ESP did not lose their crystalline nature when bone grafts were prepared. This revealed that ESP may be used as a component in bone graft utilizing the solid waste from the poultry industry.

  16. Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state

    Institute of Scientific and Technical Information of China (English)

    Ma Peng-Cheng; Zhan You-Bang

    2008-01-01

    This paper presents a scheme for probabilistic remote preparation of a three-particle entangled GreenbergerHorne-Zeilinger (GHZ) state via three-particle orthonormal basis projective measurement,and then directly generalize the scheme to multi-particle case.It is shown that by using N pairs of bipartite non-maximally entangled states as the quantum channel and N-particle orthonormal basis projective measurement,the multi-particle remote preparation can be successfully realized with a certain probability.

  17. PARTICLE MORPHOLOGY OF POLY(VINYL CHLORIDE) RESIN PREPARED BY SUSPENDED EMULSION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Zhen-li Wei; Zhi-xue Weng; Zhi-ming Huang

    2003-01-01

    Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particles were formed at low polymerization conversions. The amount of fine particles decreases as conversion increases and disappears at conversions greater than 30%. Scanning electron micrographs show that PVC grains are composed of loosely coalesced primary particles, especially for PVC resins prepared in the presence of poly(vinyl alcohol) dispersant. The size of primary particles increases and porosity decreases with the increase of conversion. In view of the particle features of PVC resin, a particle formation mechanism including the formation of primary particles and grains is proposed. The formation process of primary particles includes the formation of particle nuclei, coalescence of particle nuclei to form primary particles,and growth of primary particles. PVC grains are formed by the coagulation of primary particles. The loose coalescence of primary particles is caused by the colloidal stability of primary particles and the low swelling degree of vinyl chloride in the primary particles.

  18. An efficient visible-light photocatalyst prepared by modifying AgBr particles with a small amount of activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Desong, E-mail: dswang06@126.com; Zhao, Mangmang; Luo, Qingzhi; Yin, Rong; An, Jing; Li, Xueyan

    2016-04-15

    Highlights: • An efficient visible-light photocatalyst was prepared by modifying AgBr particles. • A small amount of activated carbon was used to modify AgBr particles. • The modified AgBr exhibited improved visible-light photocatalytic performances. - Abstract: An efficient visible-light photocatalyst was successfully prepared by modifying AgBr particles with a small amount of activated carbon (AC) via a simple chemical precipitation approach. The AC/AgBr composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis diffuse reflection spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy. The photocatalytic performances of the AC/AgBr composite were investigated by evaluating photodegradation of methyl orange (MO) and phenol under visible light irradiation, and the effects of the AC content in the composite, concentrations of AC/AgBr composite and MO, carrier scavengers on MO photodegradation rate were systematically investigated. The results indicated that the modification of AC can hardly change the crystalline and crystal size of AgBr particles, while significantly improve their specific surface areas, visible-light absorption and separation efficiency of photogenerated electron–hole pairs. Compared with pure AgBr, the AC/AgBr composite exhibited drastically enhanced visible-light photocatalytic activity and stability. The photogenerated electrons and holes, hydroxyl radicals are responsible to the photodegradation of organic pollutants, and the photogenerated holes are the main active species. On the basis of the results and the properties of AC and AgBr, the visible-light photocatalytic mechanism of the AC/AgBr composite was discussed.

  19. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-12-01

    Full Text Available Mullite whiskers reinforced SiC/Al2O3 composites were prepared by microwave sintering in a microwave chamber with TE666 resonant mode. Original SiC particles were coated with SiO2 using sol-gel processing and mixed with Al2O3 particles. Mullite was formed in the reaction between SiO2 and Al2O3. The isostatically pressed cylindrical pellets were sintered from 1350 °C to 1600 °C for 30 min. Physical and chemical responses were investigated by detecting changes in reflected power during the microwave sintering process. XRD was carried out to characterize the samples and showed that mullite could be formed at 1200 °C. Bridging of mullite whiskers between Al2O3 and SiC particles was observed by SEM and is due to a so-called local hot spot effect, which was the unique feature for microwave sintering. The optimized microwave sintering temperature was 1500 °C corresponding to the maximum amount of mullite whiskers within SiC/Al2O3 composites. The high electro-magnetic field enhanced the decomposition of mullite at higher temperatures above 1550 °C. The mechanical properties of mullite whiskers reinforced SiC/Al2O3 composites are much better than the SiC/Al2O3 composites without mullite whiskers.

  20. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  1. Composition and Particle Size Retrievals for Homogeneous Binary Aerosols

    Science.gov (United States)

    Niedziela, R. F.; Argon, P.; Bejcek, L.

    2014-12-01

    Tropospheric aerosols have widely varying compositions, shapes, and sizes. The ability to measure these physical characteristics, coupled with knowledge about their optical properties, can provide insight as to how these particles might participate in atmospheric processes, including their interaction with light. Over the past several years, our laboratory has been involved in developing methods to determine basic physical properties of laboratory-generated particles based on the analysis of infrared extinction spectra of multi-component aerosols. Here we report the results of a complete study on the applicability of well-known refractive index mixing rules to homogeneous binary liquid organic aerosols in an effort to yield in situ measurements of particle size and composition. In particular, we present results for terpenoid (carvone/nopinone) and long-chain hydrocarbon (squalane/squalene) mixtures. The included image shows model carvone/nopinone extinction spectra that were computed using the Lorentz-Lorenz mixing rule on complex refractive index data for the pure components.

  2. Temperature-induced crystallization and compactibility of spray dried composite particles composed of amorphous lactose and various types of water-soluble polymer.

    Science.gov (United States)

    Takeuchi, H; Yasuji, T; Yamamoto, H; Kawashima, Y

    2000-04-01

    The purpose of this study was to investigate the temperature-induced crystallization and the compactibility of the composite particles containing amorphous lactose and various types of polymers. The composite particles were prepared by spray-drying an aqueous solution of lactose and various types of gel forming water-soluble polymers at various formulating ratios. The stabilizing effect of hydroxypropylcellulose (HPC) and polyvinyl pyrrolidone (PVP) on amorphous lactose in the composite particles was smaller than that of sodium alginate in comparing at the same formulating ratios. The difference in the stability of amorphous lactose in the composite particles was attributed to the difference in the glass transition temperature (Tg) of the composite particles caused by the polymers formulated. The tensile strength of compacted spray-dried composite particles containing the polymers was higher than commercial lactose for direct tabletting (DCL21). The tensile strength of the composite particles was increased with an increase in water content in the particles. The difference in compactibility of the composite particles containing the different amount of polymer and water could be explained by the difference in Tg of the particles.

  3. Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

    Directory of Open Access Journals (Sweden)

    Jianxin Zou

    2012-01-01

    Full Text Available In the present work, Mg-rich Mg-Ni ultrafine powders were prepared through an arc plasma method. The phase components, microstructure, and hydrogen storage properties of the powders were carefully investigated. It is found that Mg2Ni and MgNi2 could be obtained directly from the vapor state reactions between Mg and Ni, depending on the local vapor content in the reaction chamber. A nanostructured MgH2 + Mg2NiH4 hydrogen storage composite could be generated after hydrogenation of the Mg-Ni ultrafine powders. After dehydrogenation, MgH2 and Mg2NiH4 decomposed into nanograined Mg and Mg2Ni, respectively. Thermogravimetry/differential scanning calorimetry (TG/DSC analyses showed that Mg2NiH4 phase may play a catalytic role in the dehydriding process of the hydrogenated Mg ultrafine particles.

  4. Preparation and thermomechanical properties of stir cast Al–2Mg–11TiO2 (rutile) composite

    Indian Academy of Sciences (India)

    S K Chaudhury; A K Singh; C S S Sivaramakrishnan; S C Panigrahi

    2004-12-01

    Al–2Mg–11TiO2 composite was successfully prepared by the conventional vortex method. The macrostructural observation revealed columnar structure with rutile particles being distributed throughout the matrix in the form of agglomerates. Microstructural observation showed the presence of micro voids in the particle-enriched zone. Electrical resistivity measurement showed a phase transformation at 360°C, which was consistent during DSC studies due to the precipitation of TiAl3 phase. As-cast composite was both hot rolled and cold rolled successfully to 50 and 40% reduction, respectively. The mechanical properties of the thermomechanically-worked composite were studied. From fractographic analysis, it was clear that the crack had nucleated at the particle/matrix interface and propagated through the matrix by microvoid coalescence. Ultimate tensile strength of cold worked composite was found to be better than the hot worked material.

  5. Preparation of electromechanically active silicone composites and some evaluations of their suitability for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Iacob, Mihail; Bele, Adrian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Patras, Xenia [“Apollonia” University, 2 Muzicii Street, 700511 Iasi (Romania); Pasca, Sorin [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine Iaşi, Aleea Mihail Sadoveanu nr. 3, Iasi 700490 (Romania); Butnaru, Maria [“Gr. T. Popa” University of Medicine and Pharmacy, Faculty of Medical Bioengineering, 16 University Street, 700115 Iasi (Romania); Alexandru, Mihaela [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ovezea, Dragos [National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest 030138 (Romania); Cazacu, Maria, E-mail: mcazacu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania)

    2014-10-01

    Some films based on electromechanically active polymer composites have been prepared. Polydimethylsiloxane-α,ω-diols (PDMSs) having different molecular masses (Mv = 60 700 and Mv = 44 200) were used as matrix in which two different active fillers were incorporated: titanium dioxide in situ generated from its titanium isopropoxide precursor and silica particles functionalized with polar aminopropyl groups on surface. A reference sample based on simple crosslinked PDMS was also prepared. The composites processed as films were investigated to evaluate their ability to act as efficient electromechanical actuators for potential biomedical application. Thus, the surface morphology of interest for electrodes compliance was analysed by atomic force microscopy. Mechanical and dielectric characteristics were evaluated by tensile tests and dielectric spectroscopy, respectively. Electromechanical actuation responses were measured by interferometry. The biocompatibility of the obtained materials has been verified through tests in vitro and, for valuable films, in vivo. The experimental, clinical and anatomopathological evaluation of the in vivo tested samples did not reveal significant pathological modifications. - Highlights: • Silicone composites differing by the filler and matrix characteristics were prepared. • Stress–strain curves were registered in normal and cyclic modes for composite films. • The dielectric permittivity, dielectric loss, and conductivity were determined. • Electromechanical response of the films was measured at an applied voltage. • Some biocompatibility tests, both in vitro and in vivo, were performed.

  6. Characterization of Three-Dimensional Printed Composite Scaffolds Prepared with Different Fabrication Methods

    Directory of Open Access Journals (Sweden)

    Szlązak K.

    2016-06-01

    Full Text Available An optimal method for composites preparation as an input to rapid prototyping fabrication of scaffolds with potential application in osteochondral tissue engineering is still needed. Scaffolds in tissue engineering applications play a role of constructs providing appropriate mechanical support with defined porosity to assist regeneration of tissue. The aim of the presented study was to analyze the influence of composite fabrication methods on scaffolds mechanical properties. The evaluation was performed on polycaprolactone (PCL with 5 wt% beta-tricalcium phosphate (TCP scaffolds fabricated using fused deposition modeling (FDM. Three different methods of PCL-TCP composite preparation: solution casting, particles milling, extrusion and injection were used to provide material for scaffold fabrication. The obtained scaffolds were investigated by means of scanning electron microscope, x-ray micro computed tomography, thermal gravimetric analysis and static material testing machine. All of the scaffolds had the same geometry (cylinder, 4×6 mm and fiber orientation (0/60/120°. There were some differences in the TCP distribution and formation of the ceramic agglomerates in the scaffolds. They depended on fabrication method. The use of composites prepared by solution casting method resulted in scaffolds with the best combination of compressive strength (5.7±0.2 MPa and porosity (48.5±2.7 %, both within the range of trabecular bone.

  7. Preparation of conductive polypyrrole (PPy) composites under supercritical carbon dioxide conditions

    Institute of Scientific and Technical Information of China (English)

    LI Gang; LIAO Xia; SUN Xinghua; YU Jian; HE Jiasong

    2007-01-01

    Electrically conductive composites were prepared via the chemical oxidative polymerization of the pyrrole monomer in polystyrene (PS) and zinc neutralized sulfonated polystyrene (Zn-SPS) films under supercritical carbon dioxide (SC-CO2) conditions.The strong swelling effect of SCCO2 made polypyrrole (PPy) particles not only form on the surface,but also become incorporated into the film,resulting in a homogeneous structure with a relatively higher conductivity.By comparison,the composite prepared in aqueous solutions shows a skin-core structure and a conductivity of 3 to 4 orders of magnitude lower than that of the former due to the diffusion-controlled process of the pyrrole monomer.The percolation thresholds of PS/PPy and Zn-SPS/PPy composites were 6.2% and 2.7% of the volume fraction of PPy,respectively,much lower than the theoretically predicted value of 16%.Moreover,the conductive composites prepared under SC-CO2 conditions showed higher thermal stability,especially in the high-temperature region.

  8. Retention of composite resin restorations in class IV preparations.

    Science.gov (United States)

    Eid, Hani

    2002-01-01

    Clinicians often utilized composite resin restorations in combination with different types of preparation to restore class IV fractures on anterior incisors. A new preparation technique called (stair-step chamfer technique) is investigated in this study to detect bond strength to tooth structure. Eighty-eight bovine teeth were divided into 4 groups. Group I had twenty-three samples with a 45 degree bevel that extended 2 millimeters beyond the fracture line. Group II had twenty-three samples with a circumferential chamfer, which extended 2 mm beyond the fracture line and half the enamel thickness in depth. Group III had twenty-three samples with a facial stair-step chamfer, which followed the anatomical contour and extended 2 mm beyond the fracture line with a lingual plain chamfer. Group IV had eighteen samples as controls, which were untreated teeth. The first three groups were prepared and restored with hybrid composite resin in conjunction with a single step bonding agent and as surface penetrating sealer, then tested for shear-bond strength on the Instron machine. The results were that there was no significant difference found between the treated teeth when tested for shear-bond strength. However, according to the site of the fracture, the stair-step chamfer technique gave significantly better results. It can be concluded that, the stir-step chamfer technique provides the clinician better environment to place a composite resin restoration resulting in good shear-bond strength and better esthetics.

  9. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  10. Sponge Gourd (Luffa Cylindrica Reinforced Polyester Composites: Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Valcineide O.A. Tanobe

    2014-05-01

    Full Text Available Increasing environmental concern along with the drive to find substitutes for synthetic fibers and value added applications for low cost and renewable plant fibers have led to the development of composites based on biomaterials. One of the drawbacks encountered in such exercise is the lack of adhesion between the incorporated plant fibers and synthetic polymeric matrices. Such drawback can be reduced by appropriate treatment of fibers. This paper describes the chemical treatments used on sponge gourd (Luffa cylindrica fibers of Brazil to prepare their composites with polyester resin. Production of short fiber-polymer composite as well as mat-polyester composites is presented here. Characterization of the composites in respect of evaluation of density, water absorption, thermalstability, tensile properties and impact strength were made and the results are discussed. Observed impact strengthand tensile properties are discussed based on the fractographic studies of the composites.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 273-280, DOI:http://dx.doi.org/ 10.14429/dsj.64.7327

  11. Preparation and Characterization of Fe2O3/Al2O3 Nano-composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Al2O3/Fe2O3 nano-composites were prepared by sol-gel route. The effect of Fe2O3 content on the structure, grain size and characterization of the composite were investigated through X-ray diffraction and M(o)ssbauer spectrum. The X-ray diffraction results show that Al2O3/Fe2O3 nano-composites with the Fe2O3, content of 40 wt% can be obtained after heat-treated at 900℃. The M(o)ssbauer effect results show that all samples exhibit clear super-paramagnetic phenomenon. Particles grow and defects reduce with the increasing of Fe2O3 conteni and some α-Fe2O3 stay magnetic order.

  12. Preparation and Electrical Property of Polypyrrole-Polyethylene Composite

    Science.gov (United States)

    Yoshino, Katsumi; Yin, Xiao Hong; Morita, Shigenori; Nakanishi, Yutaka; Nakagawa, Shinichi; Yamamoto, Hideo; Watanuki, Toshiro; Isa, Isao

    1993-02-01

    Polypyrrole-polyethylene composites have been prepared by pressing the mixture of polypyrrole coated and non-coated polyethylene spheres. Electrical conductivity is enhanced by more than 16 orders of magnitude and its activation energy decreases remarkably at concentration of polypyrrole coated polyethylene above around 10-20%, which corresponds to effective polypyrrole concentration of 0.1-0.2%. These characteristics can be explained by a percolation model. That is, at this concentration electrodes are bridged by conducting channel of doped polypyrrole. Thermoelectric power increases in proportion to absolute temperature and is independent on concentration of polypyrrole coated polyethylene sphere above 30%, which support the percolation model. The electrical property of this polypyrrole-polyethylene composite is found to be stable up to 160°C. The application of this composite to the semiconducting layer of a cable has been proposed.

  13. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Hee [School of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea); Polymer Electrolyte Fuel Cell Research Center, Hydrogen and Fuel Cell Department, Korea Institute of Energy Research (KIER), 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Park, Jin-Soo; Yim, Sung-Dae; Park, Seok-Hee; Kim, Chang-Soo [Polymer Electrolyte Fuel Cell Research Center, Hydrogen and Fuel Cell Department, Korea Institute of Energy Research (KIER), 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Lee, Young-Moo [School of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2008-07-01

    Organic/inorganic composite membranes were prepared using two different polymers. BPO{sub 4} particles were introduced into polymers via an in situ sol-gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO{sub 4} particles were homogenously dispersed in the polymer matrices and BPO{sub 4} particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO{sub 4} composite membranes had much smaller BPO{sub 4} particle size than the SPEEK/BPO{sub 4} composite membranes due to well dispersion of BPO{sub 4} sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO{sub 4} particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO{sub 4} particles at similar water uptake due to the increase in freezable water and effect of particle size. (author)

  14. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process

    Science.gov (United States)

    Park, Seung-Hee; Park, Jin-Soo; Yim, Sung-Dae; Park, Seok-Hee; Lee, Young-Moo; Kim, Chang-Soo

    Organic/inorganic composite membranes were prepared using two different polymers. BPO 4 particles were introduced into polymers via an in situ sol-gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO 4 particles were homogenously dispersed in the polymer matrices and BPO 4 particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO 4 composite membranes had much smaller BPO 4 particle size than the SPEEK/BPO 4 composite membranes due to well dispersion of BPO 4 sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO 4 particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO 4 particles at similar water uptake due to the increase in freezable water and effect of particle size.

  15. Thermodynamic Equilibrium Morphology Prediction of Polyurethane/Polyacrylate Composite Latex Particles

    Institute of Scientific and Technical Information of China (English)

    CHAI Shu-Ling; JIN Ming-Martin

    2008-01-01

    Composite particles were prepared by seeded surfactant-free batch emulsion polymerization at 80 ℃ using K2S2O8 as an initiator, and polyurethane aqueous dispersion as seed particles. The acrylate monomers were continuously added into the reactor under a starving condition in the second stage polymerization. The synthesized hybrid emulsions were found to form an inverted core-shell structure with polyacrylate as the core and with polyurethane as the shell from the observation with a transmission electron microscope. The interfacial tensions between polymer and polymer as well as polymer and water were calculated with a simple method according to harmonic mean equation and used in a mathematical model based on the minimum interfacial energy change principle to predict the equilibrium morphology. The observed particle morphologies were in good agreement with the predicted ones. The surface properties of the dried films formed from polyurethane (PU)/polyacrylate (PA) composite emulsions were also studied by contact angle measurements, showing that the shell part of the composite emulsions is preferentially oriented toward the surface layers of the dried films.

  16. Poly(d,l-lactide-co-glycolide–chitosan composite particles for the treatment of lung cancer

    Directory of Open Access Journals (Sweden)

    Arya N

    2015-04-01

    Full Text Available Neha Arya, Dhirendra S Katti Department of Biological Sciences and Bioengineering, Indian Institute of Technology – Kanpur, Kanpur, Uttar Pradesh, India Abstract: Tumor heterogeneity makes combination chemotherapy one of the preferred modes of treatment regimens. In this work, sequential exposure of two anticancer agents, paclitaxel (Tx followed by topotecan (TPT, was shown to have a synergistic effect on non-small cell lung cancer (NSCLC cell line, NCI-H460. In order to improve patient compliance, the aforementioned concept was translated into a drug delivery system comprising of poly(d,l-lactide-co-glycolide (PLGA–chitosan composite particles. TPT-containing chitosan micro-/nanoparticles were prepared by the facile technique of electrospraying and encapsulated within PLGA microparticles using emulsion-solvent evaporation technique for delayed release of TPT. The formulation containing Tx- and TPT-loaded composite particles demonstrated synergism when exposed to NCI-H460 cellular aggregates (tumoroids generated in vitro. Overall, the results of this study demonstrated the potential of the formulation containing Tx and PLGA–chitosan (TPT-loaded composite particles for the treatment of lung cancer. Keywords: drug delivery system, solid tumor, paclitaxel, topotecan, sequential admini­stration

  17. Fabrication of Poly-(DL-Lactic Acid)--Wollastonite Composite Films with Surface Modified {beta}-CaSiO3 Particles.

    Science.gov (United States)

    Lingzhi Ye; Jiang Chang; Congqin Ning; Kaili Lin

    2008-03-01

    Bioactive poly-(DL-lactic acid) (PDLLA)-wollastonite composite films are successfully fabricated using surface modified wollastonite (m beta-CaSiO 3) particles through solvent casting-evaporation method. The surface modification of beta-CaSiO3 particles are conducted by reaction of the ceramic particles with dodecyl alcohol. Surface morphology, tensile strength, and bioactivity of the composite films are investigated. The results show that the particle distribution and tensile strength of the composite films with modified beta-CaSiO3 particles are significantly improved while the bioactivity is retained. As a result, the maximum tensile strength is enhanced 52.2% when compared with the PDLLA-beta-CaSiO3 composite films prepared using unmodified beta-CaSiO3 particles when the inorganic filler content is 15 wt%. Scanning electron microscopy (SEM) observation suggests that the modified m beta-CaSiO3 particles are homogeneously dispersed in the PDLLA matrix. The bioactivity of the composite films is evaluated by soaking in a simulated body fluid (SBF) and the result suggests that the modified composite film is still bioactive and can induce the formation of HAp on its surface after the immersion in SBF, despite the bonded dodecyl alkyl on the surface of the inorganic particles. All these results imply that the surface modification of beta-CaSiO3 with dodecyl alcohol is an effective approach to prepare PDLLA-beta-CaSiO3 composite with improved properties.

  18. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique.

    Science.gov (United States)

    Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi

    2014-01-23

    We prepared sustained-release microcapsules using a three-fluid nozzle (3N) spray drying technique. The 3N has a unique, three-layered concentric structure composed of inner and outer liquid nozzles, and an outermost gas nozzle. Composite particles were prepared by spraying a drug suspension and an ethylcellulose solution via the inner and outer nozzles, respectively, and mixed at the nozzle tip (3N-PostMix). 3N-PostMix particles exhibited a corrugated surface and similar contact angles as ethylcellulose bulk, thus suggesting encapsulation with ethylcellulose, resulting in the achievement of sustained release. To investigate the microencapsulation process via this approach and its usability, methods through which the suspension and solution were sprayed separately via two of the four-fluid nozzle (4N) (4N-PostMix) and a mixture of the suspension and solution was sprayed via 3N (3N-PreMix) were used as references. It was found that 3N can obtain smaller particles than 4N. The results for contact angle and drug release corresponded, thus suggesting that 3N-PostMix particles are more effectively coated by ethylcellulose, and can achieve higher-level controlled release than 4N-PostMix particles, while 3N-PreMix particles are not encapsulated with pure ethylcellulose, leading to rapid release. This study demonstrated that the 3N spray drying technique is useful as a novel microencapsulation method.

  19. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles

    Science.gov (United States)

    Li, Xiangming; Hu, Yingmo; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-04-01

    Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high-performance dual-functional copper-based composite particles that catalyze reactions and simultaneously serve as a SERS (surface enhanced Raman spectra) active, label-free reporting agent. Polyelectrolyte-modified reduced graphene oxide particles are used as the reactive precursors in the fabrication method. Upon adding Cu(NO3)2 solutions into the precursor dispersions, composite particles comprised by copper/copper oxide core and polyelectrolyte-graphene shell were facilely obtained under sonication. The as-prepared composite particles efficiently catalyzed the conversion of 4-nitrophenol to 4-aminophenol and simultaneously acted as the SERS-active substrate to give enhanced Raman spectra of the produced 4-aminophenol. Taking advantage of the assembling capabilities of polyelectrolyte shells, the composite particles could be further assembled onto a planar substrate to catalyze organic reactions, facilitating their application in various conditions. We expect this report to promote the fabrication and application of copper-based multifunctional particles.Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high

  20. Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Wei Cui; Hui Xu; Jian-hao Chen; Shu-bin Ren; Xin-bo He; Xuan-hui Qu

    2016-01-01

    Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering tempera-ture, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915°C when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for in-creasing the relative density of the composite.

  1. The Synergistic Effects of the Micro and Nano Particles in Micro-nano Composites on Enhancing the Resistance to Electrical Tree Degradation.

    Science.gov (United States)

    Wang, Wenxuan; Yang, Ying

    2017-08-17

    A new method of increasing the durability and reliability of polymer dielectrics has been proposed by designing a composite structure of the micro and nano particles. The synergistic effects of the micro particles and nano particles are found to enhance the resistance to electrical tree and extend the lifetime of polymer dielectrics for insulations. Epoxy loaded with the micro and nano SiO2 particles at different concentrations are prepared as micro-nano composites. The micro particles show the blocking effects on the electrical tree channel and the interfaces of the nano particles lead to the inhibiting effects on the tree inception and propagation. The lifetime of the micro-nano composite samples in the experiments extends to 4 times of the neat epoxy. The new type of micro-nano composites can be widely applied in future electronic and electrical energy areas.

  2. Novel preparation of carbon-TiO{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde-González, María P., E-mail: maria.elizalde.uap.mx@gmail.com; García-Díaz, Esmeralda; Sabinas-Hernández, Sergio A.

    2013-12-15

    Highlights: • Glycerol and TiOSO{sub 4}·xH{sub 2}O produced a carbon-anatase precursor in a one-step sol–gel reaction. • Ultrasound irradiation led to the formation of crystalline TiO{sub 2} prior to thermal treatment. • Carbon and TiO{sub 2} nanocrystals developed larger specific surface in composites. • Large band gap (3.6 eV) in TiO{sub 2} was obtained. • Benzenesulfonic acid identified by LC–MS among decomposition reaction intermediates of the dye Acid Orange 7. -- Abstract: Carbon-TiO{sub 2} sulfated composites were obtained from TiOSO{sub 4}·xH{sub 2}O and glycerol as the TiO{sub 2} and carbon sources, respectively. The precursor xerogels were prepared in a one-step ultrasonic-assisted sol–gel reaction, followed by thermal treatment at 400 °C under a nitrogen atmosphere to produce carbon-TiO{sub 2} sulfated composites. XRD, micro-Raman, SEM, and TEM studies showed that the composites consisted of nanocrystalline clusters of TiO{sub 2} and carbon. Ultrasonication in glycerol promoted the crystallinity of the xerogel precursors prior to thermal treatment. X-ray powder diffraction and Raman spectroscopy studies confirmed that glycerol also facilitated the formation of small crystallites. The band gaps of carbon-TiO{sub 2} composites with two different carbon loadings were found to be 3.06 eV and 2.69 eV. By contrast, the band gap of TiO{sub 2} prepared by our method was 3.53 eV. Calcination of the precursors led to an unusual increase in the specific surface and porosity of the composites compared to TiO{sub 2}. The photocatalytic activities of the prepared composites were tested in a decomposition assay of Acid Orange 7. The reaction was monitored by UV–vis spectrophotometry and by LC-ESI-(Qq)-TOF-MS-DAD. Some intermediate species were identified by LC-ESI-QTOF-MS.

  3. Classical Communication Cost and Probabilistic Remote Preparation of Four-Particle Entangled W State

    Institute of Scientific and Technical Information of China (English)

    HOU Kui; SHI Shou-Hua

    2009-01-01

    We present a scheme for probabilistic remote preparation of the four-particle entangled W state by using four partial entangled two-particle states as the quantum channel. In this scheme, if Alice (sender) performs four-particle projective measurements and Bob (receiver) adopts some appropriate unitary operation, the remote state preparation can be successfully realized with certain probability. The classical communication cost is also calculated. However, the success probability of preparation can be increased to 1 for four kinds of special states.

  4. 超滤膜法CuO-ZnO复合催化剂的制备及催化性能%Preparation of nano-sized CuO-ZnO composite particles by UF membrane method and their catalysis performance

    Institute of Scientific and Technical Information of China (English)

    张春芳; 陈鑫; 许炯; 白云翔; 顾瑾; 孙余凭

    2012-01-01

    采用中空纤维超滤(UF)膜反应器制备了CuO-ZnO复合催化剂,考察了复合方式、ZnO含量及催化反应条件等因素对催化剂性能的影响。结果表明:共沉淀法制备的CuO-ZnO催化剂由于形成的铜锌固溶体具有协同催化效应,其性能优于复配法制备的CuO/ZnO催化剂;当ZnO质量分数为25%时,CuO-ZnO催化剂的比表面积达40.47 m2/g,颗粒粒径为19 nm;该催化剂在反应温度为90℃、用量为9 g/L条件下催化异丙苯氧化反应时,过氧化氢异丙苯产率可达38.74%,反应选择性达到84.62%,表现出最佳催化效果。%A series of nano-sized CuO-ZnO composite particles were synthesized with a UF membrane reactor and were used for the oxidation of cumene reaction.It was found that CuO-ZnO prepared by the co-precipitation method had better catalyst performance than CuO/ZnO prepared by blending CuO with ZnO with the same ZnO content.The SEM results showed that ZnO was dispersed well in CuO in the case that the ZnO weight content in CuO-ZnO was 25%.The effect of ZnO content in CuO-ZnO on the catalytic performance for cumene oxide reaction was also investigated.With increasing ZnO content,catalytic performance reach a maximum value of CHP yield of 28% and selectivity of over 84.62% at ZnO weight content of 25% under the same reaction conditions:temperature,90 ℃;CuO-ZnO particle dosage 10 g/L;airflow rate 600 mL/min.

  5. Preparation and biocompatibility of poly (methyl methacrylate reinforced with bioactive particles

    Directory of Open Access Journals (Sweden)

    Pereira Marivalda de Magalhães

    2003-01-01

    Full Text Available Calcium phosphates and bioactive glasses have been used in many biomedical applications for more than 30 years due basically to their bioactive behavior. However, ceramics are too brittle for applications that require high levels of toughness and easy processability. In this work, a biphasic calcium phosphate (BCP and a bioactive glass composition (BG were combined with polymers to produce composites with tailorable properties and processability. The BCP particles were synthesized by a precipitation technique. The BG particles were produced by sol-gel processing. The BCP particles were treated with a silane agent to improve the compatibility between particles and the polymer matrix. Dense samples were produced by hot pressing (200 °C a mixture of 30 wt.% of particles in poly (methyl methacrylate. The samples produced were characterized by X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Mechanical properties were evaluated by a three point bending test. Samples were also submitted to in vitro bioactivity test and in vivo toxicity test. Results showed that the production of the composites was successfully achieved, yielding materials with particles well dispersed within the matrices. Evaluation of the in vivo inflammatory response showed low activity levels for all composites although composites with silane treated BCP particles led to milder inflammatory responses than composites with non-treated particles.

  6. Synthesis and characterization of PMMA/Al2O3 composite particles by in situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    Hui Liu; Hongqi Ye; Tianquan Lin; Tao Zhou

    2008-01-01

    In order to improve its dispersibility, superfine alumina (Al2O3) was encapsulated with poly (methyl methacrylate) (PMMA) by in situ emulsion polymerization. It was found that only when the concentration of sodium dodecyl sulfate (SDS) was much higher than its critical micelle concentration, could PMMA/Al2O3 composite particles with high percentage of grafting (PG) be prepared. The same results were obtained between the experimental and stoichiometric amounts of tris (dodecylbenzenesulfonate) isopropoxide (NDZ), indicating that single-molecule-layer adsorption had taken place between NDZ and Al2O3. Analysis using FTIR. TEM and XPS showed that PMMA/Al2O3 composite particles with core-shell structure had been successfully synthesized by in sire emulsion polymerization. Compared to Al2O3, thermal stability and dispersibility of the composite particles showed marked improvement.

  7. Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity

    Science.gov (United States)

    2012-01-01

    In a mixed solvent of water and ethanol, polystyrene/titanium dioxide (PSt/TiO2) composite particles of core-shell structure were prepared by hydrolysis of tetrabutyl titanate in the presence of cationic PSt particles or anionic PSt particles surface-treated using γ-aminopropyl triethoxysilane. Hollow TiO2 particles were obtained through calcination of the PSt/TiO2 core-shell particles to burn off the PSt core or through dissolution of the core by tetrahydrofuran (THF). An alternative process constituted of preheating the PSt/TiO2 particles at 200°C to allow partial crystallization followed by calcination or PSt dissolution by THF. The outcome TiO2 particles thus prepared were examined by TEM, and hollow TiO2 particles were observed. The crystalline phase structure and phase transformation were characterized, which revealed that preheating before the removal of the PSt core was useful to achieve the desired hollow TiO2 particles, and the calcination process was beneficial to the formation of anatase and rutile structures. The tests of TiO2 particles as catalyst in the photodegradation of Rhodamine B demonstrated that a much higher catalytic activity was observed with the TiO2 hollow particles prepared through calcination combined with preheating. PMID:23176612

  8. Removal of Phenol from aqueous solutions by Polymeric composites containing Ni and Co particles

    Directory of Open Access Journals (Sweden)

    Simone Simplício

    2013-01-01

    Full Text Available Magnetic composites have a wide range of potential technological applications; however the evaluation of this material for extraction of phenolic compounds has not been sufficiently studied. Due to its high toxicity and solubility the removal of phenolic compounds from the aquatic environments has critical importance. In this work polymeric composites were prepared by anchoring Ni and Co particles on sulfonatedpoly(styrene-co-divinylbenzene PS-DVB. The PS-DVB beads were synthesized by suspension polymerization and reacted with acetyl sulfate, aiming to obtain sulfonated copolymers. All materials were capable of removing phenol from aqueous solutions. The phenol adsorption kinetics was influenced by the polymer porosity and swelling capacity in water. The composite derivative of the more porous copolymer impregnated with nickel (C1SNi was the most efficient in phenol removal, with the sorption equilibrium being established more rapidly than for the other composites. The pseudo second-order model was more adequate to describe the phenol adsorption process for the composite C1SNi. The Langmuir model describes successfully the phenol removal by this composite.

  9. Preparation of Rare-Earth Composite Ferrite Magnetic Fluid

    Institute of Scientific and Technical Information of China (English)

    蒋荣立; 刘永超; 刘守坤; 鞠明礼

    2004-01-01

    Water-based rare-earth ferrite (RexFe3-xO4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by adding Dy3+ and the saturation magnetic intensity will reach the highest if n(Fe)∶n(Dy3+)=30∶1. The modification and formation mechanism of RexFe3-xO4 particles is discussed in detail. The physicochemical properties are investigated by the Gouy magnetic balance, IR, TEM, XRD, and EDX, etc.

  10. Spherical YAG:Ce3+ Phosphor Particles Prepared by Spray Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Qi Faxin; Wang Haibo; Zhu Xianzhong

    2005-01-01

    Spherical YAG:Ce3+ phosphor particles with narrow size distribution were prepared by spray pyrolysis. The effects of the concentration of solution, the flow rate of carrier gas and the annealing temperature on the phosphor morphology were studied. The productivity of precursor particles shows a trend of drop after rising with the increase of concentration. Raising the flow rate of nitrogen can improve the productivity of the precursor particles. Phosphor prepared by spray pyrolysis has obviously higher emission intensity than that synthesized by solid state reaction, spray pyrolysis makes Ce3+ ions well distributed in the crystal lattice as the luminescent centers, and phosphor particles have regular sphericity and narrow size distribution.

  11. Preparation and properties of lignin-epoxy resin composite

    Directory of Open Access Journals (Sweden)

    Quanfu Yin

    2012-11-01

    Full Text Available A cross-linked biomass-polymer composite with a lignin content of up to 60% was prepared by blending lignin with an epoxy resin and polyamine using a hot press molding process. The characteristics of the curing reaction of lignin with epoxy resin were studied using DSC and FTIR analysis. The effect of molding temperature and molding pressure on the mechanical properties and microstructure of the lignin/epoxy resin composite was also studied by SEM, DMA, and TG analyses. The results showed that the epoxy resin can be cured by lignin, and the curing temperature for the blends can be reduced by the introduction of a polyamine cure agent. The properties of the composite, such as bending strength, impact strength, glass-transition temperature, and thermal stability, were evidently influenced by the molding process. A good interfacial combination was formed between lignin and epoxy resin. Increasing the molding temperature and pressure proved beneficial to achieve a better interfacial combination for the composite, and the degree of ductile fracture was increased in the fracture surface of the composite.

  12. Bioactive carbon-PEEK composites prepared by chemical surface treatment.

    Science.gov (United States)

    Miyazaki, Toshiki; Matsunami, Chisato; Shirosaki, Yuki

    2017-01-01

    Polyetheretherketone (PEEK) has attracted much attention as an artificial intervertebral spacer for spinal reconstruction. Furthermore, PEEK plastic reinforced with carbon fiber has twice the bending strength of pure PEEK. However, the PEEK-based materials do not show ability for direct bone bonding, i.e., bioactivity. Although several trials have been conducted for enabling PEEK with bioactivity, few studies have reported on bioactive surface modification of carbon-PEEK composites. In the present study, we attempted the preparation of bioactive carbon-PEEK composites by chemical treatments with H2SO4 and CaCl2. Bioactivity was evaluated by in vitro apatite formation in simulated body fluid (SBF). The apatite formation on the carbon-PEEK composite was compared with that of pure PEEK. Both pure PEEK and carbon-PEEK composite formed the apatite in SBF when they were treated with H2SO4 and CaCl2; the latter showed higher apatite-forming ability than the former. It is conjectured that many functional groups able to induce the apatite nucleation, such as sulfo and carboxyl groups, are incorporated into the dispersed carbon phase in the carbon-PEEK composites.

  13. Preparation of SiC Fiber Reinforced Nickel Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Nanlin Shi; Jun Gong; Chao Sunt

    2012-01-01

    A method of preparing continuous(Al+Al2O3)-coated SiC fiber reinforced nickel matrix composite was presented,in which the diffusion between SiC fiber and nickel matrix could be prevented.Magnetron sputtering is used to deposit Ni coating on the surface of the(Al+Al2O3)-coated SiC fiber in preparation of the precursor wires.It is shown that the deposited Ni coating combines well with the(Al+Al2O3) coating and has little negative effect on the tensile strength of(Al+Al2O3)-coated SiC fiber.Solid-state diffusion bonding process is employed to prepare the(Al+Al2O3)-coated SiC fiber reinforced nickel matrix with 37% fibers in volume.The solid-state diffusion bonding process is optimized and the optimum parameters are temperature of 870,pressure of 50 MPa and holding time of 2 h.Under this condition,the precursor wires can diffuse well,composite of full density can be formed and the(Al+Al2O3) coating is effective to restrict the reaction between SiC fiber and nickel matrix.

  14. Preparation and tribological performance of electrodeposited Ni-TiB2-Dy2O3 composite coatings

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaozhen; LI Xin; YU Aibing; HUANG Weijue

    2009-01-01

    TiB2 and Dy2O3 were used as codeposited particles in the preparation of Ni-TiB2-Dy2O3 composite coatings to improve its per-formance. Ni-TiB2-Dy2O3 composite coatings were prepared by electrodeposition method with a nickel cetyltrimethylanunonium bromide and hexadecylpyridinium bromide solution containing TiB2 and Dy2O3 particles. The content of codeposited TiB2 and Dy2O3 in the compos-ite coatings was controlled by adding TiB2 and Dy2O3 particles of different concentrations into the solution, respectively. The effects of TiB2 and Dy2O3 content on microhardness, wear mass loss and friction coefficients of composite coatings were investigated. The composite coat-ings were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and scanning electron microscopy (SEM) techniques. Ni-TiB2-Dy2O3 composite coatings showed higher microhardness, lower wear mass loss and friction coefficient compared with those of the pure Ni coating and Ni-TiB2 composite coatings. The wear mass loss of Ni-TiB2-Dy2O3 composite coatings was 9 and 1.57 times lower than that of the pure Ni coating and Ni-TiB2 composite coatings, respectively. The friction coefficient of pure Ni coating, Ni-TiB2 and Ni-TiB2-Dy2O3 composite coatings were 0.723, 0.815 and 0.619, respectively. Ni-TiB2-Dy2O3 composite coat-ings displayed the least friction coefficient among the three coatings. DY2O3 particles in composite coatings might serve as a solid lubricant between contact surfaces to decrease the friction coefficient and abate the wear of the composite coatings. The loading-bearing capacity and the wear-reducing effect of the Dy2O3 particles were closely related to the content of Dy2O3 particles in the composite coatings.

  15. Composite oxygen electrode and method for preparing same

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a composite oxygen electrode, comprising - a porous backbone structure comprising two separate but percolating phases, the first phase being an electronic conducting phase, the second phase being an oxide ion conducting phase; and - an electrocatalytic layer...... on the surface of said backbone structure, wherein said electrocatalytic layer comprises first and second nanoparticles, wherein the first and second particles are randomly distributed throughout said layer. The present invention further comprises a method of producing the above composite electrode, comprising...... the steps of: - forming a porous backbone structure comprising two separate but percolating phases, the first phase being an electronic conducting phase, the second phase being an oxide ion conducting phase; and - applying an electrocatalytic layer on the surface of said backbone structure, wherein said...

  16. A novel approach in preparing polymer/nano-CaCO3 composites

    Institute of Scientific and Technical Information of China (English)

    Zhengying LIU; Runze YU; Mingbo YANG; Jianmin FENG; Wei YANG; Bo YIN

    2008-01-01

    An novel compounding process using nano-CaCO3 aqueous suspension for preparing polymer/ nano-CaCO3 composites with nanoparticles dispersed at the nanoscale is reported. The process is called the mild mixing method. In this method, the pre-dispersed nano-particle suspensions are blended with melting polymers in a weak shearing field using an extruder, followed by removing the water from the vent. The four typical poly-meric nanocomposites were prepared by mild mixing method. The dispersion of nano-CaCO3 in the matrix of the polymer at the nanoscale was confirmed by scanning electron microscopy (SEM). The molecular weights of polycarbonate (PC) and its nanocomposite showed that the degradation had not occurred during the mild mixing processing. The mechanical properties of the composite with 1.5 wt-% nano-CaCO3 improve slightly. It proved that this approach is suitable for the preparation of nano-composites based on both polar and non-polar polymers.

  17. Enhanced CO2 permeability of membranes by incorporating polyzwitterion@CNT composite particles into polyimide matrix.

    Science.gov (United States)

    Liu, Ye; Peng, Dongdong; He, Guangwei; Wang, Shaofei; Li, Yifan; Wu, Hong; Jiang, Zhongyi

    2014-08-13

    In this study, polyzwitterion is introduced into a CO2 separation membrane. Composite particles of polyzwitterion coated carbon nanotubes (SBMA@CNT) are prepared via a precipitation polymerization method. Hybrid membranes are fabricated by incorporating SBMA@CNT in polyimide matrix and utilized for CO2 separation. The prepared composite particles and hybrid membranes are characterized by transmission electron microscopy (TEM) with element mapping, field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC) and an electronic tensile machine. Water uptake and water state of membranes are measured to probe the relationship among water uptake, water state and CO2 transport behavior. Hybrid membranes show significantly enhanced CO2 permeability compared to an unfilled polyimide membrane at a humidified state. A hybrid membrane with 5 wt % SBMA@CNT exhibits the maximum CO2 permeability of 103 Barrer with a CO2/CH4 selectivity of 36. The increase of CO2 permeability is attributed to the incorporation of the SBMA@CNT composite particles. First, SBMA@CNT form interconnected channels for CO2 transport due to the facilitated transport effect of the quaternary ammonium in repeat unit of pSBMA. Second, SBMA@CNT improve water uptake and adjust water state of membrane, which further increases CO2 permeability. Meanwhile, the variation of CO2/CH4 selectivity is dependent on the bound water portion in the membrane. A gas permeation test at a dry state and a pressure test are conducted to further probe the membrane separation performance.

  18. Nano-sized particles, processes of making, compositions and uses thereof

    Science.gov (United States)

    O'Brien, Stephen [New York, NY; Yin, Ming [Los Alamos, NM

    2012-05-22

    The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and/or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.

  19. Preparation of Size-Controlled Silver Nanoparticles and Chitin-Based Composites and Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Vinh Quang Nguyen

    2013-01-01

    Full Text Available A simple method for the preparation of size-controlled spherical silver nanoparticles (Ag NPs was reported for their generation by autoclaving a mixture of silver-containing glass powder and glucose. The particle size is regulated by the glucose concentration, with concentrations of 0.25, 1.0, and 4.0 wt% glucose providing small (3.48±1.83 nm in diameter, medium (6.53±1.78 nm, and large (12.9±2.5 nm particles, respectively. In this study, Ag NP/chitin composites were synthesized by mixing each of these three Ag NP suspensions with a <5% deacetylated (DAc chitin powder (pH 7.0 at room temperature. The Ag NPs were homogenously dispersed and stably adsorbed onto the chitin. The Ag NP/chitin composites were obtained as yellow or brown powders. Approximately 5, 15, and 20 μg of the small, medium, and large Ag NPs, respectively, were estimated to maximally adsorb onto 1 mg of chitin. The bactericidal and antifungal activities of the Ag NP/chitin composites increased as the amount of Ag NPs in the chitin increased. Furthermore, smaller Ag NPs (per weight in the chitin composites provided higher bactericidal and anti-fungal activities.

  20. Remote preparation of a Greenberger-Home-Zeilinger state via a two-particle entangled state

    Institute of Scientific and Technical Information of China (English)

    Li Hong-Cai; Lin Xiu-Min; Li Xing-Min Hua; Yang Rang-Can

    2007-01-01

    We present two schemes for realizing the remote preparation of a Greenberger- Home- Zeilinger (GHZ) state. The first scheme is to remotely prepare a general N-particle GHZ state with two steps. One is to prepare a qubit state by using finite classical bits from sender to receiver via a two-particle entangled state, and the other is that the receiver introduces N - 1 additional particles and performs N - 1 controlled-not (C-Not) operations. The second scheme is to remotely prepare an JV-atom GHZ state via a two-atom entangled state in cavity quantum electrodynamics (QED). The two schemes require only a two-particle entangled state used as a quantum channel, so we reduce the requirement for entanglement.

  1. Preparation and properties of polymer and quantum dot composites

    Institute of Scientific and Technical Information of China (English)

    Tian Hongye; Shao Jun; He Rong; Gao Feng; Cui Daxiang; Gu Hongchen

    2006-01-01

    Quantum dots (QDs) were prepared in an organic system through a simple and low-cost wet chemistry method.Polymer beads with a diameter of 60-70 nm and specific functional groups were synthesized by a particular seeded emulsion polymerization technique.QDs were embedded in the polymer beads with the specific functional groups through dissolving and swelling method,which provided the condition for the conjunction of biomolecules and QDs as fluorescent probes.The prepared composites were characterized with UV-Vis,PL,TEM,FTIR,CLSM and conductance titration etc.The results show that QDs are successfully embedded in polymer beads,which breaks the limitation that the conjunction of biomolecules and QDs can be achieved only for those synthesized in aqueous system.

  2. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry.

    Science.gov (United States)

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun

    2015-10-01

    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials.

  3. Cerium dioxide with large particle size prepared by continuous precipitation

    Institute of Scientific and Technical Information of China (English)

    李梅; 王觅堂; 柳召刚; 胡艳宏; 吴锦绣

    2009-01-01

    Cerium dioxide(CeO2) has attracted much attention and has wide applications such as automotive exhaust catalysts,polishing materials for optical glasses and additives for advanced glasses,as well as cosmetic materials.The particle size and its distribution are key factors to the performance of the materials in the functional applications.However,control of particle size is still a challenge in materials synthesis.Therefore,continuous precipitation of cerium oxalate(precursor of ceria) was carried out at dif...

  4. Polyion complex (PIC) particles: Preparation and biomedical applications.

    Science.gov (United States)

    Insua, Ignacio; Wilkinson, Andrew; Fernandez-Trillo, Francisco

    2016-08-01

    Oppositely charged polyions can self-assemble in solution to form colloidal polyion complex (PIC) particles. Such nanomaterials can be loaded with charged therapeutics such as DNA, drugs or probes for application as novel nanomedicines and chemical sensors to detect disease markers. A comprehensive discussion of the factors affecting PIC particle self-assembly and their response to physical and chemical stimuli in solution is described herein. Finally, a collection of key examples of polyionic nanoparticles for biomedical applications is discussed to illustrate their behaviour and demonstrate the potential of PIC nanoparticles in medicine.

  5. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-07

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation of Conductive PANI/PVA Composites via an Emulsion Route

    Directory of Open Access Journals (Sweden)

    Xiang-Qin Wang

    2013-01-01

    Full Text Available A facile and novel strategy for preparing polyaniline/polyvinyl alcohol (PANI/PVA composite emulsion is reported wherein the reaction is carried out via the emulsion polymerization using ammonium peroxydisulfate (APS as the oxidizing agent and dodecylbenzene sulfonic acid (DBSA as the protonic acid. The PANI/PVA composite membranes have been characterized using optical microscope, scanning electron microscope (SEM, thermogravimetric analysis (TGA, Fourier transform infrared spectroscopy (FTIR, and electrochemical workstation. It is interesting that the electrical conductivity of the PANI/PVA composites is estimated to be as high as 1.28 S/cm. The experimental results show that the surface of PANI/PVA composite membranes exhibits good integrity. The PANI particles at the nanoscale are dispersed in the PVA matrix, and the electrochromic behaviors of PANI/PVA composites obtained at different polymerization temperatures can be compared based on cyclic voltammetry (CV curves, revealing that PANI/PVA composites synthesized at room temperature are better than those synthesized at low temperature.

  7. Preparation and characterisation of compositionally graded SmCo films

    Science.gov (United States)

    Dias, Andre; Gomez, Gabriel; Givord, Dominique; Bonfim, Marlio; Dempsey, Nora M.

    2017-05-01

    A compositionally graded SmCo film has been prepared by magnetron sputtering using a Co target partially covered by a Sm foil. The film was deposited onto a 100 mm thermally oxidised Si substrate and then annealed ex-situ. The SmCo film has been used as a test sample to validate an in-house developed scanning MOKE (Magneto-Optic Kerr effect) system incorporating a pulsed magnetic field source capable of producing fields as high as 10 T. A 2D array of hysteresis loops was measured across the entire wafer. The evolution in coercivity measured along a selected 1D strip of the sample is correlated with changes in composition and crystallographic structures measured using Energy Dispersive Spectroscopy and X-ray diffraction. The high field Scanning MOKE system holds much potential for optimizing the extrinsic properties of known hard magnetic phases as well as in the search for new hard magnetic phases.

  8. Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hongjun; Zangar, Richard C.

    2017-01-17

    Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine, and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.

  9. Preparation and properties of wheat gluten/silica composites

    Institute of Scientific and Technical Information of China (English)

    SONG Yi-Hu; ZHENG Qiang; ZHOU Wen-Ce

    2009-01-01

    Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG disper-sion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Mor-phology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents.

  10. Preparation and properties of wheat gluten/silica composites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG disper-sion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Morphology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents.

  11. Electron Cryomicroscopy of Membrane Proteins: Specimen Preparation for Two-Dimensional Crystals and Single Particles

    OpenAIRE

    Schmidt-Krey, Ingeborg; Rubinstein, John L.

    2010-01-01

    Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possi...

  12. Preparation and Characterization of Novel PVC/Silica–Lignin Composites

    Directory of Open Access Journals (Sweden)

    Łukasz Klapiszewski

    2015-09-01

    Full Text Available An advanced SiO2–lignin hybrid material was obtained and tested as a novel poly(vinyl chloride (PVC filler. The processing of compounds of poly(vinyl chloride in the form of a dry blend with silica–lignin hybrid material and, separately, with the two components from which that material was prepared, was performed in a Brabender mixing chamber. An analysis was made of processing (mass melt flow rate, MFR, thermal (thermogravimetric analysis, Congo red and Vicat softening temperature test and tensile properties of the final PVC composites with fillers in a range of concentrations between 2.5 wt % and 10 wt %. Additionally, the effects of filler content on the fusion characteristics of PVC composites were investigated. The homogeneity of dispersion of the silica–lignin hybrid material in the PVC matrix was determined by optical microscopy and SEM. Finally, it should be noted that it is possible to obtain a PVC composite containing up to 10 wt % of silica–lignin filler using a melt processing method. The introduction of hybrid filler into the PVC matrix results in a homogeneous structure of the composites and positive processing and functional properties, especially thermal stability and Vicat softening temperature.

  13. Many-body problems with composite particles and q-Heisenberg algebras

    Energy Technology Data Exchange (ETDEWEB)

    Avancini, S.S. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Fisica; Krein, G.

    1994-07-01

    It is proposed to employ deformed communication relations to treat many body problems of composite particles. The deformation parameter is interpreted as a measure of the effects of the statistics of the internal degrees of freedom of the composite particles. A simple application of the method is made for the case of a gas of composite bosons. (author). 14 refs.

  14. Assembly route toward raspberry-like composite particles and their controlled surface wettability through varied dual-size binary roughness

    Science.gov (United States)

    Fan, Xin; Niu, Lin; Wu, Yuehuan; Cheng, Jiang; Yang, Zhuoru

    2015-03-01

    Sulfonated PS template/aniline medium method was used to assemble raspberry-like composite particles with varied dual-size binary morphology. The assembly efficiency of SiO2 particles on templates was found to increase with sulfonation temperature as well as sulfuric acid concentration. For sulfonation time one turning point appeared because there existed one balance between microgel structure formation and PSS chains detachment. The optimal preparation condition was finally obtained and proved effective for other types of anionic particles. Wettability of surfaces with varied binary roughness was studied and the results showed that dual-size structure could further improve the hydrophobic performance. The contact angles were found to increase with the size ratio of template particles/outer particles.

  15. Reproducible Preparation of Silver Sols with Small Particle Size Using Borohydride Reduction: For Use as Nuclei for Preparation of Larger Particles.

    Science.gov (United States)

    Shirtcliffe; Nickel; Schneider

    1999-03-01

    Silver colloids are useful as substrates for surface enhanced Raman spectroscopy (SERS). The results are, however, seldom quantitative as the distribution of particle sizes in silver suspensions can vary from sample to sample and thus the SERS spectra can vary in intensity. Monodisperse silver sols are relatively difficult to prepare compared with gold or latex colloids as the nucleation process is difficult to control. Previous workers have used a system where small particles are formed in one process and grown in a second reaction. In this paper a simple procedure is outlined by which the small, "seed" particles (starter sols) can be prepared; this method is simpler and more reproducible than that used in the past. The process by which the sols can be grown is not discussed in detail here as it is the subject of a forthcoming publication. Copyright 1999 Academic Press.

  16. Investigation of protein adsorption performance of Ni2+-attached diatomite particles embedded in composite monolithic cryogels.

    Science.gov (United States)

    Ünlü, Nuri; Ceylan, Şeyda; Erzengin, Mahmut; Odabaşı, Mehmet

    2011-08-01

    As a low-cost natural adsorbent, diatomite (DA) (2 μm) has several advantages including high surface area, chemical reactivity, hydrophilicity and lack of toxicity. In this study, the protein adsorption performance of supermacroporous composite cryogels embedded with Ni(2+)-attached DA particles (Ni(2+)-ADAPs) was investigated. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic composite cryogel column embedded with Ni(2+)-ADAPs was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA) both from aqueous solutions and human serum. The chemical composition and surface area of DA was determined by XRF and BET method, respectively. The characterization of composite cryogel was investigated by SEM. The effect of pH, and embedded Ni(2+)-ADAPs amount, initial HSA concentration, temperature and flow rate on adsorption were studied. The maximum amount of HSA adsorption from aqueous solution at pH 8.0 phosphate buffer was very high (485.15 mg/g DA). It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Ni(2+)-ADAPs in poly(2-hydroxyethyl methacrylate) composite cryogel without significant loss of adsorption capacity. The efficiency of albumin adsorption from human serum before and after albumin adsorption was also investigated with SDS-PAGE analyses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. PREPARATION OF WATERBORNE ULTRAFINE PARTICLES OF EPOXY RESIN BY PHASE INVERSION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    YANG Zhengzhong; XU Yuanze; WANG Shengjie; YU Hao; CAI Weizhen

    1997-01-01

    Waterborne ultrafine particles of epoxy resin were prepared by phase inversion technique The results of SEM revealed that the particles diameter was in the range of 50 to l()am and the effects on amount of water required at phase inversion point were also dis()ed.

  18. A novel method of preparing metallic Janus silica particles using supercritical carbon dioxide

    NARCIS (Netherlands)

    Yang, Qiuyan; de Vries, Marcel H; Picchioni, Francesco; Loos, Katja

    2013-01-01

    In this study, we demonstrate a novel fabrication method to prepare metallic Janus silica particles by embedding nanosized silica particles on a spherical polystyrene (PS) substrate in supercritical carbon dioxide (sc CO2), followed by labelling with gold nanoparticles on the exposed part of the

  19. A novel method of preparing metallic Janus silica particles using supercritical carbon dioxide

    NARCIS (Netherlands)

    Yang, Qiuyan; de Vries, Marcel H; Picchioni, Francesco; Loos, Katja

    2013-01-01

    In this study, we demonstrate a novel fabrication method to prepare metallic Janus silica particles by embedding nanosized silica particles on a spherical polystyrene (PS) substrate in supercritical carbon dioxide (sc CO2), followed by labelling with gold nanoparticles on the exposed part of the sil

  20. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor.

    Science.gov (United States)

    Wang, Hongzhi; Nakamura, Hiroyuki; Uehara, Masato; Miyazaki, Masaya; Maeda, Hideaki

    2002-07-21

    A stable interface between two insoluble currents in a microchannel reactor has been obtained by selecting the solvents and adjusting the flow rate; titania particles with a size of less than 10 nm could be prepared continuously on this interface; this new method shows great advantage for the control and measurement of particle sizes.

  1. Preparing poly (caprolactone) micro-particles through solvent-induced phase separation

    DEFF Research Database (Denmark)

    Li, Xiaoqiang; Kanjwal, Muzafar Ahmed; Stephansen, Karen

    2012-01-01

    Poly (caprolactone) (PCL) particles with the size distribution from 1 to 100 μm were prepared through solvent-induced phase separation, in which polyvinyl-alcohol (PVA) was used as the matrix-forming polymer to stabilize PCL particles. The cloud point data of PCL-acetone-water was determined...

  2. Preparation and characterization of the electrodeposited Cr-Al{sub 2}O{sub 3}/SiC composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Gao Jifeng, E-mail: readlot@tom.com [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-09-01

    To increase the SiC content in Cr-based coatings, Cr-Al{sub 2}O{sub 3}/SiC composite coatings were plated in Cr(VI) baths which contained Al{sub 2}O{sub 3}-coated SiC powders. The Al{sub 2}O{sub 3}-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al{sub 2}O{sub 3}/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al{sub 2}O{sub 3}/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.

  3. Optical dispersion of composite particles consisting of millicharged constituents

    CERN Document Server

    Kvam, Audrey K

    2016-01-01

    Composite dark matter (DM) comprised of electrically charged constituents can interact with the electromagnetic field via the particle's dipole moment. This interaction results in a dispersive optical index of refraction for the DM medium. We compute this refractive index for atomic dark matter and more strongly bound systems, modeled via a harmonic oscillator potential. The dispersive nature of the index will result in a time lag between high and low energy photons simultaneously emitted from a distant astrophysical observable. This time lag, due to matter dispersion, could confound potential claims of Lorentz invariance violation (LIV) which can also result in such time lags. We compare the relative size of the two effects and determine that the dispersion due to DM is dwarfed by potential LIV effects for energies below the Planck scale.

  4. Optical dispersion of composite particles consisting of millicharged constituents

    Science.gov (United States)

    Kvam, Audrey K.; Latimer, David C.

    2016-08-01

    Composite dark matter (DM) comprised of electrically charged constituents can interact with the electromagnetic field via the particle's dipole moment. This interaction results in a dispersive optical index of refraction for the DM medium. We compute this refractive index for atomic DM and more strongly bound systems, modeled via a harmonic oscillator potential. The dispersive nature of the index will result in a time lag between high and low energy photons simultaneously emitted from a distant astrophysical observable. This time lag, due to matter dispersion, could confound potential claims of Lorentz invariance violation (LIV) which can also result in such time lags. We compare the relative size of the two effects and determine that the dispersion due to DM is dwarfed by potential LIV effects for energies below the Planck scale.

  5. Lattice Constant Dependence on Particle Size for Ceria prepared from a Citrate Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Morris, V N [Analog Devices, Raheen Business Park, Raheen, Limerick (Ireland); Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Farrell, R A [Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Sexton, A M [Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Morris, M A [Dimensional Solids Group, Chemistry Department, University College Cork, Cork (Ireland); Centre for Research into Advanced Nanostructures and Nanodevices (CRANN), Trinity College, Dublin (Ireland)

    2006-02-22

    High surface area ceria nanoparticles have been prepared using a citrate solgel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures, and X-ray methods used to determine their lattice parameters. The particle sizes have been assessed using transmission electron microscopy (TEM) and the lattice parameter found to fall with decreasing particle size. The results are discussed in the light of the role played by surface tension effects.

  6. Surface Modification of Nanometer TiO2 and Effect of Preparing TiO2/P(St-co-DVB) Composites by Dispersion Polymerization

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; FENG Yaqing; LI Xianggao; XIE Jianyu; LI Gang

    2006-01-01

    Surface modification of nanometer titanium dioxide particles and effect of preparing TiO2/P (St-co-DVB) composites by dispersion polymerization are described. To introduce vinyl group onto the surface of titanium dioxide particles, the titanium dioxide particles were surface-modified with a silicane coupling agent, methacryloylpropyltrimethoxysilicane. Polymer encapsulation in the presence of either modified-titanium dioxide particles or unmodified-titanium dioxide particles was carried out by dispersion polymerization of styrene, divinylbenzene in ethanol medium with polyvinylpyrrolidone as stabilizer, and 2, 2'-azobis(isobutyronitrile) as initiator. The modified-titanium dioxide was analyzed with Fourier-transform infrared spectroscopy( FTIR), UV-Vis spectrophotometer, thermogravimetric analysis and transmission microscope. The polymer encapsulation of modified-titanium dioxide and unmodified-titanium dioxide particles was confirmed with FTIR and transmission electron microscope. Results show that compared with unmodified-titanium dioxide, modified-titanium dioxide is more suitable for preparing inorganic core/organic shell composites.

  7. Synthesis and magnetic properties of barium-calcium hexaferrite particles prepared by sol-gel and microemulsion techniques

    Science.gov (United States)

    Jotania, R. B.; Khomane, R. B.; Chauhan, C. C.; Menon, S. K.; Kulkarni, B. D.

    The preparation of W-type hexaferrite particles with the composition BaCa 2Fe 16O 27 by microemulsion and a stearic acid sol-gel method with and without surfactant has been investigated at various sintering temperatures. The structural and magnetic characteristics have been studied by X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) techniques. The effect of sintering temperature on the properties of BaCa 2Fe 16O 27 hexaferrites has been studied. The value of saturation magnetization ( Ms) depends on types of surfactant used. The sample prepared in the presence of polyoxyethylene (20) sorbitan monooleat (Tween 80) shows low saturation magnetization ( Ms=15.10 emu/g), whereas the other sample prepared in the presence of a surfactant cetyltrimethylammonium bromide (CTAB) exhibits high saturation magnetization ( Ms=24.60 emu/g) compared to the normal sample.

  8. Effect of Heat Treatment on Mechanical Properties and Phase Composition of Magnesium-Aluminum Composite Prepared by Explosive Welding

    Science.gov (United States)

    Arisova, V. N.; Trykov, Yu. P.; Slautin, O. V.; Ponomareva, I. A.; Kondakov, A. E.

    2015-09-01

    Results are given for a study of the effect of heat treatment regimes on the nature of change in micromechanical properties and phase composition of magnesium-aluminum composite material AD1-MA2-1 prepared by explosive welding.

  9. Influence of surface preparation on fracture load of resin composite-based repairs

    Science.gov (United States)

    Mateos-Palacios, Rocío; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda; Fons-Font, Antonio

    2015-01-01

    The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering. PMID:25810848

  10. Influence of surface preparation on fracture load of resin composite-based repairs.

    Science.gov (United States)

    Agustín-Panadero, Rubén; Mateos-Palacios, Rocío; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda; Fons-Font, Antonio

    2015-02-01

    The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering.

  11. Preparation of gold nanoparticles and determination of their particles size via different methods

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad; Usanase, Gisele [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Oulmi, Kafia; Aberkane, Fairouz; Bendaikha, Tahar [Laboratory of Chemistry and Environmental Chemistry(LCCE), Faculty of Science, Material Science Department, University of Batna, 05000 (Algeria); Fessi, Hatem [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Zine, Nadia [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Agusti, Géraldine [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France); Errachid, El-Salhi [Institut des Sciences Analytiques (ISA), Université Lyon, Université Claude Bernard Lyon-1, UMR-5180, 5 rue de la Doua, F-69100 Villeurbanne (France); Elaissari, Abdelhamid, E-mail: elaissari@lagep.univ-lyon1.fr [University of Lyon, University Lyon-1, CNRS, UMR-5007, LAGEP, F-69622 Villeurbanne (France)

    2016-07-15

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be prepared in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.

  12. Self-healing epoxy composites: preparation, characterization and healing performance

    Directory of Open Access Journals (Sweden)

    Reaz A. Chowdhury

    2015-01-01

    Full Text Available Low velocity impact damage is common in fiber reinforced composites, which leads to micro-crack and interfacial debonding, where damage is microscopic and invisible. The concept of self-healing composites can be a way of overcoming this limitation and extending the life expectancy while expanding their usage in structural applications. In the current study, extrinsic self-healing concept was adopted using urea-formaldehyde microcapsules containing room temperature curing epoxy resin system (SC-15 as the healing agent prepared by in situ polymerization. Microcapsules were characterized using Fourier transform infrared spectroscopy (FTIR for structural analysis. Size and shape of microcapsules were studied using optical microscopy and scanning electron microscopy (SEM. Size of the microcapsules was between 30 and 100 μm. Thermal characterization was carried out using thermogravimetric analysis. Microcapsules were thermally stable till 210 °C without any significant decomposition. Fiber reinforced composite fabrication was carried out in three different steps. In the first step, epoxy resin was encapsulated in urea-formaldehyde shell material, which was confirmed by FTIR analysis. In the next step, encapsulation of amine hardener was achieved by vacuum infiltration method. These two different microcapsules were added with epoxy at 10:3 ratio and composite fabrication was done with hand layup method. Finally, healing performance was measured in terms of low velocity impact test and thermoscopy analysis. Low velocity impact test with 30 J and 45 J impact loads confirmed the delamination and micro-crack in composite materials and subsequent healing recovery observed in terms of damaged area reduction and restoration of mechanical properties.

  13. Preparation, characterization, and electromagnetic shielding effectiveness of the composites of nano-particles of Co dispersed on expanded graphite%纳米金属钴/膨胀石墨复合材料的制备、表征及其电磁屏蔽性能

    Institute of Scientific and Technical Information of China (English)

    邢晓玲; 黄玉安; 黄润生; 唐涛; 徐铮; 沈俭一

    2009-01-01

    Electromagnetic shielding involves the reflection and/or absorption of electromagnetic radiations by electromagnetic materials. Nowadays, electromagnetic radiations emanate from a wide variety of sources that interfere with electronic devices and affect the health of people. Thus, the radiation shielding at wide frequency range with high effectiveness is increasingly required to meet the high demand of today's society for the reliability of electronics and the health of people. Expanded graphite (EG) has been found to be a highly effective electromagnetic shielding material in the range of 1~2 GHz because of its excellent electrical conductivity. The primary mechanism of electromagnetic shielding of EG is the reflection loss due to its high conductivity, and thus its shielding effectiveness (SE) decreases sharply with the decrease of frequency. The absorption loss is a function of the product of electrical conductivity and magnetic permeability relative to copper. Thus, the metals with high magnetic permeability may play the role of absorbing electromagnetic radiations, especially at low frequencies. The composite materials of EG and magnetic metals may exhibit both absorption and reflection losses and increase the shielding effectiveness ultimately in a wide range of frequencies. In addition, there are more advantages when EG is used as a component of electromagnetic materials since it is light, flexible, corrosion resistant, and cost effective, which may make the composites more attractive than the traditional polymermatrix composites. The composites with nano-particles of cobalt dispersed on the nano-layers of expanded graphite (EG) were prepared by the impregnation of EG with ethanol solutions of cobalt acetate, followed by drying and reduction in H_2. The cobalt loadings on EG were varied up to 60% by weight. The spherical particles of Co were found to be well spread on the layers of EG with sizes of mainly 300~l 000 nm. The ratio σ_r/σ_r of the

  14. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  15. Surface modification of submicronic TiO{sub 2} particles prepared by ultrasonic spray pyrolysis for visible light absorption

    Energy Technology Data Exchange (ETDEWEB)

    Dugandzic, Ivan M. [Institute of Technical Sciences of SASA (Serbia); Jovanovic, Dragana J. [University of Belgrade, Vinca Institute of Nuclear Sciences (Serbia); Mancic, Lidija T. [Institute of Technical Sciences of SASA (Serbia); Zheng, Nan; Ahrenkiel, Scott P. [South Dakota School of Mines and Technology (United States); Milosevic, Olivera B. [Institute of Technical Sciences of SASA (Serbia); Saponjic, Zoran V.; Nedeljkovic, Jovan M., E-mail: jovned@vinca.rs [University of Belgrade, Vinca Institute of Nuclear Sciences (Serbia)

    2012-10-15

    Spherical, submicronic TiO{sub 2} assemblage with high specific surface area and controllable phase composition was prepared in the process of ultrasonic spray drying/pyrolysis in a wide temperature range (150-800 Degree-Sign C) by using as a precursor aqueous colloidal solution consisting of TiO{sub 2} nanoparticles (4.5 nm). Submicronic, soft and grained spherical TiO{sub 2} particles (d = 370-500 nm) comprising clustered nanocrystals (<10 nm) were obtained at low processing temperature, while particle densification, intensive growth of the clustered primary units and anatase-to-rutile transformation ({approx}30 wt%) were observed at the higher temperatures. Detailed structural and morphological characterisation were performed by X-ray powder diffraction, scanning and field emission electron microscopy, transmission electron microscopy, and laser particle size analysis. Moreover, the surface modification of TiO{sub 2} particles through the formation of charge-transfer (CT) complex was achieved with different ligands: ascorbic acid, dopamine, catechol, 2,3-dihydroxynaphthalene, and anthrarobin. Optical properties of the surface-modified TiO{sub 2} particles were studied by using diffuse reflection spectroscopy. The binding structure between the surface titanium atoms and different ligands was determined by using Fourier transform infrared spectroscopy. The formation of CT complexes induced significant red shift of optical absorption in comparison to unmodified TiO{sub 2} particles.

  16. Preparation and properties of cellulose nanocrystals reinforced collagen composite films.

    Science.gov (United States)

    Li, Weichang; Guo, Rui; Lan, Yong; Zhang, Yi; Xue, Wei; Zhang, Yuanming

    2014-04-01

    Collagen films have been widely used in the field of biomedical engineering. However, the poor mechanical properties of collagen have limited its application. Here, rod-like cellulose nanocrystals (CNCs) were fabricated and used to reinforce collagen films. A series of collagen/CNCs films were prepared by collagen solution with CNCs suspensions homogeneously dispersed at CNCs: collagen weight ratios of 1, 3, 5, 7, and 10. The morphology of the resulting films was analyzed by scanning electron microscopy (SEM), the enhancement of the thermomechanical properties of the collagen/CNCs composites were demonstrated by thermal gravimetric analysis (TGA) and mechanical testing. Among the CNCs contents used, a loading of 7 wt % led to the maximum mechanical properties for the collagen/CNCs composite films. In addition, in vitro cell culture studies revealed that the CNCs have no negative effect on the cell morphology, viability, and proliferation and possess good biocompatibility. We conclude that the incorporation of CNCs is a simple and promising way to reinforce collagen films without impairing biocompatibility. This study demonstrates that the composite films show good potential for use in the field of skin tissue engineering.

  17. Synthesis of composite particles through emulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants.

    Science.gov (United States)

    Qu, Ailan; Wen, Xiufang; Pi, Pihui; Cheng, Jiang; Yang, Zhuoru

    2008-01-01

    The composite particles with core/shell structure resulting from the combination of silica seed and hydrophobic copolymer (dodecafluoroheptyl methacrylate (DFMA), gamma-methacryloxypropyltriisopropoxidesilane (MAPTIPS), methyl methacrylate, butyl acrylate) were synthesized by emulsion polymerization. The amount of the silica seeds, concentration of reactive surfactant, as well as the addition of DFMA and MAPTIPS, have strong influences on the morphology of composite particles. It has been shown that it would be possible to produce stable organic/inorganic composite particles with inhomogeneous core/shell structure encapsulated by hydrophobic fluorinated acrylate even though using unmodified silica particles and admixture of anionic and nonionic surfactants. However, there was an obvious difference on the morphologies of core-shell structure whether the DFMA and MAPTIPS were added or not. It was concluded that two kinds of polymerization approaches might coexist in the presence of DFMA and MAPTIPS for raw silica. One clear advantage of this process is that there is only one silica bead for each composite particle. This kind of stable core-shell structural hybrid latex is useful for preparing high performance hydrophobic coating.

  18. Iron Solubility Depending on the Mineralogical Composition of Dust Particles

    Science.gov (United States)

    Journet, E.; Desboeufs, K.; Chevaillier, S.; Caquineau, S.

    2008-12-01

    Dust deposition in open ocean is recognised as an important supply of iron for phytoplankton community. Various previous studies have shown an extremely variable solubility (0,01-80%) and numerous factors influencing this solubility, as suspended particules concentration, chemical and photochemical atmospheric process, aerosol sources (Maholwald et al., 2005). Despite these numerous studies, any factor of influence seems to be dominant enough to enable a comprehensive parameterization of iron solubility. Recently, dissolution experiment have been conducted on pure mineral that composed dust, like illite, feldpars, smectite and iron (hydr-)oxide. This study has shown that iron solubility is extremely dependent on the mineral that is considered. Iron coming from aluminosilicates is much more soluble that iron derived from iron (hyd-)oxides (Journet et al., 2008). According to these results, dissolution experiments have been led on dust particles collected in different source areas, in West Africa, and after transport, in tropical Atlantic Ocean. These experiments show that iron solubility is very low, always under 0,6%, in agreement with others observations in these regions (e.g. Baker et al., 2006). Furthermore, from bulk mineralogical analysis of the dust samples, iron solubility in source areas seems exclusively dependent on the mineralogical composition of dust particle. The greater iron solubilities (0,3%) corresponds to dust originated from central Sahara (Algeria, Lybia, Tunisia) where smectite are abundant in comparison to the others studied area (Sahel and Western Sahara) where iron mainly comes from iron (hydr-)oxide and illite. In this case, iron solubility does not exceed 0,13%. From comparison between these results and the lab data issued from Journet et al. (2008), a parameterization to estimate iron solubility from mineralogical composition of dust has been established and validated. Far from the source, iron solubility is usually greater than dust

  19. An analysis of fabrication methods for embedding particles sensors into a composite structure

    Science.gov (United States)

    Spayde, Dustin L.; Myers, Oliver J.

    2013-04-01

    The properties of highly magnetostictive materials, such as Terfenol-D, have opened the door to a wide variety of application possibilities. One such developing application is embedding magnetostictive particles (MSP) as sensors for determining the structural integrity of composite materials over the course of the operating life. The process of embedding these particles during the fabrication of the composite structure presents many challenges. This paper will briefly discuss and show the relationship between particle density and the output of a uni-axial induction based sensor. This relationship is critical for defining the goal of embedding process in this paper, to create a uniform uni-axial distribution of particles within the composite structure. Multiple methods of embedding magnetostrictive particles into a composite structure are detailed and then compared to determine their relative effectiveness. Methods included are: a simple by-hand spread of particles onto uncured prepreg composite, using the controlled adhesiveness of the prepreg to separate particles, applying the particles using a unidirectional application tool, introducing the particles into the epoxy mix to create a slurry during a VARTM layup, and spraying the particles onto a tacky composite surface during layup. Each method is used to embed particles into a composite beam or analog beam. That beam is then scanned with the uniaxial induction sensor to determine the effectiveness of the method. Results show promise for the adhesive method while the remaining processes show critical flaws.

  20. Preparation and microwave-absorbing property of EP/BaFe12O19/PANI composites

    Science.gov (United States)

    Feng, Huixia; Bai, Dezhong; Tan, Lin; Chen, Nali; Wang, Yueyi

    2017-07-01

    In this paper, we introduced expanded perlite (EP) into the system of ferrite composites for the first time. By sol-gel self-propagating combustion method, expanded perlite/barium ferrite (EP/BaFe12O19) was prepared, and then ternary composites of expanded perlite/barium ferrite/polyaniline (EP/BaFe12O19/PANI) were obtained by in-situ oxidative polymerization of aniline on EP/BaFe12O19 mixture. Although, as is well known, the values of saturation magnetization (Ms), remnant magnetization (Mr) and coercivity (Hc) of composites are all lower than the pure BaFe12O19 particles owing to the existence of the nonmagnetic EP and PANI, the EP/BaFe12O19/PANI composites exhibit absorption characteristics at the range of 2-18 GHz, the effective absorption bandwidth (less than -4 dB) reached 12.12 GHz and the minimum reflection loss of -5.66 dB at 8.48 GHz with only 2 mm thickness of absorbing layer. So the composites could resist urban electromagnetic pollution, such as wireless network, communication and so on, effectively.

  1. Preparation, characterization, biological activity, and transport study of polystyrene based calcium–barium phosphate composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohammad Mujahid Ali; Rafiuddin,, E-mail: rafi_amu@rediffmail.com

    2013-10-15

    Calcium–barium phosphate (CBP) composite membrane with 25% polystyrene was prepared by co-precipitation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Thermogravimetric analysis (TGA) were used to characterize the membrane. The membrane was found to be crystalline in nature with consistent arrangement of particles and no indication of visible cracks. The electrical potentials measured across the composite membrane in contact with univalent electrolytes (KCl, NaCl and LiCl), have been found to increase with decrease in concentrations. Thus the membrane was found to be cation-selective. Transport properties of developed membranes may be utilized for the efficient desalination of saline water and more importantly demineralization process. The antibacterial study of this composite membrane shows good results for killing the disease causing bacteria along with waste water treatment. Highlights: • Transport properties of composite membrane are evaluated. • The composite membrane was found to be stable in all media. • TMS method is used for electrochemical characterization. • The membrane was found to be cation selective. • The order of surface charge density was found to be LiCl < NaCl < KCl.

  2. Preparation and drug releasing property of magnetic chitosan-5-fluorouracil nano-particles

    Institute of Scientific and Technical Information of China (English)

    WANG Dong-sheng; LI Jian-guo; LI He-ping; TANG Fa-qing

    2009-01-01

    In order to synthesize the targeting drug carrier system, magnetic chitosan-5-fluorouracil nano-particles were prepared by using 5-fluorouracil (5-Fu) as model drug, Fe_3O_4 nano-particles as kernel, chitosan as enveloping material and glutaraldehyde as cross linking agent through ultrasonic technique. The morphology of the magnetic chitosan-5-Fu nano-particles was observed with a transmission electron microscope(TEM). The results showed that magnetic chitosan-5-Fu nano-particles were prepared in spherical structure with a size range of 50-60 nm. The delivering capacity and drug releasing properties of magnetic chitosan-5-Fu nano-particles were investigated by UV-vis spectrum analysis. The results showed that the loading capacity was 13.4% and the cumulative release percentage in the phosphate buffer (pH=7.2) solutions was 68% in 30 h. These data indicate that the wrapped drug of magnetic chitosan-5-Fu nano-particles was slowly-released. The magnetic response of magnetic chitosan-5-Fu nano-particles was studied by UV-vis spectrometer to detect the changes of solution absorbance. Without external magnetic field, the nano-particle deposition rate was slow. When being subjected to 8 mT magnetic field, the particle sedimentation rate was increased rapidly. The results showed that magnetic chitosan-5-Fu nano-particles have a magnetic stability and strong targeting characteristics.

  3. Preparation and electrochemical characterization of C/PANI composite electrode materials

    Institute of Scientific and Technical Information of China (English)

    LAI Yan-qing; LI Jing; LI Jie; LU Hai; ZHANG Zhi-an; LIU Ye-xiang

    2006-01-01

    Taking the nano-sized carbon black and aniline monomer as precursor and (NH4)2 S2 O6 as oxidant, the well coated C/polyaniline(C/PANI) composite materials were prepared by in situ polymerization of the aniline on the surface of well-dispersed nano-sized carbon black for supercapacitor. The micro-structure of the C/PANI composite electrode materials were analyzed by SEM. The electrochemical properties of C/ PANI and PANI composite electrode were characterized by means of the galvanostatic charge-discharge experiment, cyclic voltammetric measurement and impedance spectroscopy analysis. The results show that by adding the nano-sized carbon black in the process of chemical polymerization of the aniline, the polyaniline can be in situ polymerized and well-coated onto the carbon black particles, which may effectively improve the aggregation of particles and the electrolyte penetration.with PANI electrode, C/PANI electrode shows more desired capacitance characteristics, smaller internal resistance and better cycle performance.

  4. Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yingying; Zhou, Wancheng; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-01-15

    Microwave absorbing composites with thin thickness and wideband absorption were successfully prepared by a spraying method using carbonyl iron particles (CIPs) as absorbers and silicone resin as the matrix. The value of reflection loss (RL) below −5 dB can be obtained in the frequency range of 5.76–18 GHz for the composite with 0.8 mm thickness. The temperature dependence of electromagnetic properties and RL of the composites were investigated. The RL of the composite showed a slight variation when the temperature reached up to 200 °C while decreased at 300 °C. The room temperature RL of the composite did not display significant difference before and after the heat treatment at 300 °C for 10 h; the mechanism was also discussed. - Highlights: • Carbonyl iron particles/silicone resin composites are prepared by a spraying method. • Reflection loss values exceed −5 dB at 5.76–18 GHz for an absorber of 0.8 mm thickness. • The variation of reflection loss was studied from room temperature to 300 °C.

  5. Preparation and Photocatalytic Behaviors of Nanoporous Polyoxotungstate-Anatase TiO2 Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanoporous anatase TiO2 crystalline particles coupled with Keggin or Wells-Dawson unit, H3PW12O40/TiO2 or H6P2W18O62/TiO2, were prepared at a low temperature (200 ℃) using sol-gel method combined with hydrothermal treatment at programmed temperature. The as-prepared composites have uniform anatase phase, and they exhibit both micro-and mesoporosities with pore sizes of 0.6 and 4.0 nm, respectively, and their average size is lower than 10 nm. Photocatalytic tests show the composites exhibit relatively higher photocatalytic activities to decompose the organocholorine pesticide hexachlorobenzene(HCB) than anatase TiO2, the starting polyoxotungstates, and Eu2O3/TiO2 prepared by using sol-gel method, and this was attributed to (1) the synergistic effect of photoactive anatase TiO2 with the polyoxotungstate, and (2) the fascinating physical and chemical properties of the porous materials.

  6. Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    Fernando Javier Carrasco-Guigón

    2017-01-01

    Full Text Available The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR, scanning electron microscopy (SEM, differential scanning calorimetry (DSC, tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films.

  7. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yingying, E-mail: zyzlchappy1989@163.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Zhou, Wancheng [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Li, Rong [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); No. 603 Faculty, Xi’an Institute of High Technology, Xi’an 710025 (China); Mu, Yang; Qing, Yuchang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2015-07-15

    Highlights: • Co-coated carbonyl iron particles were prepared by electroless plating method. • The obvious weight gain of carbonyl iron was deferred to 400 °C after Co-coated. • The permeability of the Co-coated particle composite kept almost invariable. • Co-coated carbonyl iron composite reserves a better absorption after heat treatment. - Abstract: Co was successfully coated on the surface of flaky carbonyl iron particles using an electroless plating method. The morphologies, composition, as well as magnetic, antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), vibrating sample magnetometer (VSM), thermogravimetric (TG) and microwave network analyzer. TG curve shows that the obvious weight gain of carbonyl iron was deferred from 300 to 400 °C after Co-coated. In contrast to raw carbonyl iron, the Co-coated carbonyl iron shows better stability on electromagnetic properties after 300 °C heat treatment for 10 h, demonstrating that the Co coating can act as the protection of carbonyl iron.

  8. Preparation of hierarchical porous Zn-salt particles and their superhydrophobic performance

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dahai; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn

    2015-12-30

    Graphical abstract: - Highlights: • Hierarchical particles with high roughness were prepared by modified hydrothermal route. • The high roughness is provided by extremely low thickness of sheet crystals. • FEVE polymer derivative was used for surface treatment of hierarchical surface. • The novel particles via surface treatment were firstly used as superhydrophobic materials. • The product properties were compared with multi-scale ZnO particles via conventional route. - Abstract: Superhydrophobic surfaces arranged by hierarchical porous particles were prepared using modified hydrothermal routes under the effect of sodium citrate. Two particle samples were generated in the medium of hexamethylenetetramine (P1) and urea (P2), respectively. X-ray diffraction, scanning electron microscope, and transmission electron microscope were adopted for the investigation, and results revealed that the P1 and P2 particles are porous microspheres with crosslinked extremely thin (10–30 nm) sheet crystals composed of Zn{sub 5}(OH){sub 8}Ac{sub 2}·2H{sub 2}O and Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6}, respectively. The prepared particles were treated with a fluoroethylene vinyl ether derivative and studied using Fourier transform infrared spectroscopy and energy-dispersive X-ray spectrometer. Results showed that the hierarchical surfaces of these particles were combined with low-wettable fluorocarbon layers. Moreover, the fabricated surface composed of the prepared hierarchical particles displayed considerably high contact angles, indicating great superhydrophobicity for the products. The wetting behavior of the particles was analyzed with a theoretical wetting model in comparison with that of chestnut-like ZnO products obtained through a conventional hydrothermal route. Correspondingly, this study provided evidence that high roughness surface plays a great role in superhydrophobic behavior.

  9. Preparation and characterization of carbon nanofiber-polymide composites

    Science.gov (United States)

    Li, Xiaobing

    interact with polymer. However, XPS indicated that approximately one percent of the carbon atoms on the CNF surface reacted with diamine, which was derivatized from scarce reactive oxygen groups available on the OCNFs. Polyimide based composites were produced using either blending CNFs assisted by sonication or in-situ polymerization. Pristine fibers, oxidized fibers and fibers functionalized with PDA and polyimide oligomer were incorporated into the polyimide matrix, respectively. The goal was to investigate the effect of surface functional groups and the approach to form composite on the dispersion of fibers in the matrix and on the tensile strength and thermal mechanical properties. Scanning electron microscope (SEM) images showed that pristine fibers had poor dispersion in which agglomerations and a bottom-settled layer of fibers were observed, while there were few agglomerations of any other type of fibers formed in the matrix. Blending in hot DMAc and in-situ polymerization were found to disperse fibers well in the polyimide matrix. Functionalized fiber-PI composites exhibited improvement in glass transition temperature (Tg), modulus and tensile strength. In addition, the impact of fiber loadings from 0.5% to 5.0% by weight in composite was investigated. There was about a 10°C increase in Tg even at very low fiber concentration of 0.5 wt%. The modulus of the composites prepared in this study was as high as 130% of that of base PI. While functionalized fibers effectively enhanced the modulus and tensile strength of composites, pristine fibers exhibited little reinforcement to the host PI at low concentration (0.5 wt% and 1.5 wt%) and adversely affected the properties of composite at high loading of 5.0 wt%, indicating better compatibility and interfacial interaction in the case of functionalized fibers embedded.

  10. Synthesis of nano-CaCO3 composite particles and their application

    Institute of Scientific and Technical Information of China (English)

    Wei Wu; Xueqin Zhang; Jianfeng Chen; Shuling Shen

    2008-01-01

    Nano-calcium carbonate composite particles were synthesized by the soapless emulsion polymerization technique of dou-ble monomers. The composite particles formation mechanism was investigated. The effects of composite particles on the mechanical properties of nano-CaCO3-ABS (acrylonitrile-butadiene-styrene copolymer) composite material were studied. It was validated that the composite particles are made up of the nano-calcium carbonate cores and the shells of alternating copolymers of butyl acrylate (BA) and styrene (St). The shells are chemically grafted and physically wrapped on the surface of nano-calcium carbonate particles.When the composite particles were filled in ABS matrix, the CaCO3 particles are homogeneously dispersed in the composite material as nanoscales. The impact strength of the composite material is obviously enhanced after idling appropriate amounts of composite particles. It can be concluded that the soapless emulsion polymerization of double monomers is an effective method for nano-CaCO3 surface treatment.

  11. Characterization of composite particles responsive to electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaopeng; GUO Hongxia

    2004-01-01

    The multilayer particles with responses to electric and magnetic fields are a prerequisite for particles assembled under external fields. Three routes to produce particles responsive to electric and magnetic fields are presented in this article. The size and morphology, properties as well as the electric-magnetic responses of three kinds of particles are comparatively discussed. This will provide a useful basis for the control of the behavior of the particles in suspensions by external electric and magnetic fields.

  12. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    Science.gov (United States)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  13. Preparation of hierarchical porous Zn-salt particles and their superhydrophobic performance

    Science.gov (United States)

    Gao, Dahai; Jia, Mengqiu

    2015-12-01

    Superhydrophobic surfaces arranged by hierarchical porous particles were prepared using modified hydrothermal routes under the effect of sodium citrate. Two particle samples were generated in the medium of hexamethylenetetramine (P1) and urea (P2), respectively. X-ray diffraction, scanning electron microscope, and transmission electron microscope were adopted for the investigation, and results revealed that the P1 and P2 particles are porous microspheres with crosslinked extremely thin (10-30 nm) sheet crystals composed of Zn5(OH)8Ac2·2H2O and Zn5(CO3)2(OH)6, respectively. The prepared particles were treated with a fluoroethylene vinyl ether derivative and studied using Fourier transform infrared spectroscopy and energy-dispersive X-ray spectrometer. Results showed that the hierarchical surfaces of these particles were combined with low-wettable fluorocarbon layers. Moreover, the fabricated surface composed of the prepared hierarchical particles displayed considerably high contact angles, indicating great superhydrophobicity for the products. The wetting behavior of the particles was analyzed with a theoretical wetting model in comparison with that of chestnut-like ZnO products obtained through a conventional hydrothermal route. Correspondingly, this study provided evidence that high roughness surface plays a great role in superhydrophobic behavior.

  14. In situ preparation of Nanoparticles/polymer composites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanoparticle (NP) is the matter between molecule and bulk material. It has attracted much attention in catalysis, optoelectronics and biology due to its unique physical and chemical properties. Incorporation of these NPs into the polymer matrix is one of the best methods to display their special functions, which not only stabilize the NPs but also realize the functional assembly of NPs and polymers. However, reali- zation of this idea depends largely on the compatibility of NPs and polymers as well as the interaction between them. Therefore, many methods have been developed to prepare the composites of NPs and polymers in order to obtain the function ex- pected. In this review, we mainly focus on the combination of in situ method with other methods to synthesize different functional one-dimension, two-dimension as well as bulk composites, which has been recently developed by our group. The most striking character of our method is the excellent compatibility between NPs and polymers which ensures a homogeneous distribution of NPs in the polymer matrix. The existence of the polymer network makes the NPs more stable, and is significant for displaying their functions.

  15. In situ preparation of Nanoparticles/polymer composites

    Institute of Scientific and Technical Information of China (English)

    SUN HaiZhu; YANG Bai

    2008-01-01

    Nanoparticle (NP) is the matter between molecule and bulk material. It has attracted much attention in catalysis, optoelectronics and biology due to its unique physical and chemical properties. Incorporation of these NPs into the polymer matrix is one of the best methods to display their special functions, which not only stabilize the NPs but also realize the functional assembly of NPs and polymers. However, reali-zation of this idea depends largely on the compatibility of NPs and polymers as well as the interaction between them. Therefore, many methods have been developed to prepare the composites of NPs and polymers in order to obtain the function ex-pected. In this review, we mainly focus on the combination of in situ method with other methods to synthesize different functional one-dimension, two-dimension as well as bulk composites, which has been recently developed by our group. The most striking character of our method is the excellent compatibility between NPs and polymers which ensures a homogeneous distribution of NPs in the polymer matrix. The existence of the polymer network makes the NPs more stable, and is significant for displaying their functions.

  16. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Razavi Hesabi, Z. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran 14588 (Iran, Islamic Republic of); Hafizpour, H.R. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran 14588 (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran 14588 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran 14588 (Iran, Islamic Republic of)], E-mail: simchi@sharif.edu

    2007-04-25

    The densification response of aluminum powder reinforced with 5 vol.% nanometric alumina particles (35 nm) during uniaxial compaction in a rigid die was studied. The composite powder was prepared by blending and mechanical milling procedures. To determine the effect of the reinforcement nanoparticles on the compressibility of aluminum powder, monolithic Al powder, i.e. without the addition of alumina, was also examined. It was shown that at the early stage of compaction when the rearrangement of particles is the dominant mechanism of the densification, disintegration of the nanoparticle clusters and agglomerates under the applied load contributes in the densification of the composite powder prepared by blending method. As the compaction pressure increases, however, the load partitioning effect of the nanoparticles decreases the densification rate of the powder mixture, resulting in a lower density compared to the monolithic aluminum. It was also shown that mechanical milling significantly impacts the compressibility of the unreinforced and reinforced aluminum powders. Morphological changes of the particles upon milling increase the contribution of particle rearrangement in densification whilst the plastic deformation mechanism is significantly retarded due to the work-hardening effect of the milling process. Meanwhile, the distribution of alumina nanoparticles is improved by mechanical milling, which in fact, affects the compressibility of the composite powder. This paper addresses the effect of mechanical milling and reinforcement nanoparticles on the compressibility of aluminum powder.

  17. Preparation and properties of electrodeposited Ni-TiO2 composite coating

    Directory of Open Access Journals (Sweden)

    Sukhdev Singh Bhogal

    2015-03-01

    Full Text Available Mechanical properties of cutting tool like microhardness, coating adhesiveness & corrosion resistance are some important parameters, which affects the tool life and further indirectly affects the component cost. In this paper Ni-TiO2 composite coating was prepared through electrocodeposition in order to improve the mechanical properties of tungsten carbide cutting tools. Microhardness of Ni-TiO2 composite layer have been studied by varying input current density (mA, pH vale of electrolyte & particle concentration of TiO2 in electrolyte bath. Microstructure and phase structure of composite layer were investigated using atomic force microscope (AFM, scanning electronic microscope (SEM and X-ray diffraction (XRD. Surface morphology of Ni-TiO2 coated layer shows fine grained structures is obtained at low currents with higher microhardness of composite coating. Maximum microhardness 1483 HV of coated layer is found at 15mA of current and at 4.5 pH of watt’s solution. It has also been seen that with the increase of Ti, microhardness of the layer is also increases.  

  18. Microstructural residual stress in particle-filled dental composite.

    Science.gov (United States)

    Prejzek, Ondřej; Spaniel, Miroslav; Mareš, Tomáš

    2015-01-01

    The main goal of this study is to develop a micromechanical model of a particle-filled dental composite focused on the residual stress (RS) field developed during the curing process in its microstructure. A finite element model of a representative volume element of filler and resin was developed, and volumetric shrinkage was simulated during the curing process. Four material models (von Mises plasticity model, Drucker-Prager plasticity model, von Mises plasticity model with stress relaxation and Drucker-Prager plasticity with stress relaxation) of the polymer resin were built to assess the influence of the material model on the resulting internal stress. The relationship between the curing process and the magnitude of the stress components will be described, and an analysis of the post-curing state of the material in particular microstructure locations will be conducted in this study. Obtained RS is comparable to the stresses developed in the material under the external load. The substantial dependence on the choice of material model for resin is to be observed, and the suitability of particular models is discussed.

  19. Chemical compositions of precipitation and scavenging of particles in Beijing

    Institute of Scientific and Technical Information of China (English)

    HU Min; ZHANG Jing; WU Zhijun

    2005-01-01

    Totally 23 precipitation samples were collected in Beijing from May to November in 2003. In order to investigate the chemical composition of precipitation samples, pH, conductivity, concentrations of water-soluble ions and organic acids were analyzed. The average pH of precipitations is 6.18, belonging to the neutral range; the average conductivity is 52.23 (S/cm, which indicates that precipitations in Beijing are obviously polluted; are the most abundant anions with the average concentrations of 521 and 174 μeq·L-1, respectively; the average equivalent ratio is 3.1, which decreases by about 15% compared with the result of 1994; and Ca2+ are the most abundant cations with the average concentrations of 376 and 397 μeq·L-1, respectively; formic acid, acetic acid and oxalic acid are the main organic acids with the average concentrations of 4.62, 4.60 and 1.17 μeq·L-1, respectively, accounting for 2% of the overall anions. Obvious differences between concentrations before and after precipitation are also observed by SJAC (Steam Jet Aerosol Collector), which shows the removal of particles from the atmosphere by precipitation.

  20. Biomass-burning particle measurements: Characteristic composition and chemical processing

    Science.gov (United States)

    Hudson, Paula K.; Murphy, Daniel M.; Cziczo, Daniel J.; Thomson, David S.; de Gouw, Joost A.; Warneke, Carsten; Holloway, John; Jost, Hans-Jürg; Hübler, Gerd

    2004-12-01

    The NOAA Lockheed Orion WP-3D aircraft intercepted a forest fire plume over Utah on 19 May 2002 during the Intercontinental Transport and Chemical Transformation (ITCT) mission. Large enhancements in acetonitrile (CH3CN), carbon monoxide (CO) and particle number were measured during the fire plume interception. In the 100 s plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra from ionizing single particles in the 0.2-5 μm size range. These particles contained carbon, potassium, organics, and ammonium ions. No pure soot particles were sampled directly from the plume. By characterizing these particle mass spectra, a qualitative biomass-burning particle signature was developed that was then used to identify biomass-burning particles throughout ITCT. The analysis was extended to identify biomass-burning particles in four other missions, without the benefit of gas-phase biomass-burning tracers. During ITCT, approximately 33% of the particles sampled in the North American troposphere and 37% of the particles transported from Asia, not influenced by North American sources, were identified as biomass-burning particles. During the WB-57 Aerosol Mission (WAM), Atmospheric Chemistry of Combustion Emissions near the Tropopause (ACCENT) and ACCENT 2000 missions, 7% of stratospheric particles were identified as biomass-burning particles. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) this percentage increased to 52% because the regional stratosphere was strongly affected by an active fire season.

  1. Preparation and characterisation of polymeric lamellar substrate particles (PLSP)

    Energy Technology Data Exchange (ETDEWEB)

    Khairullah, Noor Hasnah Mohamed

    2002-07-01

    Polymer microparticles have tremendous potential as the next generation of adjuvant systems to replace the only adjuvant currently widely registered for human use, alum. Based on aluminium salts, alum adjuvants work as short-term depots of adsorbed protein/antigens that slowly 'leak' into the body's immune system, inducing immunity by invoking a humoral response. The main disadvantage of alum adjuvants is that they do not raise sufficient antibody levels to induce long-term immunity. Hence, booster administrations are required. This drawback presents the biggest factor in the failure of many vaccination programmes. Polymer microparticulate systems can be fashioned to deliver sub-unit and peptide antigens in a continuous or controlled rate over a desired period of time, avoiding the need for booster doses. The design of mucosal vaccines is now centred upon the use of these polymeric carriers. The mucosal route for immunisation has many advantages over the more conventional systemic route, the most important of which, is the induction of both humoral and cellular immunity. Polymer microspheres of sizes <10{mu}m are especially good candidates as oral vaccine adjuvants as they are taken up by the M cells of the Peyer's patches in the intestine. Numerous studies have been carried out on microspheres into which antigens have been encapsulated or entrapped. There are, however, problems associated with loss of antigenicity since formulation procedures involve the use of organic solvents and harsh shearing methods. Additionally, these antigens may be further degraded when the polymer material itself degrades in vivo and produces acidic species. A novel adjuvant system that avoids the above problems is currently being evaluated. Poly(l-lactide) (PLLA) polymeric lamellar substrate particles (PLSP) are promising as novel adjuvants for the controlled release of antigens. Reports have shown that the adsorption of antigens onto the surface of these particles

  2. Effect of particle size of starting materials on the structure and properties of biogenic hydroxyapatite/glass composites

    Directory of Open Access Journals (Sweden)

    Oleksandr Parkhomey

    2016-03-01

    Full Text Available The work is devoted to investigation of porous glass-ceramic composite materials on the basis of biogenic hydroxyapatite and sodium borosilicate glass prepared from starting powders with different particle sizes (<50 µm and <160 µm. Starting hydroxyapatite/glass weight ratio was 1.0/0.46 and sintering temperature was ∼800 °C. Microstructural characterization of the surface and fracture of the samples revealed a decrease in sizes of grains and pores with decreasing the particle size of the precursor powder. However, porosity of the composites practically did not depend on the particle size and was equal to 32.5–33.0%. The same tendency was observed for the compression strength (66–67 MPa. However, investigation of structural-mechanical properties using an indentation method, where dominant load is applied to the surface layers of sample, showed up the effect of the particle size of the starting powder on the mechanical properties of the composites: the smaller particle size, the higher mechanical properties.

  3. Enrichment of Fetal Nucleated Red Blood Cells by Multi-core Magnetic Composite Particles for Non-invasive Prenatal Diagnosis

    Institute of Scientific and Technical Information of China (English)

    PAN Ying; ZHANG Ai-chen; WANG Qing; HUANG Wen-jun; QIAO Feng-li; LIU Yu-ping; ZHANG Yu-cheng; HAl De-yang; DU Ying-ting; WANG Wen-yue

    2012-01-01

    A novel kind of multi-core magnetic composite particles,the surfaces of which were respectively modified with goat-anti-mouse IgG and antitransferrin receptor(anti-CD71 ),was prepared.The fetal nucleated red blood cells(FNRBCs) in the peripheral blood of a gravida were rapidly and effectively enriched and separated by the modified multi-core magnetic composite particles in an external magnetic field.The obtained FNRBCs were used for the identification of the fetal sex by means of fluorescence in situ hybridization(FISH) technique.The results demonstrate that the multi-core magnetic composite particles meet the requirements for the enrichment and speration of FNRBCs with a low concentration and the accuracy of detetion for the diagnosis of fetal sex reached to 95%.Moreover,the obtained FNRBCs were applied to the non-invasive diagnosis of Down syndrome and chromosome 3p21 was detected.The above facts indicate that the novel multi-core magnetic composite particles-based method is simple,reliable and cost-effective and has opened up vast vistas for the potential application in clinic non-invasive prenatal diagnosis.

  4. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daming [Center for Magnetism and Magnetic Nanostructures, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States); College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan (China); Harward, Ian; Baptist, Joshua; Goldman, Sara; Celinski, Zbigniew [Center for Magnetism and Magnetic Nanostructures, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States)

    2015-12-01

    Barium ferrite has attracted considerable interest in the fields of permanent magnets and perpendicular magnetic recording due to its strong uniaxial anisotropy and high Curie temperature (T{sub c}). We prepared aluminum doped barium ferrite ceramics (BaAl{sub x}Fe{sub 12−x}O{sub 19}, 0≤x≤6) by the ball mill method. The powder was milled for 96 h, and after forming pellets, annealed for 48 h in air at 1000 °C. The X-ray diffraction (XRD) data show that there are only single hexagonal phases in the samples without any impurity phase. The crystal lattice constants, a and c, were calculated by Cohen's method. Both a and c decrease with increasing x, ranging from 0.588 nm and 2.318 nm to 0.573 nm and 2.294 nm, respectively. A Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) were used to investigate T{sub c} and magnetic properties of BaFe{sub 12−x}Al{sub x}O{sub 19}. It is found that T{sub c} decreases with increasing x, from 425 °C to 298 °C. It is also found that the saturated magnetization (4πM{sub s}) decreases with increasing x, while the coercivity (H{sub c}) increases with the increase in x. The anisotropy field was also determined from the SQUID measurement. - Highlights: • The Curie temperature and magnetic properties of aluminum doped barium ferrite particles were studied systemically. • The relation between 4πM{sub s} and composition x at 50 K (both experimental value and theoretical calculation) was revealed. • Occupation number for spin up and spin down as a function of temperature was shown. • The relation between 4πM{sub s} and composition x from 50 K to room temperature was revealed.

  5. Influence of particle size on Cutting Forces and Surface Roughness in Machining of B4Cp - 6061 Aluminium Matrix Composites

    Science.gov (United States)

    Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.

    2016-02-01

    Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.

  6. Preparation and Healing of Cracks in Al2O3-MgAION Composite

    Institute of Scientific and Technical Information of China (English)

    YANG Daoyuan; ZHU Kai; WU Juan

    2009-01-01

    The Al2O3-MgAION specimens with dimensions of φ20 mm×10 mm and 3 mm×4 mm×36 mm were pre-pared using corundum grains ( w( Al2O3) >98% , par-ticle size: 3-1 mm, ≤1 mm, ≤85 μm and ≤3 μm, respectively) and MgAION (particle size ≤ 2 μm ) as starting materials, PVA as binder, designing 3 formula-tions containing aggregate and 4 special formulations without aggregate, pressing under 150 Mpa and keep-ing for 5 s, firing at 1 500 ℃ for 2 h in nitrogen under normal pressure, and the cracks were prepared on the specimens by thermal shock method (air cooling at 1 100 ℃ for 10 cycles) and by Vickers method (29.4, 49.0 and 98.0 N, keeping for 25 s) , then holding at 1 100 ℃ and 1 550 ℃ for 6 h in nitrogen atmosphere for cracks healing, respectively. The influences of crack prefabricated method, grain composition, pressure of Vickers and pressure holding time on the shape and di-mension of cracks were studied. Effects of healing tem-perature on healing degree and MOR of specimens were investigated and the crack healing rate was calculated. The results showed that: (1) the cracks of MgAION specimens prepared by thermal shock method under nor-real pressure were of irregular shape and uncertain length; (2) the cracks prepared by Vickers method was approximate diamond-shape without slender cracks emit-ting from every vertex angle; but if composite specimens were fabricated by particles of several microns, the crack size, shape and its site, especially that obtained under 98.0 N for 25 s, could be controlled exactly under a Vickers hardometer, which made the crack healing re-search easy to conduct; (3) after healing treatment at 1 100 ℃ or 1 500 ℃, the cracks became shallower and smaller even disappeared, the strength of the specimen was recovered finally; (4) a formulation for crack heal-ing rate expressed by the cracked capacity was: V/ t = 1/3 C2v(1+ctg θ) Cv/ t.

  7. Spatially selective surface platforms for binding fibrinogen prepared by particle lithography with organosilanes

    OpenAIRE

    Englade-Franklin, Lauren E.; Saner, ChaMarra K.; Garno, Jayne C.

    2013-01-01

    We introduce an approach based on particle lithography to prepare spatially selective surface platforms of organosilanes that are suitable for nanoscale studies of protein binding. Particle lithography was applied for patterning fibrinogen, a plasma protein that has a major role in the clotting cascade for blood coagulation and wound healing. Surface nanopatterns of mercaptosilanes were designed as sites for the attachment of fibrinogen within a protein-resistant matrix of 2-[methoxy(polyethy...

  8. Characterisation of a metal matrix composite produced with laser particle injection

    NARCIS (Netherlands)

    Kloosterman, AB; De Hosson, JTM; Sudarshan, TS; Jeandin, M; Khor, KA

    1998-01-01

    This paper concentrates on the laser particle injection process. TiC, TiN end SiC particles were injected into Ti-6Al-4V, which resulted in the formation of a metal matrix composite with modest dissolution of the added particles. The laser tracks with SIC exhibited a diversity of microstructures

  9. The influence of magnetostatic interactions in exchange-coupled composite particles

    DEFF Research Database (Denmark)

    Vokoun, D.; Beleggia, Marco; De Graef, M.;

    2010-01-01

    Exchange-coupled composite (ECC) particles are the basic constituents of ECC magnetic recording media. We examine and compare two types of ECC particles: (i) core-shell structures, consisting of a hard-magnetic core and a coaxial soft-magnetic shell and (ii) conventional ECC particles, with a hard...

  10. Characterisation of a metal matrix composite produced with laser particle injection

    NARCIS (Netherlands)

    Kloosterman, AB; De Hosson, JTM; Sudarshan, TS; Jeandin, M; Khor, KA

    1998-01-01

    This paper concentrates on the laser particle injection process. TiC, TiN end SiC particles were injected into Ti-6Al-4V, which resulted in the formation of a metal matrix composite with modest dissolution of the added particles. The laser tracks with SIC exhibited a diversity of microstructures wit

  11. Study of Mechanical Characteristics for Polymer Composite Reinforced by Particles of (Al2O3 or (Al

    Directory of Open Access Journals (Sweden)

    Saad M. elIa

    2007-01-01

    Full Text Available A particulate polymer composite material was prepared by reinforcing with the Aluminum Oxide (Al2O3 or Aluminum (Al metallic particles with a particle size of (30 µm to an unsaturated Polyester Resin with a weight fraction of (5%, 10%, 15%, 20%. Tensile test results showed the maximum value of elastic modulus reached (2400MPa. in the case of reinforcing with (Al particles with weight fraction (20% and (1500 MPa. in the case of reinforcing with (Al2O3 particles of the same weight fraction. When the impact and the flexural strength tests were done, the results showed that flexural strength (F.S, maximum shear stress (?max, impact strength (Gc and fracture toughness (Kc were increased with the increase of weight fraction, where the results of the samples of (Al particles were higher than that of (Al2O3 particles reinforced at a weight fraction of (20% at ratios of (45.43%, 45.45%, 25%, 41% respectively. While the hardness of the samples reinforced with (Al2O3 particles was higher than that reinforced with (Al particles with a ratio of (2.82% at a weight fraction of (20%.

  12. Modelling of the crystallization front – particles interactions in ZnAl/(SiCp composites

    Directory of Open Access Journals (Sweden)

    M. Szucki

    2015-04-01

    Full Text Available The presented work focuses on solid particle interactions with the moving crystallization front during a solidification of the metal matrix composite. The current analyses were made for silicon carbide particles and ZnAl alloy with different additions of aluminium. It was found, that the chemical composition of the metal matrix influences the behaviour of SiC particles. At the same time calculations of the forces acting on a single particle near the crystallization front were performed. For each alloy type the critical conditions that determine whether particle will be absorbed or pushed, were specified.

  13. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    molecular mobility and higher chemical degradation than CM. Therefore, the current study demonstrated that QC and CM have obvious differences in both physical and chemical properties. It was concluded that care should be taken when choosing preparation methods for making amorphous materials. Furthermore......, particle size, a factor that has often been overlooked when dealing with amorphous materials, was shown to have an influence on physical stability of amorphous simvastatin.......This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and amorphous simvastatin (CM) were prepared, and their physical and chemical...

  14. The toughening mechanism of rubber particles in polypropylene composite

    Science.gov (United States)

    Shi, L.; Xiao, J. M.

    2017-01-01

    Filling polypropylene materials with rubber particles can effectively increase the toughness of PP material and improve its cushioning properties. In this paper, we used the two kinds of method of the finite element analysis and experiment to study the rubber particles toughening mechanism, got the deformation process of particles when polypropylene material compressed and the yield stress of polypropylene after compression with particles filled or not.

  15. Preparation of Metalloporphyrin-Bound Superparamagnetic Silica Particles via "Click" Reaction.

    Science.gov (United States)

    Hollingsworth, Javoris V; Bhupathiraju, N V S Dinesh K; Sun, Jirun; Lochner, Eric; Vicente, M Graça H; Russo, Paul S

    2016-01-13

    A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device. Monodisperse core-shell particles were produced in the silica-coating of iron oxide via microemulsion synthesis. Surface modification of these particles was performed in two steps, which included the reaction of silica-coated iron oxide particles with 3-bromopropyltrichlorosilane, followed by azido-functionalization with sodium azide. Monoalkylated porphyrins were prepared using the Williamson ether synthesis of commercially available tetra(4-hydroxyphenyl) porphyrin with propargyl bromide in the presence of a base. (1)H NMR and matrix-assisted laser desorption ionization confirmed the identity of the compounds. The prepared monoalkyne porphyrins were zinc-metalated prior to their introduction to azide-functionalized, silica-coated iron oxide particles in the click reaction. X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the surface chemistry after each step in the reaction. In addition, particle size was determined using dynamic light scattering and microscopy. The presented methodology is versatile and can be extended to other photoreactive systems, such as phthalocyanines and boron-dipyrromethane, which may lead to new materials for optical, photonic, and biological applications.

  16. Improving Dielectric Properties of PVDF Composites by Employing Surface Modified Strong Polarized BaTiO₃ Particles Derived by Molten Salt Method.

    Science.gov (United States)

    Fu, Jing; Hou, Yudong; Zheng, Mupeng; Wei, Qiaoyi; Zhu, Mankang; Yan, Hui

    2015-11-11

    BaTiO3/polyvinylidene fluoride (BT/PVDF) is the extensive reported composite material for application in modern electric devices. However, there still exists some obstacles prohibiting the further improvement of dielectric performance, such as poor interfacial compatibility and low dielectric constant. Therefore, in depth study of the size dependent polarization and surface modification of BT particle is of technological importance in developing high performance BT/PVDF composites. Here, a facile molten-salt synthetic method has been applied to prepare different grain sized BT particles through tailoring the calcination temperature. The size dependent spontaneous polarizationof BT particle was thoroughly investigated by theoretical calculation based on powder X-ray diffraction Rietveld refinement data. The results revealed that 600 nm sized BT particles possess the strong polarization, ascribing to the ferroelectric size effect. Furthermore, the surface of optimal BT particles has been modified by water-soluble polyvinylprrolidone (PVP) agent, and the coated particles exhibited fine core-shell structure and homogeneous dispersion in the PVDF matrix. The dielectric constant of the resulted composites increased significantly, especially, the prepared composite with 40 vol % BT loading exhibited the largest dielectric constant (65, 25 °C, 1 kHz) compared with the literature values of BT/PVDF at the same concentration of filler. Moreover, the energy storage density of the composites with tailored structure was largely enhanced at the low electric field, showing promising application as dielectric material in energy storage device. Our work suggested that introduction of strong polarized ferroelectric particles with optimal size and construction of core-shell structured coated fillers by PVP in the PVDF matrix are efficacious in improving dielectric performance of composites. The demonstrated approach can also be applied to the design and preparation of other polymers

  17. Preparation, structures and photoluminescent enhancement of CdWO 4-TiO 2 composite nanofilms

    Science.gov (United States)

    Jia, Runping; Zhang, Guoxin; Wu, Qingsheng; Ding, Yaping

    2006-12-01

    For the first time, Cadmium tungstate (CdWO4)-TiO2 composite nanofilms on a glass substrate were prepared by means of the dip-coating technique, in which collodion was used as a dispersant and film-forming agent. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo gravimetric and thermal analyses (TG/DTA), FTIR and photoluminescence (PL) methods, respectively. SEM and XRD characterization of these films indicated that CdWO4 particles crystallized in a monoclinic wolframite-type structure whereas TiO2 particles were Anatase phase; and both of them were well distributed in the nanofilms. FTIR spectra proved the presence of CdWO4 on the nanofilms. Photoluminescent results showed that the emitting peak of CdWO4 films blue shifted slightly relative to that of CdWO4 crystal. Moreover, the PL intensity of CdWO4-TiO2 composite nanofilm was much higher than that of CdWO4 nanofilm. We ascribed that the introduction of TiO2 should be responsible for the PL enhancement.

  18. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].

    Science.gov (United States)

    Li, Lei; Pan, Gang; Chen, Hao

    2010-03-01

    Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.

  19. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies

    Science.gov (United States)

    Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar

    2016-10-01

    In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.

  20. Preparation for Spherical particles of Praseodymium doped Perovskite Red Phosphor by Hydrothermal Reaction

    Science.gov (United States)

    Kosaka, T.; Matsuda, A.; Mizunuma, M.; Tanaka, Y.

    2017-02-01

    Spherical particles of 0.5mol%Pr3+-doped CaTiO3 were prepared by hydrothermal reaction on dissolved CaCl2, Pr(NO3)3, and ammonium citratoperoxotitanate (IV) complex precursor solution with molar ratio of Ti/CA=1:2 and calcination in ambient atmosphere. The obtained particle exhibited red photoluminescence at 610nm. It is found that several particles have hollow structure. It is required that further investigation is needed to clarify the formation mechanism of these spherical hollow paricles.

  1. Methods for Preparing Nanoparticle-Containing Thermoplastic Composite Laminates

    Science.gov (United States)

    Gruber, Mark B. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor)

    2016-01-01

    High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.

  2. Preparation of hydrogel hollow particles for cell encapsulation by a method of polyester core degradation.

    Science.gov (United States)

    Rabanel, J-M; Hildgen, P

    2004-06-01

    Implantation of encapsulated cells in particles of less than 1 mm (micro-encapsulation) has been proposed as a cell synthesized bio-molecule delivery system. Encapsulation provides immuno-isolation, protecting foreign cells from host immune system while nutrients, oxygen and therapeutic products can diffuse freely across capsule walls. A new method is described for the synthesis of a new family of hollow microparticles for cell encapsulation. Unlike other micro-encapsulation methods, encapsulation in those devices will take place after capsule synthesis, by micro-injection. The microcapsules were prepared by a three-steps original procedure: first, synthesis of a core particle, followed by coating with a layer of epichlorohydrin cross-linked amylo-pectin gel and, finally, selective degradation of the core particle to create the cavity. Initial experiments make use of amylo-pectin cross-linked with trimetaphosphate as core particle material. However, selective degradation was difficult to achieve. In further essays, polyesters were used successfully for the preparation of core particles. Optimizations were carried out and the permeability and morphology of the hollow particles were investigated. The preliminary results show that the new method has the potential to become a standard procedure to obtain hydrogel hollow particles. Moreover, the permeability study seems to be in accordance with specifications for immuno-isolation.

  3. Effect of sodium citrate on preparation of nano-sized cobalt particles by organic colloidal process

    Institute of Scientific and Technical Information of China (English)

    Huaping ZHU; Hao LI; Huiyu SONG; Shijun LIAO

    2009-01-01

    Nano-sized cobalt particles with the diameter of 2 nm were prepared via an organic colloidal process with sodium formate, ethylene glycol and sodium citrate as the reducing agent, the solvent and the complexing agent, respectively. The effects of sodium citrate on the yield, crystal structure, particle size and size distribution of the prepared nano-sized cobalt particles were then investigated. The results show that the average particle diameter decreases from 200 nm to 2 nm when the molar ratio of sodium citrate to cobalt chloride changes from 0 to 6. Furthermore, sodium citrate plays a crucial role in the controlling of size distribution of the nano-sized particles. The size distribution of the particle without sodium citrate addition is in range from tens of nanometers to 300 or 400 nm, while that with sodium citrate addition is limited in the range of (2±0.25) nm. Moreover, it is found that the addition of sodium citrate as a complex agent could decrease the yield of the nano-sized cobalt particle.

  4. Preparation of Metallic Aluminum Compound Particles by Submerged Arc Discharge Method in Aqueous Media

    Science.gov (United States)

    Liao, Chih-Yu; Tseng, Kuo-Hsiung; Lin, Hong-Shiou

    2013-02-01

    Fine metal particles are produced by chemical methods, which add surfactants to control particle size and concentration. This study used the submerged arc discharge method (SADM) to prepare metal fluid containing nanoparticles and submicron particles in pure dielectric fluid (deionized water or alcohol). The process is fast and simple, and it does not require the addition of chemical agents. The SADM uses electrical discharge machining (EDM) equipment, and the key parameters of the production process include discharge voltage, current, and pulse discharge on-off duration. This study added a capacitive component between the electrodes and the electrode Z-axis regulation in the control parameters to render the aluminum fluid process smooth, which is the main difference of this article from the literature. The experimental results showed that SADM can produce aluminum particles from nanometer to submicron grade, and it can obtain different compounds from different dielectric fluids. The dielectric fluids used in this study were deionized water and ethanol, and aluminum hydroxide Al(OH)3 particles with suspending power and precipitated aluminum particles were obtained, respectively. The preparations of metal colloid and particles by the SADM process have the characteristics of low cost, high efficiency, high speed, and mass production. Thus, the process has high research value and developmental opportunities.

  5. Preparation of raspberry-like PMMA/SiO2 nanocomposite particles

    Institute of Scientific and Technical Information of China (English)

    Chen Min; You Bo; Zhou Shuxue; Wu Limin

    2006-01-01

    Water-borne raspberry-like PMMA/SiO2 nanocom-posite particles were prepared via free radical copolymerization of methyl methacrylate (MMA) with 1-vinylimidazole (1-VID) in the presence of ultrafine aqueous silica sols.The acid-base interaction between hydroxyl groups (acidic) of silica surfaces and amino groups (basic) of 1-VID was strong enough for promoting the formation of long-standing stable PMMA/SiO2 nanocomposite particles when 10 mol% or more 1-VID as auxiliary monomer was used.The average particle sizes and the silica contents of the nanocomposite particles were in the ranges from 120-330 nm and 15%-20%,respectively.TEM and SEM observations indicated a raspberry-like morphology of the obtained nanocomposite particles.

  6. Composite wheat-plantain starch salted noodles. preparation, proximal composition and in vitro starch digestibility

    OpenAIRE

    Rodolfo Rendón-Villalobos; Perla Osorio-Díaz; Edith Agama-Acevedo; Juscelino Tovar; Luis A. Bello-Pérez

    2008-01-01

    Salted noodles were prepared with different contents of wheat grits and plantain starch (PS). The blends were hydrated with 2% NaCl (w/v), homogenized, and the resulting doughs were sheeted through a pasta machine, cut into strips ~30cm in length, cooked, and their composition and in vitro starch digestibility was assessed. Moisture (6.43-7.60%) and ash contents (2.08-3.12%) increased by the addition of PS. Fat level decreased from 0.41 to 0.31% as the substitution of wheat grits increased. R...

  7. Al-Ti Particulate Composite: Processing and Studies on Particle Twinning, Microstructure, and Thermal Stability

    Science.gov (United States)

    Yadav, Devinder; Bauri, Ranjit; Kauffmann, Alexander; Freudenberger, Jens

    2016-08-01

    The present investigation shows that alternate to the ceramic particles, hard metallic particles can be used as reinforcement in an aluminum matrix to achieve a good strength-ductility combination in a composite. Titanium particles were incorporated into aluminum by friction stir processing (FSP) to process an Al-Ti particulate composite. FSP led to uniform distribution of the particles in the stir zone without any particle-matrix reaction, thereby retaining the particles in their elemental state. Fracture and twinning of the Ti particles with different frequency of occurrence on the advancing and retreating sides of the stir zone was observed. Twinning of the particles was studied by focused ion beam-assisted transmission electron microscopy. The processed Al-Ti composite exhibited a significant improvement in strength and also retained appreciable amount of ductility. The thermal stability of the fine-grained structure against abnormal grain growth (AGG) was improved by the Ti particles. The AGG in the Al-Ti composite occurred at 713 K (440 °C) compared to 673 K (400 °C) in the unreinforced aluminum processed under the same conditions. On the other hand, the particle-matrix reaction occurred only at 823 K (550 °C), and hence the Ti particles were thermally more stable compared to the matrix grain structure.

  8. Preparation and characterization of polystyrene based Nickel molybdate composite membrane electrical–electrochemical properties

    Directory of Open Access Journals (Sweden)

    Urfi Ishrat

    2016-09-01

    Full Text Available The functional properties of the polystyrene based Nickel Molybdate composite membrane prepared by applying 70 MPa pressure are described. The fabricated membrane was characterized by using Fourier Transform Infrared, X-ray diffraction, particle size analyzer and Scanning electron microscopy technique and has been investigated for its functional, diffusive, electrochemical and electrical properties. The impedance data of membrane having capacitive and resistive components are plotted, which show the sequence of semicircles representing an electrical phenomenon due to grain material, grain boundary and interfacial phenomenon. The diffusion of electrolytes was determined by the TMS method revealing dependence of membrane potential on the charge on the membrane matrix, charge and size of permeating ions. The membrane determined the activity of cations with good accuracy in the higher concentration range and shows a great selectivity for K+. Other electrochemical properties like transport number have been discussed its selectivity.

  9. Coaxial Electrospinning Method for the Preparation of TiO2 @CdS/PVA Composite Nanofiber Mat and Investigation on its Photodegradation Catalysis.

    Science.gov (United States)

    Luo, Yanmei; Jia, Yiru; Zhang, Dexian; Cheng, Xinjian

    2016-07-01

    TiO2 /PVA composite nanofiber mat was prepared via an electrospinning technology. SH-TiO2 -SiO2 hybrid particles and PVA solution were injected through a coaxial syringe, yielding a composite nanofiber mat. The as-prepared SH-TiO2 -SiO2 /PVA composite nanofiber mat was immersed in Cd(2+) cation solution and S(2-) anion solution in turn. Thus, yellow TiO2 @CdS/PVA composite nanofiber mats were prepared. By adjusting the number of times a mat was immersed in the Cd(2+) and S(2-) solutions, different amounts of CdS particles attaching to the mats were obtained. Both SH-TiO2 -SiO2 /PVA and TiO2 @CdS/PVA composite nanofiber mats were employed to catalyze the photodegradation of a model dye, methylene blue. The photodegradation performance could be greatly enhanced by the introduction of CdS particles anchoring onto TiO2 particles. The photodegradation efficiency reached 99.2% within 180 min. Also, the nanofiber mat could be recycled and reused at least 10 times. The photodegradation efficiency of TiO2 @CdS/PVA composite nanofiber mats remained 68.8% for 10 cycles.

  10. Preparation of composite membrane microcapsules. Fukugomaku microcapsul no chosei

    Energy Technology Data Exchange (ETDEWEB)

    Hatate, Y.; Uemura, Y. (Kagoshima University, Kagoshima (Japan). Faculty of Engineering)

    1991-12-01

    The ternd for the composite membrane microcapsules(CMMC) which have the capsule wall consisting of multiple phases or materials was presented. The purpose to make any capsules CMMC is to make them intelligent so that a microcapsule(MC) recognizes any stimulus from an external environment to change the characteristics. The manufacturing method of CMMC is divided into the membrane bulk property improvement method and the surface property improvement method. The former has the property to control the permebility by the double membrane of lipid and further has the possibility to recognize any light, ultrasonic wave, pH and electric field. There is a MC containig ferrite with which some carcinostatic agents are concentrated to a tumor by a magnet. The MC of nylon/ polystyrene could also be developed by using the interfacial polymerization and the subumerged drying methods. In the case of the surface property improvement, MC containing carcinostatic agents is prepared with ethylene cellulose by the coacervation method and then the dispersibility into water could be improved by treating MC in a hexane solution of lecithin to enable the reduction of releasing rate of the core materials. In addition, a surface treated MC of high compatibility to some biological tissues has been developed. 15 refs., 8 figs.

  11. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianwei; Zhang, Hailong; Zhang, Yang; Che, Zifan; Wang, Xitao, E-mail: xtwang@ustb.edu.cn

    2015-10-25

    As an attractive thermal management material, diamond particles reinforced Cu matrix (Cu/diamond) composites generally exhibit thermal conductivities lower than expected. To exploit the potential of heat conduction, a combination of Ti coating on diamond particles and gas pressure infiltration was used to prepare Cu/diamond(Ti) composites. A high thermal conductivity of 716 W/mK and a low coefficient of thermal expansion of 5.8 ppm/K at 323 K were obtained in the composites. Auger electron spectroscopy (AES) characterization shows that a TiC layer was formed between Cu matrix and diamond reinforcement, which is responsible for the enhancement of thermal conductivity. The results suggest that Ti coating can significantly promote interface bonding between Cu and diamond and gas pressure infiltration is an effective method to produce Cu/diamond composites. - Highlights: • The Cu/diamond(Ti) composites are produced by gas pressure infiltration. • A TiC layer is formed between Cu matrix and diamond reinforcement. • A thermal conductivity of 716 W/mK is obtained for the composites. • A coefficient of thermal expansion of 5.8 ppm/K at 323 K was obtained.

  12. Sliding Wear Properties of Hybrid Aluminium Composite Reinforced by Particles of Palm Shell Activated Carbon and Slag

    Directory of Open Access Journals (Sweden)

    Zamri Yusoff

    2011-09-01

    Full Text Available In present work, dry sliding wear tests were conducted on hybrid composite reinforced with natural carbon based particles such as palm shell activated carbon (PSAC and slag. Hybrid composites containing 5 -20 wt.% of both reinforcements with average particles sizes about 125μm were prepared by conventional powder metallurgy technique, which involves the steps of mixing, compacting and sintering. Dry sliding experiments were conducted in air at room temperature using a pin-on-disc self-built attach to polisher machine. The disc which acted as the mating surface material was made of mild steel (120 HV cut from commercial mild steel sheet (2 mm thickness into 100mm diameter. The influence of the applied load was investigated under a constant sliding velocity of 0.1m/s with the applied loads at 3N, 11N and 51N. The contribution of the reinforcement content and the applied load as well as the sliding distance on the wear process and the wear rate have been investigated. The contribution of synergic factors such as applied load, sliding distance and reinforcement content (wt.% have been studied using analysis of variance (ANOVA. All synergic factors contribute to the wear process of all tested composites. Among synergic factors, the applied load is the highest contribution to wear process on both composites (Al/PSAC and Al/Slag and hybrid composite. The degree of improvement of wear resistance of hybrid composite is strongly dependent on the reinforcement content.

  13. Probabilistic Preparation of N-particle Cat States via Entanglement Swapping and Entanglement Concentration

    Institute of Scientific and Technical Information of China (English)

    姚春梅; 李敏; 叶柳; 郭光灿

    2002-01-01

    We discuss two different schemes for the probabilistic preparation of N-particle cat states using pure multiparticle entangled states via entanglement swapping and entanglement concentration. At the centre of distribution A,Alice performs all of the operations required to achieve our goal.

  14. Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for Stretchable Circuits.

    Science.gov (United States)

    Hu, Mingjun; Cai, Xiaobing; Guo, Qiuquan; Bian, Bin; Zhang, Tengyuan; Yang, Jun

    2016-01-26

    In this article, we describe a writable particle-free ink for fast fabrication of highly conductive stretchable circuits. The composite ink mainly consists of soluble silver salt and adhesive rubber. Low toxic ketone was employed as the main solvent. Attributed to ultrahigh solubility of silver salt in short-chain ketone and salt-assisted dissolution of rubber, the ink can be prepared into particle-free transparent solution. As-prepared ink has a good chemical stability and can be directly filled into ballpoint pens and use to write on different substrates to form well adhesive silver salt-based composite written traces as needed. As a result of high silver salt loading, the trace can be converted into highly conductive silver nanoparticle-based composites after in situ reduction. Because of the introduction of adhesive elastomeric rubber, the as-formed conductive composite written trace can not only maintain good adhesion to various substrates but also show good conductivity under various deformations. The conductivity of written traces can be enhanced by repeated writing-reduction cycles. Different patterns can be fabricated by either direct handwriting or hand-copying. As proof-of-concept demonstrations, a typical handwriting heart-like circuit was fabricated to show its capability to work under different deformations, and a pressure-sensitive switch was also manufactured to present pressure-dependent change of resistance.

  15. Preparation of Mo/Cu composites by SLS method and its post-treatment techniques

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; CHENG Jun; BAI Pei-kang; WANG Jian-hong

    2006-01-01

    A multi-component polymer-coated molybdenum powder was chosen for selective laser sintering(SLS). The powder was prepared by coating polymer on Mo particles and frozen by grinding techniques. The laser sintering activities and sound densification response were obtained by optimizing the process parameters. The post-treatment process of SLS samples was developed, which was high temperature sintering Mo framework combined with Cu impregnation. Then, the Mo/Cu composites are gained. The microstructure evolution of post-treatment samples was investigated by scanning electron microscopy. Mo grains frequently string together. The microstructural characterization of Mo/Cu composites is homogeneous compound structure of adhesive phase Cu linked with Mo grains. There is little ellipsoidal Mo grains singly existing around Cu phase. Between Mo grains and Cu zone, there is a medium changing zone with width of 10-20 nm. Post-treatment mechanism is Mo framework sintering of solid phase and Cu impregnation of melting/solidification. The mechanical and thermal properties concluding tensile strength, elastic modulus, elongation and linear expansion of Mo/Cu composites were studied.

  16. Influence of electron beam Irradiation on PP/Piassava fiber composite prepared by melt extrusion process

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Michelle G.; Ferreira, Maiara S.; Oliveira, Rene R.; Silva, Valquiria A.; Teixeira, Jaciele G.; Moura, Esperidiana A.B., E-mail: michellegoncalvesgomes@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In the latest years, the interest for the use of natural fibers in materials composites polymeric has increased significantly due to their environmental and technological advantages. Piassava fibers (Attalea funifera) have been used as reinforcement in the matrix of thermoplastic and thermoset polymers. In the present work (20%, in mass), piassava fibers with particle sizes equal or smaller than 250 μm were incorporated in the polypropylene matrix (PP) no irradiated and polypropylene matrix containing 10 % and 30 % of polypropylene treated by electron-beam radiation at 40 kGy (PP/PPi/Piassava). The composites PP/Piassava and PP/PPi/Piassava were prepared by using a twin screw extruder, followed by injection molding. The composite material samples obtained were treated by electron-beam radiation at 40 kGy, using a 1.5 MeV electron beam accelerator, at room temperature, in presence of air. After irradiation treatment, the irradiated and non-irradiated specimens tests samples were submitted to thermo-mechanical tests, melt flow index (MFI), sol-gel analysis, X-Ray diffraction (XRD) and scanning electron microscopy (SEM). (author)

  17. Preparation of Parium Titanates With Different Particle Size Distribution Using Modified Pechini Method

    Directory of Open Access Journals (Sweden)

    Ahmed Jaafer Abed AL-Jabar

    2017-03-01

    Full Text Available Barium titanates is one of the most important ceramics that are widely used in the electronic industry because of its high dielectric constant, its ferroelectricity, and its piezoelectric properties. In the current study, five different batches of barium titanate powders were prepared by modifiedpechini method using the barium chloride and the titanium chloride as a starting materials in order to obtain different particle size distributions.SEM, TGA, DTA, XRD, FTIR, and other techniques have been used to characterize the prepared samples.XRD results suggested that the synthesized BaTiO3has a tetragonal phase.SEM images of the prepared samples reveala polyhedron shapes, on average, also it show that there are markedinfluence of the reactant concentration on the average size of the grains,where the samples prepared from higher solution concentration tend to possess larger grain size compared to that prepared from low concentration.

  18. Preparation of composite abrasives by electrostatic self-assembly method and its polishing properties in Cu CMP

    Institute of Scientific and Technical Information of China (English)

    Huang Yishen; Xu Xuefeng; Yao Chunyan; Hu Jiande; Peng Wei

    2014-01-01

    The adsorption characteristics of cationic polyelectrolyte poly dimethyl diallyl ammonium chloride (PDADMAC) and anionic polyelectrolyte poly (sodium-p-styrenesulfonate) (PSS) on benzoguanamine formal-dehyde (BGF) particles are investigated. The charging characteristics of BGF particles are changed and con-trolled using electrostatic self-assembly method. A variety of PEi-BGF/SiO2 composite abrasives are obtained. The as-prepared samples are analyzed by zeta potential analysis,transmission electron microscope (TEM) and thermogravimetric (TG) analysis. The composite abrasive slurries are prepared for copper polishing. The poli-shing results indicate that it is SiO2 abrasives,not only coated SiO2 abrasive on polymer particles but also free SiO2 abrasive in slurry ,that offer the polishing action. The material removal rates of copper polishing are 264 nm/min,348 nm/min and 476 nm/min using single SiO2 abrasive slurry,PE0-BGF/SiO2 mixed abrasive slur-ry and PE3-BGF/SiO2 composite abrasive slurry,respectively. The surface roughness Ra of copper wafer (with 5μm× 5μm district) is decreased from 0.166μm to 3.7 nm,2.6 nm and 1.5 nm,and the surface peak-valley values Rpv are less than 20 nm,14 nm and 10 nm using these kinds of slurries,respectively.

  19. Influence of Dispersion of Nano-ZnO Particles in Polymer Matrices on Properties of Relevant Nano Composite Fibers

    Institute of Scientific and Technical Information of China (English)

    WANG Yao; TANG Jian-guo

    2006-01-01

    The surface-passivated and non-surface-passivated zinc oxide nano-particles (marked as s-nanoZnO and ns-nanoZnO respectively) were evcnly dispersed in polymer solutions with thc aid of ultrasonic vibration to prepare nanocomposite film by free casting and to prepare nanocomposite fibers by wet spinning and to prepare nanocomposites coating by surface smearing. The dispersion of s-nanoZnO and nsnanoZnO in PAN matrix were observed by transmittance electron microscopy, the mechanical properties of the relevant composite samples were studied by INSRTON tensile strength tester. It was found that s-nanoZnO behaves a well-disporsed morphology in PAN films and fibers when its concentration was 2 wt% but ns-nanoZnO nano particles agglomerate into larger congeries in PAN films. It means that the surface-passivated process on zinc oxide nanoparticles was effective to disperse. The relative intensity and elongation at break of s-nanoZnO-PAN composite fibers show maximum values with the increase of nano particle content in composites (from 0 wt% to 2 wt% of snanoZnO). The elasticity of the conposite fibers increases whereas their modulus declines. Balanced the changes of the properties mentioned above, 2 wt% s-nanoZnO in PAN matrix is a proper content for the composite fibers spun by wet spinning. The result of surface smearing test means that the reaction between s-nanoZnO and polymer can be indicated by the color of nanocomposite surface coat on fibers.

  20. New therapeutic agent for radiation synovectomy - preparation of {sup 166}Ho-EDTMP-HA particle

    Energy Technology Data Exchange (ETDEWEB)

    Bai, H.; Jin, X.; Du, J.; Wang, F.; Chen, D.; Fan, H.; Cheng, Z.; Zhang, J. [China Institute of Atomic Energy, Beijing (Switzerland). Isotope Department

    1997-10-01

    In order to prepare new therapeutical agent for radiation synovectomy, Hydroxyapatite (HA) was labelled with {sup 166}Ho by EDTMP that had high affinity to HA particles. Radiolabelling of HA particles was divided into two steps, {sup 166}Ho-EDTMP was prepared first; then mixed with HA particles completely and vibrated for 15 minutes on the micromixer at room temperature, washed 3 times with deionized water. Radiolabelling particle was separated from free {sup 166}Ho via centrifugation to determine its radiolabelling efficiency. {sup 166}Ho-EDTMP-HA and {sup 166}Ho-EDTMP were injected into knee joint of normal rabbits respectively, every group was killed at different time postinjection, took out major organ and collected urine and blood, then weighted and determined their radio counts. HA particles, as a natural component of bone was known to have good compatibility with soft tissue and biodegrade into calcium and phosphate in vivo. It was readily prepared from common chemical and formed into particles of desired size range in a controlled process, it had high stability in vitro and vivo. Radiolabelling of HA particle with {sup 166}Ho by EDTMP was simple to perform and provides an excellent labelling yield that was more than 95% under the optimal labelling condition. The optimal labelling condition at room temperature was pH 6.0-8.0 and vibration time 15 minutes. The absorbed capacity of HA particle was 5 mg Ho/g HA particle and size of radiolabelling particle was at range of 2-5,{mu}m that is suitable for therapy of radiation synovectomy. {sup 166}Ho-EDTMP-HA particle demonstrated high in vitro stability in either normal saline or 1% BSA solution, but instability under extremely acidic condition (pH 1-2). The control studies performed with {sup 166}Ho-EDTMP not bound to HA particle provided information on the distribution of radioactivity that would occur upon leakage of the radiochemical compound from joint. Its short half-life, its extremely low leakage from the

  1. 乙二胺改性Co3O4-NiO复合粒子的制备及其超级电容性能研究%Preparation and electrochemical capacitive properties of Co3O4-NiO composite particles modified by ethylenediamine

    Institute of Scientific and Technical Information of China (English)

    徐惠; 景文甲; 王新颖

    2012-01-01

    利用简单液相共沉淀法制得中间产物Ni(OH)2-Co(OH)2,再经煅烧得到Co3O4-NiO复合粒子;用乙二胺对Co3O4-NiO复合粒子进行改性,改性后Co3O4-NiO微粒分散性提高,形貌为片状,片与片之间相互交叉形成疏松的介孔结构。电化学测试表明Co3O4-NiO电极材料在改性后表现出优良的电化学性能,在电位窗口为0~0.4V时,单电极比电容可达1202F/g,相比改性前提高了171F/g。%Ni(OH)2-Co(OH)2 was obtained by an easy simple liquid coprecipitation method.After calcination,the Co3O4-NiO composite particles were gotten,then modified by ethylenediamine.And the dispersion of Co3O4-NiO particles improved,morphology was flake,it formed loose mesoporous structure among each particles.Meanwhile,electrochemical supercapacitors properties of Co3O4-NiO electrode material were tested.The consequence manifested that the Co3O4-NiO composite particles showed excellent electrochemical performance and its single electrode specific capacitance was up to 1202F/g at the potential window of 0-0.4V,which increased 171F/g compared with the unmodified.

  2. Effect of particle size on microstructure and mechanical properties of composites produced by ARB process

    Energy Technology Data Exchange (ETDEWEB)

    Jamaati, Roohollah, E-mail: r.jamaatikenari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Amirkhanlou, Sajjad; Toroghinejad, Mohammad Reza; Niroumand, Behzad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-02-25

    Research highlights: {yields} Microstructure of MMC with larger particles becomes completely uniform, sooner. {yields} When the number of cycles increased, tensile strength for both samples improved. {yields} Up to the seventh cycle, tensile strength of MMC with larger particles was bigger. {yields} First, the tensile elongation of MMCs was decreased, and then it was improved. - Abstract: In the present work, Al/10 vol.% SiC metal matrix composite (MMC) was manufactured by accumulative roll bonding (ARB) process. The silicon carbide particles with two various particle sizes of 40 and 2 {mu}m were used. Effect of particle size on microstructure (by scanning electron microscopy) and mechanical properties (tensile strength and elongation) at various ARB cycles was investigated. It was found that the microstructural evolution in MMC with 40 {mu}m particle size was more salient compared to the MMCs with 2 {mu}m particle size. Also, the composite strip with 40 {mu}m particle size became uniform with high bonding quality and without any porosity sooner than the strip of 2 {mu}m particle size. Moreover, when the number of cycles was increased, the tensile strength for both samples was improved. The tensile strength of the composite strip with 40 {mu}m particle size was more than the composite strip with 2 {mu}m up to the seventh cycle. By increasing the number of cycles after the seventh cycle, the value of tensile strength of MMC with 40 {mu}m particle size became saturated and then decreased, and its tensile strength became less than that of the composite with 2 {mu}m particle size for the ninth and eleventh cycles. Up to the seventh cycle, when the number of ARB cycles was increased, the elongation of composite strips was decreased, but after the ninth cycle, the tensile elongation for both samples was improved.

  3. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    Energy Technology Data Exchange (ETDEWEB)

    Muttalib, Siti Nadzirah Abdul, E-mail: sitinadzirah.amn@gmail.com; Othman, Nadras, E-mail: srnadras@usm.my; Ismail, Hanafi, E-mail: ihanafi@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-07-22

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  4. Approximate-analytical study on thermal preparation and combustion of a coal particle

    Energy Technology Data Exchange (ETDEWEB)

    Salomatov, V.V. [SB RAS, Novosibirsk (Russian Federation). Inst. of Thermophysics; Enkhjargal, Kh. [Mongolian Univ. of Science and Technology, Ulaanbaatar (Mongolia)

    2013-07-01

    The main amount of heat and electricity in the world is produced with application of coal. Following development of power engineering plans application of low-grade coals, including those of new deposits (Salomatov VV, Nature conservation technologies at thermal and atomic power plants, Novosibirsk, NSTU, 2006). Massive Shive-Ovoos open-cast is among such low developed deposits of Mongolia. This deposit requires a set of investigations on thermal preparation and combustion of coal, aimed at extensive and efficient energy utilization. Calculation of flame combustion of coals is based on dependences, which determine the whole combustion process of separate coal particles. For particles of natural coals these processes include complex transformations of organic and mineral parts of coal matrix, heating, devolatization, ignition and burning of coke residue. Such detailed elaboration requires complex physical and mathematical simulation. Five successive stages of thermal preparation and combustion of a coal particle with initial humidity and ash content were distinguished by experimental results: 1. Heating. The particle is heated; the temperature increases, and the mass stays constant. 2. Drying. Liquid inside a wet particle evaporates and mass reduces. 3. Devolatization. 4. Ignition of slightly dried carbon layer by fuel gases. Residual moisture is still kept in the particle. 5. Burning. Two successive conditions are considered: 1. simultaneous burning of dried carbon layer and evaporation; 2. burning of absolutely dry coke residue.

  5. Hierarchical ZnO particles grafting by fluorocarbon polymer derivative: Preparation and superhydrophobic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dahai; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn

    2015-07-15

    Graphical abstract: - Highlights: • The hierarchical particles were prepared by a simple, mild hydrothermal process. • The obtained “chestnut” ZnO particles show dual-scale morphology with high roughness. • FEVE derivative was creatively imported to graft onto hierarchical particles. • Superhydrophobic surfaces were obtained, on which the contact angles surpass 150°. • A special model was proposed to explain the wetting state in this work. - Abstract: Superhydrophobic surfaces on the basis of hierarchical ZnO particles grafted by fluoroethylene-vinylether (FEVE) polymer derivative were prepared using a facile, mild and low-cost method. X-ray diffraction (XRD) and scanning electron microscope (SEM) revealed that the resulting ZnO particles via hydrothermal process exhibit micro–nano dual-scale morphology with high purity under a suitable surfactant amount and alkali concentration. The grafting of FEVE derivative was confirmed by Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectrometer (EDS), suggesting that hierarchical surface of ZnO particles was an imported monomolecular layer of fluorocarbon polymer. The obtained surface fabricated by drop-casting shows considerably high contact angle and good resistance to water immersion. The wetting behavior in this work was furthermore analyzed by theoretical wetting model. This work demonstrates that the sufficient low-wettable surface and high roughness both take a vital role in the superhydrophobic behavior.

  6. Polymer composites prepared from heat-treated starch and styrene-butadiene latex

    Science.gov (United States)

    Thermoplastic starch/latex polymer composites were prepared using styrene–butadiene (SB) latex and heat-treated cornstarch. The composites were prepared in a compression mold at 130 °C, with starch content 20%. An amylose-free cornstarch, waxy maize, was used for this research and the heat treatment...

  7. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, Yong [Precision Machinery Research Institute of Shanghai Space Flight Academy, Shanghai 201600 (China); Jiang, Jian-tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gong, Yuan-xun [Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China)

    2015-12-01

    Flaky FeSi alloy particles with different aspect ratio were produced via ball-milling and a subsequent annealing. The microstructure and the morphology of the particles were examined by XRD and SEM. The dc resistivity, the static magnetization properties and electromagnetic properties were measured. Particles with high aspect ratio were found possess high permittivity and permeability. On the other hand, the variation of grain size and defects density was found influence the permittivity and permeability. High specific area was believed contribute to the intense dielectric loss and the high shape magnetic anisotropy lead to high permeability in the target band. Increased electromagnetic parameters compel the absorption peak’s shift to lower frequency. Coating using flaky FeSi particles milled for 12 h as fillers presented a reflection loss of −10 dB at 2 GHz and a matching thickness of 1.88 mm. The flaky FeSi alloy particles prepared through ball-milling and annealing can be promising candidates for EMA application at 1–4 GHz band. - Highlights: • Large quantity of flakey FeSi particles were produced through a simple way. • Coatings with as-milled FeSi particles exhibit excellent EMA performance in L-S band. • Shape and size of particles can be controlled via adjusting the ball-milling time. • Shape/size along with the microstructure influence the electromagnetic properties. • Shape/size contribute more to the excellent EMA performance compared to microstructure.

  8. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Clara Silvestre

    2016-01-01

    Full Text Available This study was aimed at developing new films based on isotactic polypropylene (iPP for food packaging applications using zinc oxide (ZnO with submicron dimension particles obtained by spray pyrolysis. To improve compatibility with iPP, the ZnO particles were coated with stearic acid (ZnOc. Composites based on iPP with 2 wt % and 5 wt % of ZnOc were prepared in a twin-screw extruder and then filmed by a calender. The effect of ZnOc on the properties of iPP were assessed and compared with those obtained in previous study on iPP/ZnO and iPP/iPPgMA/ZnO. For all composites, a homogeneous distribution and dispersion of ZnOc was obtained indicating that the coating with stearic acid of the ZnO particles reduces the surface polarity mismatch between iPP and ZnO. The iPP/ZnOc composite films have relevant zinc oxide with respect to E. coli, higher thermal stability and improved mechanical and impact properties than the pure polymer and the composites iPP/ZnO and iPP/iPPgMA/ZnO. This study demonstrated that iPP/ZnOc films are suitable materials for potential application in the active packaging field.

  9. Study on in-situ WC particles/tungsten wire reinforced iron matrix composites under electromagnetic field

    Directory of Open Access Journals (Sweden)

    Niu Libin

    2010-05-01

    Full Text Available By applying electromagnetic field to a system consisting of tungsten wires and grey cast iron melt, the grey cast iron matrix composite reinforced by either in-situ WC particles or the combination of in-situ WC particles and the residual tungsten wire was obtained. By means of differential thermal analysis (DTA, the pouring temperature of iron melt was determined at 1,573 K. The microstructures of the composites were analyzed by using of X-ray diffraction (XRD, scanning electron microscopy (SEM equipped with an energy dispersive spectrum (EDS and pin-on-disc abrasive wear test. The obtained results indicated that, with the enhancing frequency of electromagnetic field, the amount of in-situ WC particles gradually increases, leading to continuous decrease of the residual tungsten wires. When the electromagnetic field frequency was up to 4 kHz, tungsten wires reacted completely with carbon atoms in grey cast iron melt, forming WC particals. The electromagnetic field appeared to accelerate the elemental diffusion in the melt, to help relatively quick formation of a series of small Fe-W-C ternary zones and to improve the kinetic condition of in-situ WC fabrication. As compared with the composite prepared without the electromagnetic field, the composite fabricated at 4 kHz presented good wear resistance.

  10. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Science.gov (United States)

    Ma, Xiaojun; Li, Bo; Gao, Dangzhong; Xu, Jiayun; Tang, Yongjian

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  11. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Durbadal, E-mail: durbadal73@yahoo.co.in [MEF Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Viswanathan, Srinath [Dept of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL (United States)

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1

  12. Characterization of biomass burning particles: chemical composition and processing

    Science.gov (United States)

    Hudson, P. K.; Murphy, D. M.; Cziczo, D. J.; Thomson, D. S.; Degouw, J.; Warneke, C.

    2003-12-01

    During the Intercontinental Transport and Chemical Transformation (ITCT) mission in April and May of 2002, a forest fire plume was intercepted over Utah on May 19. Gas phase species acetonitrile (CH3CN) (a biomass burning tracer) and carbon monoxide (CO) measured greater than five fold enhancements over background concentrations during this plume crossing. In the 100 sec plume crossing, the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument acquired 202 positive mass spectra of biomass burning particles. Many of these particles contained potassium in addition to organics, carbon, and NO+ (which is a signature for any nitrogen containing compound such as ammonium or nitrate). From characterization of the particle mass spectra obtained during the plume crossing, a qualitative signature has been determined for identifying biomass burning particles. By applying this analysis to the entire ITCT mission, several transport events of smoke plumes have been identified and were confirmed by gas phase measurements. Additional species, such as sulfate, found in the mass spectra of the transported particles indicated processing or aging of the biomass burning particles that had taken place. The analysis has been extended to other field missions (Crystal-Face, ACCENT, and WAM) to identify biomass burning particles without the added benefit of gas phase measurements.

  13. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    Science.gov (United States)

    Yoon, Joonsung

    The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and

  14. Preparation and bioevaluation of 166Ho labelled hydroxyapatite (HA) particles for radiosynovectomy.

    Science.gov (United States)

    Unni, P R; Chaudhari, P R; Venkatesh, Meera; Ramamoorthy, N; Pillai, M R A

    2002-02-01

    The preparation of 166Ho labeled hydroxy apatite (HA) particles for radiosynovectomy applications is described in this paper. 166Ho was prepared by the irradiation of Ho2O3 at a flux of 1.8 x 10(13) neutrons/cm2/s for about 7 days. The irradiation resulted in the production of approximately 17 GBq of 166Ho activity at the end of six hours post end of bombardment and the corresponding specific activity was approximately 3-4 GBq/mg of Ho. The irradiated target was dissolved in 0.1 N HCl solution. Radionuclidic purity was ascertained by high resolution gamma ray spectrometry. HA particles were synthesized and characterized by X-ray diffractometry. Labeling studies were carried out with and without citric acid as a transchelating agent. Radiochemical yield and purity of the 166Ho-HA particles were ascertained by paper chromatography and by paper electrophoresis techniques. Labeling yield of >98% could be achieved at pH 7, with 40 mg of HA particles and 8.6 microg of Ho. 166Ho-HA particles prepared were stable for 72 h. Bio-evaluation of the 166Ho -HA particles were carried out by injecting approximately 74 MBq dose in 200 microL (approximately 8 mg of 166Ho-HA particles) directly into the arthritis induced knee joints as well as into the healthy knee joints of white New Zealand rabbits. Images of the injected joints of the animals recorded using a gamma camera at regular intervals showed good retention. Blood samples were collected from the animals and activity assayed in a scintillation detector. Experiments were also carried out under identical conditions in normal rabbits. In both the cases, it was observed that there was no significant extra articular leakage of the injected activity over the study period of 96 h post injection.

  15. Preparation of Intumescent Flame Retardant Polypropylene composite through Solid State Mechanochemical Method

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-hong; WANG Qi

    2004-01-01

    Polypropylene (PP), with characteristics of good mechanical properties, good resistance to water and low cost, has been widely used in many fields such as building, transport, furniture and electrical industries. However, a fateful drawback of polypropylene is its high flammability,restricting its wider applications. Addition of flame retardants is an effective way to improve its flame retardancy. An effective halogen-free flame retardant system used is the mixture of melamine, ammounium phosphate and pentaerythritol (intumescent flame retardant). But how to enhance the dispersion of this mixture in polypropylene matrix is a big problem. A self-made mechanochemical reactor, pan type milling equipment, can exert strong shear and squeeze forces,and has good mixing function. As a result, a uniform dispersion of flame retardants in the polymer matrix can be expectably obtained by using this equipment.In this paper, flame-retarded Polypropylene (PP) composites with intumescent flame retardant (IFR) were prepared via solid state mechanochemical method (pan-mill) and conventional method (twin-roll masticator) respectively. Particle diameter analysis, melt flow index (MFI), differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM) were used to characterize these composites, and the mechanical properties and flame retardancy were also determined. The experimental results showed that the blend of PP and IFR were effectively pulverized from 3~4 mm to less than 300i m under the strong shear forces of pan-mill. With increasing the milling cycles, the MFI value of IFR/PP blend decreased first and then increased. The mechanical properties and flame retardancy of IFR/PP blends prepared by solid state mechanochemical method were proved to be better than those prepared by conventional method because of the dispersing function of pan-mill.Also it was found that IFRs were the nucleating agent for PP and the crystallinity of PP increased first and then

  16. Influence of particle arrangement on the permittivity of an elastomeric composite

    Science.gov (United States)

    Tsai, Peiying J.; Nayak, Suchitra; Ghosh, Suvojit; Puri, Ishwar K.

    2017-01-01

    Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ɛ. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS) alter ɛ. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ɛ increases by as much as 85%. When particles are organized into chainlike forms, ɛ increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ɛ when ψ <9 % while larger particles provide greater enhancement when ψ is larger than that value. To enhance ɛ, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.

  17. Influence of particle arrangement on the permittivity of an elastomeric composite

    Directory of Open Access Journals (Sweden)

    Peiying J. Tsai

    2017-01-01

    Full Text Available Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ε. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS alter ε. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ε increases by as much as 85%. When particles are organized into chainlike forms, ε increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ε when ψ<9% while larger particles provide greater enhancement when ψ is larger than that value. To enhance ε, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.

  18. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus.

  19. Preparation of (Ti, Sn)O2 Nano-Composite Photocatalyst by Supercritical Fluid Dry Combination Technology

    Institute of Scientific and Technical Information of China (English)

    Jingchang ZHANG; Qing LI; Weiliang CAO

    2005-01-01

    A series of TiO2-SnO2 nano-sized composite photo-catalysts containing Sn (9.3%~30.1%) were prepared from TiCl4and SnCl4.5H2O by using sol-gel, supercritical fluid dry and solid-phase reaction (SCFD) combination technology.Characterizations with X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR) showed that, in addition to anatase type TiO2, a new active phase (Ti, Sn)O2 (with particle size of 2.0~4.3 nm) formed, and there were no SnO2 crystals observed in the range of the doping concentration studied. Photo-catalytic reaction of phenol was used as a model reaction to evaluate the catalytic activities of the obtained catalysts. Compared with pure TiO2 or Ti-Sn catalyst prepared with general sol-gel method, Ti-Sn nanocomposite photo-catalyst thus obtained showed significant improvement in catalytic activity. The photo-catalytic degradation rate of phenol could reach as high as 93.5% after 7 h. The preparation conditions of the new phase (Ti, Sn)O2 were investigated and its catalytic mechanism was proposed. The photo-catalytic particles prepared using SCFD combination technology exhibited small particle size, large surface area and high activity.

  20. Preparation of Fe3O4Spherical Nanoporous Particles Facilitated by Polyethylene Glycol 4000

    Directory of Open Access Journals (Sweden)

    Wang Li-Li

    2009-01-01

    Full Text Available Abstract Much interest has been attracted to the magnetic materials with porous structure because of their unique properties and potential applications. In this report, Fe3O4nanoporous particles assembled from small Fe3O4nanoparticles have been prepared by thermal decomposition of iron acetylacetonate in the presence of polyethylene glycol 4000. The size of the spherical nanoporous particles is 100–200 nm. Surface area measurement shows that these Fe3O4nanoporous particles have a high surface area of 87.5 m2/g. Magnetization measurement and Mössbauer spectrum indicate that these particles are nearly superparamagnetic at room temperature. It is found that the morphology of the products is greatly influenced by polyethylene glycol concentration and the polymerization degree of polyethylene glycol. Polyethylene glycol molecules are believed to facilitate the formation of the spherical assembly.

  1. PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    魏悦广

    2001-01-01

    The influences of particle size on the mechanical properties of the particulate metal matrix composite are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material,are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally,the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted.

  2. Microstructure and properties of W-ZrC composites prepared by the displacive compensation of porosity (DCP) method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shouming, E-mail: shoumzh@163.com [Key Lab of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, DeYa Road, Changsha 410073 (China); Wang Song; Li Wei; Zhu Yulin; Chen Zhaohui [Key Lab of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, DeYa Road, Changsha 410073 (China)

    2011-08-18

    Highlights: > Microstructure of the W-ZrC composites was investigated using TEM and SEAD. > Mechanical properties of the composites were measured. > Ablation resistance was researched. - Abstract: Tungsten-zirconium carbide composites were fabricated at different temperatures by the displacive compensation of porosity (DCP) method, the microstructure, mechanical properties, and ablation resistance were investigated. It was found that no WC phase was left in the composites prepared at 1400 deg. C, and a few residual W{sub 2}C particles were surrounded in W product. Microstructure analyses revealed that zirconium atoms diffused into tungsten carbide to form ZrC and W{sub 2}Zr besides carbon diffused into the Zr{sub 2}Cu melt. Composites fabricated at 1400 deg. C had a flexural strength of 356.7 {+-} 15.2 MPa, an elastic modulus of 193.7 {+-} 9.8 GPa, a fracture toughness of 7.0 {+-} 0.7 MPa m{sup 1/2}, and a hardness of 13.6 {+-} 0.7 GPa. After ablated by an oxyacetylene flame for 30 s, the higher temperature prepared composites had a better ablation resistance, the linear ablation rate was 0.0033 {+-} 0.0004 mm/s, and the mass ablation rate was 0.0012 {+-} 0.0001 g/s.

  3. Automated mapping of explosives particles in composition C-4 fingerprints.

    Science.gov (United States)

    Verkouteren, Jennifer R; Coleman, Jessica L; Cho, Inho

    2010-03-01

    A method is described to perform automated mapping of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) particles in C-4 fingerprints. The method employs polarized light microscopy and image analysis to map the entire fingerprint and the distribution of RDX particles. This method can be used to evaluate a large number of fingerprints to aid in the development of threat libraries that can be used to determine performance requirements of explosive trace detectors. A series of 50 C-4 fingerprints were characterized, and results show that the number of particles varies significantly from print to print, and within a print. The particle size distributions can be used to estimate the mass of RDX in the fingerprint. These estimates were found to be within +/-26% relative of the results obtained from dissolution gas chromatography/micro-electron capture detection for four of six prints, which is quite encouraging for a particle counting approach. By evaluating the average mass and frequency of particles with respect to size for this series of fingerprints, we conclude that particles 10-20 microm in diameter could be targeted to improve detection of traces of C-4 explosives.

  4. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity

    Science.gov (United States)

    Svetlichnyi, Valery; Shabalina, Anastasiia; Lapin, Ivan; Goncharova, Daria; Nemoykina, Anna

    2016-05-01

    A simple deposition method was used to prepare a ZnO/cotton fabric composite from water and ethanol dispersions of ZnO nanoparticles obtained by the pulsed laser ablation method. The structure and composition of the nanoparticles from dispersions and as-prepared composites were studied using electron microscopy, X-ray diffraction, and spectroscopy. The nanoparticles and composite obtained exhibited antibacterial activity to three different pathogenic microorganisms-Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. An attempt to understand a mechanism of bactericidal effect of ZnO nanoparticles was made. It was shown that zinc ions and hydrogen peroxide were not responsible for antibacterial activity of the particles and the composite, and surface properties of nanoparticles played an important role in antibacterial activity of zinc oxide. The proposed composite is a promising material for use as an antibacterial bandage.

  5. Compositional Fragmentation Model for the Oxidation of Sulfide Particles in a Flash Reactor

    Science.gov (United States)

    Parra-Sánchez, Víctor Roberto; Pérez-Tello, Manuel; Duarte-Ruiz, Cirilo Andrés; Sohn, Hong Yong

    2014-04-01

    A mathematical model to predict the size distribution and chemical composition of a cloud of sulfide particles during high-temperature oxidation in a flash reactor is presented. The model incorporates the expansion and further fragmentation of the reacting particles along their trajectories throughout the reaction chamber. A relevant feature of the present formulation is its flexibility to treat a variety of flash reacting systems, such as the flash smelting and flash converting processes. This is accomplished by computing the chemical composition of individual particles and the size distribution and overall composition of the particle cloud in separate modules, which are coupled through a database of particle properties previously stored on disk. The flash converting of solid copper mattes is considered as an example. The model predictions showed good agreement with the experimental data collected in a large laboratory reactor in terms of particle size distribution and sulfur remaining in the population of particles. The cumulative contribution and distribution coefficients are introduced to quantify the relationship between specific particle sizes in the feed and those in the reacted products upon oxidation, the latter of which has practical implications on the amount and chemical composition of dust particles produced during the industrial operation.

  6. Preparation of a concentrated organophyllosilicate and nanocomposite composition

    Science.gov (United States)

    Chaiko, David J.; Niyogi, Suhas G.

    2007-01-16

    The present invention provide methods for producing a low moisture organophyllosilicate composition using monomers, oligomers, or polymers to displace water associated with the organophyllosilicates in an aqueous organophyllosilicate slurry or filter cake. The invention additionally provides methods for producing organophyllosilicate nanocomposites from the concentrated organophyllosilicate compositions by dispersing the compositions in a polymer matrix.

  7. NMR Spectroscopy of the Hydrated Layer of Composite Particles Based on Nanosized Al2O3 and Vitreous Humor

    Science.gov (United States)

    Turov, V. V.; Gerashchenko, I. I.; Markina, A. I.

    2013-11-01

    The hydrated layer of composite particles prepared using Al2O3 and cattle vitreous humor was investigated using NMR spectroscopy. It was found that water bound to Al2O3 nanoparticles was present in the form of clusters with different degrees of association and energies of interaction with the surface. Water bound to the surface of the Al2O3/vitreous humor composite became more uniform upon immobilization of vitreous humor components on the surface of the Al2O3. With this, the clusters of adsorbed water had characteristics that were close to those found in air and weakly polar CHCl3 media. Addition of polar CH3CN led to the formation of very small water clusters. PMR spectra of the surface of the Al2O3/vitreous humor composite in the presence of trifluoroacetic acid differentiated four types of hydrated structures that differed in the degree of water association.

  8. Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations.

    Science.gov (United States)

    Tabony, James; Rigotti, Nathalie; Glade, Nicolas; Cortès, Sandra

    2007-05-01

    Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.

  9. Electromagnetic properties of flake-shaped Fe–Si alloy particles prepared by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Jiang, Jian-Tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Wang, Zeng-Quan [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gong, Yuan-Xun [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074 (China); Liu, Chao [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China)

    2014-11-15

    Flake-shaped Fe–Si alloy particles with high aspect ratios were fabricated by ball milling commercially available Fe–Si powder, aiming to fabricate high-performance microwave absorbing fillers for coatings applied in 1–4 GHz range. To compare with spherical particles, higher permittivity and permeability was observed by using flaky particles as fillers. High aspect ratios contributed to an enhanced dielectric relaxation in the 1–4 GHz band, resulting in an increased permittivity. The thin thickness together with the high resistivity of Fe–Si flakes was believed to be helpful for suppressing the effect of eddy current and thus lead to an increase in the permeability. The electromagnetic wave absorbing (EMA) performances were observed to be enhanced. With a thin thickness of 2 mm, a wide absorption band with a minimum reflection loss of −12 dB was achieved in 1–4 GHz range, when using 75 wt% of flaky Fe–Si particles as fillers. The study indicated that flake-shaped Fe–Si particles were a promising candidate for EMA materials in L and S bands. - Highlights: • Flaky Fe–Si alloy particles were prepared in large scale via a simple ball milling method. • Coatings containing flakes Fe–Si particles present excellent EMA performance in L–S band. • The high shape anisotropy and the thin thickness contribute to the excellent EM property.

  10. Simulation of the dynamic packing behavior of preparative chromatography columns via discrete particle modeling.

    Science.gov (United States)

    Dorn, Martin; Hekmat, Dariusch

    2016-03-01

    Preparative packed-bed chromatography using polymer-based, compressible, porous resins is a powerful method for purification of macromolecular bioproducts. During operation, a complex, hysteretic, thus, history-dependent packed bed behavior is often observed but theoretical understanding of the causes is limited. Therefore, a rigorous modeling approach of the chromatography column on the particle scale has been made which takes into account interparticle micromechanics and fluid-particle interactions for the first time. A three-dimensional deterministic model was created by applying Computational Fluid Dynamics (CFD) coupled with the Discrete Element Method (DEM). The column packing behavior during either flow or mechanical compression was investigated in-silico and in laboratory experiments. A pronounced axial compression-relaxation profile was identified that differed for both compression strategies. Void spaces were clearly visible in the packed bed after compression. It was assumed that the observed bed inhomogeneity was because of a force-chain network at the particle scale. The simulation satisfactorily reproduced the measured behavior regarding packing compression as well as pressure-flow dependency. Furthermore, the particle Young's modulus and particle-wall friction as well as interparticle friction were identified as crucial parameters affecting packing dynamics. It was concluded that compaction of the chromatographic bed is rather because of particle rearrangement than particle deformation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:363-371, 2016. © 2015 American Institute of Chemical Engineers.

  11. Diode laser cladding of Co-based composite coatings reinforced by spherical WC particles

    Science.gov (United States)

    Janicki, Damian; Górka, Jacek; Czupryński, Artur; Kwaśny, Waldemar; Żuk, Marcin

    2016-12-01

    A laser cladding system consisting of a direct diode laser with the flat-top beam profile and an off-axis powder injection nozzle has been used to fabricate Co-based (Satellite 6) metal matrix composite coatings reinforced by spherical-shaped WC particles. Non-porous coatings with the WC fraction of about 50 vol.% and a low dissolution of the WC particles in the matrix have been obtained. The heat input level affects the degree of WC dissolution and the matrix mean free path between the embedded WC particles. Comparative erosion tests between the metallic Satellite 6 and composite Satellite 6/WC coatings showed that the composite coatings exhibit a superior erosion resistance only at the oblique impingement condition. Generally, a low erosion resistance of the composite coatings at the normal impingement is mainly attributed to a very smooth interface between the spherical-shaped WC particles and the matrix alloy.

  12. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Science.gov (United States)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  13. ON THE EFFECT OF NANO-PARTICLE CLUSTERING ON TOUGHENING OF NANO-COMPOSITE CERAMICS

    Institute of Scientific and Technical Information of China (English)

    董照旭; 方岱宁; 苏爱嘉

    2002-01-01

    In this paper, two and three-dimensional clustering models are developed to characterize the effect of nano-particle clustering on toughening of nanocomposite ceramics. It is found that crack pinning toughens the nano-composite ceramics because a higher stress intensity factor is needed for crack to propagate around or to pull-out the nano-particle. The nano-particle along the grain boundary steers the crack into the matrix grain due to the strong cohesion between the nanoparticle and the matrix. Since the fracture resistance of the grain boundary is lower than that of the grain lattice, the higher the probability of transgranular fracture induced by nano-particles, the tougher is the nano-composite. However, both crack pinning and transgranular fracture are affected by nano-particle clustering. Nanoparticle clustering, which increases with increasing volume fraction of nano-particles,leads to reduction of both the strength and toughness of the nano-composite ceramics. The larger the size of the clustered particle, and the more defects it contains, the easier it is for the crack to pass through the clustered particle, which means that the nano-particle clustering can reduce toughening induced by crack pinning and transgranular fracture. The theoretical prediction, based on the combination of the three mechanisms of nano-particles, is in agreement with the experimental data.

  14. Soundproofing effect of nano particle reinforced polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Chul; Hong, Young Sun; Nan, Ri Guang; Ahn, Sung Hoon; Kang, Yeon Jun [Seoul National University, Seoul (Korea, Republic of); Jang, Moon Kyu [LS Cable Ltd., Anyang (Korea, Republic of); Lee, Caroline S. [Hanyang University, Ansan (Korea, Republic of)

    2008-08-15

    In this paper, the effects of soundproofing by polymer and carbon-nanotube (CNT) composites were investigated. The specimens for sound insulation measurement were fabricated with Acrylonitrile Butadiene Styrene (ABS)/CNT composites. Tests showed that sound transmission loss of ABS/CNT 15 vol.% composite was higher by 21.7% (4.1 dB) than that of pure ABS specimen at a frequency of 3400 Hz. It was found that the principal factor influencing the improvement of sound insulations of ABS/CNT composites was increased stiffness by CNT additives. To demonstrate the practical applicability of polymer/CNT composites, tests were conducted for the reduction of operational noise from mechanical relay

  15. Influence of SiO2 Particles on Microstructures and Properties of Ni-W-P-CeO2-SiO2 Nano-Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    Xu Ruidong; Wang Junli; Guo Zhongcheng; Wang Hua

    2007-01-01

    Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on the carbon steel surface by pulse co-deposition of nickel, tungsten, phosphorus, nano-CeO2 and nano-SiO2 particles. The influence of nano-SiO2 particles concentrations in electrolyte on microstructures and properties of the nano-composite coatings were researched, and the characteristics were assessed by chemical compositions, element distribution, deposition rate, microhardness and microstructures. The results indicate that when nano-SiO2 particles concentrations in electrolyte are controlled at 20g·L-1, the deposition rate with 27.07μm·h-1 and the microhardness with 666 Hv of the nano-composite coatings are highest, element line scanning and area scanning analyses show that the average contents of elements W, P, Si and Ce in the nano-composite coatings are close. displaying that the distribution of every element within the nano-composite coatings is even. An increase in nano-SiO2 particles concentrations in electrolyte (when lower than 20g·L-1) leads to refinement in grain structure of nano-composite coatings, but when it improved to 30g·L-1, the crystallite sizes increase again and in the meantime there are a lot of small boss with nodulation shape appearing on the surface of nano-composite coatings.

  16. Effect of alumina particle additions of the aging kinetics of 6061 aluminum matrix composites

    OpenAIRE

    Allen, Susan Marie.

    1990-01-01

    Approved for public release, distribution is unlimited Differential scanning calorimetry (DSC) was conducted using a monolithic 6061 aluminum material and two 6061 aluminum matrix composite materials. The composite materials were reinforced with 10 volume percent and 15 volume percent alumina particles. Electrical resistivity and hardness measurements during isothermal aging treatments were also conducted. The effects of prior aging and alumina particle additions on the growth kinetics and...

  17. Continuum discretization methods in a composite-particle scattering off a nucleus: the benchmark calculations

    CERN Document Server

    Rubtsova, O A; Moro, A M

    2008-01-01

    The direct comparison of two different continuum discretization methods towards the solution of a composite particle scattering off a nucleus is presented. The first approach -- the Continumm-Discretized Coupled Channel method -- is based on the differential equation formalism, while the second one -- the Wave-Packet Continuum Discretization method -- uses the integral equation formulation for the composite-particle scattering problem. As benchmark calculations we have chosen the deuteron off \

  18. Preparation and preclinical evaluation of {sup 211}At-labelled compounds for {alpha}-particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.

    1994-12-31

    The interest for {alpha}-particle emitters in internal radiotherapy is increasing due to improved conjugation chemistry. Experimental work has concentrated on {sup 211}At and {sup 212}Bi since these to nuclides have radiochemical and physical properties suitable for medical application. In this report it is demonstrated that biologically active {sup 211}At-labelled compounds can be prepared within a relatively short time allowing utilization of this 7.2 h {alpha}-particle. It is further shown that {sup 211}At-TP-3 treatment of human osteosarcoma in vitro gives promising therapeutic ratios. 76 refs., 5 figs., 3 tabs.

  19. Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation.

    Science.gov (United States)

    Duda, Yurko; Vázquez, Flavio

    2005-02-01

    Composite latex particles have shown a great range of applications such as paint resins, varnishes, water borne adhesives, impact modifiers, etc. The high-performance properties of this kind of materials may be explained in terms of a synergistical combination of two different polymers (usually a rubber and a thermoplastic). A great variety of composite latex particles with very different morphologies may be obtained by two-step emulsion polymerization processes. The formation of specific particle morphology depends on the chemical and physical nature of the monomers used during the synthesis, the process temperature, the reaction initiator, the surfactants, etc. Only a few models have been proposed to explain the appearance of the composite particle morphologies. These models have been based on the change of the interfacial energies during the synthesis. In this work, we present a new three-component model: Polymer blend (flexible and rigid chain particles) is dispersed in water by forming spherical cavities. Monte Carlo simulations of the model in two dimensions are used to determine the density distribution of chains and water molecules inside the suspended particle. This approach allows us to study the dependence of the morphology of the composite latex particles on the relative hydrophilicity and flexibility of the chain molecules as well as on their density and composition. It has been shown that our simple model is capable of reproducing the main features of the various morphologies observed in synthesis experiments.

  20. Preparation and formation mechanisms of metallic particles with controlled size, shape, structure and surface functionality

    Science.gov (United States)

    Lu, Lu

    Due to their excellent conductivity and chemical stability, particles of silver (Ag), gold (Au), copper (Cu) and their alloys are widely used in the electronic industry. Other unique properties extend their uses to the biomedical, optical and catalysis fields. All of these applications rely on particles with well controlled size, morphology, structure, and surface properties. Chemical precipitation from homogeneous solutions was selected as the synthetic route for the investigations described in this work. Based on the evaluation of key process parameters (temperature, reactant concentrations, reactant addition rate, mixing, etc.) the general formation mechanisms of metallic particles in various selected precipitation systems were investigated and elucidated. Five different systems for preparing particles with controlled size, morphology, structure and surface functionality are discussed. The first system involves the precipitation of Ag nanoparticles with spherical and anisotropic (platy or fiber-like) morphology. It will be shown that the formation of a stable Ag/Daxad complex has a significant impact on the reaction kinetics, and that the chromonic properties of Daxad molecules are responsible for the particle anisotropy. In the second system, Au-Ag core-shell nanoparticles were prepared in aqueous solution by a two-step precipitation process. The optical properties of these particles can be tailored by varying the thickness of the Ag shell. It was also determined that the stability of the bimetallic metallic sols depends on the Cl-ion concentration in solution. The third system discussed deals with preparation by the polyol process of well dispersed Cu nanospheres with high crystallinity and excellent oxidation resistance. We show that the heterogeneous nucleation (seeding) approach has significant merit in controlling particle size and uniformity. The functionalization of Au nanoparticle surfaces with glutathione molecules is discussed in the next section. The

  1. Principle and Method of Preparation of Explosive Micro-particles Through the Supercritical Anti-solvent Process

    Institute of Scientific and Technical Information of China (English)

    JIN Liang-an; LIU Xue-wu; LI Zhi-yi; WANG Xiao-tong; YIN Xing-bo

    2005-01-01

    In explosive research area, one of important trends is to study on the preparation technology of explosive microparticles. A new principle and method based on supercritical anti-solvent (SAS) process is put forward and discussed for the preparation of explosive micro-particles. The satisfactory micro-particles of explosives can be obtained easily by its particular mechanism of creating micro-particles, and operating conditions at normal temperature. This method is good for further study and development.

  2. Preparation and optical properties of composite thin films with embedded InP nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    InP nanoparticles embedded in SiO2 thin films were prepared by radio-frequency magnetron co-sputtering. We analyzed the structure and growth behavior of the composite films under different preparation conditions. X-ray diffraction and Raman spectroscopy analyses indicate that InP nanoparticles have a polycrystalline structure. The aver-age size of InP nanoparticles is in the range of 3-10 nm. The broadening and red shift of the Raman peaks were observed,which can be interpreted by the phonon confinement model. Optical transmission spectra indicate that the optical absorp-tion edges of the films can be modulated in the visible light range. The marked blue shift of the absorption edge with respect to that of bulk InP is explained by the quantum con-finement effect. The theoretical values of the blue shift pre-dicted by the effective mass approximation model are differ-ent from the experimental results for the InP-SiO2 system. Analyses indicate that the exciton effective mass of the InP nanoparticles is not constant and is inverse relative to the particles radius,which may be the main reason that results in the discrepancy between the theoretical and the experi-mental result. We discussed the possible transition of the direct band gap to the indirect band gap for InP nanoparti-cles embedded in SiO2 thin films.

  3. Bruggeman formalism vs. `Bruggeman formalism': Particulate composite materials comprising oriented ellipsoidal particles

    CERN Document Server

    Mackay, Tom G

    2012-01-01

    Two different formalisms for the homogenization of composite materials containing oriented ellipsoidal particles of isotropic dielectric materials are being named after Bruggeman. Numerical studies reveal clear differences between the two formalisms which may be exacerbated: (i) if the component particles become more aspherical, (ii) at mid-range values of the volume fractions, and (iii) if the homogenized component material is dissipative. The correct Bruggeman formalism uses the correct polarizability density dyadics of the component particles, but the other formalism does not.

  4. PZT/P(VDF-HFP) 0-3 composites as solvent-cast thin films: preparation, structure and piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, Michael; Arlt, Kristin [Functional Polymer Systems, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstrasse 69, 14476 Potsdam-Golm (Germany)], E-mail: michael.wegener@iap.fraunhofer.de

    2008-08-21

    Composite films of lead zirconate titanate (PZT) and poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) were prepared as 100 {mu}m thin films by solvent casting. Within the 0-3 composites, the ceramic-volume fraction was varied between 0.19 and 0.65, which yielded films with different structural and dielectric properties. These influenced the piezoelectric properties of the composite films found after electric poling, which was performed here at room temperature. The piezoelectric activity, with a maximum piezoelectric coefficient of 11 pC N{sup -1} in the film-thickness direction, originates from the polarization of the embedded ceramic particles as proved by poling experiments in corona discharges as well as in direct contact.

  5. Preparation of TiO2-Fullerene Composites and Their Photocatalytic Activity under Visible Light

    Directory of Open Access Journals (Sweden)

    Ken-ichi Katsumata

    2012-01-01

    Full Text Available The development of visible light-sensitive photocatalytic materials is being investigated. In this study, the anatase and rutile-C60 composites were prepared by solution process. The characterization of the samples was conducted by using XRD, UV-vis, FT-IR, Raman, and TEM. The photocatalytic activity of the samples was evaluated by the decolorization of the methylene blue. From the results of the Raman, FT-IR, and XRD, the existence of the C60 was confirmed in the samples. The C60 was modified on the anatase or rutile particle as a cluster. The C60 didn't have the photocatalytic activity under UV and visible light. The anatase and rutile-C60 composites exhibited lower photocatalytic activity than the anatase and rutile under UV light. The anatase-C60 exhibited also lower activity than the anatase under visible light. On the other hand, the rutile-C60 exhibited higher activity than the rutile under visible light. It is considered that the photogenerated electrons can transfer from the C60 to the rutile under visible light irradiation.

  6. Preparation and photocatalytic activity of PANI/TiO2 composite film

    Institute of Scientific and Technical Information of China (English)

    GAO Jinzhang; LI Shengying; YANG Wu; ZHAO Guohu; BO Lili; SONG Li

    2007-01-01

    A PANI/TiO2 composite film deposited on the glass surface was successfully prepared using sol-gel dip-coating technique and chemical oxidation method.The film was characterized using XRD, AFM,and UV.The result showed that the TiO2 film consists of both cuboid-shaped and anatase-phased TiO2 nanoparticles.The average grain size of TiO2 in the film was approximately 20 nm.After coating with PANI,the particle was changed into irregular spherical-shaped and the size was increased up to approximately 35 nm in diameter.UV-Vis spectroscopy analysis indicated that the coating of TiO2 with PANI would result in an enhancement of photocatalytic efficiency and an extension of the photoresponse of TiO2.The band gap of the PANI/TiO2 film was 3.18 eV.The photocatalytic property of the film was evaluated by the degradation of rhodamine-B.It was found that 67.1% and 83.2% of rhodamine-B could be degraded under sunlight and UV irradiation within 120 min using the PANI/TiO2 composite film as photocatalyst.

  7. Preparation and characterization of new nano-composite scaffolds loaded with vascular stents.

    Science.gov (United States)

    Xu, Hongzhen; Su, Jiansheng; Sun, Jun; Ren, Tianbin

    2012-01-01

    In this study, vascular stents were fabricated from poly (lactide-ɛ-caprolactone)/collagen/nano-hydroxyapatite (PLCL/Col/nHA) by electrospinning, and the surface morphology and breaking strength were observed or measured through scanning electron microscopy and tensile tests. The anti-clotting properties of stents were evaluated for anticoagulation surfaces modified by the electrostatic layer-by-layer self-assembly technique. In addition, nano-composite scaffolds of poly (lactic-co-glycolic acid)/polycaprolactone/nano-hydroxyapatite (PLGA/PCL/nHA) loaded with the vascular stents were prepared by thermoforming-particle leaching and their basic performance and osteogenesis were tested in vitro and in vivo. The results show that the PLCL/Col/nHA stents and PLGA/PCL/nHA nano-composite scaffolds had good surface structures, mechanical properties, biocompatibility and could guide bone regeneration. These may provide a new way to build vascularized-tissue engineered bone to repair large bone defects in bone tissue engineering.

  8. Preparation and photoelectrochemical performance of TiO2/Ag2Se interface composite film

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Coupling TiO2 with a narrow band gap semiconductor acting as the photosensitizer has attracted much attention in solar energy exploitation. In this work,the porous TiO2 film was first formed on the conducting glass plate (CGP) substrate by the decomposition of polyethylene glycol (PEG) mixing in titanium hydroxide sol at 450℃. Then,the TiO2/Ag2Se interface composite film was fabricated by interface reaction of AgNO3 with NaSeSO3 on the activated surface of porous TiO2 film. The results of SEM and XRD analyses indicated that the porous TiO2 layer was made up of the anatase crystal,and the Ag2Se layer was made up of congregative small particles that have low-temperature α-phase structure. Due to its efficient charge separation for the photo-induced electron-hole pairs,the TiO2/Ag2Se interface composite film as-prepared has good photovoltaic property and high photocurrent response for visible light,which have been confirmed by the photoelectrochemical measurements.