WorldWideScience

Sample records for composite nanowire arrays

  1. The fabrication and the coercivity mechanism of segmented (Ni/Fe)m composite nanowire arrays

    International Nuclear Information System (INIS)

    Xue, D S; Shi, H G; Si, M S

    2004-01-01

    Arrays of segmented (Ni/Fe) m (m = 1,2,3,4,5) composite nanowires about 3 μm in length and with aspect ratios of about 60 were electrodeposited on anodic porous alumina templates using a dual bath. The structure, morphology and magnetic properties of the samples were characterized by means of x-ray diffraction, transmission electron microscopy and vibrating sample magnetometry, respectively. It is found that Fe(110) and Ni(111) orientations along nanowire axis are preferred. The large aspect ratio of the composite nanowires reveals a strong shape magnetic anisotropy. As the number of the Ni/Fe composite segments m increases, the coercivity of the nanowire arrays, with the magnetic field applied parallel to the wire, gradually increases. The coercivity variation of the segmented composite nanowires is closely related to the effective exchange coupling between the Ni and Fe segments

  2. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    Science.gov (United States)

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  3. Preparation and properties of novel magnetic composite nanostructures: Arrays of nanowires in porous membranes

    International Nuclear Information System (INIS)

    Vazquez, M.; Hernandez-Velez, M.; Asenjo, A.; Navas, D.; Pirota, K.; Prida, V.; Sanchez, O.; Baldonedo, J.L.

    2006-01-01

    In the present work, we introduce our latest achievements in the development of novel highly ordered composite magnetic nanostructures employing anodized nanoporous membranes as precursor templates where long-range hexagonal symmetry is induced by self-assembling during anodization process. Subsequent processing as electroplating, sputtering or pressing are employed to prepare arrays of metallic, semiconductor or polymeric nanowires embedded in oxide or metallic membranes. Particular attention is paid to recent results on controlling the magnetic anisotropy in arrays of metallic nanowires, particularly Co, and nanohole arrays in Ni membranes

  4. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    International Nuclear Information System (INIS)

    Palmero, E. M.; Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.

    2014-01-01

    Arrays of Ni 100−x Cu x nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  5. Nanowire sensors and arrays for chemical/biomolecule detection

    Science.gov (United States)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  6. Preparation and characterization of graphene-based vanadium oxide composite semiconducting films with horizontally aligned nanowire arrays

    International Nuclear Information System (INIS)

    Jung, Hye-Mi; Um, Sukkee

    2016-01-01

    Highly oriented crystalline hybrid thin films primarily consisting of Magnéli-phase VO 2 and conductive graphene nanoplatelets are fabricated by a sol–gel process via dipping pyrolysis. A combination of chemical, microstructural, and electrical analyses reveals that graphene oxide (GO)-templated vanadium oxide (VO x ) nanocomposite films exhibit a vertically stacked multi-lamellar nanostructure consisting of horizontally aligned vanadium oxide nanowire (VNW) arrays along the (hk0) set of planes on a GO template, with an average crystallite size of 41.4 Å and a crystallographic tensile strain of 0.83%. In addition, GO-derived VO x composite semiconducting films, which have an sp 3 /sp 2 bonding ratio of 0.862, display thermally induced electrical switching properties in the temperature range of − 20 °C to 140 °C, with a transition temperature of approximately 65 °C. We ascribe these results to the use of GO sheets, which serve as a morphological growth template as well as an electrochemically tunable platform for enhancing the charge-carrier mobility. Moreover, the experimental studies demonstrate that graphene-based Magnéli-phase VO x composite semiconducting films can be used in advanced thermo-sensitive smart sensing/switching applications because of their outstanding thermo-electrodynamic properties and high surface charge density induced by the planar-type VNWs. - Highlights: • VO x -graphene oxide composite (G/VO x ) films were fabricated by sol–gel process. • The G/VO x films mainly consisted of Magnéli-phase VO 2 and reduced graphene sheets. • The G/VO x films exhibited multi-lamellar textures with planar VO x nanowire arrays. • The G/VO x films showed the thermo-sensitive electrical switching properties. • Effects of GOs on the electrical characteristics of the G/VO x films were discussed.

  7. Ambient template synthesis of multiferroic MnWO4 nanowires and nanowire arrays

    International Nuclear Information System (INIS)

    Zhou Hongjun; Yiu Yuen; Aronson, M.C.; Wong, Stanislaus S.

    2008-01-01

    The current report describes the systematic synthesis of polycrystalline, multiferroic MnWO 4 nanowires and nanowire arrays with controllable chemical composition and morphology, using a modified template-directed methodology under ambient room-temperature conditions. We were able to synthesize nanowires measuring 55±10, 100±20, and 260±40 nm in diameter, respectively, with lengths ranging in the microns. Extensive characterization of as-prepared samples has been performed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and energy-dispersive X-ray spectroscopy. Magnetic behavior in these systems was also probed. - Graphical abstract: Systematic synthesis of crystalline, multiferroic MnWO4 nanowires and nanowire arrays with controllable chemical composition and morphology, using a modified template-directed methodology under ambient room-temperature conditions

  8. Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach

    Science.gov (United States)

    Shaker Salem, Mohamed; Tejo, Felipe; Zierold, Robert; Sergelius, Philip; Montero Moreno, Josep M.; Goerlitz, Detlef; Nielsch, Kornelius; Escrig, Juan

    2018-02-01

    Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment.

  9. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Nanowires (NWs/Ag sheath composites were produced to investigate plasmonic coupling between vertically aligned NWs for surface-enhanced Raman scattering (SERS applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography patterned sapphire substrate via vapor-liquid-solid (VLS mechanism and Si NW arrays produced by wet chemical etching. Both types of vertical NW arrays were coated with a thin layer of silver by electroless silver plating for SERS enhancement studies. The experimental results show extremely strong SERS signals due to plasmonic coupling between the NWs, which was verified by COMSOL electric field simulations. We also compared the SERS enhancement intensity of aligned and random ZnO NWs, indicating that the aligned NWs show much stronger and repeatable SERS signal than those grown in nonaligned geometries.

  10. Silver Nanowire Arrays : Fabrication and Applications

    OpenAIRE

    Feng, Yuyi

    2016-01-01

    Nanowire arrays have increasingly received attention for their use in a variety of applications such as surface-enhanced Raman scattering (SERS), plasmonic sensing, and electrodes for photoelectric devices. However, until now, large scale fabrication of device-suitable metallic nanowire arrays on supporting substrates has seen very limited success. This thesis describes my work rst on the development of a novel successful processing route for the fabrication of uniform noble metallic (e.g. A...

  11. Conducting polymer nanowire arrays for high performance supercapacitors.

    Science.gov (United States)

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Silver nanowire/polymer composite soft conductive film fabricated by large-area compatible coating for flexible pressure sensor array

    Science.gov (United States)

    Chen, Sujie; Li, Siying; Peng, Sai; Huang, Yukun; Zhao, Jiaqing; Tang, Wei; Guo, Xiaojun

    2018-01-01

    Soft conductive films composed of a silver nanowire (AgNW) network, a neutral-pH PEDOT:PSS over-coating layer and a polydimethylsiloxane (PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity, stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 × 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 16JC1400603).

  13. Magnetoimpedance effects in a CoNiFe nanowire array

    Energy Technology Data Exchange (ETDEWEB)

    Atalay, S., E-mail: selcuk.atalay@inonu.edu.tr [Inonu University, Science and Arts Faculty, Physics Department, Malatya (Turkey); Kaya, H.; Atalay, F.E.; Aydogmus, E. [Inonu University, Science and Arts Faculty, Physics Department, Malatya (Turkey)

    2013-06-05

    Highlights: ► CoNiFe nanowires were produced by electrodeposition method. ► Magnetoimpedance effect of nanowires arrays were investigated. ► Single peak behaviour was observed in the magnetoimpedance curve. ► Nanowire arrays exhibit uniaxial magnetic anisotropy along the wire axis. -- Abstract: This report describes the growth of CoNiFe nanowires into highly ordered porous anodic alumina oxide (AAO) templates by DC electrodeposition at a pH value of 2.6. Scanning electron microscopy (SEM) observations revealed that the wires have diameters of approximately 270–290 nm and a length of 25 μm. The energy dispersive X-ray (EDX) analysis indicated that the composition of the nanowires is Co{sub 12}Ni{sub 64}Fe{sub 24}. Electrical contacts were created on both sides of the nanowire array, and their magnetoimpedance (MI) properties were investigated. The impedance value was initially 1.2 ohm at low frequency and increased to approximately 1000 ohm for a 33-MHz driving current frequency under no applied magnetic field. All the MI curves exhibited single peak behaviour due to the high shape anisotropy. The maximum MI change at the 33-MHz driving current frequency was 2.72%. The maximum resistance change was 5.4% at 33 MHz.

  14. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  15. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  16. Nanowire sensor, sensor array, and method for making the same

    Science.gov (United States)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  17. Plasmon resonant cavities in vertical nanowire arrays

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  18. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    Science.gov (United States)

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  19. Long-range magnetostatic interactions in arrays of nanowires

    CERN Document Server

    Raposo, V; González, J M; Vázquez, M

    2000-01-01

    Experimental measurements and micromagnetic simulations of the hysteresis loops of arrays of cobalt nanowires are compared here. Arrays of cobalt nanowires (200 nm in diameter) were electrodeposited into the pores of alumina membranes (thickness 60 mu m). Their hysteresis loops along the axial direction of nanowires were measured using vibrating sample magnetometry. Micromagnetic simulations were performed considering dipolar interaction between nanowires leading to similar hysteresis loops as those obtained experimentally.

  20. Nanowire arrays restore vision in blind mice.

    Science.gov (United States)

    Tang, Jing; Qin, Nan; Chong, Yan; Diao, Yupu; Yiliguma; Wang, Zhexuan; Xue, Tian; Jiang, Min; Zhang, Jiayi; Zheng, Gengfeng

    2018-03-06

    The restoration of light response with complex spatiotemporal features in retinal degenerative diseases towards retinal prosthesis has proven to be a considerable challenge over the past decades. Herein, inspired by the structure and function of photoreceptors in retinas, we develop artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays, for restoration of visual responses in the blind mice with degenerated photoreceptors. Green, blue and near UV light responses in the retinal ganglion cells (RGCs) are restored with a spatial resolution better than 100 µm. ON responses in RGCs are blocked by glutamatergic antagonists, suggesting functional preservation of the remaining retinal circuits. Moreover, neurons in the primary visual cortex respond to light after subretinal implant of nanowire arrays. Improvement in pupillary light reflex suggests the behavioral recovery of light sensitivity. Our study will shed light on the development of a new generation of optoelectronic toolkits for subretinal prosthetic devices.

  1. Pd nanowire arrays as electrocatalysts for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong; Cheng, Faliang [Dongguan University of Technology, Dongguan 523106 (China); Xu, Changwei; Jiang, Sanping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-05-15

    Highly ordered Pd nanowire arrays were prepared by template-electrodeposition method using anodic aluminum oxide template. The Pd nanowire arrays, in this paper, have high electrochemical active surface and show excellent catalytic properties for ethanol electrooxidation in alkaline media. The activity of Pd nanowire arrays for ethanol oxidation is not only higher that of Pd film, but also higher than that of commercial E-TEK PtRu(2:1 by weight)/C. The micrometer sized pores and channels in nanowire arrays act as structure units. They make liquid fuel diffuse into and products diffuse out of the catalysts layer much easier, therefore, the utilization efficiency of catalysts gets higher. Pd nanowire arrays are stable catalysts for ethanol oxidation. The nanowire arrays may be a great potential in direct ethanol fuel cells and ethanol sensors. (author)

  2. InP nanowire array solar cell with cleaned sidewalls

    NARCIS (Netherlands)

    Cui, Y.; Plissard, S.; Wang, J.; Vu, T.T.T.; Smalbrugge, E.; Geluk, E.J.; de Vries, T.; Bolk, J.; Trainor, M.J.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    We have fabricated InP nanowire array solar cells with an axial p-n junction. Catalyst gold nanoparticles were first patterned into an array by nanoimprint lithography. The nanowire array was grown in 19 minutes by vapor-liquid-solid growth. The sidewalls were in-situ etched by HCl and ex-situ

  3. Template-assisted fabrication of tin and antimony based nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Kurowska, Elżbieta; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-10-01

    Antimony nanowires with diameters ranging from 35 nm to 320 nm were successfully prepared by simple, galvanostatic electrodeposition inside the pores of anodic alumina membranes from a citrate based electrolyte. The use of the potassium antimonyl tartrate electrolyte for electrodeposition results in the formation of Sb/Sb2O3 nanowires. The structural features of the nanowire arrays were investigated by FE-SEM, and the nanowire composition was confirmed by EDS and XRD measurements. A distinct peak at about 27.5° in the XRD pattern recorded for nanowires formed in the tartrate electrolyte was attributed to the presence of co-deposited Sb2O3. Three types of dense arrays of Sn-SnSb nanowires with diameters ranging from 82 nm to 325 nm were also synthesized by DC galvanostatic electrodeposition into the anodic aluminum oxide (AAO) membranes for the first time. Only Sn and SnSb peaks appeared in the XRD pattern and both phases seem to have a relatively high degree of crystallinity. The influence of current density applied during electrodeposition on the composition of nanowires was investigated. It was found that the Sb content in fabricated nanowires decreases with increasing current density. The diameters of all synthesized nanowires roughly correspond to the dimensions of the nanochannels of AAO templates used for electrodeposition.

  4. Photoconductivity of Germanium Nanowire Arrays Incorporated in Anodic Aluminum Oxide

    International Nuclear Information System (INIS)

    Polyakov, B; Prikulis, J; Grigorjeva, L; Millers, D; Daly, B; Holmes, J D; Erts, D

    2007-01-01

    Photoconductivity of germanium nanowire arrays of 50 and 100 nm diameter incorporated into Anodic Aluminum Oxide (AAO) membranes illuminated with visible light is investigated. Photocurrent response to excitation radiation with time constants faster than 10 -4 s were governed by absorption of incident light by nanowires, while photokinetics with time constants of the order of 10 -3 s originates from the photoluminescence of the AAO matrix. Possible applications of nanowire arrays inside AAO as photoresistors are discussed

  5. Preparation and characterization of CuO nanowire arrays

    International Nuclear Information System (INIS)

    Yu Dongliang; Ge Chuannan; Du Youwei

    2009-01-01

    CuO nanowire arrays were prepared by oxidation of copper nanowires embedded in anodic aluminum oxide (AAO) membranes. The AAO was fabricated in an oxalic acid at a constant voltage. Copper nanowires were formed in the nanopores of the AAO membranes in an electrochemical deposition process. The oxidized copper nanowires at different temperatures were studied. X-ray diffraction patterns confirmed the formation of a CuO phase after calcining at 500 0 C in air for 30 h. A transmission electron microscopy was used to characterize the nanowire morphologies. Raman spectra were performed to study the CuO nanowire arrays. After measuring, we found that the current-voltage curve of the CuO nanowires is nonlinear.

  6. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    Science.gov (United States)

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  7. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation

    International Nuclear Information System (INIS)

    Tian Xike; Zhao Xiaoyu; Yang Chao; Pi Zhenbang; Zhang Lide; Zhang Suxin

    2008-01-01

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one

  8. Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors

    Science.gov (United States)

    Liu, Haifeng; Lu, Bingqiang; Wei, Shuiqiang; Bao, Mi; Wen, Yanxuan; Wang, Fan

    2012-07-01

    Large arrays of well-aligned Mn oxide nanowires were prepared by electrodeposition using anodic aluminum oxide templates. The sizes of nanowires were tuned by varying the electrotype solution involved and the MnO2 nanowires with 10 μm in length were obtained in a neutral KMnO4 bath for 1 h. MnO2 nanowire arrays grown on conductor substance save the tedious electrode-making process, and electrochemical characterization demonstrates that the MnO2 nanowire arrays electrode has good capacitive behavior. Due to the limited mass transportation in narrow spacing, the spacing effects between the neighbor nanowires have show great influence to the electrochemical performance.

  9. Synthesis of vertical arrays of ultra long ZnO nanowires on noncrystalline substrates

    International Nuclear Information System (INIS)

    Kwon, Bong Jun; Lee, Kyung Moon; Shin, Hae-Young; Kim, Jinwoong; Liu, Jinzhang; Yoon, Seokhyun; Lee, Soonil; Ahn, Y.H.; Park, Ji-Yong

    2012-01-01

    Highlights: ► Arrays of vertical ultra-long ZnO nanowires with lengths upto 300 μm. ► Controls of lengths and diameters of vertical arrays of ZnO nanowires on SiO 2 substrates. ► Luminescent and electrical properties of ZnO nanowires prepared with different growth conditions. - Abstract: Vertically aligned arrays of ultralong ZnO nanowires were synthesized on SiO 2 substrates with carbothermal vapor phase transport method with Au seeding layer. High density of vertically aligned ZnO nanowires with lengths from a few to ∼300 μm could be grown by controlling growth conditions. Supply of high concentration of Zn vapor and control of the ratio between Zn vapor and oxygen are found to have the most significant effects on the growth of long ZnO nanowires in the vapor–solid growth mechanism. The nanowires are of high crystalline quality as confirmed by various structural, compositional, and luminescent measurements. Luminescent and electrical properties of ZnO nanowires with different growth conditions were also investigated.

  10. Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays.

    Science.gov (United States)

    Anttu, Nicklas

    2013-03-01

    Semiconductor nanowire arrays have shown promise for next-generation photovoltaics and photodetection, but enhanced understanding of the light-nanowire interaction is still needed. Here, we study theoretically the absorption of light in an array of vertical InP nanowires by moving continuously, first from the electrostatic limit to the nanophotonic regime and then to the geometrical optics limit. We show how the absorption per volume of semiconductor material in the array can be varied by a factor of 200, ranging from 10 times weaker to 20 times stronger than in a bulk semiconductor sample.

  11. Broadband absorption of semiconductor nanowire arrays for photovoltaic applications

    International Nuclear Information System (INIS)

    Huang, Ningfeng; Lin, Chenxi; Povinelli, Michelle L

    2012-01-01

    We use electromagnetic simulations to carry out a systematic study of broadband absorption in vertically-aligned semiconductor nanowire arrays for photovoltaic applications. We study six semiconductor materials that are commonly used for solar cells. We optimize the structural parameters of each nanowire array to maximize the ultimate efficiency. We plot the maximal ultimate efficiency as a function of height to determine how it approaches the perfect-absorption limit. We further show that the ultimate efficiencies of optimized nanowire arrays exceed those of equal-height thin films for all six materials and over a wide range of heights from 100 nm to 100 µm

  12. Generic nano-imprint process for fabrication of nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Aurelie; Hocevar, Moira; Algra, Rienk E; Timmering, Eugene C; Verschuuren, Marc A; Immink, George W G; Verheijen, Marcel A; Bakkers, Erik P A M [Philips Research Laboratories Eindhoven, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Diedenhofen, Silke L [FOM Institute for Atomic and Molecular Physics c/o Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Vlieg, E, E-mail: e.p.a.m.bakkers@tue.nl [IMM, Solid State Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2010-02-10

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2 inch substrates. After lift-off organic residues remain on the surface, which induce the growth of additional undesired nanowires. We show that cleaning of the samples before growth with piranha solution in combination with a thermal anneal at 550 deg. C for InP and 700 deg. C for GaP results in uniform nanowire arrays with 1% variation in nanowire length, and without undesired extra nanowires. Our chemical cleaning procedure is applicable to other lithographic techniques such as e-beam lithography, and therefore represents a generic process.

  13. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa

    2010-04-29

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  14. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa; Lee, Seokwoo; Lee, Seung S

    2010-01-01

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  15. Recrystallized arrays of bismuth nanowires with trigonal orientation.

    Science.gov (United States)

    Limmer, Steven J; Yelton, W Graham; Erickson, Kristopher J; Medlin, Douglas L; Siegal, Michael P

    2014-01-01

    We demonstrate methods to improve the crystalline-quality of free-standing Bi nanowires arrays on a Si substrate and enhance the preferred trigonal orientation for thermoelectric performance by annealing the arrays above the 271.4 °C Bi melting point. The nanowires maintain their geometry during melting due to the formation of a thin Bi-oxide protective shell that contains the molten Bi. Recrystallizing nanowires from the melt improves crystallinity; those cooled rapidly demonstrate a strong trigonal orientation preference.

  16. Oriented Mn-doped CuO nanowire arrays

    International Nuclear Information System (INIS)

    Han, Dongqiang; Wu, Zhaofeng; Wang, Zhihe; Yang, Shaoguang

    2016-01-01

    Using anodic aluminum oxide membranes as the nanoreactors and controller, oriented nanowire arrays of the diluted magnetic semiconductor Mn-doped CuO have been successfully fabricated using Mn(NO_3)_2 · 4H_2O and Cu(NO_3)_2 · 3H_2O as the starting materials. X-ray diffraction measurements showed that the as-prepared oriented nanowire arrays are of high purity. Scanning electron microscope and transmission electron microscope studies showed the nanowires are oriented, continuous and uniform with a diameter and length of about 170 nm and several tens of micrometers, respectively, and thus of a high aspect ratio. Low-temperature magnetic measurements showed the ferromagnetic property of the oriented Mn-doped CuO nanowire arrays with the critical temperature at around 80 K, which will endow them with great potential applications in spintronics in the future. (paper)

  17. Ordered ZnO/AZO/PAM nanowire arrays prepared by seed-layer-assisted electrochemical deposition

    International Nuclear Information System (INIS)

    Shen, Yu-Min; Pan, Chih-Huang; Wang, Sheng-Chang; Huang, Jow-Lay

    2011-01-01

    An Al-doped ZnO (AZO) seed layer is prepared on the back side of a porous alumina membrane (PAM) substrate by spin coating followed by annealing in a vacuum at 400 °C. Zinc oxide in ordered arrays mediated by a high aspect ratio and an ordered pore array of AZO/PAM is synthesized. The ZnO nanowire array is prepared via a 3-electrode electrochemical deposition process using ZnSO 4 and H 2 O 2 solutions at a potential of − 1 V (versus saturated calomel electrode) and temperatures of 65 and 80 °C. The microstructure and chemical composition of the AZO seed layer and ZnO/AZO/PAM nanowire arrays are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS). Results indicate that the ZnO/AZO/PAM nanowire arrays were assembled in the nanochannel of the porous alumina template with diameters of 110–140 nm. The crystallinity of the ZnO nanowires depends on the AZO seed layer during the annealing process. The nucleation and growth process of ZnO/AZO/PAM nanowires are interpreted by the seed-layer-assisted growth mechanism.

  18. Generic nano-imprint process for fabrication of nanowire arrays

    NARCIS (Netherlands)

    Pierret, A.; Hocevar, M.; Diedenhofen, S.L.; Algra, R.E.; Vlieg, E.; Timmering, E.C.; Verschuuren, M.A.; Immink, W.G.G.; Verheijen, M.A.; Bakkers, E.P.A.M.

    2010-01-01

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2inch substrates. After lift-off organic residues remain on the surface, which induce the growth of

  19. Plasmon-polariton modes of dense Au nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongdan; Lemmens, Peter; Wulferding, Dirk; Cetin, Mehmet Fatih [IPKM, TU-BS, Braunschweig (Germany); Tornow, Sabine; Zwicknagl, Gertrud [IMP, TU-BS, Braunschweig (Germany); Krieg, Ulrich; Pfnuer, Herbert [IFP, LU Hannover (Germany); Daum, Winfried; Lilienkamp, Gerhard [IEPT, TU Clausthal (Germany); Schilling, Meinhard [EMG, TU-BS, Braunschweig (Germany)

    2011-07-01

    Using optical absorption and other techniques we study plasmon-polariton modes of dense Au nanowire arrays as function of geometrical parameters and coupling to molecular degrees of freedom. For this instance we electrochemically deposit Au nanowires in porous alumina with well controlled morphology and defect concentration. Transverse and longitudinal modes are observed in the absorption spectra resulting from the anisotropic plasmonic structure. The longitudinal mode shows a blue shift of energy with increasing length of the wires due to the more collective nature of this response. We compare our observations with model calculations and corresponding results on 2D Ag nanowire lattices.

  20. Indium antimonide nanowires arrays for promising thermoelectric converters

    Directory of Open Access Journals (Sweden)

    Gorokh G. G.

    2015-02-01

    Full Text Available The authors have theoretically substantiated the possibility to create promising thermoelectric converters based on quantum wires. The calculations have shown that the use of quantum wires with lateral dimensions smaller than quantum confinement values and high concentration and mobility of electrons, can lead to a substantial cooling of one of the contacts up to tens of degrees and to the heating of the other. The technological methods of manufacturing of indium antimonide nanowires arrays with high aspect ratio of the nanowire diameters to their length in the modified nanoporous anodic alumina matrixes were developed and tested. The microstructure and composition of the formed nanostructures were investigated. The electron microscopy allowed establishing that within each pore nanowires are formed with diameters of 35 nm and a length of 35 microns (equal to the matrix thickness. The electron probe x-ray microanalysis has shown that the atomic ratio of indium and antimony in the semiconductor nanostructures amounted to 38,26% and 61,74%, respectively. The current-voltage measurement between the upper and lower contacts of Cu/InSb/Cu structure (1 mm2 has shown that at 2.82 V negative voltage at the emitter contact, current density is 129,8 A/cм2, and the collector contact is heated up to 75 degrees during 150 sec. Thus, the experimental results confirmed the theoretical findings that the quantum wire systems can be used to create thermoelectric devices, which can be widely applied in electronics, in particular, for cooling integrated circuits (processors, thermal controlling of the electrical circuits by changing voltage value.

  1. Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Janos Vörös

    2010-11-01

    Full Text Available This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires’ conductive nature and localized surface plasmon resonance (LSPR. The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10−4 RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance.

  2. Study of spin dynamics and damping on the magnetic nanowire arrays with various nanowire widths

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehun [Department of Physics, Inha University, Incheon, 402-751 (Korea, Republic of); Fujii, Yuya; Konioshi, Katsunori [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Yoon, Jungbum [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Kim, Nam-Hui; Jung, Jinyong [Department of Physics, Inha University, Incheon, 402-751 (Korea, Republic of); Miwa, Shinji [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Jung, Myung-Hwa [Department of Physics, Sogang University, Seoul, 121-742 (Korea, Republic of); Suzuki, Yoshishige [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); You, Chun-Yeol, E-mail: cyyou@inha.ac.kr [Department of Physics, Inha University, Incheon, 402-751 (Korea, Republic of)

    2016-07-01

    We investigate the spin dynamics including Gilbert damping in the ferromagnetic nanowire arrays. We have measured the ferromagnetic resonance of ferromagnetic nanowire arrays using vector-network analyzer ferromagnetic resonance (VNA-FMR) and analyzed the results with the micromagnetic simulations. We find excellent agreement between the experimental VNA-FMR spectra and micromagnetic simulations result for various applied magnetic fields. We find that the same tendency of the demagnetization factor for longitudinal and transverse conditions, N{sub z} (N{sub y}) increases (decreases) as increasing the nanowire width in the micromagnetic simulations while N{sub x} is almost zero value in transverse case. We also find that the Gilbert damping constant increases from 0.018 to 0.051 as the increasing nanowire width for the transverse case, while it is almost constant as 0.021 for the longitudinal case. - Highlights: • We investigate the spin dynamic properties in the ferromagnetic nanowire arrays. • The demagnetization factors have similar tendency with the prism geometry results. • The Gilbert damping constant is increased from 0.018 to 0.051 as the increasing nanowire width for the transverse. • The Gilbert damping constant is almost constant as 0.021 for the longitudinal case.

  3. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  4. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    International Nuclear Information System (INIS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-01-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm 2 ) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  5. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements.

    Science.gov (United States)

    Otnes, Gaute; Barrigón, Enrique; Sundvall, Christian; Svensson, K Erik; Heurlin, Magnus; Siefer, Gerald; Samuelson, Lars; Åberg, Ingvar; Borgström, Magnus T

    2018-05-09

    III-V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current-voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices.

  6. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney; Burkhard, George F.; McGehee, Michael D.; Peumans, Peter

    2011-01-01

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney

    2011-04-29

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CONDUCTING-POLYMER NANOWIRE IMMUNOSENSOR ARRAYS FOR MICROBIAL PATHOGENS

    Science.gov (United States)

    The lack of methods for routine rapid and sensitive detection and quantification of specific pathogens has limited the amount of information available on their occurrence in drinking water and other environmental samples. The nanowire biosensor arrays developed in this study w...

  9. Magnetic behavior of NixFe(100-x) (65=nanowire arrays

    International Nuclear Information System (INIS)

    Navas, D.; Asenjo, A.; Jaafar, M.; Pirota, K.R.; Hernandez-Velez, M.; Sanz, R.; Lee, W.; Nielsch, K.; Batallan, F.; Vazquez, M.

    2005-01-01

    Arrays of magnetic nanowires with composition Ni x Fe (100-x) (65= 2 and 105nm lattice parameter of hexagonal symmetry, is achieved by self-ordering process, and characterized by SEM and AFM. Magnetic behavior of the arrays has been determined by VSM. Maximum coercivity of around 1.23kOe and reduced remanence (about 0.8 saturation magnetization) is observed for x=77, while minimum values are observed for x=100. Detailed AFM and MFM studies allow us to gain additional information of the filling degree of pores which can result in a distributed nanowires length that finally correlates with a deterioration of macroscopic magnetic behavior of the array

  10. One-step synthesis of CdTe branched nanowires and nanorod arrays

    International Nuclear Information System (INIS)

    Hou Junwei; Yang Xiuchun; Lv Xiaoyi; Peng Dengfeng; Huang Min; Wang Qingyao

    2011-01-01

    Single crystalline CdTe branched nanowires and well-aligned nanorod arrays were simultaneously synthesized by a simple chemical vapor deposition (CVD) technique. X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and selected area electronic diffraction (SAED) were used to study the crystalline structure, composition and morphology of different samples. Vapor-liquid-solid (VLS) and vapor-solid (VS) processes were proposed for the formation of the CdTe branched nanowires and nanorod arrays, respectively. As-grown CdTe nanorod arrays show a strong red emission band centered at about 620 nm, which can be well fitted by two Gaussian curves centered at 610 nm and 635 nm, respectively.

  11. New Applications of Electrochemically Produced Porous Semiconductors and Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Leisner Malte

    2010-01-01

    Full Text Available Abstract The growing demand for electro mobility together with advancing concepts for renewable energy as primary power sources requires sophisticated methods of energy storage. In this work, we present a Li ion battery based on Si nanowires, which can be produced reliable and cheaply and which shows superior properties, such as a largely increased capacity and cycle stability. Sophisticated methods based on electrochemical pore etching allow to produce optimized regular arrays of nanowires, which can be stabilized by intrinsic cross-links, which serve to avoid unwanted stiction effects and allow easy processing.

  12. Silicon nanowire arrays as learning chemical vapour classifiers

    International Nuclear Information System (INIS)

    Niskanen, A O; Colli, A; White, R; Li, H W; Spigone, E; Kivioja, J M

    2011-01-01

    Nanowire field-effect transistors are a promising class of devices for various sensing applications. Apart from detecting individual chemical or biological analytes, it is especially interesting to use multiple selective sensors to look at their collective response in order to perform classification into predetermined categories. We show that non-functionalised silicon nanowire arrays can be used to robustly classify different chemical vapours using simple statistical machine learning methods. We were able to distinguish between acetone, ethanol and water with 100% accuracy while methanol, ethanol and 2-propanol were classified with 96% accuracy in ambient conditions.

  13. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, V.; Zazo, M.; Flores, A. G.; Iñiguez, J. [Departamento de Física Aplicada, University of Salamanca, E-37071 Salamanca (Spain); Garcia, J.; Vega, V.; Prida, V. M. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  14. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    International Nuclear Information System (INIS)

    Holanda, J.; Silva, D.B.O.; Padrón-Hernández, E.

    2015-01-01

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth

  15. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Silva, D.B.O. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Padrón-Hernández, E., E-mail: padron@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil)

    2015-03-15

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth.

  16. ZnTe Amorphous Semiconductor Nanowires Array Electrodeposited into Polycarbonate Membrane Thin Films

    International Nuclear Information System (INIS)

    Ohgai, T; Ikeda, T; Ohta, J

    2013-01-01

    ZnTe amorphous semiconductor nanowires array was electrodeposited into the nanochannels of ion-track etched polycarbonate membrane thin films from acidic aqueous solution at 313 K. ZnTe electrodeposits with Zn-rich composition was obtained over the wide range of cathode potential from −0.8 V to −1.1 V and the growth rate of ZnTe amorphous nanowires was around 3 nm.sec −1 at the cathode potential of −0.8 V. Cylindrical shape of the nanowires was precisely transferred from the nanochannels and the aspect ratio reached up to ca. 40. ZnTe amorphous phase electrodeposited at 313 K was crystallized by annealing at 683 K and the band gap energy of ZnTe crystalline phase reached up to ca. 2.13 eV.

  17. New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays.

    Science.gov (United States)

    Ren, Dingding; Dheeraj, Dasa L; Jin, Chengjun; Nilsen, Julie S; Huh, Junghwan; Reinertsen, Johannes F; Munshi, A Mazid; Gustafsson, Anders; van Helvoort, Antonius T J; Weman, Helge; Fimland, Bjørn-Ove

    2016-02-10

    Ternary semiconductor nanowire arrays enable scalable fabrication of nano-optoelectronic devices with tunable bandgap. However, the lack of insight into the effects of the incorporation of Vy element results in lack of control on the growth of ternary III-V(1-y)Vy nanowires and hinders the development of high-performance nanowire devices based on such ternaries. Here, we report on the origins of Sb-induced effects affecting the morphology and crystal structure of self-catalyzed GaAsSb nanowire arrays. The nanowire growth by molecular beam epitaxy is changed both kinetically and thermodynamically by the introduction of Sb. An anomalous decrease of the axial growth rate with increased Sb2 flux is found to be due to both the indirect kinetic influence via the Ga adatom diffusion induced catalyst geometry evolution and the direct composition modulation. From the fundamental growth analyses and the crystal phase evolution mechanism proposed in this Letter, the phase transition/stability in catalyst-assisted ternary III-V-V nanowire growth can be well explained. Wavelength tunability with good homogeneity of the optical emission from the self-catalyzed GaAsSb nanowire arrays with high crystal phase purity is demonstrated by only adjusting the Sb2 flux.

  18. Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interaction

    Directory of Open Access Journals (Sweden)

    U Hyeok Choi

    2018-06-01

    Full Text Available Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.

  19. Ultradense, Deep Subwavelength Nanowire Array Photovoltaics As Engineered Optical Thin Films

    KAUST Repository

    Tham, Douglas; Heath, James R.

    2010-01-01

    A photovoltaic device comprised of an array of 20 nm wide, 32 nm pitch array of silicon nanowires is modeled as an optical material. The nanowire array (NWA) has characteristic device features that are deep in the subwavelength regime for light

  20. Magnetic behavior of arrays of nickel nanowires

    International Nuclear Information System (INIS)

    Karim, S.; Maaz, K.; Ahmed, M.; Nisar, A.

    2012-01-01

    Recently, there is an increasing interest in magnetic nano wires because of their unusual properties compared to the bulk materials. To understand the complexity of nano wire arrays and to improve their potential in various applications more studies are still needed, for example, to understand completely the effect of geometrical factors, i.e. aspect ratio, areal density etc., on magnetic properties of these arrays. In this work, arrays of nickel nano wires with aspect ratio is proportional to 1200 and diameter ranging between 25-100 nm were fabricated by electrodeposition in etched ion track templates. Samples with areal density from 1 X 10/sup 6/ cm/sup -2/ to 1 X 10/ sup 8/ cm/sup -2/ were prepared. Measurements of magnetic hysteresis loops were performed at room temperature with SQUID magnetometer and magnetic properties of arrays of different diameters and aspect ratios were compared. Coercivity of the wires showed strong dependence on aspect ratio, diameter and microstructure. Room temperature coercivity of the wires showed a maximum at is proportional to 40 nm diameter and arrays with high density of nano wires showed lower coercivity. The results were discussed by taking into account anisotropies originating from the shape, crystalline structure and magnetostatic interactions among the wires and by previous experimental observations in literature. (Orig./A.B.)

  1. GaN Nanowire Arrays for High-Output Nanogenerators

    KAUST Repository

    Huang, Chi-Te

    2010-04-07

    Three-fold symmetrically distributed GaN nanowire (NW) arrays have been epitaxially grown on GaN/sapphire substrates. The GaN NW possesses a triangular cross section enclosed by (0001), (2112), and (2112) planes, and the angle between the GaN NW and the substrate surface is ∼62°. The GaN NW arrays produce negative output voltage pulses when scanned by a conductive atomic force microscope in contact mode. The average of piezoelectric output voltage was about -20 mV, while 5-10% of the NWs had piezoelectric output voltages exceeding -(0.15-0.35) V. The GaN NW arrays are highly stable and highly tolerate to moisture in the atmosphere. The GaN NW arrays demonstrate an outstanding potential to be utilized for piezoelectric energy generation with a performance probably better than that of ZnO NWs. © 2010 American Chemical Society.

  2. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    Science.gov (United States)

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  3. Characterization and Optical Properties of the Single Crystalline SnS Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Yue GH

    2009-01-01

    Full Text Available Abstract The SnS nanowire arrays have been successfully synthesized by the template-assisted pulsed electrochemical deposition in the porous anodized aluminum oxide template. The investigation results showed that the as-synthesized nanowires are single crystalline structures and they have a highly preferential orientation. The ordered SnS nanowire arrays are uniform with a diameter of 50 nm and a length up to several tens of micrometers. The synthesized SnS nanowires exhibit strong absorption in visible and near-infrared spectral region and the direct energy gapE gof SnS nanowires is 1.59 eV.

  4. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors.

    Science.gov (United States)

    Yu, Pingping; Li, Yingzhi; Yu, Xinyi; Zhao, Xin; Wu, Lihao; Zhang, Qinghua

    2013-09-24

    A combination of vertical polyaniline (PANI) nanowire arrays and nitrogen plasma etched carbon fiber cloths (eCFC) was fabricated to create 3D nanostructured PANI/eCFC composites. The small size of the highly ordered PANI nanowires can greatly reduce the scale of the diffusion length, allowing for the improved utilization of electrode materials. A two-electrode flexible supercapacitor based on PANI/eCFC demonstrates a high specific capacitance (1035 F g(-1) at a current density of 1 A g(-1)), good rate capability (88% capacity retention at 8 A g(-1)), and long-term cycle life (10% capacity loss after 5000 cycles). The lightweight, low-cost, flexible composites are promising candidates for use in energy storage device applications.

  5. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  6. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    Science.gov (United States)

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  7. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  8. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  9. MnO{sub 2} nanotube and nanowire arrays by electrochemical deposition for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2010-07-01

    Highly ordered MnO{sub 2} nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO{sub 2} nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO{sub 2} nanotube array electrode has superior capacitive behaviour to that of the MnO{sub 2} nanowire array electrode. In addition to high specific capacitance, the MnO{sub 2} nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors. (author)

  10. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging

    International Nuclear Information System (INIS)

    Berthing, Trine; Bonde, Sara; Rostgaard, Katrine R; Martinez, Karen L; Madsen, Morten Hannibal; Sørensen, Claus B; Nygård, Jesper

    2012-01-01

    The perspectives offered by vertical arrays of nanowires for biosensing applications in living cells depend on the access of individual nanowires to the cell interior. Recent results on electrical access and molecular delivery suggest that direct access is not always obtained. Here, we present a generic approach to directly visualize the membrane conformation of living cells interfaced with nanowire arrays, with single nanowire resolution. The method combines confocal z-stack imaging with an optimized cell membrane labelling strategy which was applied to HEK293 cells interfaced with 2–11 μm long and 3–7 μm spaced nanowires with various surface coatings (bare, aminosilane-coated or polyethyleneimine-coated indium arsenide). We demonstrate that, for all commonly used nanowire lengths, spacings and surface coatings, nanowires generally remain enclosed in a membrane compartment, and are thereby not in direct contact with the cell interior. (paper)

  11. Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method

    Science.gov (United States)

    Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin

    2008-12-01

    A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.

  12. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.

    Science.gov (United States)

    Jackson, Everett D; Prieto, Amy L

    2016-11-09

    Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.

  13. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon

    KAUST Repository

    Frost, Thomas; Jahangir, Shafat; Stark, Ethan; Deshpande, Saniya; Hazari, Arnab Shashi; Zhao, Chao; Ooi, Boon S.; Bhattacharya, Pallab K.

    2014-01-01

    A silicon-based laser, preferably electrically pumped, has long been a scientific and engineering goal. We demonstrate here, for the first time, an edge-emitting InGaN/GaN disk-in-nanowire array electrically pumped laser emitting in the green (λ = 533 nm) on (001) silicon substrate. The devices display excellent dc and dynamic characteristics with values of threshold current density, differential gain, T0 and small signal modulation bandwidth equal to 1.76 kA/cm2, 3 × 10-17 cm2, 232 K, and 5.8 GHz respectively under continuous wave operation. Preliminary reliability measurements indicate a lifetime of 7000 h. The emission wavelength can be tuned by varying the alloy composition in the quantum disks. The monolithic nanowire laser on (001)Si can therefore address wide-ranging applications such as solid state lighting, displays, plastic fiber communication, medical diagnostics, and silicon photonics. © 2014 American Chemical Society.

  14. Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon

    KAUST Repository

    Frost, Thomas

    2014-08-13

    A silicon-based laser, preferably electrically pumped, has long been a scientific and engineering goal. We demonstrate here, for the first time, an edge-emitting InGaN/GaN disk-in-nanowire array electrically pumped laser emitting in the green (λ = 533 nm) on (001) silicon substrate. The devices display excellent dc and dynamic characteristics with values of threshold current density, differential gain, T0 and small signal modulation bandwidth equal to 1.76 kA/cm2, 3 × 10-17 cm2, 232 K, and 5.8 GHz respectively under continuous wave operation. Preliminary reliability measurements indicate a lifetime of 7000 h. The emission wavelength can be tuned by varying the alloy composition in the quantum disks. The monolithic nanowire laser on (001)Si can therefore address wide-ranging applications such as solid state lighting, displays, plastic fiber communication, medical diagnostics, and silicon photonics. © 2014 American Chemical Society.

  15. Heterogeneous metal-oxide nanowire micro-sensor array for gas sensing

    International Nuclear Information System (INIS)

    DeMeo, Dante; E Vandervelde, Thomas; MacNaughton, Sam; Sonkusale, Sameer; Wang, Zhilong; Zhang, Xinjie

    2014-01-01

    Vanadium oxide, manganese oxide, tungsten oxide, and nickel oxide nanowires were investigated for their applicability as chemiresistive gas sensors. Nanowires have excellent surface-to-volume ratios which yield higher sensitivities than bulk materials. Sensing elements consisting of these materials were assembled in an array to create an electronic nose platform. Dielectrophoresis was used to position the nanomaterials onto a microfabricated array of electrodes, which was subsequently mounted onto a leadless chip carrier and printed circuit board for rapid testing. Samples were tested in an enclosed chamber with vapors of acetone, isopropanol, methanol, and aqueous ammonia. The change in resistance of each assembly was measured. Responses varied between nanowire compositions, each demonstrating unique and repeatable responses to different gases; this enabled direct detection of the gases from the ensemble response. Sensitivities were calculated based on the fractional resistance change in a saturated environment and ranged from 6 × 10 −4 to 2 × 10 −5 %change ppm −1 . (papers)

  16. In situ x-ray diffraction study on AgI nanowire arrays

    International Nuclear Information System (INIS)

    Wang Yinhai; Ye Changhui; Wang Guozhong; Zhang Lide; Liu Yanmei; Zhao Zhongyan

    2003-01-01

    The AgI nanowire arrays were prepared in the ordered porous alumina membrane by an electrochemical method. Transmission electron microscopy observation shows that the AgI nanowires are located in the channels of the alumina membrane. In situ x-ray diffractions show that the nanowire arrays possess hexagonal close-packed structure (β-AgI) at 293 K, orienting along the (002) plane, whereas at 473 K, the nanowire arrays possess a body-centered cubic structure (α-AgI), orienting along the (110) plane. The AgI nanowire arrays exhibit a negative thermal expansion property from 293 to 433 K, and a higher transition temperature from the β to α phase. We ascribe the negative thermal expansion behavior to the phase transition from the β to α phase, and the elevated transition temperature to the radial restriction by the channels of alumina membrane

  17. Construction of carbon nanoflakes shell on CuO nanowires core as enhanced core/shell arrays anode of lithium ion batteries

    International Nuclear Information System (INIS)

    Cao, F.; Xia, X.H.; Pan, G.X.; Chen, J.; Zhang, Y.J.

    2015-01-01

    Highlights: • CuO/C core/shell nanowire arrays are prepared by electro-deposition + ALD method. • Carbon shell is favorable for structural stability. • CuO/C core/shell arrays show enhanced cycle stability and high capacity. - Abstract: Tailored metal oxide/carbon composite structures have attracted great attention due to potential synergistic effects and enhanced properties. In this work, novel CuO/C core/shell nanowire arrays are prepared by the combination of electro-deposition of CuO and atomic-layer-deposition-assisted formation of carbon nanoflakes shell. The CuO nanowires with diameters of ∼200 nm are homogenously coated by carbon nanoflakes shell. When evaluated as anode materials for lithium ion batteries (LIBs), compared to the unmodified CuO nanowire arrays, the CuO/C core/shell nanowire arrays exhibit improved electrochemical performances with higher capacity, better electrochemical reactivity and high-rate capability as well as superior cycling life (610 mAh g"−"1 at 0.5C after 290 cycles). The enhanced electrochemical performance is mainly attributed to the introduction of carbon flake shell in the core/shell nanowire arrays structure, which provides higher active material-electrolyte contact area, improved electrical conductivity, and better accommodation of volume change. The proposed method provides a new way for fabrication of high-performance metal oxides anodes of LIBs.

  18. Study of residual gas adsorption on GaN nanowire arrays photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Sihao; Liu, Lei, E-mail: liu1133_cn@sina.com.cn; Diao, Yu; Kong, Yike

    2017-05-01

    Highlights: • H{sub 2}O is more easily to absorb on the nanowire surface. • The work function increase after residual gas adsorption. • Bandgaps of the nanowire increase slightly. • Absorption coefficient is reduced and moves to higher energy side. - Abstract: In order to find out the influences of residual gas on GaN nanowire arrays photocathode, the optoelectronic properties of adsorption system are calculated on the basis of first principles. Results suggest that the residual gas adsorption will increase the work function and introduce a dipole moment with a direction from the nanowire to the adsorbates. The surface structures are changed and electrons transfer from nanowire to gas molecule. The bandgaps are enhanced after adsorption. Besides, the peak of absorption coefficients is reduced and moves to higher energy side. It is discovered that residual gas will drastically degrade the characteristics and lifetime of GaN nanowire arrays photocathode.

  19. Uniaxial Magnetization Performance of Textured Fe Nanowire Arrays Electrodeposited by a Pulsed Potential Deposition Technique

    Science.gov (United States)

    Neetzel, C.; Ohgai, T.; Yanai, T.; Nakano, M.; Fukunaga, H.

    2017-11-01

    Textured ferromagnetic Fe nanowire arrays were electrodeposited using a rectangular-pulsed potential deposition technique into anodized aluminum oxide nanochannels. During the electrodeposition of Fe nanowire arrays at a cathodic potential of - 1.2 V, the growth rate of the nanowires was ca. 200 nm s-1. The aspect ratio of Fe nanowires with a diameter of 30 ± 5 nm reached ca. 2000. The long axis of Fe nanowires corresponded with the direction when a large overpotential during the on-time pulse was applied, whereas it orientated to the direction under the potentiostatic condition with a small overpotential. By shifting the on-time cathode potential up to - 1.8 V, the texture coefficient for the (200) plane, TC200, reached up to 1.94. Perpendicular magnetization performance was observed in Fe nanowire arrays. With increasing TC200, the squareness of Fe nanowire arrays increased up to 0.95 with the coercivity maintained at 1.4 kOe at room temperature. This research result has opened a novel possibility of Fe nanowire arrays that can be applied for a new permanent magnetic material without rare-earth metals.

  20. Power generation from base excitation of a Kevlar composite beam with ZnO nanowires

    Science.gov (United States)

    Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.

    2015-04-01

    One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.

  1. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors

    Science.gov (United States)

    Xie, Keyu; Li, Jie; Lai, Yanqing; Zhang, Zhi'an; Liu, Yexiang; Zhang, Guoge; Huang, Haitao

    2011-05-01

    Conducting polymer with 1D nanostructure exhibits excellent electrochemical performances but a poor cyclability that limits its use in supercapacitors. In this work, a novel composite electrode made of polyaniline nanowire-titania nanotube array was synthesized via a simple and inexpensive electrochemical route by electropolymerizing aniline onto an anodized titania nanotube array. The specific capacitance was as high as 732 F g-1 at 1 A g-1, which remained at 543 F g-1 when the current density was increased by 20 times. 74% of the maximum energy density (36.6 Wh kg-1) was maintained even at a high power density of 6000 W kg-1. An excellent long cycle life of the electrode was observed with a retention of ~86% of the initial specific capacitance after 2000 cycles. The good electrochemical performance was attributed to the unique microstructure of the electrode with disordered PANI nanowire arrays encapsulated inside the TiO2 nanotubes, providing high surface area, fast diffusion path for ions and long-term cycle stability. Such a nanocomposite electrode is attractive for supercapacitor applications.

  2. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    Energy Technology Data Exchange (ETDEWEB)

    Fountaine, Katherine T., E-mail: kfountai@caltech.edu [Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Whitney, William S. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Physics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Atwater, Harry A. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Applied Physics and Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  3. Stabilization mechanisms for information stored in magnetic nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cisternas, Eduardo, E-mail: eduardo.cisternas@gmail.com [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Faúndez, Julián [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Vogel, Eugenio E. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago (Chile)

    2017-03-15

    The durability of the stored information in magnetic systems is one important feature in firmware applications such as security codes, magnetic keys and other similar products. In the present paper we discuss two different ways of preserving patterns in the set of magnetic wires trapped in the porous membranes used to produce them. One of the techniques is the inscription of an opposite magnetic band of about 1/3 the width of the stored pattern which minimizes the repulsive energy among the ferromagnetic cylinders still leaving a potent magnetic signal to be read. The other technique makes use of segmented nanowires which present a competition of repulsive energy of segments within the same layer while the interaction is attractive with the closer segments of the other layer; such a competition can lead to stabilization if the geometrical parameters are properly controlled. The first technique is cheaper and faster to implement, while the second technique needs a more complete fabrication process but can lead to more durable stored information. - Highlights: • Stability of ferromagnetic patterns inscribed on magnetic nanowires arrays. • Information prevalence and stabilization mechanisms. • Applicability to fimware, security codes and magnetic keys.

  4. Piezo-Phototronic Matrix via a Nanowire Array.

    Science.gov (United States)

    Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin

    2017-12-01

    Piezoelectric semiconductors, such as ZnO and GaN, demonstrate multiproperty coupling effects toward various aspects of mechanical, electrical, and optical excitation. In particular, the three-way coupling among semiconducting, photoexcitation, and piezoelectric characteristics in wurtzite-structured semiconductors is established as a new field, which was first coined as piezo-phototronics by Wang in 2010. The piezo-phototronic effect can controllably modulate the charge-carrier generation, separation, transport, and/or recombination in optical-electronic processes by modifying the band structure at the metal-semiconductor or semiconductor-semiconductor heterojunction/interface. Here, the progress made in using the piezo-phototronic effect for enhancing photodetectors, pressure sensors, light-emitting diodes, and solar cells is reviewed. In comparison with previous works on a single piezoelectric semiconducting nanowire, piezo-phototronic nanodevices built using nanowire arrays provide a promising platform for fabricating integrated optoelectronics with the realization of high-spatial-resolution imaging and fast responsivity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vertically integrated nanogenerator based on ZnO nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aifang; Li, Hongyu; Tang, Haoying; Liu, Tengjiao; Jiang, Peng [National Center for Nanoscience and Technology, No.11, Beiyitiao Zhongguancun, Beijing 100190 (China); Wang, Zhong Lin [National Center for Nanoscience and Technology, No.11, Beiyitiao Zhongguancun, Beijing 100190 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2011-04-15

    We report a technique to construct a vertically integrated nanogenerator (VI-NG) based on ZnO nanowire (NW) arrays. The VI-NG consists of nine single NGs connected mixed parallel and serial by a layer-by-layer stacking. For the single layer NG, the peak output voltage and current are 0.045 V and 2.5 nA, respectively. The VI-NG produces an output power density of 2.8 nW/cm{sup 2} with a peak output voltage of 0.15 V and output current of 7.2 nA. The vertical integration of the multi-NG provides a feasible technique for effectively converting mechanical energies to electricity from environment. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. A versatile method to grow localized arrays of nanowires for highly sensitive capacitive devices

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, A.; Yunus, S.

    2008-01-01

    We propose a new approach to increase the detection efficiency of the capacitive sensing devices, by growing vertically aligned nanowires arrays, localized and confined on small interdigited electrodes structures. The metallic tracks are made using optical lithography, and the nanowires are reali...

  7. Stable field emission from arrays of vertically aligned free-standing metallic nanowires

    DEFF Research Database (Denmark)

    Xavier, S.; Mátéfi-Tempfli, Stefan; Ferain, E.

    2008-01-01

    We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost...

  8. Solution processed bismuth sulfide nanowire array core/silver shuffle shell solar cells

    NARCIS (Netherlands)

    Cao, Y.; Bernechea, M.; Maclachlan, A.; Zardetto, V.; Creatore, M.; Haque, S.A.; Konstantatos, G.

    2015-01-01

    Low bandgap inorganic semiconductor nanowires have served as building blocks in solution processed solar cells to improve their power conversion capacity and reduce fabrication cost. In this work, we first reported bismuth sulfide nanowire arrays grown from colloidal seeds on a transparent

  9. A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays

    NARCIS (Netherlands)

    Wang, Hua; Sun, Minghua; Ding, K.; Hill, M.T.; Ning, C.Z.

    2011-01-01

    We demonstrate a novel top-down approach for fabricating nanowires with unprecedented complexity and optical quality by taking advantage of a nanoscale self-masking effect. We realized vertical arrays of nanowires of 20-40 nm in diameter with 16 segments of complex longitudinal InGaAsP/InP

  10. Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors

    Science.gov (United States)

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Li, Wenyao; Wang, Linlin

    2016-10-01

    Large-area ultrafine MnO2 nanowire arrays (NWA) directly grew on a carbon fiber (CF, used as a substrate) by a simple electrochemical method, forming three-dimensional (3D) hierarchical heterostructures of a CF@MnO2 NWA composite. As an electrode for supercapacitors, the CF@MnO2 NWA composite exhibits excellent electrochemical performances including high specific capacitance (321.3 F g-1 at 1000 mA g-1) and good rate capability. Further, the overall capacitance retention is 99.7 % capacitance after 3000 cycles. These outstanding electrochemical performances attribute to a large number of transport channels for the penetration of electrolyte and the transportation of ions and electrons of electrodes. The as-prepared CF@MnO2 NWA composite may be a promising electrode material for high-performance supercapacitors.

  11. Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Jiyu Hu

    2016-10-01

    Full Text Available Abstract Large-area ultrafine MnO2 nanowire arrays (NWA directly grew on a carbon fiber (CF, used as a substrate by a simple electrochemical method, forming three-dimensional (3D hierarchical heterostructures of a CF@MnO2 NWA composite. As an electrode for supercapacitors, the CF@MnO2 NWA composite exhibits excellent electrochemical performances including high specific capacitance (321.3 F g−1 at 1000 mA g−1 and good rate capability. Further, the overall capacitance retention is ~99.7 % capacitance after 3000 cycles. These outstanding electrochemical performances attribute to a large number of transport channels for the penetration of electrolyte and the transportation of ions and electrons of electrodes. The as-prepared CF@MnO2 NWA composite may be a promising electrode material for high-performance supercapacitors.

  12. Crosstalk analysis of silicon-on-insulator nanowire-arrayed waveguide grating

    International Nuclear Information System (INIS)

    Li Kai-Li; An Jun-Ming; Zhang Jia-Shun; Wang Yue; Wang Liang-Liang; Li Jian-Guang; Wu Yuan-Da; Yin Xiao-Jie; Hu Xiong-Wei

    2016-01-01

    The factors influencing the crosstalk of silicon-on-insulator (SOI) nanowire arrayed waveguide grating (AWG) are analyzed using the transfer function method. The analysis shows that wider and thicker arrayed waveguides, outsider fracture of arrayed waveguide, and larger channel space, could mitigate the deterioration of crosstalk. The SOI nanowire AWGs with different arrayed waveguide widths are fabricated by using deep ultraviolet lithography (DUV) and inductively coupled plasma etching (ICP) technology. The measurement results show that the crosstalk performance is improved by about 7 dB through adopting 800 nm arrayed waveguide width. (paper)

  13. Oxidative fabrication of patterned, large, non-flaking CuO nanowire arrays

    International Nuclear Information System (INIS)

    Mumm, F; Sikorski, P

    2011-01-01

    We report a simple and fast approach to fabricate large, non-flaking arrays of CuO nanowires by oxidizing thin copper substrates in air. Oxidative CuO nanowire growth is commonly accompanied by oxide layer flaking due to stress at the copper-copper oxide interface. Using thin substrates is shown to prevent this flaking by introducing favourable material thickness ratios in the samples after oxidation. Additionally, thin foils allow larger scale topographic patterns to be transferred from an underlying mould to realize non-flat, nanowire-decorated surfaces. Further patterning is possible by electrodeposition of a nickel layer, which restricts nanowire growth to specific areas of the sample.

  14. Localized temperature and chemical reaction control in nanoscale space by nanowire array.

    Science.gov (United States)

    Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu

    2011-11-09

    We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.

  15. Superconducting properties of Pb82Bi18 films controlled by ferromagnetic nanowire arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Lyuksyutov, Igor F; Wu Wenhao; Naugle, Donald G

    2011-01-01

    The superconducting properties of Pb 82 Bi 18 alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb 82 Bi 18 films are then quench condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb 82 Bi 18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and material variety was observed.

  16. Superconducting properties of Pb82Bi18 films controlled by ferromagnetic nanowire arrays

    Science.gov (United States)

    Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.

    2011-02-01

    The superconducting properties of Pb82Bi18 alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb82Bi18 films are then quench condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb82Bi18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and material variety was observed.

  17. Superconducting Properties of Lead-Bismuth Films Controlled by Ferromagnetic Nanowire Arrays

    Science.gov (United States)

    Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.

    2011-03-01

    Superconducting properties of lead-bismuth (82% Pb and 18% Bi) alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb 82 Bi 18 films are then quench-condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb 82 Bi 18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and the material variety was observed.

  18. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang, E-mail: sgyang@nju.edu.cn

    2016-12-30

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  19. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    International Nuclear Information System (INIS)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-01-01

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  20. Developing high coercivity in large diameter cobalt nanowire arrays

    Science.gov (United States)

    Montazer, A. H.; Ramazani, A.; Almasi Kashi, M.; Zavašnik, J.

    2016-11-01

    Regardless of the synthetic method, developing high magnetic coercivity in ferromagnetic nanowires (NWs) with large diameters has been a challenge over the past two decades. Here, we report on the synthesis of highly coercive cobalt NW arrays with diameters of 65 and 80 nm, which are embedded in porous anodic alumina templates with high-aspect-ratio pores. Using a modified electrochemical deposition method enabled us to reach room temperature coercivity and remanent ratio up to 3000 Oe and 0.70, respectively, for highly crystalline as-synthesized hcp cobalt NW arrays with a length of 8 μm. The first-order reversal curve (FORC) analysis showed the presence of both soft and hard magnetic phases along the length of the resulting NWs. To develop higher coercive fields, the length of the NWs was then gradually reduced in order from bottom to top, thereby reaching NW sections governed by the hard phase. Consequently, this resulted in record high coercivities of 4200 and 3850 Oe at NW diameters of 65 and 80 nm, respectively. In this case, the FORC diagrams confirmed a significant reduction in interactions between the magnetic phases of the remaining sections of NWs. At this stage, x-ray diffraction (XRD) and dark-field transmission electron microscopy analyses indicated the formation of highly crystalline bamboo-like sections along the [0 0 2] direction during a progressive pulse-controlled electrochemical growth of NW arrays under optimized parameters. Our results both provide new insights into the growth process, crystalline characteristics and magnetic phases along the length of large diameter NW arrays and, furthermore, develop the performance of pure 3d transition magnetic NWs.

  1. Investigation on the Tunable-Length Zinc Oxide Nanowire Arrays for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Shou-Yi Kuo

    2014-01-01

    Full Text Available We had successfully fabricated ZnO-based nanowires by vapor transport method in the furnace tube. ZnO nanowire arrays grown in 600°C for 30 minutes, 60 minutes, 90 minutes, and 120 minutes had applied to the dye-sensitized solar cells. The dye loading is proportional to the total equivalent surface area of ZnO nanowire arrays in the cells and plays an important role in improving power conversion efficiency. The highest efficiency was observed in DSSC sample with ZnO nanowires grown for 90 minutes, which had the largest equivalent surface area and also the highest dye loading. According to our experimental results, the enhancement in power conversion efficiency is attributed to the higher light harvesting and reduction of carrier recombination. In addition, ZnO nanowires also contribute to the photocurrent in the UV region.

  2. Superconductivity of a Sn film controlled by an array of Co nanowires

    Science.gov (United States)

    Wei, Z.; Ye, Z.; Rathnayaka, K. D. D.; Lyuksyutov, I. F.; Wu, W.; Naugle, D. G.

    2012-09-01

    Superconducting properties of a hybrid structure composed of ferromagnetic Co nanowire arrays and a superconducting Sn film have been investigated. Ordered Co nanowires arrays with 60 nm, 150 nm and 200 nm diameter were electroplated into the pores of self organized Anodic Aluminum Oxide (AAO) membranes. Hysteretic dependence of the Sn film superconducting properties on applied magnetic field and critical current enhancement at moderate fields has been observed. This behavior strongly depends on the ratio of the Sn film thickness to the Co nanowire diameter.

  3. Superconductivity of a Sn film controlled by an array of Co nanowires

    International Nuclear Information System (INIS)

    Wei, Z.; Ye, Z.; Rathnayaka, K.D.D.; Lyuksyutov, I.F.; Wu, W.; Naugle, D.G.

    2012-01-01

    Superconducting properties of a hybrid structure composed of ferromagnetic Co nanowire arrays and a superconducting Sn film have been investigated. Ordered Co nanowires arrays with 60 nm, 150 nm and 200 nm diameter were electroplated into the pores of self organized Anodic Aluminum Oxide (AAO) membranes. Hysteretic dependence of the Sn film superconducting properties on applied magnetic field and critical current enhancement at moderate fields has been observed. This behavior strongly depends on the ratio of the Sn film thickness to the Co nanowire diameter.

  4. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes

    International Nuclear Information System (INIS)

    Prida, V.M.; Hernandez-Velez, M.; Cervera, M.; Pirota, K.; Sanz, R.; Navas, D.; Asenjo, A.; Aranda, P.; Ruiz-Hitzky, E.; Batallan, F.; Vazquez, M.; Hernando, B.; Menendez, A.; Bordel, N.; Pereiro, R.

    2005-01-01

    Arrays of Ni nanowires electrodeposited into self-aligned and randomly disordered titania nanotube arrays grown by anodization process are investigated by X-ray diffraction, SEM, rf-GDOES and VSM magnetometry. The titania nanotube outer diameter is about 160 nm, wall thickness ranging from 60 to 70 nm and 300 nm in depth. The so-obtained Ni nanowires reach above 100 nm diameter and 240 nm length, giving rise to coercive fields of 98 and 200 Oe in the perpendicular or parallel to the nanowires axis hysteresis loops, respectively. The formation of magnetic vortex domain states is also discussed

  5. Enhancement of thermoelectric figure-of-merit in laterally-coupled nanowire arrays

    International Nuclear Information System (INIS)

    Zhang, Yiqun; Shi, Yi; Pu, Lin; Wang, Junzhuan; Pan, Lijia; Zheng, Youdou

    2011-01-01

    A high ZT value is predicted in laterally-coupled nanowire arrays. The quantum confinement and coupling of electrons are considered in the framework of effective-mass envelope-function theory. The boundary scattering on phonons is also taken into account. The thermoelectric properties benefit from the large Seebeck coefficient and dramatically reduced lattice thermal conductivity, as well as the preserved electronic conductivity in the minibands of the coupling nanowires. The enhancement of ZT to more than 10-fold is achieved in the n-type Si nanowires/Ge host material. Results suggest that the laterally-coupled nanowire arrays can be designed for high-performance thermoelectric devices. -- Highlights: → A high ZT value is predicted in the lateral-coupling nanowire arrays. → The lattice thermal conductivity is dramatically reduced in the lateral direction of nanowire arrays. → The electron transport is preserved in the lateral direction due to the coupling effect. → The ZT value is largely enhanced as the nanowire volume fraction exceeds some critical point.

  6. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    Science.gov (United States)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  7. A Stable Flexible Silicon Nanowire Array as Anode for High-Performance Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Wang, Jiantao; Wang, Hui; Zhang, Bingchang; Wang, Yao; Lu, Shigang; Zhang, Xiaohong

    2015-01-01

    Highlights: • A flexible SiNW array in PDMS structure is designed and fabricated as Li-ion battery anode material. • The aggregation and fracture of SiNWs are alleviated by the flexible PDMS skeleton during the process of charge and discharge. • The loose SiO 2 shells coating on the SiNWscould form the protective layer in charge/discharge. • The as-obtain flexible SiNW array/PDMS composite exhibits a much better cycling stability. - Abstract: A Silicon nanowire (SiNW) array inserted into flexible poly-dimethylsiloxane (SiNW array/PDMS) composite structure as anode with high capacity and long-term cycling stability is synthesized by a cost-effective and scalable method. In this structure, the aggregation and fracture of SiNWs are alleviated by the flexible PDMS skeleton. Act as the main active component, the SiNWs are coated by loose SiO 2 shells. These loose SiO 2 shells not only provide space for the large volume changes of SiNW, but also react with the electrolyte and form the stable protective layer during the processes of the lithiation and delithiation. These two functions could improve the cycling stability and columbic efficiency of the SiNWs. The as-obtain flexible SiNW array/PDMS composite structure exhibits excellent long-term cycling stability with a specific capacity of 887.2 mA·h·g −1 and capacity retention of ∼83.4% over 350 cycles at 0.5 C rate compared with the fifteenth cycle. The design of this new structure provides a potential way for developing other functional composite materials

  8. Stretchable Conductive Composites from Cu-Ag Nanowire Felt.

    Science.gov (United States)

    Catenacci, Matthew J; Reyes, Christopher; Cruz, Mutya A; Wiley, Benjamin J

    2018-04-24

    Materials that retain a high conductivity under strain are essential for wearable electronics. This article describes a conductive, stretchable composite consisting of a Cu-Ag core-shell nanowire felt infiltrated with a silicone elastomer. This composite exhibits a retention of conductivity under strain that is superior to any composite with a conductivity greater than 1000 S cm -1 . This work also shows how the mechanical properties, conductivity, and deformation mechanism of the composite changes as a function of the stiffness of the silicone matrix. The retention of conductivity under strain was found to decrease as the Young's modulus of the matrix increased. This was attributed to void formation as a result of debonding between the nanowire felt and the elastomer. The nanowire composite was also patterned to create serpentine circuits with a stretchability of 300%.

  9. High thermoelectric properties of (Sb, Bi)2Te3 nanowire arrays by tilt-structure engineering

    Science.gov (United States)

    Tan, Ming; Hao, Yanming; Deng, Yuan; Chen, Jingyi

    2018-06-01

    In this paper, we present an innovative tilt-structure design concept for (Sb, Bi)2Te3 nanowire array assembled by high-quality nanowires with well oriented growth, utilizing a simple vacuum thermal evaporation technique. The unusual tilt-structure (Sb, Bi)2Te3 nanowire array with a tilted angle of 45° exhibits a high thermoelectric dimensionless figure-of-merit ZT = 1.72 at room temperature. The relatively high ZT value in contrast to that of previously reported (Sb, Bi)2Te3 materials and the vertical (Sb, Bi)2Te3 nanowire arrays evidently reveals the crucial role of the unique tilt-structure in favorably influencing carrier and phonon transport properties, resulting in a significantly improved ZT value. The transport mechanism of such tilt-structure is proposed and investigated. This method opens a new approach to optimize nano-structure in thin films for next-generation thermoelectric materials and devices.

  10. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L; Lee, W; Huang, Z; Scholz, R; Goesele, U [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2008-08-20

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.

  11. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane

    International Nuclear Information System (INIS)

    Liu, L; Lee, W; Huang, Z; Scholz, R; Goesele, U

    2008-01-01

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated

  12. Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane.

    Science.gov (United States)

    Liu, L; Lee, W; Huang, Z; Scholz, R; Gösele, U

    2008-08-20

    The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.

  13. Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities.

    Science.gov (United States)

    Liao, Yulong; Que, Wenxiu; Zhang, Jin; Zhong, Peng; Yuan, Yuan; Qiu, Xinku; Shen, Fengyu

    2013-02-01

    Fabrication and characterization of a heterojunction structured by CdS quantum dots@ZnO nanowire-array panels were presented. Firstly, ZnO nanowire-array panels were prepared by using a chemical bath deposition approach where wurtzite ZnO nanowires with a diameter of about 100 nm and 3 microm in length grew perpendicularly to glass substrate. Secondly, CdS quantum dots were deposited onto the surface of the ZnO nanowire-arrays by using successive ion layer absorption and reaction method, and the CdS shell/ZnO core heterojunction were thus obtained. Field emission scanning electron microscopy and transmission electron microscope were employed to characterize the morphological properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. X-ray diffraction was adopted to characterize the crystalline properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. Methyl orange was taken as a model compound to confirm the photocatalytic activities of the CdS shell/ZnO core heterojunction. Results indicate that CdS with narrow band gap not only acts as a visible-light sensitizer but also is responsible for an effective charge separation.

  14. Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics

    International Nuclear Information System (INIS)

    Vazquez, M.; Pirota, K.; Torrejon, J.; Navas, D.; Hernandez-Velez, M.

    2005-01-01

    Densely packed arrays of magnetic nanowires with hexagonal symmetry have been prepared by electrodeposition filling of the nanopores in alumina membranes previously formed by self-assembling induced by anodization. The influence of geometrical characteristics of arrays of Ni nanowires on their hysteresis loops have been studied. These characteristics are controlled by suitable choosing of preparation parameters: nanowires diameter ranges between 18 and 80 nm for lattice parameter of hexagonal symmetry of 65 and 105 nm, while length of nanowires is taken between 500 and 2000 nm. Additionally, the temperature dependence of coercivity when applying the field parallel to the nanowires or in-plane of the membrane has been measured. All these results allows us to conclude that magnetic behaviour is determined by the balance between different energy contributions, namely, the shape anisotropy of individual nanowires, the magnetostatic interaction among nanowires (confirmed to play a decisive role), and seemingly the magnetoelastic anisotropy induced in the nanowires by the alumina matrix through temperature changes as a consequence of their different thermal expansion coefficients

  15. Misfit-guided self-organization of anticorrelated Ge quantum dot arrays on Si nanowires.

    Science.gov (United States)

    Kwon, Soonshin; Chen, Zack C Y; Kim, Ji-Hun; Xiang, Jie

    2012-09-12

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one-dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anticorrelated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a postgrowth annealing process.

  16. Structure and magnetic properties of CoxCu1−x nanowires in self-assembled arrays

    International Nuclear Information System (INIS)

    Almasi Kashi, M.; Ramazani, A.; Adelnia Najafabadi, F.

    2012-01-01

    Highlights: ► Role of non-magnetic Cu on the microstructure and magnetic properties of Co x Cu 1−x nanowires. ► Composition variation through ac pulse electrodeposition. ► Replacement of Co with Cu by electroless phenomenon during the off-time between pulses. - Abstract: CoCu alloy nanowire arrays were ac-pulse electrodeposited into porous anodic aluminum oxide. The effect of off-time between pulses and Cu concentration on the magnetic properties, crystalline structure and weight percentage of Co x Cu 1−x alloy nanowires have been studied by alternating gradient force magnetometer (AGFM), X-ray diffraction pattern (XRD) and energy dispersed spectrometry (EDS), respectively. Increasing the off-time between pulses decreased the weight percentage of Co in the range of (x = 0.84 − 0.24). Results of EDS were in accordance with saturation magnetization per unit area of the samples. Coexistence of a moderate off-time and Cu concentration provided excellent conditions for fabrication of the composite nanowires which were proved by XRD patterns.

  17. Static and dynamic magnetic properties of densely packed magnetic nanowire arrays

    DEFF Research Database (Denmark)

    Dmytriiev, O.; Al-Jarah, U.A.S.; Gangmei, P.

    2013-01-01

    and a continuous ferromagnetic thin film. In particular, the competition between anisotropies associated with the shape of the individual nanowires and that of the array as a whole has been studied. Measured and simulated hysteresis loops are largely anhysteretic with zero remanence, and the micromagnetic...... configuration is such that the net magnetization vanishes in directions orthogonal to the applied field. Simulations of the remanent state reveal antiferromagnetic alignment of the magnetization in adjacent nanowires and the formation of vortex flux closure structures at the ends of each nanowire....... The excitation spectra obtained from experiment and micromagnetic simulations are in qualitative agreement for magnetic fields applied both parallel and perpendicular to the axes of the nanowires. For the field parallel to the nanowire axes, there is also good quantitative agreement between experiment...

  18. Fabrication and magnetic characterization of Co{sub x}Pt{sub 1-x} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shamaila, S. [Chinese Academy of Sciences, State Key Laboratory of Magnetism, Institute of Physics, Beijing (China); University of Engineering and Technology, Advanced Physics Laboratory, Lahore (Pakistan); Sharif, R.; Riaz, S.; Han, X.F. [Chinese Academy of Sciences, State Key Laboratory of Magnetism, Institute of Physics, Beijing (China); Khaleeq-ur-Rahman, M. [University of Engineering and Technology, Advanced Physics Laboratory, Lahore (Pakistan)

    2008-08-15

    Co{sub x}Pt{sub 1-x}(x{>=}0.7) alloy nanowires are grown into self-synthesized anodic alumina templates by electrodeposition. Magnetic and magnetization properties of Co{sub x}Pt{sub 1-x} alloy nanowires are measured as functions of wire length, temperature, and field orientation. X-ray diffraction shows that as-prepared CoPt nanowires are of fcc polycrystalline structure. A crossover of easy axis of magnetization is observed from parallel to perpendicular of the nanowire axis as a function of length. The coercivity (H{sub c}) and remanent squareness (SQ) of Co{sub x}Pt{sub 1-x} nanowire arrays are derived from hysteresis loops measured at various angles ({theta}) between the field and wire axis. H{sub c}({theta}) and SQ({theta}) curves show bell-shaped or otherwise bell-shaped behavior corresponding to the easy axis of their magnetization. (orig.)

  19. Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.

    Science.gov (United States)

    Hwang, Jae K; Cho, Sangho; Seo, Eun K; Myoung, Jae M; Sung, Myung M

    2009-12-01

    We demonstrate selective adsorption and alignment of ZnO nanowires on patterned poly(dimethylsiloxane) (PDMS) thin layers with (aminopropyl)siloxane self-assembled monolayers (SAMs). Light stamping lithography (LSL) was used to prepare patterned PDMS thin layers as neutral passivation regions on Si substrates. (3-Aminopropyl)triethoxysilane-based SAMs were selectively formed only on regions exposing the silanol groups of the Si substrates. The patterned positively charged amino groups define and direct the selective adsorption of ZnO nanowires with negative surface charges in the protic solvent. This procedure can be adopted in automated printing machines that generate patterned ZnO-nanowire arrays on large-area substrates. To demonstrate its usefulness, the LSL method was applied to prepare ZnO-nanowire transistor arrays on 4-in. Si wafers.

  20. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    Directory of Open Access Journals (Sweden)

    Yüzer Hayrettin

    2010-01-01

    Full Text Available Abstract A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX methods and X-Ray diffraction (XRD. It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.

  1. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    Science.gov (United States)

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 InP nanowire-based solar cells and photodetectors.

  2. Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Clément, N., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr; Han, X. L. [Institute of Electronics, Microelectronics and Nanotechnology, CNRS, Avenue Poincaré, 59652 Villeneuve d' Ascq (France); Larrieu, G., E-mail: nicolas.clement@iemn.univ-lille1.fr, E-mail: guilhem.larrieu@laas.fr [Laboratory for Analysis and Architecture of Systems (LAAS), CNRS, Universite de Toulouse, 7 Avenue Colonel Roche, 31077 Toulouse (France)

    2013-12-23

    Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact.

  3. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    International Nuclear Information System (INIS)

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Mi, Z.; Trudeau, M. L.; Guo, H.

    2015-01-01

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr 2 O 3 co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450 nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ∼43% at 375–450 nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts

  4. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Science.gov (United States)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-12-01

    In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn2O3, Co3O4 and Cr2O3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  5. High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide (AAO) Membrane

    OpenAIRE

    Han, Young-Hwan

    2008-01-01

    High density silver nanowire arrays were synthesized through the self-ordered Anodic Aluminum Oxide (AAO) template. The pore size in the AAO membrane was confirmed by processing the widening porosity with a honeycomb structure with cross sections of 20nm, 50nm, and 100nm, by SEM. Pore numbers by unit area were consistent; only pore size changed. The synthesized silver nanowire, which was crystallized, was dense in the cross sections of the amorphous AAO membrane. The synthesized silver nanowi...

  6. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.

    Science.gov (United States)

    Shen, Xiaojuan; Sun, Baoquan; Liu, Dong; Lee, Shuit-Tong

    2011-12-07

    Silicon nanowire arrays (SiNWs) on a planar silicon wafer can be fabricated by a simple metal-assisted wet chemical etching method. They can offer an excellent light harvesting capability through light scattering and trapping. In this work, we demonstrated that the organic-inorganic solar cell based on hybrid composites of conjugated molecules and SiNWs on a planar substrate yielded an excellent power conversion efficiency (PCE) of 9.70%. The high efficiency was ascribed to two aspects: one was the improvement of the light absorption by SiNWs structure on the planar components; the other was the enhancement of charge extraction efficiency, resulting from the novel top contact by forming a thin organic layer shell around the individual silicon nanowire. On the contrary, the sole planar junction solar cell only exhibited a PCE of 6.01%, due to the lower light trapping capability and the less hole extraction efficiency. It indicated that both the SiNWs structure and the thin organic layer top contact were critical to achieve a high performance organic/silicon solar cell. © 2011 American Chemical Society

  7. Construction of 3D Metallic Nanowire Arrays on Arbitrarily-Shaped Substrate.

    Science.gov (United States)

    Chen, Fei; Li, Jingning; Yu, Fangfang; Peng, Ru-Wen; Wang, Mu; Mu Wang Team

    Formation of three-dimensional (3D) nanostructures is an important step of advanced manufacture for new concept devices with novel functionality. Despite of great achievements in fabricating nanostructures with state of the art lithography approaches, these nanostructures are normally limited on flat substrates. Up to now it remains challenging to build metallic nanostructures directly on a rough and bumpy surface. Here we demonstrate a unique approach to fabricate metallic nanowire arrays on an arbitrarily-shaped surface by electrodeposition, which is unknown before 2016. Counterintuitively here the growth direction of the nanowires is perpendicular to their longitudinal axis, and the specific geometry of nanowires can be achieved by introducing specially designed shaped substrate. The spatial separation and the width of the nanowires can be tuned by voltage, electrolyte concentration and temperature in electrodeposition. By taking cobalt nanowire array as an example, we demonstrate that head-to-head and tail-to-tail magnetic domain walls can be easily introduced and modulated in the nanowire arrays, which is enlightening to construct new devices such as domain wall racetrack memory. We acknowledge the foundation from MOST and NSF(China).

  8. Piezo-Phototronic Enhanced UV Sensing Based on a Nanowire Photodetector Array.

    Science.gov (United States)

    Han, Xun; Du, Weiming; Yu, Ruomeng; Pan, Caofeng; Wang, Zhong Lin

    2015-12-22

    A large array of Schottky UV photodetectors (PDs) based on vertical aligned ZnO nanowires is achieved. By introducing the piezo-phototronic effect, the performance of the PD array is enhanced up to seven times in photoreponsivity, six times in sensitivity, and 2.8 times in detection limit. The UV PD array may have applications in optoelectronic systems, adaptive optical computing, and communication. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Amperometric Morphine Detection Using Pt-Co Alloy Nanowire Array-modified Electrode

    International Nuclear Information System (INIS)

    Tao, Manlan; Xu, Feng; Li, Yueting; Xu, Quanqing; Chang, Yanbing; Yang, Yunhui; Wu, Zaisheng

    2010-01-01

    Pt-Co alloy nanowire array was directly synthesized by electrochemical deposition with polycarbonate template at -1.0V and subsequent chemical etching of the template. The use of Pt-Co alloy nanowire array-modified electrode (Pt- Co NAE) for the determination of morphine (MO) is described. The morphology of the Pt-Co alloy nanowire array has been investigated by scanning electron microscopy (SEM) and energy disperse X-ray spectroscopy (EDS) analysis), respectively. The resulting Pt-Co NAE offered a linear amperometric response for morphine ranging from 2.35 x 10 -5 to 2.39 x 10 -3 M with a detection limit of 7.83 x 10 -6 M at optimum conditions. This sensor displayed high sensitivity and long-term stability

  10. Quantitative measurements of C-reactive protein using silicon nanowire arrays

    Directory of Open Access Journals (Sweden)

    Min-Ho Lee

    2008-03-01

    Full Text Available Min-Ho Lee, Kuk-Nyung Lee, Suk-Won Jung, Won-Hyo Kim, Kyu-Sik Shin, Woo-Kyeong SeongKorea Electronics Technology Institute, Gyeonggi, KoreaAbstract: A silicon nanowire-based sensor for biological application showed highly desirable electrical responses to either pH changes or receptor-ligand interactions such as protein disease markers, viruses, and DNA hybridization. Furthermore, because the silicon nanowire can display results in real-time, it may possess superior characteristics for biosensing than those demonstrated in previously studied methods. However, despite its promising potential and advantages, certain process-related limitations of the device, due to its size and material characteristics, need to be addressed. In this article, we suggest possible solutions. We fabricated silicon nanowire using a top-down and low cost micromachining method, and evaluate the sensing of molecules after transfer and surface modifications. Our newly designed method can be used to attach highly ordered nanowires to various substrates, to form a nanowire array device, which needs to follow a series of repetitive steps in conventional fabrication technology based on a vapor-liquid-solid (VLS method. For evaluation, we demonstrated that our newly fabricated silicon nanowire arrays could detect pH changes as well as streptavidin-biotin binding events. As well as the initial proof-of-principle studies, C-reactive protein binding was measured: electrical signals were changed in a linear fashion with the concentration (1 fM to 1 nM in PBS containing 1.37 mM of salts. Finally, to address the effects of Debye length, silicon nanowires coupled with antigen proteins underwent electrical signal changes as the salt concentration changed.Keywords: silicon nanowire array, C-reactive protein, vapor-liquid-solid method

  11. Strain analysis of nanowire interfaces in multiscale composites

    Science.gov (United States)

    Malakooti, Mohammad H.; Zhou, Zhi; Spears, John H.; Shankwitz, Timothy J.; Sodano, Henry A.

    2016-04-01

    Recently, the reinforcement-matrix interface of fiber reinforced polymers has been modified through grafting nanostructures - particularly carbon nanotubes and ZnO nanowires - on to the fiber surface. This type of interface engineering has made a great impact on the development of multiscale composites that have high stiffness, interfacial strength, toughness, and vibrational damping - qualities that are mutually exclusive to a degree in most raw materials. Although the efficacy of such nanostructured interfaces has been established, the reinforcement mechanisms of these multiscale composites have not been explored. Here, strain transfer across a nanowire interphase is studied in order to gain a heightened understanding of the working principles of physical interface modification and the formation of a functional gradient. This problem is studied using a functionally graded piezoelectric interface composed of vertically aligned lead zirconate titanate nanowires, as their piezoelectric properties can be utilized to precisely control the strain on one side of the interface. The displacement and strain across the nanowire interface is captured using digital image correlation. It is demonstrated that the material gradient created through nanowires cause a smooth strain transfer from reinforcement phase into matrix phase that eliminates the stress concentration between these phases, which have highly mismatched elasticity.

  12. TiO2-Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Asagoe, K; Suzuki, Y; Ngamsinlapasathian, S; Yoshikawa, S

    2007-01-01

    TiO 2 anatase nanowires have been prepared by a hydrothermal process followed by post-heat treatment in air. TiO 2 nanoparticle/TiO 2 nanowire composite electrodes were prepared for dye-sensitized solar cells (DSC) in order to improve light-to-electricity conversion efficiency. The TiO 2 NP/TiO 2 NW composite cells showed higher DSC performance than ordinary nanoparticle cells and fully nanowire cells: efficiency (η = 6.53 % for DSC with 10% nanowire, whereas 5.59% for 0% nanowire, and 2.42% for 100% nanowire

  13. Improving emission uniformity and linearizing band dispersion in nanowire arrays using quasi-aperiodicity

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P. Duke [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering; Koleske, Daniel D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Povinelli, Michelle L. [Univ. of Southern California, Los Angeles, CA (United States). Ming Hsieh Dept. of Electrical Engineering; Subramania, Ganapathi [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    For this study, we experimentally investigate a new class of quasi-aperiodic structures for improving the emission pattern in nanowire arrays. Efficient normal emission, as well as lasing, can be obtained from III-nitride photonic crystal (PhC) nanowire arrays that utilize slow group velocity modes near the Γ-point in reciprocal space. However, due to symmetry considerations, the emitted far-field pattern of such modes are often ‘donut’-like. Many applications, including lighting for displays or lasers, require a more uniform beam profile in the far-field. Previous work has improved far-field beam uniformity of uncoupled modes by changing the shape of the emitting structure. However, in nanowire systems, the shape of nanowires cannot always be arbitrarily changed due to growth or etch considerations. Here, we investigate breaking symmetry by instead changing the position of emitters. Using a quasi-aperiodic geometry, which changes the emitter position within a photonic crystal supercell (2x2), we are able to linearize the photonic bandstructure near the Γ-point and greatly improve emitted far-field uniformity. We realize the III-nitride nanowires structures using a top-down fabrication procedure that produces nanowires with smooth, vertical sidewalls. Comparison of room-temperature micro-photoluminescence (µ-PL) measurements between periodic and quasi-aperiodic nanowire arrays reveal resonances in each structure, with the simple periodic structure producing a donut beam in the emitted far-field and the quasi-aperiodic structure producing a uniform Gaussian-like beam. We investigate the input pump power vs. output intensity in both systems and observe the simple periodic array exhibiting a non-linear relationship, indicative of lasing. We believe that the quasi-aperiodic approach studied here provides an alternate and promising strategy for shaping the emission pattern of nanoemitter systems.

  14. Antibacterial activity of single crystalline silver-doped anatase TiO{sub 2} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangyu, E-mail: zhangxiangyu@tyut.edu.cn; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin, E-mail: tangbin@tyut.edu.cn

    2016-05-30

    Graphical abstract: The silver-doped TiO{sub 2} nanowire arrays on titanium foil substrate were synthesized via a two-step process. It includes: deposition of AgTi films on titanium foil by magnetron sputtering; preparation of AgNW arrays on AgTi films via alkali (NaOH) hydrothermal treatment and ion-exchange with HCl, followed by calcinations. - Highlights: • Ag-doped TiO{sub 2} nanowire arrays have been prepared by a duplex-treatment. • The duplex-treatment consisted of magnetron sputtering and hydrothermal growth. • Ag-doped nanowire arrays show excellent antibacterial activity against E. coli. - Abstract: Well-ordered, one-dimensional silver-doped anatase TiO{sub 2} nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO{sub 2} nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  15. Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts

    Science.gov (United States)

    2012-01-01

    12] J. P. Liu, C. X. Guo, C. M. Li et al., “Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and...cited. Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as...deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct

  16. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars [Solid State Physics, Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  17. Observation of intact desorption ionization of peptide molecules from arrays of tungsten oxide nanowires by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Yun [Dept. of Nanochemistry, Gachon University, Seongnam (Korea, Republic of)

    2015-08-15

    Length-controlled WO{sub 3} surface nanowires with a 50 nm diameter were prepared by utilizing anodic Al{sub 2}O{sub 3} templates. Careful control of the fabrication process yielded a set of length-controlled nanowire arrays (Figure 1). The lengths of the nanowires covered a range of 60–250 nm. Typically, a 0.5-μL drop of a sample solution in 10% MeOH that contained 2 pmol of sample was pipetted directly onto the nanowire chips, which were dried under ambient conditions. We report the observation of intact LDI of thermally labile peptides from WO{sub 3} nanowire arrays, which have never been reported for any other metal oxide nanowire arrays. As metal oxides are thermally stable and useful in many applications, and fabrication of various nanostructures are well established, we suggest that the nanostructured surfaces of metal oxides are promising for LDI and thus worthy of further investigations.

  18. A universal approach to electrically connecting nanowire arrays using nanoparticles—application to a novel gas sensor architecture

    Science.gov (United States)

    Parthangal, Prahalad M.; Cavicchi, Richard E.; Zachariah, Michael R.

    2006-08-01

    We report on a novel, in situ approach toward connecting and electrically contacting vertically aligned nanowire arrays using conductive nanoparticles. The utility of the approach is demonstrated by development of a gas sensing device employing this nano-architecture. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550 °C on gold catalyst layers. Electrical contact to the top of the nanowire array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. A gas sensing device was constructed using such an arrangement and the nanowire assembly was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any nanowire array for which a top contact electrode is needed.

  19. A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture

    International Nuclear Information System (INIS)

    Parthangal, Prahalad M; Cavicchi, Richard E; Zachariah, Michael R

    2006-01-01

    We report on a novel, in situ approach toward connecting and electrically contacting vertically aligned nanowire arrays using conductive nanoparticles. The utility of the approach is demonstrated by development of a gas sensing device employing this nano-architecture. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550 deg. C on gold catalyst layers. Electrical contact to the top of the nanowire array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. A gas sensing device was constructed using such an arrangement and the nanowire assembly was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any nanowire array for which a top contact electrode is needed

  20. GISAXS and SAXS studies on the spatial structures of Co nanowire arrays

    International Nuclear Information System (INIS)

    Cheng Weidong; Xing Xueqing; Wang Dehong; Gong Yu; Mo Guang; Cai Quan; Chen Zhongjun; Wu Zhonghua

    2011-01-01

    The spatial structures of magnetic Co nanowire array embedded in anodic aluminium membranes were investigated by grazing incidence small angle X-ray scattering (GISAXS) and conventional small angle X-ray scattering (SAXS) techniques. Compared with SEM observation, the GISAXS and SAXS measurements can get more overall structural information in a large-area scale. In this study, the two-dimensional GISAXS pattern was well reconstructed by using the IsGISAXS program. The results demonstrate that the hexagonal lattice formed by the Co nanowires is distorted (a≈105 nm, b≈95 nm). These Co nanowires are isolated into many structure domains with different orientations with a size of about 2 μm. The SAXS results have also confirmed that the nanopore structures in the AAM can be retained after depositing Co nanowires although the Co nanowires can not completely but only just fill up the nanopores. These results are helpful for understanding the global structure of the Co nanowire array. (authors)

  1. Wurtzite InP nanowire arrays grown by selective area MOCVD

    International Nuclear Information System (INIS)

    Chu, Hyung-Joon; Stewart, Lawrence; Yeh, Ting-Wei; Dapkus, P.D.

    2010-01-01

    InP nanowires are a unique material phase because this normally zincblende material forms in the wurtzite crystal structure below a critical diameter owing to the contribution of sidewalls to the total formation energy. This may allow control of the carrier transport and optical properties of InP nanowires for applications such as nano scale transistors, lasers and detectors. In this work, we describe the fabrication of InP nanowire arrays by selective area growth using MOCVD in the diameter range where the wurtzite structure is formed. The spatial growth rate in selective area growth is modeled by a diffusion model for the precursors. The proposed model achieves an average error of 9%. Electron microscopy shows that the grown InP nanowires are in the wurtzite crystal phase with many stacking faults. The threshold diameter of the crystal phase transition of InP nanowires is larger than the thermodynamic estimation. In order to explain this tendency, we propose a surface kinetics model based on a 2 x 2 reconstruction. This model can explain the increased tendency for wurtzite nanowire formation on InP (111)A substrates and the preferred growth direction of binary III-V compound semiconductor nanowires. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Magnetization reversal and coercivity of Fe3Se4 nanowire arrays

    Science.gov (United States)

    Li, D.; Li, S. J.; Zhou, Y. T.; Bai, Y.; Zhu, Y. L.; Ren, W. J.; Long, G.; Zeng, H.; Zhang, Z. D.

    2015-05-01

    The microstructure and magnetic properties of Fe3Se4 nanowire (NW) arrays in anodic aluminum oxide (AAO) porous membrane are studied. Cross-sectional SEM and plane-view TEM images show that the mean wire diameter (dw) and the center-to-center spacing (D) of Fe3Se4 nanowires are about 220 nm and 330 nm, respectively. The field-cooled magnetization dependent on the temperature indicates a Curie temperature around 334 K for the Fe3Se4 nanowires. The coercivities of Fe3Se4 nanowires at 10 K, obtained from the in-plane and out-of-plane hysteresis loops, are as high as 22.4 kOe and 23.3 kOe, which can be understood from the magnetocrystalline anisotropy and the magnetization reversal process.

  3. Prevalence of information stored in arrays of magnetic nanowires against external fields

    Science.gov (United States)

    Ceballos, D.; Cisternas, E.; Vogel, E. E.; Allende, S.

    2018-04-01

    Arrays of magnetic nanowires in porous alumina can be used to store information inscribed on the system by orienting the magnetization of selected wires pointing in a desired direction, so symbols can be read as ferromagnetic sectors. However, this information is subject to aging and the stored information could be gradually lost. We investigate here two mechanisms proposed to improve the prevalence of the stored information: opposite ferromagnetic band at the center of the symbol and bi-segmented nanowires acting as two layers of nanowires storing the same information. Both mechanisms prove to increase resistance to the action of external magnetic fields for the case of Ni wires in a geometry compatible with actually grown nanowires. Advantages and disadvantages of these mechanisms are discussed.

  4. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  5. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco De; Krahne, Roman; Di Fabrizio, Enzo M.

    2014-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  6. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  7. Time-dependent optical response of three-dimensional Au nanoparticle arrays formed on silica nanowires

    Science.gov (United States)

    Di Mario, Lorenzo; Otomalo, Tadele Orbula; Catone, Daniele; O'Keeffe, Patrick; Tian, Lin; Turchini, Stefano; Palpant, Bruno; Martelli, Faustino

    2018-03-01

    We present stationary and transient absorption measurements on 3D Au nanoparticle (NP)-decorated Si O2 nanowire arrays. The 3D NP array has been produced by the dewetting of a thin Au film deposited on silica nanowires produced by oxidation of silicon nanowires. The experimental behaviors of the spectral and temporal dynamics observed in the experiment are accurately described by a two-step, three-temperature model. Using an arbitrary set of Au NPs with different aspect ratios, we demonstrate that the width of the experimental spectra, the energy shift of their position with time, and the asymmetry between the two positive wings in the dynamical variation of absorption can all be attributed to the nonuniform shape distribution of the Au NPs in the sample.

  8. Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars

    KAUST Repository

    Bran, C.; Ivanov, Yurii P.; Kosel, Jü rgen; Chubykalo-Fesenko, O.; Vazquez, M.

    2017-01-01

    Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.

  9. Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Barriga, J. [Instituto de Magnetismo Aplicado (UCM-RENFE-CSIC), P.O. Box 155, 28230, Las Rozas, Madrid (Spain)]. E-mail: sbarriga@bessy.de; Lucas, M. [Technische Universitaet Berlin, Institut fuer Theoretische Physik, Hardenbergstr. 36, D-10623 Berlin (Germany); Rivero, G. [Instituto de Magnetismo Aplicado (UCM-RENFE-CSIC), P.O. Box 155, 28230, Las Rozas, Madrid (Spain); Marin, P. [Instituto de Magnetismo Aplicado (UCM-RENFE-CSIC), P.O. Box 155, 28230, Las Rozas, Madrid (Spain); Hernando, A. [Instituto de Magnetismo Aplicado (UCM-RENFE-CSIC), P.O. Box 155, 28230, Las Rozas, Madrid (Spain)

    2007-05-15

    Arrays of Cobalt nanowires with a controlled length of 6{mu}m have been fabricated by electrochemical deposition into the pores of track-etched polycarbonate membranes with a nominal pore diameter of 30nm. The magnetic properties of Co-deposited nanowires and the effects of a magnetic field applied during electrodeposition of the arrays have been studied. An enhancement of the mass deposition rate due to the presence of a 50Oe magnetic field along the nanowire axis has been observed by measuring the experimental development of the current in the electrochemical cell during the fabrication process. X-ray diffraction measurements reveal a different polycrystalline degree for each deposition configuration, indicating that the crystalline structure of the deposited material has been substantially modified. Magnetic measurements show a clear dependence of the anisotropy directions on the orientation of the magnetic field applied during the electrodeposition.

  10. Magnetoelectrolysis of Co nanowire arrays grown in a tracketched polycarbonate membrane

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Florin [BESSY GmbH, Berlin (Germany); Rivero, Guillermo; Marin, Pilar; Hernando, Antonio [Instituto de Magnetismo Aplicado, Madrid (Spain); Sanchez-Barriga, J. [Instituto de Magnetismo Aplicado, Madrid (Spain); BESSY GmbH, Berlin (Germany); Lucas, M. [Inst. fuer Theoretische Physik, Technische Univ. Berlin (Germany)

    2007-07-01

    Arrays of Cobalt nanowires with a controlled length of 6{mu}m have been fabricated by electrochemical deposition into the pores of track-etched polycarbonate membranes with a nominal pore diameter of 30 nm. The magnetic properties of Co-deposited nanowires and the effects of a magnetic field applied during electrodeposition of the arrays have been studied. An enhancement of the mass deposition rate due to the presence of a 50 Oe magnetic field along the nanowire axis has been observed by measuring the experimental development of the current in the electrochemical cell during the fabrication process. X-Ray diffraction measurements reveal a different polycrystalline degree for each deposition configuration, indicating that the crystalline structure of the deposited material has been substantially modified. Magnetic measurements show a clear dependence of the anisotropy directions on the orientation of the magnetic field applied during the electrodeposition.

  11. Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars

    KAUST Repository

    Bran, C.

    2017-01-31

    Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.

  12. Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane

    International Nuclear Information System (INIS)

    Sanchez-Barriga, J.; Lucas, M.; Rivero, G.; Marin, P.; Hernando, A.

    2007-01-01

    Arrays of Cobalt nanowires with a controlled length of 6μm have been fabricated by electrochemical deposition into the pores of track-etched polycarbonate membranes with a nominal pore diameter of 30nm. The magnetic properties of Co-deposited nanowires and the effects of a magnetic field applied during electrodeposition of the arrays have been studied. An enhancement of the mass deposition rate due to the presence of a 50Oe magnetic field along the nanowire axis has been observed by measuring the experimental development of the current in the electrochemical cell during the fabrication process. X-ray diffraction measurements reveal a different polycrystalline degree for each deposition configuration, indicating that the crystalline structure of the deposited material has been substantially modified. Magnetic measurements show a clear dependence of the anisotropy directions on the orientation of the magnetic field applied during the electrodeposition

  13. 3D ZnIn2S4 nanosheet/TiO2 nanowire arrays and their efficient photocathodic protection for 304 stainless steel

    Science.gov (United States)

    Sun, Wenxia; Wei, Na; Cui, Hongzhi; Lin, Yuan; Wang, Xinzhen; Tian, Jian; Li, Jian; Wen, Jing

    2018-03-01

    A well-designed heterostructure engineered ZnIn2S4 nanosheet/TiO2 nanowire arrays photoanode is investigated for photocathodic protection. The ZnIn2S4 nanosheets are distributed uniformly on the surface of the TiO2 nanowire by a hydrothermal method. The stem-and-leaf-like ZnIn2S4 nanosheet/TiO2 nanowire arrays exhibit excellent photoelectrochemical properties, owing to the energy band structure and large surface area. A maximum photocurrent density of 2 mA cm-2 is achieved for the ZnIn2S4 nanosheet/TiO2 nanowire composite film for a 6 h reaction time under white illumination. Moreover, the potential of the 304 stainless steel coupled with the composite film immediately shifts negatively to -1.17 V (vs. SCE), which is significantly lower than the corrosion potential (-0.201 V vs. SCE). Thus, the composite film offers a superior photocathodic protection for stainless steel against corrosion by a NaCl solution. This study provides a promising approach for the design and synthesis of composite films with enhanced photoelectrochemical performance.

  14. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei; Song, Jinhui; Lu, Ming-Yen; Chen, Min-Teng; Gao, Yifan; Chen, Lih-Juann; Wang, Zhong Lin

    2009-01-01

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive

  15. Hierarchically structured Co₃O₄@Pt@MnO₂ nanowire arrays for high-performance supercapacitors.

    Science.gov (United States)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-17

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  16. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate

    KAUST Repository

    Qin, Yong; Yang, Rusen; Wang, Zhong Lin

    2008-01-01

    A general method is presented for growing laterally aligned and patterned ZnO nanowire (NW) arrays on any substrate as long as it is flat. The orientation control is achieved using the combined effect from ZnO seed layer and the catalytically

  17. Photovoltaic devices based on quantum dot functionalized nanowire arrays embedded in an organic matrix

    Science.gov (United States)

    Kung, Patrick; Harris, Nicholas; Shen, Gang; Wilbert, David S.; Baughman, William; Balci, Soner; Dawahre, Nabil; Butler, Lee; Rivera, Elmer; Nikles, David; Kim, Seongsin M.

    2012-01-01

    Quantum dot (QD) functionalized nanowire arrays are attractive structures for low cost high efficiency solar cells. QDs have the potential for higher quantum efficiency, increased stability and lifetime compared to traditional dyes, as well as the potential for multiple electron generation per photon. Nanowire array scaffolds constitute efficient, low resistance electron transport pathways which minimize the hopping mechanism in the charge transport process of quantum dot solar cells. However, the use of liquid electrolytes as a hole transport medium within such scaffold device structures have led to significant degradation of the QDs. In this work, we first present the synthesis uniform single crystalline ZnO nanowire arrays and their functionalization with InP/ZnS core-shell quantum dots. The structures are characterized using electron microscopy, optical absorption, photoluminescence and Raman spectroscopy. Complementing photoluminescence, transmission electron microanalysis is used to reveal the successful QD attachment process and the atomistic interface between the ZnO and the QD. Energy dispersive spectroscopy reveals the co-localized presence of indium, phosphorus, and sulphur, suggestive of the core-shell nature of the QDs. The functionalized nanowire arrays are subsequently embedded in a poly-3(hexylthiophene) hole transport matrix with a high degree of polymer infiltration to complete the device structure prior to measurement.

  18. Vertical nanowire arrays as a versatile platform for protein detection and analysis

    DEFF Research Database (Denmark)

    Rostgaard, Katrine R.; Frederiksen, Rune S.; Liu, Yi-Chi

    2013-01-01

    solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between...

  19. Wafer-Level Patterned and Aligned Polymer Nanowire/Micro- and Nanotube Arrays on any Substrate

    KAUST Repository

    Morber, Jenny Ruth; Wang, Xudong; Liu, Jin; Snyder, Robert L.; Wang, Zhong Lin

    2009-01-01

    involved a one-step inductively coupled plasma (ICP) reactive ion etching process. The polymer nanowire array was fabricated in an ICP reactive ion milling chamber with a pressure of 10mTorr. Argon (Ar), O 2, and CF4 gases were released into the chamber

  20. Characterization of a Ga-assisted GaAs nanowire array solar cell on si substrate

    DEFF Research Database (Denmark)

    Boulanger, J. P.; Chia, A. C. E.; Wood, B.

    2016-01-01

    A single-junction core-shell GaAs nanowire (NW) solar cell on Si (1 1 1) substrates is presented. A Ga-assisted vapor–liquid–solid growth mechanism was used for the formation of a patterned array of radial p-i-n GaAs NWs encapsulated in AlInP passivation. Novel device fabrication utilizing facet-...

  1. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NARCIS (Netherlands)

    Du, S.; Lin, K.; Malladi, S.R.K.; Lu, Y.; Sun, S.; Xu, Q.; Steinberger-Wilckens, R.; Dong, H.

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support

  2. Phosphorus Doped Zn 1- x Mg x O Nanowire Arrays

    KAUST Repository

    Lin, S. S.; Hong, J. I.; Song, J. H.; Zhu, Y.; He, H. P.; Xu, Z.; Wei, Y. G.; Ding, Y.; Snyder, R. L.; Wang, Z. L.

    2009-01-01

    We demonstrate the growth of phosphorus doped Zn 1-xMg xO nanowire (NW) using pulsed laser deposition. For the first time, p-type Zn 0.92Mg 0.08O:P NWs are likely obtained In reference to atomic force microscopy based piezoelectric output

  3. Crystallographically driven magnetic behaviour of arrays of monocrystalline Co nanowires

    KAUST Repository

    Ivanov, Yurii P.; Trabada, Daniel G.; Chuvilin, Andrey L.; Kosel, Jü rgen; Chubykalo-Fesenko, Oksana A.; Vá zquez., Manuel M.

    2014-01-01

    Cobalt nanowires, 40 nm in diameter and several micrometers long, have been grown by controlled electrodeposition into ordered anodic alumina templates. The hcp crystal symmetry is tuned by a suitable choice of the electrolyte pH (between 3.5 and 6

  4. Magnetic properties and crystalline structures of Fe{sub 21}Ni{sub 79} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwan Hyi; Lee, Woo Young; Lee, Hwa Young; Jeung, Won Young [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2002-04-01

    Fe{sub 21}Ni{sub 79} nanowire arrays have been fabricated by the electroforming method using AAO (anodic aluminum oxide) as a template, which was prepared by anodizing the pure aluminum foil. According to the magnetic property of Fe{sub 21}Ni{sub 79} nanowire prepared, it was found to have the coercivity more than 1 kOe due to the shape anisotropy and squareness (Mr/Ms) very close to 1. Especially, it could be noted that Fe{sub 21}Ni{sub 79} nanowire showed the preferred crystallographic orientation of (220). Annealing treatment of Fe{sub 21}Ni{sub 79} nanowire at 500 degree C resulted in the enhancement of coercivity by 18% while the squareness was not varied by annealing treatment. However, the random orientation of Fe{sub 21}Ni{sub 79} disk and the preferred orientation of nanowire arrays were maintained without respect to the annealing treatment up to 500 degree C.

  5. Optical analysis of a III-V-nanowire-array-on-Si dual junction solar cell.

    Science.gov (United States)

    Chen, Yang; Höhn, Oliver; Tucher, Nico; Pistol, Mats-Erik; Anttu, Nicklas

    2017-08-07

    A tandem solar cell consisting of a III-V nanowire subcell on top of a planar Si subcell is a promising candidate for next generation photovoltaics due to the potential for high efficiency. However, for success with such applications, the geometry of the system must be optimized for absorption of sunlight. Here, we consider this absorption through optics modeling. Similarly, as for a bulk dual-junction tandem system on a silicon bottom cell, a bandgap of approximately 1.7 eV is optimum for the nanowire top cell. First, we consider a simplified system of bare, uncoated III-V nanowires on the silicon substrate and optimize the absorption in the nanowires. We find that an optimum absorption in 2000 nm long nanowires is reached for a dense array of approximately 15 nanowires per square micrometer. However, when we coat such an array with a conformal indium tin oxide (ITO) top contact layer, a substantial absorption loss occurs in the ITO. This ITO could absorb 37% of the low energy photons intended for the silicon subcell. By moving to a design with a 50 nm thick, planarized ITO top layer, we can reduce this ITO absorption to 5%. However, such a planarized design introduces additional reflection losses. We show that these reflection losses can be reduced with a 100 nm thick SiO 2 anti-reflection coating on top of the ITO layer. When we at the same time include a Si 3 N 4 layer with a thickness of 90 nm on the silicon surface between the nanowires, we can reduce the average reflection loss of the silicon cell from 17% to 4%. Finally, we show that different approximate models for the absorption in the silicon substrate can lead to a 15% variation in the estimated photocurrent density in the silicon subcell.

  6. Ti@δ-MnO_2 core-shell nanowire arrays as self-supported electrodes of supercapacitors and Li ion batteries

    International Nuclear Information System (INIS)

    Zhao, Guangyu; Zhang, Dong; Zhang, Li; Sun, Kening

    2016-01-01

    Highlights: • Ti@δ-MnO_2 core-shell nanowire arrays prepared by a electrochemical method. • Remarkable rate capability as both Li ion battery and supercapacitor electrodes. • Good electronic conductivity and facilitated mass transport. - Abstract: δ-MnO_2 is a promissing electrode material of supercapacitors and Li ion batteries (LIBs) owing to its low cost, layer structure and composite valence of Mn. However, the unfavorable electronic conductivity of δ-MnO_2 restricts its rate capability in both of the two devices. Herein, a vertically standing Ti nanowire array modified with δ-MnO_2 nanoflakes is prepared by a electrodeposition method, and the electrochemical properties of Ti@δ-MnO_2 nanowire arrays in supercapacitors and LIBs are investigated. The results show that, the arrays have a capacity of 195 F g"−"1 at 1.0 A g"−"1 and can cycle more than 10000 rounds at 10 A g"−"1 as electrodes of supercapacitors. On the other hand, the arrays behave good rate capability as LIB cathodes, which can release a capacity of 70 mAh g"−"1 at 10C rate charge/discharge. We suggest that, the good electronic conductivity owing to the core-shell structure and the facilitated mass transport supplied by the array architecture are responsible for the enhanced rate performances in the two devices.

  7. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    International Nuclear Information System (INIS)

    Wang, H-W; Ting, C-F; Hung, M-K; Chiou, C-H; Liu, Y-L; Liu Zongwen; Ratinac, Kyle R; Ringer, Simon P

    2009-01-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO 2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO 2 layers onto the ITO or ITO/TiO 2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO 2 core-shell nanowires or pristine TiO 2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  8. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials.

    Science.gov (United States)

    Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui

    2018-04-19

    At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

  9. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  10. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2016-03-01

    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  11. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  12. Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays

    International Nuclear Information System (INIS)

    Kazakova, Olga; Erts, Donats; Crowley, Timothy A.; Kulkarni, Jaideep S.; Holmes, Justin D.

    2005-01-01

    In this paper, we investigate the magnetization reversal of cobalt and magnetite nanowires, 4 nm in diameter, synthesized within the pores of mesoporous silica thin films. A SQUID magnetometer was used to study the magnetic properties of the nanowire arrays over a broad temperature interval, T=1.8-300 K. The magnetization reversal process was found to be strongly temperature dependent. While a coherent rotation may occur at room temperature, a process involving the formation of domain structures takes place as the temperature decreases down to 1.8 K

  13. High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays.

    Science.gov (United States)

    Luan, Chuhao; Shao, Yang; Lu, Qi; Gao, Shenghan; Huang, Kai; Wu, Hui; Yao, Kefu

    2018-05-17

    An efficient and selective catalyst is in urgent need for carbon dioxide electroreduction and silver is one of the promising candidates with affordable costs. Here we fabricated large-scale vertically standing Ag nanowire arrays with high crystallinity and electrical conductivity as carbon dioxide electroreduction catalysts by a simple nanomolding method that was usually considered not feasible for metallic crystalline materials. A great enhancement of current densities and selectivity for CO at moderate potentials was achieved. The current density for CO ( j co ) of Ag nanowire array with 200 nm in diameter was more than 2500 times larger than that of Ag foil at an overpotential of 0.49 V with an efficiency over 90%. The origin of enhanced performances are attributed to greatly increased electrochemically active surface area (ECSA) and higher intrinsic activity compared to those of polycrystalline Ag foil. More low-coordinated sites on the nanowires which can stabilize the CO 2 intermediate better are responsible for the high intrinsic activity. In addition, the impact of surface morphology that induces limited mass transportation on reaction selectivity and efficiency of nanowire arrays with different diameters was also discussed.

  14. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.

    Science.gov (United States)

    Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S

    2017-06-30

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO 2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  15. Poly(1-(2-carboxyethyl)pyrrole)/polypyrrole composite nanowires for glucose biosensor

    International Nuclear Information System (INIS)

    Jiang Hairong; Zhang Aifeng; Sun Yanan; Ru Xiaoning; Ge Dongtao; Shi Wei

    2012-01-01

    A novel glucose biosensor based on poly(1-(2-carboxyethyl)pyrrole) (PPyCOOH)/polypyrrole (PPy) composite nanowires was developed by immobilizing glucose oxidase (GOD) on the nanowires via covalent linkages. The PPyCOOH/PPy composite nanowires were fabricated by a facile two-step electrochemical synthesis route. First, PPy nanowires were synthesized in phosphate buffer solution using organic sulfonic acid, p-toluenesulfonate acid, as soft-template. Then, PPyCOOH/PPy composite nanowires were obtained by polymerizing 1-(2-carboxyethyl)pyrrole onto PPy nanowires via electrochemical method. Scanning electron microscopic, FT-IR spectra, X-ray photoelectron spectroscopy and cyclic voltammograms were used to characterize the structural and electrical behaviors of the composite nanowires. The PPyCOOH/PPy composite nanowires exhibited uniform diameter, high reactive site (-COOH), large specific surface, excellent electroactivity and good adhesion to electrode. The glucose biosensor was constructed by covalently coupling GOD to the composite nanowires. The biosensor response was rapid (5 s), highly sensitive (33.6 μA mM −1 cm −2 ) with a wide linear range (up to 10.0 mM) and low detection limit (0.63 μM); it also exhibited high stability and specificity to glucose. The attractive electrochemical and structural properties of PPyCOOH/PPy composite nanowires suggested potential application for electrocatalysis and biosensor.

  16. Crystallographically driven magnetic behaviour of arrays of monocrystalline Co nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2014-11-07

    Cobalt nanowires, 40 nm in diameter and several micrometers long, have been grown by controlled electrodeposition into ordered anodic alumina templates. The hcp crystal symmetry is tuned by a suitable choice of the electrolyte pH (between 3.5 and 6.0) during growth. Systematic high resolution transmission electron microscopy imaging and analysis of the electron diffraction patterns reveals a dependence of crystal orientation from electrolyte pH. The tailored modification of the crystalline signature results in the reorientation of the magnetocrystalline anisotropy and increasing experimental coercivity and squareness with decreasing polar angle of the \\'c\\' growth axis. Micromagnetic modeling of the demagnetization process and its angular dependence is in agreement with the experiment and allows us to establish the change in the character of the magnetization reversal: from quasi-curling to vortex domain wall propagation modes when the crystal \\'c\\' axis tilts more than 75° in respect to the nanowire axis.

  17. Ultradense, Deep Subwavelength Nanowire Array Photovoltaics As Engineered Optical Thin Films

    KAUST Repository

    Tham, Douglas

    2010-11-10

    A photovoltaic device comprised of an array of 20 nm wide, 32 nm pitch array of silicon nanowires is modeled as an optical material. The nanowire array (NWA) has characteristic device features that are deep in the subwavelength regime for light, which permits a number of simplifying approximations. Using photocurrent measurements as a probe of the absorptance, we show that the NWA optical properties can be accurately modeled with rigorous coupled-wave analysis. The densely structured NWAs behave as homogeneous birefringent materials into the ultraviolet with effective optical properties that are accurately modeled using the dielectric functions of bulk Si and SiO 2, coupled with a physical model for the NWA derived from ellipsometry and transmission electron microscopy. © 2010 American Chemical Society.

  18. Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy.

    Science.gov (United States)

    Fragouli, Despina; Buonsanti, Raffaella; Bertoni, Giovanni; Sangregorio, Claudio; Innocenti, Claudia; Falqui, Andrea; Gatteschi, Dante; Cozzoli, Pantaleo Davide; Athanassiou, Athanassia; Cingolani, Roberto

    2010-04-27

    We present a simple technique for magnetic-field-induced formation, assembling, and positioning of magnetic nanowires in a polymer film. Starting from a polymer/iron oxide nanoparticle casted solution that is allowed to dry along with the application of a weak magnetic field, nanocomposite films incorporating aligned nanocrystal-built nanowire arrays are obtained. The control of the dimensions of the nanowires and of their localization across the polymer matrix is achieved by varying the duration of the applied magnetic field, in combination with the evaporation dynamics. These multifunctional anisotropic free-standing nanocomposite films, which demonstrate high magnetic anisotropy, can be used in a wide field of technological applications, ranging from sensors to microfluidics and magnetic devices.

  19. A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays.

    Science.gov (United States)

    Wang, Hua; Sun, Minghua; Ding, Kang; Hill, Martin T; Ning, Cun-Zheng

    2011-04-13

    We demonstrate a novel top-down approach for fabricating nanowires with unprecedented complexity and optical quality by taking advantage of a nanoscale self-masking effect. We realized vertical arrays of nanowires of 20-40 nm in diameter with 16 segments of complex longitudinal InGaAsP/InP structures. The unprecedented high quality of etched wires is evidenced by the narrowest photoluminescence linewidth ever produced in similar wavelengths, indistinguishable from that of the corresponding wafer. This top-down, mask-free, large scale approach is compatible with the established device fabrication processes and could serve as an important alternative to the bottom-up approach, significantly expanding ranges and varieties of applications of nanowire technology.

  20. Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.

    Science.gov (United States)

    Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen

    2011-08-01

    A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.

  1. Magnetic alloy nanowire arrays with different lengths: Insights into the crossover angle of magnetization reversal process

    Energy Technology Data Exchange (ETDEWEB)

    Samanifar, S.; Alikhani, M. [Department of Physics, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Almasi Kashi, M., E-mail: almac@kashanu.ac.ir [Department of Physics, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Ramazani, A. [Department of Physics, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Montazer, A.H. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of)

    2017-05-15

    Nanoscale magnetic alloy wires are being actively investigated, providing fundamental insights into tuning properties in magnetic data storage and processing technologies. However, previous studies give trivial information about the crossover angle of magnetization reversal process in alloy nanowires (NWs). Here, magnetic alloy NW arrays with different compositions, composed of Fe, Co and Ni have been electrochemically deposited into hard-anodic aluminum oxide templates with a pore diameter of approximately 150 nm. Under optimized conditions of alumina barrier layer and deposition bath concentrations, the resulting alloy NWs with aspect ratio and saturation magnetization (M{sub s}) up to 550 and 1900 emu cm{sup −3}, respectively, are systematically investigated in terms of composition, crystalline structure and magnetic properties. Using angular dependence of coercivity extracted from hysteresis loops, the reversal processes are evaluated, indicating non-monotonic behavior. The crossover angle (θ{sub c}) is found to depend on NW length and M{sub s}. At a constant M{sub s}, increasing NW length decreases θ{sub c}, thereby decreasing the involvement of vortex mode during the magnetization reversal process. On the other hand, decreasing M{sub s} decreases θ{sub c} in large aspect ratio (>300) alloy NWs. Phenomenologically, it is newly found that increasing Ni content in the composition decreases θ{sub c}. The angular first-order reversal curve (AFORC) measurements including the irreversibility of magnetization are also investigated to gain a more detailed insight into θ{sub c}. - Highlights: • Magnetic alloy NWs with aspect ratios up to 550 were fabricated into hard-AAO templates. • Morphology, composition, crystal structure and magnetic properties were investigated. • Angular dependence of coercivity was used to describe the magnetization reversal process. • The crossover angle of magnetization reversal was found to depend on NW length and M{sub s}.

  2. Transparent arrays of silver nanowire rings driven by evaporation of sessile droplets

    Science.gov (United States)

    Wang, Xiaofeng; Kang, Giho; Seong, Baekhoon; Chae, Illkyeong; Teguh Yudistira, Hadi; Lee, Hyungdong; Kim, Hyunggun; Byun, Doyoung

    2017-11-01

    A coffee-ring pattern can be yielded on the three-phase contact line following evaporation of sessile droplets with suspended insoluble solutes, such as particles, DNA molecules, and mammalian cells. The formation of such coffee-ring, together with their suppression has been applied in printing and coating technologies. We present here an experimental study on the assembly of silver nanowires inside an evaporating droplet of a colloidal suspension. The effects of nanowire length and concentration on coffee-ring formation of the colloidal suspension were investigated. Several sizes of NWs with an aspect ratio between 50 and 1000 were systematically investigated to fabricate coffee-ring patterns. Larger droplets containing shorter nanowires formed clearer ring deposits after evaporation. An order-to-disorder transition of the nanowires’ alignment was found inside the rings. A printing technique with the evaporation process enabled fabrication of arrays of silver nanowire rings. We could manipulate the patterns silver nanowire rings, which might be applied to the transparent and flexible electrode.

  3. Transparent arrays of silver nanowire rings driven by evaporation of sessile droplets

    International Nuclear Information System (INIS)

    Wang, Xiaofeng; Kang, Giho; Seong, Baekhoon; Chae, Illkyeong; Yudistira, Hadi Teguh; Lee, Hyungdong; Byun, Doyoung; Kim, Hyunggun

    2017-01-01

    A coffee-ring pattern can be yielded on the three-phase contact line following evaporation of sessile droplets with suspended insoluble solutes, such as particles, DNA molecules, and mammalian cells. The formation of such coffee-ring, together with their suppression has been applied in printing and coating technologies. We present here an experimental study on the assembly of silver nanowires inside an evaporating droplet of a colloidal suspension. The effects of nanowire length and concentration on coffee-ring formation of the colloidal suspension were investigated. Several sizes of NWs with an aspect ratio between 50 and 1000 were systematically investigated to fabricate coffee-ring patterns. Larger droplets containing shorter nanowires formed clearer ring deposits after evaporation. An order-to-disorder transition of the nanowires’ alignment was found inside the rings. A printing technique with the evaporation process enabled fabrication of arrays of silver nanowire rings. We could manipulate the patterns silver nanowire rings, which might be applied to the transparent and flexible electrode. (paper)

  4. Improved photocatalytic activity of highly ordered TiO{sub 2} nanowire arrays for methylene blue degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiaojun, E-mail: xjlv@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU-CAS Joint Laboratory on New Materials, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Hao; Chang, Haixin [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8578 (Japan)

    2012-10-15

    Although many efforts have been done on the photocatalytic properties of anodic TiO{sub 2} nanotubes, much less work is done on the photocatalytic performance of TiO{sub 2} nanowires. Self-organized anodic TiO{sub 2} nanowire arrays have been fabricated using a simple electrochemical approach and used as photocatalysts in photodegradation of methylene blue (MB) dyes. Here we found for the first time TiO{sub 2} nanowires have better photocatalytic properties and incident photon-to-current efficiency (IPCE) than TiO{sub 2} nanotubes. N doped TiO{sub 2} nanowires showed further enhancement in photodegradation activity and photocurrent response in the visible region. Such TiO{sub 2} nanowires are expected to have great potential in photodegradation of pollutants, photovoltaic solar energy conversion and water splitting for hydrogen generation as well. -- Highlights: Black-Right-Pointing-Pointer TiO{sub 2} nanowire arrays electrode fabricated via anodizing Ti foil. Black-Right-Pointing-Pointer TiO{sub 2} nanowire arrays have higher photodegradation activity. Black-Right-Pointing-Pointer N doped TiO{sub 2} nanowires enhanced visible-light photocatalytic activity.

  5. Multi-peak ferromagnetic resonance in Co nanowires array

    Czech Academy of Sciences Publication Activity Database

    Kraus, Luděk; Lynnyková, Anna; Azamat, Dmitry; Drahokoupil, Jan; Kopeček, Jaromír; Rameš, Michal

    2017-01-01

    Roč. 421, Jan (2017), s. 241-249 ISSN 0304-8853 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GAP102/12/2177 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : nanowires * ferromagnetic resonance * dipolar interactions * surface anisotropy * spin waves Subject RIV: JB - Sensors, Measurment, Regulation OBOR OECD: Electrical and electronic engineering Impact factor: 2.630, year: 2016

  6. Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires

    International Nuclear Information System (INIS)

    Lavín, R.; Gallardo, C.; Palma, J.L.; Escrig, J.; Denardin, J.C.

    2012-01-01

    The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: ► Angular dependence of the coercivity and remanence of Co nanowire arrays. ► Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. ► Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.

  7. Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, R. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Facultad de Ingenieria, Universidad Diego Portales, UDP, Ejercito 441, Santiago (Chile); Gallardo, C.; Palma, J.L. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Escrig, J. [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile); Denardin, J.C., E-mail: jcdenardin@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Av. Ecuador 3493, Santiago (Chile)

    2012-08-15

    The angular dependence of the coercivity and remanence of ordered hexagonal arrays of Co nanowires prepared using anodic aluminum oxide templates was investigated. The experimental evolution of coercivity as a function of the angle, in which the external field is applied, is interpreted considering micromagnetic simulations. Depending on the angle between the axis of the wire and the applied magnetic field direction our results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Besides, we observed that the dipolar interactions cause a reduction in coercive fields, mainly in the direction of easy magnetization of the nanowires. Good agreement between numerical and experimental data is obtained. - Highlights: Black-Right-Pointing-Pointer Angular dependence of the coercivity and remanence of Co nanowire arrays. Black-Right-Pointing-Pointer Results show that the magnetization reversal mode changes from vortex to a transverse domain wall. Black-Right-Pointing-Pointer Dipolar interactions cause a reduction in coercive fields, which is the strongest in the direction of easy magnetization of the nanowire.

  8. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    International Nuclear Information System (INIS)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi; Liu Baoting

    2009-01-01

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  9. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu Baoting, E-mail: xyzh66@ysu.edu.c [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2009-10-21

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  10. Enhanced Flexural Strength of Tellurium Nanowires/epoxy Composites with the Reinforcement Effect of Nanowires

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao

    2018-02-01

    Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.

  11. Method for producing nanowire-polymer composite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qibing; Yu, Zhibin

    2017-11-21

    A method for producing flexible, nanoparticle-polymer composite electrodes is described. Conductive nanoparticles, preferably metal nanowires or nanotubes, are deposited on a smooth surface of a platform to produce a porous conductive layer. A second application of conductive nanoparticles or a mixture of nanoparticles can also be deposited to form a porous conductive layer. The conductive layer is then coated with at least one coating of monomers that is polymerized to form a conductive layer-polymer composite film. Optionally, a protective coating can be applied to the top of the composite film. In one embodiment, the monomer coating includes light transducing particles to reduce the total internal reflection of light through the composite film or pigments that absorb light at one wavelength and re-emit light at a longer wavelength. The resulting composite film has an active side that is smooth with surface height variations of 100 nm or less.

  12. Wafer-Level Patterned and Aligned Polymer Nanowire/Micro- and Nanotube Arrays on any Substrate

    KAUST Repository

    Morber, Jenny Ruth

    2009-05-25

    A study was conducted to fabricate wafer-level patterned and aligned polymer nanowire (PNW), micro- and nanotube arrays (PNT), which were created by exposing the polymer material to plasma etching. The approach for producing wafer-level aligned PNWs involved a one-step inductively coupled plasma (ICP) reactive ion etching process. The polymer nanowire array was fabricated in an ICP reactive ion milling chamber with a pressure of 10mTorr. Argon (Ar), O 2, and CF4 gases were released into the chamber as etchants at flow rates of 15 sccm, 10 sccm, and 40 sccm. Inert gasses, such as Ar-form positive ions were incorporated to serve as a physical component to assist in the material degradation process. One power source (400 W) was used to generate dense plasma from the input gases, while another power source applied a voltage of approximately 600V to accelerate the plasma toward the substrate.

  13. High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose

    Directory of Open Access Journals (Sweden)

    Hanqing Zhang

    2017-06-01

    Full Text Available The ordered bifacial copper nanowire array (Cu BNWA was synthesized by a template assisted electrochemical deposition method. The morphology and structure of the as-prepared samples were investigated by field emission scanning electron microscope (FESEM and X-ray diffraction (XRD. The results show that the ordered Cu nanowire array with uniform geometrical dimensions covered both side of the Cu substrate. When used as the electrode for glucose detection, the minimum detectable concentration of glucose can be reached as low as 0.2 mM. Impressively, the sample still showed high sensitivity and stability for glucose detection after two months placement in ambient environment. These excellent performances of the Cu BNWA make it a promising non-enzyme glucose detection sensor for various applications.

  14. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    Science.gov (United States)

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  15. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting

    Science.gov (United States)

    Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong

    2015-01-01

    Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.

  16. Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode

    International Nuclear Information System (INIS)

    Xia, Chi; Xie, Yibing; Du, Hongxiu; Wang, Wei

    2015-01-01

    The electroactive polyaniline (PANI) and manganese oxide (MnO 2 ) were integrated with titanium nitride (TiN) nanowire array (NWA) to form PANI/MnO 2 /TiN ternary nanocomposite for supercapacitor application. TiN NWA was prepared via a seed-assisted hydrothermal synthesis and ammonia nitridization process. The electroactive MnO 2 and PANI was layer-by-layer coated on TiN NWA to form heterogeneous coaxial structure through a stepwise electrodeposition process. Scanning electron micrographs revealed that the well-separated TiN NWA was composed of well-distributed nanowires with diameters in the range of 10–30 nm and a total length of 1.5 μm. A villiform MnO 2 layer with a thickness of 10–20 nm covered on TiN NWA to form MnO 2 /TiN NWA composite. The coral-like PANI layer with thicknesses in the range of 20–50 nm covered on the above MnO 2 /TiN NWA to form PANI/MnO 2 /TiN NWA. Electrochemical measurements showed that a high specific capacitance of 674 F g −1 at a current density of 1 A g −1 (based on total mass of PANI/MnO 2 ) was obtained for PANI/MnO 2 /TiN NWA ternary nanocomposite, which was much higher than that of PANI/MnO 2 /carbon-cloth composites reported previously. This ternary nanocomposite also showed a good rate and cycling stability. Moreover, in comparison with PANI/TiN NWA or MnO 2 /TiN NWA, the specific capacitance of PANI/MnO 2 /TiN NWA was obviously enhanced due to the extra pseudocapacitance contribution and the effective surface area of coral-like PANI layer, showing the advantage of manipulating the heterogeneous coaxial configuration between PANI and MnO 2 for fundamentally improved capacitive performance. These results demonstrated that PANI/MnO 2 /TiN NWA ternary nanocomposite was a promising candidate electrode material for supercapacitor application

  17. Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chi; Xie, Yibing, E-mail: ybxie@seu.edu.cn; Du, Hongxiu; Wang, Wei [Southeast University, School of Chemistry and Chemical Engineering (China)

    2015-01-15

    The electroactive polyaniline (PANI) and manganese oxide (MnO{sub 2}) were integrated with titanium nitride (TiN) nanowire array (NWA) to form PANI/MnO{sub 2}/TiN ternary nanocomposite for supercapacitor application. TiN NWA was prepared via a seed-assisted hydrothermal synthesis and ammonia nitridization process. The electroactive MnO{sub 2} and PANI was layer-by-layer coated on TiN NWA to form heterogeneous coaxial structure through a stepwise electrodeposition process. Scanning electron micrographs revealed that the well-separated TiN NWA was composed of well-distributed nanowires with diameters in the range of 10–30 nm and a total length of 1.5 μm. A villiform MnO{sub 2} layer with a thickness of 10–20 nm covered on TiN NWA to form MnO{sub 2}/TiN NWA composite. The coral-like PANI layer with thicknesses in the range of 20–50 nm covered on the above MnO{sub 2}/TiN NWA to form PANI/MnO{sub 2}/TiN NWA. Electrochemical measurements showed that a high specific capacitance of 674 F g{sup −1} at a current density of 1 A g{sup −1} (based on total mass of PANI/MnO{sub 2}) was obtained for PANI/MnO{sub 2}/TiN NWA ternary nanocomposite, which was much higher than that of PANI/MnO{sub 2}/carbon-cloth composites reported previously. This ternary nanocomposite also showed a good rate and cycling stability. Moreover, in comparison with PANI/TiN NWA or MnO{sub 2}/TiN NWA, the specific capacitance of PANI/MnO{sub 2}/TiN NWA was obviously enhanced due to the extra pseudocapacitance contribution and the effective surface area of coral-like PANI layer, showing the advantage of manipulating the heterogeneous coaxial configuration between PANI and MnO{sub 2} for fundamentally improved capacitive performance. These results demonstrated that PANI/MnO{sub 2}/TiN NWA ternary nanocomposite was a promising candidate electrode material for supercapacitor application.

  18. Ultrahigh Density Array of Vertically Aligned Small-molecular Organic Nanowires on Arbitrary Substrates

    Science.gov (United States)

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-01-01

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  19. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, H. [Departement of Applied Chemistry, Dongguan University of Technology, Dongguan 523106 (China); Shen, P.K. [School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Jiang, S.P.

    2007-12-03

    Pd nanowire arrays (NWAs) with high electrochemically active surface area are successfully fabricated using anodized aluminum oxide electrodeposition. The electrocatalytic activity and stability of the Pd NWAs for ethanol electrooxidation are not only significantly higher that of conventional Pd film electrodes, but also higher than that of well-established commercial PtRu/C electrocatalysts. The Pd NWAs show great potential as electrocatalysts for ethanol electrooxidation in alkaline media in direct ethanol fuel cells. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  20. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction

    KAUST Repository

    Zhang, Zhonghai

    2013-02-26

    In this work, we propose a solution-based carbon precursor coating and subsequent carbonization strategy to form a thin protective carbon layer on unstable semiconductor nanostructures as a solution to the commonly occurring photocorrosion problem of many semiconductors. A proof-of-concept is provided by using glucose as the carbon precursor to form a protective carbon coating onto cuprous oxide (Cu2O) nanowire arrays which were synthesized from copper mesh. The carbon-layer-protected Cu2O nanowire arrays exhibited remarkably improved photostability as well as considerably enhanced photocurrent density. The Cu2O nanowire arrays coated with a carbon layer of 20 nm thickness were found to give an optimal water splitting performance, producing a photocurrent density of -3.95 mA cm-2 and an optimal photocathode efficiency of 0.56% under illumination of AM 1.5G (100 mW cm-2). This is the highest value ever reported for a Cu 2O-based electrode coated with a metal/co-catalyst-free protective layer. The photostability, measured as the percentage of the photocurrent density at the end of 20 min measurement period relative to that at the beginning of the measurement, improved from 12.6% on the bare, nonprotected Cu2O nanowire arrays to 80.7% on the continuous carbon coating protected ones, more than a 6-fold increase. We believe that the facile strategy presented in this work is a general approach that can address the stability issue of many nonstable photoelectrodes and thus has the potential to make a meaningful contribution in the general field of energy conversion. © 2013 American Chemical Society.

  1. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures.

    Science.gov (United States)

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10 19 W cm -2 , we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm -3 , equivalent to a pressure of 0.35 Tbar.

  2. Single crystalline cylindrical nanowires – toward dense 3D arrays of magnetic vortices

    KAUST Repository

    Ivanov, Yurii P.

    2016-03-31

    Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories.

  3. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    Science.gov (United States)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  4. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bargsten, Clayton [Colorado State Univ., Fort Collins, CO (United States); Hollinger, Reed [Colorado State Univ., Fort Collins, CO (United States); Capeluto, Maria Gabriela [Univ. of Buenos Aires (Argentina); Kaymak, Vural [Heinrich Heine Univ., Dusseldorf (Germany); Pukhov, Alexander [Heinrich Heine Univ., Dusseldorf (Germany); Wang, Shoujun [Colorado State Univ., Fort Collins, CO (United States); Rockwood, Alex [Colorado State Univ., Fort Collins, CO (United States); Wang, Yong [Colorado State Univ., Fort Collins, CO (United States); Keiss, David [Colorado State Univ., Fort Collins, CO (United States); Tommasini, Riccardo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); London, Richard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, Jaebum [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Busquet, Michel [ARTEP Inc., Ellicott City, MD (United States); Klapisch, M [ARTEP Inc., Ellicott City, MD (United States); Shlyaptsev, Vyacheslav N. [Colorado State Univ., Fort Collins, CO (United States); Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-11-11

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 108 J cm-3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 1022 W cm-2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar.

  5. Single crystalline cylindrical nanowires – toward dense 3D arrays of magnetic vortices

    KAUST Repository

    Ivanov, Yurii P.; Chuvilin, Andrey; Vivas, Laura G.; Kosel, Jü rgen; Chubykalo-Fesenko, Oksana; Vá zquez, Manuel

    2016-01-01

    Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45 nm and lengths longer than 200 nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories.

  6. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    Science.gov (United States)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  7. Ion-beam-directed self-organization of conducting nanowire arrays

    International Nuclear Information System (INIS)

    Batzill, M.; Bardou, F.; Snowdon, K. J.

    2001-01-01

    Glancing-incidence ion-beam irradiation has been used both to ease kinetic constraints which otherwise restrict the establishment of long-range order and to impose external control on the orientation of nanowire arrays formed during stress-field-induced self-ordering of calcium atoms on a CaF 2 (111) surface. The arrays exhibit exceptional long-range order, with the long axis of the wires oriented along the azimuthal direction of ion-beam incidence. Transport measurements reveal a highly anisotropic electrical conductivity, whose maximum lies in the direction of the long axis of the 10.1-nm-period calcium wires

  8. High density micro-pyramids with silicon nanowire array for photovoltaic applications

    International Nuclear Information System (INIS)

    Rahman, Tasmiat; Navarro-Cía, Miguel; Fobelets, Kristel

    2014-01-01

    We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs) onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental reflectivity below 1% over the visible and near-infrared spectral regions. This represents an improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk, respectively. In addition to the experimental work, we optically simulate the hybrid structure using a commercial finite difference time domain package. The results of the optical simulations support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The nanowire array increases the absorbed carrier density within the pyramid by providing a guided transition of the refractive index along the light path from air into the silicon. Furthermore, electrical simulations which take into account surface and Auger recombination show an efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5% over SiNWAs. (paper)

  9. Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures

    Science.gov (United States)

    Dubrovskii, V. G.

    2017-11-01

    Based on the recent achievements in vapor-liquid-solid (VLS) synthesis, characterization and modeling of ternary III-V nanowires and axial heterostructures within such nanowires, we try to understand the major trends in their compositional evolution from a general theoretical perspective. Clearly, the VLS growth of ternary materials is much more complex than in standard vapor-solid epitaxy techniques, and even maintaining the necessary control over the composition of steady-state ternary nanowires is far from straightforward. On the other hand, VLS nanowires offer otherwise unattainable material combinations without introducing structural defects and hence are very promising for next-generation optoelectronic devices, in particular those integrated with a silicon electronic platform. In this review, we consider two main problems. First, we show how and by means of which parameters the steady-state composition of Au-catalyzed or self-catalyzed ternary III-V nanowires can be tuned to a desired value and why it is generally different from the vapor composition. Second, we present some experimental data and modeling results for the interfacial abruptness across axial nanowire heterostructures, both in Au-catalyzed and self-catalyzed VLS growth methods. Refined modeling allows us to formulate some general growth recipes for suppressing the unwanted reservoir effect in the droplet and sharpening the nanowire heterojunctions. We consider and refine two approaches developed to date, namely the regular crystallization model for a liquid alloy with a critical size of only one III-V pair at high supersaturations or classical binary nucleation theory with a macroscopic critical nucleus at modest supersaturations.

  10. Micromagnetic simulation and the angular dependence of coercivity and remanence for array of polycrystalline nickel nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, G.P.; Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil); Guerra, Y.; Silva, D.B.O.; Farias, B.V.M. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil); Padrón-Hernández, E., E-mail: padron@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife, PE 50670-901 (Brazil)

    2017-02-01

    We present here our experimental results for the preparation and characterization of nanowires of nickel and the analysis of the angular dependence of coercivity and remanence using experimental data and micromagnetic simulation. The fabrication was made by using aluminum oxide membranes as templates and deposited nickel by an electrochemical route. The magnetic measurements showed that coercivity and remanence are dependent of the angle of application of the external magnetic field. Our results are different than that expected for the coherent, vortex and transversal modes of the reversion for the magnetic moments. According to the transmission electron microscopy analysis we can see that our nanowires have not a perfect cylindrical format. That is why we have used the ellipsoids chain model for better understanding the real structure of wires and its relation with the magnetic behavior. In order to generate theoretical results for this configuration we have made micromagnetic simulation using Nmag code. Our numerical results for the realistic distances are in correspondence with the magnetic measurements and we can see that there are contradictions if we assume the transverse reversal mode. Then, we can conclude that structure of nanowires should be taken into account to understand the discrepancies reported in the literature for the reversion mechanism in arrays of nickel nanowires. - Highlights: • We present answers for the problem of angular dependence for the coercivity and remanence. • Experimental and theoretical results confirmed the great importance of the real structure. • Micromagnetic calculations confirmed the importance of the real structure.

  11. Synthesis, structure and photoelectrochemical properties of single crystalline silicon nanowire arrays

    International Nuclear Information System (INIS)

    Dalchiele, E.A.; Martin, F.; Leinen, D.; Marotti, R.E.; Ramos-Barrado, J.R.

    2010-01-01

    In the present work, n-type silicon nanowire (n-SiNW) arrays have been synthesized by self-assembly electroless metal deposition (EMD) nanoelectrochemistry. The synthesized n-SiNW arrays have been submitted to scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and optical studies. Initial probes of the solar device conversion properties and the photovoltaic parameters such as short-circuit current, open-circuit potential, and fill factor of the n-SiNW arrays have been explored using a liquid-junction in a photoelectrochemical (PEC) system under white light. Moreover, a direct comparison between the PEC performance of a polished n-Si(100) and the synthesized n-SiNW array photoelectrodes has been done. The PEC performance was significantly enhanced on the n-SiNWs photoelectrodes compared with that on polished n-Si(100).

  12. Misfit-guided self-organization of anti-correlated Ge quantum dot arrays on Si nanowires

    Science.gov (United States)

    Kwon, Soonshin; Chen, Zack C.Y.; Kim, Ji-Hun; Xiang, Jie

    2012-01-01

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anti-correlated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a post-growth annealing process. PMID:22889063

  13. Texture orientation of glancing angle deposited copper nanowire arrays

    International Nuclear Information System (INIS)

    Alouach, H.; Mankey, G.J.

    2004-01-01

    Self-assembled copper nanowires were deposited on native oxide Si(100) substrates using glancing angle deposition with and without substrate rotation. Wire morphology, texture and crystallographic orientation are strongly dependent on the deposition parameters. A method for determining the preferred crystal orientation is described. This orientation is found to be different from what is expected from the geometric orientation of the wires. For wires deposited without substrate rotation, the face-centered-cubic (fcc)(111) crystal orientation, which corresponds to the close-packed, low surface energy (111) plane of copper, lies between the long axis of the wire and that normal to the substrate. X-ray diffraction data show that the wires exhibit bundling behavior perpendicular to the plane of incidence. For samples deposited with azimuthal rotation of the substrate, the fcc(111) directions in the wires are evenly distributed in a cone around the long axis of the wires, which point normal to the substrate. When the substrate is rotated during deposition at an angle of 75 deg., the wires exhibit a strong fcc(220) texture. These observations show that wires deposited with substrate rotation are highly textured and have random orientations in the plane of the substrate

  14. Phosphorus Doped Zn 1- x Mg x O Nanowire Arrays

    KAUST Repository

    Lin, S. S.

    2009-11-11

    We demonstrate the growth of phosphorus doped Zn 1-xMg xO nanowire (NW) using pulsed laser deposition. For the first time, p-type Zn 0.92Mg 0.08O:P NWs are likely obtained In reference to atomic force microscopy based piezoelectric output measurements, X-ray photoelectron spectroscopy, and the transport property between the NWs and a n-type ZnO film. A shallow acceptor level of ∼140 meV Is identified by temperaturedependent photoluminescence. A piezoelectric output of 60 mV on average has been received using the doped NWs. Besides a control on NW aspect ratio and density, band gap engineering has also been achieved by alloying with Mg to a content of x = 0.23. The alloyed NWs with controllable conductivity type have potential application In high-efficiency all-ZnO NWs based LED, high-output ZnO nanogenerator, and other optical or electrical devices. © 2009 American Chemical Society.

  15. Nickel Nanowire@Porous NiCo2O4 Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Directory of Open Access Journals (Sweden)

    Houzhao Wan

    2017-12-01

    Full Text Available A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo2O4 nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo2O4 nanorods and construct the well-defined NiCo2O4 nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo2O4/Ni foam electrode shows a high areal specific capacitance (7.4 F cm−2 at 5 mA cm−2, excellent rate capability (88.04% retained at 100 mA cm−2, and good cycling stability (74.08% retained after 1,500 cycles. The superior electrochemical properties made it promising as electrode for supercapacitors.

  16. A Robust Highly Aligned DNA Nanowire Array-Enabled Lithography for Graphene Nanoribbon Transistors.

    Science.gov (United States)

    Kang, Seok Hee; Hwang, Wan Sik; Lin, Zhiqun; Kwon, Se Hun; Hong, Suck Won

    2015-12-09

    Because of its excellent charge carrier mobility at the Dirac point, graphene possesses exceptional properties for high-performance devices. Of particular interest is the potential use of graphene nanoribbons or graphene nanomesh for field-effect transistors. Herein, highly aligned DNA nanowire arrays were crafted by flow-assisted self-assembly of a drop of DNA aqueous solution on a flat polymer substrate. Subsequently, they were exploited as "ink" and transfer-printed on chemical vapor deposited (CVD)-grown graphene substrate. The oriented DNA nanowires served as the lithographic resist for selective removal of graphene, forming highly aligned graphene nanoribbons. Intriguingly, these graphene nanoribbons can be readily produced over a large area (i.e., millimeter scale) with a high degree of feature-size controllability and a low level of defects, rendering the fabrication of flexible two terminal devices and field-effect transistors.

  17. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    Science.gov (United States)

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  18. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Science.gov (United States)

    Zhou, Luoxiao; He, Ying; Jia, Congpu; Pavlinek, Vladimir; Saha, Petr; Cheng, Qilin

    2017-01-01

    Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer. PMID:28914819

  19. Construction of Hierarchical CuO/Cu₂O@NiCo₂S₄ Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes.

    Science.gov (United States)

    Zhou, Luoxiao; He, Ying; Jia, Congpu; Pavlinek, Vladimir; Saha, Petr; Cheng, Qilin

    2017-09-15

    Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu₂O@NiCo₂S₄) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu₂O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo₂S₄ nanosheets on the surface of CuO/Cu₂O nanowires to form the CuO/Cu₂O@NiCo₂S₄ core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo₂S₄ nanosheets is ~20 nm and the diameter of CuO/Cu₂O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm -2 at 10 mA cm -2 , good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm -2 ) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm -2 . These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  20. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Luoxiao Zhou

    2017-09-01

    Full Text Available Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2 and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  1. Microstructural effects on the magnetic and magneto-transport properties of electrodeposited Ni nanowire arrays

    International Nuclear Information System (INIS)

    Chen, Shu-Fang; Wei, Hao Han; Liu, Chuan-Pu; Hsu, C Y; Huang, J C A

    2010-01-01

    The magnetic and magneto-transport properties of Ni nanowire (NW) arrays, fabricated by electrodeposition in anodic-aluminum-oxide (AAO) templates, have been investigated. The AAO pores have diameters ranging from 35 to 75 nm, and the crystallinity of the Ni NW arrays could change from poly-crystalline to single-crystalline with the [111] and [110] orientations based on the electrodeposition potential. Notably, double switching magnetization loops and double-peaked magnetoresistance curves were observed in [110]-oriented NWs. The crystalline orientation of the Ni NW arrays is found to influence the corresponding magnetic and magneto-transport properties significantly. These magnetic behaviors are dominated by the competition between the magneto-crystalline and shape anisotropy.

  2. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    Science.gov (United States)

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  3. Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters

    International Nuclear Information System (INIS)

    Safdar, Muhammad; Zhan Xueying; Mirza, Misbah; Wang Zhenxing; Sun Lianfeng; He Jun; Niu Mutong; Zhang Jinping; Zhao Qing

    2013-01-01

    We report the controlled growth of highly ordered and well aligned one-dimensional tellurium nanostructure arrays via a one-step catalyst-free physical vapor deposition method. The density, size and fine structures of tellurium nanowires are systematically studied and optimized. Field emission measurement was performed to display notable dependence on nanostructure morphologies. The ordered nanowire array based field emitter has a turn-on field as low as 3.27 V μm −1 and a higher field enhancement factor of 3270. Our finding offers the possibility of controlling the growth of tellurium nanowire arrays and opens up new means for their potential applications in electronic devices and displays. (paper)

  4. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    Science.gov (United States)

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  5. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    Science.gov (United States)

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. MgxZn1-xO(0≤x<0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition

    International Nuclear Information System (INIS)

    Lorenz, M.; Kaidashev, E.M.; Rahm, A.; Nobis, Th.; Lenzner, J.; Wagner, G.; Spemann, D.; Hochmuth, H.; Grundmann, M.

    2005-01-01

    Mg x Zn 1-x O nanowires with Mg-content x from 0 to 0.2 have been grown by high-pressure pulsed-laser deposition (PLD) on gold-covered sapphire single crystals. The PLD process allows for a unique wide-range control of morphology, diameter, and composition of the Mg x Zn 1-x O nanowires. The diameter of single ZnO wires could be varied between about 50 and 3000 nm, and the Mg content x of Mg x Zn 1-x O wire arrays was controlled via the PLD gas pressure. The microscopic homogeneity of Mg content is displayed by cathodoluminescence (CL) imaging of the excitonic peak energy. The fluctuation of CL peak energy between individual wires is about an order of magnitude smaller than the alloy broadening

  7. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor

    Science.gov (United States)

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-01

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm-2 at 5 mA cm-2 and quality specific capacitance of 466.6 F g-1 at 0.125 A g-1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm-2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  8. Structure and field emission of graphene layers on top of silicon nanowire arrays

    International Nuclear Information System (INIS)

    Huang, Bohr-Ran; Chan, Hui-Wen; Jou, Shyankay; Chen, Guan-Yu; Kuo, Hsiu-An; Song, Wan-Jhen

    2016-01-01

    Graphical abstract: - Highlights: • We prepared graphene on top of silicon nanowires by transfer-print technique. • Graphene changed from discrete flakes to a continuous by repeated transfer-print. • The triple-layer graphene had high electron field emission due to large edge ratio. - Abstract: Monolayer graphene was grown on copper foils and then transferred on planar silicon substrates and on top of silicon nanowire (SiNW) arrays to form single- to quadruple-layer graphene films. The morphology, structure, and electron field emission (FE) of these graphene films were investigated. The graphene films on the planar silicon substrates were continuous. The single- to triple-layer graphene films on the SiNW arrays were discontinuous and while the quadruple-layer graphene film featured a mostly continuous area. The Raman spectra of the graphene films on the SiNW arrays showed G and G′ bands with a singular-Lorentzian shape together with a weak D band. The D band intensity decreased as the number of graphene layers increased. The FE efficiency of the graphene films on the planar silicon substrates and the SiNW arrays varied with the number of graphene layers. The turn-on field for the single- to quadruple-layer graphene films on planar silicon substrates were 4.3, 3.7, 3.5 and 3.4 V/μm, respectively. The turn-on field for the single- to quadruple-layer graphene films on SiNW arrays decreased to 3.9, 3.3, 3.0 and 3.3 V/μm, respectively. Correlation of the FE with structure and morphology of the graphene films is discussed.

  9. Structure and field emission of graphene layers on top of silicon nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bohr-Ran; Chan, Hui-Wen [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Jou, Shyankay, E-mail: sjou@mail.ntust.edu.tw [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chen, Guan-Yu [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Kuo, Hsiu-An; Song, Wan-Jhen [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China)

    2016-01-30

    Graphical abstract: - Highlights: • We prepared graphene on top of silicon nanowires by transfer-print technique. • Graphene changed from discrete flakes to a continuous by repeated transfer-print. • The triple-layer graphene had high electron field emission due to large edge ratio. - Abstract: Monolayer graphene was grown on copper foils and then transferred on planar silicon substrates and on top of silicon nanowire (SiNW) arrays to form single- to quadruple-layer graphene films. The morphology, structure, and electron field emission (FE) of these graphene films were investigated. The graphene films on the planar silicon substrates were continuous. The single- to triple-layer graphene films on the SiNW arrays were discontinuous and while the quadruple-layer graphene film featured a mostly continuous area. The Raman spectra of the graphene films on the SiNW arrays showed G and G′ bands with a singular-Lorentzian shape together with a weak D band. The D band intensity decreased as the number of graphene layers increased. The FE efficiency of the graphene films on the planar silicon substrates and the SiNW arrays varied with the number of graphene layers. The turn-on field for the single- to quadruple-layer graphene films on planar silicon substrates were 4.3, 3.7, 3.5 and 3.4 V/μm, respectively. The turn-on field for the single- to quadruple-layer graphene films on SiNW arrays decreased to 3.9, 3.3, 3.0 and 3.3 V/μm, respectively. Correlation of the FE with structure and morphology of the graphene films is discussed.

  10. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    Science.gov (United States)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  11. High-performance asymmetric supercapacitors based on core/shell cobalt oxide/carbon nanowire arrays with enhanced electrochemical energy storage

    International Nuclear Information System (INIS)

    Pan, G.X.; Xia, X.H.; Cao, F.; Chen, J.; Tang, P.S.; Zhang, Y.J.; Chen, H.F.

    2014-01-01

    Graphical abstract: - Highlights: • We prepared a self-supported porous Co 3 O 4 /C core/shell nanowire array. • Core/shell nanowire array showed high pseudo-capacitive properties. • Core/shell array structure was favorable for fast ion and electron transfer. - Abstract: High-reactivity electrode materials are indispensible for developing high-performance electrochemical energy storage devices. Herein, we report self-supported core/shell Co 3 O 4 /C nanowire arrays by using hydrothermal synthesis and chemical vapor deposition methods. A uniform and thin carbon shell is coated on the surface of Co 3 O 4 nanowire forming core/shell nanowires with diameters of ∼100 nm. Asymmetric supercapacitors have been assembled with the core/shell Co 3 O 4 /C nanowire arrays as the positive electrode and activated carbon (AC) as the negative electrode. The core/shell Co 3 O 4 /C nanowire arrays exhibit a specific capacity of 116 mAh g −1 at the working current of 100 mA (4 A g −1 ), and a long cycle life along with ∼ 92% retention after 8000 cycles at 4 A g −1 , higher than the unmodified Co 3 O 4 nanowire arrays (81 mAh g −1 at 4 A g −1 ). The introduction of uniform carbon layer into the core/shell structure is favorable for the enhancement of supercapacitor due to the improved electrical conductivity and reaction kinetics

  12. Fabrication and optical properties of TiO sub 2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes

    CERN Document Server

    Lin, Y; Yuan, X Y; Xie, T; Zhang, L D

    2003-01-01

    Ordered TiO sub 2 nanowire arrays have been successfully fabricated into the nanochannels of a porous anodic alumina membrane by sol-gel electrophoretic deposition. After annealing at 500 deg. C, the TiO sub 2 nanowire arrays and the individual nanowires were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and x-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense and continuous with a uniform diameter throughout their entire length. XRD and SAED analysis together indicate that these TiO sub 2 nanowires crystallize in the anatase polycrystalline structure. The optical absorption band edge of TiO sub 2 nanowire arrays exhibits a blue shift with respect of that of the bulk TiO sub 2 owing to the quantum size effect.

  13. Fabrication of Si/ZnS radial nanowire heterojunction arrays for white light emitting devices on Si substrates.

    Science.gov (United States)

    Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K

    2014-09-10

    Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.

  14. Optoelectrical modeling of solar cells based on c-Si/a-Si:H nanowire array: focus on the electrical transport in between the nanowires

    Science.gov (United States)

    Levtchenko, Alexandra; Le Gall, Sylvain; Lachaume, Raphaël; Michallon, Jérôme; Collin, Stéphane; Alvarez, José; Djebbour, Zakaria; Kleider, Jean-Paul

    2018-06-01

    By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell’s performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V bi) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively. Consequently, the solar cell’s performance is degraded if either the doping concentration of the c-Si core, or/and the work function of the back contact is too low. By inserting a thin (p) a-Si:H layer between both core/absorber and back contact/absorber, the performance of the solar cell can be improved by partly fixing the V bi at both interfaces due to strong electrostatic screening effect. Depositing such a buffer layer playing the role of an electrostatic screen for charge carriers is a suggested way of enhancing the performance of solar cells based on radial p-i-n or n-i-p nanowire array.

  15. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, M.; Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Jevasuwan, W.; Fukata, N. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-09-28

    Vertically aligned Ge nanowires (NWs) are directly synthesized on glass via vapor-liquid-solid (VLS) growth using chemical-vapor deposition. The use of the (111)-oriented Ge seed layer, formed by metal-induced crystallization at 325 °C, dramatically improved the density, uniformity, and crystal quality of Ge NWs. In particular, the VLS growth at 400 °C allowed us to simultaneously achieve the ordered morphology and high crystal quality of the Ge NW array. Transmission electron microscopy demonstrated that the resulting Ge NWs had no dislocations or stacking faults. Production of high-quality NW arrays on amorphous insulators will promote the widespread application of nanoscale devices.

  16. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors

    Science.gov (United States)

    Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai

    2013-12-01

    Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g-1 at 0.1 A g-1, and had no loss of capacitance after 200 cycles at 2 A g-1. The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors.

  17. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate

    KAUST Repository

    Qin, Yong

    2008-12-04

    A general method is presented for growing laterally aligned and patterned ZnO nanowire (NW) arrays on any substrate as long as it is flat. The orientation control is achieved using the combined effect from ZnO seed layer and the catalytically inactive Cr (or Sn) layer for NW growth. The growth temperature (< 100 °C) is so low that the method can be applied to a wide range of substrates that can be inorganic, organic, single crystal, polycrystal, or amorphous. The laterally aligned ZnO NW arrays can be employed for various applications, such as gas sensor, field effect transistor, nanogenerator, and flexible electronics. © 2008 American Chemical Society.

  18. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array

    International Nuclear Information System (INIS)

    Deng, S; Zhang, X; Loh, K P; Fan, H M; Sow, C H; Cheng, C-L; Foo, Y L

    2009-01-01

    An effective surface-enhanced Raman scattering (SERS) template based on a 3D hybrid Ag nanocluster (NC)-decorated ZnO nanowire array was fabricated through a simple process of depositing Ag NCs on ZnO nanowire arrays. The effects of particle size and excitation energy on the Raman scattering in these hybrid systems have been investigated using rhodamine 6G as a standard analyte. The results indicate that the hybrid nanosystem with 150 nm Ag NCs produces a larger SERS enhancement factor of 3.2 x 10 8 , which is much higher than that of 10 nm Ag NCs (6.0 x 10 6 ) under 532 nm excitation energy. The hybrid nanowire arrays were further applied to obtain SERS spectra of the two-photon absorption (TPA) chromophore T7. Finite-difference time-domain simulations reveal the presence of an enhanced field associated with inter-wire plasmon coupling of the 150 nm Ag NCs on adjacent ZnO nanowires; such a field was absent in the case of the 10 nm Ag NC-coated ZnO nanowire. Such hybrid nanosystems could be used as SERS substrates more effectively than assembled Ag NC film due to the enhanced light-scattering local field and the inter-wire plasmon-enhanced electromagnetic field.

  19. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC.

    Science.gov (United States)

    Zhang, Guo-Jun; Chai, Kevin Tshun Chuan; Luo, Henry Zhan Hong; Huang, Joon Min; Tay, Ignatius Guang Kai; Lim, Andy Eu-Jin; Je, Minkyu

    2012-05-15

    Early detection of cardiac biomarkers for diagnosis of heart attack is the key to saving lives. Conventional method of detection like the enzyme-linked immunosorbent assay (ELISA) is time consuming and low in sensitivity. Here, we present a label-free detection system consisting of an array of silicon nanowire sensors and an interface readout application specific integrated circuit (ASIC). This system provides a rapid solution that is highly sensitive and is able to perform direct simultaneous-multiplexed detection of cardiac biomarkers in serum. Nanowire sensor arrays were demonstrated to have the required selectivity and sensitivity to perform multiplexed detection of 100 fg/ml troponin T, creatine kinase MM, and creatine kinase MB in serum. A good correlation between measurements from a probe station and the readout ASIC was obtained. Our detection system is expected to address the existing limitations in cardiac health management that are currently imposed by the conventional testing platform, and opens up possibilities in the development of a miniaturized device for point-of-care diagnostic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays

    Science.gov (United States)

    Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu

    2018-02-01

    A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.

  1. Collective spin waves on a nanowire array with step-modulated thickness

    International Nuclear Information System (INIS)

    Gubbiotti, G; Tacchi, S; Kostylev, M; Ivanov, E; Samarin, S; Madami, M; Carlotti, G; Ding, J; Adeyeye, A O; Zighem, F; Stashkevich, A A

    2014-01-01

    It is shown experimentally that collective Bloch spin waves are able to propagate in a dense periodic array of nanowires with step-modulated thickness along the periodicity direction. The spin wave dispersion (frequency versus wave vector k) was measured using the Brillouin light scattering technique by sweeping the wave vector perpendicularly to the wire length. Remarkably, the mode measured at the lowest frequency exhibits an oscillating dispersion and its frequency is up-shifted with respect to the homogeneous-thickness wires of the same width. The modes located at higher frequencies have negligible dependencies on the wave number, i.e. are practically dispersionless. Complementary ferromagnetic resonance measurements enabled us to independently measure the whole set of modes at k = 0, showing a good agreement with the Brillouin light scattering data. These results have been successfully reproduced in a numerical simulation employing a two-dimensional Green's function description of the dynamic dipole field of the precessing magnetization. The theory also allowed visualizing the non-trivial distribution of dynamic magnetization across the wire cross-section and estimating the Brillouin light scattering cross-section. The analysis of these intensities suggests complicated magneto-optical coupling between the light and the dynamic magnetization in the arrays of nanowires with step-modulated thickness. This work can stimulate the design, tailoring, and characterization of three-dimensional magnonic crystals. (paper)

  2. Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array

    KAUST Repository

    Li, Zhou

    2009-10-14

    The physical behaviors of stationary cells, such as the morphology, motility, adhesion, anchorage, invasion and metastasis, are likely to be important for governing their biological characteristics. A change in the physical properties of mammalian cells could be an indication of disease. In this paper, we present a silicon-nanowire-array based technique for quantifying the mechanical behavior of single cells representing three distinct groups: normal mammalian cells, benign cells (L929), and malignant cells (HeLa). By culturing the cells on top of NW arrays, the maximum traction forces of two different tumor cells (HeLa, L929) have been measured by quantitatively analyzing the bending of the nanowires. The cancer cell exhibits a larger traction force than the normal cell by ∼20% for a HeLa cell and ∼50% for a L929 cell. The traction forces have been measured for the L929 cells and mechanocytes as a function of culture time. The relationship between cells extending area and their traction force has been investigated. Our study is likely important for studying the mechanical properties of single cells and their migration characteristics, possibly providing a new cellular level diagnostic technique. © 2009 American Chemical Society.

  3. Structural and magnetic characterization of as-prepared and annealed FeCoCu nanowire arrays in ordered anodic aluminum oxide templates

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-González, B., E-mail: jbenito@uvigo.es [CACTI, University of Vigo, E-36310 Vigo (Spain); International Iberian Nanotechnology Laboratory, INL. Av. Mestre J. Veiga, 4715-330 Braga (Portugal); Bran, C.; Warnatz, T.; Vazquez, M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Rivas, J. [International Iberian Nanotechnology Laboratory, INL. Av. Mestre J. Veiga, 4715-330 Braga (Portugal)

    2014-04-07

    Herein, we report on the preparation, structure, and magnetic characterization of FeCoCu nanowire arrays grown by DC electrodeposition inside self-assembled ordered nanopores of anodic aluminum oxide templates. A systematic study of their structure has been performed both in as-prepared samples and after annealing in the temperature range up to 800 °C, although particular attention has been paid to annealing at 700 °C after which maximum magnetic hardening is achieved. The obtained nanowires have a diameter of 40 nm and their Fe{sub 0.28}Co{sub 0.67}Cu{sub 0.05} composition was confirmed by energy dispersive X-ray spectroscopy (EDS). Focused ion-beam lamellas of two samples (as-prepared and annealed at 700 °C) were prepared for their imaging in the high-resolution transmission electron microscopy (HRTEM) perpendicularly to the electron beam, where the obtained EDS compositional mappings show a homogeneous distribution of the elements. X-ray diffraction analysis, and selected area electron diffraction (SAED) patterns confirm that nanowires exhibit a bcc cubic structure (space group Im-3m). In addition, bright-dark field images show that the nanowires have a polycrystalline structure that remains essentially the same after annealing, but some modifications were observed: (i) an overall increase and sharpening of recrystallized grains, and (ii) an apparent shrinkage of the nanowires diameter. Obtained SAED patterns also show strong textured components with determined <111> and <112> crystalline directions parallel to the wires growth direction. The presence of both directions was also confirmed in the HRTEM images doing Fourier transform analyses. Magnetic measurements show strong magnetic anisotropy with magnetization easy axis parallel to the nanowires in as-prepared and annealed samples. The magnetic properties are tuned by suitable thermal treatments so that, maximum enhanced coercivity (∼2.7 kOe) and normalized remanence (∼0.91 Ms) values are

  4. Structural and magnetic characterization of as-prepared and annealed FeCoCu nanowire arrays in ordered anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Rodríguez-González, B.; Bran, C.; Warnatz, T.; Vazquez, M.; Rivas, J.

    2014-01-01

    Herein, we report on the preparation, structure, and magnetic characterization of FeCoCu nanowire arrays grown by DC electrodeposition inside self-assembled ordered nanopores of anodic aluminum oxide templates. A systematic study of their structure has been performed both in as-prepared samples and after annealing in the temperature range up to 800 °C, although particular attention has been paid to annealing at 700 °C after which maximum magnetic hardening is achieved. The obtained nanowires have a diameter of 40 nm and their Fe 0.28 Co 0.67 Cu 0.05 composition was confirmed by energy dispersive X-ray spectroscopy (EDS). Focused ion-beam lamellas of two samples (as-prepared and annealed at 700 °C) were prepared for their imaging in the high-resolution transmission electron microscopy (HRTEM) perpendicularly to the electron beam, where the obtained EDS compositional mappings show a homogeneous distribution of the elements. X-ray diffraction analysis, and selected area electron diffraction (SAED) patterns confirm that nanowires exhibit a bcc cubic structure (space group Im-3m). In addition, bright-dark field images show that the nanowires have a polycrystalline structure that remains essentially the same after annealing, but some modifications were observed: (i) an overall increase and sharpening of recrystallized grains, and (ii) an apparent shrinkage of the nanowires diameter. Obtained SAED patterns also show strong textured components with determined and crystalline directions parallel to the wires growth direction. The presence of both directions was also confirmed in the HRTEM images doing Fourier transform analyses. Magnetic measurements show strong magnetic anisotropy with magnetization easy axis parallel to the nanowires in as-prepared and annealed samples. The magnetic properties are tuned by suitable thermal treatments so that, maximum enhanced coercivity (∼2.7 kOe) and normalized remanence (∼0.91 Ms) values are achieved after annealing at

  5. Study of the thermal conductivity of ZnO nanowires/PMMA composites

    International Nuclear Information System (INIS)

    Igamberdiev, Kh. T.; Yuldashev, Sh. U.; Cho, H. D.; Kang, T. W.; Rakhimova, Sh. M.; Akhmedov, T. Kh.

    2012-01-01

    From thermal conductivity measurements on ZnO nanowires (NWs)/poly(methyl methacrylate) PMMA composites, the thermal conductivities of the ZnO nanowires were determined. The thermal conductivity of a ZnO NW decreases considerably with decreasing nanowire diameter, and for a ZnO nanowire with a diameter of 250 nm, the thermal conductivity at room temperature is approximately two times lower than that of bulk ZnO at the same temperature. The results of this study show that the thermal conductivity of a ZnO NW is mainly determined by increased phonon-surface boundary scattering. These results could be useful for the design of ZnO-nanowire-based devices.

  6. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    Science.gov (United States)

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  7. Hierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors

    Science.gov (United States)

    Xia, Hui; Zhu, Dongdong; Luo, Zhentao; Yu, Yue; Shi, Xiaoqin; Yuan, Guoliang; Xie, Jianping

    2013-10-01

    Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entity to synergize and construct a high-performance electrode for supercapacitors. Owing to the high conductivity of the well-defined Co3O4 nanowire arrays, in which the conductivity was further enhanced by a thin metal (Pt) coating layer, in combination with the large surface area provided by the small MnO2 nanoflakes, the as-fabricated Co3O4@Pt@MnO2 nanowire arrays have exhibited high specific capacitances, good rate capability, and excellent cycling stability. The architectural design demonstrated in this study provides a new approach to fabricate high-performance MnO2-based nanowire arrays for constructing next-generation supercapacitors.

  8. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors

    Science.gov (United States)

    Hu, Jing; Li, Minchan; Lv, Fucong; Yang, Mingyang; Tao, Pengpeng; Tang, Yougen; Liu, Hongtao; Lu, Zhouguang

    2015-10-01

    A novel heterogeneous NiCo2O4@PPy core/sheath nanowire arrays are directly grown on Ni foam involving three facile steps, hydrothermal synthesis and calcination of NiCo2O4 nanowire arrays and subsequent in-situ oxidative polymerization of polypyrrole (PPy). When investigated as binder- and conductive additive-free electrodes for supercapacitors (SCs) in 6 M KOH, the NiCo2O4@PPy core/sheath nanowire arrays exhibit high areal capacitance of 3.49 F cm-2 at a discharge current density of 5 mA cm-2, which is almost 1.5 times as much as the pristine NiCo2O4 (2.30 F cm-2). More importantly, it can remain 3.31 F cm-2 (94.8% retention) after 5000 cycles. The as-obtained electrode also displays excellent rate capability, whose areal capacitance can still remain 2.79 F cm-2 while the discharge current density is increased to 50 mA cm-2. The remarkable electrochemical performance is mainly attributed to the unique heterogeneous core/sheath nanowire-array architectures.

  9. Modulation of surface wettability of superhydrophobic substrates using Si nanowire arrays and capillary-force-induced nanocohesion

    NARCIS (Netherlands)

    Dawood, M.K.; Zheng, H.; Kurniawan, N.A.; Leong, K.C.; Foo, Y.L.; Rajagopalan, Raj; Khan, S.A.; Choi, W.K.

    2012-01-01

    We describe a new scalable method to fabricate large-area hybrid superhydrophobic surfaces with selective adhesion properties on silicon (Si) nanowire array substrates by exploiting liquid-medium-dependent capillary-force-induced nanocohesion. Gold (Au) nanoparticles were deposited on Si by glancing

  10. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    Science.gov (United States)

    2016-08-19

    limiters, MEMS, NEMS, field emission, cold cathodes (Some figures may appear in colour only in the online journal) 1. Introduction Dense arrays of silicon... attention has been given to densely packed, highly ordered, top-down fabricated, single crystal vertical silicon nanowire devices that are embedded

  11. Growth of ZnO nanowire arrays directly onto Si via substrate topographical adjustments using both wet chemical and dry etching methods

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nathan A., E-mail: 523615@swansea.ac.uk [Centre for Nanohealth, Department of Physics, College of Science, University of Swansea, Singleton Park SA2 8PP United Kingdom (United Kingdom); Evans, Jon E.; Jones, Daniel R. [Multidisciplinary Nanotechnology Centre, College of Engineering, University of Swansea, Singleton Park, SA2 8PP United Kingdom (United Kingdom); Lord, Alex M. [Centre for Nanohealth, College of Engineering, University of Swansea, Singleton Park, SA2 8PP United Kingdom (United Kingdom); Wilks, S.P. [Centre for Nanohealth, Department of Physics, College of Science, University of Swansea, Singleton Park SA2 8PP United Kingdom (United Kingdom)

    2015-03-15

    Highlights: • Arrays of catalyst-free ZnO NWs have been grown by CVD without seed layers on Si. • Si surface topography was altered by substrate etching, resulting in NW growth. • XPS analysis shows growth is related to topography and not surface contamination. • Using e-beam lithography with etching, selective nanowire growth is demonstrated. • Electrical measurements on the arrays show improved conduction through the Si. - Abstract: Arrays of CVD catalyst-free ZnO nanowires have been successfully grown without the use of seed layers, using both wet chemical and dry plasma etching methods to alter surface topography. XPS analysis indicates that the NW growth cannot be attributed to a substrate surface chemistry and is therefore directly related to the substrate topography. These nanowires demonstrate structural and optical properties typical of CVD ZnO nanowires. Moreover, the NW arrays exhibit a degree of vertical alignment of less than 20° from the substrate normal. Electrical measurements suggest an improved conduction path through the substrate over seed layer grown nanowires. Furthermore, the etching technique was combined with e-beam lithography to produce high resolution selective area nanowire growth. The ability to pattern uniform nanowires using mature dry etch technology coupled with the increased charge transport through the substrate demonstrates the potential of this technique in the vertical integration of nanowire arrays.

  12. Facile Conversion Synthesis of Densely-Formed Branched ZnO-Nanowire Arrays for Quantum-Dot-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Lee, Woojin; Kang, Suji; Hwang, Taehyun; Kim, Kunsu; Woo, Hyungsub; Lee, Byungho; Kim, Jaewon; Kim, Jinhyun; Park, Byungwoo

    2015-01-01

    Highlights: •3-D hierarchically branched ZnO nanowires by a facile synthesis with seed nucleation. •Nanobranching enhances the efficiency by a factor of two compared with the bare QDSC. •Attributed to the increased sensitizer by ∼80% and decreased transmittance by ∼17%. •Optimized nanostructures correlate with the light-harvesting and carrier-collection efficiencies. -- Abstract: An effective way of synthesizing densely-formed branched ZnO-nanowire arrays was developed by a straightforward conversion reaction of ZnS into ZnO. Hierarchically structured ZnO nanowires are utilized for quantum-dot-sensitized solar cells (QDSCs), having resulted in the conversion-efficiency enhancement by a factor of two compared to the bare ZnO nanowires. This is attributed to the increased CdS-quantum-dot sensitizer by ∼80% and decreased diffused transmittance by ∼17%, induced by the densely-formed branched nanowires. The correlations between the branched nanostructures and photovoltaic performances are systematically investigated in terms of light absorption, charge-transfer resistance, and carrier lifetime. This facile and controllable branched nanowire synthesis is anticipated to be applicable to other semiconductor photoanodes for efficient light harvesting and charge collecting properties

  13. Highly effective field-effect mobility amorphous InGaZnO TFT mediated by directional silver nanowire arrays.

    Science.gov (United States)

    Liu, Hung-Chuan; Lai, Yi-Chun; Lai, Chih-Chung; Wu, Bing-Shu; Zan, Hsiao-Wen; Yu, Peichen; Chueh, Yu-Lun; Tsai, Chuang-Chuang

    2015-01-14

    In this work, we demonstrate sputtered amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a record high effective field-effect mobility of 174 cm(2)/V s by incorporating silver nanowire (AgNW) arrays to channel electron transport. Compared to the reference counterpart without nanowires, the over 5-fold enhancement in the effective field-effect mobility exhibits clear dependence on the orientation as well as the surface coverage ratio of silver nanowires. Detailed material and device analyses reveal that during the room-temperature IGZO sputtering indium and oxygen diffuse into the nanowire matrix while the nanowire morphology and good contact between IGZO and nanowires are maintained. The unchanged morphology and good interfacial contact lead to high mobility and air-ambient-stable characteristics up to 3 months. Neither hysteresis nor degraded bias stress reliability is observed. The proposed AgNW-mediated a-IGZO TFTs are promising for development of large-scale, flexible, transparent electronics.

  14. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Hasti [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States); Baxter, Jason B., E-mail: jbaxter@drexel.ed [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St, Philadelphia, PA 19104 (United States)

    2011-02-15

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size {approx}5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of {approx}2 mA cm{sup -2} for nanowires with roughness factor of {approx}10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  15. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    International Nuclear Information System (INIS)

    Majidi, Hasti; Baxter, Jason B.

    2011-01-01

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size ∼5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of ∼2 mA cm -2 for nanowires with roughness factor of ∼10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  16. In situ-growth of silica nanowires in ceramic carbon composites

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2017-09-01

    Full Text Available An understanding of the processing and microstructure of ceramic–carbon composites is critical to development of these composites for applications needing electrically conducting, thermal shock resistant ceramic materials. In the present study green compacts of carbon ceramic composites were prepared either by slurry processing or dry powder blending of one or more of the three — clay, glass, alumina and carbon black or graphite. The dried green compacts were sintered at 1400 °C in flowing argon. The ceramic carbon composites except the ones without clay addition showed formation of silica nanowires. The silica nanowire formation was observed in both samples prepared by slip casting and dry powder compaction containing either carbon black or graphite. TEM micrographs showed presence of carbon at the core of the silica nanowires indicating that carbon served the role of a catalyst. Selected area electron diffraction (SAED suggested that the silica nanowires are amorphous. Prior studies have reported formation of silica nanowires from silicon, silica, silicon carbide but this is the first report ever on formation of silica nanowires from clay.

  17. Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Basudev; Batabyal, Sudip K.; Pal, Amlan J. [Indian Association for the Cultivation of Science, Department of Solid State Physics, Kolkata 700032 (India)

    2007-05-23

    We fabricate dye-sensitized solar cells (DSSC) using vertically oriented, high density, and crystalline array of ZnO nanowires, which can be a suitable alternative to titanium dioxide nanoparticle films. The vertical nanowires provide fast routes or channels for electron transport to the substrate electrode. As an alternative to conventional ruthenium complex, we introduce Rose Bengal dye, which acts as a photosensitizer in the dye-sensitized solar cells. The dye energetically matches the ZnO with usual KI-I{sub 2} redox couple for dye-sensitized solar cell applications. (author)

  18. Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth

    Directory of Open Access Journals (Sweden)

    Sukjoon Hong

    2013-01-01

    Full Text Available We demonstrate ZnO nanowire based UV sensor by laser-induced hydrothermal growth of ZnO nanowire. By inducing a localized temperature rise using focused laser, ZnO nanowire array at ~15 μm size consists of individual nanowires with ~8 μm length and 200~400 nm diameter is readily synthesized on gold electrode within 30 min at the desired position. The laser-induced growth process is consecutively applied on two different points to bridge the micron gap between the electrodes. The resultant photoconductive ZnO NW interconnections display 2~3 orders increase in the current upon the UV exposure at a fixed voltage bias. It is also confirmed that the amount of photocurrent can be easily adjusted by changing the number of ZnO NW array junctions. The device exhibits clear response to the repeated UV illumination, suggesting that this process can be usefully applied for the facile fabrication of low-cost UV sensor array.

  19. A 64-channel readout ASIC for nanowire biosensor array with electrical calibration scheme.

    Science.gov (United States)

    Chai, Kevin T C; Choe, Kunil; Bernal, Olivier D; Gopalakrishnan, Pradeep K; Zhang, Guo-Jun; Kang, Tae Goo; Je, Minkyu

    2010-01-01

    A 1.8-mW, 18.5-mm(2) 64-channel current readout ASIC was implemented in 0.18-µm CMOS together with a new calibration scheme for silicon nanowire biosensor arrays. The ASIC consists of 64 channels of dedicated readout and conditioning circuits which incorporate correlated double sampling scheme to reduce the effect of 1/f noise and offset from the analog front-end. The ASIC provides a 10-bit digital output with a sampling rate of 300 S/s whilst achieving a minimum resolution of 7 pA(rms). A new electrical calibration method was introduced to mitigate the issue of large variations in the nano-scale sensor device parameters and optimize the sensor sensitivity. The experimental results show that the proposed calibration technique improved the sensitivity by 2 to 10 times and reduced the variation between dataset by 9 times.

  20. Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air

    Science.gov (United States)

    Sun, Yanan; Gu, Xiuquan; Zhao, Yulong; Wang, Linmeng; Qiang, Yinghuai

    2018-05-01

    ZnO nanowire arrays (NWAs) were prepared on transparent conducting fluorine doped tin oxide (FTO) substrates through a facile hydrothermal method, followed by a 500 °C annealing to improve their crystalline qualities and photoelectrochemical (PEC) activities. It was found that the annealing didn't change the morphology, but resulted in a significant reduction of the donor concentration. Temperature-dependent photoluminescence (PL) was carried out for a comprehensive analysis of the effect from annealing. Noteworthy, four dominant peaks were identified from the 10 K spectrum of a 500 °C annealed sample, and they were assigned to FX, D0X, (e, D0) and (e, D0) -1LO, respectively. Of them, the FX emission was only existed below 130 K, while the room-temperature (RT) PL spectrum was dominated by the D0X emission.

  1. Construction of MoS2/Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor

    Science.gov (United States)

    Wu, Di; Lou, Zhenhua; Wang, Yuange; Xu, Tingting; Shi, Zhifeng; Xu, Junmin; Tian, Yongtao; Li, Xinjian

    2017-10-01

    Few-layer MoS2 thin films were synthesized by a two-step thermal decomposition process. In addition, MoS2/Si nanowire array (SiNWA) heterojunctions exhibiting excellent gas sensing properties were constructed and investigated. Further analysis reveals that such MoS2/SiNWA heterojunction devices are highly sensitive to nitric oxide (NO) gas under reverse voltages at room temperature (RT). The gas sensor demonstrated a minimum detection limit of 10 ppb, which represents the lowest value obtained for MoS2-based sensors, as well as an ultrahigh response of 3518% (50 ppm NO, ˜50% RH), with good repeatability and selectivity of the MoS2/SiNWA heterojunction. The sensing mechanisms were also discussed. The performance of the MoS2/SiNWA heterojunction gas sensors is superior to previous results, revealing that they have great potential in applications relating to highly sensitive gas sensors.

  2. 16 channel 200 GHz arrayed waveguide grating based on Si nanowire waveguides

    International Nuclear Information System (INIS)

    Zhao Lei; An Junming; Zhang Jiashun; Song Shijiao; Wu Yuanda; Hu Xiongwei

    2011-01-01

    A 16 channel arrayed waveguide grating demultiplexer with 200 GHz channel spacing based on Si nanowire waveguides is designed. The transmission spectra response simulated by transmission function method shows that the device has channel spacing of 1.6 nm and crosstalk of 31 dB. The device is fabricated by 193 nm deep UV lithography in silicon-on-substrate. The demultiplexing characteristics are observed with crosstalk of 5-8 dB, central channel's insertion loss of 2.2 dB, free spectral range of 24.7 nm and average channel spacing of 1.475 nm. The cause of the spectral distortion is analyzed specifically. (semiconductor devices)

  3. Real-time imaging systems for superconducting nanowire single-photon detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hofherr, Matthias

    2014-07-01

    Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark counts and low jitter. This work provides a piece of deeper physical understanding of detector functionality in combination with highly engineered readout development. A detailed analysis focuses on the intrinsic detection mechanism of SNSPDs related to the detection in the infrared regime and the evolution of dark counts. With this fundamental knowledge, the next step is the development of a multi-pixel readout at cryogenic conditions. It is demonstrated, how two auspicious multi-pixel readout concepts can be realized, which enables statistical framing like in imaging applications using RSFQ electronics with fast framing rates and the readout of a detector array with continuous real-time single-photon resolution.

  4. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  5. Fabrication and characterization of well-aligned zinc oxide nanowire arrays and their realizations in Schottky-device applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin Mun; Grote, Fabian; Sun, Hui; Lei, Yong [Institute of Materials Physics, Center for Nanotechnology, University of Muenster (Germany); Wen, Liaoyong; Fang, Yaoguo [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China)

    2011-07-01

    Highly ordered arrays of vertical zinc oxide (ZnO) nanowires (NWs) or nanopores were fabricated in our group by first thermal evaporating a thin film of gold on the ultrathin alumina membrane (UTAM). The UTAM was then utilized as a substrate for the growth of the ordered arrays using a chemical vapour deposition (CVD) process. Alternatively, a modified CVD process was also used to fabricate ultra-long ZnO NWs with the length of the nanowire exceeding 100 micrometres. Subsequently, densely packed arrays of ZnO NWs Schottky diodes were synthesized by transferring the long NWs on a substrate using a dry contact printing method and the electrical contacts were made on the NWs with a photolithographic process. The interesting electrical properties of the ZnO NWs, diodes or other metal oxide NWs such as the field emission, electron transport and piezoelectric properties were characterized by current-voltage or by other appropriate measurements.

  6. In situ fabrication of Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays and their application in supercapacitors.

    Science.gov (United States)

    Zheng, Xiaoyu; Quan, Honglin; Li, Xiaoxin; He, Hai; Ye, Qinglan; Xu, Xuetang; Wang, Fan

    2016-09-29

    Three-dimensional (3D) hybrid nanostructured arrays grown on a flexible substrate have recently attracted great attention owing to their potential application as supercapacitor electrodes in portable and wearable electronic devices. Here, we report an in situ conversion of Ni-Co active electrode materials for the fabrication of high-performance electrodes. Ni-Co carbonate hydroxide nanowire arrays on carbon cloth were initially synthesized via a hydrothermal method, and they were gradually converted to Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays after soaking in an alkaline solution. The evolution of the supercapacitor performance of the soaked electrode was investigated in detail. The areal capacitance increases from 281 mF cm -2 at 1 mA cm -2 to 3710 and 3900 mF cm -2 after soaking for 36 h and 48 h, respectively. More interestingly, the electrode also shows an increased capacitance with charge/discharge cycles due to the long-time soaking in KOH solution, suggesting novel cycling durability. The enhancement in capacitive performance should be related to the formation of a unique nanowire-supported nanoflake array architecture, which controls the agglomeration of nanoflakes, making them fully activated. As a result, the facile in situ fabrication of the hybrid architectural design in this study provides a new approach to fabricate high-performance Ni/Co based hydroxide nanostructure arrays for next-generation energy storage devices.

  7. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    Science.gov (United States)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  8. Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn [Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-28

    The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The key lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.

  9. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Directory of Open Access Journals (Sweden)

    Zhou Zhi-Hua

    2009-01-01

    Full Text Available Abstract SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices.

  11. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia; Palard, Marylene; Mathew, Leo; Hussain, Muhammad Mustafa; Willson, Grant Grant; Tutuc, Emanuel; Banerjee, Sanjay Kumar

    2012-01-01

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  12. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia

    2012-11-26

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  13. Moessbauer study of Fe-Co nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou (China)]. E-mail: chenzy@lzu.edu.cn; Zhan Qingfeng; Xue Desheng; Li Fashen [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou (China); Zhou Xuezhi; Kunkel, Henry; Williams, Gwyn [Department of Physics and Astronomy, the University of Manitoba (Canada)

    2002-01-28

    Arrays of Fe{sub 1-x}Co{sub x} (0.0{<=}x{<=}0.92) nanowires have been prepared by an electrochemical process, co-depositing Fe and Co atoms into the pores of anodic aluminium; their compositions were determined by atomic absorption spectroscopy. Transmission electron microscope results show that the nanowires are regularly spaced and uniform in shape with lengths of about 7.5 {mu}m and diameters of 20 nm. The x-ray diffraction indicates a texture in the deposited nanowires. For the composition below 82 at.% cobalt, the nanowires had a body-centred-cubic structure with a [110] preferred orientation. For the 92 at.% cobalt sample, the alloy exhibited a mixture of bcc and face-centred-cubic structure. The room temperature {sup 57}Fe Moessbauer spectra of the arrays of Fe{sub 1-x}Co{sub x} nanowires have second and fifth absorption lines of the six-line pattern with almost zero intensity, indicating that the internal magnetic field in the nanowires lies along the long axis of the nanowire. The maximum values of the hyperfine field (B{sub hf} 36.6{+-}0.1 T) and isomer shift (IS=0.06{+-}0.01 mm s-1) occur for 44 at.% cobalt. The variations of the isomer shift and the linewidths with composition indicate that the Fe{sub 1-x}Co{sub x} alloy nanowires around the equiatomic composition are in an atomistic disordered state. (author)

  14. Emission enhancement, light extraction and carrier dynamics in InGaAs/GaAs nanowire arrays

    Science.gov (United States)

    Kivisaari, Pyry; Chen, Yang; Anttu, Nicklas

    2018-03-01

    Nanowires (NWs) have the potential for a wide range of new optoelectronic applications. For example, light-emitting diodes that span over the whole visible spectrum are currently being developed from NWs to overcome the well known green gap problem. However, due to their small size, NW devices exhibit special properties that complicate their analysis, characterization, and further development. In this paper, we develop a full optoelectronic simulation tool for NW array light emitters accounting for carrier transport and wave-optical emission enhancement (EE), and we use the model to simulate InGaAs/GaAs NW array light emitters with different geometries and temperatures. Our results show that NW arrays emit light preferentially to certain angles depending on the NW diameter and temperature, encouraging temperature- and angle-resolved measurements of NW array light emission. On the other hand, based on our results both the EE and light extraction efficiency can easily change by at least a factor of two between room temperature and 77 K, complicating the characterization of NW light emitters if conventional methods are used. Finally, simulations accounting for surface recombination emphasize its major effect on the device performance. For example, a surface recombination velocity of 104 cm s-1 reported earlier for bare InGaAs surfaces results in internal quantum efficiencies less than 30% for small-diameter NWs even at the temperature of 30 K. This highlights that core-shell structures or high-quality passivation techniques are eventually needed to achieve efficient NW-based light emitters.

  15. Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery.

    Science.gov (United States)

    Cao, Yunhe; Fang, Dong; Liu, Ruina; Jiang, Ming; Zhang, Hang; Li, Guangzhong; Luo, Zhiping; Liu, Xiaoqing; Xu, Jie; Xu, Weilin; Xiong, Chuanxi

    2015-12-23

    Development of three-dimensional nanoarchitectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a new type of three-dimensional porous iron vanadate (Fe0.12V2O5) nanowire arrays on a Ti foil has been synthesized by a hydrothermal method. The as-prepared Fe0.12V2O5 nanowires are about 30 nm in diameter and several micrometers in length. The effect of reaction time on the resulting morphology is investigated and the mechanism for the nanowire formation is proposed. As an electrode material used in lithium-ion batteries, the unique configuration of the Fe0.12V2O5 nanowire arrays presents enhanced capacitance, satisfying rate capability and good cycling stability, as evaluated by cyclic voltammetry and galvanostatic discharge-charge cycling. It delivers a high discharge capacity of 293 mAh·g(-1) at 2.0-3.6 V or 382.2 mAh·g(-1) at 1.0-4.0 V after 50 cycles at 30 mA·g(-1).

  16. Defect level characterization of silicon nanowire arrays: Towards novel experimental paradigms

    Energy Technology Data Exchange (ETDEWEB)

    Carapezzi, Stefania; Castaldini, Antonio; Cavallini, Anna [Department of Physics and Astronomy, University of Bologna, V.le Berti Pichat 6/2, Bologna (Italy); Irrera, Alessia [IPCF CNR, Viale Stagno D' Alcontres n. 37-98158, Messina, Italy and MATIS IMM CNR, Viale Santa Sofia n. 64, 95123 Catania (Italy)

    2014-02-21

    The huge amount of knowledge, and infrastructures, brought by silicon (Si) technology, make Si Nanowires (NWs) an ideal choice for nano-electronic Si-based devices. This, in turn, challenges the scientific research to adapt the technical and theoretical paradigms, at the base of established experimental techniques, in order to probe the properties of these systems. Metal-assisted wet-Chemical Etching (MaCE) [1, 2] is a promising fast, easy and cheap method to grow high aspect-ratio aligned Si NWs. Further, contrary to other fabrication methods, this method avoids the possible detrimental effects related to Au diffusion into NWs. We investigated the bandgap level diagram of MaCE Si NW arrays, phosphorous-doped, by means of Deep Level Transient Spectroscopy. The presence of both shallow and deep levels has been detected. The results have been examined in the light of the specificity of the MaCE growth. The study of the electronic levels in Si NWs is, of course, of capital importance in view of the integration of Si NW arrays as active layers in actual devices.

  17. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang

    2010-09-08

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices. © 2010 American Chemical Society.

  18. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    Science.gov (United States)

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we

  19. Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes

    Science.gov (United States)

    Lu, Fang; Qiu, Mengchun; Qi, Xiang; Yang, Liwen; Yin, Jinjie; Hao, Guolin; Feng, Xiang; Li, Jun; Zhong, Jianxin

    2011-08-01

    Highly ordered NiO coated Si nanowire arrays are fabricated as electrode materials for electrochemical supercapacitors (ES) via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The electrochemical tests reveal that the constructed electrode has superior electrical conductibility and more active sites per unit area for chemical reaction processes, thereby possessing good cycle stability, high specific capacity, and low internal resistance. The specific capacity is up to 787.5 F g-1 at a discharge current of 2.5 mA and decreases slightly with 4.039% loss after 500 cycles, while the equivalent internal resistance is ˜3.067 Ω. Owing to its favorable electrochemical performance, this ordered hybrid array nanostructure is a promising electrode material in future commercial ES.

  20. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jiewu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China); Adeloju, Samuel B., E-mail: sam.adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Gippsland Campus, Churchill 3842, VIC Australia (Australia); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [Laboratory of Functional Nanomaterials and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, Anhui (China)

    2014-01-27

    Graphical abstract: -- Highlights: •Successfully synthesised highly-ordered gold nanowires array with an AAO template. •Fabricated an ultra-sensitive glucose nanobiosensor with the gold nanowires array. •Achieved sensitivity as high as 379.0 μA cm{sup −2} mM{sup −1} and detection limit as low as 50 nM. •Achieved excellent anti-interference with aid of Nafion membrane towards UA and AA. •Enabled successful detection and quantification of glucose in human blood serum. -- Abstract: A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO{sub x}) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA–BSA–GLA–GO{sub x} nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm{sup −2} mM{sup −1} for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5–6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples.

  1. Piezo-generator integrating a vertical array of GaN nanowires.

    Science.gov (United States)

    Jamond, N; Chrétien, P; Houzé, F; Lu, L; Largeau, L; Maugain, O; Travers, L; Harmand, J C; Glas, F; Lefeuvre, E; Tchernycheva, M; Gogneau, N

    2016-08-12

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  2. Synthesis, characterization and application of electroless metal assisted silicon nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Sumanta Kumar [Centre for Nanoscience & Technology, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626 005, Tamilnadu (India); Marikani, Arumugam, E-mail: amari@mepcoeng.ac.in [Department of Physics, Mepco Schlenk Engineering College, Sivakasi 626 005, Tamilnadu (India)

    2015-12-01

    Highlights: • Preparation of Silicon nanowire arrays (SiNWs) by electroless metal deposition technique. • From analysis, it has been found that the as-prepared SiNWs are of 3.5–4.0 μm and 75 nm of length and diameter in average respectively. Further a characteristic Raman peak at 520 cm{sup −1} also has been observed. • It exhibits good electron field-emission properties with turn-on field (E{sub 0}) of about 8.26 V μm{sup −1} at current density (J) of 4.9 μA cm{sup −2}. • Functionalized SiNWs have been used for electrochemical detection bovine serum albumin protein bio-molecules. - Abstract: Vertically aligned silicon nanowire arrays (SiNWs) have been synthesized by electroless metal deposition process. The fabricated SiNWs have an average diameter of 75 nm and 3.5–4.0 μm length, as confirmed from scanning electron microscopy. A characteristic asymmetric peak broadening at 520 cm{sup −1} from Raman spectroscopy was obtained for the SiNWs as compared to the bulk silicon crystal due to phonon confinement. The as-prepared SiNWs exhibit good electron field-emission properties with turn-on field of about 8.26 V μm{sup −1} at a current density of 4.9 μA cm{sup −2}. The SiNWs was functionalized by coating with a thin gold metallic film for 60 s, and then used as bio-probe for the detection of bovine serum albumin (BSA) protein molecules. From the linear sweep voltammetry analysis, the Au coated SiNWs, exhibit linear response to the BSA analyte with increase in concentration. The minimum detection limit of the protein molecule was calculated of about 1.16 μM by the as-synthesized SiNWs probe.

  3. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

    International Nuclear Information System (INIS)

    Koohbor, M.; Soltanian, S.; Najafi, M.; Servati, P.

    2012-01-01

    Highlights: ► Increasing the Zn concentration changes the structure of NWs from hcp to amorphous. ► Increasing the Zn concentration significantly reduces the Hc value of NWs. ► Magnetic properties of CoZn NWs can be significantly enhanced by appropriate annealing. ► The pH of electrolyte has no significant effect on the properties of the NW arrays. ► Deposition frequency has considerable effects on the magnetic properties of NWs. - Abstract: Highly ordered arrays of Co 1−x Zn x (0 ≤ x ≤ 0.74) nanowires (NWs) with diameters of ∼35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 °C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on the magnetic properties of the NW arrays. The changes in magnetic property of NWs are rooted in a competition between shape anisotropy and

  4. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Koohbor, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Soltanian, S., E-mail: s.soltanian@gmail.com [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada); Najafi, M. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Department of Physics, Hamadan University of Technology, Hamadan (Iran, Islamic Republic of); Servati, P. [Department of Electrical and Computer Engineering, University of British Columbia, Vancouver (Canada)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Increasing the Zn concentration changes the structure of NWs from hcp to amorphous. Black-Right-Pointing-Pointer Increasing the Zn concentration significantly reduces the Hc value of NWs. Black-Right-Pointing-Pointer Magnetic properties of CoZn NWs can be significantly enhanced by appropriate annealing. Black-Right-Pointing-Pointer The pH of electrolyte has no significant effect on the properties of the NW arrays. Black-Right-Pointing-Pointer Deposition frequency has considerable effects on the magnetic properties of NWs. - Abstract: Highly ordered arrays of Co{sub 1-x}Zn{sub x} (0 {<=} x {<=} 0.74) nanowires (NWs) with diameters of {approx}35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 Degree-Sign C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on

  5. Synthesis and electrochemical performance of polyaniline-MnO2 nanowire composites for supercapacitors

    Science.gov (United States)

    Chen, Ling; Song, Zhaoxia; Liu, Guichang; Qiu, Jieshan; Yu, Chang; Qin, Jiwei; Ma, Lin; Tian, Fengqin; Liu, Wei

    2013-02-01

    Polyaniline-MnO2 nanowire (PANI-MNW) composites were prepared by in situ chemical oxidative polymerization of aniline monomer in a suspension of MnO2 nanowires. The structure and morphology of the PANI-MNW composites were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 mol/L KOH electrolyte. The PANI-MNW composites show significantly better specific capacity and redox performance in comparison to the untreated MnO2 nanowires. The enhanced properties can be mainly attributed to the composite structure wherein high porosity is created between MnO2 nanowires and PANI during the process of fabricating the PANI-MNW nanocomposites. A specific capacitance as high as 256 F/g is obtained at a current density of 1 A/g for PANI-MNW-5, and the composite also shows a good cyclic performance and coulomb efficiency.

  6. Ultra-thin g-C{sub 3}N{sub 4} nanosheets wrapped silicon nanowire array for improved chemical stability and enhanced photoresponse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Beibei; Yu, Hongtao; Quan, Xie, E-mail: quanxie@dlut.edu.cn; Chen, Shuo

    2014-11-15

    Highlights: • g-C{sub 3}N{sub 4}, as an oxygen free and metal free protective material for Si, was proposed. • g-C{sub 3}N{sub 4} nanosheets wrapped Si nanowire array was synthesized. • SiNW/g-C{sub 3}N{sub 4} exhibited enhancement of photoelectrochemical stability and photocurrent. - Abstract: In order to inhibit the oxidation of Si materials in aqueous solution, Si nanowire array was wrapped by ultra-thin g-C{sub 3}N{sub 4} nanosheets via an electrophoresis process. Scanning electron microscopy and transmission electron microscopy images showed that g-C{sub 3}N{sub 4} nanosheets were evenly distributed on the surface of Si nanowire array. X-ray diffraction patterns indicated that Si nanowire array/g-C{sub 3}N{sub 4} nanosheets were composed of Si (4 0 0 crystal plane) and g-C{sub 3}N{sub 4} (0 0 2 and 1 0 0 crystal planes). The cyclic voltammetry curves revealed that the corrosion of Si nanowire array was restrained under the protection of g-C{sub 3}N{sub 4} nanosheets. Furthermore, the photocurrent density of Si nanowire array/g-C{sub 3}N{sub 4} nanosheets increased by nearly 3 times compared to that of bare Si nanowire array due to the effective charge separation caused by the built-in electric field at the interface. This work will facilitate the applications of Si materials in aqueous solution, such as solar energy harvest and photocatalytic pollution control.

  7. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  8. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors.

    Science.gov (United States)

    Xing, Lei; Dong, Yidi; Hu, Fang; Wu, Xiang; Umar, Ahmad

    2018-04-24

    Herein, we report a simple and facile sequential hydrothermal process for the synthesis of Co3O4 nanowire@NiO nanosheet arrays (CNAs). The as-synthesized CNAs were characterized in detail using various analytical techniques, which confirmed the high crystallinity, purity, and high-density growth of these nanomaterials. From an application point of view, the as-synthesized CNAs were directly used as supercapacitor electrodes, revealing a specific capacitance of up to 2018 mF cm-2 at a current density of 2 mA cm-2. Furthermore, a flexible asymmetric supercapacitor was fabricated using the as-synthesized CNAs as the anode and activated carbon as the cathode, which revealed a specific capacitance of 134.6 mF cm-2 at a current density of 2 mA cm-2. In addition, the supercapacitor showed excellent capacity retention of 73.5% after 10 000 cycles at a current density of 10 mA cm-2.

  9. Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors.

    Science.gov (United States)

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Wang, Yong-Ping; Liu, Wen-Jun; Ji, Xin-Ming; Devi, Anjana; Jiang, An-Quan; Zhang, David Wei

    2018-01-10

    A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g -1 ), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g -1 ). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications.

  10. Thermally responsive silicon nanowire arrays for native/denatured-protein separation

    International Nuclear Information System (INIS)

    Wang Hongwei; Wang Yanwei; Yuan Lin; Wang Lei; Yang Weikang; Wu Zhaoqiang; Li Dan; Chen Hong

    2013-01-01

    We present our findings of the selective adsorption of native and denatured proteins onto thermally responsive, native-protein resistant poly(N-isopropylacrylamide) (PNIPAAm) decorated silicon nanowire arrays (SiNWAs). The PNIPAAm–SiNWAs surface, which shows very low levels of native-protein adsorption, favors the adsorption of denatured proteins. The amount of denatured-protein adsorption is higher at temperatures above the lower critical solution temperature (LCST) of PNIPAAm. Temperature cycling surrounding the LCST, which ensures against thermal denaturation of native proteins, further increases the amount of denatured-protein adsorption. Moreover, the PNIPAAm–SiNWAs surface is able to selectively adsorb denatured protein even from mixtures of different protein species; meanwhile, the amount of native proteins in solution is kept nearly at its original level. It is believed that these results will not only enrich current understanding of protein interactions with PNIPAAm-modified SiNWAs surfaces, but may also stimulate applications of PNIPAAm–SiNWAs surfaces for native/denatured protein separation. (paper)

  11. Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays

    International Nuclear Information System (INIS)

    Feng, Tianyu; Xu, Youlong; Zhang, Zhengwei; Mao, Shengchun

    2015-01-01

    Graphical abstract: - Highlights: • How Ag transfers F − to the adjacent Si atom was investigated and deduced by DFT at atomic scale. • Three-electrode CV tests proved the transferring function of Ag in the etching reaction. • Uniform SiNWAs were fabricated on unpolished silicon wafers with KOH pretreatment. - Abstract: Uniform silicon nanowires arrays (SiNWAs) were fabricated on unpolished rough silicon wafers through KOH pretreatment followed by silver-assisted chemical etching (SACE). Density functional theory (DFT) calculations were used to investigate the function of silver (Ag) at atomic scale in the etching process. Among three adsorption sites of Ag atom on Si(1 0 0) surface, Ag(T4) above the fourth-layer surface Si atoms could transfer fluorinion (F − ) to adjacent Si successfully due to its stronger electrostatic attraction force between Ag(T4) and F − , smaller azimuth angle of F−Ag(T4)−Si, shorter bond length of F−Si compared with F−Ag. As F − was transferred to adjacent Si by Ag(T4) one by one, the Si got away from the wafer in the form of SiF 4 when it bonded with enough F − while Ag(T4) was still attached onto the Si wafer ready for next transfer. Cyclic voltammetry tests confirmed that Ag can improve the etching rate by transferring F − to Si

  12. Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays

    Science.gov (United States)

    Feng, Tianyu; Xu, Youlong; Zhang, Zhengwei; Mao, Shengchun

    2015-08-01

    Uniform silicon nanowires arrays (SiNWAs) were fabricated on unpolished rough silicon wafers through KOH pretreatment followed by silver-assisted chemical etching (SACE). Density functional theory (DFT) calculations were used to investigate the function of silver (Ag) at atomic scale in the etching process. Among three adsorption sites of Ag atom on Si(1 0 0) surface, Ag(T4) above the fourth-layer surface Si atoms could transfer fluorinion (F-) to adjacent Si successfully due to its stronger electrostatic attraction force between Ag(T4) and F-, smaller azimuth angle of Fsbnd Ag(T4)sbnd Si, shorter bond length of Fsbnd Si compared with Fsbnd Ag. As F- was transferred to adjacent Si by Ag(T4) one by one, the Si got away from the wafer in the form of SiF4 when it bonded with enough F- while Ag(T4) was still attached onto the Si wafer ready for next transfer. Cyclic voltammetry tests confirmed that Ag can improve the etching rate by transferring F- to Si.

  13. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    International Nuclear Information System (INIS)

    Chen Yong; Luo Guanghong; Diao Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos

    2007-01-01

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3xω Nd:YAG laser in air, SF 6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ∼2 μm in SF 6 gas and to ∼5 μm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (∼10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits

  14. Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO{sub 2} gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiyi, E-mail: zhangweiyi@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Hu, Ming [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Xing; Wei, Yulong; Li, Na [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Qin, Yuxiang, E-mail: qinyuxiang@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-09-15

    In the present work, the tungsten oxide (WO{sub 3}) nanowires functionalized silicon nanowires (SiNWs) with cactus-like structure has been successfully synthesized for room-temperature NO{sub 2} detection. The novel nanocomposite was fabricated by metal-assisted chemical etching (MACE) and thermal annealing of tungsten film. The WO{sub 3} nanowires were evenly distributed from the upper to the lower part of the SiNWs, indicating excellent uniformity which is conducive to adsorption and desorption of gas molecules. The gas-sensing properties have been examined by measuring the resistance change towards 0.25–5 ppm NO{sub 2} gas. At room temperature, which is the optimum working temperature, the SiNWs/WO{sub 3} nanowires composite showed two-times higher NO{sub 2} response than that of the bare SiNWs at 2 ppm NO{sub 2}. On the contrary, the responses of composite sensors to high concentrations of other reducing gases were very low, indicating excellent selectivity. Simultaneously, the composite sensors exhibited good sensing repeatability and stability. The enhancement in gas sensing properties may be attributed to the change in width of the space charge region, which is similar to the behavior of p-n junctions under forward bias, in the high-density p-n heterojunction structure formed between SiNWs and WO{sub 3} nanowires. - Highlights: • SiNWs/WO{sub 3} nanowires composite with cactus-like structure is synthesized. • The morphology of WO{sub 3} nanowires depends on the thermal annealing temperature. • The nanocomposite sensor exhibit better gas response than that of bare SiNWs. • The gas sensing mechanism is discussed using p-n heterojunction theory.

  15. Fabrication of CoPd alloy nanowire arrays on an anodic aluminum oxide/Ti/Si substrate and their enhanced magnetic properties

    International Nuclear Information System (INIS)

    Xu Cailing; Li Hua; Xue Tong; Li Hulin

    2006-01-01

    An anodic aluminum oxide/Ti/Si substrate was successfully synthesized by the anodization of an aluminum film on a Ti/Si substrate and then used as a template to grow 10 nm diameter CoPd alloy nanowires. X-ray diffraction and energy-dispersed X-ray patterns indicated that Co 0.97 Pd 0.03 nanowire arrays with a preferential orientation of (0 0 2) were formed during electrodeposition. High coercivity (about 1700 Oe) and squareness (about 0.85) were obtained in the samples when the magnetic field was applied parallel to the axis of the nanowires; these values are much larger than those of pure Co nanowire arrays with the same diameters

  16. Synthesis and application of graphene–silver nanowires composite for ammonia gas sensing

    International Nuclear Information System (INIS)

    Tran, Quang Trung; Huynh, Tran My Hoa; Tong, Duc Tai; Tran, Van Tam; Nguyen, Nang Dinh

    2013-01-01

    Graphene, consisting of a single carbon layer in a two-dimensional (2D) lattice, has been a promising material for application to nanoelectrical devices in recent years. In this study we report the development of a useful ammonia (NH 3 ) gas sensor based on graphene–silver nanowires ‘composite’ with planar electrode structure. The basic strategy involves three steps: (i) preparation of graphene oxide (GO) by modified Hummers method; (ii) synthesis of silver nanowires by polyol method; and (iii) preparation of graphene and silver nanowires on two electrodes using spin and spray-coating of precursor solutions, respectively. Exposure of this sensor to NH 3 induces a reversible resistance change at room temperature that is as large as ΔR/R 0 ∼ 28% and this sensitivity is eight times larger than the sensitivity of the ‘intrinsic’ graphene based NH 3 gas sensor (ΔR/R 0 ∼ 3,5%). Their responses and the recovery times go down to ∼200 and ∼60 s, respectively. Because graphene synthesized by chemical methods has many defects and small sheets, it cannot be perfectly used for gas sensor or for nanoelectrical devices. The silver nanowires are applied to play the role of small bridges connecting many graphene islands together to improve electrical properties of graphene/silver nanowires composite and result in higher NH 3 gas sensitivity. (paper)

  17. Low-temperature-cured highly conductive composite of Ag nanowires and polyvinyl alcohol

    International Nuclear Information System (INIS)

    He Song; Zhang Xiang; Yang Bingchu; Xu Xiaomei; Chen Hui; Zhou Conghua

    2017-01-01

    Flexible conductive films were fabricated from a low-temperature-cured, highly conductive composite of silver nanowires (as conducting filler) and polyvinyl alcohol (PVA, as binder). Sheet resistance of 0.12 Ω/sq, conductivity of 2.63×10 4 S/cm, and contact resistance of 1.0 Ω/cm 2 were measured in the films, along with excellent resistance to scratching and good flexibility, making them suitable electrical contact materials for flexible optoelectronic devices. Effects of curing temperature, curing duration, film thickness, and nanowire length on the film’s electrical properties were studied. Due to the abundance of hydroxyl groups on its molecular chains, the addition of PVA improves the film’s flexibility and resistance to scratching. Increased nanowire density and nanowire length benefit film conductance. Monte Carlo simulation was used to further explore the impact of these two parameters on the conductivity. It was observed that longer nanowires produce a higher length-ratio of conducting routes in the networks, giving better film conductivity. (paper)

  18. Understanding and removing surface states limiting charge transport in TiO2 nanowire arrays for enhanced optoelectronic device performance.

    Science.gov (United States)

    Sheng, Xia; Chen, Liping; Xu, Tao; Zhu, Kai; Feng, Xinjian

    2016-03-01

    Charge transport within electrode materials plays a key role in determining the optoelectronic device performance. Aligned single-crystal TiO 2 nanowire arrays offer an ideal electron transport path and are expected to have higher electron mobility. Unfortunately, their transport is found not to be superior to that in nanoparticle films. Here we show that the low electron transport in rutile TiO 2 nanowires is mainly caused by surface traps in relatively deep energy levels, which cannot be removed by conventional approaches, such as oxygen annealing treatment. Moreover, we demonstrate an effective wet-chemistry approach to minimize these trap states, leading to over 20-fold enhancement in electron diffusion coefficient and 62% improvement in solar cell performance. On the basis of our results, the potential of TiO 2 NWs can be developed and well-utilized, which is significantly important for their practical applications.

  19. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    Science.gov (United States)

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  20. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  1. Vertical nanowire architectures

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfl-Tempfli, M.; Piraux, L.

    2010-01-01

    Nanowires and statistics: A statistical process for reading ultradense arrays of nanostructured materials is presented (see image). The experimental realization is achieved through selective nanowire growth using porous alumina templates. The statistical patterning approach is found to provide ri...

  2. Scalable Direct Writing of Lanthanide-Doped KMnF3 Perovskite Nanowires into Aligned Arrays with Polarized Up-Conversion Emission.

    Science.gov (United States)

    Shi, Shuo; Sun, Ling-Dong; Xue, Ying-Xian; Dong, Hao; Wu, Ke; Guo, Shi-Chen; Wu, Bo-Tao; Yan, Chun-Hua

    2018-05-09

    The use of one-dimensional nano- and microstructured semiconductor and lanthanide materials is attractive for polarized-light-emission studies. Up-conversion emission from single-nanorod or anisotropic nanoparticles with a degree of polarization has also been discussed. However, microscale arrays of nanoparticles, especially well-aligned one-dimensional nanostructures as well as their up-conversion polarization characterization, have not been investigated yet. Herein, we present a novel and facile paradigm for preparing highly aligned arrays of lanthanide-doped KMnF 3 (KMnF 3 :Ln) perovskite nanowires, which are good candidates for polarized up-conversion emission studies. These perovskite nanowires, with a width of 10 nm and length of a few micrometers, are formed through the oriented attachment of KMnF 3 :Ln nanocubes along the [001] direction. By the employment of KMnF 3 :Ln nanowire gel as nanoink, a direct-writing method is developed to obtain diverse types of aligned patterns from the nanoscale to the wafer scale. Up-conversion emissions from the highly aligned nanowire arrays are polarized along the array direction with a polarization degree up to 60%. Taking advantage of microscopic nanowire arrays, these polarized up-conversion emissions should offer potential applications in light or information transportation.

  3. Rational Synthesis of Branched CoMoO4@CoNiO2 Core/Shell Nanowire Arrays for All-Solid-State Supercapacitors with Improved Performance.

    Science.gov (United States)

    Ai, Yuanfei; Geng, Xuewen; Lou, Zheng; Wang, Zhiming M; Shen, Guozhen

    2015-11-04

    Effectively composite materials with optimized structures exhibited promising potential in continuing improving the electrochemical performances of supercapacitors in the past few years. Here, we proposed a rational design of branched CoMoO4@CoNiO2 core/shell nanowire arrays on Ni foam by two steps of hydrothermal processing. Owing to the high activity of the scaffold-like CoMoO4 nanowires and the well-defined CoNiO2 nanoneedles, the three-dimensional (3D) electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (5.31 F/cm(2) at 5 mA/cm(2)) and superior cycling stability(159% of the original specific capacitance, i.e., 95.7% of the maximum retained after 5000 cycles at 30 mA/cm(2)). The all-solid-state asymmetric supercapacitors composed of such electrode and activated carbon (AC) exhibited an areal specific capacitance of 1.54 F/cm(2) at 10 mA/cm(2) and a rate capability (59.75 Wh/kg at a 1464 W/kg) comparable with Li-ion batteries. It also showed an excellent cycling stability with no capacitance attenuation after 50000 cycles at 100 mA/cm(2). After rapid charging (1 s), such supercapacitors in series could lighten a red LED for a long time and drive a mini motor effectively, demonstrating advances in energy storage, scalable integrated applications, and promising commercial potential.

  4. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

    Science.gov (United States)

    Liu, Wei; Lee, Seok Woo; Lin, Dingchang; Shi, Feifei; Wang, Shuang; Sendek, Austin D.; Cui, Yi

    2017-04-01

    In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10-5 S cm-1 at 30 ∘C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

  5. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    Science.gov (United States)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  6. Zinc Oxide Nanowire Interphase for Enhanced Lightweight Polymer Fiber Composites

    Science.gov (United States)

    Sodano, Henry A.; Brett, Robert

    2011-01-01

    The objective of this work was to increase the interfacial strength between aramid fiber and epoxy matrix. This was achieved by functionalizing the aramid fiber followed by growth of a layer of ZnO nanowires on the fiber surface such that when embedded into the polymer, the load transfer and bonding area could be substantially enhanced. The functionalization procedure developed here created functional carboxylic acid surface groups that chemically interact with the ZnO and thus greatly enhance the strength of the interface between the fiber and the ZnO.

  7. Effects of heat treatment on optical absorption properties of Ni-P/AAO nano-array composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Fan; Wang, Feng-Hua; Guo, Dong-Lai; Huang, Sheng-You; Zou, Xian-Wu [Wuhan University, Department of Physics, Wuhan (China); Sang, Jian-Ping [Wuhan University, Department of Physics, Wuhan (China); Jianghan University, Department of Physics, Wuhan (China)

    2009-11-15

    Ni-P/AAO nano-array composite structure assemblies with Ni and P grown in the pores of anodic aluminum oxide (AAO) membranes were prepared by electroless deposition. The results of SEM, TEM and SAED show that as-deposited Ni-P nanowires have an amorphous structure and a few nanocrystallites form after annealing. The optical absorption spectra reveal that, as the annealing temperature increases, the absorption band edge of the Ni-P/AAO composite structure is obviously blue shifted, which is attributed to a decrease of the internal pressure after heat treatment. Meanwhile, the annealed Ni-P/AAO nano-array composite structure exhibits the absorption behavior of a direct band gap semiconductor. Details of this behavior are discussed together with the implications for potential device applications. (orig.)

  8. Intact mammalian cell function on semi-conductor nanowire arrays: new perspectives for cell-based biosensing

    DEFF Research Database (Denmark)

    Berthing, Trine; Bonde, Sara; Sørensen, Claus Birger

    2011-01-01

    . A selection of critical cell functions and pathways are shown not to be impaired, including cell adhesion, membrane integrity, intracellular enzyme activity, DNA uptake, cytosolic and membrane protein expression, and the neuronal maturation pathway. The results demonstrate the low invasiveness of InAs NW......Nanowires (NWs) are attracting more and more interest due to their potential cellular applications, such as delivery of compounds or sensing platforms. Arrays of vertical indium-arsenide (InAs) NWs are interfaced with human embryonic kidney cells and rat embryonic dorsal root ganglion neurons...

  9. Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS.

    Science.gov (United States)

    Kim, Min Kyu; Yi, Dong Kee; Paik, Ungyu

    2010-05-18

    In this article, we report the fabrication of ordered hybrid structures composed of ZnO nanowires and a polymeric matrix with a polymer precursor infiltrating the nanowire arrays. The antireflective properties of the resulting ZnO nanowire-embedded polydimethylsiloxane composite (ZPC) were investigated at various ZnO nanowire lengths and ZPC bending angles. Interestingly, we found that whereas the antireflective properties showed a strong dependence on the length of the embedded ZnO nanowires in PDMS, the bending of ZPC has little effect on the antireflective properties.

  10. Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries

    Science.gov (United States)

    Wei, L.; Zhao, T. S.; Zeng, L.; Zeng, Y. K.; Jiang, H. R.

    2017-02-01

    In this work, we prepare a highly catalytic and stabilized titanium nitride (TiN) nanowire array-decorated graphite felt electrode for all vanadium redox flow batteries (VRFBs). Free-standing TiN nanowires are synthesized by a two-step process, in which TiO2 nanowires are first grown onto the surface of graphite felt via a seed-assisted hydrothermal method and then converted to TiN through nitridation reaction. When applied to VRFBs, the prepared electrode enables the electrolyte utilization and energy efficiency to be 73.9% and 77.4% at a high current density of 300 mA cm-2, which are correspondingly 43.3% and 15.4% higher than that of battery assembled with a pristine electrode. More impressively, the present battery exhibits good stability and high capacity retention during the cycle test. The superior performance is ascribed to the significant improvement in the electrochemical kinetics and enlarged active sites toward V3+/V2+ redox reaction.

  11. Earth-Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage

    Science.gov (United States)

    Jiang, Chaoran; Moniz, Savio J A; Khraisheh, Majeda; Tang, Junwang

    2014-01-01

    ZnO has long been considered as a model UV-driven photoanode for photoelectrochemical water splitting, but its performance has been limited by fast charge-carrier recombination, extremely poor stability in aqueous solution, and slow kinetics of water oxidation. These issues were addressed by applying a strategy of optimization and passivation of hydrothermally grown 1D ZnO nanowire arrays. The length and diameter of bare ZnO nanowires were optimized by varying the growth time and precursor concentration to achieve optimal photoelectrochemical performance. The addition of earth-abundant cobalt phosphate (Co-Pi) and nickel borate (Ni-B) oxygen evolution catalysts onto ZnO nanowires resulted in substantial cathodic shifts in onset potential to as low as about 0.3 V versus the reversible hydrogen electrode (RHE) for Ni-B/ZnO, for which a maximum photocurrent density of 1.1 mA cm−2 at 0.9 V (vs. RHE) with applied bias photon-to-current efficiency of 0.4 % and an unprecedented near-unity incident photon-to-current efficiency at 370 nm. In addition the potential required for saturated photocurrent was dramatically reduced from 1.6 to 0.9 V versus RHE. Furthermore, the stability of these ZnO nanowires was significantly enhanced by using Ni-B compared to Co-Pi due to its superior chemical robustness, and it thus has additional functionality as a stable protecting layer on the ZnO surface. These remarkable enhancements in both photocatalytic activity and stability directly address the current severe limitations in the use of ZnO-based photoelectrodes for water-splitting applications, and can be applied to other photoanodes for efficient solar-driven fuel synthesis. PMID:25156820

  12. Fabrication and temperature dependent magnetic properties of Ni–Cu–Co composite nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Muhammad [Nanomaterials Research Group, Physics Division PINSTECH, Islamabad 44000 (Pakistan); Khan, Maaz, E-mail: maaz@impcas.ac.cn [Nanomaterials Research Group, Physics Division PINSTECH, Islamabad 44000 (Pakistan); Sun, Hongyu [Beijing National Center for Electron Microscopy, Laboratory of Advanced Materials and The State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Nairan, Adeela [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Karim, Shafqat; Nisar, Amjad [Nanomaterials Research Group, Physics Division PINSTECH, Islamabad 44000 (Pakistan); Maqbool, M. [Department of Physics and Astronomy, Ball State University, Muncie, IN 47306 (United States); Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [Nanomaterials Research Group, Physics Division PINSTECH, Islamabad 44000 (Pakistan)

    2015-10-15

    Ni–Cu–Co composite magnetic nanowires have been successfully synthesized by electrochemical deposition. Microstructural and compositional analyses were carried out using FESEM, TEM, HRTEM and XRD. Magnetic measurements were performed from in the temperature range 5–300 K. A strong diamagnetic contribution, which results from the polycarbonate template, was found to show s-shape behavior of the hysteresis loops of the nanowires. The coercivity of the samples was found to increase with the decreasing temperature following simple model of thermal activation of particle’s moment over the anisotropy barrier in the temperature range 50–300 K. Saturation magnetization was found to increase with decreasing temperature following the modified Bloch’s law at low temperatures.

  13. Fabrication and temperature dependent magnetic properties of Ni–Cu–Co composite nanowires

    International Nuclear Information System (INIS)

    Hussain, Muhammad; Khan, Maaz; Sun, Hongyu; Nairan, Adeela; Karim, Shafqat; Nisar, Amjad; Maqbool, M.; Ahmad, Mashkoor

    2015-01-01

    Ni–Cu–Co composite magnetic nanowires have been successfully synthesized by electrochemical deposition. Microstructural and compositional analyses were carried out using FESEM, TEM, HRTEM and XRD. Magnetic measurements were performed from in the temperature range 5–300 K. A strong diamagnetic contribution, which results from the polycarbonate template, was found to show s-shape behavior of the hysteresis loops of the nanowires. The coercivity of the samples was found to increase with the decreasing temperature following simple model of thermal activation of particle’s moment over the anisotropy barrier in the temperature range 50–300 K. Saturation magnetization was found to increase with decreasing temperature following the modified Bloch’s law at low temperatures

  14. In-situ magnetization/heating electron holography to study the magnetic ordering in arrays of nickel metallic nanowires

    Directory of Open Access Journals (Sweden)

    Eduardo Ortega

    2018-05-01

    Full Text Available Magnetic nanostructures of different size, shape, and composition possess a great potential to improve current technologies like data storage and electromagnetic sensing. In thin ferromagnetic nanowires, their magnetization behavior is dominated by the competition between magnetocrystalline anisotropy (related to the crystalline structure and shape anisotropy. In this way electron diffraction methods like precession electron diffraction (PED can be used to link the magnetic behavior observed by Electron Holography (EH with its crystallinity. Using off-axis electron holography under Lorentz conditions, we can experimentally determine the magnetization distribution over neighboring nanostructures and their diamagnetic matrix. In the case of a single row of nickel nanowires within the alumina template, the thin TEM samples showed a dominant antiferromagnetic arrangement demonstrating long-range magnetostatic interactions playing a major role.

  15. Effects of ZnS layer on the performance improvement of the photosensitive ZnO nanowire arrays solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Hafiz Muhammad Asif [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Gao, Yanping; Xing, Yonglei [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an, 710049 (China); Kong, Ling Bing, E-mail: ELBKong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore)

    2016-08-01

    The impact of ZnS layer as an interface modification on the photosensitive ZnO nanowire arrays solar cells was studied. CdS, CdSe and ZnS were deposited on ZnO nanowire arrays by SILAR method. When a ZnS layer was deposited, the quantum dot barrier was indirectly become in contact with the electrolyte, which thus restrained the flow of electrons. The CdS sensitized solar cells has an efficiency of 0.55% with the deposition of the ZnS(3) layer, that is, with a deposition of three times, whereas the CdS/CdSe co-sensitized solar cells has an efficiency of 2.03% with the deposition of the ZnS(1) layer. It was also noted that as the thickness of the of ZnS layer was increased, V{sub oc}, I{sub sc} and efficiencies of both the solar cells were first increased and then decreased. In addition, the CdS/N719 solar cells has an efficiency of 0.75% with the deposition of the ZnS(2) layer. - Highlights: • The impact of ZnS layer on the photosensitive ZnO nanowire solar cells was studied. • ZnS layer restrained the flow of electrons to the electrolyte. • CdS/CdSe co-sensitized solar cells have higher efficiency than CdS solar cells. • When ZnS layer was increased, V{sub oc} and I{sub sc} firstly increased and then decreased.

  16. Reduction of Cr(VI) to Cr(III) using silicon nanowire arrays under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fellahi, Ouarda [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); Centre de Recherche en Technologie des Semi-conducteurs pour l' Energétique-CRTSE 02, Bd Frantz Fanon, BP. 140, Alger 7 Merveilles (Algeria); Barras, Alexandre [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); Pan, Guo-Hui [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dong Nanhu Road, Changchun 130033 (China); Coffinier, Yannick [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); Hadjersi, Toufik [Centre de Recherche en Technologie des Semi-conducteurs pour l' Energétique-CRTSE 02, Bd Frantz Fanon, BP. 140, Alger 7 Merveilles (Algeria); Maamache, Mustapha [Laboratoire de Physique Quantique et Systèmes Dynamiques, Département de Physique, Université de Sétif, Sétif 19000 (Algeria); Szunerits, Sabine [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Avenue Poincaré—BP 70478, 59652 Villeneuve d' Ascq Cedex (France); and others

    2016-03-05

    Highlights: • Cr(VI) reduction to Cr(III) using silicon nanowires decorated with Cu nanoparticles. • The reduction takes place at room temperature and neutral pH under visible light. • The photocatalytic reduction was enhanced by addition of adipic or citric acid. - Abstract: We report an efficient visible light-induced reduction of hexavalent chromium Cr(VI) to trivalent Cr(III) by direct illumination of an aqueous solution of potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) in the presence of hydrogenated silicon nanowires (H-SiNWs) or silicon nanowires decorated with copper nanoparticles (Cu NPs-SiNWs) as photocatalyst. The SiNW arrays investigated in this study were prepared by chemical etching of crystalline silicon in HF/AgNO{sub 3} aqueous solution. The Cu NPs were deposited on SiNW arrays via electroless deposition technique. Visible light irradiation of an aqueous solution of K{sub 2}Cr{sub 2}O{sub 7} (10{sup −4} M) in presence of H-SiNWs showed that these substrates were not efficient for Cr(VI) reduction. The reduction efficiency achieved was less than 10% after 120 min irradiation at λ > 420 nm. Addition of organic acids such as citric or adipic acid in the solution accelerated Cr(VI) reduction in a concentration-dependent manner. Interestingly, Cu NPs-SiNWs was found to be a very efficient interface for the reduction of Cr(VI) to Cr(III) in absence of organic acids. Almost a full reduction of Cr(VI) was achieved by direct visible light irradiation for 140 min using this photocatalyst.

  17. Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ku, C-H; Wu, J-J [Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2007-12-19

    ZnO nanowire (NW)-layered basic zinc acetate (LBZA)/ZnO nanoparticle (NP) composite electrodes with different NP occupying extents have been synthesized using a simple wet-chemical route for use in dye-sensitized solar cells (DSSCs). By employing mercurochrome as the sensitizer, superior efficiencies ({eta}) of 1.27-2.37% are obtained using the ZnO NW-LBZA/ZnO NP composite electrodes composed of a 5.5 {mu}m thick NW array with different NP occupying extents in comparison with the ZnO NW DSSC ({eta} = 0.45%). It suggests that the ZnO NW-LBZA/ZnO NP composite films which possess a considerable enlarged surface area by NPs growth, without sacrificing electron transport efficiency of single-crystalline ZnO NWs at the same time, are promising photoanodes for use in DSSCs. In addition to the extent of NP occupation, the overall efficiency of the ZnO NW-LBZA/ZnO NP composite DSSC is also influenced by the thickness of the composite film as well as the LBZA fraction and the cracks within the composite. The fraction of LBZA affected by the NP growth period and post-annealing conditions is found to play a crucial role in electron transport through the composite anode. Up to now, a high efficiency DSSC of 3.2% is achieved using a mercurochrome-sensitized and 6.2 {mu}m thick NW-NP composite film.

  18. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection.

    Science.gov (United States)

    Cui, Jiewu; Adeloju, Samuel B; Wu, Yucheng

    2014-01-27

    A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO(x)) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA-BSA-GLA-GO(x) nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm(-2) mM(-1) for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5-6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array.

    Science.gov (United States)

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao; Luo, Hang

    2018-02-01

    Polymer-based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400-600 kV mm -1 , which may bring more challenges relating to the failure probability. Here, a simple two-step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm -3 is achieved at low electric fields, i.e., 143 kV mm -1 , which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm -2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis.

  20. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    International Nuclear Information System (INIS)

    Wnęk, M; Stockley, P G; Górzny, M Ł; Evans, S D; Ward, M B; Brydson, R; Wälti, C; Davies, A G

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating. (paper)

  1. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  2. Achieving sub-50 nm controlled diameter of aperiodic Si nanowire arrays by ultrasonic catalyst removal for photonic applications

    Science.gov (United States)

    Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit

    2018-05-01

    We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.

  3. Wafer-scale fabrication of uniform Si nanowire arrays using the Si wafer with UV/Ozone pretreatment

    International Nuclear Information System (INIS)

    Bai, Fan; Li, Meicheng; Huang, Rui; Yu, Yue; Gu, Tiansheng; Chen, Zhao; Fan, Huiyang; Jiang, Bing

    2013-01-01

    The electroless etching technique combined with the process of UV/Ozone pretreatment is presented for wafer-scale fabrication of the silicon nanowire (SiNW) arrays. The high-level uniformity of the SiNW arrays is estimated by the value below 0.2 of the relative standard deviation of the reflection spectra on the 4-in. wafer. Influence of the UV/Ozone pretreatment on the formation of SiNW arrays is investigated. It is seen that a very thin SiO 2 produced by the UV/Ozone pretreatment improves the uniform nucleation of Ag nanoparticles (NPs) on the Si surface because of the effective surface passivation. Meanwhile, the SiO 2 located among the adjacent Ag NPs can obstruct the assimilation growth of Ag NPs, facilitating the deposition of the uniform and dense Ag NPs catalysts, which induces the formation of the SiNW arrays with good uniformity and high filling ratio. Furthermore, the remarkable antireflective and hydrophobic properties are observed for the SiNW arrays which display great potential in self-cleaning antireflection applications

  4. GaAs nanowire array solar cells with axial p-i-n junctions.

    Science.gov (United States)

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.

  5. The control of the growth orientations of electrodeposited single-crystal nanowire arrays: a case study for hexagonal CdS

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hongyu; Li Xiaohong; Chen Yan; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Li Feng; Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-06-04

    The controllable growth of highly aligned and ordered semiconductor nanowire arrays is crucial for their potential applications in nanodevices. In the present study, both the growth orientation and the microstructure of hexagonal CdS nanowire arrays electrodeposited in a porous alumina template with 40 nm diameter pores have been controlled by simply tuning the deposition current density. An extremely low current density of 0.05 mA cm{sup -2} is favorable for the growth of single-crystal CdS nanowires along the normal direction of the intrinsic low-surface-energy (103) face. This can be understood well by a modified critical dimension model given in the present work.

  6. The control of the growth orientations of electrodeposited single-crystal nanowire arrays: a case study for hexagonal CdS

    International Nuclear Information System (INIS)

    Sun Hongyu; Li Xiaohong; Chen Yan; Li Wei; Zhang Xiangyi; Li Feng; Liu Baoting

    2008-01-01

    The controllable growth of highly aligned and ordered semiconductor nanowire arrays is crucial for their potential applications in nanodevices. In the present study, both the growth orientation and the microstructure of hexagonal CdS nanowire arrays electrodeposited in a porous alumina template with 40 nm diameter pores have been controlled by simply tuning the deposition current density. An extremely low current density of 0.05 mA cm -2 is favorable for the growth of single-crystal CdS nanowires along the normal direction of the intrinsic low-surface-energy (103) face. This can be understood well by a modified critical dimension model given in the present work

  7. Deposition of fan-shaped ZnMoO{sub 4} on ZnCo{sub 2}O{sub 4} nanowire arrays for high electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zihao; Zhang, Xiaojun [Anhui Normal University, Key Laboratory for Functional Molecular Solids of the Education Ministry of China, Center for Nano Science and Technology, College of Chemistry and Materials Science, Wuhu (China)

    2017-04-15

    In this research, fan-shaped ZnMoO{sub 4} is deposited on flower-like ZnCo{sub 2}O{sub 4} nanowire arrays by two-step hydrothermal method. ZnCo{sub 2}O{sub 4} nanowire is synthesized first and used as the backbone to support ZnMoO{sub 4}. The flower-like ZnCo{sub 2}O{sub 4} nanowire arrays are fully overspread by ZnMoO{sub 4}. And this unique structure shows a high capacitance of 1506 F g{sup -1} when used as electrode for supercapacitor at a current density of 1 A g{sup -1} and a good cycling ability (5000 cycles). (orig.)

  8. Synthesis, structural and optical properties of pure and rare-earth ion doped TiO{sub 2} nanowire arrays by a facile hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, Vengala Rao; Raghavan, Chinnambedu Murugesan; Grandhe, Bhaskar kumar; Kim, Sang Su [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Shin, Dong-Soo [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung-Soo [Department of Photonics, Silla University, Busan 617-736 (Korea, Republic of); Jeong, Jung-Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2013-11-29

    Single crystalline pure and rare-earth metal ions (Eu{sup 3+} and Ce{sup 3+}) doped TiO{sub 2} nanowire arrays were prepared on conductive fluorine doped indium tin oxide substrates by a facile hydrothermal method. Initially the conditions and parameters were optimized to prepare the high quality TiO{sub 2} nanowire arrays in the absence of organic additives. The average diameter and length of the TiO{sub 2} nanowire were found to be ∼ 30–50 nm and ∼ 0.5–1.5 μm, respectively. The formations of rutile phase structure in all the samples were confirmed by x-ray diffractometric analysis while the transmission electron microscopy confirms the single crystallinity and the maximum orientation of growth direction along [001] for the as-grown TiO{sub 2} nanowire. The optical properties of all the samples were analyzed using photoluminescence spectroscopy. The photocatalytic properties of the pure and doped TiO{sub 2} were investigated for the decomposition of organic toludine blue-O dye under ultraviolet irradiation. The result demonstrates that the Ce{sup 3+}: TiO{sub 2} decomposed almost 90% of the organic dye within 80 min. - Highlights: • Rare-earth (RE) doped TiO{sub 2} nanowire arrays were prepared by hydrothermal method • RE doping enhanced the growth rate of TiO{sub 2} nanowire arrays • The catalysts used to check their photocatalytic activity by toludine blue-O dye • RE doped TiO2 act as unprecedented photocatalyst for organic dye decomposition.

  9. Organic vapor discrimination with chemiresistor arrays of temperature modulated tin-oxide nanowires and thiolate-monolayer-protected gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Scholten, K; Bohrer, F I; Dattoli, E; Lu, W; Zellers, E T, E-mail: ezellers@umich.edu [Center for Wireless Integrated Microsystems, University of Michigan, Ann Arbor, MI 48109-2122 (United States)

    2011-03-25

    This paper explores the discrimination of organic vapors with arrays of chemiresistors (CRs) employing interface layers of tin-oxide nanowires (NWs) and thiolate-monolayer-protected gold nanoparticles (MPNs). The former devices use contact-printed mats of NWs on micro-hotplate membranes to bridge a pair of metal electrodes. Oxidation at the NW surface causes changes in charge transport, the temperature dependence of which differs among different vapors, permitting vapor discrimination. The latter devices use solvent cast films of MPNs on interdigital electrodes operated at room temperature. Sorption into the organic monolayers causes changes in film tunneling resistance that differ among different vapors and MPN structures, permitting vapor discrimination. Here, we compare the performance and assess the 'complementarity' of these two types of sensors. Calibrated responses from an NW CR operated at two different temperatures and from a set of four different MPN CRs were generated for three test vapors: n-hexane, toluene, and nitromethane. This pooled data set was then analyzed using principal components regression classification models with varying degrees of random error superimposed on the responses via Monte Carlo simulation in order to estimate the rates of recognition/discrimination for arrays comprising different combinations of sensors. Results indicate that the diversity of most of the dual MPN-CR arrays exceeds that of the dual NW-CR array. Additionally, in assessing all possible arrays of 4-6 CR sensors, the recognition rates of the hybrid arrays (i.e. MPN + NW) were no better than that of the 4-sensor array containing only MPN CRs.

  10. Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism

    Directory of Open Access Journals (Sweden)

    M. Zervos

    2014-05-01

    Full Text Available Indium tin oxide nanowires were grown by the reaction of In and Sn with O2 at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001. We obtain Sn doped In2O3 nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO2 and suppression of In2O3 permitting compositional and structural tuning from SnO2 to In2O3 which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

  11. Development of Highly Ordered Heterostructured Semiconductor Nanowire Arrays for Sub-Wavelength Optical Devices

    Science.gov (United States)

    2007-06-01

    properties of nanowires" J. Appl. Phys 98, 094306 (2005) 9. Harry E. Ruda and Alexander Shik, "Polarization-sensitive optical properties of metallic and...34Biexcitons in parabolic quantum dots", Phys. Rev. B. 73, 125321 (2006). 11. M. Blumin, H.E. Ruda, I. Savelyev , A Shik and H. Wang, "Self-assembled InAs

  12. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    Science.gov (United States)

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-06

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.

  13. Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing

    Directory of Open Access Journals (Sweden)

    Muhammad Hassan

    2017-09-01

    Full Text Available Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot and low cost synthesis of W18O49 NWs/rGO composites with different amount of reduced graphene oxide (rGO which show excellent gas-sensing properties towards toluene and strong dependence on their chemical composition. As compared to pure W18O49 NWs, an improved gas sensing response (2.8 times higher was achieved in case of W18O49 NWs composite with 0.5 wt. % rGO. Promisingly, this strategy can be extended to prepare other nanowire based composites with excellent gas-sensing performance.

  14. Preparation of smooth, flexible and stable silver nanowires- polyurethane composite transparent conductive films by transfer method

    Science.gov (United States)

    Bai, Shengchi; Wang, Haifeng; Yang, Hui; Zhang, He; Guo, Xingzhong

    2018-02-01

    Silver nanowires (AgNWs)-polyurethane (PU) composite transparent conductive films were fabricated via transfer method using AgNWs conductive inks and polyurethane as starting materials, and the effects of post-treatments including heat treatment, NaCl solution bath and HCl solution bath for AgNWs film on the sheet resistance and transmittance of the composite films were respectively investigated in detail. AgNWs networks are uniformly embedded in the PU layer to improve the adhesion and reduce the surface roughness of AgNWs-PU composite films. Heat treatment can melt and weld the nanowires, and NaCl and HCl solution baths promote the dissolution and re-deposition of silver and the dissolving of the polymer, both which form conduction pathways and improve contact of AgNWs for reducing the sheet resistance. Smooth and flexible AgNWs-PU composite film with a transmittance of 85% and a sheet resistance of 15 Ω · sq‑1 is obtained after treated in 0.5 wt% HCl solution bath for 60 s, and the optoelectronic properties of the resultant composite film can maintain after 1000 cycles of bending and 100 days.

  15. Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors

    International Nuclear Information System (INIS)

    Yu, Pingping; Zhao, Xin; Li, Yingzhi; Zhang, Qinghua

    2017-01-01

    Highlights: • Hierarchical porous graphene foam prepared by templating and embossing method.. • Vertically PANI nanowires aligned on interconnected porous graphene sheets. • The fRGO-F/PANI device exhibited 939 F g"−"1 at 1 A g"−"1. • ED and PD of fRGO-F/PANI device was 20.9 Wh kg"−"1 and 103.2 kW kg"−"1. - Abstract: Free-standing hierarchical macro/mesoporous flexible graphene foam have been constructed by rational intergration ofwell dispersed graphene oxide sheets and amino-modified polystyrene (PS) spheres through a facile “templating and embossing” technique. The three dimensional (3D) macro/mesoporous flexible graphene foam not only inherits the uniform porous structures of graphene foam, but also contains hierarchical macro/mesopores on the struts by sacrificing PS spheres and the activation of KOH, which could providing rapid pathways for ionic and electronic transport to high specific capacitance. Vertically polyaniline (PANI) nanowire arrays are then uniformly deposited onto the hierarchical macro/mesoporous graphene foam(fRGO-F/PANI) by a simple in situ polymerization, which show a high specific capacitance of 939 F g"−"1. Thanks to the synergistic function of 3D bicontinuous hierarchical porous structure of graphene foam and effective immobilization of PANI nanowires on the struts, the assembled symmetric supercapctior with fRGO-F/PANI as electrodes exhibits a maximum energy density and power density of 20.9 Wh kg"−"1 and 103.2 kW kg"−"1, respectively. Moreover, it also displays an excellent cyclic stability with a 88.7% retention after 5000 cycles.

  16. Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pingping [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Department of Materials Science, Fudan University, Shanghai 200433 (China); Zhao, Xin, E-mail: xzhao@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Li, Yingzhi [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang, Qinghua, E-mail: qhzhang@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2017-01-30

    Highlights: • Hierarchical porous graphene foam prepared by templating and embossing method.. • Vertically PANI nanowires aligned on interconnected porous graphene sheets. • The fRGO-F/PANI device exhibited 939 F g{sup −1} at 1 A g{sup −1}. • ED and PD of fRGO-F/PANI device was 20.9 Wh kg{sup −1} and 103.2 kW kg{sup −1}. - Abstract: Free-standing hierarchical macro/mesoporous flexible graphene foam have been constructed by rational intergration ofwell dispersed graphene oxide sheets and amino-modified polystyrene (PS) spheres through a facile “templating and embossing” technique. The three dimensional (3D) macro/mesoporous flexible graphene foam not only inherits the uniform porous structures of graphene foam, but also contains hierarchical macro/mesopores on the struts by sacrificing PS spheres and the activation of KOH, which could providing rapid pathways for ionic and electronic transport to high specific capacitance. Vertically polyaniline (PANI) nanowire arrays are then uniformly deposited onto the hierarchical macro/mesoporous graphene foam(fRGO-F/PANI) by a simple in situ polymerization, which show a high specific capacitance of 939 F g{sup −1}. Thanks to the synergistic function of 3D bicontinuous hierarchical porous structure of graphene foam and effective immobilization of PANI nanowires on the struts, the assembled symmetric supercapctior with fRGO-F/PANI as electrodes exhibits a maximum energy density and power density of 20.9 Wh kg{sup −1} and 103.2 kW kg{sup −1}, respectively. Moreover, it also displays an excellent cyclic stability with a 88.7% retention after 5000 cycles.

  17. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.

    Science.gov (United States)

    Wu, Baoshan; Zhang, Hongzhang; Zhou, Wei; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-21

    Although various kinds of catalysts have been developed for aprotic Li-O2 battery application, the carbon-based cathodes are still vulnerable to attacks from the discharge intermediates or products, as well as the accompanying electrolyte decomposition. To ameliorate this problem, the free-standing and carbon-free CoO nanowire array cathode was purposely designed for Li-O2 batteries. The single CoO nanowire formed as a special mesoporous structure, owing even comparable specific surface area and pore volume to the typical Super-P carbon particles. In addition to the highly selective oxygen reduction/evolution reactions catalytic activity of CoO cathodes, both excellent discharge specific capacity and cycling efficiency of Li-O2 batteries were obtained, with 4888 mAh gCoO(-1) and 50 cycles during 500 h period. Owing to the synergistic effect between elaborate porous structure and selective intermediate absorption on CoO crystal, a unique bimodal growth phenomenon of discharge products was occasionally observed, which further offers a novel mechanism to control the formation/decomposition morphology of discharge products in nanoscale. This research work is believed to shed light on the future development of high-performance aprotic Li-O2 batteries.

  18. Enhanced ionic conductivity of AgI nanowires/AAO composites fabricated by a simple approach

    International Nuclear Information System (INIS)

    Liu Lifeng; Alexe, Marin; Lee, Woo; Goesele, Ulrich; Lee, Seung-Woo; Li Jingbo; Rao Guanghui; Zhou Weiya; Lee, Jae-Jong

    2008-01-01

    AgI nanowires/anodic aluminum oxide (AgI NWs/AAO) composites have been fabricated by a simple approach, which involves the thermal melting of AgI powders on the surface of the AAO membrane, followed by the infiltration of the molten AgI inside the nanochannels. As-prepared AgI nanowires have corrugated outer surfaces and are polycrystalline according to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. X-ray diffraction (XRD) shows that a considerable amount of 7H polytype AgI exists in the composites, which is supposed to arise from the interfacial interactions between the embedded AgI and the alumina. AC conductivity measurements for the AgI nanowires/AAO composites exhibit a notable conductivity enhancement by three orders of magnitude at room temperature compared with that of pristine bulk AgI. Furthermore, a large conductivity hysteresis and abnormal conductivity transitions were observed in the temperature-dependent conductivity measurements, from which an ionic conductivity as high as 8.0 x 10 2 Ω -1 cm -1 was obtained at around 70 deg. C upon cooling. The differential scanning calorimetry (DSC) result demonstrates a similar phase transition behavior as that found in the AC conductivity measurements. The enhanced ionic conductivity, as well as the abnormal phase transitions, can be explained in terms of the existence of the highly conducting 7H polytype AgI and the formation of well-defined conduction paths in the composites.

  19. Enhanced ionic conductivity of AgI nanowires/AAO composites fabricated by a simple approach.

    Science.gov (United States)

    Liu, Li-Feng; Lee, Seung-Woo; Li, Jing-Bo; Alexe, Marin; Rao, Guang-Hui; Zhou, Wei-Ya; Lee, Jae-Jong; Lee, Woo; Gösele, Ulrich

    2008-12-10

    AgI nanowires/anodic aluminum oxide (AgI NWs/AAO) composites have been fabricated by a simple approach, which involves the thermal melting of AgI powders on the surface of the AAO membrane, followed by the infiltration of the molten AgI inside the nanochannels. As-prepared AgI nanowires have corrugated outer surfaces and are polycrystalline according to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. X-ray diffraction (XRD) shows that a considerable amount of 7H polytype AgI exists in the composites, which is supposed to arise from the interfacial interactions between the embedded AgI and the alumina. AC conductivity measurements for the AgI nanowires/AAO composites exhibit a notable conductivity enhancement by three orders of magnitude at room temperature compared with that of pristine bulk AgI. Furthermore, a large conductivity hysteresis and abnormal conductivity transitions were observed in the temperature-dependent conductivity measurements, from which an ionic conductivity as high as 8.0 × 10(2) Ω(-1) cm(-1) was obtained at around 70 °C upon cooling. The differential scanning calorimetry (DSC) result demonstrates a similar phase transition behavior as that found in the AC conductivity measurements. The enhanced ionic conductivity, as well as the abnormal phase transitions, can be explained in terms of the existence of the highly conducting 7H polytype AgI and the formation of well-defined conduction paths in the composites.

  20. Additional magnetoelectric effect in electrode-arrayed magnetoelectric composite

    Directory of Open Access Journals (Sweden)

    D. A. Pan

    2014-11-01

    Full Text Available An electrode-arrayed magnetoelectric (ME composite was proposed, in which the positive and negative electrodes of the PZT-5H plate (Pb(Zr0.52Ti0.48O3 were equally divided into a 2 × 5 array, while the PZT plate remained intact. The ME voltage coefficients of these 10 sections were measured individually and in parallel/series modes. The magnetoelectric coefficient is doubled compared with un-arrayed condition, when the 10 sections are connected in parallel/series using an optimized connecting sequence derived from the charge matching rule. This scheme can also be applied to other types of layered magnetoelectric composites to obtain additional magnetoelectric effect from the original composite structure.

  1. Small signal modulation characteristics of red-emitting (λ = 610 nm) III-nitride nanowire array lasers on (001) silicon

    KAUST Repository

    Jahangir, Shafat; Frost, Thomas; Hazari, Arnab; Yan, Lifan; Stark, Ethan; LaMountain, Trevor; Millunchick, Joanna M.; Ooi, Boon S.; Bhattacharya, Pallab

    2015-01-01

    The small signal modulation characteristics of an InGaN/GaN nanowire array edge- emitting laser on (001) silicon are reported. The emission wavelength is 610 nm. Lattice matched InAlN cladding layers were incorporated in the laser heterostructure for better mode confinement. The suitability of the nanowire lasers for use in plastic fiber communication systems with direct modulation is demonstrated through their modulation bandwidth of f-3dB,max = 3.1 GHz, very low values of chirp (0.8 Å) and α-parameter, and large differential gain (3.1 × 10-17 cm2).

  2. Small signal modulation characteristics of red-emitting (λ = 610 nm) III-nitride nanowire array lasers on (001) silicon

    KAUST Repository

    Jahangir, Shafat

    2015-02-16

    The small signal modulation characteristics of an InGaN/GaN nanowire array edge- emitting laser on (001) silicon are reported. The emission wavelength is 610 nm. Lattice matched InAlN cladding layers were incorporated in the laser heterostructure for better mode confinement. The suitability of the nanowire lasers for use in plastic fiber communication systems with direct modulation is demonstrated through their modulation bandwidth of f-3dB,max = 3.1 GHz, very low values of chirp (0.8 Å) and α-parameter, and large differential gain (3.1 × 10-17 cm2).

  3. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  4. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    Science.gov (United States)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  5. Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors.

    Science.gov (United States)

    Xie, Chao; Nie, Biao; Zeng, Longhui; Liang, Feng-Xia; Wang, Ming-Zheng; Luo, Linbao; Feng, Mei; Yu, Yongqiang; Wu, Chun-Yan; Wu, Yucheng; Yu, Shu-Hong

    2014-04-22

    Silicon nanostructure-based solar cells have lately intrigued intensive interest because of their promising potential in next-generation solar energy conversion devices. Herein, we report a silicon nanowire (SiNW) array/carbon quantum dot (CQD) core-shell heterojunction photovoltaic device by directly coating Ag-assisted chemical-etched SiNW arrays with CQDs. The heterojunction with a barrier height of 0.75 eV exhibited excellent rectifying behavior with a rectification ratio of 10(3) at ±0.8 V in the dark and power conversion efficiency (PCE) as high as 9.10% under AM 1.5G irradiation. It is believed that such a high PCE comes from the improved optical absorption as well as the optimized carrier transfer and collection capability. Furthermore, the heterojunction could function as a high-performance self-driven visible light photodetector operating in a wide switching wavelength with good stability, high sensitivity, and fast response speed. It is expected that the present SiNW array/CQD core-shell heterojunction device could find potential applications in future high-performance optoelectronic devices.

  6. Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.

    Science.gov (United States)

    Cai, Xin; Wu, Hongwei; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun

    2014-02-01

    One-dimensional semiconductor TiO2 nanowires (TNWs) have received widespread attention from solar cell and related optoelectronics scientists. The controllable synthesis of ordered TNW arrays on arbitrary substrates would benefit both fundamental research and practical applications. Herein, vertically aligned TNW arrays in situ grown on carbon fiber (CF) substrates through a facile, controllable, and seed-assisted thermal process is presented. Also, hierarchical TiO2 -nanoparticle/TNW arrays were prepared that favor both the dye loading and depressed charge recombination of the CF/TNW photoanode. An impressive conversion efficiency of 2.48 % (under air mass 1.5 global illumination) and an apparent efficiency of 4.18 % (with a diffuse board) due to the 3D light harvesting of the wire solar cell were achieved. Moreover, efficient and inexpensive wire solar cells made from all-CF electrodes and completely flexible CF-based wire solar cells were demonstrated, taking into account actual application requirements. This work may provide an intriguing avenue for the pursuit of lightweight, cost-effective, and high-performance flexible/wearable solar cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Controllable preparation of TiO{sub 2} nanowire arrays on titanium mesh for flexible dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenwu; Lu, Hui; Zhang, Mei; Guo, Min, E-mail: guomin@ustb.edu.cn

    2015-08-30

    Graphical abstract: TiO{sub 2} nanowire arrays with controlled morphology and density have been synthesized on Ti mesh substrates by hydrothermal approach for flexible dye-sensitized solar cells which showed well photovoltaic efficiency of 3.42%. - Highlights: • Flexible titanium mesh was first used for hydrothermal preparation of TiO{sub 2} NWAs. • The formation mechanism of the TiO{sub 2} nanostructures was discussed. • The density, average diameter, and morphology of TiO{sub 2} NWAs can be controlled. • The effects of the sensitization temperature and time on the properties were studied. - Abstract: TiO{sub 2} nanowire arrays (NWAs) with an average diameter of 80 nm have been successfully synthesized on titanium (Ti) mesh substrates via hydrothermal method. The effects of preparing conditions such as concentration of NaOH solution, reaction time, and hydrothermal temperature on the growth of TiO{sub 2} nanoarrays and its related photovoltaic properties were systematically investigated by scanning electron microscopy, X-ray diffraction, and photovoltaic properties test. The growth mechanism of the Ti mesh-supported TiO{sub 2} nanostructures was discussed in detail. Moreover, a parametric study was performed to determine the optimized temperature and time of the dye sensitized process for the flexible dye-sensitized solar cell (DSSC). It is demonstrated that hydrothermal parameters had obvious influence on the morphology and growth density of the as-prepared TiO{sub 2} nanoarrays. In addition, the performance of the flexible DSSC depended strongly on the sensitization temperature and time. By utilizing Ti mesh-supported TiO{sub 2} NWAs (with a length of about 14 μm) as a photoanode, the flexible DSSC with a short circuit current density of 10.49 mA cm{sup −2}, an open-circuit voltage of 0.69 V, and an overall power conversion efficiency of 3.42% was achieved.

  8. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Liu, Wenwu; Lu, Hui; Zhang, Mei; Guo, Min

    2015-01-01

    Graphical abstract: TiO 2 nanowire arrays with controlled morphology and density have been synthesized on Ti mesh substrates by hydrothermal approach for flexible dye-sensitized solar cells which showed well photovoltaic efficiency of 3.42%. - Highlights: • Flexible titanium mesh was first used for hydrothermal preparation of TiO 2 NWAs. • The formation mechanism of the TiO 2 nanostructures was discussed. • The density, average diameter, and morphology of TiO 2 NWAs can be controlled. • The effects of the sensitization temperature and time on the properties were studied. - Abstract: TiO 2 nanowire arrays (NWAs) with an average diameter of 80 nm have been successfully synthesized on titanium (Ti) mesh substrates via hydrothermal method. The effects of preparing conditions such as concentration of NaOH solution, reaction time, and hydrothermal temperature on the growth of TiO 2 nanoarrays and its related photovoltaic properties were systematically investigated by scanning electron microscopy, X-ray diffraction, and photovoltaic properties test. The growth mechanism of the Ti mesh-supported TiO 2 nanostructures was discussed in detail. Moreover, a parametric study was performed to determine the optimized temperature and time of the dye sensitized process for the flexible dye-sensitized solar cell (DSSC). It is demonstrated that hydrothermal parameters had obvious influence on the morphology and growth density of the as-prepared TiO 2 nanoarrays. In addition, the performance of the flexible DSSC depended strongly on the sensitization temperature and time. By utilizing Ti mesh-supported TiO 2 NWAs (with a length of about 14 μm) as a photoanode, the flexible DSSC with a short circuit current density of 10.49 mA cm −2 , an open-circuit voltage of 0.69 V, and an overall power conversion efficiency of 3.42% was achieved

  9. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.

    Science.gov (United States)

    Yang, Jie; Bao, Chunxiong; Yu, Tao; Hu, Yingfei; Luo, Wenjun; Zhu, Weidong; Fu, Gao; Li, Zhaosheng; Gao, Hao; Li, Faming; Zou, Zhigang

    2015-12-09

    Hematite (α-Fe2O3) is one of the most promising candidates for photoelectrodes in photoelectrochemical water splitting system. However, the low visible light absorption coefficient and short hole diffusion length of pure α-Fe2O3 limits the performance of α-Fe2O3 photoelectrodes in water splitting. Herein, to overcome these drawbacks, single-crystalline tin-doped indium oxide (ITO) nanowire core and α-Fe2O3 nanocrystal shell (ITO@α-Fe2O3) electrodes were fabricated by covering the chemical vapor deposited ITO nanowire array with compact thin α-Fe2O3 nanocrystal film using chemical bath deposition (CBD) method. The J-V curves and IPCE of ITO@α-Fe2O3 core-shell nanowire array electrode showed nearly twice as high performance as those of the α-Fe2O3 on planar Pt-coated silicon wafers (Pt/Si) and on planar ITO substrates, which was considered to be attributed to more efficient hole collection and more loading of α-Fe2O3 nanocrystals in the core-shell structure than planar structure. Electrochemical impedance spectra (EIS) characterization demonstrated a low interface resistance between α-Fe2O3 and ITO nanowire arrays, which benefits from the well contact between the core and shell. The stability test indicated that the prepared ITO@α-Fe2O3 core-shell nanowire array electrode was stable under AM1.5 illumination during the test period of 40,000 s.

  10. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors.

    Science.gov (United States)

    McAlpine, Michael C; Ahmad, Habib; Wang, Dunwei; Heath, James R

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a 'nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  11. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors

    Science.gov (United States)

    McAlpine, Michael C.; Ahmad, Habib; Wang, Dunwei; Heath, James R.

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a `nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  12. 1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography.

    Science.gov (United States)

    Sun, Zhiyuan; Tzaguy, Avra; Hazut, Ori; Lauhon, Lincoln J; Yerushalmi, Roie; Seidman, David N

    2017-12-13

    Metal nanoparticle arrays are excellent candidates for a variety of applications due to the versatility of their morphology and structure at the nanoscale. Bottom-up self-assembly of metal nanoparticles provides an important complementary alternative to the traditional top-down lithography method and makes it possible to assemble structures with higher-order complexity, for example, nanospheres, nanocubes, and core-shell nanostructures. Here we present a mechanism study of the self-assembly process of 1-D noble metal nanoparticles arrays, composed of Au, Ag, and AuAg alloy nanoparticles. These are prepared within an encapsulated germanium nanowire, obtained by the oxidation of a metal-germanium nanowire hybrid structure. The resulting structure is a 1-D array of equidistant metal nanoparticles with the same diameter, the so-called nanobead (NB) array structure. Atom-probe tomography and transmission electron microscopy were utilized to investigate the details of the morphological and chemical evolution during the oxidation of the encapsulated metal-germanium nanowire hybrid-structures. The self-assembly of nanoparticles relies on the formation of a metal-germanium liquid alloy and the migration of the liquid alloy into the nanowire, followed by dewetting of the liquid during shape-confined oxidation where the liquid column breaks-up into nanoparticles due to the Plateau-Rayleigh instability. Our results demonstrate that the encapsulating oxide layer serves as a structural scaffold, retaining the overall shape during the eutectic liquid formation and demonstrates the relationship between the oxide mechanical properties and the final structural characteristics of the 1-D arrays. The mechanistic details revealed here provide a versatile tool-box for the bottom-up fabrication of 1-D arrays nanopatterning that can be modified for multiple applications according to the RedOx properties of the material system components.

  13. Fabrication of Two-Dimensional Arrays of Diameter-Tunable PS-b-P2VP Nanowires at the Air/Water Interface.

    Science.gov (United States)

    Zhao, Xingjuan; Yu, Xiaoli; Lee, Yong-Ill; Liu, Hong-Guo

    2016-11-15

    Composite thin films with well-defined and parallel nanowires were fabricated from the binary blends of a diblock copolymer polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and several homopolystyrenes (h-PSs) at the air/liquid interface through a facile technique, which involves solution self-assembly, interface adsorption, and further self-organization processes. It was confirmed that the nanowires that appeared at the air/water interface came from the cylindrical micelles formed in solution. Interestingly, the diameters of the nanowires are uniform and can be tuned precisely from 45 to 247 nm by incorporating the h-PS molecules into the micellar core. This parallel alignment of the nanowires has potential applications in optical devices and enables the nanowires to be used as templates to prepare functional nanostructures. The extent to which h-PS molecules with different molecular weights are able to influence the diameter control of the nanowires was also systematically investigated.

  14. Angular dependence of coercivity with temperature in Co-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bran, C., E-mail: cristina.bran@icmm.csic.es [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Espejo, A.P. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Palmero, E.M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH) and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avenida Ecuador 3493, 9170124 Santiago (Chile); Vázquez, M. [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)

    2015-12-15

    The magnetic behavior of arrays of Co and CoFe nanowire arrays has been measured in the temperature range between 100 and 300 K. We have paid particular attention to the angular dependence of magnetic properties on the applied magnetic field orientation. The experimental angular dependence of coercivity has been modeled according to micromagnetic analytical calculations, and we found that the propagation of a transversal domain wall mode gives the best fitting with experimental observations. That reversal mode holds in the whole measuring temperature range, for nanowires with different diameters and crystalline structure. Moreover, the quantitative strength of the magnetocrystalline anisotropy and its magnetization easy axis are determined to depend on the crystalline structure and nanowires diameter. The evolution of the magnetocrystalline anisotropy with temperature for nanowires with different composition gives rise to an opposite evolution of coercivity with increasing temperature: it decreases for CoFe while it increases for Co nanowire arrays.

  15. Nickel Nanowire@Porous NiCo{sub 2}O{sub 4} Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Houzhao; Li, Lang; Zhang, Jun; Liu, Xiang; Wang, Hanbin; Wang, Hao, E-mail: nanoguy@126.com [Faculty of Physics and Electronic Science, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan (China)

    2017-12-13

    A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo{sub 2}O{sub 4} nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo{sub 2}O{sub 4} nanorods and construct the well-defined NiCo{sub 2}O{sub 4} nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo{sub 2}O{sub 4}/Ni foam electrode shows a high areal specific capacitance (7.4 F cm{sup −2} at 5 mA cm{sup −2}), excellent rate capability (88.04% retained at 100 mA cm{sup −2}), and good cycling stability (74.08% retained after 1,500 cycles). The superior electrochemical properties made it promising as electrode for supercapacitors.

  16. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    Science.gov (United States)

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  17. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  18. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.

    Science.gov (United States)

    Behzadirad, Mahmoud; Nami, Mohsen; Wostbrock, Neal; Zamani Kouhpanji, Mohammad Reza; Feezell, Daniel F; Brueck, Steven R J; Busani, Tito

    2018-03-27

    GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {11̅00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>10 5 μm 2 ) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.

  19. Catalytic growth of carbon nanowires on composite diamond/silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sellam, Amine [Université de Lorraine, Institut Jean Lamour, Département CP2S (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France); Miska, Patrice [Université de Lorraine, Institut Jean Lamour, Département P2M (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France); Ghanbaja, Jaafar [Université de Lorraine, Institut Jean Lamour, Département CP2S (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France); Barrat, Silvère, E-mail: Silvere.Barrat@ijl.nancy-universite.fr [Université de Lorraine, Institut Jean Lamour, Département CP2S (UMR CNRS 7198), Parc de Saurupt, F-54042 Nancy Cedex (France)

    2014-01-01

    Polycrystalline diamond (PCD) films and carbon nanowires (CNWs) provide individually highly attractive properties for science and technology applications. The possibility of carbon composite materials made from a combination of these materials remains a potential approach widely discussed in literature but modestly investigated. We report in this work an early attempt to explore this opportunity in the light of some specific experimental considerations. Carbon nanowires (CNWs) are grown at low temperature without the conventional use of external hydrocarbon vapor source on silicon substrates partially covered by a thin film of coalesced micrometric CVD diamond. Composite substrates constituted by PCD on silicon were first cleaned with H{sub 2} plasma then used for the PVD deposition of 5 nm Ni thin films. Then, samples were heat treated in a CVD reactor at 580 °C in the presence of pure H{sub 2} pressure of 60 hPa at different annealing times. Comparative effect of annealing time on the dewetting of Ni thin films and the subsequent CNWs growth process was considered in this work using systematic observations by SEM. Possible mechanisms underlying CNWs growth in pure H{sub 2} gas were proposed. The nature and structure of these CNWs have been investigated by TEM microscopy and by Raman spectroscopy on the sample showing the highest CNWs density.

  20. Inclined-wall regular micro-pillar-arrayed surfaces covered entirely with an alumina nanowire forest and their improved superhydrophobicity

    International Nuclear Information System (INIS)

    Kim, Dae-Ho; Lee, Dongyun; Cho, Chae-Ryong; Kim, Soo-Hyung; Lee, Deug-Woo; Kim, Jong-Man; Kim, Yongsung; Kang, Jae-Wook; Hong, Suck Won

    2011-01-01

    This paper reports a multiple-scale hierarchically structured superhydrophobic surface that is composed of inclined-wall regular micro-pillar arrays covered entirely with an alumina nanowire forest (ANF) to improve the surface wettability. The multiple-scaled structures were fabricated stably using a simple batch process based on an anisotropic chemical silicon etching process and a subsequent time-controlled anodic aluminum oxide technique. The surface wetting properties of the mono-roughened surfaces with inclined-wall micro-pillar arrays, which are normally in the Wenzel wetting regime, could be transitioned perfectly to the slippery Cassie mode and enhanced greatly in the Wenzel regime in cases of a high- and low-density of the micro-pillars, respectively, by easily amplifying the intrinsic contact angle through the entire coverage of the ANF on the micro-roughened surfaces. The wettability of the proposed multiple-scaled surfaces could also be predicted using analytic surface models and the experimental results agreed greatly with the wetting trends estimated theoretically due to the geometrical regularity of the base micro-structures

  1. Large-area aligned growth of single-crystalline organic nanowire arrays for high-performance photodetectors

    International Nuclear Information System (INIS)

    Wu Yiming; Zhang Xiujuan; Pan Huanhuan; Zhang Xiwei; Zhang Yuping; Zhang Xiaozhen; Jie Jiansheng

    2013-01-01

    Due to their extraordinary properties, single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices. However, it remains a critical challenge to assemble organic NWs rationally in an orientation-, dimensionality- and location-controlled manner. Herein, we demonstrate a feasible method for aligned growth of single-crystalline copper phthalocyanine (CuPc) NW arrays with high density, large-area uniformity and perfect crossed alignment by using Au film as a template. The growth process was investigated in detail. The Au film was found to have a critical function in the aligned growth of NWs, but may only serve as the active site for NW nucleation because of the large surface energy, as well as direct the subsequent aligned growth. The as-prepared NWs were then transferred to construct single NW-based photoconductive devices, which demonstrated excellent photoresponse properties with robust stability and reproducibility; the device showed a high switching ratio of ∼180, a fast response speed of ∼100 ms and could stand continuous operation up to 2 h. Importantly, this strategy can be extended to other organic molecules for their synthesis of NW arrays, revealing great potential for use in the construction of large-scale high-performance functional nano-optoelectronic devices. (paper)

  2. Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng; Wang, Zhong Lin

    2017-01-01

    The piezo-phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric-semiconductor materials. Here, it is presented that the piezo-phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n-ZnO/p-SnS core-shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo-phototronic effect, but also demonstrates the great potential of piezo-phototronic effect in the application of large-scale, flexible, and lightweight nanowire array solar cells.

  3. Piezo‐Phototronic Effect Enhanced Flexible Solar Cells Based on n‐ZnO/p‐SnS Core–Shell Nanowire Array

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng

    2016-01-01

    The piezo‐phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric‐semiconductor materials. Here, it is presented that the piezo‐phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n‐ZnO/p‐SnS core–shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo‐phototronic effect, but also demonstrates the great potential of piezo‐phototronic effect in the application of large‐scale, flexible, and lightweight nanowire array solar cells. PMID:28105394

  4. Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires

    Science.gov (United States)

    Chi, Su (Ike); Farias, Stephen; Cammarata, Robert

    2013-03-01

    Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.

  5. Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gomez, M.; Garro, N.; Cantarero, A. [Institut de Ciencia dels Materials, Universitat de Valencia, Paterna (Spain); Segura-Ruiz, J.; Martinez-Criado, G.; Chu, M.H. [European Synchrotron Radiation Facility, Experiments Division, Grenoble (France); Denker, C.; Malindretos, J.; Rizzi, A. [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2013-10-15

    The radial alloy distribution of In{sub x} Ga{sub 1-x}N nanowires grown by plasma-assisted molecular beam epitaxy has been investigated by three different techniques with nanometric spatial resolution and capability to study single nanowires. Energy-dispersive X-ray spectroscopy radial line-scans revealed a gradient in the alloy composition of individual nanowires. Resonant Raman scattering and spatially resolved X-ray diffraction showed the existence of three distinctive regions with different alloy composition. The combination of the three techniques provides robust evidence of the spontaneous formation of a core-shell structure with a thin Ga-richer shell wrapping an In-rich core at the bottom part of the nanowires. This composition-modulated nanostructure offers an attractive way to explore new device concepts in fully epitaxial nanowire-based solar cells. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction

    International Nuclear Information System (INIS)

    Gomez-Gomez, M.; Garro, N.; Cantarero, A.; Segura-Ruiz, J.; Martinez-Criado, G.; Chu, M.H.; Denker, C.; Malindretos, J.; Rizzi, A.

    2013-01-01

    The radial alloy distribution of In x Ga 1-x N nanowires grown by plasma-assisted molecular beam epitaxy has been investigated by three different techniques with nanometric spatial resolution and capability to study single nanowires. Energy-dispersive X-ray spectroscopy radial line-scans revealed a gradient in the alloy composition of individual nanowires. Resonant Raman scattering and spatially resolved X-ray diffraction showed the existence of three distinctive regions with different alloy composition. The combination of the three techniques provides robust evidence of the spontaneous formation of a core-shell structure with a thin Ga-richer shell wrapping an In-rich core at the bottom part of the nanowires. This composition-modulated nanostructure offers an attractive way to explore new device concepts in fully epitaxial nanowire-based solar cells. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries

    Science.gov (United States)

    Cao, Minglei; Bu, Yi; Lv, Xiaowei; Jiang, Xingxing; Wang, Lichuan; Dai, Sirui; Wang, Mingkui; Shen, Yan

    2018-03-01

    This study reports a general and rational two-step hydrothermal strategy to fabricate three-dimensional (3D) TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays (TNAs-NMO) as additives-free anodes for lithium-ion batteries (LIBs). The TNAs-NMO electrode delivers a reversible capacity of up to 446.6 mA h g-1 over 120 cycles at the current density of 0.2 A g-1 and a high rate capacity of 234.2 mA h g-1 at 2.0 A g-1. Impressively, the capacity retention efficiency is 74.7% after 2500 cycles at the high rate of 2.0 A g-1. In addition, the full cell consisting of TNAs-NMO anode and LCO cathode can afford a specific energy of up to 220.3 W h kg-1 (based on the entire mass of both electrodes). The high electrochemical performance of the TNAs-NMO electrode is ascribed to its 3D core-shell nanowire array architecture, in which the TiO2 nanowire arrays (TNAs) and the ultrathin NiMoO4 nanosheets exhibit strong synergistic effects. The TNAs maintain mechanical integrity of the electrode and the ultrathin NiMoO4 nanosheets contribute to high capacity and favorable electronic conductivity.

  8. Magnetic nanowires (Fe, Fe-Co, Fe-Ni – magnetic moment reorientation in respect of wires composition

    Directory of Open Access Journals (Sweden)

    Kalska-Szostko Beata

    2015-03-01

    Full Text Available Magnetic nanowires of Fe, Fe-Co, and Fe-Ni alloy and layered structure were prepared by electrochemical alternating current (AC deposition method. The morphology of the nanowires in and without the matrix was studied by energy dispersive X-ray spectroscopy (EDX, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. The wires either show strong dependence on the combination of elements deposition (alloy or layered or chemical composition (Co or Ni. The magnetic properties of the nanostructures were determined on the basis of Mössbauer spectroscopy (MS.

  9. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity

    Science.gov (United States)

    Liu, Danni; Lu, Qun; Luo, Yonglan; Sun, Xuping; Asiri, Abdullah M.

    2015-09-01

    The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability.The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability. Electronic supplementary information (ESI) available: Experimental section and ESI Figures. See DOI: 10.1039/c5nr04064g

  10. Effect of the template-assisted electrodeposition parameters on the structure and magnetic properties of Co nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kac, Malgorzata, E-mail: malgorzata.kac@ifj.edu.pl [Institute of Nuclear Physics Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Zarzycki, Arkadiusz [Institute of Nuclear Physics Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland); Kac, Slawomir [AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Kopec, Marek; Perzanowski, Marcin; Dutkiewicz, Erazm M.; Suchanek, Katarzyna; Maximenko, Alexey; Marszalek, Marta [Institute of Nuclear Physics Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow (Poland)

    2016-09-15

    Highlights: • Magnetic properties of Co nanowires in polycarbonate membranes were studied. • Electrodeposition stages were illustrated by SEM images. • Electrolyte and membrane parameters were optimized for Co nanowire fabrication. • Low temperature and potential favored nanowires with high coercivity and squareness. - Abstract: We studied the magnetic properties of Co nanowires electrodeposited in polycarbonate membranes as a function of the electrodeposition and template parameters. We showed the response of the current as a function of time, for nanowires prepared in various conditions. X-ray diffraction measurements indicate that nanowires have polycrystalline hcp structure with small addition of fcc phase. Magnetic properties analyzed by SQUID measurements suggest that easy axis of magnetization follows the nanowire axis with coercivity increasing with a decrease of nanowire diameter and length. The largest coercivity, equal to 850 Oe, was obtained for nanowires with the diameter of 30 nm and the length of 1.5 μm. We find the coercivity to be insensitive to pH value. Low electrodeposition temperature, low cathodic potential, and medium pH are the synthesis parameters most beneficial for large coercivity and/or magnetic anisotropy with easy axis along nanowires.

  11. In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor

    Science.gov (United States)

    Chen, Xiangxiang; Shen, Yanbai; Zhang, Wei; Zhang, Jin; Wei, Dezhou; Lu, Rui; Zhu, Lijia; Li, Hansen; Shen, Yansong

    2018-03-01

    ZnO nanowire (ZNW) arrays were in-situ grown on the sensing electrode via a facile hydrothermal route for NO2 sensing application. ZNW arrays were prepared by a seed layer deposition on the surface of the sensing electrode using a dipping process in a Zn(CH3COO)2·2H2O ethanol solution followed by a seed growth using a hydrothermal route in the Zn(NO3)2·6H2O-HMTA (C6H12N4) system. The microstructural characterizations of the ZNW arrays by means of XRD, FESEM, TEM, FTIR and XPS showed that ZnO nanowires with the diameters of 80-90 nm and the lengths of 0.6-1 μm had a single crystal hexagonal wurtzite structure. Gas sensing properties demonstrated the response of the sensor based on the ZNW arrays was linearly proportional to the NO2 concentration in the range of 1-30 ppm with good reproducibility and selectivity. The maximum sensor response to NO2 was obtained at an operating temperature of 250 °C. The response and recovery times reduced rapidly with increasing the operating temperature. The growth mechanism and sensing mechanism of the ZNW arrays were discussed in accordance with the deposition of the seed layer and the modulation of the depletion layer, respectively.

  12. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    Solar cells commercial success is based on an efficiency/cost calculation. Nanowire solar cells is one of the foremost candidates to implement third generation photo voltaics, which are both very efficient and cheap to produce. This thesis is about our progress towards commercial nanowire solar...... cells. Resonance effects between the light and nanowire causes an inherent concentration of the sunlight into the nanowires, and means that a sparse array of nanowires (less than 5% of the area) can absorb all the incoming light. The resonance effects, as well as a graded index of refraction, also traps...... the light. The concentration and light trapping means that single junction nanowire solar cells have a higher theoretical maximum efficiency than equivalent planar solar cells. We have demonstrated the built-in light concentration of nanowires, by growing, contacting and characterizing a solar cell...

  13. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

    Science.gov (United States)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2016-09-23

    InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

  14. Investigation of CuInSe2 nanowire arrays with core-shell structure electrodeposited at various duty cycles into anodic alumina templates

    Science.gov (United States)

    Cheng, Yu-Song; Wang, Na-Fu; Tsai, Yu-Zen; Lin, Jia-Jun; Houng, Mau-Phon

    2017-02-01

    Copper indium selenide (CuInSe2) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe2 NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe2 NW core-shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core-shell structure was achieved. Current-voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core-shell structure improved the diode ideality factor from 3.91 to 2.63.

  15. Synthesis of ZnO-TiO{sub 2} core-shell long nanowire arrays and their application on dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yamin [Department of Physics, Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079 (China); Ji Xiaoxu [School of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473003 (China); Duan Jinxia; Zhu Jianhui; Jiang Jian; Ding Hao; Meng Gaoxiang; Ding Ruimin; Liu Jinping [Department of Physics, Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079 (China); Hu Anzheng [School of Physics and Electronic Engineering, College of Xiangfan, Xiangfan 441813 (China); Huang Xintang, E-mail: xthuang@phy.ccnu.edu.cn [Department of Physics, Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079 (China)

    2012-06-15

    Long ZnO nanowire arrays (NAs) grown on fluorine-doped tin oxide (FTO) glasses have been synthesized via a facile hydrothermal method without refreshing the reaction solution and applied as the precursor. By adjusting growth conditions, ZnO NAs with tunable lengths can be achieved. A nanocomposite made of ZnO nanowire core and TiO{sub 2} shell was further realized by a novel 'fast-dip-coating' method conducted in a Ti(OC{sub 4}H{sub 9}){sub 4}-dissolved ethanol solution. The formed ZnO-TiO{sub 2} core-shell NAs on FTO substrates were applied as electrodes for dye sensitized solar cells (DSSCs). It is found that both the TiO{sub 2} coating and NAs length play important roles in the enhancement of photoelectric conversion efficiency (PCE) of DSSCs. When the length of ZnO-TiO{sub 2} NAs reaches up to 14 {mu}m, the electrode can exhibit a maximum PCE as high as 3.80%, which is 2.6 times higher than that of pure ZnO NAs. - Graphical abstract: ZnO nanowire arrays in the length of 14 {mu}m have been successfully synthesized on the FTO substrate and coated with a thin shell of TiO{sub 2}; the ZnO-TiO{sub 2} electrodes applied in DSSCs exhibit great photoelectric conversion efficiency as high as 3.80%. Highlights: Black-Right-Pointing-Pointer Long ZnO nanowire arrays have been synthesized by using hydrothermal method. Black-Right-Pointing-Pointer A TiO{sub 2} shell outside of ZnO nanowire is introduced by a fast dip-coating method. Black-Right-Pointing-Pointer ZnO and ZnO-TiO{sub 2} core-shell nanowires are applied as the electrodes for DSSCs. Black-Right-Pointing-Pointer The maximum conversion efficiency of ZnO-TiO{sub 2} electrode reaches to 3.80%.

  16. Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder

    International Nuclear Information System (INIS)

    Bohlouli-Zanjani, Golnaz; Wen, John Z.; Hu, Anming; Persic, John; Ringuette, Sophie; Zhou, Y. Norman

    2013-01-01

    Highlights: • First study on the copper modified powder-type Al nanoparticle and NiO nanowire composites. • Experimental findings were unique in identifying the AlNi formation and comparing with the Al/CuO thermite. • Potential applications in material joining and bonding. - Abstract: Thermo-chemical properties of the Al nanoparticle and NiO nanowire composites modified by the micro-sized copper additive were investigated experimentally. Their onset temperatures of ignition and energy release data per mass were characterized using differential thermal analysis measurements. These microstructures and chemical compositions of reaction products were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The fuel-rich Al/NiO/Cu composites produced two types of metallic spheres. Copper spheres were formed from melting and solidification of the copper additive, while AlNi composite spheres were identified by the energy dispersive X-ray spectroscopy and X-ray diffraction analyses. It was found that the amount of the copper additive did not significantly influence the onset temperature of thermite peaks, but caused a dramatic change in energy release. The aforementioned ignition and energetic properties were compared with these from the Al nanoparticle and CuO nanowire composites

  17. Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes.

    Science.gov (United States)

    Choi, Tae Young; Hwang, Byeong-Ung; Kim, Bo-Yeong; Trung, Tran Quang; Nam, Yun Hyoung; Kim, Do-Nyun; Eom, Kilho; Lee, Nae-Eung

    2017-05-31

    Stretchable and transparent touch sensors are essential input devices for future stretchable transparent electronics. Capacitive touch sensors with a simple structure of only two electrodes and one dielectric are an established technology in current rigid electronics. However, the development of stretchable and transparent capacitive touch sensors has been limited due to changes in capacitance resulting from dimensional changes in elastomeric dielectrics and difficulty in obtaining stretchable transparent electrodes that are stable under large strains. Herein, a stretch-unresponsive stretchable and transparent capacitive touch sensor array was demonstrated by employing stretchable and transparent electrodes with a simple selective-patterning process and by carefully selecting dielectric and substrate materials with low strain responsivity. A selective-patterning process was used to embed a stretchable and transparent silver nanowires/reduced graphene oxide (AgNWs/rGO) electrode line into a polyurethane (PU) dielectric layer on a polydimethylsiloxane (PDMS) substrate using oxygen plasma treatment. This method provides the ability to directly fabricate thin film electrode lines on elastomeric substrates and can be used in conventional processes employed in stretchable electronics. We used a dielectric (PU) with a Poisson's ratio smaller than that of the substrate (PDMS), which prevented changes in the capacitance resulting from stretching of the sensor. The stretch-unresponsive touch sensing capability of our transparent and stretchable capacitive touch sensor has great potential in wearable electronics and human-machine interfaces.

  18. Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography

    Science.gov (United States)

    Lim, Cheol-Min; Lee, In-Kyu; Lee, Ki Joong; Oh, Young Kyoung; Shin, Yong-Beom; Cho, Won-Ju

    2017-12-01

    This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7 mV/pH and 439.3 mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1 mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.

  19. Long Silver Nanowires Synthesis by Pulsed Electrodeposition

    Directory of Open Access Journals (Sweden)

    M.R. Batevandi

    2015-09-01

    Full Text Available Silver nanowires were pulse electrodeposited into nanopore anodic alumina oxide templates. The effects of continuous and pulse electrodeposition waveform on the microstructure properties of the nanowire arrays were studied. It is seen that the microstructure of nanowire is depend to pulse condition. The off time duration of pulse waveform enables to control the growth direction of Ag nanowires.

  20. Effects of buffer composition and dilution on nanowire field-effect biosensors

    International Nuclear Information System (INIS)

    Lloret, Noémie; Frederiksen, Rune S; Møller, Thor C; Rieben, Nathalie I; Martinez, Karen L; Upadhyay, Shivendra; Nygård, Jesper; De Vico, Luca; Jensen, Jan H

    2013-01-01

    Nanowire-based field-effect transistors (FETs) can be used as ultra-sensitive and label-free biosensors for detecting protein–protein interactions. A way to increase the performance of such sensors is to dilute the sensing buffer drastically. However, we show here that this can have an important effect on the function of the proteins. Moreover, it is demonstrated that this dilution significantly affects the pH stability of the sensing buffer, which consequently impacts the charge of the protein and thus the response and signal-to-noise ratio in the sensing experiments. Three model systems are investigated experimentally to illustrate the impact on ligand–protein and protein–protein interactions. Simulations are performed to illustrate the effect on the performance of the sensors. Combining various parameters, the current study provides a means for evaluating and selecting the most appropriate buffer composition for bioFET measurements. (paper)

  1. Vertically Aligned Niobium Nanowire Arrays for Fast-Charging Micro-Supercapacitors.

    Science.gov (United States)

    Mirvakili, Seyed M; Hunter, Ian W

    2017-07-01

    Planar micro-supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide-based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro-supercapacitors is introduced. Specific capacitance of up to 1 kF m -2 (100 mF cm -2 ) with peak energy and power density of 2 kJ m -2 (6.2 MJ m -3 or 1.7 mWh cm -3 ) and 150 kW m -2 (480 MW m -3 or 480 W cm -3 ), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m 2 or 24.9 mΩ cm 2 ) and large specific capacitance, is among the highest for planar micro-supercapacitors electrodes made of nanomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics

    International Nuclear Information System (INIS)

    Shiu, Shu-Chia; Hung, Shih-Che; Chao, Jiun-Jie; Lin, Ching-Fuh

    2009-01-01

    Si nanowires (NWs) are promising materials for future electronic, photovoltaic, and sensor applications. So far the Si NWs are mainly formed on particular substrates or at high temperatures, greatly limiting their application flexibility. Here we report a low temperature process for forming and massively transferring vertically aligned Si NWs on alien substrates with a large density of about (3-5) x 10 7 NWs/mm 2 . The X-ray diffraction spectrum reveals that the transferred NWs exhibit almost the same crystal property as the bulk Si. Our investigation further shows that the transferred NWs have exceptional optical characteristics. The transferred Si NWs of 12.14 μm exhibit the transmittance as low as 0.3% in the near infrared region and 0.07% in the visible region. The extracted absorption coefficient of Si NWs in the near infrared region is about 3 x 10 3 cm -1 , over 30 times larger than that of the bulk Si. Because of the low temperature process, it enables a large variety of alien substrates such as glass and plastics to be used. In addition, the exceptional properties of the transferred NWs offer potential applications for photovoltaic, photo-detectors, sensors, and flexible electronics.

  3. Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays

    KAUST Repository

    Wei, Yaguang; Wu, Wenzhuo; Guo, Rui; Yuan, Dajun; Das, Suman; Wang, Zhong Lin

    2010-01-01

    -synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass

  4. Vertically oriented CoO@FeOOH nanowire arrays anchored on carbon cloth as a highly efficient electrode for oxygen evolution reaction

    International Nuclear Information System (INIS)

    Wang, Yin; Ni, Yuanman; Liu, Bing; Shang, Shuxia; Yang, Song; Cao, Minhua; Hu, Changwen

    2017-01-01

    Graphical abstract: Three-dimensional CoO@FeOOH nanowire arrays grown on carbon cloth were constructed, which exhibit good electrocatalytic activity towards OER in alkaline solution. Display Omitted -- Abstract: Developing high efficiency electrocatalysts for electrocatalytic oxygen evolution reaction (OER) is a key to water splitting. In this work, we demonstrate the preparation of CoO@FeOOH core-shell nanowire (NWs) grown on three-dimensional (3D) carbon cloth (CC@CoO@FeOOH-NWAs) by hydrothermal method followed by electrodeposition process as well as its highly efficient activity for water oxidation. In this hybrid structure, CoO@FeOOH-NWs with an average diameter of 100 nm is vertically grown on the surface of carbon fibers of the carbon cloth. The combination of CoO@FeOOH catalyst with good electron transfer substrate exhibits exceptionally good electrocatalytic activity and long-term durability towards oxygen evolution reaction in alkaline solution. It needs an overpotential as low as 255 mV to achieve the current density of 10 mA cm −2 , with a Tafel slope of 82 mV dec −1 and also exhibits a good stability in 20 h. In addition, the nanowire array structure is well retained after the durability test with high current density of 50 mA cm −2 . Our strategy provides a guide to rational design of micro-structures of the materials to achieve their high performance.

  5. Fabrication of SiC Composites with Synergistic Toughening of Carbon Whisker and In Situ 3C-SiC Nanowire

    Directory of Open Access Journals (Sweden)

    Zhang Yunlong

    2016-01-01

    Full Text Available The SiC composites with synergistic toughening of carbon whisker and in situ 3C-SiC nanowire have been fabricated by hot press sinter technology and annealed treatment technology. Effect of annealed time on the morphology of SiC nanowires and mechanical properties of the Cw/SiC composites was surveyed in detail. The appropriate annealed time improved mechanical properties of the Cw/SiC composites. The synergistic effect of carbon whisker and SiC nanowire can improve the fracture toughness for Cw/SiC composites. The vapor-liquid-solid growth (VLS mechanism was proposed. TEM photo showed that 3C-SiC nanowire can be obtained with preferential growth plane ({111}, which corresponded to interplanar spacing about 0.25 nm.

  6. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Science.gov (United States)

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  7. Fabrication of multilayer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jasveer, E-mail: kaurjasveer89@gmail.com; Singh, Avtar; Kumar, Davinder [Department of Physics, Punjabi University Patiala, 147002, Punjab (India); Thakur, Anup; Kaur, Raminder, E-mail: raminder-k-saini@yahoo.com [Department of Basic and Applied Sciences, Punjabi University Patiala, 147002, Punjab (India)

    2016-05-06

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  8. Fabrication of multilayer nanowires

    International Nuclear Information System (INIS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-01-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  9. Compositionally graded Fe{sub (1−x)}-Pt{sub (x)} nanowires produced by alternating current electrodeposition into alumina templates

    Energy Technology Data Exchange (ETDEWEB)

    Fardi-Ilkhchy, Ali [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Nasirpouri, Farzad, E-mail: Nasirpouri@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran, Islamic Republic of); Bran, Cristina; Vázquez, Manuel [Institute of Materials Science of Madrid, CSIC, 28049 Madrid (Spain)

    2016-12-15

    Fe{sub (1−x)}-Pt{sub (x)} (0compositionally graded nanowires (50 nm in diameter and 1 µm in length) were fabricated by alternating current (AC) electrodeposition into nanoporous aluminum oxide templates through a systematic approach. The effect of AC electrodeposition parameters such as frequency, voltage and electrolyte concentration on morphology and chemical composition of Fe-Pt alloy nanowires was studied. Based on experimental data, AC sine wave deposition at an intermediate voltage of 12 V{sub rms} and a frequency of 50 Hz, produces nanowires with nearly stoichiometric composition (Fe{sub 42}Pt{sub 58}) and a reasonably good uniformity of pore filling. However, there is a gradual change of composition in Fe-Pt alloy nanowires along the length under certain AC parameters. The observed dependency of alloy composition on the deposition voltage and frequency of AC electrodeposition is explained by an interplay between reduction potentials and diffusion coefficients of Fe and Pt ions which makes FePt system able to access compositionally graded nanowires. Magnetic measurements of nanowires of as-deposited nanowires confirm that maximum coercivity of 1.55 kOe is observed for nearly stoichiometric composition which increases up to 1.81 kOe after thermal annealing at 550 °C. - Graphical abstract: Evaluation of synthesizing extrinsic parameters (such as deposition voltages and frequency) and intrinsic parameters (diffusion coefficient and reduction potential of ion species) in compositionally graded Fe{sub (1−x)}-Pt{sub (x)} nanowires prepared by alternating current electrodeposition into alumina templates.

  10. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    Science.gov (United States)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  11. An Enhanced UV-Vis-NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure.

    Science.gov (United States)

    Zheng, Zhi; Gan, Lin; Zhang, Jianbing; Zhuge, Fuwei; Zhai, Tianyou

    2017-03-01

    ZnO nanostructure-based photodetectors have a wide applications in many aspects, however, the response range of which are mainly restricted in the UV region dictated by its bandgap. Herein, UV-vis-NIR sensitive ZnO photodetectors consisting of ZnO nanowires (NW) array/PbS quantum dots (QDs) heterostructures are fabricated through modified electrospining method and an exchanging process. Besides wider response region compared to pure ZnO NWs based photodetectors, the heterostructures based photodetectors have faster response and recovery speed in UV range. Moreover, such photodetectors demonstrate good flexibility as well, which maintain almost constant performances under extreme (up to 180°) and repeat (up to 200 cycles) bending conditions in UV-vis-NIR range. Finally, this strategy is further verified on other kinds of 1D nanowires and 0D QDs, and similar enhancement on the performance of corresponding photodetecetors can be acquired, evidencing the universality of this strategy.

  12. Electrical characterization of Ω-gated uniaxial tensile strained Si nanowire-array metal-oxide-semiconductor field effect transistors with - and channel orientations

    International Nuclear Information System (INIS)

    Habicht, Stefan; Feste, Sebastian; Zhao, Qing-Tai; Buca, Dan; Mantl, Siegfried

    2012-01-01

    Nanowire-array metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated along and crystal directions on (001) un-/strained silicon-on-insulator substrates. Lateral strain relaxation through patterning was employed to transform biaxial tensile strain into uniaxial tensile strain along the nanowire. Devices feature ideal subthreshold swings and maximum on-current/off-current ratios of 10 11 for n and p-type transistors on both substrates. Electron and hole mobilities were extracted by split C–V method. For p-MOSFETs an increased mobility is observed for channel direction devices compared to devices. The n-MOSFETs showed a 45% increased electron mobility compared to devices. The comparison of strained and unstrained n-MOSFETs along and clearly demonstrates improved electron mobilities for strained channels of both channel orientations.

  13. Fabrication and photoelectrochemical properties of silicon nanowires/g-C{sub 3}N{sub 4} core/shell arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhen [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Institute of Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Ma, Ge [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Chen, Zhihong, E-mail: chenzhihong1227@sina.com [Shenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458 (China); Zhang, Yongguang [Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130 (China); Zhang, Zhe [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Gao, Jinwei [Institute of Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Meng, Qingguo; Yuan, Mingzhe [Shenyang Institute of Automation, Guangzhou, Chinese Academy of Sciences, Guangzhou 511458 (China); Wang, Xin, E-mail: wangxin@scnu.edu.cn [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Liu, Jun-ming [Institute of Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China); Zhou, Guofu [Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province (China)

    2017-02-28

    Highlights: • A novel Silicon Nanowires/g-C{sub 3}N{sub 4} core/shell arrays photoanode prepared by a mild and inexpensive metal-catalyzed electroless etching (MCEE) process followed by liquid atomic layer deposition (LALD), wiich is a facile and low-cost method. • In comparison with FTO/g-C{sub 3}N{sub 4} and Si NWs samples, the Si NWs/g-C{sub 3}N{sub 4} samples showed significantly enhanced photocurrent which could be attributed to the SiNWs-based core/shell structure. • A systematical PEC mechanism of the Si NWs/g-C{sub 3}N{sub 4} was proposed is this manuscript. - Abstract: A photoelectrochemical (PEC) cell made of metal-free carbon nitride (g-C{sub 3}N{sub 4}) @siliconnanowire(Si NW) arrays (denoted as Si NWs/g-C{sub 3}N{sub 4}) is presented in this work. The as-prepared photoelectrodes with different mass contents of g-C{sub 3}N{sub 4} have been synthesized via a metal-catalyzed electroless etching (MCEE), liquid atomic layer deposition (LALD) and annealing methods. The amount of g-C{sub 3}N{sub 4} on the Si NW arrays can be controlled by tuning the concentration of the cyanamide solution used in the LALD procedure. The dense and vertically aligned Si NWs/g-C{sub 3}N{sub 4} core/shell nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In comparison with FTO/g-C{sub 3}N{sub 4} and Si NW samples, the Si NWs/g-C{sub 3}N{sub 4} samples showed significantly enhanced photocurrents over the entire potential sweep range. Electrochemical impedance spectroscopy (EIS) was conducted to investigate the properties of the charge transfer process, and the results indicated that the enhanced PEC performance may be due to the increased photo-generated interfacial charge transfer between the Si NWs and g-C{sub 3}N{sub 4}. The photocurrent density reached 45 μA/cm{sup 2} under 100 mW/cm{sup 2} (AM 1.5 G) illumination at 0 V (vs. Pt) in neutral Na{sub 2}SO{sub 4} solution (pH ∼ 7

  14. Growth and characterization of bismuth telluride nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Picht, Oliver

    2010-05-26

    Polycrystalline Bi{sub 2}Te{sub 3} nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 {mu}m. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi{sub 2}Te{sub 3} and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 {mu}m thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  15. Growth and characterization of bismuth telluride nanowires

    International Nuclear Information System (INIS)

    Picht, Oliver

    2010-01-01

    Polycrystalline Bi 2 Te 3 nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 μm. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi 2 Te 3 and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 μm thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  16. Combustion synthesis of AlB2-Al2O3 composite powders with AlB2 nanowire structures

    Science.gov (United States)

    Yang, Pan; Xiao, Guoqing; Ding, Donghai; Ren, Yun; Yang, Shoulei; Lv, Lihua; Hou, Xing

    2018-05-01

    Using of Al and B2O3 powders as starting materials, and Mg-Al alloy as additives, AlB2-Al2O3 composite powders with AlB2 nanowire structures were successfully fabricated via combustion synthesis method in Ar atmosphere at a pressure of 1.5 MPa. The effect of different amount of Mg-Al alloy on the phase compositions and morphology of the combustion products was investigated. The results revealed that AlB2 and Al2O3 increased, whereas Al decreased with the content of Mg-Al alloy increasing. The impurities MgAl2O4 and AlB12 would exist in the sample with adding of 18 wt% Mg-Al alloy. Interestingly, FESEM/TEM/EDS results showed that AlB2 nanowires were observed in the products when the content of Mg-Al alloy is 6 wt% and 12 wt%. The more AlB2 nanowires can be found as the content of Mg-Al alloy increased. And the yield of AlB2 nanowires with the diameter of about 200 nanometers (nm) and the length up to several tens of micrometers (μm) in the combustion product is highest when the content of Mg-Al alloy is 12 wt%. The vapor, such as Mg-Al (g), B2O2 (g), AlO (g) and Al2O (g), produced during the process of combustion synthesis, reacted with each other to yield AlB2 nanowires by vapor-solid (VS) mechanism and the corresponding model was also proposed.

  17. Phased Array Imaging of Complex-Geometry Composite Components.

    Science.gov (United States)

    Brath, Alex J; Simonetti, Francesco

    2017-10-01

    Progress in computational fluid dynamics and the availability of new composite materials are driving major advances in the design of aerospace engine components which now have highly complex geometries optimized to maximize system performance. However, shape complexity poses significant challenges to traditional nondestructive evaluation methods whose sensitivity and selectivity rapidly decrease as surface curvature increases. In addition, new aerospace materials typically exhibit an intricate microstructure that further complicates the inspection. In this context, an attractive solution is offered by combining ultrasonic phased array (PA) technology with immersion testing. Here, the water column formed between the complex surface of the component and the flat face of a linear or matrix array probe ensures ideal acoustic coupling between the array and the component as the probe is continuously scanned to form a volumetric rendering of the part. While the immersion configuration is desirable for practical testing, the interpretation of the measured ultrasonic signals for image formation is complicated by reflection and refraction effects that occur at the water-component interface. To account for refraction, the geometry of the interface must first be reconstructed from the reflected signals and subsequently used to compute suitable delay laws to focus inside the component. These calculations are based on ray theory and can be computationally intensive. Moreover, strong reflections from the interface can lead to a thick dead zone beneath the surface of the component which limits sensitivity to shallow subsurface defects. This paper presents a general approach that combines advanced computing for rapid ray tracing in anisotropic media with a 256-channel parallel array architecture. The full-volume inspection of complex-shape components is enabled through the combination of both reflected and transmitted signals through the part using a pair of arrays held in a yoke

  18. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries

    Science.gov (United States)

    Pan, G. X.; Cao, F.; Xia, X. H.; Zhang, Y. J.

    2016-11-01

    Rational construction of advanced FeS2 cathode is one of research hotspots, and of great importance for developing high-performance lithium ion batteries (LIBs). Herein we report a facile hydrolysis-sulfurization method for fabrication of FeS2/C nanotubes arrays with the help of sacrificial Co2(OH)2CO3 nanowires template and glucose carbonization. Self-supported FeS2/C nanotubes consist of interconnected nanoburrs of 5-20 nm, and show hierarchical porous structure. The FeS2/C nanotubes arrays are demonstrated with enhanced cycling life and noticeable high-rate capability with capacities ranging from 735 mAh g-1 at 0.25 C to 482 mAh g-1 at 1.5 C, superior to those FeS2 counterparts in the literature. The composite nanotubes arrays architecture plays positive roles in the electrochemical enhancement due to combined advantages of large electrode-electrolyte contact area, good strain accommodation, improved electrical conductivity, and enhanced structural stability.

  19. Synthesis of ZnO nanowire arrays on ZnO−TiO{sub 2} mixed oxide seed layer for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Anandhan, N., E-mail: anandhan_kn@rediffmail.com [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Thangamuthu, R. [Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi (India); Mummoorthi, M. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Ravi, G. [Photonic Crystal Lab, Department of Physics, Alagappa University, Karaikudi (India)

    2016-08-25

    ZnO nanowire arrays (NWAs) were synthesized on ZnO−TiO{sub 2} mixed oxide seeded FTO conducting glass plate by two-step sol-gel and hydrothermal method, respectively. X-ray diffraction patterns reveal the presence of mixed and hexagonal phases in seed layer and NWAs, respectively. Scanning electron microscope images showed that the FTO glass plate is uniformly covered with grains and a few nanorods in seed layer and dense NWAs are vertically grown on the seed layer. The hexagonal structure and high crystal quality have been confirmed by micro Raman spectra. Photoluminescence spectra also present that NWAs have high crystal quality and less atomic defects. UV spectra indicate that NWAs are absorbed more dye molecules and it has the band gap equal to bulk material. The efficiency of ZnO−TiO{sub 2} mixed oxide seed layer and ZnO NWAs is found to be 0.56 and 0.84% respectively. Electrochemical impedance spectra reveal that NWAs DSSC has high charge transfer recombination resistance than the seed layer DSSC. - Highlights: • ZnO nanowire arrays were synthesized by two-step sol-gel and hydrothermal method. • The crystal structure and crystalline quality of films are confirmed by Raman spectra. • The emission properties of films are investigated by photoluminescence spectra. • ZnO nanowire arrays (NWAs) have higher charge transfer recombination resistance. • The conversion efficiency of the seed layer and NWAs is to be 0.56 and 0.84%.

  20. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    International Nuclear Information System (INIS)

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai; Kim, Sang-Ho

    2014-01-01

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  1. A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires

    Science.gov (United States)

    Farajpour, M. R.; Shahidi, A. R.; Farajpour, A.

    2018-03-01

    In this study, the buckling behavior of a three-layered composite nanoplate reinforced with shape memory alloy (SMA) nanowires is examined. Whereas the upper and lower layers are reinforced with typical nanowires, SMA nanoscale wires are used to strengthen the middle layer of the system. The composite nanoplate is assumed to be under the action of biaxial compressive loading. A scale-dependent mathematical model is presented with the consideration of size effects within the context of the Eringen’s nonlocal continuum mechanics. Using the one-dimensional Brinson’s theory and the Kirchhoff theory of plates, the governing partial differential equations of SMA nanowire-reinforced hybrid nanoplates are derived. Both lateral and longitudinal deflections are taken into consideration in the theoretical formulation and method of solution. In order to reduce the governing differential equations to their corresponding algebraic equations, a discretization approach based on the differential quadrature method is employed. The critical buckling loads of the hybrid nanosystem with various boundary conditions are obtained with the use of a standard eigenvalue solver. It is found that the stability response of SMA composite nanoplates is strongly sensitive to the small scale effect.

  2. High performance and durability of order-structured cathode catalyst layer based on TiO_2@PANI core-shell nanowire arrays

    International Nuclear Information System (INIS)

    Chen, Ming; Wang, Meng; Yang, Zhaoyi; Wang, Xindong

    2017-01-01

    Highlights: • TiO_2@PANI core-shell nanowire arrays were prepared and applied as catalyst support. • As-prepared Pt-TiO_2@PANI core-shell nanowire arrays were applied as order-structured cathode catalyst layer. • The novel cathode catalyst structure without Nafion"® ionomer enhance the performance and durability of PEMFC. - Abstract: In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO_2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO_2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO_2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm"−"2) than conventional PEMFC (699.30 mW cm"−"2). Electrochemically active surface area (ECSA) and charge transfer impedance (R_c_t) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO_2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order

  3. High performance and durability of order-structured cathode catalyst layer based on TiO{sub 2}@PANI core-shell nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Wang, Meng; Yang, Zhaoyi [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China); School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China); Wang, Xindong, E-mail: echem@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China); School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 College Road, Beijing 100083 (China)

    2017-06-01

    Highlights: • TiO{sub 2}@PANI core-shell nanowire arrays were prepared and applied as catalyst support. • As-prepared Pt-TiO{sub 2}@PANI core-shell nanowire arrays were applied as order-structured cathode catalyst layer. • The novel cathode catalyst structure without Nafion{sup ®} ionomer enhance the performance and durability of PEMFC. - Abstract: In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO{sub 2}@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO{sub 2}@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO{sub 2} nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order-structured cathode catalyst layer shows higher peak power density (773.54 mW cm{sup −2}) than conventional PEMFC (699.30 mW cm{sup −2}). Electrochemically active surface area (ECSA) and charge transfer impedance (R{sub ct}) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO{sub 2}@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and

  4. Nondestructive sensing and stress transferring evaluation of carbon nanotube, nanofiber, and Ni nanowire strands/polymer composites using an electro-micromechanical technique

    Science.gov (United States)

    Park, Joung-Man; Kim, Sung-Ju; Jung, Jin-Gyu; Hansen, George; Yoon, Dong-Jin

    2006-03-01

    Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT), nanofiber (CNF), and Ni nanowire strands/epoxy composites were investigated using electro-micromechanical technique. Electrospun PVDF nanofiber was also prepared as a piezoelectric sensor. High volume% CNT/epoxy composites showed significantly higher tensile properties than neat and low volume% CNT/epoxy composites. CNF /epoxy composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type and content/epoxy composites were indirectly measured apparent modulus using uniformed cyclic loading and electro-pullout test. CNT or Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to increased crystallization, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also responded the sensing effect on humidity and temperature. Nanocomposites using CNT, CNF, Ni nanowire strands, and electrospun PVDF nanofiber web can be applicable practically for multifunctional applications nondestructively.

  5. Co{sub 3}O{sub 4} nanowire rate at MnO{sub 2} ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinping [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Institute of Nanoscience and Nanotechnology, Department of Physics, Huazhong Normal University, Wuhan 430079, Hubei (China); Jiang, Jian [Institute of Nanoscience and Nanotechnology, Department of Physics, Huazhong Normal University, Wuhan 430079, Hubei (China); Cheng, Chuanwei; Li, Hongxing; Fan, Hong Jin [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Zhang, Jixuan; Gong, Hao [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2011-05-10

    A smart hybrid nanowire array consisting of Co{sub 3}O{sub 4} porous nanowire core and a MnO{sub 2} ultrathin nanosheet shell is fabricated using a general 3D interfacial carbon-assisted hydrothermal method. The array exhibits a high capacitance with good cycle performance and remarkable rate capability that is ranging among the best reported to date for hybrid metal oxide systems in the absence of a conducting matrix. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Polymer composite microtube array produced by meniscus-guided approach

    Directory of Open Access Journals (Sweden)

    Kyu Hwang Won

    2013-09-01

    Full Text Available Single freestanding microtubes of poly(methyl methacrylate/polypyrrole (PMMA/PPy are produced based on a meniscus-guided approach. A ring-deposit of nanoparticles is first formed in a meniscus solution of PMMA/PPy nanoparticles by outward liquid flow in fast solvent evaporation. Continuous accumulation of nanoparticles on the ring-deposit is then made by guiding the meniscus upward under the outward flow, thereby forming single composite microtube with controlled outer diameter and wall thickness. The meniscus-guiding enables us to produce an array of freestanding microtubes that are individually controlled in size at the desired positions. We demonstrate individually addressable gas sensors by integrating PMMA/PPy microtubes on electrodes.

  7. Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite.

    Science.gov (United States)

    Lv, Zhisheng; Luo, Yifei; Tang, Yuxin; Wei, Jiaqi; Zhu, Zhiqiang; Zhou, Xinran; Li, Wenlong; Zeng, Yi; Zhang, Wei; Zhang, Yanyan; Qi, Dianpeng; Pan, Shaowu; Loh, Xian Jun; Chen, Xiaodong

    2018-01-01

    Although some progress has been made on stretchable supercapacitors, traditional stretchable supercapacitors fabricated by predesigning structured electrodes for device assembling still lack the device-level editability and programmability. To adapt to wearable electronics with arbitrary configurations, it is highly desirable to develop editable supercapacitors that can be directly transferred into desirable shapes and stretchability. In this work, editable supercapacitors for customizable shapes and stretchability using electrodes based on mechanically strengthened ultralong MnO 2 nanowire composites are developed. A supercapacitor edited with honeycomb-like structure shows a specific capacitance of 227.2 mF cm -2 and can be stretched up to 500% without degradation of electrochemical performance, which is superior to most of the state-of-the-art stretchable supercapacitors. In addition, it maintains nearly 98% of the initial capacitance after 10 000 stretch-and-release cycles under 400% tensile strain. As a representative of concept for system integration, the editable supercapacitors are integrated with a strain sensor, and the system exhibits a stable sensing performance even under arm swing. Being highly stretchable, easily programmable, as well as connectable in series and parallel, an editable supercapacitor with customizable stretchability is promising to produce stylish energy storage devices to power various portable, stretchable, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array.

    Science.gov (United States)

    Rai, Satish C; Wang, Kai; Ding, Yong; Marmon, Jason K; Bhatt, Manish; Zhang, Yong; Zhou, Weilie; Wang, Zhong Lin

    2015-06-23

    A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.2 eV) and ZnS (3.7 eV), which is mainly attributed to spatially indirect type-II transition facilitated by the abrupt interface between the ZnO core and ZnS shell. The performance of the device was further enhanced through the piezo-phototronic effect induced lowering of the barrier height to allow charge carrier transport across the ZnO/ZnS interface, resulting in three orders of relative responsivity change measured at three different excitation wavelengths (385, 465, and 520 nm). This work demonstrates a prototype UV/visible photodetector based on the truly wide band gap semiconducting 3D core/shell nanowire array with enhanced performance through the piezo-phototronic effect.

  9. Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/β-Ga2O3 Nanowires Array Film Schottky Junction.

    Science.gov (United States)

    Chen, Xing; Liu, Kewei; Zhang, Zhenzhong; Wang, Chunrui; Li, Binghui; Zhao, Haifeng; Zhao, Dongxu; Shen, Dezhen

    2016-02-17

    Because of the direct band gap of 4.9 eV, β-Ga2O3 has been considered as an ideal material for solar-blind photodetection without any bandgap tuning. Practical applications of the photodetectors require fast response speed, high signal-to-noise ratio, low energy consumption and low fabrication cost. Unfortunately, most reported β-Ga2O3-based photodetectors usually possess a relatively long response time. In addition, the β-Ga2O3 photodetectors based on bulk, the individual 1D nanostructure, and the film often suffer from the high cost, the low repeatability, and the relatively large dark current, respectively. In this paper, a Au/β-Ga2O3 nanowires array film vertical Schottky photodiode is successfully fabricated by a simple thermal partial oxidation process. The device exhibits a very low dark current of 10 pA at -30 V with a sharp cutoff at 270 nm. More interestingly, the 90-10% decay time of our device is only around 64 μs, which is much quicker than any other previously reported β-Ga2O3-based photodetectors. Besides, the self-powering, the excellent stability and the good reproducibility of Au/β-Ga2O3 nanowires array film photodetector are helpful to its commercialization and practical applications.

  10. The Self- and Directed Assembly of Nanowires

    Science.gov (United States)

    Smith, Benjamin David

    This thesis explores the self- and directed assembly of nanowires. Specifically, we examine the driving forces behind nanowire self-assembly and the macro-structures that are formed. Particle-dense, oriented nanowire structures show promise in the fields of photonics, energy, sensing, catalysis, and electronics. Arrays of spherical particles have already found uses in electronic inks, sensing arrays, and many other commercial applications; but, it is a challenge to create specific arrays of morphologically and/or compositionally anisotropic particles. The following chapters illuminate the interactions that drive the assembly of anisotropic particles in high density solutions in the absence of applied fields or solution drying. Special emphasis is placed on the structures that are formed. The properties of micro- and nanoparticles and their assembly are introduced in Chapter 1. In particular, the properties of shape and material anisotropic particles are highlighted, while challenges in producing desired arrays are discussed. In this thesis, metallic nanowires of increasing complexity were used to examine the self-assembly behavior of both shape and material anisotropic particles. Nanowires were synthesized through templated electrodeposition. In this process, porous alumina membranes served as a template in which metal salts were reduced to form particles. Upon template dissolution, billions of nominally identical particles were released. We specifically focused on segmented, metallic nanowires 2-13 mum in length and 180 to 350 nm in diameter. Since these particles have strong van der Waals (VDWs) attractions, an electrostatically repulsive coating was necessary to prevent aggregation; we used small molecule, DNA, or amorphous silica coatings. Nanowires and their coatings were characterized by electron microscopy. In order to study self-assembly behavior, particle-dense aqueous suspensions were placed within an assembly chamber defined by a silicone spacer. The

  11. Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu Guangqing [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Adeloju, Samuel B., E-mail: Sam.Adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); Wu Yucheng [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang Xinyi [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia)

    2012-11-28

    Highlights: Black-Right-Pointing-Pointer Fabrication of well aligned PPyNWA of 20 nm diameter within AAO template. Black-Right-Pointing-Pointer Improvement of electrochemical properties by decoration with PtNPs. Black-Right-Pointing-Pointer Sensitive amperometric and potentiometric detection of glucose by adsorption of GOx on PPyNWA-PtNPs. Black-Right-Pointing-Pointer Detection of as little as 5.6 {mu}M glucose with potentiometric detection. Black-Right-Pointing-Pointer Comparable or better detection limit and sensitivity than some glucose biosensors fabricated with nanomaterials. - Abstract: A novel glucose biosensor, based on the modification of well-aligned polypyrrole nanowires array (PPyNWA) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. The distinct differences in the electrochemical properties of PPyNWA-GOx, PPyNWA-PtNPs, and PPyNWA-PtNPs-GOx electrodes were revealed by cyclic voltammetry. In particular, the results obtained for PPyNWA-PtNPs-GOx biosensor showed evidence of direct electron transfer due mainly to modification with PtNPs. Optimum fabrication of the PPyNWA-PtNPs-GOx biosensor for both potentiometric and amperometric detection of glucose were achieved with 0.2 M pyrrole, applied current density of 0.1 mA cm{sup -2}, polymerization time of 600 s, cyclic deposition of PtNPs from -200 mV to 200 mV, scan rate of 50 mV s{sup -1}, and 20 cycles. A sensitivity of 40.5 mV/decade and a linear range of 10 {mu}M to 1000 {mu}M (R{sup 2} = 0.9936) were achieved for potentiometric detection, while for amperometric detection a sensitivity of 34.7 {mu}A cm{sup -2} mM{sup -1} at an applied potential of 700 mV and a linear range of 0.1-9 mM (R{sup 2} = 0.9977) were achieved. In terms of achievable detection limit, potentiometric detection achieved 5.6 {mu}M of glucose, while amperometric detection achieved 27.7 {mu}M.

  12. Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor

    International Nuclear Information System (INIS)

    Xu Guangqing; Adeloju, Samuel B.; Wu Yucheng; Zhang Xinyi

    2012-01-01

    Highlights: ► Fabrication of well aligned PPyNWA of 20 nm diameter within AAO template. ► Improvement of electrochemical properties by decoration with PtNPs. ► Sensitive amperometric and potentiometric detection of glucose by adsorption of GOx on PPyNWA–PtNPs. ► Detection of as little as 5.6 μM glucose with potentiometric detection. ► Comparable or better detection limit and sensitivity than some glucose biosensors fabricated with nanomaterials. - Abstract: A novel glucose biosensor, based on the modification of well-aligned polypyrrole nanowires array (PPyNWA) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. The distinct differences in the electrochemical properties of PPyNWA–GOx, PPyNWA–PtNPs, and PPyNWA–PtNPs–GOx electrodes were revealed by cyclic voltammetry. In particular, the results obtained for PPyNWA–PtNPs–GOx biosensor showed evidence of direct electron transfer due mainly to modification with PtNPs. Optimum fabrication of the PPyNWA–PtNPs–GOx biosensor for both potentiometric and amperometric detection of glucose were achieved with 0.2 M pyrrole, applied current density of 0.1 mA cm −2 , polymerization time of 600 s, cyclic deposition of PtNPs from −200 mV to 200 mV, scan rate of 50 mV s −1 , and 20 cycles. A sensitivity of 40.5 mV/decade and a linear range of 10 μM to 1000 μM (R 2 = 0.9936) were achieved for potentiometric detection, while for amperometric detection a sensitivity of 34.7 μA cm −2 mM −1 at an applied potential of 700 mV and a linear range of 0.1–9 mM (R 2 = 0.9977) were achieved. In terms of achievable detection limit, potentiometric detection achieved 5.6 μM of glucose, while amperometric detection achieved 27.7 μM.

  13. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2017-01-01

    Full Text Available The copper oxide (CuO nanowires/functionalized graphene (f-graphene composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group “–(CH25COOH”, and the CuO nanowires (NWs were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g−1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes.

  14. Investigation of CuInSe{sub 2} nanowire arrays with core–shell structure electrodeposited at various duty cycles into anodic alumina templates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yu-Song [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, Tainan 701, Taiwan (China); Wang, Na-Fu; Tsai, Yu-Zen [Department of Electronic Engineering, Cheng Shiu University, 840 Chengcing Rd., Niaosong District, Kaohsiung City 833, Taiwan (China); Lin, Jia-Jun [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, Tainan 701, Taiwan (China); Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw [Institute of Microelectronics, Department of Electrical Engineering, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2017-02-28

    Highlights: • The present paper reports that CuInSe2 NW arrays were fabricated through pulsed electrode position onto an AAO template with various duty cycles, and a pore-filling ratio of approximately 92% was achieved. • GIXRD patterns showed that all CuInSe2 NW arrays were chalcopyrite and SAED images confirmed that the CuInSe2 NWs were polycrystalline. • PEDOT/CuInSe2 NW core–shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. • Current–voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core–shell structure improved the diode ideality factor from 3.91 to 2.63. - Abstract: Copper indium selenide (CuInSe{sub 2}) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe{sub 2} NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe{sub 2} NW core–shell arrays were fabricated using surfactant-modified CuInSe{sub 2} NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core–shell structure was achieved. Current–voltage plots revealed that the CuInSe{sub 2} NW arrays were p-type semiconductors; moreover, the core–shell structure improved the diode ideality factor from 3.91 to 2.63.

  15. Investigation of CuInSe2 nanowire arrays with core–shell structure electrodeposited at various duty cycles into anodic alumina templates

    International Nuclear Information System (INIS)

    Cheng, Yu-Song; Wang, Na-Fu; Tsai, Yu-Zen; Lin, Jia-Jun; Houng, Mau-Phon

    2017-01-01

    Highlights: • The present paper reports that CuInSe2 NW arrays were fabricated through pulsed electrode position onto an AAO template with various duty cycles, and a pore-filling ratio of approximately 92% was achieved. • GIXRD patterns showed that all CuInSe2 NW arrays were chalcopyrite and SAED images confirmed that the CuInSe2 NWs were polycrystalline. • PEDOT/CuInSe2 NW core–shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. • Current–voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core–shell structure improved the diode ideality factor from 3.91 to 2.63. - Abstract: Copper indium selenide (CuInSe 2 ) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe 2 NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe 2 NW core–shell arrays were fabricated using surfactant-modified CuInSe 2 NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core–shell structure was achieved. Current–voltage plots revealed that the CuInSe 2 NW arrays were p-type semiconductors; moreover, the core–shell structure improved the diode ideality factor from 3.91 to 2.63.

  16. Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites.

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Roh, Hyung Doh; Park, Young-Bin; Park, Hyung Wook

    2017-10-18

    Well-aligned NiCo 2 S 4 nanowires, synthesized hydrothermally on the surface of woven Kevlar fiber (WKF), were used to fabricate composites with reduced graphene oxide (rGO) dispersed in polyester resin (PES) by means of vacuum-assisted resin transfer molding. The NiCo 2 S 4 nanowires were synthesized with three precursor concentrations. Nanowire growth was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Hierarchical and high growth density of the nanowires led to exceptional mechanical properties of the composites. Compared with bare WKF/PES, the tensile strength and absorbed impact energy were enhanced by 96.2% and 92.3%, respectively, for WKF/NiCo 2 S 4 /rGO (1.5%)/PES. The synergistic effect of NiCo 2 S 4 nanowires and rGO in the fabricated composites improved the electrical conductivity of insulating WKF/PES composites, reducing the resistance to ∼10 3 Ω. Joule heating performance depended strongly on the precursor concentration of the nanowires and the presence of rGO in the composite. A maximum surface temperature of 163 °C was obtained under low-voltage (5 V) application. The Joule heating performance of the composites was demonstrated in a surface deicing experiment; we observed that 17 g of ice melted from the surface of the composite in 14 min under an applied voltage of 5 V at -28 °C. The excellent performance of WKF/NiCo 2 S 4 /rGO/PES composites shows great potential for aerospace structural applications requiring outstanding mechanical properties and Joule heating capability for deicing of surfaces.

  17. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    Science.gov (United States)

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  18. Self-powered heat-resistant polymeric 1D nanowires and 3D micro/nanowire assemblies in a pressure-crystallized size-distributed graphene oxide/poly (vinylidene fluoride) composite

    Science.gov (United States)

    Tian, Pengfei; Lyu, Jun; Huang, Rui; Zhang, Chaoliang

    2017-12-01

    Piezoelectric one- (1D) and three-dimensional (3D) hybrid micro/nanostructured materials have received intense research interest because of their ability in capturing trace amounts of energy and transforming it into electrical energy. In this work, a size-distributed graphene oxide (GO) was utilized for the concurrent growth of both the 1D nanowires and 3D micro/nanowire architectures of poly (vinylidene fluoride) (PVDF) with piezoelectricity. The in situ formation of the polymeric micro/nanostructures, with crystalline beta phase, was achieved by the high-pressure crystallization of a well dispersed GO/PVDF composite, fabricated by an environmentally friendly physical approach. Particularly, by controlling the crystallization conditions of the binary composite at high pressure, the melting point of the polymeric micro/nanowires, which further constructed the 3D micro/nanoarchitectures, was nearly 30°C higher than that of the original PVDF. The large scale simultaneous formation of the 1D and 3D micro/nanostructures was attributed to a size-dependent catalysis of the GOs in the pressure-treated composite system. The as-fabricated heat-resistant hybrid micro/nanoarchitectures, consisting of GOs and piezoelectric PVDF micro/nanowires, may permit niche applications in self-powered micro/nanodevices for energy scavenging from their working environments.

  19. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kasanaboina, Pavan Kumar [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Ahmad, Estiak [Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Li, Jia; Iyer, Shanthi [Department of Electrical and Computer Engineering, North Carolina A& T State University, Greensboro, North Carolina 27411 (United States); Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA& T State University, Greensboro, North Carolina 27401 (United States); Reynolds, C. Lewis; Liu, Yang [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-07

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  20. High magnetic field matching effects in NbN films induced by template grown dense ferromagnetic nanowires arrays

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, Mária; Michotte, S.

    2009-01-01

    magnetic nanowires. Matching effects have been observed up to 2.5 T (11th matching field) and are maintained at low temperature. An appreciable enhancement of the superconducting properties is observed. At low fields, a hysteretic behavior in the magnetoresistance is found, directly related...

  1. Spectrally selective solar absorber with sharp and temperature dependent cut-off based on semiconductor nanowire arrays

    Science.gov (United States)

    Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2017-05-01

    Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.

  2. Synthesis of ZnTe nanowires onto TiO2 nanotubular arrays by pulse-reverse electrodeposition

    International Nuclear Information System (INIS)

    Gandhi, T.; Raja, K.S.; Misra, M.

    2009-01-01

    Growth of ZnTe nanowires using a pulse-reverse electrodeposition technique from a non-aqueous solution is reported. ZnTe nanowires were grown on to an ordered nanotubular TiO 2 template in a propylene carbonate solution at 130 o C inside a controlled atmosphere glove box. The pulse-reverse electro deposition process consisted of a cathodic pulse at - 0.62 V and an anodic pulse at 0.75 V Vs Zn 2+ /Zn. Stoichiometry growth of crystalline ZnTe nanowires was observed in the as-deposited condition. The anodic pulse cycle of the pulse-reverse electrodeposition process presumably introduced zinc vacancies as deep level acceptors at an energy level of E v + 0.47 eV. The resultant ZnTe nanowires showed p-type semiconductivity with a resistivity of 7.8 x 10 4 Ω cm and a charge carrier density of 1.67 x 10 14 cm -3 . Annihilation of the defects occurred upon thermal annealing that resulted in marginal decrease in the defect density.

  3. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading

    Science.gov (United States)

    Hu, Qiao; Wu, Han; Sun, Jia; Yan, Donghang; Gao, Yongli; Yang, Junliang

    2016-02-01

    Organic-inorganic hybrid halide perovskite nanowires (PNWs) show great potential applications in electronic and optoelectronic devices such as solar cells, field-effect transistors and photodetectors. It is very meaningful to fabricate ordered, large-area PNW arrays and greatly accelerate their applications and commercialization in electronic and optoelectronic devices. Herein, highly oriented and ultra-long methylammonium lead iodide (CH3NH3PbI3) PNW array thin films were fabricated by large-scale roll-to-roll (R2R) micro-gravure printing and doctor blading in ambient environments (humility ~45%, temperature ~28 °C), which produced PNW lengths as long as 15 mm. Furthermore, photodetectors based on these PNWs were successfully fabricated on both silicon oxide (SiO2) and flexible polyethylene terephthalate (PET) substrates and showed moderate performance. This study provides low-cost, large-scale techniques to fabricate large-area PNW arrays with great potential applications in flexible electronic and optoelectronic devices.Organic-inorganic hybrid halide perovskite nanowires (PNWs) show great potential applications in electronic and optoelectronic devices such as solar cells, field-effect transistors and photodetectors. It is very meaningful to fabricate ordered, large-area PNW arrays and greatly accelerate their applications and commercialization in electronic and optoelectronic devices. Herein, highly oriented and ultra-long methylammonium lead iodide (CH3NH3PbI3) PNW array thin films were fabricated by large-scale roll-to-roll (R2R) micro-gravure printing and doctor blading in ambient environments (humility ~45%, temperature ~28 °C), which produced PNW lengths as long as 15 mm. Furthermore, photodetectors based on these PNWs were successfully fabricated on both silicon oxide (SiO2) and flexible polyethylene terephthalate (PET) substrates and showed moderate performance. This study provides low-cost, large-scale techniques to fabricate large-area PNW arrays

  4. Hierarchical shell/core CuO nanowire/carbon fiber composites as binder-free anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yuan, Wei; Luo, Jian; Pan, Baoyou; Qiu, Zhiqiang; Huang, Shimin; Tang, Yong

    2017-01-01

    Highlights: •The composite anode is composed of CuO nanowire shell and carbon fiber core. •The composite anode avoids completely the use of binders. •Synergistic effect of carbon fibers and CuO nanowires enhances performance. •Carbon fibers improve electrical conductivity and buffer volume change. •CuO nanowires shorten diffusion length and alleviate structural strain. -- Abstract: Developing high-performance electrode structures is of great importance for advanced lithium-ion batteries. This study reports an efficient method to fabricate hierarchical shell/core CuO nanowire/carbon fiber composites via electroless plating and thermal oxidation processes. With this method, a binder-free CuO nanowire/carbon fiber shell/core hierarchical network composite anode for lithium-ion batteries is successfully fabricated. The morphology and chemical composition of the anode are characterized, and the electrochemical performance of the anode is investigated by standard electrochemical tests. Owing to the superior properties of carbon fibers and the morphological advantages of CuO nanowires, this composite anode still retains an excellent reversible capacity of 598.2 mAh g −1 with a capacity retention rate above 86%, even after 50 cycles, which is much higher than the CuO anode without carbon fibers. Compared to the typical CuO/C electrode systems, the novel binder-free anode yields a performance close to that of the typical core/shell electrode systems and a much higher reversible capacity and capacity retention than the similar shell/core patterns as well as the anodes with binders. It is believed that this novel anode will pave the way to the development of binder-free anodes in response to the increasing demands for high-power energy storage.

  5. Nanowire structures and electrical devices

    Science.gov (United States)

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  6. Enhancement of tribofilm formation from water lubricated PEEK composites by copper nanowires

    Science.gov (United States)

    Gao, Chuanping; Fan, Shuguang; Zhang, Shengmao; Zhang, Pingyu; Wang, Qihua

    2018-06-01

    A high-performance tribofilm is crucial to enhance the tribological performance of tribomaterials. In order to promote tribofilm formation under water lubrication conditions, copper nanowires as a functional nanomaterial were filled into neat polyetheretherketone (PEEK) and PEEK10SCF8Gr (i.e., PEEK filled with 10 vol.% short carbon fibers and 8 vol.% graphite flakes). The results show that the addition of copper nanowires and a greater applied load can enhance materials transfer and tribofilm formation during sliding process. Moreover, copper nanowires can share a part of applied load, and retard the fatigue effect to some extent. In addition, copper nanowires, carbon fibers and graphite can synergistically improve the tribological performance and the tribofilm formation under water lubrication and severe working conditions. In particular, only 0.5 vol.% copper nanowires can form a high-performance tribofilm, which endows superior lubricating property and wear resistance capacity of the PEEK10SCF8Gr. Furthermore, the surface analysis indicates that the tribofilm contains some transferred materials and the products from tribochemical reactions as well.

  7. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Leilei, Zhang; Hejun, Li; Kezhi, Li; Shouyang, Zhang; Qiangang, Fu; Yulei, Zhang; Jinhua, Lu; Wei, Li

    2014-01-01

    Highlights: • CSH coatings were prepared by combination of magnetron sputter ion plating, CVD and UECD. • Na + and CO 3 2− were developed to co-substitute hydroxyapatite. • SiC nanowires were introduced into Na-doped carbonated hydroxyapatite. • CSH coatings showed excellent cell activity and cell proliferation behavior. - Abstract: A carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating (CSH coating) was prepared on carbon/carbon composites using a combination method of magnetron sputter ion plating, chemical vapor deposition and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that the CSH coating was consisted of three components: carbon layer, SiC nanowires and Na-doped carbonated hydroxyapatite. The carbon layer provided a dense and uniform surface structure for the growth of SiC nanowires. The SiC nanowires exhibited a porous structure, favoring the infiltration of Na-doped carbonated hydroxyapatite crystals. The Na-doped carbonated hydroxyapatite could infiltrate into the pores of SiC nanowires and finally cover the SiC nanowires entirely with a needle shape. The osteoblast-like MG63 cells were employed to assess the in vitro biocompatibility of the CSH coating. The MG63 cells favorably spread and grew well across the CSH coating surface with plenty of filopods and microvilli, exhibiting excellent cell activity. Moreover, the CSH coating elicited higher cell proliferation as compared to bare carbon/carbon composites. In conclusion, the CSH offers great potential as a coating material for future medical application in hard tissue replacement

  8. Preparation and characterization of carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Leilei, Zhang, E-mail: zhangleilei1121@aliyun.com; Hejun, Li; Kezhi, Li; Shouyang, Zhang; Qiangang, Fu; Yulei, Zhang; Jinhua, Lu; Wei, Li

    2014-09-15

    Highlights: • CSH coatings were prepared by combination of magnetron sputter ion plating, CVD and UECD. • Na{sup +} and CO{sub 3}{sup 2−} were developed to co-substitute hydroxyapatite. • SiC nanowires were introduced into Na-doped carbonated hydroxyapatite. • CSH coatings showed excellent cell activity and cell proliferation behavior. - Abstract: A carbon/SiC nanowire/Na-doped carbonated hydroxyapatite multilayer coating (CSH coating) was prepared on carbon/carbon composites using a combination method of magnetron sputter ion plating, chemical vapor deposition and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that the CSH coating was consisted of three components: carbon layer, SiC nanowires and Na-doped carbonated hydroxyapatite. The carbon layer provided a dense and uniform surface structure for the growth of SiC nanowires. The SiC nanowires exhibited a porous structure, favoring the infiltration of Na-doped carbonated hydroxyapatite crystals. The Na-doped carbonated hydroxyapatite could infiltrate into the pores of SiC nanowires and finally cover the SiC nanowires entirely with a needle shape. The osteoblast-like MG63 cells were employed to assess the in vitro biocompatibility of the CSH coating. The MG63 cells favorably spread and grew well across the CSH coating surface with plenty of filopods and microvilli, exhibiting excellent cell activity. Moreover, the CSH coating elicited higher cell proliferation as compared to bare carbon/carbon composites. In conclusion, the CSH offers great potential as a coating material for future medical application in hard tissue replacement.

  9. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  10. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  11. Interactions between semiconductor nanowires and living cells.

    Science.gov (United States)

    Prinz, Christelle N

    2015-06-17

    Semiconductor nanowires are increasingly used for biological applications and their small dimensions make them a promising tool for sensing and manipulating cells with minimal perturbation. In order to interface cells with nanowires in a controlled fashion, it is essential to understand the interactions between nanowires and living cells. The present paper reviews current progress in the understanding of these interactions, with knowledge gathered from studies where living cells were interfaced with vertical nanowire arrays. The effect of nanowires on cells is reported in terms of viability, cell-nanowire interface morphology, cell behavior, changes in gene expression as well as cellular stress markers. Unexplored issues and unanswered questions are discussed.

  12. Preparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process

    Science.gov (United States)

    Low, Ze-Xian; Liu, Qi; Shamsaei, Ezzatollah; Zhang, Xiwang; Wang, Huanting

    2015-01-01

    Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO) of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance. PMID:25803239

  13. Preparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process

    Directory of Open Access Journals (Sweden)

    Ze-Xian Low

    2015-03-01

    Full Text Available Internal concentration polarization (ICP in forward osmosis (FO process is a characteristic problem for asymmetric thin-film composite (TFC FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance.

  14. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  15. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  16. Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films.

    Science.gov (United States)

    Liu, Yangyi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong

    2018-04-19

    Bio-inspired mineralization is an effective way for fabricating complicated inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as bio-macromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe3O4 nanoparticles to produce magnetic ACC/Fe3O4 hybrid nanosheets, which can be used to construct ACC/Fe3O4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged tellurium nanowires as bio-macromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for fabrication of biomimetic composite films.

  17. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.

    Science.gov (United States)

    Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang

    2014-10-22

    Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.

  18. Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction as a highly efficient and stable visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengbin, E-mail: chem_cbliu@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Cao, Chenghao [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Luo, Xubiao [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2015-03-21

    Graphical abstract: A unique Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction was fabricated by simple electrochemical method. The heterostructures exhibit high photocatalytic activity and excellent recycling performance. - Highlights: • Ag-bridged Ag{sub 2}O nanowire network self-stability structure. • Ag{sub 2}O nanowire network/TiO{sub 2} nanotube p–n heterojunction. • High visible light photocatalytic activity. • Highly stable recycling performance. - Abstract: A unique Ag-bridged Ag{sub 2}O nanowire network/TiO{sub 2} nanotube array p–n heterojunction (Ag–Ag{sub 2}O/TiO{sub 2} NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO{sub 2} NT and then were partly oxidized to Ag{sub 2}O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag{sub 2}O nanowire network. The Ag–Ag{sub 2}O/TiO{sub 2} NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag–Ag{sub 2}O self-stability structure and p–n heterojunction permitted high and stable photocatalytic activity of Ag–Ag{sub 2}O/TiO{sub 2} NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag–Ag{sub 2}O/TiO{sub 2} NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO{sub 2} NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag–Ag{sub 2}O/TiO{sub 2} NT remained highly stable photocatalytic activity.

  19. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.

    Science.gov (United States)

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Construct hierarchical electrode with NixCo3-xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Cao, Liujun; Tang, Gang; Mei, Jun; Liu, Hao

    2017-08-01

    In order to boost the energy density of supercapacitors, the strategy of using advanced pseudo-capacitive electrode and asymmetric device architecture is feasible and effective. Herein, we report a significant advance in the design and synthesis of a new hierarchically nanostructures with a series of controllable Ni/Co molar ratios of NixCo3-xS4 (i.e., NiCo2S4 and Ni2CoS4) nanosheets coatings have in situ grown on NiCo2O4 nanowires arrays on a flexible carbon fiber paper (CFP). Remarkably, the hybrid Ni2CoS4@NiCo2O4 composite electrode delivers the highest discharge gravimetric capacitance of 1501 F g-1, and areal capacitance of 1.86 F cm-2 at 1 mA cm-2. Furthermore, coupled with nitrogen-doped carbon xerogels anode, we have fabricated a 1.6 V asymmetric supercapacitor (Ni2CoS4@NiCo2O4//nitrogen-doped carbon xerogels), such device delivers a maximum energy and power densities of 32.2 Wh kg-1 and 2.5 kW kg-1 in 1.0 M KOH electrolyte, respectively, and an excellent cycling stability (∼87.6% retention after 10,000 cycles).

  1. Fabrication and magnetic investigations of highly uniform CoNiGa alloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Jing; Khan, U.; Irfan, Muhammad [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Javed, K. [Department of Physics, Forman Christian College, Lahore 5400 (Pakistan); Liu, P. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Ban, S.L. [School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Han, X.F., E-mail: xfhan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-06-15

    Highlights: • Highly ordered CoNiGa alloy nanowires with different compositions were fabricated by DC electrodeposition. • The magnetic properties of CoNiGa nanowires can be easily tailored by varying its components. • Magnetostatic interactions plays an important role in the magnetization reversal process. • A linear dependence of coercivity on temperature was found for Co{sub 55}Ni{sub 28}Ga{sub 17} samples. - Abstract: CoNiGa ternary alloy nanowire arrays were successfully fabricated by simple DC electrodeposition into the anodized aluminum oxide (AAO) templates. A systematic study of the potential and components of the electrolyte were conducted to obtain different components of CoNiGa nanowires. The largest Ga content in the prepared alloy nanowires was about 17%, while for Co and Ni contents which can be controlled in a wide range by adjusting the composition and pH value of the electrolyte appropriately. X-ray diffraction analysis confirmed that the as-grown CoNiGa nanowire arrays were polycrystal with fcc phase of Co where Co atoms partially substituted by Ni and Ga. Magnetization curves of samples with different composition were measured at room temperature as well as low temperature. The results showed that the components of the alloy nanowires have a great impact on its magnetic properties. For Co{sub 55}Ni{sub 28}Ga{sub 17} nanowires, the magnetization reversal mode changes from curling mode to coherent rotation as the angle increases, and the temperature dependence of coercivity can be well described by the thermal activation effect.

  2. Hierarchical Ni0.54Co0.46O2 nanowire and nanosheet arrays grown on carbon fiber cloth for high-performance supercapacitors

    Science.gov (United States)

    Jiang, Yuanzhi; Zhang, Lijuan; Zhang, Hang; Zhang, Cui; Liu, Shuangxi

    2016-10-01

    Hierarchical Ni0.54Co0.46O2 architectures composed by nanowires or nanosheets were successfully grown on bio-mass carbon fiber cloth (CFC) by hydrothermal method. The morphology of Ni0.54Co0.46O2 can be effectively controlled by using different precipitators. The structural effects of the two kinds of morphologies were researched. the results suggest that the Ni0.54Co0.46O2 nanosheet arrays grown on CFC (NCO-NSs/CFC) shows a higher Faradaic areal capacity of 438 μAh cm-2 (238.1 mAh g-1) at a current density of 1 mA cm-2 and still about 90.3% initial capacity retention even at the high current density of 50 mA cm-2. Moreover, an all-solid-state flexible symmetric supercapacitor device has been successfully assembled. The optimized device delivers superior electrochemical performance with an outstanding energy density of 92.4 Wh kg-1 at a power density of 207.2 W kg-1. Such hierarchical nanostructure composed by well-aligned uniform Ni0.54Co0.46O2 nanosheet arrays grown on bio-mass carbon fiber cloth might hold great promise as battery-type electrode material for high-performance supercapacitor.

  3. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    Science.gov (United States)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  4. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.

    Science.gov (United States)

    Lu, Ying; Jiang, Jianwei; Yoon, Sungho; Kim, Kyung-Shik; Kim, Jae-Hyun; Park, Sanghyuk; Kim, Sang-Ho; Piao, Longhai

    2018-01-17

    Highly stretchable and conductive fibers have attracted great interest as a fundamental building block for the next generation of textile-based electronics. Because of its high conductivity and high aspect ratio, the Ag nanowire (AgNW) has been considered one of the most promising conducting materials for the percolation network-based conductive films and composites. However, the poor dispersibility of AgNWs in hydrophobic polymers has hindered their application to stretchable conductive composite fibers. In this paper, we present a highly stretchable and conductive composite fiber from the co-spinning of surface-modified AgNWs and thermoplastic polyurethane (PU). The surface modification of AgNWs with a polyethylene glycol derivative improved the compatibility of PU and AgNWs, which allowed the NWs to disperse homogeneously in the elastomeric matrix, forming effective percolation networks and causing the composite fiber to show enhanced electrical and mechanical performance. The maximum AgNW mass fraction in the composite fiber was 75.9 wt %, and its initial electrical conductivity was as high as 14 205 S/cm. The composite fibers also exhibited superior stretchability: the maximum rupture strain of the composite fiber with 14.6 wt % AgNW was 786%, and the composite fiber was also conductive even when it was stretched up to 200%. In addition, 2-dimensional (2-D) Ag nanoplates were added to the AgNW/PU composite fibers to increase the stability of the conductive network under repeated stretching and releasing. The Ag nanoplates acted as a bridge to effectively prevent the AgNWs from slippage and greatly improved the stability of the conductive network.

  5. Insights into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels

    Science.gov (United States)

    Goldstein, Anna Patrice

    The design and synthesis of materials that absorb visible light and create fuel to store solar energy is a pursuit that has captivated chemists for decades. In order to take part in solar water splitting, i.e. the production of hydrogen and oxygen gas from water and sunlight, electrode materials must fit specific requirements in terms of their electronic structure. Zinc oxide (ZnO) and titanium dioxide (TiO2) are both of interest for their ability to produce oxygen from photogenerated holes, but their band gaps are too large to capture a significant portion of the solar spectrum. We address this challenge by modifying the crystal structures of ZnO and TiO 2 to make lower band gap materials. Furthermore, we use nanowires as the synthetic template for these materials because they provide a large semiconductor-liquid interfacial area. ZnO nanowires can be alloyed with In3+, Fe3+ and other trivalent metal ions to form a unique structure with the formula M2O3(ZnO)n, also known as MZO. We synthesize indium zinc oxide (IZO) and indium iron zinc oxide (IFZO) nanowires and study their crystal structure using atomically-resolved transmission electron microscopy (TEM), among other methods. We elucidate a structural model for MZO that resolves inconsistencies in the existing literature, based on the identification of the zigzag layer as an inversion domain boundary. These nanowires are shown to have a lower band gap than ZnO and produce photocurrent under visible light illumination. The solid-state diffusion reaction to form ternary titanates is also studied by TEM. TiO2 nanowires are coated with metal oxides by a variety of deposition methods, and then converted to MTiO3 at high temperatures, where M is a divalent transition metal ion such as Mn 2+, CO2+, or Ni2+. When Co3O 4 particles attached to TiO2 nanowires are annealed for a short time, we observe the formation of a CoO(111)/TiO2 (010) interface. If the nanowires are instead coated with Co(NO3)2 salt and then annealed

  6. Electrochemically grown rough-textured nanowires

    International Nuclear Information System (INIS)

    Tyagi, Pawan; Postetter, David; Saragnese, Daniel; Papadakis, Stergios J.; Gracias, David H.

    2010-01-01

    Nanowires with a rough surface texture show unusual electronic, optical, and chemical properties; however, there are only a few existing methods for producing these nanowires. Here, we describe two methods for growing both free standing and lithographically patterned gold (Au) nanowires with a rough surface texture. The first strategy is based on the deposition of nanowires from a silver (Ag)-Au plating solution mixture that precipitates an Ag-Au cyanide complex during electrodeposition at low current densities. This complex disperses in the plating solution, thereby altering the nanowire growth to yield a rough surface texture. These nanowires are mass produced in alumina membranes. The second strategy produces long and rough Au nanowires on lithographically patternable nickel edge templates with corrugations formed by partial etching. These rough nanowires can be easily arrayed and integrated with microscale devices.

  7. Fabrication and characterization of ZnO nanowires array electrodes with high photocurrent densities: Effects of the seed layer calcination time

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Jing; Liu, Ching-Fang; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw; Kuo, Jen-Hou; Boddula, Rajender

    2017-03-01

    In this work, we demonstrate that vertically grown ZnO nanowire (NW) arrays of the wurzite phase were successfully fabricated on fluorine doped tin oxide (FTO) substrates via a hydrothermal method. The coating of a seed layer onto the FTO substrates was found to favor the growth of a uniform ZnO NWs array which shows saturation in the photocurrent density with a relatively low potential bias. Furthermore, prolonging the calcination time of the seed layer makes the ZnO NWs behave the better charge separation and improve the photo-electrochemical performance. Under the irradiation at a 75 mW cm{sup −2} from a simulated sunlight source, the ZnO NWs array electrode prepared from the seed layer with calcination at 350 °C for 5 h shows a saturated photocurrent density of 514 μA cm{sup −2} and a maximum half-cell solar-to-hydrogen (HC-STH) efficiency of 0.26% was obtained at 0.6 V versus reversible hydrogen electrode (RHE) in neutral electrolyte. - Highlights: • The seed layer annealing time strongly influences the textural and photo-activity of ZnO NWs. • The average diameter and density of ZnO NWs were controlled to 47–70 nm and 46–70 NWs μm{sup −2}, respectively. • ZnO NWs show promising application potential in solar-electrocatalytic water splitting under potential bias. • The ZnO NWs with SL annealing time = 5 h achieve the highest HC-STH efficiency of 0.26% at 0.6 V.

  8. UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors

    Directory of Open Access Journals (Sweden)

    Changsong Chen

    2018-01-01

    Full Text Available The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D wide band-gap semiconductor disordered ZNWs composited with reduced graphene oxide (RGO for ultraviolet (UV photoresponse enhancement. The RGO/ZNWs composites have been successfully synthetized through UV-assisted photochemical reduction of GO in ZNWs suspension. The material characterizations in morphology, Raman scattering, and Ultraviolet-visible light absorption verified the formation of graphene sheets attached in ZNWs network and the enhancement of UV absorption due to the introduction of graphene. In comparison with photodetectors based on pure ZNWs, the photodetectors based on RGO/ZNWs composite exhibit enhanced photoresponse with photocurrent density of 5.87 mA·cm−2, on/off current ratio of 3.01 × 104, and responsivity of 1.83 A·W−1 when a UV irradiation of 3.26 mW·cm−2 and 1.0 V bias were used. Theory analysis is also presented to get insight into the inherent mechanisms of separation and transportation of photo-excited carriers in RGO/ZNWs composite.

  9. UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors.

    Science.gov (United States)

    Chen, Changsong; Zhou, Peng; Wang, Na; Ma, Yang; San, Haisheng

    2018-01-05

    The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs) limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D) wide band-gap semiconductor disordered ZNWs composited with reduced graphene oxide (RGO) for ultraviolet (UV) photoresponse enhancement. The RGO/ZNWs composites have been successfully synthetized through UV-assisted photochemical reduction of GO in ZNWs suspension. The material characterizations in morphology, Raman scattering, and Ultraviolet-visible light absorption verified the formation of graphene sheets attached in ZNWs network and the enhancement of UV absorption due to the introduction of graphene. In comparison with photodetectors based on pure ZNWs, the photodetectors based on RGO/ZNWs composite exhibit enhanced photoresponse with photocurrent density of 5.87 mA·cm -2 , on/off current ratio of 3.01 × 10⁴, and responsivity of 1.83 A·W -1 when a UV irradiation of 3.26 mW·cm -2 and 1.0 V bias were used. Theory analysis is also presented to get insight into the inherent mechanisms of separation and transportation of photo-excited carriers in RGO/ZNWs composite.

  10. High Density Nano-Electrode Array for Radiation Detection

    International Nuclear Information System (INIS)

    Misra, Mano

    2010-01-01

    Bulk single crystals of Cd 1-x Zn x Te (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd 1-x Zn x Te with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd 1-x Zn x Te in an electrochemical route. In this investigation, Cd 1-x Zn x Te ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO 2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 C. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd 0.9 Zn 0.1 Te nanowires were 4.29 x 10 13 cm -3 , 1.56 eV and 2.76 x 10 11 (Omega)-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 (micro)Ci), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The

  11. High Density Nano-Electrode Array for Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Mano Misra

    2010-05-07

    Bulk single crystals of Cd1-xZnxTe (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd1-xZnxTe with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd1-xZnxTe in an electrochemical route. In this investigation, Cd1-xZnxTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 ºC. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd0.9Zn0.1Te nanowires were 4.29x1013 cm-3, 1.56 eV and 2.76x1011Ω-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 μCi), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The preliminary results indicate that the

  12. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.

    Science.gov (United States)

    Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan

    2013-05-07

    We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.

  13. Semiconductor Nanowires and Nanotubes for Energy Conversion

    Science.gov (United States)

    Fardy, Melissa Anne

    In recent years semiconductor nanowires and nanotubes have garnered increased attention for their unique properties. With their nanoscale dimensions comes high surface area and quantum confinement, promising enhancements in a wide range of applications. 1-dimensional nanostructures are especially attractive for energy conversion applications where photons, phonons, and electrons come into play. Since the bohr exciton radius and phonon and electron mean free paths are on the same length scales as nanowire diameters, optical, thermal, and electrical properties can be tuned by simple nanowire size adjustments. In addition, the high surface area inherent to nanowires and nanotubes lends them towards efficient charge separation and superior catalytic performance. In thermoelectric power generation, the nanoscale wire diameter can effectively scatter phonons, promoting reductions in thermal conductivity and enhancements in the thermoelectric figure of merit. To that end, single-crystalline arrays of PbS, PbSe, and PbTe nanowires have been synthesized by a chemical vapor transport approach. The electrical and thermal transport properties of the nanowires were characterized to investigate their potential as thermoelectric materials. Compared to bulk, the lead chalcogenide nanowires exhibit reduced thermal conductivity below 100 K by up to 3 orders of magnitude, suggesting that they may be promising thermoelectric materials. Smaller diameters and increased surface roughness are expected to give additional enhancements. The solution-phase synthesis of PbSe nanowires via oriented attachment of nanoparticles enables facile surface engineering and diameter control. Branched PbSe nanowires synthesized by this approach showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the Pb

  14. Robotic inspection of fiber reinforced composites using phased array UT

    Science.gov (United States)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  15. Enhanced photovoltaic performance of fully flexible dye-sensitized solar cells based on the Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-nanosheet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenwu; Hong, Chengxun; Wang, Hui-gang; Zhang, Mei; Guo, Min, E-mail: guomin@ustb.edu.cn

    2016-02-28

    Graphical abstract: Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-sheet arrays photoanode was synthesized on Ti-mesh substrate by using a hydrothermal approach for fully flexible dye-sensitized solar cells which exhibited well photovoltaic efficiency of 4.55%. - Highlights: • Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-nanosheet arrays were prepared on Ti-mesh. • Nb{sub 2}O{sub 5} coated TiO{sub 2} HNWAs/Pt-ITO-PEN flexible DSSC was constructed. • The fully flexible DSSC exhibited an enhanced photovoltaic performance of 4.55%. • The reasons for the improved conversion efficiency of the DSSC were discussed. - Abstract: Nb{sub 2}O{sub 5} coated hierarchical TiO{sub 2} nanowire-sheet arrays photoanode was synthesized on flexible Ti-mesh substrate by using a hydrothermal approach. The effect of TiO{sub 2} morphology and Nb{sub 2}O{sub 5} coating layer on the photovoltaic performance of the flexible dye sensitized solar cells (DSSCs) based on Ti-mesh supported nanostructures were systematically investigated. Compared to the TiO{sub 2} nanowire arrays (NWAs), hierarchical TiO{sub 2} nanowire arrays (HNWAs) with enlarged internal surface area and strong light scattering properties exhibited higher overall conversion efficiency. The introduction of thin Nb{sub 2}O{sub 5} coating layers on the surface of the TiO{sub 2} HNWAs played a key role in improving the photovoltaic performance of the flexible DSSC. By separating the TiO{sub 2} and electrolyte (I{sup –}/I{sub 3}{sup –}), the Nb{sub 2}O{sub 5} energy barrier decreased the electron recombination rate and increased electron collection efficiency and injection efficiency, resulting in improved J{sub sc} and V{sub oc}. Furthermore, the influence of Nb{sub 2}O{sub 5} coating amounts on the power conversion efficiency were discussed in detail. The fully flexible DSSC based on Nb{sub 2}O{sub 5} coated TiO{sub 2} HNWAs films with a thickness of 14 μm displayed a well photovoltaic property

  16. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes

    Science.gov (United States)

    Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Wang, Chunliang; Liu, Yichun

    2016-08-01

    In this paper, we prepared the silver nanowires (AgNWs)/aluminum-doped zinc oxide (AZO) composite transparent conducting electrodes for n-ZnO/p-GaN heterojunction light emitting-diodes (LEDs) by drop casting AgNW networks and subsequent atomic layer deposition (ALD) of AZO at 150 °C. The contact resistances between AgNWs were dramatically reduced by pre-annealing in the vacuum chamber before the ALD of AZO. In this case, AZO works not only as the conformal passivation layer that protects AgNWs from oxidation, but also as the binding material that improves AgNWs adhesion to substrates. Due to the localized surface plasmons (LSPs) of the AgNWs resonant coupling with the ultraviolet (UV) light emission from the LEDs, a higher UV light extracting efficiency is achieved from LEDs with the AgNWs/AZO composite electrodes in comparison with the conventional AZO electrodes. Additionally, the antireflective nature of random AgNW networks in the composite electrodes caused a broad output light angular distribution, which could be of benefit to certain optoelectronic devices like LEDs and solar cells.

  17. Electrochemical synthesis of highly crystalline copper nanowires

    International Nuclear Information System (INIS)

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-01-01

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits

  18. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors

    Science.gov (United States)

    Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying

    2016-05-01

    Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power

  19. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    Science.gov (United States)

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  20. Application of Chemical Doping and Architectural Design Principles To Fabricate Nanowire Co2Ni3ZnO8 Arrays for Aqueous Asymmetric Supercapacitors.

    Science.gov (United States)

    Liu, Qi; Yang, Bin; Liu, Jingyuan; Yuan, Yi; Zhang, Hongsen; Liu, Lianhe; Wang, Jun; Li, Rumin

    2016-08-10

    Electrode materials derived from transition metal oxides have a serious problem of low electron transfer rate, which restricts their practical application. However, chemically doped graphene transforms the chemical bonding configuration to enhance electron transfer rate and, therefore, facilitates the successful fabrication of Co2Ni3ZnO8 nanowire arrays. In addition, the Co2Ni3ZnO8 electrode materials, considered as Ni and Zn ions doped into Co3O4, have a high electron transfer rate and electrochemical response capability, because the doping increases the degree of crystal defect and reaction of Co/Ni ions with the electrolyte. Hence, the Co2Ni3ZnO8 electrode exhibits a high rate property and excellent electrochemical cycle stability, as determined by electrochemical analysis of the relationship between specific capacitance, IR drop, Coulomb efficiency, and different current densities. From the results of a three-electrode system of electrochemical measurement, the Co2Ni3ZnO8 electrode demonstrates a specific capacitance of 1115 F g(-1) and retains 89.9% capacitance after 2000 cycles at a current density of 4 A g(-1). The energy density of the asymmetric supercapacitor (AC//Co2Ni3ZnO8) is 54.04 W h kg(-1) at the power density of 3200 W kg(-1).

  1. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    Science.gov (United States)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  2. Facile preparation of branched hierarchical ZnO nanowire arrays with enhanced photocatalytic activity: A photodegradation kinetic model

    Science.gov (United States)

    Ebrahimi, M.; Yousefzadeh, S.; Samadi, M.; Dong, Chunyang; Zhang, Jinlong; Moshfegh, A. Z.

    2018-03-01

    Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher than the ZnO NWs under UV light. In addition, it was also determined that photodegradation rate constant (k) for the BH- ZnO NWs surface obeys a linear function with the branch length (l) and their correlation was described by using a proposed kinetic model.

  3. Continuous-flow system and monitoring tools for the dielectrophoretic integration of nanowires in light sensor arrays.

    Science.gov (United States)

    Marín, A García; Núñez, C García; Rodríguez, P; Shen, G; Kim, S M; Kung, P; Piqueras, J; Pau, J L

    2015-03-20

    Although nanowires (NWs) may improve the performance of many optoelectronic devices such as light emitters and photodetectors, the mass commercialization of these devices is limited by the difficult task of finding reliable and reproducible methods to integrate the NWs on foreign substrates. This work shows the fabrication of zinc oxide NWs photodetectors on conventional glass using transparent conductive electrodes to effectively integrate the NWs at specific locations by dielectrophoresis (DEP). The paper describes the careful preparation of NW dispersions by sedimentation and the dielectrophoretic alignment of NWs in a home-made system. This system includes an impedance technique for the assessment of the alignment quality in real time. Following this procedure, ultraviolet photodetectors based on the electrical contacts formed by the DEP process on the transparent electrodes are fabricated. This cost-effective mean of contacting NWs enables front-and back-illumination operation modes, the latter eliminating shadowing effects caused by the deposition of metals. The electro-optical characterization of the devices shows uniform responsivities in the order of 106 A W(-1) below 390 nm under both modes, as well as, time responses of a few seconds.

  4. Fabrication of flexible silver nanowire conductive films and transmittance improvement based on moth-eye nanostructure array

    Science.gov (United States)

    Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin

    2017-07-01

    Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes.

  5. Fabrication of flexible silver nanowire conductive films and transmittance improvement based on moth-eye nanostructure array

    International Nuclear Information System (INIS)

    Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin

    2017-01-01

    Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes. (paper)

  6. Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires

    Science.gov (United States)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.

  7. Ultraflexible Transparent Film Heater Made of Ag Nanowire/PVA Composite for Rapid-Response Thermotherapy Pads.

    Science.gov (United States)

    Lan, Wei; Chen, Youxin; Yang, Zhiwei; Han, Weihua; Zhou, Jinyuan; Zhang, Yue; Wang, Junya; Tang, Guomei; Wei, Yupeng; Dou, Wei; Su, Qing; Xie, Erqing

    2017-02-22

    Ultraflexible transparent film heaters have been fabricated by embedding conductive silver (Ag) nanowires into a thin poly(vinyl alcohol) film (AgNW/PVA). A cold-pressing method was used to rationally adjust the sheet resistance of the composite films and thus the heating powers of the AgNW/PVA film heaters at certain biases. The film heaters have a favorable optical transmittance (93.1% at 26 Ω/sq) and an outstanding mechanical flexibility (no visible change in sheet resistance after 10 000 bending cycles and at a radius of curvature ≤1 mm). The film heaters have an environmental endurance, and there is no significant performance degradation after being kept at high temperature (80 °C) and high humidity (45 °C, 80% humidity) for half a year. The efficient Joule heating can increase the temperature of the film heaters (20 Ω/sq) to 74 °C in ∼20 s at a bias of 5 V. The fast-heating characteristics at low voltages (a few volts) associated with its transparent and flexibility properties make the poly(dimethylsiloxane)/AgNW/PVA composite film a potential candidate in medical thermotherapy pads.

  8. Nanowires: properties, applications and synthesis via porous anodic ...

    Indian Academy of Sciences (India)

    Moreover, periodic arrays of magnetic nanowires hold high potential for recording media application. Nanowires are also potential candidates for sensor and bio-medical applications. In the present article, the physical and chemical properties of nanowires along with their probable applications in different fields have been ...

  9. Contact planarization of ensemble nanowires

    Science.gov (United States)

    Chia, A. C. E.; LaPierre, R. R.

    2011-06-01

    The viability of four organic polymers (S1808, SC200, SU8 and Cyclotene) as filling materials to achieve planarization of ensemble nanowire arrays is reported. Analysis of the porosity, surface roughness and thermal stability of each filling material was performed. Sonication was used as an effective method to remove the tops of the nanowires (NWs) to achieve complete planarization. Ensemble nanowire devices were fully fabricated and I-V measurements confirmed that Cyclotene effectively planarizes the NWs while still serving the role as an insulating layer between the top and bottom contacts. These processes and analysis can be easily implemented into future characterization and fabrication of ensemble NWs for optoelectronic device applications.

  10. Efficient photogeneration of charge carriers in silicon nanowires with a radial doping gradient

    International Nuclear Information System (INIS)

    Murthy, D H K; Houtepen, A J; Savenije, T J; Siebbeles, L D A; Xu, T; Nys, J P; Krzeminski, C; Grandidier, B; Stievenard, D; Chen, W H; Pareige, P; Jomard, F; Patriarche, G; Lebedev, O I

    2011-01-01

    by performing electrodeless time-resolved microwave conductivity measurements, the efficiency of charge carrier generation, their mobility, and the decay kinetics on photoexcitation were studied in arrays of Si nanowires grown by the vapor-liquid-solid mechanism. Large enhancements in the magnitude of the photoconductance and charge carrier lifetime are found depending on the incorporation of impurities during the growth. They are explained by the internal electric field that builds up, due to higher doped sidewalls, as revealed by detailed analysis of the nanowire morphology and chemical composition.

  11. Wet-Chemical Synthesis of Enhanced-Thermopower Bi1 -xSbx Nanowire Composites for Solid-State Active Cooling of Electronics

    Science.gov (United States)

    Vandaele, K.; He, Bin; Van Der Voort, P.; De Buysser, K.; Heremans, J. P.

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. In 1993, Hicks and Dresselhaus [Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631 (1993)., 10.1103/PhysRevB.47.16631] suggested that Bi nanowires could result in values of the thermoelectric figure of merit z T >1 . The Dresselhaus group also calculated a ternary phase diagram for Bi1 -xSbx nanowires as a function of x and wire diameter. This manuscript reports a wet-chemical method to synthesize Bi1 -xSbx -silica nanowire composites. Resistivity, Hall electron concentration, electron mobility, Seebeck and Nernst coefficients, and thermal conductivity of composites are measured and compared to bulk polycrystalline Bi1 -xSbx samples prepared either by ingot casting or by the same wet chemistry but without nanostructuring. A clear increase of the thermopower in 20-nm Bi94Sb6 -silica is reported when compared to bulk samples, and the values are among the highest found in the literature from 300 to 380 K, even though the electron concentration is higher than in the bulk. This suggests that consistent with theory, size quantization is responsible for the thermopower increase.

  12. Nondestructive mapping of chemical composition and structural qualities of group III-nitride nanowires using submicron beam synchrotron-based X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, P.L., E-mail: plb2@njit.edu [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gautier, S. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gmili, Y.El.; Moudakir, T. [UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Sirenko, A.A. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kazimirov, A. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Cai, Z.-H. [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Martin, J. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Goh, W.H. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Martinez, A.; Ramdane, A.; Le Gratiet, L. [Laboratoire de Photonique et de Nanostructures, UPR CNRS 20, Route de Nozay, 91460 Marcoussis (France); Maloufi, N. [Laboratoire d' Etude des Textures et Application aux Matériaux UMR CNRS 7078 Ile du Saulcy 57045 METZ cedex 1 (France); Assouar, M.B. [Laboratoire de Physique des Milieux Ionisés et Applications, Nancy University, CNRS, BP 239, F-54506 Vandoeuvre-lès-Nancy Cédex (France); Ougazzaden, A. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France)

    2013-08-31

    Submicron beam synchrotron-based X-ray diffraction (XRD) techniques have been developed and used to accurately and nondestructively map chemical composition and material quality of selectively grown group III-nitride nanowires. GaN, AlGaN, and InGaN multi-quantum-well nanowires have been selectively grown on lattice matched and mismatched substrates, and the challenges associated with obtaining and interpreting submicron beam XRD results are addressed and solved. Nanoscale cathodoluminescence is used to examine exciton behavior, and energy-dispersive X-ray spectroscopy is used to verify chemical composition. Scanning transmission electron microscopy is later used to paint a more complete picture. The advantages of submicron beam XRD over other techniques are discussed in the context of this challenging material system. - Highlights: ► We used nano selective area growth to create nanowires of GaN, AlGaN and InGaN/GaN. ► We characterized them by synchrotron-based submicron beam X-ray diffraction (XRD). ► This technique accurately determined chemical and crystallographic properties. ► Challenges of XRD are addressed in the context of this challenging material system. ► Advantages of XRD over other characterization methods are discussed.

  13. Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe

    2015-09-01

    Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics.Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on

  14. Transparent, double-sided, ITO-free, flexible dye-sensitized solar cells based on metal wire/ZnO nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhao, Qing; Li, Heng; Yu, Dapeng [State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871 (China); Wu, Hongwei; Zou, Dechun [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2012-07-10

    Transparent, double-sided, flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, facile, and controllable way. Highly ordered, high-crystal-quality, high-density ZnO nanowire arrays are radially grown on stainless steel, Au, Ag, and Cu microwires, which serve as working electrodes. Pt wires serve as the counter electrodes. Two metal wires are encased in electrolyte between two poly(ethylene terephthalate) (PET) films (or polydimethylsiloxane (PDMS) films) to render the device both flexible and highly transparent. The effect of the dye thickness on the photovoltaic performance of the DSSCs as a function of dye-loading time is investigated systematically. Shorter dye-loading times lead to thinner dye layers and better device performance. A dye-loading time of 20 min results in the best device performance. An oxidation treatment of the metal wires is developed effectively to avoid the galvanic-battery effect found in the experiment, which is crucial for real applications of double-metal-wire DSSC configurations. The device shows very good transparency and can increase sunlight use efficiency through two-sided illumination. The double-wire DSSCs remain stable for a long period of time and can be bent at large angles, up to 107 , reversibly, without any loss of performance. The double-wire-PET, planar solar-cell configuration can be used as window stickers and can be readily realized for large-area-weave roll-to-roll processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites.

    Science.gov (United States)

    Patzke, Greta R; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-12-27

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H₂O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP-Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics.

  16. New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays

    DEFF Research Database (Denmark)

    Ren, Dingding; Dheeraj, Dasa L.; Jin, Chengjun

    2016-01-01

    and thermodynamically by the introduction of Sb. An anomalous decrease of the axial growth rate with increased Sb2 flux is found to be due to both the indirect kinetic influence via the Ga adatom diffusion induced catalyst geometry evolution and the direct composition modulation. From the fundamental growth analyses...

  17. Electrostatic Discharge Testing of Carbon Composite Solar Array Panels for Use in the Jovian Environment

    Science.gov (United States)

    Green, Nelson W.; Dawson, Stephen F.

    2015-01-01

    NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid

  18. Growth and properties of In(Ga)As nanowires on silicon

    International Nuclear Information System (INIS)

    Hertenberger, Simon

    2012-01-01

    properties and homogeneous array-like characteristics. High vertical growth yields of 90 % are achieved on substrates patterned either by e-beam lithography (for small scale arrays) or nanoimprint lithography (NIL, for large scale arrays > 5 x 5 mm 2 ). In addition, X-ray rocking curve measurements evidence very low crystal tilt and perfect vertical alignment along the (111) direction with full widths at half maximum (FWHM) as low as 0.6 . Furthermore, systematic investigations of the size scaling behavior as a function of the pitch (interwire distance) highlight the existence of two growth regimes: (i) a competitive growth regime for narrow pitches and (ii) a diffusion-limited regime for wider pitches, where growth is limited by the diffusion length of In adatoms on the SiO 2 surface (∝750 nm at T=480 C). Furthermore, the growth of ternary InGaAs nanowires on sputter-deposited SiO x /Si(111) and NIL-patterned SiO 2 /Si(111) substrates is investigated. Here, composition tuning with Ga contents ranging from 0-60 % was achieved as confirmed by X-ray diffraction and energy dispersive X-ray spectroscopy. Furthermore, the two different growth strategies are compared yielding a significantly lower FWHM of the 2θ-XRD-peak in the case of NIL-patterned substrates (0.031 ) as compared to self-assembled grown nanowires (0.084 ). This finding is further supported by Raman spectroscopy showing lower longitudinal optical to transversal optical (LO/TO) intensity ratios and lower LO-FWHM for both the InAs-like and GaAs-like LO modes in the case of NIL-patterned nanowire growth. These observations indicate superior composition homogeneity for positioned nanowire growth on patterned substrates. In addition, low-T photoluminescence (PL) measurements are presented showing band gap tuning over a wavelength range of ∝1800-2850 nm where PL peak linewidths are as narrow as ∝30 meV, independent of the Ga content. Finally, the effect of growth parameters on the microstructure are investigated

  19. Growth and properties of In(Ga)As nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hertenberger, Simon

    2012-10-15

    nanowire properties and homogeneous array-like characteristics. High vertical growth yields of 90 % are achieved on substrates patterned either by e-beam lithography (for small scale arrays) or nanoimprint lithography (NIL, for large scale arrays > 5 x 5 mm{sup 2}). In addition, X-ray rocking curve measurements evidence very low crystal tilt and perfect vertical alignment along the (111) direction with full widths at half maximum (FWHM) as low as 0.6 . Furthermore, systematic investigations of the size scaling behavior as a function of the pitch (interwire distance) highlight the existence of two growth regimes: (i) a competitive growth regime for narrow pitches and (ii) a diffusion-limited regime for wider pitches, where growth is limited by the diffusion length of In adatoms on the SiO{sub 2} surface (∝750 nm at T=480 C). Furthermore, the growth of ternary InGaAs nanowires on sputter-deposited SiO{sub x}/Si(111) and NIL-patterned SiO{sub 2}/Si(111) substrates is investigated. Here, composition tuning with Ga contents ranging from 0-60 % was achieved as confirmed by X-ray diffraction and energy dispersive X-ray spectroscopy. Furthermore, the two different growth strategies are compared yielding a significantly lower FWHM of the 2θ-XRD-peak in the case of NIL-patterned substrates (0.031 ) as compared to self-assembled grown nanowires (0.084 ). This finding is further supported by Raman spectroscopy showing lower longitudinal optical to transversal optical (LO/TO) intensity ratios and lower LO-FWHM for both the InAs-like and GaAs-like LO modes in the case of NIL-patterned nanowire growth. These observations indicate superior composition homogeneity for positioned nanowire growth on patterned substrates. In addition, low-T photoluminescence (PL) measurements are presented showing band gap tuning over a wavelength range of ∝1800-2850 nm where PL peak linewidths are as narrow as ∝30 meV, independent of the Ga content. Finally, the effect of growth parameters on the

  20. Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Al-Shamery, Katharina

    Single crystalline nanowires from fluorescing organic molecules like para-phenylenes or thiophenes are supposed to become key elements in future integrated optoelectronic devices [1]. For a sophisticated design of devices based on nanowires the basic principles of the nanowire formation have...... atomic force microscopy and from polarized far-field optical microscopy for various prototypical molecules are reproduced by electrostatic and Monte Carlo calculations. Based on the crystal structure, predictions on the growth habit from other conjugated molecules become in reach....

  1. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.; Chubykalo-Fesenko, O.

    2015-01-01

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain

  2. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    Science.gov (United States)

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  3. Ultra-thin graphene edges at the nanowire tips: a cascade cold cathode with two-stage field amplification

    International Nuclear Information System (INIS)

    Maiti, Uday N; Majumder, Tapas Pal; Maiti, Soumen; Chattopadhyay, Kalyan K

    2011-01-01

    A multistage field emitter based on graphene-linked ZnO nanowire array is realized by means of spin-coating a graphene dispersion (reduced graphene oxide) over a nanostructured platform followed by plasma modification. Spin-coating leads to interlinking of graphene sheets between the neighboring nanowires whereas plasma etching in the subsequent step generates numerous ultra-sharp graphene edges at the nanowire tips. The inherent tendency of graphene to lay flat over a plane substrate can easily be bypassed through the currently presented nanostructure platform based technique. The turn-on and threshold field significantly downshifted compared to the individual components in the cascade emitter. Through the facile electron transfer from nanowires to graphene due to band bending at the ZnO–graphene interface together with multistage geometrical field enhancement at both the nanowire and graphene edges remain behind this enriched field emission from the composite cold cathode. This strategy will open up a new direction to integrate the functionalities of both the graphene array and several other inorganic nanostructure array for practical electronic devices.

  4. A four-functional composite-hierarchical anatase TiO2 microsphere consisting of nanoparticles, nanowires and submicron ellipsoidal spheres for Dye Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Huang, Niu; Chen, Feitai; Sun, Panpan; Sun, Xiaohua; Sebo, Bobby; Zhao, Xingzhong

    2014-01-01

    Graphical abstract: - Abstract: In this paper, we prepare a composite-hierarchical microsphere (HMS) which is composed of two kinds of HMSs: one flower-like microsphere (FMS, ∼1.5 μm, containing nanoparticles and nanowires) and plentiful mesoporous submicron ellipsoidal spheres (ESs, ∼200 nm, assembled with nanoparticles) which are embedded evenly in the FMS. For comparing, pure FMS and ES are prepared, respectively. It is found that the composite-HMS possesses (a) the highest BET surface area, (b) the highest light scattering ability, (c) the fastest electron transport and the longest electron life time, and (d) light trapping ability enabled by multiple light reflection and scattering between ESs and nanowires inside each FMS*ESs particle. The energy conversion efficiency of 7.91% of the DSSC based on FMS*ESs is higher than devices based on ES and FMS (7.22% and 7.24%, respectively), which also benefits from the structural advantages of the composite-HMS compared with non-composite HMSs

  5. Co{sub 3}O{sub 4} nanowires@MnO{sub 2} nanolayer or nanoflakes core–shell arrays for high-performance supercapacitors: The influence of morphology on performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Shi, Zhongqi, E-mail: zhongqishi@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Yuanyuan [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Ye, Zhiguo [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xia, Hongyan [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Guiwu [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Qiao, Guanjun, E-mail: gjqiao@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-03-05

    Highlights: • MnO{sub 2} nanolayer is coated on Co{sub 3}O{sub 4} nanowire arrays forming a core–shell nanocable structure via chemical bath deposition. • The electrochemical performances of the MnO{sub 2} with two different morphologies are compared and investigated. • Both the Co{sub 3}O{sub 4} nanowires@MnO{sub 2} nanolayer and nanoflakes core–shell arrays possess high specific capacitance. - Abstract: The Co{sub 3}O{sub 4} nanowires@MnO{sub 2} nanolayer or nanoflakes core–shell arrays (Co{sub 3}O{sub 4}@MnO{sub 2} nanolayer or nanoflakes NWAs) supported on carbon fiber paper have been fabricated via a facile and green method and further investigated on the performance as the electrodes for supercapacitors. Our experimental results evidently indicate that both the Co{sub 3}O{sub 4}@MnO{sub 2} nanoflakes and nanolayer NWAs are capable of delivering specific capacitances as high as 1209.4 and 1215.6 F g{sup −1} (based on the MnO{sub 2}) at the current density of 1 A g{sup −1}. Due to the delicately designed hierarchical nanostructure that distributing the nanoscaled MnO{sub 2} on the nanowires with better electric conductivity, the active materials take advantage of the high effective surface area, facile electrolyte diffusion and fast electron transfer. The phenomenon that the Co{sub 3}O{sub 4}@MnO{sub 2} nanolayer NWAs with smaller specific surface area become superior in electrochemical performance to the Co{sub 3}O{sub 4}@MnO{sub 2} nanoflakes NWAs has been carefully investigated. The smaller charge transfer and electrolyte diffusion resistances are mainly demonstrated to be responsible. The analyses presented here could contribute to developing the optimal nanostructure of electrode materials for high-performance supercapacitors.

  6. Magnetostatic Interaction in Fe-Co Nanowires

    Directory of Open Access Journals (Sweden)

    Laura Elbaile

    2012-01-01

    Full Text Available Arrays of Fe-Co alloy nanowires with diameter around 35 nm and several micrometers in length have been synthesized by codepositing Fe and Co into porous anodic alumina. The morphology, structure, and magnetic properties of the nanowires (hysteresis loops and remanence curves were characterized by SEM, TEM, X-ray diffraction (XRD, and VSM, respectively. The XRD patterns indicate that the Fe-Co nanowires present a body-centered cubic (bcc structure and a preferred (110 orientation perpendicular to the template surface. From the hysteresis loops obtained with the magnetic field applied in the axis direction of the nanowires, we can observe that the coercive field slightly decreases when the nanowire length increases. This magnetic behaviour is analyzed considering the shape anisotropy and the dipolar interactions among nanowires.

  7. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array.

    Science.gov (United States)

    Choong, Chwee-Lin; Shim, Mun-Bo; Lee, Byoung-Sun; Jeon, Sanghun; Ko, Dong-Su; Kang, Tae-Hyung; Bae, Jihyun; Lee, Sung Hoon; Byun, Kyung-Eun; Im, Jungkyun; Jeong, Yong Jin; Park, Chan Eon; Park, Jong-Jin; Chung, U-In

    2014-06-04

    A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode. The substrate contains an array of microscale pyramidal features, and the electrode comprises a polymer composite. When the pressure-induced geometrical change experienced by the electrode is maximized at 40% elongation, a sensitivity of 10.3 kPa(-1) is achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Constructing Ultrahigh-Capacity Zinc-Nickel-Cobalt Oxide@Ni(OH)2 Core-Shell Nanowire Arrays for High-Performance Coaxial Fiber-Shaped Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhang, Qichong; Xu, Weiwei; Sun, Juan; Pan, Zhenghui; Zhao, Jingxin; Wang, Xiaona; Zhang, Jun; Man, Ping; Guo, Jiabin; Zhou, Zhenyu; He, Bing; Zhang, Zengxing; Li, Qingwen; Zhang, Yuegang; Xu, Lai; Yao, Yagang

    2017-12-13

    Increased efforts have recently been devoted to developing high-energy-density flexible supercapacitors for their practical applications in portable and wearable electronics. Although high operating voltages have been achieved in fiber-shaped asymmetric supercapacitors (FASCs), low specific capacitance still restricts the further enhancement of their energy density. This article specifies a facile and cost-effective method to directly grow three-dimensionally well-aligned zinc-nickel-cobalt oxide (ZNCO)@Ni(OH) 2 nanowire arrays (NWAs) on a carbon nanotube fiber (CNTF) with an ultrahigh specific capacitance of 2847.5 F/cm 3 (10.678 F/cm 2 ) at a current density of 1 mA/cm 2 , These levels are approximately five times higher than those of ZNCO NWAs/CNTF electrodes (2.10 F/cm 2 ) and four times higher than Ni(OH) 2 /CNTF electrodes (2.55 F/cm 2 ). Benefiting from their unique features, we successfully fabricated a prototype coaxial FASC (CFASC) with a maximum operating voltage of 1.6 V, which was assembled by adopting ZNCO@Ni(OH) 2 NWAs/CNTF as the core electrode and a thin layer of carbon coated vanadium nitride (VN@C) NWAs on a carbon nanotube strip (CNTS) as the outer electrode with KOH poly(vinyl alcohol) (PVA) as the gel electrolyte. A high specific capacitance of 94.67 F/cm 3 (573.75 mF/cm 2 ) and an exceptional energy density of 33.66 mWh/cm 3 (204.02 μWh/cm 2 ) were achieved for our CFASC device, which represent the highest levels of fiber-shaped supercapacitors to date. More importantly, the fiber-shaped ZnO-based photodetector is powered by the integrated CFASC, and it demonstrates excellent sensitivity in detecting UV light. Thus, this work paves the way to the construction of ultrahigh-capacity electrode materials for next-generation wearable energy-storage devices.

  9. Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS

    International Nuclear Information System (INIS)

    Lord, Alex M.; Maffeis, Thierry G.; Allen, Martin W.; Morgan, David; Davies, Philip R.; Jones, Daniel R.; Evans, Jonathan E.; Smith, Nathan A.; Wilks, Steve P.

    2014-01-01

    Highlights: • Direct measurement of the surface band bending exhibited by ZnO nanowires using monochromatic XPS. • Modulation of the surface depletion region using wet chemical treatment (EtOH, H 2 O 2 ). • The measured surface potential barrier agrees with electrical measurements of individual nanowires. • H 2 O 2 depletes the nanowire of charge carriers while EtOH donates electrons at the surface. • EtOH has the effect of restoring the surface potential barrier of oxidised nanowires. - Abstract: ZnO is a wide bandgap semiconductor that has many potential applications including solar cell electrodes, transparent thin film transistors and gas/biological sensors. Since the surfaces of ZnO materials have no amorphous or oxidised layers, they are very environmentally sensitive, making control of their semiconductor properties challenging. In particular, the electronic properties of ZnO nanostructures are dominated by surface effects while surface conduction layers have been observed in thin films and bulk crystals. Therefore, the ability to use the ZnO materials in a controlled way depends on the development of simple techniques to modulate their surface electronic properties. Here, we use monochromatic x-ray photoelectron spectroscopy (XPS) to investigate the use of different wet chemical treatments (EtOH, H 2 O 2 ) to control the electronic properties of ZnO nanowires by modulating the surface depletion region. The valence band and core level XPS spectra are used to explore the relationship between the surface chemistry of the nanowires and the surface band bending

  10. Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers

    Science.gov (United States)

    Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.

    2018-05-01

    This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption

  11. Facile Synthesis of MnPO4·H2O Nanowire/Graphene Oxide Composite Material and Its Application as Electrode Material for High Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bo Yan

    2016-12-01

    Full Text Available In this work, we reported a facile one-pot hydrothermal method to synthesize MnPO4·H2O nanowire/graphene oxide composite material with coated graphene oxide. Transmission electron microscopy and scanning electron microscope were employed to study its morphology information, and X-ray diffraction was used to study the phase and structure of the material. Additionally, X-ray photoelectron spectroscopy was used to study the elements information. To measure electrochemical performances of electrode materials and the symmetry cell, cyclic voltammetry, chronopotentiometry and electrochemical impedance spectrometry were conducted on electrochemical workstation using 3 M KOH electrolytes. Importantly, electrochemical results showed that the as-prepared MnPO4·H2O nanowire/graphene oxide composite material exhibited high specific capacitance (287.9 F·g−1 at 0.625 A·g−1 and specific power (1.5 × 105 W·kg−1 at 2.271 Wh·kg−1, which is expected to have promising applications as supercapacitor electrode material.

  12. Paraffin/expanded graphite phase change composites with enhanced thermal conductivity prepared by implanted β-SiC nanowires with chemical vapor deposition method

    Science.gov (United States)

    Yin, Zhaoyu; Zhang, Xiaoguang; Huang, Zhaohui; Liu, Silin; Zhang, Weiyi; Liu, Yan'gai; Wu, Xiaowen; Fang, Minghao; Min, Xin

    2018-02-01

    Expanded graphite/β-SiC nanowires composites (ESNC) were prepared through chemical vapor deposition, and paraffin/expanded graphite/β-SiC nanowires composites (PESNC) were made through vacuum impregnation to overcome liquid leakage during phase transition and enhance the thermal conductivity of paraffin. Fourier transform infrared spectroscopy showed no chemical interactions between the paraffin and ESNC. Differential scanning calorimetry estimated the temperature and latent heat of PESNC during melting to 45.73 °C and 124.31 J g-1, respectively. The respective values of these quantities during freezing were recorded as 48.93 °C and 124.14 J g-1. The thermal conductivity of PESNC was estimated to 0.75 W mK-1, which was 3.26-folds that of pure paraffin (0.23 W mK-1). PESNC perfectly maintained its phase transition after 200 melting-freezing cycles. The resulting ideal thermal conductivity, good chemical stability, thermal properties and thermal reliability of PESNC are promising for use in energy efficient buildings and solar energy systems.

  13. Semiconductor nanowires and templates for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Xiang

    2009-07-15

    catalyzed germanium nanowires, a small process window has been determined where high aspect-ratio nanowires show single crystalline structure. Compositional analysis has been performed via electron energy loss spectroscopy (EELS) to monitor the presence of indium and bismuth in the nanowires. Both catalysts could be identified, validating their role as catalysts. A combined atomic force microscopy (AFM) and Raman spectroscopy characterization on single core-shell nanowires gives clear evidence of finite-size effects on the electron-phonon coupling, as well as the presence of strain. Field effect transistors were fabricated using gold, bismuth and indium catalyzed germanium nanowires. Initial room-temperature and temperature dependent transport measurements on gold and bismuth catalyzed nanowires show field effects. Indium catalyzed germanium nanowires show insulating behavior. (orig.)

  14. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    Science.gov (United States)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  15. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  16. Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires

    Directory of Open Access Journals (Sweden)

    Wang Yiqian

    2009-01-01

    Full Text Available Abst