WorldWideScience

Sample records for composite microvascular tissue

  1. Mandibular reconstruction with composite microvascular tissue transfer

    International Nuclear Information System (INIS)

    Coleman, J.J. III; Wooden, W.A.

    1990-01-01

    Microvascular free tissue transfer has provided a variety of methods of restoring vascularized bone and soft tissue to difficult defects created by tumor resection and trauma. Over 7 years, 26 patients have undergone 28 free flaps for mandibular reconstruction, 15 for primary squamous cell carcinoma of the floor of the mouth or tongue, 7 for recurrent tumor, and 6 for other reasons [lymphangioma (1), infection (1), gunshot wound (1), and osteoradionecrosis (3)]. Primary reconstruction was performed in 19 cases and secondary in 9. All repairs were composite flaps including 12 scapula, 5 radial forearm, 3 fibula, 2 serratus, and 6 deep circumflex iliac artery. Mandibular defects included the symphysis alone (7), symphysis and body (5), symphysis-body-ramus condyle (2), body or ramus (13), and bilateral body (1). Fourteen patients had received prior radiotherapy to adjuvant or curative doses. Eight received postoperative radiotherapy. All patients had initially successful vascularized reconstruction by clinical examination (28) and positive radionuclide scan (22 of 22). Bony stability was achieved in 25 of 26 patients and oral continence in 24 of 26. One complete flap loss occurred at 14 days. Complications of some degree developed in 22 patients including partial skin necrosis (3), orocutaneous fistula (3), plate exposure (1), donor site infection (3), fracture of reconstruction (1), and fracture of the radius (1). Microvascular transfer of bone and soft tissue allows a reliable reconstruction--despite previous radiotherapy, infection, foreign body, or surgery--in almost every situation in which mandible and soft tissue are absent. Bony union, a healed wound, and reasonable function and appearance are likely despite early fistula, skin loss, or metal plate or bone exposure

  2. Mandibular reconstruction with composite microvascular tissue transfer

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.J. III; Wooden, W.A. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1990-10-01

    Microvascular free tissue transfer has provided a variety of methods of restoring vascularized bone and soft tissue to difficult defects created by tumor resection and trauma. Over 7 years, 26 patients have undergone 28 free flaps for mandibular reconstruction, 15 for primary squamous cell carcinoma of the floor of the mouth or tongue, 7 for recurrent tumor, and 6 for other reasons (lymphangioma (1), infection (1), gunshot wound (1), and osteoradionecrosis (3)). Primary reconstruction was performed in 19 cases and secondary in 9. All repairs were composite flaps including 12 scapula, 5 radial forearm, 3 fibula, 2 serratus, and 6 deep circumflex iliac artery. Mandibular defects included the symphysis alone (7), symphysis and body (5), symphysis-body-ramus condyle (2), body or ramus (13), and bilateral body (1). Fourteen patients had received prior radiotherapy to adjuvant or curative doses. Eight received postoperative radiotherapy. All patients had initially successful vascularized reconstruction by clinical examination (28) and positive radionuclide scan (22 of 22). Bony stability was achieved in 25 of 26 patients and oral continence in 24 of 26. One complete flap loss occurred at 14 days. Complications of some degree developed in 22 patients including partial skin necrosis (3), orocutaneous fistula (3), plate exposure (1), donor site infection (3), fracture of reconstruction (1), and fracture of the radius (1). Microvascular transfer of bone and soft tissue allows a reliable reconstruction--despite previous radiotherapy, infection, foreign body, or surgery--in almost every situation in which mandible and soft tissue are absent. Bony union, a healed wound, and reasonable function and appearance are likely despite early fistula, skin loss, or metal plate or bone exposure.

  3. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules

    OpenAIRE

    Zhang, Wujie; Choi, Jung K.; He, Xiaoming

    2017-01-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. ...

  4. Engineering Microvascularized 3D Tissue Using Alginate-Chitosan Microcapsules.

    Science.gov (United States)

    Zhang, Wujie; Choi, Jung K; He, Xiaoming

    2017-02-01

    Construction of vascularized tissues is one of the major challenges of tissue engineering. The goal of this study was to engineer 3D microvascular tissues by incorporating the HUVEC-CS cells with a collagen/alginate-chitosan (AC) microcapsule scaffold. In the presence of AC microcapsules, a 3D vascular-like network was clearly observable. The results indicated the importance of AC microcapsules in engineering microvascular tissues -- providing support and guiding alignment of HUVEC-CS cells. This approach provides an alternative and promising method for constructing vascularized tissues.

  5. Active cooling of microvascular composites for battery packaging

    Science.gov (United States)

    Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.

    2017-10-01

    Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.

  6. Perioperative antibiotics in the setting of microvascular free tissue transfer: current practices

    NARCIS (Netherlands)

    Reiffel, Alyssa J.; Kamdar, Mehul R.; Kadouch, Daniel J. M.; Rohde, Christine H.; Spector, Jason A.

    2010-01-01

    Microvascular free tissue transfer is a ubiquitous and routine method of restoring anatomic defects. There is a paucity of data regarding the role of perioperative antibiotics in free tissue transfer. We designed a survey to explore usage patterns among microvascular surgeons and thereby define a

  7. Microsurgical Composite Tissue Transplantation

    Science.gov (United States)

    Serafin, Donald; Georgiade, Nicholas G.

    1978-01-01

    Since 1974, 69 patients with extensive defects have undergone reconstruction by microsurgical composite tissue transplantation. Using this method, donor composite tissue is isolated on its blood supply, removed to a distant recipient site, and the continuity of blood flow re-established by microvascular anastomoses. In this series, 56 patients (81%) were completely successful. There have been eight (12%) failures, primarily in the extremities. There have been five (7%) partial successes, (i.e., a microvascular flap in which a portion was lost requiring a secondary procedure such as a split thickness graft). In those patients with a severely injured lower extremity, the failure rate was the greatest. Most of these were arterial (six of seven). These failures occurred early in the series and were thought to be related to a severely damaged recipient vasculature. This problem has been circumvented by an autogenous interpositional vein graft, permitting more mobility of flap placement. In the upper extremity, all but one case were successful. Early motion was permitted, preventing joint capsular contractures and loss of function. Twenty-three cases in the head and neck region were successful (one partial success). This included two composite rib grafts to the mandible. Prolonged delays in reconstruction following extirpation of a malignancy were avoided. A rapid return to society following complete reconstruction was ensured. Nine patients presented for reconstruction of the breast and thorax following radical mastectomy. All were successfully reconstructed with this new technique except one patient. Its many advantages include immediate reconstruction without delayed procedures and no secondary deformity of the donor site. Healthy, well vascularized tissue can now be transferred to a previously irradiated area with no tissue loss. This new method offers many advantages to older methods of reconstruction. Length of hospital stay and immobilization are reduced. The

  8. Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.

    Science.gov (United States)

    Fortunato, Tiago M; Beltrami, Cristina; Emanueli, Costanza; De Bank, Paul A; Pula, Giordano

    2016-05-04

    Revascularisation is a key step for tissue regeneration and complete organ engineering. We describe the generation of human platelet lysate gel (hPLG), an extracellular matrix preparation from human platelets able to support the proliferation of endothelial colony forming cells (ECFCs) in 2D cultures and the formation of a complete microvascular network in vitro in 3D cultures. Existing extracellular matrix preparations require addition of high concentrations of recombinant growth factors and allow only limited formation of capillary-like structures. Additional advantages of our approach over existing extracellular matrices are the absence of any animal product in the composition hPLG and the possibility of obtaining hPLG from patients to generate homologous scaffolds for re-implantation. This discovery has the potential to accelerate the development of regenerative medicine applications based on implantation of microvascular networks expanded ex vivo or the generation of fully vascularised organs.

  9. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2014-10-01

    Full Text Available Adipose tissue-derived microvascular fragments are promising vascularisation units for applications in the field of tissue engineering. Elderly patients are the major future target population of such applications due to an increasing human life expectancy. Therefore, we herein investigated the effect of aging on the fragments’ vascularisation capacity. Microvascular fragments were isolated from epididymal fat pads of adult (8 months and aged (16 months C57BL/6 donor mice. These fragments were seeded onto porous polyurethane scaffolds, which were implanted into dorsal skinfold chambers to study their vascularisation using intravital fluorescence microscopy, histology and immunohistochemistry. Scaffolds seeded with fragments from aged donors exhibited a significantly lower functional microvessel density and intravascular blood flow velocity. This was associated with an impaired vessel maturation, as indicated by vessel wall irregularities, constantly elevated diameters and a lower fraction of CD31/α-smooth muscle actin double positive microvessels in the implants’ border and centre zones. Additional in vitro analyses revealed that microvascular fragments from adult and aged donors do not differ in their stem cell content as well as in their release of angiogenic growth factors, survival and proliferative activity under hypoxic conditions. However, fragments from aged donors exhibit a significantly lower number of matrix metalloproteinase -9-positive perivascular cells. Taken together, these findings demonstrate that aging is a crucial determinant for the vascularisation capacity of isolated microvascular fragments.

  10. Erythropoietin promotes network formation of transplanted adipose tissue-derived microvascular fragments

    Directory of Open Access Journals (Sweden)

    P Karschnia

    2018-05-01

    Full Text Available The seeding of tissue constructs with adipose tissue-derived microvascular fragments (ad-MVF is an emerging pre-vascularisation strategy. Ad-MVF rapidly reassemble into new microvascular networks after in vivo implantation. Herein it was analysed whether this process was improved by erythropoietin (EPO. Ad-MVF were isolated from green fluorescent protein (GFP+ as well as wild-type C57BL/6 mice and cultivated for 24 h in medium supplemented with EPO (20 IU/mL or vehicle. Freshly isolated, non-cultivated ad-MVF served as controls. Protein expression, cell viability and proliferation of ad-MVF were assessed by proteome profiler array and fluorescence microscopy. GFP+ ad-MVF were seeded on collagen-glycosaminoglycan matrices, which were implanted into dorsal skinfold chambers of C57BL/6 mice, to analyse their vascularisation over 14 d by intravital fluorescence microscopy, histology and immunohistochemistry. Cultivation up-regulated the expression of pro- and anti-angiogenic factors within both vehicle- and EPO-treated ad-MVF when compared with non-cultivated controls. Moreover, EPO treatment suppressed cultivation-associated apoptosis and significantly increased the number of proliferating endothelial cells in ad-MVF when compared with vehicle-treated and non-cultivated ad-MVF. Accordingly, implanted matrices seeded with EPO-treated ad-MVF exhibited an improved vascularisation, as indicated by a significantly higher functional microvessel density. The matrices of the three groups contained a comparably large fraction of GFP+ microvessels originating from the ad-MVF, whereas the tissue surrounding the matrices seeded with EPO-treated ad-MVF exhibited a significantly increased microvessel density when compared with the other two groups. These findings indicated that EPO represents a promising cytokine to further boost the excellent vascularisation properties of ad-MVF in tissue-engineering applications.

  11. Microvascular free flaps in the management of war wounds with tissue defects

    Directory of Open Access Journals (Sweden)

    Kozarski Jefta

    2003-01-01

    Full Text Available Background. War wounds caused by modern infantry weapons or explosive devices are very often associated with the defects of soft and bone tissue. According to their structure, tissue defects can be simple or complex. In accordance with war surgical doctrine, at the Clinic for Plastic Surgery and Burns of the Military Medical Academy, free flaps were used in the treatment of 108 patients with large tissue defects. With the aim of closing war wounds, covering deep structures, or making the preconditions for reconstruction of deep structures, free flaps were applied in primary, delayed, or secondary term. The main criteria for using free flaps were general condition of the wounded, extent, location, and structure of tissue defects. The aim was also to point out the advantages and disadvantages of the application of free flaps in the treatment of war wounds. Methods. One hundred and eleven microvascular free flaps were applied, both simple and complex, for closing the war wounds with extensive tissue defects. The main criteria for the application of free flaps were: general condition of the wounded, size, localization, and structure of tissue defects. For the extensive defects of the tissue, as well as for severely contaminated wounds latissimus dorsi free flaps were used. For tissue defects of distal parts of the lower extremities, scapular free flaps were preferred. While using free tissue transfer for recompensation of bone defects, free vascularized fibular grafts were applied, and in skin and bone defects complex free osteoseptocutaneous fibular, free osteoseptocutaneous radial forearm, and free skin-bone scapular flaps were used. Results. After free flap transfer 16 (14,4% revisions were performed, and after 8 unsuccessful revisions another free flaps were utilized in 3 (37,5% patients, and cross leg flaps in 5 (62,5% patients. Conclusion. The treatment of war wounds with large tissue defects by the application of free microvascular flaps

  12. Repeated self-healing of microvascular carbon fibre reinforced polymer composites

    International Nuclear Information System (INIS)

    Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2014-01-01

    A self-healing, high performance, carbon fibre reinforced polymer (CFRP) composite is demonstrated by embedding a Lewis-acid catalytic curing agent within a laminate, manufactured using out of autoclave (OOA) composite manufacturing methods. Two configurations of healing agent delivery, pre-mixed and autonomous mixing, are investigated via injection of a healing agent through bio-inspired microvascular channels exposed on Mode I fractured crack planes. Healing is effected when an epoxy resin-solvent healing agent mixture reaches the boundary of embedded solid-state scandium(III) triflate (Sc(OTf) 3 ) catalyst, located on the crack plane, to initiate the ring-opening polymerisation (ROP) of epoxides. Tailored self-healing agents confer high healing efficiency values after multiple healing cycles (69–108%) to successfully mitigate against crack propagation within the composite microstructure. (paper)

  13. Integration of Self-Assembled Microvascular Networks with Microfabricated PEG-Based Hydrogels.

    Science.gov (United States)

    Cuchiara, Michael P; Gould, Daniel J; McHale, Melissa K; Dickinson, Mary E; West, Jennifer L

    2012-11-07

    Despite tremendous efforts, tissue engineered constructs are restricted to thin, simple tissues sustained only by diffusion. The most significant barrier in tissue engineering is insufficient vascularization to deliver nutrients and metabolites during development in vitro and to facilitate rapid vascular integration in vivo. Tissue engineered constructs can be greatly improved by developing perfusable microvascular networks in vitro in order to provide transport that mimics native vascular organization and function. Here a microfluidic hydrogel is integrated with a self-assembling pro-vasculogenic co-culture in a strategy to perfuse microvascular networks in vitro. This approach allows for control over microvascular network self-assembly and employs an anastomotic interface for integration of self-assembled micro-vascular networks with fabricated microchannels. As a result, transport within the system shifts from simple diffusion to vessel supported convective transport and extra-vessel diffusion, thus improving overall mass transport properties. This work impacts the development of perfusable prevascularized tissues in vitro and ultimately tissue engineering applications in vivo.

  14. Comparison of tissue processing methods for microvascular visualization in axolotls.

    Science.gov (United States)

    Montoro, Rodrigo; Dickie, Renee

    2017-01-01

    The vascular system, the pipeline for oxygen and nutrient delivery to tissues, is essential for vertebrate development, growth, injury repair, and regeneration. With their capacity to regenerate entire appendages throughout their lifespan, axolotls are an unparalleled model for vertebrate regeneration, but they lack many of the molecular tools that facilitate vascular imaging in other animal models. The determination of vascular metrics requires high quality image data for the discrimination of vessels from background tissue. Quantification of the vasculature using perfused, cleared specimens is well-established in mammalian systems, but has not been widely employed in amphibians. The objective of this study was to optimize tissue preparation methods for the visualization of the microvascular network in axolotls, providing a basis for the quantification of regenerative angiogenesis. To accomplish this aim, we performed intracardiac perfusion of pigment-based contrast agents and evaluated aqueous and non-aqueous clearing techniques. The methods were verified by comparing the quality of the vascular images and the observable vascular density across treatment groups. Simple and inexpensive, these tissue processing techniques will be of use in studies assessing vascular growth and remodeling within the context of regeneration. Advantages of this method include: •Higher contrast of the vasculature within the 3D context of the surrounding tissue •Enhanced detection of microvasculature facilitating vascular quantification •Compatibility with other labeling techniques.

  15. Graft microvascular disease in solid organ transplantation.

    Science.gov (United States)

    Jiang, Xinguo; Sung, Yon K; Tian, Wen; Qian, Jin; Semenza, Gregg L; Nicolls, Mark R

    2014-08-01

    Alloimmune inflammation damages the microvasculature of solid organ transplants during acute rejection. Although immunosuppressive drugs diminish the inflammatory response, they do not directly promote vascular repair. Repetitive microvascular injury with insufficient regeneration results in prolonged tissue hypoxia and fibrotic remodeling. While clinical studies show that a loss of the microvascular circulation precedes and may act as an initiating factor for the development of chronic rejection, preclinical studies demonstrate that improved microvascular perfusion during acute rejection delays and attenuates tissue fibrosis. Therefore, preservation of a functional microvasculature may represent an effective therapeutic strategy for preventing chronic rejection. Here, we review recent advances in our understanding of the role of the microvasculature in the long-term survival of transplanted solid organs. We also highlight microvessel-centered therapeutic strategies for prolonging the survival of solid organ transplants.

  16. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    Science.gov (United States)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  17. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain......-gauge plethysmography was used to measure the adipose tissue and forearm blood flow, respectively. Ultrasound signal intensity of the first plateau phases was 27 ± dB in the abdominal subcutaneous adipose tissue and 18 ± 2 dB (P

  18. Coronary microvascular function, insulin sensitivity and body composition in predicting exercise capacity in overweight patients with coronary artery disease

    DEFF Research Database (Denmark)

    Jürs, Anders; Pedersen, Lene Rørholm; Olsen, Rasmus Huan

    2015-01-01

    BACKGROUND: Coronary artery disease (CAD) has a negative impact on exercise capacity. The aim of this study was to determine how coronary microvascular function, glucose metabolism and body composition contribute to exercise capacity in overweight patients with CAD and without diabetes. METHODS...... by a cardiopulmonary exercise test. Body composition was determined by whole body dual-energy X-ray absorptiometry scan and magnetic resonance imaging. Coronary flow reserve (CFR) assessed by transthoracic Doppler echocardiography was used as a measure of microvascular function. RESULTS: Median BMI was 31.3 and 72...... metabolism and body composition. CFR, EDV and LVEF remained independent predictors of VO2peak in multivariable regression analysis. CONCLUSION: The study established CFR, EDV and LVEF as independent predictors of VO2peak in overweight CAD patients with no or only mild functional symptoms and a LVEF > 35...

  19. Experimental diode laser-assisted microvascular anastomosis.

    Science.gov (United States)

    Reali, U M; Gelli, R; Giannotti, V; Gori, F; Pratesi, R; Pini, R

    1993-05-01

    An experimental study to evaluate a diode-laser approach to microvascular end-to-end anastomoses is reported. Studies were carried out on the femoral arteries and veins of Wistar rats, and effective welding of vessel tissue was obtained at low laser power, by enhancing laser absorption with indocyanine green (Cardio-green) solution. The histologic and surgical effects of this laser technique were examined and compared with those of conventional microvascular sutured anastomoses.

  20. Outcomes of microvascular free tissue transfer in twice-irradiated patients.

    Science.gov (United States)

    Clancy, Kate; Melki, Sami; Awan, Musaddiq; Li, Shawn; Lavertu, Pierre; Fowler, Nicole; Yao, Min; Rezaee, Rod; Zender, Chad A

    2017-09-01

    Patients may require microvascular free tissue transfer (MFTT) following re-irradiation for recurrent cancer or radiation complications. The objective of this study was to describe the indications for and outcomes of free flaps performed in twice-radiated patients. A retrospective chart review identified the indications for and outcomes of 36 free flaps performed on 29 twice-irradiated patients. The free flap success rate was 92%. The most common indications requiring MFTT were cancer recurrence and osteoradionecrosis. Sixty-one percent experienced postoperative complications, most commonly wound infection (33%). Twenty-five percent of the procedures required return to the operating room due to postoperative complication. MFTT can be successfully performed in the twice-irradiated patient population with a success rate comparable to singly-radiated patients. Despite a high success rate, there is also a high rate of surgical site complications, especially infection. © 2017 Wiley Periodicals, Inc.

  1. Microvascular Anastomosis Training in Neurosurgery: A Review

    Directory of Open Access Journals (Sweden)

    Vadim A. Byvaltsev

    2018-01-01

    Full Text Available Cerebrovascular diseases are among the most widespread diseases in the world, which largely determine the structure of morbidity and mortality rates. Microvascular anastomosis techniques are important for revascularization surgeries on brachiocephalic and carotid arteries and complex cerebral aneurysms and even during resection of brain tumors that obstruct major cerebral arteries. Training in microvascular surgery became even more difficult with less case exposure and growth of the use of endovascular techniques. In this text we will briefly discuss the history of microvascular surgery, review current literature on simulation models with the emphasis on their merits and shortcomings, and describe the views and opinions on the future of the microvascular training in neurosurgery. In “dry” microsurgical training, various models created from artificial materials that simulate biological tissues are used. The next stage in training more experienced surgeons is to work with nonliving tissue models. Microvascular training using live models is considered to be the most relevant due to presence of the blood flow. Training on laboratory animals has high indicators of face and constructive validity. One of the future directions in the development of microsurgical techniques is the use of robotic systems. Robotic systems may play a role in teaching future generations of microsurgeons. Modern technologies allow access to highly accurate learning environments that are extremely similar to real environment. Additionally, assessment of microsurgical skills should become a fundamental part of the current evaluation of competence within a microneurosurgical training program. Such an assessment tool could be utilized to ensure a constant level of surgical competence within the recertification process. It is important that this evaluation be based on validated models.

  2. Microvascular imaging: techniques and opportunities for clinical physiological measurements

    International Nuclear Information System (INIS)

    Allen, John; Howell, Kevin

    2014-01-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research. (topical review)

  3. A new method to study changes in microvascular blood volume in muscle and adipose tissue: Real time imaging in humans and rat

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Rattigan, Stephen; Hiscock, Natalie J

    2011-01-01

    We employed and evaluated a new application of contrast enhanced ultrasound for real time imaging of changes in microvascular blood volume (MVB) in tissues in females, males and rat. Continuous real time imaging was performed using contrast enhanced ultrasound to quantify infused gas filled micro...

  4. Microvascular Remodeling and Wound Healing: A Role for Pericytes

    Science.gov (United States)

    Dulmovits, Brian M.; Herman, Ira M.

    2012-01-01

    Physiologic wound healing is highly dependent on the coordinated functions of vascular and non-vascular cells. Resolution of tissue injury involves coagulation, inflammation, formation of granulation tissue, remodeling and scarring. Angiogenesis, the growth of microvessels the size of capillaries, is crucial for these processes, delivering blood-borne cells, nutrients and oxygen to actively remodeling areas. Central to angiogenic induction and regulation is microvascular remodeling, which is dependent upon capillary endothelial cell and pericyte interactions. Despite our growing knowledge of pericyte-endothelial cell crosstalk, it is unclear how the interplay among pericytes, inflammatory cells, glia and connective tissue elements shape microvascular injury response. Here, we consider the relationships that pericytes form with the cellular effectors of healing in normal and diabetic environments, including repair following injury and vascular complications of diabetes, such as diabetic macular edema and proliferative diabetic retinopathy. In addition, pericytes and stem cells possessing “pericyte-like” characteristics are gaining considerable attention in experimental and clinical efforts aimed at promoting healing or eradicating ocular vascular proliferative disorders. As the origin, identification and characterization of microvascular pericyte progenitor populations remains somewhat ambiguous, the molecular markers, structural and functional characteristics of pericytes will be briefly reviewed. PMID:22750474

  5. The impact of obesity on the relationship between epicardial adipose tissue, left ventricular mass and coronary microvascular function

    International Nuclear Information System (INIS)

    Bakkum, M.J.; Danad, I.; Romijn, M.A.J.; Stuijfzand, W.J.A.; Leonora, R.M.; Rossum, A.C. van; Knaapen, P.; Tulevski, I.I.; Somsen, G.A.; Lammertsma, A.A.; Kuijk, C. van; Raijmakers, P.G.

    2015-01-01

    Epicardial adipose tissue (EAT) has been linked to coronary artery disease (CAD) and coronary microvascular dysfunction. However, its injurious effect may also impact the underlying myocardium. This study aimed to determine the impact of obesity on the quantitative relationship between left ventricular mass (LVM), EAT and coronary microvascular function. A total of 208 (94 men, 45 %) patients evaluated for CAD but free of coronary obstructions underwent quantitative [ 15 O]H 2 O hybrid positron emission tomography (PET)/CT imaging. Coronary microvascular resistance (CMVR) was calculated as the ratio of mean arterial pressure to hyperaemic myocardial blood flow. Obese patients [body mass index (BMI) > 25, n = 133, 64 % of total] had more EAT (125.3 ± 47.6 vs 93.5 ± 42.1 cc, p < 0.001), a higher LVM (130.1 ± 30.4 vs 114.2 ± 29.3 g, p < 0.001) and an increased CMVR (26.6 ± 9.1 vs 22.3 ± 8.6 mmHg x ml -1 x min -1 x g -1 , p < 0.01) as compared to nonobese patients. Male gender (β = 40.7, p < 0.001), BMI (β = 1.61, p < 0.001), smoking (β = 6.29, p = 0.03) and EAT volume (β = 0.10, p < 0.01) were identified as independent predictors of LVM. When grouped according to BMI status, EAT was only independently associated with LVM in nonobese patients. LVM, hypercholesterolaemia and coronary artery calcium score were independent predictors of CMVR. EAT volume is associated with LVM independently of BMI and might therefore be a better predictor of cardiovascular risk than BMI. However, EAT volume was not related to coronary microvascular function after adjustments for LVM and traditional risk factors. (orig.)

  6. The impact of obesity on the relationship between epicardial adipose tissue, left ventricular mass and coronary microvascular function

    Energy Technology Data Exchange (ETDEWEB)

    Bakkum, M.J.; Danad, I.; Romijn, M.A.J.; Stuijfzand, W.J.A.; Leonora, R.M.; Rossum, A.C. van; Knaapen, P. [VU University Medical Center, Department of Cardiology, Amsterdam (Netherlands); Tulevski, I.I.; Somsen, G.A. [Cardiology Centers of the Netherlands, Amsterdam (Netherlands); Lammertsma, A.A.; Kuijk, C. van; Raijmakers, P.G. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands)

    2015-09-15

    Epicardial adipose tissue (EAT) has been linked to coronary artery disease (CAD) and coronary microvascular dysfunction. However, its injurious effect may also impact the underlying myocardium. This study aimed to determine the impact of obesity on the quantitative relationship between left ventricular mass (LVM), EAT and coronary microvascular function. A total of 208 (94 men, 45 %) patients evaluated for CAD but free of coronary obstructions underwent quantitative [{sup 15}O]H{sub 2}O hybrid positron emission tomography (PET)/CT imaging. Coronary microvascular resistance (CMVR) was calculated as the ratio of mean arterial pressure to hyperaemic myocardial blood flow. Obese patients [body mass index (BMI) > 25, n = 133, 64 % of total] had more EAT (125.3 ± 47.6 vs 93.5 ± 42.1 cc, p < 0.001), a higher LVM (130.1 ± 30.4 vs 114.2 ± 29.3 g, p < 0.001) and an increased CMVR (26.6 ± 9.1 vs 22.3 ± 8.6 mmHg x ml{sup -1} x min{sup -1} x g{sup -1}, p < 0.01) as compared to nonobese patients. Male gender (β = 40.7, p < 0.001), BMI (β = 1.61, p < 0.001), smoking (β = 6.29, p = 0.03) and EAT volume (β = 0.10, p < 0.01) were identified as independent predictors of LVM. When grouped according to BMI status, EAT was only independently associated with LVM in nonobese patients. LVM, hypercholesterolaemia and coronary artery calcium score were independent predictors of CMVR. EAT volume is associated with LVM independently of BMI and might therefore be a better predictor of cardiovascular risk than BMI. However, EAT volume was not related to coronary microvascular function after adjustments for LVM and traditional risk factors. (orig.)

  7. Oxygen delivery in irradiated normal tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, M.F.; Ansari, R. [Univ. of Tennessee Health Science Center, Memphis, TN (United States). School of Biomedical Engineering; Gaber, M.W. [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2003-03-01

    Ionizing radiation exposure significantly alters the structure and function of microvascular networks, which regulate delivery of oxygen to tissue. In this study we use a hamster cremaster muscle model to study changes in microvascular network parameters and use a mathematical model to study the effects of these observed structural and microhemodynamic changes in microvascular networks on oxygen delivery to the tissue. Our experimental observations indicate that in microvascular networks while some parameters are significantly affected by irradiation (e.g. red blood cell (RBC) transit time), others remain at the control level (e.g. RBC path length) up to 180 days post-irradiation. The results from our mathematical model indicate that tissue oxygenation patterns are significantly different in irradiated normal tissue as compared to age-matched controls and the differences are apparent as early as 3 days post irradiation. However, oxygen delivery to irradiated tissue was not found to be significantly different from age matched controls at any time between 7 days to 6 months post-irradiation. These findings indicate that microvascular late effects in irradiated normal tissue may be due to factors other than compromised tissue oxygenation. (author)

  8. Microvascular Cranial Nerve Palsy

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Microvascular Cranial Nerve Palsy Sections What Is Microvascular Cranial Nerve Palsy? ... Microvascular Cranial Nerve Palsy Treatment What Is Microvascular Cranial Nerve Palsy? Leer en Español: ¿Qué es una parálisis ...

  9. Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-revascularized periosteal grafts

    International Nuclear Information System (INIS)

    Berggren, A.; Weiland, A.J.; Ostrup, L.T.

    1982-01-01

    Researchers studied the value of bone scintigraphy in the assessment of anastomotic patency and bone-cell viability in free bone grafts revascularized by microvascular anastomoses in twenty-seven dogs. The dogs were divided into three different groups, and scintigraphy was carried out using technetium-labeled methylene diphosphonate in composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and periosteal grafts placed in different recipient beds. The viability of the grafts were evaluated by histological examination and fluorescence microscopy after triple labeling with oxytetracycline on the first postoperative day, alizarin complexone on the fourth postoperative day, and DCAF on the eleventh postoperative day. A positive scintiscan within the first week following surgery indicated patent microvascular anastomoses, and histological study and fluorescence microscopy confirmed that bone throughout the graft was viable. A positive scintiscan one week after surgery or later does not necessarily indicate microvascular patency or bone-cell survival, because new bone formed by creeping substitution on the surface of a dead bone graft can result in this finding

  10. [Recent advances on pericytes in microvascular dysfunction and traditional Chinese medicine prevention].

    Science.gov (United States)

    Liu, Lei; Liu, Jian-Xun; Guo, Hao; Ren, Jian-Xun

    2017-08-01

    Pericytesis a kind of widespread vascular mural cells embedded within the vascular basement membrane of blood microvessels, constituting the barrier of capillaries and tissue spaces together with endothelial cells. Pericytes communicate with microvascular endothelial cells through cell connections or paracrine signals, playing an important role in important physiological processes such as blood flow, vascular permeability and vascular formation. Pericytes dysfunction may participate in some microvascular dysfunction, and also mediate pathological repair process, therefore pericytes attracted more and more attention. Traditional Chinese medicine suggests that microvascular dysfunction belongs to the collaterals disease; Qi stagnation and blood stasis in collaterals result in function imbalance of internal organs. Traditional Chinese medicine (TCM) has shown effects on pericytes in microvascular dysfunction, for example qi reinforcing blood-circulation activating medicines can reduce the damage of retinal pericytes in diabetic retinopathy. However, there are some limitations of research fields, inaccuracy of research techniques and methods, and lack of mechanism elaboration depth in the study of microvascular lesion pericytes. This paper reviewed the biological characteristics of pericytes and pericytes in microvascular dysfunction, as well as the intervention study of TCM on pericytes. The article aims to provide reference for the research of pericytes in microvascular dysfunction and the TCM study on pericytes. Copyright© by the Chinese Pharmaceutical Association.

  11. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  12. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  13. Biocompatibility studies of endothelial cells on a novel calcium phosphate/SiO2-xerogel composite for bone tissue engineering

    International Nuclear Information System (INIS)

    Thimm, Benjamin W; Unger, Ronald E; Kirkpatrick, C James; Neumann, Hans-Georg

    2008-01-01

    The bone biomaterial BONITmatrix, a nanoporous, granular scaffold composed of hydroxylapatite, calcium phosphate and SiO 2 , linked by a dense collagen mesh, was tested for its biocompatibility using endothelial cells (EC) in the form of macrovascular HUVEC, microvascular HDMEC and the endothelial cell line ISOHAS-1. Cells were examined for their adherence and growth on the biomaterial and this was followed by confocal laser scanning microscopy after vital staining or immunocytochemical reactions, as well as by scanning electron microscopy. Macro- and microvascular ECs predominantly spread on BONITmatrix-collagen mesh-covered surfaces and fibres and maintained their typical morphology. As ECs in vivo must build up a functional vasculature, the seeded cells were further tested for proinflammatory expression markers and cytokine expression after lipopolysaccharide stimulation. Protein-coating studies revealed that BONITmatrix-collagen scaffolds needed human blood serum coating to successfully support the growth of ECs. All cells expressed endothelium-specific surface marker proteins such as PECAM-1, VE-cadherin and vWF. The in vitro data support recent in vivo studies and indicate that this calcium phosphate/SiO 2 -xerogel composite could be a useful scaffold material for tissue engineering

  14. Pathways for insulin access to the brain: the role of the microvascular endothelial cell.

    Science.gov (United States)

    Meijer, Rick I; Gray, Sarah M; Aylor, Kevin W; Barrett, Eugene J

    2016-11-01

    Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125 I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125 I-TyrA14-insulin clearance. We further confirmed that 125 I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding. Copyright © 2016 the American Physiological Society.

  15. Biocompatibility studies of endothelial cells on a novel calcium phosphate/SiO{sub 2}-xerogel composite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Thimm, Benjamin W; Unger, Ronald E; Kirkpatrick, C James [Institute of Pathology, Johannes Gutenberg-University Mainz, Langenbeckstr.1, 55101 Mainz (Germany); Neumann, Hans-Georg [DOT GmbH, Charles-Darwin-Ring 1a, 18059 Rostock (Germany)], E-mail: runger@uni-mainz.de

    2008-03-01

    The bone biomaterial BONITmatrix, a nanoporous, granular scaffold composed of hydroxylapatite, calcium phosphate and SiO{sub 2}, linked by a dense collagen mesh, was tested for its biocompatibility using endothelial cells (EC) in the form of macrovascular HUVEC, microvascular HDMEC and the endothelial cell line ISOHAS-1. Cells were examined for their adherence and growth on the biomaterial and this was followed by confocal laser scanning microscopy after vital staining or immunocytochemical reactions, as well as by scanning electron microscopy. Macro- and microvascular ECs predominantly spread on BONITmatrix-collagen mesh-covered surfaces and fibres and maintained their typical morphology. As ECs in vivo must build up a functional vasculature, the seeded cells were further tested for proinflammatory expression markers and cytokine expression after lipopolysaccharide stimulation. Protein-coating studies revealed that BONITmatrix-collagen scaffolds needed human blood serum coating to successfully support the growth of ECs. All cells expressed endothelium-specific surface marker proteins such as PECAM-1, VE-cadherin and vWF. The in vitro data support recent in vivo studies and indicate that this calcium phosphate/SiO{sub 2}-xerogel composite could be a useful scaffold material for tissue engineering.

  16. [Construction of 2-dimensional tumor microvascular architecture phenotype in non-small cell lung cancer].

    Science.gov (United States)

    Liu, Jin-kang; Wang, Xiao-yi; Xiong, Zeng; Zhou, Hui; Zhou, Jian-hua; Fu, Chun-yan; Li, Bo

    2008-08-01

    To construct a technological platform of 2-dimensional tumor microvascular architecture phenotype (2D-TAMP) expression. Thirty samples of non-small cell lung cancer (NSCLC) were collected after surgery. The corresponding sections of tumor tissue specimens to the slice of CT perfusion imaging were selected. Immunohistochemical staining,Gomori methenamine silver stain, and electron microscope observation were performed to build a technological platform of 2D-TMAP expression by detecting the morphology and the integrity of basement membrane of microvasculature, microvascular density, various microvascular subtype, the degree of the maturity and lumenization of microvasculature, and the characteristics of immunogenetics of microvasculature. The technological platform of 2D-TMAP expression was constructed successfully. There was heterogeneity in 2D-TMAP expression of non-small cell lung cancer. The microvascular of NSCLC had certain characteristics. 2D-TMAP is a key technology that can be used to observe the overall state of micro-environment in tumor growth.

  17. Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: the index of microvascular resistance

    International Nuclear Information System (INIS)

    Gutiérrez-Barrios, Alejandro; Camacho-Jurado, Francisco; Díaz-Retamino, Enrique; Gamaza-Chulián, Sergio; Agarrado-Luna, Antonio; Oneto-Otero, Jesús; Del Rio-Lechuga, Ana; Benezet-Mazuecos, Javier

    2015-01-01

    Summary: We present a review of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and an interesting case of a symptomatic familial HCM patient with inducible ischemia by single photon emission computed tomography. Coronary angiography revealed normal epicardial arteries. Pressure wire measurements of fractional flow reserve (FFR), coronary flow reserve (CFR) and index of microvascular resistance (IMR) demonstrated a significant microcirculatory dysfunction. This is the first such case that documents this abnormality invasively using the IMR. The measurement of IMR, a novel marker of microcirculatory dysfunction, provides novel insights into the pathophysiology of this condition. - Highlights: • Microvascular dysfunction is a common feature in hypertrophic cardiomyopathy (HCM) and represents a strong predictor of unfavorable outcome and cardiovascular mortality. • The index of microvascular resistance (IMR) is a new method for invasively assessing the state of the coronary microcirculation using a single pressure-temperature sensor-tipped coronary wire. • However assessment of IMR in HCM has not been previously reported. We report a case in which microvascular dysfunction is assessed by IMR. This index may be useful in future researches of HCM.

  18. Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: the index of microvascular resistance

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Barrios, Alejandro, E-mail: aleklos@hotmail.com [Cardiology Department, Jerez Hospital, Jerez (Spain); Camacho-Jurado, Francisco [Cardiology Department, Punta Europa Hospital, Algeciras (Spain); Díaz-Retamino, Enrique; Gamaza-Chulián, Sergio; Agarrado-Luna, Antonio; Oneto-Otero, Jesús; Del Rio-Lechuga, Ana; Benezet-Mazuecos, Javier [Cardiology Department, Jerez Hospital, Jerez (Spain)

    2015-10-15

    Summary: We present a review of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and an interesting case of a symptomatic familial HCM patient with inducible ischemia by single photon emission computed tomography. Coronary angiography revealed normal epicardial arteries. Pressure wire measurements of fractional flow reserve (FFR), coronary flow reserve (CFR) and index of microvascular resistance (IMR) demonstrated a significant microcirculatory dysfunction. This is the first such case that documents this abnormality invasively using the IMR. The measurement of IMR, a novel marker of microcirculatory dysfunction, provides novel insights into the pathophysiology of this condition. - Highlights: • Microvascular dysfunction is a common feature in hypertrophic cardiomyopathy (HCM) and represents a strong predictor of unfavorable outcome and cardiovascular mortality. • The index of microvascular resistance (IMR) is a new method for invasively assessing the state of the coronary microcirculation using a single pressure-temperature sensor-tipped coronary wire. • However assessment of IMR in HCM has not been previously reported. We report a case in which microvascular dysfunction is assessed by IMR. This index may be useful in future researches of HCM.

  19. [Evaluation of three-dimensional tumor microvascular architecture phenotype heterogeneity in non-small cell carcinoma and its significance].

    Science.gov (United States)

    Zhou, Hui; Liu, Jinkang; Chen, Shengxi; Xiong, Zeng; Zhou, Jianhua; Tong, Shiyu; Chen, Hao; Zhou, Moling

    2012-06-01

    To explore the degree, mechanism and clinical significance of three-dimensional tumor microvascular architecture phenotype heterogeneity (3D-TMAPH) in non-small cell carcinoma (NSCLC). Twenty-one samples of solitary pulmonary nodules were collected integrally. To establish two-dimensional tumor microvascular architecture phenotype (2D-TMAP) and three-dimensional tumor microvascular architecture phenotype (3D-TMAP), five layers of each nodule were selected and embedded in paraffin. Test indices included the expressions of vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), EphB4, ephfinB2 and microvascular density marked by anti-CD34 (CD34-MVD). The degrees of 3D-TMAPH were evaluated by the coefficient of variation and extend of heterogeneity. Spearman rank correlation analysis was used to investigate the relationships between 2D-TMAP, 3D-TMAP and clinicopathological features. 3D-TMAPH showed that 2D-TMAP heterogeneity was expressed in the tissues of NSCLC. The heterogeneities in the malignant nodules were significantly higher than those in the active inflammatory nodules and tubercular nodules. In addition, different degrees of heterogeneity of CD34-MVD and PCNA were found in NSCLC tissues. The coefficients of variation of CD34- MVD and PCNA were positively related to the degree of differentiation (all P0.05). The level of heterogeneity of various expression indexes (ephrinB2, EphB4, VEGF) in NSCLC tissues were inconsistent, but there were no significant differences in heterogeneity in NSCLC tissues with different histological types (P>0.05). 3D-TMAPH exists widely in the microenvironment during the genesis and development of NSCLC and has a significant impact on its biological complexity.

  20. Fluid resuscitation following a burn injury: implications of a mathematical model of microvascular exchange.

    Science.gov (United States)

    Bert, J; Gyenge, C; Bowen, B; Reed, R; Lund, T

    1997-03-01

    A validated mathematical model of microvascular exchange in thermally injured humans has been used to predict the consequences of different forms of resuscitation and potential modes of action of pharmaceuticals on the distribution and transport of fluid and macromolecules in the body. Specially, for 10 and/or 50 per cent burn surface area injuries, predictions are presented for no resuscitation, resuscitation with the Parkland formula (a high fluid and low protein formulation) and resuscitation with the Evans formula (a low fluid and high protein formulation). As expected, Parkland formula resuscitation leads to interstitial accumulation of excess fluid, while use of the Evans formula leads to interstitial accumulation of excessive amounts of proteins. The hypothetical effects of pharmaceuticals on the transport barrier properties of the microvascular barrier and on the highly negative tissue pressure generated postburn in the injured tissue were also investigated. Simulations predict a relatively greater amelioration of the acute postburn edema through modulation of the postburn tissue pressure effects.

  1. The Ubiquitin-Proteasome System and Microvascular Complications of Diabetes

    Directory of Open Access Journals (Sweden)

    Saeed Yadranji Aghdam

    2013-01-01

    Full Text Available The ubiquitin-proteasome system (UPS is the mainstay of protein quality control which regulates cell cycle, differentiation and various signal transduction pathways in eukaryotic cells. The timely and selective degradation of surplus and/or aberrant proteins by the UPS is essential for normal cellular physiology. Any disturbance, delay or exaggeration in the process of selection, sequestration, labeling for degradation and degradation of target proteins by the UPS will compromise cellular and tissue homeostasis. High blood glucose or hyperglycemia caused by diabetes disrupts normal vascular function in several target organs including the retina and kidney resulting in the development of diabetic retinopathy (DR and diabetic nephropathy (DN. We and others have shown that hyperglycemia and oxidative stress modulate UPS activity in the retina and kidney. The majority of studies have focused on the kidney and provided insights into the contribution of dysregulated UPS to microvascular damage in DN. The eye is a unique organ in which a semi-fluid medium, the vitreous humor, separates the neural retina and its anastomosed blood vessels from the semi-solid lens tissue. The complexity of the cellular and molecular components of the eye may require a normal functioning and well tuned UPS for healthy vision. Altered UPS activity may contribute to the development of retinal microvascular complications of diabetes. A better understanding of the molecular nature of the ocular UPS function under normal and diabetic conditions is essential for development of novel strategies targeting its activity. This review will discuss the association of retinal vascular cell UPS activity with microvascular damage in DR with emphasis on alterations of the PA28 subunits of the UPS.

  2. Microvascular characteristics of the acoustic fats: Novel data suggesting taxonomic differences between deep and shallow-diving odontocetes.

    Science.gov (United States)

    Gabler, Molly K; Gay, D Mark; Westgate, Andrew J; Koopman, Heather N

    2018-04-01

    Odontocetes have specialized mandibular fats, the extramandibular (EMFB) and intramandibular fat bodies (IMFB), which function as acoustic organs, receiving and channeling sound to the ear during hearing and echolocation. Recent strandings of beaked whales suggest that these fat bodies are susceptible to nitrogen (N 2 ) gas embolism and empirical evidence has shown that the N 2 solubility of these fat bodies is higher than that of blubber. Since N 2 gas will diffuse from blood into tissue at any blood/tissue interface and potentially form gas bubbles upon decompression, it is imperative to understand the extent of microvascularity in these specialized acoustic fats so that risk of embolism formation when diving can be estimated. Microvascular density was determined in the EMFB, IMFB, and blubber from 11 species representing three odontocete families. In all cases, the acoustic tissues had less (typically 1/3 to 1/2) microvasculature than did blubber, suggesting that capillary density in the acoustic tissues may be more constrained than in the blubber. However, even within these constraints there were clear phylogenetic differences. Ziphiid (Mesoplodon and Ziphius, 0.9 ± 0.4% and 0.7 ± 0.3% for EMFB and IMFB, respectively) and Kogiid families (1.2 ± 0.2% and 1.0 ± 0.01% for EMFB and IMFB, respectively) had significantly lower mean microvascular densities in the acoustic fats compared to the Delphinid species (Tursiops, Grampus, Stenella, and Globicephala, 1.3 ± 0.3% and 1.3 ± 0.3% for EMFB and IMFB, respectively). Overall, deep-diving beaked whales had less microvascularity in both mandibular fats and blubber compared to the shallow-diving Delphinids, which might suggest that there are differences in the N 2 dynamics associated with diving regime, phylogeny, and tissue type. These novel data should be incorporated into diving physiology models to further understand potential functional disruption of the acoustic tissues due to changes

  3. Microvascular inflammation in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Laura Vitiello

    2014-06-01

    Full Text Available Atherogenesis is the pathogenetic process leading to formation of the atheroma lesion. It is associated to a chronic inflammatory state initially stimulated by an aberrant accumulation of lipid molecules beyond the endothelial barrier. This event triggers a cascade of deleterious events mainly through immune cell stimulation with the consequent liberation of potent pro-inflammatory and tissue damaging mediators. The atherogenetic process implies marked modifications of endothelial cell functions and a radical change in the endothelial–leukocyte interaction pattern. Moreover, accumulating evidence shows an important link between microvascular and inflammatory responses and major cardiovascular risk factors. This review illustrates the current knowledge on the effects of obesity, hypercholesterolemia and diabetes on microcirculation; their pathophysiological implications will be discussed.

  4. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    Science.gov (United States)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  5. Correlation between Microvascular Density and Matrix Metalloproteinase 11 Expression in Prostate Cancer Tissues: a Preliminary Study in Thailand.

    Science.gov (United States)

    Kanharat, Nongnuch; Tuamsuk, Panya

    2015-01-01

    Prostate cancer is a major concern of public health. Microvascular density (MVD) is one of the prognostic markers for various solid cancers. Matrix metalloproteinase 11 (MMP11) plays an important role in angiogenesis and changes in its expression level are known to be associated with tumor progression and clinical outcome. To investigate the relationship between MVD and MMP11 expression in prostatic adenocarcinoma tissues. The expression levels of MMP11 and MVD were analyzed immunohistochemically for 50 specimens of prostatic adenocarcinoma. MMP11 was mainly expressed in stromal cells but rarely seen in epithelial cells. Mean MVD was 36/mm2, and it was correlated significantly only with bone metastases. MVD was also significantly correlated with MMP11 expression (r=0.29, p=0.044). MMP11 may alter the stromal microenvironment of prostate cancer to stimulate tumor angiogenesis.

  6. Tumor necrosis factor-alpha increases myocardial microvascular transport in vivo

    DEFF Research Database (Denmark)

    Hansen, P R; Svendsen, Jesper Hastrup; Høyer, S

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is a primary mediator in the pathogenesis of tissue injury, and high circulating levels of TNF-alpha are found in a variety of pathological conditions. In open-chest anesthetized dogs, the effects of intracoronary recombinant human TNF-alpha (rTNF-alpha; 100...... in cardiac output and was associated with the appearance of areas with myocardial necrosis in the regional left ventricular wall. The myocardial plasma flow rate and maximum plasma flow rate in response to a 30-s coronary occlusion were not influenced by rTNF-alpha, although a decrease in the myocardial...... ng/kg for 60 min) on myocardial microvascular transport of a small hydrophilic indicator was examined by the single-injection, residue-detection method. Intracoronary infusion of rTNF-alpha increased myocardial microvascular transport after 120 min. This increase was preceded by a sustained decline...

  7. Correlation between dynamic contrast-enhanced MRI and quantitative histopathologic microvascular parameters in organ-confined prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Niekerk, Cornelis G. van; Laak, Jeroen A.W.M. van der; Kaa, Christina A.H. de [Radboud University Medical Centre, Department of Pathology, P.O. Box 9101, Nijmegen (Netherlands); Hambrock, Thomas; Huisman, Henk-Jan; Barentsz, Jelle O. [Radboud University Medical Centre, Department of Radiology, Nijmegen (Netherlands); Witjes, J.A. [Radboud University Medical Centre, Department of Urology, Nijmegen (Netherlands)

    2014-10-15

    To correlate pharmacokinetic parameters of 3-T dynamic contrast-enhanced (DCE-)MRI with histopathologic microvascular and lymphatic parameters in organ-confined prostate cancer. In 18 patients with unilateral peripheral zone (pT2a) tumours who underwent DCE-MRI prior to radical prostatectomy (RP), the following pharmacokinetic parameters were assessed: permeability surface area volume transfer constant (K{sup trans}), extravascular extracellular volume (Ve) and rate constant (K{sub ep}). In the RP sections blood and lymph vessels were visualised immunohistochemically and automatically examined and analysed. Parameters assessed included microvessel density (MVD), area (MVA) and perimeter (MVP) as well as lymph vessel density (LVD), area (LVA) and perimeter (LVP). A negative correlation was found between age and K{sup trans} and K{sub ep} for tumour (r = -0.60, p = 0.009; r = -0.67, p = 0.002) and normal (r = -0.54, p = 0.021; r = -0.46, p = 0.055) tissue. No correlation existed between absolute values of microvascular parameters from histopathology and DCE-MRI. In contrast, the ratio between tumour and normal tissue (correcting for individual microvascularity variations) significantly correlated between K{sub ep} and MVD (r = 0.61, p = 0.007) and MVP (r = 0.54, p = 0.022). The lymphovascular parameters showed only a correlation between LVA and K{sub ep} (r = -0.66, p = 0.003). Significant correlations between DCE-MRI and histopathologic parameters were found when correcting for interpatient variations in microvascularity. (orig.)

  8. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing.

    Science.gov (United States)

    Yan, Min; Hu, Yange; Yao, Min; Bao, Shisan; Fang, Yong

    2017-11-01

    Skin wound healing involves complex coordinated interactions of cells, tissues, and mediators. Maintaining microvascular barrier integrity is one of the key events for endothelial homeostasis during wound healing. Vasodilation is observed after vasoconstriction, which causes blood vessels to become porous, facilitates leukocyte infiltration and aids angiogenesis at the wound-area, postinjury. Eventually, vessel integrity has to be reestablished for vascular maturation. Numerous studies have found that granulocyte macrophage colony-stimulating factor (GM-CSF) accelerates wound healing by inducing recruitment of repair cells into the injury area and releases of cytokines. However, whether GM-CSF is involving in the maintaining of microvascular barrier integrity and the underlying mechanism remain still unclear. Aim of this study was to investigate the effects of GM-CSF on modulation of microvascular permeability in wound healing and underlying mechanisms. Wound closure and microvascular leakage was investigated using a full-thickness skin wound mouse model after GM-CSF intervention. The endothelial permeability was measured by Evans blue assay in vivo and in vitro endothelium/pericyte co-culture system using a FITC-Dextran permeability assay. To identify the source of angiopoietin-1 (Ang-1), double staining is used in vivo and ELISA and qPCR are used in vitro. To determine the specific effect of Ang-1 on GM-CSF maintaining microvascular stabilization, Ang-1 siRNA was applied to inhibit Ang-1 production in vivo and in vitro. Wound closure was significantly accelerated and microvascular leakage was ameliorated after GM-CSF treatment in mouse wound sites. GM-CSF decreased endothelial permeability through tightening endothelial junctions and increased Ang-1 protein level that was derived by perictye. Furthermore, applications of siRNAAng-1 inhibited GM-CSF mediated protection of microvascular barrier integrity both in vivo and in vitro. Our data indicate that GM

  9. Uptake of Single-Walled Carbon Nanotubes Conjugated with DNA by Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Harvey

    2012-01-01

    Full Text Available Single-walled carbon nanotubes (SWCNTs have been proposed to have great therapeutic potential. SWCNTs conjugated with drugs or genes travel in the systemic circulation to reach target cells or tissues following extravasation from microvessels although the interaction between SWCNT conjugates and the microvascular endothelial cells (ECs remains unknown. We hypothesized that SWCNT-DNA conjugates would be taken up by microvascular ECs and that this process would be facilitated by SWCNTs compared to facilitation by DNA alone. ECs were treated with various concentrations of SWCNT-DNA-FITC conjugates, and the uptake and intracellular distribution of these conjugates were determined by a confocal microscope imaging system followed by quantitative analysis of fluorescence intensity. The uptake of SWCNT-DNA-FITC conjugates (2 μg/mL by microvascular ECs was significantly greater than that of DNA-FITC (2 μg/mL, observed at 6 hrs after treatment. For the intracellular distribution, SWCNT-DNA-FITC conjugates were detected in the nucleus of ECs, while DNA-FITC was restricted to the cytoplasm. The fluorescence intensity and distribution of SWCNTs were concentration and time independent. The findings demonstrate that SWCNTs facilitate DNA delivery into microvascular ECs, thus suggesting that SWCNTs serving as drug and gene vehicles have therapeutic potential.

  10. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.

    Science.gov (United States)

    Secomb, Timothy W

    2016-12-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  11. Hard tissue compatibility of natural hydroxyapatite/chitosan composite

    International Nuclear Information System (INIS)

    Tang Xiaojun; Gui Lai; Lue Xiaoying

    2008-01-01

    The natural hydroxyapatite/chitosan (NHC) composite is a new synthesized material. The aim of this experiment was to assess the bone tissue compatibility of this NHC composite in vivo. Twenty-four healthy New Zealand rabbits were included in this study. Of those, 20 were used as the experimental group and four as the control group. In the experimental group, animals receive a cranium defect procedure and NHC composite repair. In the control group, animals underwent the cranium defect procedure without NHC composite repair. At 1, 4, 12, 24, and 40 weeks after surgery, the animals were sacrificed and samples were taken and assessed by gross observation, three-dimensional (3D) computerized tomographic (CT) reconstruction, histology and scanning electron microscope. Our results showed that at 1 week after repairing the bone defect with the NHC composite in the experimental group, new bone appeared around the composite and matured gradually. At 24 weeks after surgery, there were little collagenous tissues present between the material and surrounding bones. At 40 weeks after surgery, new bone had grown into the mature bone and total osseointegration had occurred. In the control group, however, no bone defect healing was observed at 40 weeks after surgery. All these results of the present in vivo work suggest that the NHC composite has a good hard tissue biocompatibility and an excellent osteoconductivity. It is suitable for artificial bone implants and frame materials of tissue engineering.

  12. Hard tissue compatibility of natural hydroxyapatite/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Tang Xiaojun; Gui Lai [Department of Cranio-maxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144 (China); Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 (China)], E-mail: laiguiplastic@tom.com, E-mail: luxy@seu.edu.cn

    2008-12-15

    The natural hydroxyapatite/chitosan (NHC) composite is a new synthesized material. The aim of this experiment was to assess the bone tissue compatibility of this NHC composite in vivo. Twenty-four healthy New Zealand rabbits were included in this study. Of those, 20 were used as the experimental group and four as the control group. In the experimental group, animals receive a cranium defect procedure and NHC composite repair. In the control group, animals underwent the cranium defect procedure without NHC composite repair. At 1, 4, 12, 24, and 40 weeks after surgery, the animals were sacrificed and samples were taken and assessed by gross observation, three-dimensional (3D) computerized tomographic (CT) reconstruction, histology and scanning electron microscope. Our results showed that at 1 week after repairing the bone defect with the NHC composite in the experimental group, new bone appeared around the composite and matured gradually. At 24 weeks after surgery, there were little collagenous tissues present between the material and surrounding bones. At 40 weeks after surgery, new bone had grown into the mature bone and total osseointegration had occurred. In the control group, however, no bone defect healing was observed at 40 weeks after surgery. All these results of the present in vivo work suggest that the NHC composite has a good hard tissue biocompatibility and an excellent osteoconductivity. It is suitable for artificial bone implants and frame materials of tissue engineering.

  13. Microvascular and Macrovascular Abnormalities and Cognitive and Physical Function in Older Adults: Cardiovascular Health Study.

    Science.gov (United States)

    Kim, Dae Hyun; Grodstein, Francine; Newman, Anne B; Chaves, Paulo H M; Odden, Michelle C; Klein, Ronald; Sarnak, Mark J; Lipsitz, Lewis A

    2015-09-01

    To evaluate and compare the associations between microvascular and macrovascular abnormalities and cognitive and physical function Cross-sectional analysis of the Cardiovascular Health Study (1998-1999). Community. Individuals with available data on three or more of five microvascular abnormalities (brain, retina, kidney) and three or more of six macrovascular abnormalities (brain, carotid artery, heart, peripheral artery) (N = 2,452; mean age 79.5). Standardized composite scores derived from three cognitive tests (Modified Mini-Mental State Examination, Digit-Symbol Substitution Test, Trail-Making Test (TMT)) and three physical tests (gait speed, grip strength, 5-time sit to stand) Participants with high microvascular and macrovascular burden had worse cognitive (mean score difference = -0.30, 95% confidence interval (CI) = -0.37 to -0.24) and physical (mean score difference = -0.32, 95% CI = -0.38 to -0.26) function than those with low microvascular and macrovascular burden. Individuals with high microvascular burden alone had similarly lower scores than those with high macrovascular burden alone (cognitive function: -0.16, 95% CI = -0.24 to -0.08 vs -0.13, 95% CI = -0.20 to -0.06; physical function: -0.15, 95% CI = -0.22 to -0.08 vs -0.12, 95% CI = -0.18 to -0.06). Psychomotor speed and working memory, assessed using the TMT, were only impaired in the presence of high microvascular burden. Of the 11 vascular abnormalities considered, white matter hyperintensity, cystatin C-based glomerular filtration rate, large brain infarct, and ankle-arm index were independently associated with cognitive and physical function. Microvascular and macrovascular abnormalities assessed using noninvasive tests of the brain, kidney, and peripheral artery were independently associated with poor cognitive and physical function in older adults. Future research should evaluate the usefulness of these tests in prognostication. © 2015, Copyright the Authors Journal compilation © 2015

  14. Uterine microvascular sensitivity to nanomaterial inhalation: An in vivo assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, P.A.; McBride, C.R.; Yi, J.; Nurkiewicz, T.R., E-mail: tnurkiewicz@hsc.wvu.edu

    2015-11-01

    With the tremendous number and diverse applications of engineered nanomaterials incorporated in daily human activity, exposure can no longer be solely confined to occupational exposures of healthy male models. Cardiovascular and endothelial cell dysfunction have been established using in vitro and in situ preparations, but the translation to intact in vivo models is limited. Intravital microscopy has been used extensively to understand microvascular physiology while maintaining in vivo neurogenic, humoral, and myogenic control. However, a tissue specific model to assess the influences of nanomaterial exposure on female reproductive health has not been fully elucidated. Female Sprague Dawley (SD) rats were exposed to nano-TiO{sub 2} aerosols (171 ± 6 nm, 10.1 ± 0.39 mg/m{sup 3}, 5 h) 24-hours prior to experimentation, leading to a calculated deposition of 42.0 ± 1.65 μg. After verifying estrus status, vital signs were monitored and the right horn of the uterus was exteriorized, gently secured over an optical pedestal, and enclosed in a warmed tissue bath using intravital microscopy techniques. After equilibration, significantly higher leukocyte-endothelium interactions were recorded in the exposed group. Arteriolar responsiveness was assessed using ionophoretically applied agents: muscarinic agonist acetylcholine (0.025 M; ACh; 20, 40, 100, and 200 nA), and nitric oxide donor sodium nitroprusside (0.05 M; SNP; 20, 40, and 100 nA), or adrenergic agonist phenylephrine (0.05 M; PE; 20, 40, and 100 nA) using glass micropipettes. Passive diameter was established by tissue superfusion with 10{sup −4} M adenosine. Similar to male counterparts, female SD rats present systemic microvascular dysfunction; however the ramifications associated with female health and reproduction have yet to be elucidated. - Highlights: • Female reproductive health associated with nanomaterial exposure is understudied. • We examined uterine microvascular alterations 24-hours after nano

  15. A calibration approach to glandular tissue composition estimation in digital mammography

    International Nuclear Information System (INIS)

    Kaufhold, J.; Thomas, J.A.; Eberhard, J.W.; Galbo, C.E.; Trotter, D.E. Gonzalez

    2002-01-01

    The healthy breast is almost entirely composed of a mixture of fatty, epithelial, and stromal tissues which can be grouped into two distinctly attenuating tissue types: fatty and glandular. Further, the amount of glandular tissue is linked to breast cancer risk, so an objective quantitative analysis of glandular tissue can aid in risk estimation. Highnam and Brady have measured glandular tissue composition objectively. However, they argue that their work should only be used for 'relative' tissue measurements unless a careful calibration has been performed. In this work, we perform such a 'careful calibration' on a digital mammography system and use it to estimate breast tissue composition of patient breasts. We imaged 0%, 50%, and 100% glandular-equivalent phantoms of varying thicknesses for a number of clinically relevant x-ray techniques on a digital mammography system. From these images, we extracted mean signal and noise levels and computed calibration curves that can be used for quantitative tissue composition estimation. In this way, we calculate the percent glandular composition of a patient breast on a pixelwise basis. This tissue composition estimation method was applied to 23 digital mammograms. We estimated the quantitative impact of different error sources on the estimates of tissue composition. These error sources include compressed breast height estimation error, residual scattered radiation, quantum noise, and beam hardening. Errors in the compressed breast height estimate contribute the most error in tissue composition--on the order of ±7% for a 4 cm compressed breast height. The spatially varying scattered radiation will contribute quantitatively less error overall, but may be significant in regions near the skinline. It is calculated that for a 4 cm compressed breast height, a residual scatter signal error is mitigated by approximately sixfold in the composition estimate. The error in composition due to the quantum noise, which is the limiting

  16. [The application of microvascular anastomotic coupler in vascular anastomosis of free tissue flap for reconstruction of defect after head and neck cancer resection].

    Science.gov (United States)

    Zhang, Y J; Wang, Z H; Li, C H; Chen, J

    2017-09-07

    Objective: To investigate the application and operation skills in vein anastomosis by microvascular anastomotic coupler (MAC) in reconstruction of defects after head and neck cancer resection. Methods: From August 2015 to July 2016, in Department of Head and Neck Surgery, Sichuan Cancer Hosipital, 17 cases underwent the reconstruction of defects after head and neck cancer resection with free tissue flaps, including forearm flaps in 11 casess, anterolateral flaps in 4 casess and fibula flaps in 2 casess. Totally 17 MAC were used, including 14 MAC for end-to-end anastomosis and 3 MAC for end-to-side anastomosis. SPSS 22.0 software was used to analyze the data. Results: Venous anastomoses in 17 free tissue flaps were successfully completed, with no anastomotic errhysis. All flaps survived well. The time required for vascular anastomoses with MAC varied 2-9 min, with average time of (4.2±2.3) min, which was significantly shorter than that with manually anastomosis (17.4 ± 2.7) min ( t =15.1, P anastomosis in free tissue flap for reconstruction of defect after head and neck cancer resection, which requires for less operation time and shows good results.

  17. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  18. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures.

    Science.gov (United States)

    Sun, Tao; Shi, Qing; Huang, Qiang; Wang, Huaping; Xiong, Xiaolu; Hu, Chengzhi; Fukuda, Toshio

    2018-01-15

    Traditional cell-encapsulating scaffolds may elicit adverse host responses and inhomogeneity in cellular distribution. Thus, fabrication techniques for cellular self-assembly with micro-scaffold incorporation have been used recently to generate toroidal cellular modules for the bottom-up construction of vascular-like structures. The micro-scaffolds show advantage in promoting tissue formation. However, owing to the lack of annular cell micro-scaffolds, it remains a challenge to engineer micro-scale toroidal cellular modules (micro-TCMs) to fabricate microvascular-like structures. Here, magnetic alginate microfibers (MAMs) are used as scaffolding elements, where a winding strategy enables them to be formed into micro-rings as annular cell micro-scaffolds. These micro-rings were investigated for NIH/3T3 fibroblast growth as a function of surface chemistry and MAM size. Afterwards, micro-TCMs were successfully fabricated with the formation of NIH/3T3 fibroblasts and extracellular matrix layers on the three-dimensional micro-ring surfaces. Simple non-contact magnetic assembly was used to stack the micro-TCMs along a micro-pillar, after which cell fusion rapidly connected the assembled micro-TCMs into a microvascular-like structure. Endothelial cells or drugs encapsulated in the MAMs could be included in the microvascular-like structures as in vitro cellular models for vascular tissue engineering, or as miniaturization platforms for pharmaceutical drug testing in the future. Magnetic alginate microfibers functioned as scaffolding elements for guiding cell growth in micro-scale toroidal cellular modules (micro-TCMs) and provided a magnetic functionality to the micro-TCMs for non-contact 3D assembly in external magnetic fields. By using the liquid/air interface, the non-contact spatial manipulation of the micro-TCMs in the liquid environment was performed with a cost-effective motorized electromagnetic needle. A new biofabrication paradigm of construct of microvascular

  19. Differentiation state determines neural effects on microvascular endothelial cells

    International Nuclear Information System (INIS)

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. ► Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. ► Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. ► Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell production of nitric oxide. ► Neural progenitor cells and dorsal root

  20. [Nailfold capillaroscopy and blood flow laser-doppler analysis of the microvascular damage in systemic sclerosis: preliminary results].

    Science.gov (United States)

    Secchi, M E; Sulli, A; Pizzorni, C; Cutolo, M

    2009-01-01

    Systemic sclerosis (SSc) is characterized by altered microvascular structure and function. Nailfold videocapillaroscopy (NVC) is the tool to evaluate capillary morphological structure and laser-Doppler Blood flowmetry (LDF) can be used to estimate cutaneous blood flow of microvessels. The aim of this study was to investigate possible relationships between capillary morphology and blood flow in SSc. Twenty-seven SSc patients and 12 healthy subjects were enrolled. SSc microvascular involvement, as evaluated by NVC, was classified in three different patterns ("Early", "Active", "Late"). LDF analysis was performed at the II, III, IV, V hand fingers in both hands and both at cutaneous temperature and at 36 degrees C. Statistical evaluation was carried out by non-parametric procedures. Blood flow was found significantly lower in SSc patients when compared with healthy subjects (p<0.05). The heating of the probe to 36 degrees C induced a significant increase in peripheral blood flow in all subjects compared to baseline (p <0.05), however, the amount of variation was significantly lower in patients with SSc, compared with healthy controls (p <0.05). The SSc patients with NVC "Late" pattern, showed lower values of peripheral blood flow than patients with NVC "Active" or "Early" patterns (p<0.05). Moreover, a negative correlation between the tissue perfusion score and the progression of the SSc microangiopathy was observed, as well as between the tissue perfusion and the duration of the Raynaud's phenomenon (p <0.03). LDF can be employed to evaluate blood perfusion in the microvascular circulation in SSc patients. The blood flow changes observed with the LDF seem to correlate with the severity of microvascular damage in SSc as detected by NVC.

  1. Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk.

    Science.gov (United States)

    Roy, Hemant K; Gomes, Andrew; Turzhitsky, Vladimir; Goldberg, Michael J; Rogers, Jeremy; Ruderman, Sarah; Young, Kim L; Kromine, Alex; Brand, Randall E; Jameel, Mohammed; Vakil, Parmede; Hasabou, Nahla; Backman, Vadim

    2008-10-01

    We previously used a novel biomedical optics technology, 4-dimensional elastically scattered light fingerprinting, to show that in experimental colon carcinogenesis the predysplastic epithelial microvascular blood content is increased markedly. To assess the potential clinical translatability of this putative field effect marker, we characterized the early increase in blood supply (EIBS) in human beings in vivo. We developed a novel, endoscopically compatible, polarization-gated, spectroscopic probe that was capable of measuring oxygenated and deoxygenated (Dhb) hemoglobin specifically in the mucosal microcirculation through polarization gating. Microvascular blood content was measured in 222 patients from the endoscopically normal cecum, midtransverse colon, and rectum. If a polyp was present, readings were taken from the polyp tissue along with the normal mucosa 10-cm and 30-cm proximal and distal to the lesion. Tissue phantom studies showed that the probe had outstanding accuracy for hemoglobin determination (r(2) = 0.99). Augmentation of microvasculature blood content was most pronounced within the most superficial ( approximately 100 microm) layer and dissipated in deeper layers (ie, submucosa). EIBS was detectable within 30 cm from the lesion and the magnitude mirrored adenoma proximity. This occurred for both oxygenated hemoglobin and DHb, with the effect size being slightly greater for DHb. EIBS correlated with adenoma size and was not engendered by nonneoplastic (hyperplastic) polyps. We show, herein, that in vivo microvascular blood content can be measured and provides an accurate marker of field carcinogenesis. This technological/biological advance has numerous potential applications in colorectal cancer screening such as improved polyp detection and risk stratification.

  2. Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs

    Directory of Open Access Journals (Sweden)

    Sarah L. Tao

    2010-03-01

    Full Text Available One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.

  3. The Pericytic Phenotype of Adipose Tissue-Derived Stromal Cells Is Promoted by NOTCH2

    NARCIS (Netherlands)

    Terlizzi, Vincenzo; Kolibabka, Matthias; Burgess, Janette Kay; Hammes, Hans Peter; Harmsen, Martin Conrad

    Long-term diabetes leads to macrovascular and microvascular complication. In diabetic retinopathy (DR), persistent hyperglycemia causes permanent loss of retinal pericytes and aberrant proliferation of microvascular endothelial cells (ECs). Adipose tissue-derived stromal cells (ASCs) may serve to

  4. Changes in microvascular permeability of the middle ear mucosa following the occulsion of the eustachian tube of rabbits

    International Nuclear Information System (INIS)

    Kikuchi, Yasutaka

    1988-01-01

    Serial changes in submucosal microvascular permeability of the middle ear and the response to histamine after occlusion of the eustachian tube were functionally investigated using radioisotope in rabbits with experimentally induced otitis media with effusion. Tritium water was administered through intravenous injection and transference of tritium water into the middle ear cavity was measured by radioactivity of the middle ear perfusate. Morphological changes were concurrently examined for comparison. Vascular permeability, as measured one, 7, and 14 days after occlusion of the eustachian tube, increased with time. A histological study showed an edematous hypertrophy of the submucosal tissue of the middle ear, suggesting a noticeable increase in microvascular permeability. The response of the middle ear mucosa to histamine, which was added to the fluid for perfusion, gradually decreased after occlusion of the eustachian tube, although the effect of histamine tended to persist for a long time, irrespective of the amount of administration. The results indicated that the mucosal membrane of the middle ear has a noticeable permeability at least up to 14 days after occlusion, and that histamine may be responsible for the increase of submucosal microvascular permeability not only in the normal middle ear cavity but also in otitis media with effusion which results in the persistance of the disease. The presence of factors permeable to the blood, other than histamine, caused microvascular peameability to increase, probably resulting in chronic or irreversible inflammation. This may be explained by markedly proliferative or parenchymatous connective tissues observed 7 and l0 weeks after occlusion. It should be noted that surgical treatment be performed as early as possible in the case of otitis media with effusion. (Namekawa, K) 80 refs

  5. Perfusion MRI derived indices of microvascular shunting and flow control correlate with tumor grade and outcome in patients with cerebral glioma

    DEFF Research Database (Denmark)

    Tietze, Anna; Mouridsen, Kim; Lassen-Ramshad, Yasmin

    2015-01-01

    Objectives: Deficient microvascular blood flow control is thought to cause tumor hypoxia and increase resistance to therapy. In glioma patients, we tested whether perfusion-weighted MRI (PWI) based indices of microvascular flow control provide more information on tumor grade and patient outcome...... than does the established PWI angiogenesis marker, cerebral blood volume (CBV). Material and Methods: Seventy-two glioma patients (sixty high-grade, twelve low-grade gliomas) were included. Capillary transit time heterogeneity (CTH) and COV, its ratio to blood mean transit time, provide indices...... of microvascular flow control and the extent to which oxygen can be extracted by tumor tissue. The ability of these parameters and CBV to differentiate tumor grade were assessed by receiver operating characteristic curves and logistic regression. Their ability to predict time to progression and overall survival...

  6. Nailfold capillaroscopy and blood flow laser-doppler analysis of the microvascular damage in systemic sclerosis: preliminary results

    Directory of Open Access Journals (Sweden)

    C. Pizzorni

    2011-06-01

    Full Text Available Objectives: Systemic sclerosis (SSc is characterized by altered microvascular structure and function. Nailfold videocapillaroscopy (NVC is the tool to evaluate capillary morphological structure and laser-Doppler Blood flowmetry (LDF can be used to estimate cutaneous blood flow of microvessels. The aim of this study was to investigate possible relationships between capillary morphology and blood flow in SSc. Methods: 27 SSc patients and 12 healthy subjects were enrolled. SSc microvascular involvement, as evaluated by NVC, was classified in three different patterns (“Early”, “Active”, “Late”. LDF analysis was performed at the II, III, IV, V hand fingers in both hands and both at cutaneous temperature and at 36°C. Statistical evaluation was carried out by non-parametric procedures. Results: Blood flow was found significantly lower in SSc patients when compared with healthy subjects (p<0.05. The heating of the probe to 36°C induced a significant increase in peripheral blood flow in all subjects compared to baseline (p <0.05, however, the amount of variation was significantly lower in patients with SSc, compared with healthy controls (p <0.05. The SSc patients with NVC “Late” pattern, showed lower values of peripheral blood flow than patients with NVC “Active” or “Early” patterns (p<0.05. Moreover, a negative correlation between the tissue perfusion score and the progression of the SSc microangiopathy was observed, as well as between the tissue perfusion and the duration of the Raynaud’s phenomenon (p <0.03. Conclusions: LDF can be employed to evaluate blood perfusion in the microvascular circulation in SSc patients. The blood flow changes observed with the LDF seem to correlate with the severity of microvascular damage in SSc as detected by NVC.

  7. Composite tissue allotransplantation : functional, immunological and ethical aspects

    NARCIS (Netherlands)

    Vossen, M.; Brouha, P.C.R.

    2007-01-01

    Composite tissue allotransplantation (CTA) is a new therapeutic modality to reconstruct large tissue defects of the face, larynx, and extremities. The research in this thesis focuses on various aspects of CTA, i.e. 1) immunosuppression regimens and their influence on bone quality, 2) induction of

  8. A model of physical factors in the structural adaptation of microvascular networks in normotension and hypertension

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Gustafsson, Finn; Holstein-Rathlou, N.-H.

    2003-01-01

    Adequate function of the microcirculation is vital to any tissue. To maintain an optimal function, microvascular networks must be able to adapt structurally to changes in the physical environment. Here we present a mathematical network model based on vessel wall mechanics. We assume based...... diameter, until equilibrium is restored. The model explains several of the key features observed experimentally in the microcirculation in normotension and hypertension. Most importantly, it suggests a scenario where overall network structure and network hemodynamics depend on adaptation to local...... hemodynamic stimuli in the individual vessel. Simulated results show emanating microvascular networks with properties similar to those observed in vivo. The model points to an altered endothelial function as a key factor in the development of vascular changes characteristic of hypertension....

  9. Method of tissue repair using a composite material

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O' Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  10. Method of tissue repair using a composite material

    Science.gov (United States)

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  11. Contrast ultrasound targeted treatment of gliomas in mice via drug-bearing nanoparticle delivery and microvascular ablation.

    Science.gov (United States)

    Burke, Caitlin W; Price, Richard J

    2010-12-15

    We are developing minimally-invasive contrast agent microbubble based therapeutic approaches in which the permeabilization and/or ablation of the microvasculature are controlled by varying ultrasound pulsing parameters. Specifically, we are testing whether such approaches may be used to treat malignant brain tumors through drug delivery and microvascular ablation. Preliminary studies have been performed to determine whether targeted drug-bearing nanoparticle delivery can be facilitated by the ultrasound mediated destruction of "composite" delivery agents comprised of 100nm poly(lactide-co-glycolide) (PLAGA) nanoparticles that are adhered to albumin shelled microbubbles. We denote these agents as microbubble-nanoparticle composite agents (MNCAs). When targeted to subcutaneous C6 gliomas with ultrasound, we observed an immediate 4.6-fold increase in nanoparticle delivery in MNCA treated tumors over tumors treated with microbubbles co-administered with nanoparticles and a 8.5 fold increase over non-treated tumors. Furthermore, in many cancer applications, we believe it may be desirable to perform targeted drug delivery in conjunction with ablation of the tumor microcirculation, which will lead to tumor hypoxia and apoptosis. To this end, we have tested the efficacy of non-theramal cavitation-induced microvascular ablation, showing that this approach elicits tumor perfusion reduction, apoptosis, significant growth inhibition, and necrosis. Taken together, these results indicate that our ultrasound-targeted approach has the potential to increase therapeutic efficiency by creating tumor necrosis through microvascular ablation and/or simultaneously enhancing the drug payload in gliomas.

  12. Correlates of time to microvascular complications among diabetes ...

    African Journals Online (AJOL)

    Socio-demographic and clinical factors have been known to affect the time to microvascular complications and survival probabilities of diabetes mellitus patients. The objective of this study was to identify risk factors and estimate average survival times for the time to the development of microvascular complications of ...

  13. Microvascular pericytes in healthy and diseased kidneys

    Science.gov (United States)

    Pan, Szu-Yu; Chang, Yu-Ting; Lin, Shuei-Liong

    2014-01-01

    Pericytes are interstitial mesenchymal cells found in many major organs. In the kidney, microvascular pericytes are defined anatomically as extensively branched, collagen-producing cells in close contact with endothelial cells. Although many molecular markers have been proposed, none of them can identify the pericytes with satisfactory specificity or sensitivity. The roles of microvascular pericytes in kidneys were poorly understood in the past. Recently, by using genetic lineage tracing to label collagen-producing cells or mesenchymal cells, the elusive characteristics of the pericytes have been illuminated. The purpose of this article is to review recent advances in the understanding of microvascular pericytes in the kidneys. In healthy kidney, the pericytes are found to take part in the maintenance of microvascular stability. Detachment of the pericytes from the microvasculature and loss of the close contact with endothelial cells have been observed during renal insult. Renal microvascular pericytes have been shown to be the major source of scar-forming myofibroblasts in fibrogenic kidney disease. Targeting the crosstalk between pericytes and neighboring endothelial cells or tubular epithelial cells may inhibit the pericyte–myofibroblast transition, prevent peritubular capillary rarefaction, and attenuate renal fibrosis. In addition, renal pericytes deserve attention for their potential to produce erythropoietin in healthy kidneys as pericytes stand in the front line, sensing the change of oxygenation and hemoglobin concentration. Further delineation of the mechanisms underlying the reduced erythropoietin production occurring during pericyte–myofibroblast transition may be promising for the development of new treatment strategies for anemia in chronic kidney disease. PMID:24465134

  14. SU-E-J-197: A Novel Optical Interstitial Fiber Spectroscopic System for Real-Time Tissue Micro-Vascular Hemodynamics Monitoring.

    Science.gov (United States)

    Zhao, D; Campos, D; Yan, Y; Kimple, R; Jacques, S; van der Kogel, A; Kissick, M

    2012-06-01

    To demonstrate a novel interstitial optical fiber spectroscopic system, based on diffuse optical spectroscopies with spectral fitting, for the simultaneous monitoring of tumor blood volume and oxygen tension. The technique provides real-time, minimally-invasive and quantification of tissue micro-vascular hemodynamics. An optical fiber prototype probe characterizesthe optical transport in tissue between two large Numerical Aperture (NA) fibers of 200μm core diameter (BFH37-200, ThorLabs) spaced 3-mm apart. Two 21-Ga medical needles are used to protect fiber ends and to facilitate tissue penetration with minimum local blunt trauma in nude mice with xenografts. A 20W white light source (HL-2000-HP, Ocean Optics) is coupled to one fiber with SMA adapter. The other fiber is used to collect light, which is coupled into the spectrometer (QE65000 with Spectrasuite Operating software and OmniDriver, Ocean Optics). The wavelength response of the probe depends on the wavelength dependence of the light source, and of the light signal collection that includes considerable scatter, modeled with Monte-Carlo techniques (S. Jacques 2010 J. of Innov. Opt. Health Sci. 2 123-9). Measured spectra of tissue are normalized by a measured spectrum of a white standard, yielding the transmission spectrum. A head-and-neck xenograft on the flank of a live mouse is used for development. The optical fiber probe delivers and collects light at an arbitrary depth in the tumor. By spectral fitting of the measured transmission spectrum, an analysis of blood volume and oxygen tension is obtained from the fitting parameters in real time. A newly developed optical fiber spectroscopic system with an optical fiber probe takes spectroscopic techniques to a much deeper level in a tumor, which has potential applications for real-time monitoring hypoxic cell population dynamics for an eventual adaptive therapy metric of particular use in hypofractionated radiotherapy. © 2012 American Association of

  15. Alternative wavelengths for sutureless laser microvascular anastomosis: a preliminary study on acute samples.

    Science.gov (United States)

    Bass, L S; Oz, M C; Libutti, S K; Treat, M R

    1992-06-01

    Attempts to improve the speed and patency of microvascular anastomosis with laser-assisted techniques have provided a modest reduction in operative time and comparable success rates. Using sutureless microvascular anastomoses, 30 end-to-end anastomoses were created in the rat carotid artery using the gallium-aluminum-arsenide diode laser (808 nm). Indocyanine green and fibrinogen were applied to enhance tissue absorption of the laser energy and strengthen the bond created. These were compared with previously reported welds using the THC:YAG laser (2150 nm). Mean welding times were 140 and 288 s, and mean bursting pressures immediately after welding were 515 and 400 mmHg for the diode and THC:YAG laser groups, respectively. Histologically, both lateral and vertical spread of thermal damage was limited. Since both lasers create welds of adequate initial strength without stay sutures and are faster and easier to use than existing systems, evaluation of long-term patency would be worthwhile.

  16. [Microvascular injury effects and possibility of early anastomosis in the maxillofacial region following high velocity missile wound: an experimental study in dogs].

    Science.gov (United States)

    Yan, Y

    1990-02-01

    In order to provide the basis of microvascular anastomosis for reconstruction of maxillofacial defects from firearm injury by using vascularized free tissue transplantation, we studied the mechanism and pathology of microvascular injuries and the possibility of their early anastomosis. The dogs' face were wounded by 0.7 g or 1.03 g steel spheres whose muzzle velocity were 1300 m/s or 1500 m/s. The injury effects of microvascular angiograms were recorded through high speed X-ray camera at the impacting moment the specimens of small vessel were collected for light and electron microscopy at different times after wound. Some dogs were used for performing microvascular anastomosis in the wound region at different times after wound. We found that there were temporary cavity effects in maxillofacial firearm wounds, in and around which small vessel blunt injuries were found, which spread 3 cm from the wound edge. Microvascular anastomosis 3 days after the wound could get higher shortterm patency rate. These results support the conclusion that if we use microsurgical methods to repair defects in maxillofacial firearm wound region, the pedicles of the flap should be laid beyond 3 cm from the wound edge, and the reconstructive operation should be done 3 days after the wound.

  17. Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?

    Science.gov (United States)

    Cutolo, M; Sulli, A; Secchi, M E; Paolino, S; Pizzorni, C

    2006-10-01

    Raynaud's phenomenon (RP) represents the most frequent clinical aspect of cardio/microvascular involvement and is a key feature of several autoimmune rheumatic diseases. Moreover, RP is associated in a statistically significant manner with many coronary diseases. In normal conditions or in primary RP (excluding during the cold-exposure test), the normal nailfold capillaroscopic pattern shows a regular disposition of the capillary loops along with the nailbed. On the contrary, in subjects suffering from secondary RP, one or more alterations of the capillaroscopic findings should alert the physician of the possibility of a connective tissue disease not yet detected. Nailfold capillaroscopy (NV) represents the best method to analyse microvascular abnormalities in autoimmune rheumatic diseases. Architectural disorganization, giant capillaries, haemorrhages, loss of capillaries, angiogenesis and avascular areas characterize >95% of patients with overt scleroderma (SSc). The term 'SSc pattern' includes, all together, these sequential capillaroscopic changes typical to the microvascular involvement in SSc. The capillaroscopic aspects observed in dermatomyositis and in the undifferentiated connective tissue disease are generally reported as 'SSc-like pattern'. Effectively, and early in the disease, the peripheral microangiopathy may be well recognized and studied by nailfold capillaroscopy, or better with nailfold video capillaroscopy (NVC). The early differential diagnosis between primary and secondary RP is the best advantage NVC may offer. In addition, interesting capillaroscopic changes have been observed in systemic lupus erythematosus, anti-phospholipid syndrome and Sjogren's syndrome. Further epidemiological and clinical studies are needed to better standardize the NCV patterns. In future, the evaluation of nailfold capillaroscopy in autoimmune rheumatic diseases might represent a tool for the prediction of microvascular heart involvement by considering the systemic

  18. Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit

    Science.gov (United States)

    Numerous studies have reported the volatile profiles in the whole fruit or pericarp tissue of tomato (Solanum lycopersicum) fruit; however, information is limited on the volatile composition in the inner tissue and its contribution to tomato aroma. For this, the pericarps and inner tissues of “Money...

  19. In-vivo assessment of microvascular functional dynamics by combination of cmOCT and wavelet transform

    Science.gov (United States)

    Smirni, Salvatore; MacDonald, Michael P.; Robertson, Catherine P.; McNamara, Paul M.; O'Gorman, Sean; Leahy, Martin J.; Khan, Faisel

    2018-02-01

    The cutaneous microcirculation represents an index of the health status of the cardiovascular system. Conventional methods to evaluate skin microvascular function are based on measuring blood flow by laser Doppler in combination with reactive tests such as post-occlusive reactive hyperaemia (PORH). Moreover, the spectral analysis of blood flow signals by continuous wavelet transform (CWT) reveals nonlinear oscillations reflecting the functionality of microvascular biological factors, e.g. endothelial cells (ECs). Correlation mapping optical coherence tomography (cmOCT) has been previously described as an efficient methodology for the morphological visualisation of cutaneous micro-vessels. Here, we show that cmOCT flow maps can also provide information on the functional components of the microcirculation. A spectral domain optical coherence tomography (SD-OCT) imaging system was used to acquire 90 sequential 3D OCT volumes from the forearm of a volunteer, while challenging the micro-vessels with a PORH test. The volumes were sampled in a temporal window of 25 minutes, and were processed by cmOCT to obtain flow maps at different tissue depths. The images clearly show changes of flow in response to the applied stimulus. Furthermore, a blood flow signal was reconstructed from cmOCT maps intensities to investigate the microvascular nonlinear dynamics by CWT. The analysis revealed oscillations changing in response to PORH, associated with the activity of ECs and the sympathetic innervation. The results demonstrate that cmOCT may be potentially used as diagnostic tool for the assessment of microvascular function, with the advantage of also providing spatial resolution and structural information compared to the traditional laser Doppler techniques.

  20. Apolipoprotein B level and diabetic microvascular complications ( is there a correlation?

    Directory of Open Access Journals (Sweden)

    Mary N. Rizk

    2013-01-01

    Conclusion Apo B levels are strongly correlated to diabetic microvascular complications. The higher the degree of nephropathy, the higher the Apo B level. The presence of more than one microvascular complication correlates positively with high levels of Apo B. This suggests the possible use of Apo B as a sensitive biomarker of the presence of early diabetic microvascular complications.

  1. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  2. Renal microvascular disease in an aging population: a reversible process?

    Science.gov (United States)

    Futrakul, Narisa; Futrakul, Prasit

    2008-01-01

    Renal microvascular disease and tubulointerstitial fibrosis are usually demonstrated in aging in humans and animals. It has recently been proposed that renal microvascular disease is the crucial determinant of tubulointerstitial disease or fibrosis. Enhanced circulating endothelial cell loss is a biomarker that reflects glomerular endothelial injury or renal microvascular disease, and fractional excretion of magnesium (FE Mg) is a sensitive biomarker that reflects an early stage of tubulointerstitial fibrosis. In aging in humans, both of these biomarkers are abnormally elevated. In addition, a glomerular endothelial dysfunction determined by altered hemodynamics associated with peritubular capillary flow reduction is substantiated. A correction of such hemodynamic alteration with vasodilators can effectively improve renal perfusion and restore renal function. Thus, anti-aging therapy can reverse the renal microvascular disease and dysfunction associated with the aging process.

  3. Verocytotoxin-induced apoptosis of human microvascular endothelial cells.

    Science.gov (United States)

    Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W

    2001-04-01

    The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.

  4. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Shi Yun [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117 576 (Singapore); Wang, Zuyong, E-mail: zuyong.nus@gmail.com [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117 576 (Singapore); Lim, Poon Nian [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117 576 (Singapore); Wang, Wilson [Department of Orthopaedic Surgery, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119 074 (Singapore); Thian, Eng San, E-mail: mpetes@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117 576 (Singapore)

    2017-01-01

    Regeneration of injuries at tendon-to-bone interface (TBI) remains a challenging issue due to the complex tissue composition involving both soft tendon tissues and relatively hard bone tissues. Tissue engineering using polymeric/ceramic composites has been of great interest to generate scaffolds for tissue's healing at TBI. Herein, we presented a novel method to blend polymers and bioceramics for tendon tissue engineering application. A homogeneous composite comprising of nanohydroxyapatite (nHA) particles in poly(ε-caprolactone) (PCL) matrix was obtained using a combination of solvent and mechanical blending process. X-ray diffraction analysis showed that the as-fabricated PCL/nHA composite film retained phase-pure apatite and semi-crystalline properties of PCL. Infrared spectroscopy spectra confirmed that the PCL/nHA composite film exhibited the characteristics functional groups of PCL and nHA, without alteration to the chemical properties of the composite. The incorporation of nHA resulted in PCL/nHA composite film with improved mechanical properties such as Young's Modulus and ultimate tensile stress, which were comparable to that of the native human rotator tendon. Seeding with human tenocytes, cells attached on the PCL/nHA composite film, and after 14 days of culturing, these cells could acquire elongated morphology without induced cytotoxicity. PCL/nHA composite film could also result in increased cell metabolism with prolonged culturing, which was comparable to that of the PCL group and higher than that of the nHA group. All these results demonstrated that the developed technique of combining solvent and mechanical blending could be applied to fabricate composite films with potential for tendon tissue engineering applications. - Highlights: • A novel method fabricating polymeric/nanoceramic composite film was proposed. • The method involved solvent and mechanical blending to form a homogeneous film. • The film retained physicochemical

  5. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  6. Fabrication of a reticular poly(lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks

    Science.gov (United States)

    Tung, Yen-Ting; Chang, Cheng-Chung; Ju, Jyh-Cherng; Wang, Gou-Jen

    2017-12-01

    The microvascular network is a simple but critical system that is responsible for a range of important biological mechanisms in the bodies of all animals. The ability to generate a functional microvessel not only makes it possible to engineer vital tissue of considerable size but also serves as a platform for biomedical studies. However, most of the current methods for generating microvessel networks in vitro use rectangular channels which cannot represent real vessels in vivo and have dead zones at their corners, hence hindering the circulation of culture medium. We propose a scaffold-wrapping method which enables fabrication of a customized microvascular network in vitro in a more biomimetic way. By integrating microelectromechanical techniques with thermal reflow, we designed and fabricated a microscale hemi-cylindrical photoresist template. A replica mold of polydimethylsiloxane, produced by casting, was then used to generate cylindrical scaffolds with biodegradable poly(lactide-co-glycolide) (PLGA). Human umbilical vein endothelial cells were seeded on both sides of the PLGA scaffold and cultured using a traditional approach. The expression of endothelial cell marker CD31 and intercellular junction vascular endothelial cadherin on the cultured cell demonstrated the potential of generating a microvascular network with a degradable cylindrical scaffold. Our method allows cells to be cultured on a scaffold using a conventional culture approach and monitors cell conditions continuously. We hope our cell-covered scaffold can serve as a framework for building large tissues or can be used as the core of a vascular chip for in vitro circulation studies.

  7. Inertial Cavitation Ultrasound with Microbubbles Improves Reperfusion Efficacy When Combined with Tissue Plasminogen Activator in an In Vitro Model of Microvascular Obstruction.

    Science.gov (United States)

    Goyal, Akash; Yu, Francois T H; Tenwalde, Mathea G; Chen, Xucai; Althouse, Andrew; Villanueva, Flordeliza S; Pacella, John J

    2017-07-01

    We have previously reported that long-tone-burst, high-mechanical-index ultrasound (US) and microbubble (MB) therapy can restore perfusion in both in vitro and in vivo models of microvascular obstruction (MVO). Addition of MBs to US has been found to potentiate the efficacy of thrombolytics on large venous thrombi; however, the optimal US parameters for achieving microvascular reperfusion of MVO caused by microthrombi, when combined with tissue plasminogen activator (tPA), are unknown. We sought to elucidate the specific effects of US, with and without tPA, for effective reperfusion of MVO in an in vitro model using both venous and arterial microthrombi. Venous- and arterial-type microthrombi were infused onto a mesh with 40-μm pores to simulate MVO. Pulsed US (1 MHz) was delivered with inertial cavitation (IC) (1.0 MPa, 1000 cycles, 0.33 Hz) and stable cavitation (SC) US (0.23 MPa, 20% duty cycle, 0.33 Hz) regimes while MB suspension (2 × 10 6  MBs/mL) was infused. The efficacy of sonoreperfusion with these parameters was tested with and without tPA. Sonoreperfusion efficacy was significantly greater for IC + tPA compared with tPA alone, IC, SC and SC + tPA, suggesting lytic synergism between tPA and US for both venous- and arterial-type microthrombi. In contrast to our previous in vitro studies using 1.5 MPa at 5000 US cycles without tPA, the IC regime employed herein used 90% less US energy. These findings suggest an IC regime can be used with tPA synergistically to achieve a high degree of fibrinolysis for both thrombus types. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Biochemical composition of muscle tissue of penaeid prawns

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.; Parulekar, A.H.

    Biochemical composition of muscle tissue of females belonging to four species of penaeid prawns, viz. Metapenaeus affinis, M. dobsoni, Penaeus merguiensis and Parapenaeopsis stylifera, inhabiting the coastal waters of Goa, India, was estimated...

  9. Determination of elemental tissue composition following proton treatment using positron emission tomography

    International Nuclear Information System (INIS)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Min, Chul Hee; Zhu, Xuping; El Fakhri, Georges; Paganetti, Harald; Mawlawi, Osama

    2013-01-01

    Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of 1 H, 12 C, 14 N, and 16 O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm; the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated 12 C and 16 O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of 12 C + 16 O and calculate the relative elemental composition of 12 C and 16 O. A Monte Carlo simulation was also used to determine the elemental composition of the 12 C + 16 O section. The calculated compositions of the 12 C + 16 O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition ( 12 C and 16 O) maps that corresponded to the proton-activated regions. We compared the 12 C and 16 O compositions of seven ROIs that corresponded to the vitreous humor, adipose

  10. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    Science.gov (United States)

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Microvascular Blood Flow Improvement in Hyperglycemic Obese Adult Patients by Hypocaloric Diet.

    Science.gov (United States)

    Mastantuono, T; Di Maro, M; Chiurazzi, M; Battiloro, L; Starita, N; Nasti, G; Lapi, D; Iuppariello, L; Cesarelli, M; D'Addio, G; Colantuoni, A

    2016-11-01

    The present study was aimed to assess the changes in skin microvascular blood flow (SBF) in newly diagnosed hyperglycemic obese subjects, administered with hypocaloric diet. Adult patients were recruited and divided in three groups: NW group (n=54), NG (n=54) and HG (n=54) groups were constituted by normal weight, normoglycemic and hyperglycemic obese subjects, respectively. SBF was measured by laser Doppler perfusion monitoring technique and oscillations in blood flow were analyzed by spectral methods under baseline conditions, at 3 and 6 months of dietary treatment. Under resting conditions, SBF was lower in HG group than in NG and NW ones. Moreover, all subjects showed blood flow oscillations with several frequency components. In particular, hyperglycemic obese patients revealed lower spectral density in myogenic-related component than normoglycemic obese and normal weight ones. Moreover, post-occlusive reactive hyperemia (PORH) was impaired in hyperglycemic obese compared to normoglycemic and normal weigh subjects. After hypocaloric diet, in hyperglycemic obese patients there was an improvement in SBF accompanied by recovery in myogenic-related oscillations and arteriolar responses during PORH. In conclusion, hyperglycemia markedly affected peripheral microvascular function; hypocaloric diet ameliorated tissue blood flow.

  12. Tissue biocompatibility of kevlar aramid fibers and polymethylmethacrylate, composites in rabbits.

    Science.gov (United States)

    Henderson, J D; Mullarky, R H; Ryan, D E

    1987-01-01

    Two groups of female NZW rabbits were implanted in the paravertebral muscles with aramid (du Pont Kevlar aramid 49) fibers and aramid-polymethylmethacrylate (PMMA) composites for 14 and 28 days. Rabbits were killed at these times periods, necropsies performed, sites scored for gross tissue response, and tissue specimens containing the implants removed for histopathological evaluation. A mild fibrous tissue reaction was observed around all implants containing aramid fiber similar to that observed around the silicone control implant. Some foreign body giant cells were also present adjacent to the fibers. An intense necrotic inflammatory reaction was present around the positive control material (PVC Y-78). The tissue response to implantation of aramid fiber and fiber-PMMA composites indicates that aramid is a biocompatible material.

  13. Microvascular dysfunction in the immediate aftermath of chronic total coronary occlusion recanalization.

    Science.gov (United States)

    Ladwiniec, Andrew; Cunnington, Michael S; Rossington, Jennifer; Thackray, Simon; Alamgir, Farquad; Hoye, Angela

    2016-05-01

    The aim of this study was to compare microvascular resistance under both baseline and hyperemic conditions immediately after percutaneous coronary intervention (PCI) of a chronic total occlusion (CTO) with an unobstructed reference vessel in the same patient Microvascular dysfunction has been reported to be prevalent immediately after CTO PCI. However, previous studies have not made comparison with a reference vessel. Patients with a CTO may have global microvascular and/or endothelial dysfunction, making comparison with established normal values misleading. After successful CTO PCI in 21 consecutive patients, coronary pressure and flow velocity were measured at baseline and hyperemia in distal segments of the CTO/target vessel and an unobstructed reference vessel. Hemodynamics including hyperemic microvascular resistance (HMR), basal microvascular resistance (BMR), and instantaneous minimal microvascular resistance at baseline and hyperemia were calculated and compared between reference and target/CTO vessels. After CTO PCI, BMR was reduced in the target/CTO vessel compared with the reference vessel: 3.58 mm Hg/cm/s vs 4.94 mm Hg/cm/s, difference -1.36 mm Hg/cm/s (-2.33 to -0.39, p = 0.008). We did not detect a difference in HMR: 1.82 mm Hg/cm/s vs 2.01 mm Hg/cm/s, difference -0.20 (-0.78 to 0.39, p = 0.49). Instantaneous minimal microvascular resistance correlated strongly with the length of stented segment at baseline (r = 0.63, p = 0.005) and hyperemia (r = 0.68, p = 0.002). BMR is reduced in a recanalized CTO in the immediate aftermath of PCI compared to an unobstructed reference vessel; however, HMR appears to be preserved. A longer stented segment is associated with increased microvascular resistance. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Blood-based biomarkers of microvascular pathology in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Ewers, Michael

    2012-02-01

    Sporadic Alzheimer\\'s disease (AD) is a genetically complex and chronically progressive neurodegenerative disorder with molecular mechanisms and neuropathologies centering around the amyloidogenic pathway, hyperphosphorylation and aggregation of tau protein, and neurofibrillary degeneration. While cerebrovascular changes have not been traditionally considered to be a central part of AD pathology, a growing body of evidence demonstrates that they may, in fact, be a characteristic feature of the AD brain as well. In particular, microvascular abnormalities within the brain have been associated with pathological AD hallmarks and may precede neurodegeneration. In vivo assessment of microvascular pathology provides a promising approach to develop useful biological markers for early detection and pathological characterization of AD. This review focuses on established blood-based biological marker candidates of microvascular pathology in AD. These candidates include plasma concentration of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) that are increased in AD. Measures of endothelial vasodilatory function including endothelin (ET-1), adrenomedullin (ADM), and atrial natriuretic peptide (ANP), as well as sphingolipids are significantly altered in mild AD or during the predementia stage of mild cognitive impairment (MCI), suggesting sensitivity of these biomarkers for early detection and diagnosis. In conclusion, the emerging clinical diagnostic evidence for the value of blood-based microvascular biomarkers in AD is promising, however, still requires validation in phase II and III diagnostic trials. Moreover, it is still unclear whether the described protein dysbalances are early or downstream pathological events and how the detected systemic microvascular alterations relate to cerebrovascular and neuronal pathologies in the AD brain.

  15. Transit time homogenization in ischemic stroke - A novel biomarker of penumbral microvascular failure?

    DEFF Research Database (Denmark)

    Engedal, Thorbjørn S; Hjort, Niels; Hougaard, Kristina D

    2017-01-01

    Cerebral ischemia causes widespread capillary no-flow in animal studies. The extent of microvascular impairment in human stroke, however, is unclear. We examined how acute intra-voxel transit time characteristics and subsequent recanalization affect tissue outcome on follow-up MRI in a historic...... cohort of 126 acute ischemic stroke patients. Based on perfusion-weighted MRI data, we characterized voxel-wise transit times in terms of their mean transit time (MTT), standard deviation (capillary transit time heterogeneity - CTH), and the CTH:MTT ratio (relative transit time heterogeneity), which...... tissue, prolonged mean transit time (>5 seconds) and very low cerebral blood flow (≤6 mL/100 mL/min) was associated with high risk of infarction, largely independent of recanalization status. In the remaining mismatch region, low relative transit time heterogeneity predicted subsequent infarction...

  16. Pilot study on microvascular anastomosis: performance and future educational prospects.

    Science.gov (United States)

    Berretti, G; Colletti, G; Parrinello, G; Iavarone, A; Vannucchi, P; Deganello, A

    2017-11-30

    The introduction of microvascular free flaps has revolutionised modern reconstructive surgery. Unfortunately, access to training opportunities at standardised training courses is limited and expensive. We designed a pilot study on microvascular anastomoses with the aim of verifying if a short course, easily reproducible, could transmit microvascular skills to participants; if the chosen pre-test was predictive of final performance; and if age could influence the outcome. A total of 30 participants (10 students, 10 residents and 10 surgeons) without any previous microvascular experience were instructed and tested during a single 3 to 5 hour course. The two microanastomoses evaluated were the first ever performed by each participant. More than the half of the cohort was able to produce both patent microanastomoses in less than 2 hours; two-thirds of the attempted microanastomoses were patent. The pretest predicted decent scores from poor performances with a sensitivity of 61.5%, specificity of 100%, positive predictive value of 100% and negative predictive value of 40%. Students and residents obtained significantly higher scores than surgeons. Since our course model is short, cost-effective and highly reproducible, it could be introduced and implemented anywhere as an educational prospect for preselecting young residents showing talent and natural predisposition and having ambitions towards microvascular reconstructive surgery. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale.

  17. In vitro analysis of human periodontal microvascular endothelial cells.

    Science.gov (United States)

    Tsubokawa, Mizuki; Sato, Soh

    2014-08-01

    Endothelial cells (ECs) participate in key aspects of vascular biology, such as maintenance of capillary permeability, initiation of coagulation, and regulation of inflammation. According to previous reports, ECs have revealed highly specific characteristics depending on the organs and tissues. However, some reports have described the characteristics of the capillaries formed by human periodontal ECs. Therefore, the aim of the present study is to examine the functional characteristics of the periodontal microvascular ECs in vitro. Human periodontal ligament-endothelial cells (HPDL-ECs) and human gingiva-endothelial cells (HG-ECs) were isolated by immunoprecipitation with magnetic beads conjugated to a monoclonal anti-CD31 antibody. The isolated HPDL-ECs and HG-ECs were characterized to definitively demonstrate that these cell cultures represented pure ECs. Human umbilical-vein ECs and human dermal microvascular ECs were used for comparison. These cells were compared according to the proliferation potential, the formation of capillary-like tubes, the transendothelial electric resistance (TEER), and the expression of tight junction proteins. HPDL-ECs and HG-ECs with characteristic cobblestone monolayer morphology were obtained, as determined by light microscopy at confluence. Furthermore, the HPDL-ECs and HG-ECs expressed the EC markers platelet endothelial cell adhesion molecule-1 (also known as CD31), von Willebrand factor, and Ulex europaeus agglutinin 1, and the cells stained strongly positive for CD31 and CD309. In addition, the HPDL-ECs and HG-ECs were observed to form capillary-like tubes, and they demonstrated uptake of acetylated low-density lipoprotein. Functional analyses of the HPDL-ECs and HG-ECs showed that, compared to the control cells, tube formation persisted for only a brief period of time, and TEER was substantially reduced at confluence. Furthermore, the cells exhibited delocalization of zonula occludens-1 and occludin at cell-cell contact sites

  18. Sequential chimeric medial femoral condyle and anterolateral thigh flow-through flaps for one-stage reconstructions of composite bone and soft tissue defects: Report of three cases.

    Science.gov (United States)

    Henn, Dominic; Abouarab, Mohamed H; Hirche, Christoph; Hernekamp, Jochen F; Schmidt, Volker J; Kneser, Ulrich; Kremer, Thomas

    2017-10-01

    Small recalcitrant non-unions with poor perfusion require reconstruction with vascularized bone flaps. Cases with concomitant large soft tissue defects are especially challenging, since vascularized soft tissue transfer is often indicated and distant microvascular anastomoses may be required. We introduce a sequential chimeric free flap composed of a medial femoral condyle corticoperiosteal flap anastomosed to an anterolateral thigh flow-through flap (MFC-ALT flap) and report its use for reconstruction of small non-unions with concomitant large soft tissue defects in three exemplary patients. Two female and one male patients ages 39-58 years suffered from composite bone and soft tissue defects of the lower extremity and clavicle caused by tumor resection and postoperative radiation resp. infected tibial pilon fracture. The sizes of the soft tissue defects ranged from 15-23 × 4.5-6 cm and the sizes of the bone defects ranged from 1.5-4 × 2-4 cm. Defect reconstructions were performed in all cases with sequential chimeric MFC-ALT flaps with sizes ranging from 2-4 × 1.6-4 cm for the MFC and 21-23 × 7-8 cm for the ALT skin paddles. Functional reconstructions were achieved in all cases resulting in stable unions and soft tissue coverage enabling the patients to bear full weight without assistance on 5-months follow-up. Postoperative course was uneventful and complications were restricted to a small skin necrosis at the suture line in one case. MFC-ALT flaps may be a safe, and effective procedure for one-stage reconstructions of small, irregularly shaped bone defects with concomitant large soft tissue loss or surrounding instable scarring, particularly in cases of recalcitrant non-unions after radiation exposure. © 2017 Wiley Periodicals, Inc.

  19. Vitamin D levels and microvascular complications in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Sarita Bajaj

    2014-01-01

    Full Text Available Background: Vitamin D has important actions on glucose metabolism. These include improved insulin exocytosis, direct stimulation of insulin receptor, improved uptake of glucose by peripheral tissues, improving insulin resistance. It has got various pleiotropic effects like suppression of cell mediated immunity, regulation of cell proliferation, stimulation of neurotropic factors such as nerve growth factor, Glial cell line-derived neurotrophic factor, neurotropin, suppression of RAAS, reduction of albuminuria, immunomodulatory effects, and anti-inflammatory effects. Thus, vitamin D is implicated in many ways in the pathogenesis of retinopathy, neuropathy and nephropathy. Objectives: To study the correlation of vitamin D levels with microvascular complications in type 2 diabetes. Materials and Methods: Cross-sectional case-control study of 18 patients (18-70 years, who met the American Diabetes Association 2011 criteria for type 2 diabetes, was conducted. Age and sex matched healthy controls were taken. Subjects were evaluated for the presence of microvascular complications by clinical evaluation, urine examination, fundus examination, nerve conduction studies, and various biochemical tests. 25-OH cholecalciferol levels were done for each. Cut off level for vitamin D deficiency was 20 ng/ml. Results: Mean vitamin D was lower in type 2 diabetics than healthy subjects (19.046 vs. 27.186 ng/ml. Prevalence of vitamin D deficiency and insufficiency was found to significantly higher in diabetics when compared to healthy subjects (P = 0.0001. Vitamin D deficiency was found to be significantly associated with neuropathy (χ2 = 5.39, df = 1, P = 0.020, retinopathy, (χ2 = 6.6, df = 1, P = 0.010 and nephropathy (χ2 = 10. 52, df = 1, P = 0.001. Lower levels of vitamin D were found to be associated with increasing prevalence of combinations of microvascular complications namely neuropathy with retinopathy (P = 0.036, neuropathy with nephropathy (P = 0

  20. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  1. Three-Dimensional Microvascular Fiber-Reinforced Composites

    Science.gov (United States)

    2011-03-01

    are varied to meet the desired design criteria. The interstitial pore space between fi bers is infi ltrated with a low-viscosity thermosetting resin...uid. d) μ CT image of composite with glass fi bers (blue) and channels fi lled with electrically conductive gallium–indium alloy (red). Probe

  2. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues.

    Science.gov (United States)

    Seredin, P. V.; Goloshchapov, D. L.; Gushchin, M. S.; Ippolitov, Y. A.; Prutskij, T.

    2017-11-01

    The objective of this paper was to investigate whether it is possible to obtain biomimetic materials recreating the luminescent properties and molecular composition of intact dental tissues. Biomimetic materials were produced and their properties compared with native dental tissues. In addition, the overall contribution of the organic and non-organic components in the photoluminescence band was investigated. The results showed that it is possible to develop biomimetic materials with similar molecular composition and optical properties to native dental tissues for the early identification of dental caries.

  3. Factors affecting the tissues composition of pork belly.

    Science.gov (United States)

    Duziński, K; Knecht, D; Lisiak, D; Janiszewski, P

    2015-11-01

    Bellies derived from the commercial population of pig carcasses are diverse in terms of tissue composition. Knowledge of the factors influencing it and the expected results, permits quick and easy evaluation of raw material. The study was designed to determine the factors affecting the tissues composition of pork bellies and to estimate their lean meat content. The research population (n=140 pig carcasses) was divided into groups according to sex (gilts, barrows), half-carcass mass (meat content class: S (⩾60%), E (55% to 60%), U (50% to 55%), R (meat content affected the growth of the fat and skin mass in a linear way. No differences were observed between class S and E in terms of belly muscle mass. A 0.37% higher share of belly in the half-carcass was found for barrows (Pmeat content in bellies, suggesting they may be used directly in the production line.

  4. Which side of the balance determines the frequency of vaso-occlusive crises in children with sickle cell anemia: Blood viscosity or microvascular dysfunction?

    Science.gov (United States)

    Charlot, Keyne; Romana, Marc; Moeckesch, Berenike; Jumet, Stéphane; Waltz, Xavier; Divialle-Doumdo, Lydia; Hardy-Dessources, Marie-Dominique; Petras, Marie; Tressières, Benoît; Tarer, Vanessa; Hue, Olivier; Etienne-Julan, Maryse; Antoine-Jonville, Sophie; Connes, Philippe

    2016-01-01

    Vascular resistance and tissue perfusion may be both affected by impaired vascular function and increased blood viscosity. Little is known about the effects of vascular function on the occurrence of painful vaso-occlusive crises (VOC) in children with sickle cell anemia (SCA). The aim of the present study was to determine which side of the balance (blood viscosity or vascular function) is the most deleterious in SCA and increases the risk for frequent hospitalized VOC. Microvascular function, microcirculatory oxygenation and blood viscosity were determined in a group of 22 SCA children/adolescents at steady state and a group of 13 healthy children/adolescents. Univariate analyses demonstrated blunted microvascular reactivity during local thermal heating test and decreased microcirculatory oxygenation in SCA children compared to controls. Multivariate analysis revealed that increased blood viscosity and decreased microcirculatory oxygenation were independent risk factors of frequent VOC in SCA. In contrast, the level of microvascular dysfunction does not predict VOC rate. In conclusion, increased blood viscosity is usually well supported in healthy individuals where vascular function is not impaired. However, in the context of SCA, microvascular function is impaired and any increase of blood viscosity or decrease in microcirculatory oxygenation would increase the risks for frequent VOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Insulin-resistant glucose metabolism in patients with microvascular angina--syndrome X

    DEFF Research Database (Denmark)

    Vestergaard, H; Skøtt, P; Steffensen, R

    1995-01-01

    Studies in patients with microvascular angina (MA) or the cardiologic syndrome X have shown a hyperinsulinemic response to an oral glucose challenge, suggesting insulin resistance and a role for increased serum insulin in coronary microvascular dysfunction. The aim of the present study was to exa......Studies in patients with microvascular angina (MA) or the cardiologic syndrome X have shown a hyperinsulinemic response to an oral glucose challenge, suggesting insulin resistance and a role for increased serum insulin in coronary microvascular dysfunction. The aim of the present study...... was to examine whether patients with MA are insulin-resistant. Nine patients with MA and seven control subjects were studied. All were sedentary and glucose-tolerant. Coronary arteriography was normal in all participants, and exercise-induced coronary ischemia was demonstrated in all MA patients. A euglycemic...... metabolism (8.4 +/- 0.9 v 12.5 +/- 1.3 mg.kg FFM-1.min-1, P

  6. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)

    1997-04-01

    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  7. Reconstruction of complicated skull base defects utilizing free tissue transfer.

    Science.gov (United States)

    Djalilian, Hamid R; Gapany, Markus; Levine, Samuel C

    2002-11-01

    We managed five patients with large skull base defects complicated by complex infections with microvascular free tissue transfer. The first patient developed an infection, cerebrospinal fluid (CSF) leak, and meningitis after undergoing a translabyrinthine resection of an acoustic neuroma. The second patient had a history of a gunshot wound to the temporal bone, with a large defect and an infected cholesteatoma that caused several episodes of meningitis. The third through the fifth patients had persistent CSF leakage and infection refractory to conventional therapy. In all cases prior attempts of closure with fat grafts or regional flaps had failed. Rectus abdominis myofascial free flap, radial forearm free flap or a gracilis muscle free flap was used after debridement of the infected cavities. The CSF leaks, local infections, and meningitis were controlled within a week. In our experience, microvascular free tissue provides the necessary bulk of viable, well-vascularized tissue, which not only assures a mechanical seal but also helps clear the local infection.

  8. Profile of Microvascular Disease in Type 2 Diabetes in a Tertiary ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus (DM) is a metabolic disorder complicated by microvascular and macrovascular diseases. The clinical profile of these complications has not been adequately studied in many tertiary health care centers in India. Aim: The authors studied the clinical profile of microvascular diabetes ...

  9. Analysing breast tissue composition with MRI using currently available short, simple sequences

    International Nuclear Information System (INIS)

    Chau, A.C.M.; Hua, J.; Taylor, D.B.

    2016-01-01

    Aim: To determine the most robust commonly available magnetic resonance imaging (MRI) sequence to quantify breast tissue composition at 1.5 T. Materials and methods: Two-dimensional (2D) T1-weighted, Dixon fat, Dixon water and SPAIR images were obtained from five participants and a breast phantom using a 1.5 T Siemens Aera MRI system. Manual segmentation of the breasts was performed, and an in-house computer program was used to generate signal intensity histograms. Relative trough depth and relative peak separation were used to determine the robustness of the images for quantifying the two breast tissues. Total breast volumes and percentage breast densities calculated using the four sequences were compared. Results: Dixon fat histograms had consistently low relative trough depth and relative peak separation compared to those obtained using other sequences. There was no significant difference in total breast volumes and percentage breast densities of the participants or breast phantom using Dixon fat and 2D T1-weighted histograms. Dixon water and SPAIR histograms were not suitable for quantifying breast tissue composition. Conclusion: Dixon fat images are the most robust for the quantification of breast tissue composition using a signal intensity histogram. - Highlights: • Signal intensity histogram analysis can determine robustness of images for quantification of breast tissue composition. • Dixon fat images are the most robust. • The characteristics of the signal intensity histograms from Dixon water and SPAIR images make quantification unsuitable.

  10. Reconstruction of mandibular defects after radiation, using a free, living bone, graft transferred by microvascular anastomoses. An experimental study

    International Nuclear Information System (INIS)

    Ostrup, L.T.; Fredrickson, J.M.

    1975-01-01

    The replacement of a mandibular defect by a free, composite rib graft, transferred by microvascular anastomoses of the posterior intercostal vessels to donor vessels in the neck was described previously. We now present data which demonstrate that successful results can be achieved even after radical mandibular radiation. This technique, done in dogs, has obvious implications in the management of oral cancer in man

  11. Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium.

    Science.gov (United States)

    Jackson, C J; Garbett, P K; Nissen, B; Schrieber, L

    1990-06-01

    A major problem encountered when isolating human microvascular endothelium is the presence of contaminating cells such as fibroblasts that rapidly over-grow the endothelial cells. We describe here a simple, rapid technique for purifying endothelial cells derived from the microvasculature of neonatal foreskin and osteoarthritic and rheumatoid arthritic synovium. This technique is based on the selective binding of the lectin Ulex europaeus I (UEA I) to the endothelial cell surface via fucose residues. Initially UEA I was covalently bound to tosyl-activated super-paramagnetic polystyrene beads (Dynabeads) by incubation for 24 h at room temperature. Cells were isolated by extracting microvascular segments from enzyme-treated (trypsin and Pronase) cubes of tissue. The mixed population of cells obtained were purified by incubating them at 4 degrees C for 10 min with the UEA I-coated Dynabeads. Endothelium bound to the beads whilst contaminating cells were removed by five washes with HBSS using a magnetic particle concentrator. The endothelial cells thus obtained grew to confluence as a cobblestone-like monolayer and expressed von Willebrand factor antigen. The cells were released from the Dynabeads by the competitive binding of fucose (10 min at 4 degrees C). This new method is simple and reproducible and allows pure human microvascular endothelial cells to be cultured within 2 h of obtaining a specimen.

  12. Therapeutic Effects of PPARα on Neuronal Death and Microvascular Impairment

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Moran

    2015-01-01

    Full Text Available Peroxisome-proliferator activated receptor-alpha (PPARα is a broadly expressed nuclear hormone receptor and is a transcription factor for diverse target genes possessing a PPAR response element (PPRE in the promoter region. The PPRE is highly conserved, and PPARs thus regulate transcription of an extensive array of target genes involved in energy metabolism, vascular function, oxidative stress, inflammation, and many other biological processes. PPARα has potent protective effects against neuronal cell death and microvascular impairment, which have been attributed in part to its antioxidant and anti-inflammatory properties. Here we discuss PPARα’s effects in neurodegenerative and microvascular diseases and also recent clinical findings that identified therapeutic effects of a PPARα agonist in diabetic microvascular complications.

  13. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    Science.gov (United States)

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Tezosentan reduces the microvascular filtration coefficient in isolated lungs from rats subjected to cecum ligation and puncture.

    Science.gov (United States)

    Kuklin, Vladimir; Sovershaev, Mikhail; Andreasen, Thomas; Skogen, Vegard; Ytrehus, Kirsti; Bjertnaes, Lars

    2005-01-01

    We recently demonstrated that the non-selective endothelin-1 (ET-1) receptor blocker tezosentan antagonizes ovine acute lung injury (ALI) following infusion of endotoxin or ET-1 by reducing the enhanced lung microvascular pressure, although we could not exclude the possibility of a simultaneous decline in microvascular permeability. In the present study, our aim was to find out if tezosentan reverses the rise in microvascular filtration coefficient (Kfc) in rat lungs that have been isolated and perfused 12 h after cecum ligation and puncture (CLP) or infusion of ET-1. Wistar rats (n = 42) were subjected to CLP. Postoperatively, rats were randomized to a CLP group (n = 7) and a CLP + tezosentan group (n = 7); the latter received tezosentan 30 mg/kg. A sham-operated group (n = 5) underwent laparotomy without CLP. Twelve hours postoperatively, the lungs were isolated and perfused with blood from similarly treated rats that also were used to assess plasma concentration of ET-1 and protein kinase Calpha (PKCalpha) in lung tissue. Additionally, isolated blood perfused lungs from healthy rats were randomized to a control group (n = 8), an ET-1 group (n = 7) subjected to pulmonary arterial injection of ET-1 10 nM, and an ET-1 + tezosentan group (n = 7) that received tezosentan 30 mg/kg. All lung preparations received papaverine 0.1 microg/kg added to the perfusate for vasoplegia. Pulmonary hemodynamic variables, Kfc and lung compliance (CL) were assessed. After CLP, the plasma concentration of ET-1 increased. Papaverine abolished the vasoconstrictor response to ET-1 and the pulmonary vascular pressures remained close to baseline throughout the experiments. Both CLP and injection of ET-1 caused significant changes in Kfc and CL that were prevented in tezosentan-treated rats. Compared to sham-operated animals, CLP increased the content of PKCalpha by 50% and 70% in the cytosolic and the membrane fractions of lung tissue homogenates, respectively. Tezosentan prevented the

  15. Preparation and characterization of chitosan-heparin composite matrices for blood contacting tissue engineering

    International Nuclear Information System (INIS)

    He Qing; Gong Kai; Gong Yandao; Zhang Xiufang; Ao Qiang; Zhang Lihai; Hu Min

    2010-01-01

    Chitosan has been widely used for biomaterial scaffolds in tissue engineering because of its good mechanical properties and cytocompatibility. However, the poor blood compatibility of chitosan has greatly limited its biomedical utilization, especially for blood contacting tissue engineering. In this study, we exploited a polymer blending procedure to heparinize the chitosan material under simple and mild conditions to improve its antithrombogenic property. By an optimized procedure, a macroscopically homogeneous chitosan-heparin (Chi-Hep) blended suspension was obtained, with which Chi-Hep composite films and porous scaffolds were fabricated. X-ray photoelectron spectroscopy and sulfur elemental analysis confirmed the successful immobilization of heparin in the composite matrices (i.e. films and porous scaffolds). Toluidine blue staining indicated that heparin was distributed homogeneously in the composite matrices. Only a small amount of heparin was released from the matrices during incubation in normal saline for 10 days. The composite matrices showed improved blood compatibility, as well as good mechanical properties and endothelial cell compatibility. These results suggest that the Chi-Hep composite matrices are promising candidates for blood contacting tissue engineering.

  16. Design of a visible-light spectroscopy clinical tissue oximeter.

    Science.gov (United States)

    Benaron, David A; Parachikov, Ilian H; Cheong, Wai-Fung; Friedland, Shai; Rubinsky, Boris E; Otten, David M; Liu, Frank W H; Levinson, Carl J; Murphy, Aileen L; Price, John W; Talmi, Yair; Weersing, James P; Duckworth, Joshua L; Hörchner, Uwe B; Kermit, Eben L

    2005-01-01

    We develop a clinical visible-light spectroscopy (VLS) tissue oximeter. Unlike currently approved near-infrared spectroscopy (NIRS) or pulse oximetry (SpO2%), VLS relies on locally absorbed, shallow-penetrating visible light (475 to 625 nm) for the monitoring of microvascular hemoglobin oxygen saturation (StO2%), allowing incorporation into therapeutic catheters and probes. A range of probes is developed, including noncontact wands, invasive catheters, and penetrating needles with injection ports. Data are collected from: 1. probes, standards, and reference solutions to optimize each component; 2. ex vivo hemoglobin solutions analyzed for StO2% and pO2 during deoxygenation; and 3. human subject skin and mucosal tissue surfaces. Results show that differential VLS allows extraction of features and minimization of scattering effects, in vitro VLS oximetry reproduces the expected sigmoid hemoglobin binding curve, and in vivo VLS spectroscopy of human tissue allows for real-time monitoring (e.g., gastrointestinal mucosal saturation 69+/-4%, n=804; gastrointestinal tumor saturation 45+/-23%, n=14; and p<0.0001), with reproducible values and small standard deviations (SDs) in normal tissues. FDA approved VLS systems began shipping earlier this year. We conclude that VLS is suitable for the real-time collection of spectroscopic and oximetric data from human tissues, and that a VLS oximeter has application to the monitoring of localized subsurface hemoglobin oxygen saturation in the microvascular tissue spaces of human subjects.

  17. Gap filling of 3-D microvascular networks by tensor voting.

    Science.gov (United States)

    Risser, L; Plouraboue, F; Descombes, X

    2008-05-01

    We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated.

  18. Fatty acid composition of muscle and heart tissue of Nile perch ...

    African Journals Online (AJOL)

    The fatty acid composition in the heart tissue and muscle tissue of the Nile perch, Lates niloticus, and Nile tilapia, Oreochromis niloticus populations from Lakes Kioga and Victoria was determined by methanolysis and gas chromatography of the resulting fatty acid methyl esters. The analytical data were treated by ...

  19. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue

  20. Microvascular endothelial function and cognitive performance: The ELSA-Brasil cohort study.

    Science.gov (United States)

    Brant, Luisa; Bos, Daniel; Araujo, Larissa Fortunato; Ikram, M Arfan; Ribeiro, Antonio Lp; Barreto, Sandhi M

    2018-06-01

    Impaired microvascular endothelial function may be implicated in the etiology of cognitive decline. Yet, current data on this association are inconsistent. Our objective is to investigate the relation of microvascular endothelial function to cognitive performance in the ELSA-Brasil cohort study. A total of 1521 participants from ELSA-Brasil free of dementia underwent peripheral arterial tonometry (PAT) to quantify microvascular endothelial function (PAT-ratio and mean baseline pulse amplitude (BPA)) and cognitive tests that covered the domains of memory, verbal fluency, and executive function at baseline. Cognitive tests in participants aged 55 years old and above were repeated during the second examination (mean follow-up: 3.5 (0.3) years). Linear regression and generalized linear models were used to evaluate the association between endothelial function, global cognitive performance, and performance on specific cognitive domains. In unadjusted cross-sectional analyses, we found that BPA and PAT-ratio were associated with worse global cognitive performance (mean difference for BPA: -0.07, 95% CI: -0.11; -0.03, p<0.01; mean difference for PAT-ratio: 0.11, 95% CI: 0.01; 0.20, p=0.02), worse performance on learning, recall, and word recognition tests (BPA: -0.87, 95% CI: -1.21; -0.52, p<0.01; PAT-ratio: 1.58, 95% CI: 0.80; 2.36, p<0.01), and only BPA was associated with worse performance in verbal fluency tests (-0.70, 95% CI: -1.19; -0.21, p<0.01). Adjustments for age, sex, and level of education rendered the associations statistically non-significant. Longitudinally, there was no association between microvascular endothelial and cognitive functions. The associations between microvascular endothelial function and cognition are explained by age, sex, and educational level. Measures of microvascular endothelial function may be of limited value with regard to preclinical cognitive deficits.

  1. Non-invasive detection and quantification of brain microvascular deficits by near-infrared spectroscopy in a rat model of Vascular Cognitive Impairment

    Science.gov (United States)

    Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio

    2011-02-01

    Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.

  2. Effect of thrombus composition and viscosity on sonoreperfusion efficacy in a model of microvascular obstruction

    Science.gov (United States)

    Black, John J.; Yu, Francois T. H.; Schnatz, Rick G.; Flordeliza, Xucai Chen; Villanueva, S.; Pacella, John J.

    2016-01-01

    Distal embolization of microthrombi during stenting for myocardial infarction (MI) causes microvascular obstruction (MVO). We have previously shown that sonoreperfusion (SRP), a microbubble (MB)-mediated ultrasonic (US) therapy, resolves MVO from venous microthrombi in vitro in saline. However, blood is more viscous than saline and arterial thrombi that embolize during stenting are mechanically distinct from venous clot. Therefore, we tested the hypothesis that MVO created with arterial microthrombi are more resistant to SRP therapy compared with venous microthrombi and higher viscosity further increases the US requirement for effective SRP in an in vitro model of MVO. Lipid MB suspended in plasma with adjusted viscosity (1.1 or 4.0 cP) were passed through tubing bearing a mesh with 40 μm pores to simulate a microvascular cross-section; upstream pressure reflected thrombus burden. To simulate MVO, the mesh was occluded with either arterial or venous microthrombi to increase upstream pressure to 40±5 mmHg. Therapeutic long-tone-burst US was delivered to the occluded area for 20 min. MB activity was recorded with a passive cavitation detector (PCD). MVO caused by arterial microthrombi at either blood or plasma viscosity resulted in less effective SRP therapy, compared to venous thrombi. Higher viscosity further reduced the effectiveness of SRP therapy. PCD showed a decrease in inertial cavitation when viscosity was increased while stable cavitation was affected in a more complex manner. Overall, these data suggest that arterial thrombi may require higher acoustic pressure US than venous thrombi to achieve similar SRP efficacy, increased viscosity decreases SRP efficacy, and both inertial and stable cavitation are implicated in observed SRP efficacy. PMID:27207018

  3. Quantitative depth resolved microcirculation imaging with optical coherence tomography angiography (Part ΙΙ): Microvascular network imaging.

    Science.gov (United States)

    Gao, Wanrong

    2017-04-17

    In this work, we review the main phenomena that have been explored in OCT angiography to image the vessels of the microcirculation within living tissues with the emphasis on how the different processing algorithms were derived to circumvent specific limitations. Parameters are then discussed that can quantitatively describe the depth-resolved microvascular network for possible clinic diagnosis applications. Finally,future directions in continuing OCT development are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Expansion of microvascular networks in vivo by phthalimide neovascular factor 1 (PNF1).

    Science.gov (United States)

    Wieghaus, Kristen A; Nickerson, Meghan M; Petrie Aronin, Caren E; Sefcik, Lauren S; Price, Richard J; Paige, Mikell A; Brown, Milton L; Botchwey, Edward A

    2008-12-01

    Phthalimide neovascular factor (PNF1, formerly SC-3-149) is a potent stimulator of proangiogenic signaling pathways in endothelial cells. In this study, we evaluated the in vivo effects of sustained PNF1 release to promote ingrowth and expansion of microvascular networks surrounding biomaterial implants. The dorsal skinfold window chamber was used to evaluate the structural remodeling response of the local microvasculature. PNF1 was released from poly(lactic-co-glycolic acid) (PLAGA) films, and a transport model was utilized to predict PNF1 penetration into the surrounding tissue. PNF1 significantly expanded microvascular networks within a 2mm radius from implants after 3 and 7 days by increasing microvessel length density and lumenal diameter of local arterioles and venules. Staining of histological sections with CD11b showed enhanced recruitment of circulating white blood cells, including monocytes, which are critical for the process of vessel enlargement through arteriogenesis. As PNF1 has been shown to modulate MT1-MMP, a facilitator of CCL2 dependent leukocyte transmigration, aspects of window chamber experiments were repeated in CCR2(-/-) (CCL2 receptor) mouse chimeras to more fully explore the critical nature of monocyte recruitment on the therapeutic benefits of PNF1 function in vivo.

  5. Interactions of the gasotransmitters contribute to microvascular tone (dysregulation in the preterm neonate.

    Directory of Open Access Journals (Sweden)

    Rebecca M Dyson

    Full Text Available Hydrogen sulphide (H2S, nitric oxide (NO, and carbon monoxide (CO are involved in transitional microvascular tone dysregulation in the preterm infant; however there is conflicting evidence on the interaction of these gasotransmitters, and their overall contribution to the microcirculation in newborns is not known. The aim of this study was to measure the levels of all 3 gasotransmitters, characterise their interrelationships and elucidate their combined effects on microvascular blood flow.90 preterm neonates were studied at 24h postnatal age. Microvascular studies were performed by laser Doppler. Arterial COHb levels (a measure of CO were determined through co-oximetry. NO was measured as nitrate and nitrite in urine. H2S was measured as thiosulphate by liquid chromatography. Relationships between levels of the gasotransmitters and microvascular blood flow were assessed through partial correlation controlling for the influence of gestational age. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow and derive a theoretical model of their interactions.No relationship was observed between NO and CO (p = 0.18, r = 0.18. A positive relationship between NO and H2S (p = 0.008, r = 0.28 and an inverse relationship between CO and H2S (p = 0.01, r = -0.33 exists. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow. The model with the best fit is presented.The relationships between NO and H2S, and CO and H2S may be of importance in the preterm newborn, particularly as NO levels in males are associated with higher H2S levels and higher microvascular blood flow and CO in females appears to convey protection against vascular dysregulation. Here we present a theoretical model of these interactions and their overall effects on microvascular flow in the preterm newborn, upon which future mechanistic studies may be based.

  6. Percutaneous window chamber method for chronic intravital microscopy of sensor-tissue interactions.

    Science.gov (United States)

    Koschwanez, Heidi E; Klitzman, Bruce; Reichert, W Monty

    2008-11-01

    A dorsal, two-sided skin-fold window chamber model was employed previously by Gough in glucose sensor research to characterize poorly understood physiological factors affecting sensor performance. We have extended this work by developing a percutaneous one-sided window chamber model for the rodent dorsum that offers both a larger subcutaneous area and a less restrictive tissue space than previous animal models. A surgical procedure for implanting a sensor into the subcutis beneath an acrylic window (15 mm diameter) is presented. Methods to quantify changes in the microvascular network and red blood cell perfusion around the sensors using noninvasive intravital microscopy and laser Doppler flowmetry are described. The feasibility of combining interstitial glucose monitoring from an implanted sensor with intravital fluorescence microscopy was explored using a bolus injection of fluorescein and dextrose to observe real-time mass transport of a small molecule at the sensor-tissue interface. The percutaneous window chamber provides an excellent model for assessing the influence of different sensor modifications, such as surface morphologies, on neovascularization using real-time monitoring of the microvascular network and tissue perfusion. However, the tissue response to an implanted sensor was variable, and some sensors migrated entirely out of the field of view and could not be observed adequately. A percutaneous optical window provides direct, real-time images of the development and dynamics of microvascular networks, microvessel patency, and fibrotic encapsulation at the tissue-sensor interface. Additionally, observing microvessels following combined bolus injections of a fluorescent dye and glucose in the local sensor environment demonstrated a valuable technique to visualize mass transport at the sensor surface.

  7. Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase

    Energy Technology Data Exchange (ETDEWEB)

    Wijnbergen, Inge; Veer, Marcel van ' t [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands); Lammers, Jeroen; Ubachs, Joey [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Pijls, Nico H.J., E-mail: nico.pijls@cze.nl [Department of Cardiology, Catharina Hospital, Eindhoven (Netherlands); Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-03-15

    Background/Purpose: In a number of patients with acute myocardial infarction (AMI), myocardial hypoperfusion, known as the no-reflow phenomenon, persists after primary percutaneous intervention (PPCI). The aim of this study was to evaluate the feasibility and safety of a new quantitative method of measuring absolute blood flow and resistance within the perfusion bed of an infarct-related artery. Furthermore, we sought to study no-reflow by correlating these measurements to the index of microvascular resistance (IMR) and the area at risk (AR) as determined by cardiac magnetic resonance imaging (CMR). Methods: Measurements of absolute flow and myocardial resistance were performed in 20 patients with ST-segment elevation myocardial infarction (STEMI), first immediately following PPCI and then again after 3–5 days. These measurements used the technique of thermodilution during a continuous infusion of saline. Flow was expressed in ml/min per gram of tissue within the area at risk. Results: The average time needed for measurement of absolute flow, resistance and IMR was 20 min, and all measurements could be performed without complication. A higher flow supplying the AR correlated with a lower IMR in the acute phase. Absolute flow increased from 3.14 to 3.68 ml/min/g (p = 0.25) and absolute resistance decreased from 1317 to 1099 dyne.sec.cm-5/g (p = 0.40) between the first day and fifth day after STEMI. Conclusions: Measurement of absolute flow and microvascular resistance is safe and feasible in STEMI patients and may allow for a better understanding of microvascular (dys)function in the early phase of AMI. - Highlights: • We measured absolute coronary blood flow and microvascular resistance in STEMI patients in the acute phase and in the subacute phase, using the technique of thermodilution with low grade intracoronary continuous infusion of saline. • These measurements are safe and feasible during PPCI in STEMI patients. • In STEMI patients, absolute flow

  8. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Galbo, H

    2012-01-01

    Objective:The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM).Design:Clinical intervention study with 1-h intravenous adrenaline infusion.Subjects:Eight male overweight T2DM subjects...... and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging...... infusion. One hour post adrenaline, ATBF was still increased in overweight T2DM subjects. Adrenaline increased microvascular volume in non-T2DM subjects while this response was impaired in overweight T2DM subjects. Adrenaline-induced increase in lipolysis was similar in both groups, but NEFA output from...

  9. Compton scattering spectrum as a source of information of normal and neoplastic breast tissues' composition

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, 14040-901 Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, 14040-901 Sao Paulo (Brazil)

    2012-07-15

    In this work we measured X-ray scatter spectra from normal and neoplastic breast tissues using photon energy of 17.44 keV and a scattering angle of 90 Degree-Sign , in order to study the shape (FWHM) of the Compton peaks. The obtained results for FWHM were discussed in terms of composition and histological characteristics of each tissue type. The statistical analysis shows that the distribution of FWHM of normal adipose breast tissue clearly differs from all other investigated tissues. Comparison between experimental values of FWHM and effective atomic number revealed a strong correlation between them, showing that the FWHM values can be used to provide information about elemental composition of the tissues. - Highlights: Black-Right-Pointing-Pointer X-ray scatter spectra from normal and neoplastic breast tissues were measured. Black-Right-Pointing-Pointer Shape (FWHM) of Compton peak was related with elemental composition and characteristics of each tissue type. Black-Right-Pointing-Pointer A statistical hypothesis test showed clear differences between normal and neoplastic breast tissues. Black-Right-Pointing-Pointer There is a strong correlation between experimental values of FWHM and effective atomic number. Black-Right-Pointing-Pointer Shape (FWHM) of Compton peak can be used to provide information about elemental composition of the tissues.

  10. Is endothelial microvascular function equally impaired among patients with chronic Chagas and ischemic cardiomyopathy?

    Science.gov (United States)

    Borges, Juliana Pereira; Mendes, Fernanda de Souza Nogueira Sardinha; Lopes, Gabriella de Oliveira; Sousa, Andréa Silvestre de; Mediano, Mauro Felippe Felix; Tibiriçá, Eduardo

    2018-08-15

    Chronic Chagas cardiomyopathy (CCC) and cardiomyopathies due to other etiologies involve differences in pathophysiological pathways that are still unclear. Systemic microvascular abnormalities are associated with the pathogenesis of ischemic heart disease. However, systemic microvascular endothelial function in CCC remains to be elucidated. Thus, we compared the microvascular endothelial function of patients presenting with CCC to those with ischemic cardiomyopathy disease. Microvascular reactivity was assessed in 21 patients with cardiomyopathy secondary to Chagas disease, 21 patients with cardiomyopathy secondary to ischemic disease and 21 healthy controls. Microvascular blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with iontophoresis of acetylcholine (ACh). Peak increase in forearm blood flow with ACh iontophoresis in relation to baseline was greater in healthy controls than in patients with heart disease (controls: 162.7 ± 58.4% vs. ischemic heart disease: 74.1 ± 48.3% and Chagas: 85.1 ± 68.1%; p < 0.0001). Patients with Chagas and ischemic cardiomyopathy presented similar ACh-induced changes from baseline in skin blood flow (p = 0.55). Endothelial microvascular function was equally impaired among patients with CCC and ischemic cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.

    Science.gov (United States)

    Vyas, Veena; Kaur, Tejinder; Thirugnanam, Arunachalam

    2017-11-01

    The present work deals with the fabrication of chitosan composite scaffolds with controllable and predictable internal architecture for bone tissue engineering. Chitosan (CS) based composites were developed by varying montmorillonite (MMT) and hydroxyapatite (HA) combinations to fabricate macrospheric three dimensional (3D) scaffolds by direct agglomeration of the sintered macrospheres. The fabricated CS, CS/MMT, CS/HA and CS/MMT/HA 3D scaffolds were characterized for their physicochemical, biological and mechanical properties. The XRD and ATR-FTIR studies confirmed the presence of the individual constituents and the molecular interaction between them, respectively. The reinforcement with HA and MMT showed reduced swelling and degradation rate. It was found that in comparison to pure CS, the CS/HA/MMT composites exhibited improved hemocompatibility and protein adsorption. The sintering of the macrospheres controlled the swelling ability of the scaffolds which played an important role in maintaining the mechanical strength of the 3D scaffolds. The CS/HA/MMT composite scaffold showed 14 folds increase in the compressive strength when compared to pure CS scaffolds. The fabricated scaffolds were also found to encourage the MG 63 cell proliferation. Hence, from the above studies it can be concluded that the CS/HA/MMT composite 3D macrospheric scaffolds have wider and more practical application in bone tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Microvascular oxygen pressure in the pig intestine during haemorrhagic shock and resuscitation

    NARCIS (Netherlands)

    Sinaasappel, M.; van Iterson, M.; Ince, C.

    1999-01-01

    1. The aim of this study was to investigate the relation between microvascular and venous oxygen pressures during haemorrhagic shock and resuscitation in the pig intestine. To this end microvascular PO2 (microPO2) was measured by quenching of Pd-porphyrin phosphorescence by oxygen and validated for

  13. Transfer of Learning from Practicing Microvascular Anastomosis on Silastic Tubes to Rat Abdominal Aorta.

    Science.gov (United States)

    Mokhtari, Pooneh; Tayebi Meybodi, Ali; Lawton, Michael T; Payman, Andre; Benet, Arnau

    2017-12-01

    Learning to perform microvascular anastomosis is difficult. Laboratory practice models using artificial vessels are frequently used for this purpose. However, the efficacy of such practice models has not been objectively assessed for the performance of microvascular anastomosis during live surgical settings. This study was conducted to assess the transfer of learning from practicing microvascular anastomosis on tubes to anastomosing rat abdominal aorta. Ten surgeons without any experience in microvascular anastomosis were randomly assigned to an experimental or a control group. Both groups received didactic and visual training on end-to-end microvascular anastomosis. The experimental group received 24 sessions of hands-on training on microanastomosis using Silastic tubes. Next, both groups underwent recall tests on weeks 1, 2, and 8 after training. The recall test consisted of completing an end-to-end anastomosis on the rat's abdominal aorta. Anastomosis score, the time to complete the anastomosis, and the average time to place 1 stitch on the vessel perimeter were compared between the 2 groups. Compared with the control group, the experimental group did significantly better in terms of anastomosis score, total time, and per-stitch time. The measured variables showed stability and did not change significantly between the 3 recall tests. The skill of microvascular anastomosis is transferred from practicing on Silastic tubes to rat's abdominal aorta. Considering the relative advantages of Silastic tubes to live rodent surgeries, such as lower cost and absence of ethical issues, our results support the widespread use of Silastic tubes in training programs for microvascular anastomosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. COAGULATION PROFILE IN DIABETES MELLITUS AND ITS ASSOCIATION WITH MICROVASCULAR COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Uma Shankar Mishra

    2017-12-01

    Full Text Available BACKGROUND This study intends to assess the changes in the simple routine coagulation parameters in diabetes mellitus and to investigate whether any relationship exists among changes in these coagulation parameters and development of microvascular complication in diabetes mellitus. MATERIALS AND METHODS Period of study was from 2010-2012. It was done in M.K.C.G. Medical College with the approval from Berhampur University. It is a case control study. 50 diabetic patients and 50 age and sex matched non-diabetic patients were randomly selected. Simple coagulation parameters like Activated Partial Thromboplastin Time (aPTT, Prothrombin Time (PT, serum fibrinogen, platelet count and Plasminogen Activator Inhibitor-1 (PAI-1 were measured. Statistical study was done using unpaired t-test and analysis and calculations were done using GraphPad software. RESULTS Serum fibrinogen was found to be increased in diabetic patients when compared to non-diabetic patients (mean 278 ± 26.9 v/s 232.52 ± 16.5, P value - 0.009, significant. PAI-1 levels was found to be higher among the diabetics when compared to nondiabetics (47.64 ± 8.82 v/s 31.06 ± 7.12, the two-tailed P value is <0.0001, considered extremely significant. Platelet count through within normal limits. It was found to be decreased in diabetic patient when compared to non-diabetic (2.25 ± 0.18 v/s 2.33 ± 0.03, P value - 0.022. Prothrombin Time (PT (13.15 ± 0.52 v/s 13.04 ± 0.49, P value - 0.28 and PTT (33.04 ± 1.31 v/s 32.99 ± 1.29, P value 0.85, found to be statistically insignificant. Among 50 diabetic patients, 24 had neuropathy, 20 had nephropathy, 10 had retinopathy and 21 had none of these complications. On comparing diabetic patients with microvascular complications and without microvascular complications, significant age difference was observed (59.55 ± 5.06 v/s 51.00 ± 3.31, P=0.003. This probably was a reflection of increase in microvascular complications with increasing duration

  15. The dynamics of the microcirculation in the subcutaneous adipose tissue is impaired in the postprandial state in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, Jens

    2011-01-01

    that the postprandial adipose tissue blood flow (ATBF) increase is accompanied by capillary recruitment in healthy subjects. The aim of the present study was to investigate whether the postprandial capillary recruitment in adipose tissue is affected in type 2 diabetes mellitus. Eight type 2 diabetic overweight male....... No significant changes were found in the ATBF or in capillary recruitment in the type 2 diabetic subjects. There was no significant blood flow or microvascular blood volume changes in forearm skeletal muscle in either of the groups. CONCLUSION: After an oral glucose load, the abdominal ATBF and microvascular...... blood volume changes in abdominal subcutaneous adipose tissue are impaired in overweight type 2 diabetic subjects compared to weight-matched healthy subjects....

  16. Microvascular transplantation and replantation of the dog submandibular gland.

    Science.gov (United States)

    Su, Wan Fu; Jen, Yee Min; Chen, Shyi Gen; Nieh, Shin; Wang, Chih-Hung

    2006-05-01

    Transplantation and replantation of the submandibular gland with microvascular techniques were demonstrated in a previous study, with good gland survival. The application of radiation on the neck bed was attempted to address an actual clinical scenario in this study. Five canine submandibular glands were transplanted using microvascular techniques to the ipsilateral femoral system. Radiotherapy at a dosage level of 3,600 cGy using 600 cGy q.d was delivered to the nasopharyngeal and neck regions 2 weeks after transplantation. The transferred glands were then reintroduced into the original but radiated neck bed. The glands were harvested for histological examination 8 weeks later. Four of five canine submandibular glands can withstand microvascular transplantation and then replantation into a radiated neck bed for at least 8 weeks. However, the salivary function was depleted. The canine submandibular gland can survive the transplantation and replantation for at least 8 weeks in spite of precipitating radiation insult on the neck bed for 3 weeks. Neurorraphy is, however, essential to maintaining the glandular function.

  17. Guiding tissue regeneration with ultrasound in vitro and in vivo

    Science.gov (United States)

    Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.

    2015-05-01

    Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.

  18. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  19. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  20. Capillaries within compartments: microvascular interpretation of dynamic positron emission tomography data

    DEFF Research Database (Denmark)

    Munk, O L; Keiding, S; Bass, L

    2003-01-01

    scanners, little use is made of earlier microvascular research in the compartmental models, which have become the standard model by which the vast majority of dynamic PET data are analysed. However, modern PET scanners provide data with a sufficient temporal resolution and good counting statistics to allow...... single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. Udgivelsesdato: 2003-Nov-7......Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PET...

  1. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India); Verma, Sudhanshu; Manjubala, I. [Biomedical Engineering Division, School of Bio Sciences and Technology, VIT University, Vellore 632014 (India); Madhan, B., E-mail: bmadhan76@yahoo.co.in [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India)

    2014-12-01

    Keratin has gained much attention in the recent past as a biomaterial for wound healing owing to its biocompatibility, biodegradability, intrinsic biological activity and presence of cellular binding motifs. In this paper, a novel biomimetic scaffold containing keratin, chitosan and gelatin was prepared by freeze drying method. The prepared keratin composite scaffold had good structural integrity. Fourier Transform Infrared (FTIR) spectroscopy showed the retention of the native structure of individual biopolymers (keratin, chitosan, and gelatin) used in the scaffold. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) results revealed a high thermal denaturation temperature of the scaffold (200–250 °C). The keratin composite scaffold exhibited tensile strength (96 kPa), compression strength (8.5 kPa) and water uptake capacity (> 1700%) comparable to that of a collagen scaffold, which was used as control. The morphology of the keratin composite scaffold observed using a Scanning Electron Microscope (SEM) exhibited good porosity and interconnectivity of pores. MTT assay using NIH 3T3 fibroblast cells demonstrated that the cell viability of the keratin composite scaffold was good. These observations suggest that the keratin–chitosan–gelatin composite scaffold is a promising alternative biomaterial for tissue engineering applications. - Highlights: • Fabrication of novel Keratin-Chitosan-Gelatin composite scaffold • Keratin composite scaffold shows excellent water uptake capacity and porosity • Keratin composite scaffold shows good thermal and physical stability • Biocompatibility of the developed scaffold is comparable to collagen scaffolds • Developed scaffold is a promising material for soft tissue engineering applications.

  2. [Reconstruction of oral mucosa with a micro-vascularized fascia-cutaneous flap from the forearm].

    Science.gov (United States)

    Burgueño García, Miguel; Cebrián Carretero, José Luis; Muñoz Caro, Jesús Manuel; Arias Gallo, Javier

    2002-01-01

    Epidermoid carcinoma of jugal mucosa is an aggressive tumor. Its treatment is based on broad excision and reconstruction in order to avoid fibrosis and restriction of mouth opening. Neck dissection and radiotherapy are indicated in selected cases. We display our experience with microvascularized flaps with the aim of preventing the flaws. We reconsider 8 patients (representing 10 flaps) handle in our Department. Besides we discuss other therapeutic alternatives after the growth's removal. The conclusion reached is that the mucovascularized forearm flaps give a great quantity of thin tissue and therefore so results to be the best option for the reconstruction of the jugal mucosa.

  3. Free and microvascular bone grafting in the irradiated dog mandible

    International Nuclear Information System (INIS)

    Altobelli, D.E.; Lorente, C.A.; Handren, J.H. Jr.; Young, J.; Donoff, R.B.; May, J.W. Jr.

    1987-01-01

    Microvascular and free rib grafts were placed in 4.5 cm defects in an edentate mandibular body defect 18 to 28 days after completion of 50 Gy of irradiation from a 60 Co source. The animals were sacrificed from two to forty weeks postoperatively and evaluated clinically, radiographically, and histologically. There was a marked difference in the alveolar mucosal viability with the two grafts. Mucosal dehiscence was not observed over any of the microvascular grafts, but was present in seven-eighths of the free grafts. Union of the microvascular bone graft to the host bone occurred within six weeks. In contrast, after six weeks the free graft was sequestered in all the animals. An unexpected finding with both types of graft was the marked subperiosteal bone formation. This bone appeared to be derived from the host bed, stabilizing and bridging the defects bilaterally. The results suggest that radiated periosteum may play an important role in osteogenesis

  4. Microvascular Anastomosis: Proposition of a Learning Curve.

    Science.gov (United States)

    Mokhtari, Pooneh; Tayebi Meybodi, Ali; Benet, Arnau; Lawton, Michael T

    2018-04-14

    Learning to perform a microvascular anastomosis is one of the most difficult tasks in cerebrovascular surgery. Previous studies offer little regarding the optimal protocols to maximize learning efficiency. This failure stems mainly from lack of knowledge about the learning curve of this task. To delineate this learning curve and provide information about its various features including acquisition, improvement, consistency, stability, and recall. Five neurosurgeons with an average surgical experience history of 5 yr and without any experience in bypass surgery performed microscopic anastomosis on progressively smaller-caliber silastic tubes (Biomet, Palm Beach Gardens, Florida) during 24 consecutive sessions. After a 1-, 2-, and 8-wk retention interval, they performed recall test on 0.7-mm silastic tubes. The anastomoses were rated based on anastomosis patency and presence of any leaks. Improvement rate was faster during initial sessions compared to the final practice sessions. Performance decline was observed in the first session of working on a smaller-caliber tube. However, this rapidly improved during the following sessions of practice. Temporary plateaus were seen in certain segments of the curve. The retention interval between the acquisition and recall phase did not cause a regression to the prepractice performance level. Learning the fine motor task of microvascular anastomosis adapts to the basic rules of learning such as the "power law of practice." Our results also support the improvement of performance during consecutive sessions of practice. The objective evidence provided may help in developing optimized learning protocols for microvascular anastomosis.

  5. Adult Tissue-Derived Stem Cells and Tolerance Induction in Nonhuman Primates for Vascularized Composite Allograft Transplantation

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-2-0042 TITLE: Adult Tissue-Derived Stem Cells and Tolerance Induction in Nonhuman Primates for Vascularized Composite...2017 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Adult Tissue-Derived Stem Cells and Tolerance Induction...Distribution Unlimited 13. SUPPLEMENTARY NOTES The utilization of adult derived adipose stem cells administration in composite tissue transplantation

  6. A Simple, Visually Oriented Communication System to Improve Postoperative Care Following Microvascular Free Tissue Transfer: Development, Results, and Implications.

    Science.gov (United States)

    Henderson, Peter W; Landford, Wilmina; Gardenier, Jason; Otterburn, David M; Rohde, Christine H; Spector, Jason A

    2016-07-01

    Background Communication, particularly transmission of information between the surgical and nursing teams, has been identified as one of the most crucial determinants of patient outcomes. Nonetheless, transfer of information among and between the physician and nursing teams in the immediate postoperative period is often informal, verbal, and inconsistent. Methods An iterative process of multidisciplinary information gathering was undertaken to create a novel postoperative communication system (the "Pop-form"). Once developed, nurses were surveyed on multiple measures regarding the perceived likelihood that it would improve their ability to provide directed patient care. Data were quantified using a Likert scale (0-10), and statistically analyzed. Results The Pop-form records and transfers operative details, specific anatomic monitoring parameters, and senior physician contact information. Sixty-eight nurses completed surveys. The perceived usefulness of different components of the Pop-form system was as follows: 8.9 for the description of the procedure; 9.3 for the operative diagram; 9.4 for the monitoring details and parameters; and 9.4 for the direct contact information for the appropriate surgical team member. All respondents were in favor of widespread adoption of the Pop-form. Conclusion This uniform, visual communication system requires less than 1 minute to compose, yet formalizes and standardizes inter-team communication, and therefore shows promise for improving outcomes following microvascular free tissue transfer. We believe that this simple, innovative communication tool has the potential to be more broadly applied to many other health care settings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Leg tissue composition and physico-chemical parameters of sheep meat fed annatto coproduct

    Directory of Open Access Journals (Sweden)

    Dorgival Morais de Lima Júnior

    2017-10-01

    Full Text Available Our objective was to evaluate leg tissue composition and physico-chemical quality parameters of sheep meat fed with increasing levels of annatto coproduct. 32 male uncastrated animals without a defined breed were randomized in four treatments (0, 100, 200 and 300 g kg-1 of annatto coproduct in the DM diet. After 78 days of confinement, the animals were slaughtered and body components were recorded. Reconstituted leg weight, total muscle weight, biceps weight and semitendinosus weight showed a negative linear behavior (P 0.05 were found for leg tissue composition (%, muscle:bone ratio, relative fat or leg muscle. Meat physico-chemical parameters (color, shear force, water retention capacity and cooking losses were not affected by the inclusion of the annatto coproduct in the diet. The annatto coproduct can be included in up to 300 g kg-1 of dietary dry matter without negative effects to the leg tissue composition (% and physical parameters of confined sheep meat.

  8. Reconstruction of soft tissue after complicated calcaneal fractures.

    Science.gov (United States)

    Koski, E Antti; Kuokkanen, Hannu O M; Koskinen, Seppo K; Tukiainen, Erkki J

    2004-01-01

    A total of 35 flap reconstructions were done to cover exposed calcaneal bones in 31 patients. All patients had calcaneal fractures, 19 of which were primarily open. Soft tissue reconstruction for the closed fractures was indicated by a postoperative wound complication. A microvascular flap was used for reconstruction in 21 operations (gracilis, n = 11; anterolateral thigh, n = 5; rectus abdominis, n = 3; and latissimus dorsi, n = 2). A suralis neurocutaneous flap was used in eight, local muscle flaps in three, and local skin flaps in three cases. The mean follow-up time was 14 months (range 3 months-4 years). One suralis flap failed and was replaced by a latissimus dorsi flap. Necrosis of the edges that required revision affected three flaps. Deep infection developed in two patients and delayed wound healing in another four. During the follow-up the soft tissues healed in all patients and there were no signs of calcaneal osteitis. Flaps were considered too bulky in five patients. Soft tissues heal most rapidly with microvascular flaps. In the long term, gracilis muscle covered with free skin grafts gives a good contour to the foot. The suralis flap is reliable and gives a good final aesthetic outcome. Local muscles can be transposed for reconstruction in small defects.

  9. Optical study on the dependence of breast tissue composition and structure on subject anamnesis

    Science.gov (United States)

    Taroni, Paola; Quarto, Giovanna; Pifferi, Antonio; Abbate, Francesca; Balestreri, Nicola; Menna, Simona; Cassano, Enrico; Cubeddu, Rinaldo

    2015-07-01

    Time domain multi-wavelength (635 to 1060 nm) optical mammography was performed on 200 subjects to estimate their average breast tissue composition in terms of oxy- and deoxy-hemoglobin, water, lipid and collagen, and structural information, as provided by scattering parameters (amplitude and power). Significant (and often marked) dependence of tissue composition and structure on age, menopausal status, body mass index, and use of oral contraceptives was demonstrated.

  10. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    Science.gov (United States)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  11. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    International Nuclear Information System (INIS)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-01-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO 2 70 mol%, CaO 26 mol % and P 2 O 5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  12. A novel evaluation of microvascular damage in critically ill polytrauma patients by using circulating microRNAs

    Directory of Open Access Journals (Sweden)

    Bedreag Ovidiu Horea

    2016-03-01

    Full Text Available The management of the critically ill polytrauma patient is complex due to the multiple complications and biochemical and physiopathological imbalances. This happened due to the direct traumatic injury, or due to the post-traumatic events. One of the most complex physiopathology associated to the multiple traumas is represented by microvascular damage, subsequently responsible for a series of complications induced through the imbalance of the redox status, severe molecular damage, reduction of the oxygen delivery to the cell and tissues, cell and mitochondrial dead, augmentation of the inflammatory response and finally the installation of multiple organ dysfunction syndrome in this type of patients. A gold goal in the intensive care units is represented by the evaluation and intense monitoring of the molecular and physiopathological dysfunctions of the critically ill patients. Recently, it was intensely researched the use of microRNAs as biomarkers for the specific physiopathological dysfunctions. In this paper we wish to present a series of microRNAs that can serve as biomarkers for the evaluation of microvascular damage, as well as for the evaluation of other specific physiopathology for the critically ill polytrauma patient.

  13. 3D printing of composite tissue with complex shape applied to ear regeneration

    International Nuclear Information System (INIS)

    Lee, Jung-Seob; Hong, Jung Min; Jung, Jin Woo; Shim, Jin-Hyung; Cho, Dong-Woo; Oh, Jeong-Hoon

    2014-01-01

    In the ear reconstruction field, tissue engineering enabling the regeneration of the ear's own tissue has been considered to be a promising technology. However, the ear is known to be difficult to regenerate using traditional methods due to its complex shape and composition. In this study, we used three-dimensional (3D) printing technology including a sacrificial layer process to regenerate both the auricular cartilage and fat tissue. The main part was printed with poly-caprolactone (PCL) and cell-laden hydrogel. At the same time, poly-ethylene-glycol (PEG) was also deposited as a sacrificial layer to support the main structure. After complete fabrication, PEG can be easily removed in aqueous solutions, and the procedure for removing PEG has no effect on the cell viability. For fabricating composite tissue, chondrocytes and adipocytes differentiated from adipose-derived stromal cells were encapsulated in hydrogel to dispense into the cartilage and fat regions, respectively, of ear-shaped structures. Finally, we fabricated the composite structure for feasibility testing, satisfying expectations for both the geometry and anatomy of the native ear. We also carried out in vitro assays for evaluating the chondrogenesis and adipogenesis of the cell-printed structure. As a result, the possibility of ear regeneration using 3D printing technology which allowed tissue formation from the separately printed chondrocytes and adipocytes was demonstrated. (paper)

  14. What is the contribution of two genetic variants regulating VEGF levels to type 2 diabetes risk and to microvascular complications?

    DEFF Research Database (Denmark)

    Bonnefond, Amélie; Saulnier, Pierre-Jean; Stathopoulou, Maria G

    2013-01-01

    Vascular endothelial growth factor (VEGF) is a key chemokine involved in tissue growth and organ repair processes, particularly angiogenesis. Elevated circulating VEGF levels are believed to play a role in type 2 diabetes (T2D) microvascular complications, especially diabetic retinopathy. Recently...... for diabetic nephropathy (N(cases)¿=¿1,242-N(controls)¿=¿860) and the other for diabetic retinopathy (N(cases)¿=¿1,336-N(controls)¿=¿1,231). The effects of each SNP on quantitative traits were analyzed in a French general population-based cohort (N¿=¿4,760) and two French T2D studies (N¿=¿3,480). SNP...... on diabetic microvascular complications or the variation in related traits in T2D patients.In spite of their impact on the variance in circulating VEGF, we did not find any association between SNPs rs6921438 and rs10738760, and the risk of T2D, diabetic nephropathy or retinopathy. The link between VEGF and T2...

  15. Upcyte® Microvascular Endothelial Cells Repopulate Decellularized Scaffold

    Science.gov (United States)

    Dally, Iris; Hartmann, Nadja; Münst, Bernhard; Braspenning, Joris; Walles, Heike

    2013-01-01

    A general problem in tissue engineering is the poor and insufficient blood supply to guarantee tissue cell survival as well as physiological tissue function. To address this limitation, we have developed an in vitro vascularization model in which a decellularized porcine small bowl segment, representing a capillary network within a collagen matrix (biological vascularized scaffold [BioVaSc]), is reseeded with microvascular endothelial cells (mvECs). However, since the supply of mvECs is limited, in general, and as these cells rapidly dedifferentiate, we have applied a novel technology, which allows the generation of large batches of quasi-primary cells with the ability to proliferate, whilst maintaining their differentiated functionality. These so called upcyte mvECs grew for an additional 15 population doublings (PDs) compared to primary cells. Upcyte mvECs retained endothelial characteristics, such as von Willebrandt Factor (vWF), CD31 and endothelial nitric oxide synthase (eNOS) expression, as well as positive Ulex europaeus agglutinin I staining. Upcyte mvECs also retained biological functionality such as tube formation, cell migration, and low density lipoprotein (LDL) uptake, which were still evident after PD27. Initial experiments using MTT and Live/Dead staining indicate that upcyte mvECs repopulate the BioVaSc Scaffold. As with conventional cultures, these cells also express key endothelial molecules (vWF, CD31, and eNOS) in a custom-made bioreactor system even after a prolonged period of 14 days. The combination of upcyte mvECs and the BioVaSc represents a novel and promising approach toward vascularizing bioreactor models which can better reflect organs, such as the liver. PMID:22799502

  16. Microvascular responses to (hyper-)gravitational stress by short-arm human centrifuge: arteriolar vasoconstriction and venous pooling.

    Science.gov (United States)

    Habazettl, H; Stahn, Alexander; Nitsche, Andrea; Nordine, Michael; Pries, A R; Gunga, H-C; Opatz, O

    2016-01-01

    We hypothesized that lower body microvessels are particularly challenged during exposure to gravity and hypergravity leading to failure of resistance vessels to withstand excessive transmural pressure during hypergravitation and gravitation-dependent microvascular blood pooling. Using a short-arm human centrifuge (SAHC), 12 subjects were exposed to +1Gz, +2Gz and +1Gz, all at foot level, for 4 min each. Laser Doppler imaging and near-infrared spectroscopy were used to measure skin perfusion and tissue haemoglobin concentrations, respectively. Pretibial skin perfusion decreased by 19% during +1Gz and remained at this level during +2Gz. In the dilated area, skin perfusion increased by 24 and 35% during +1Gz and +2Gz, respectively. In the upper arm, oxygenated haemoglobin (Hb) decreased, while deoxy Hb increased with little change in total Hb. In the calf muscle, O2Hb and deoxy Hb increased, resulting in total Hb increase by 7.5 ± 1.4 and 26.6 ± 2.6 µmol/L at +1Gz and +2Gz, respectively. The dynamics of Hb increase suggests a fast and a slow component. Despite transmural pressures well beyond the upper myogenic control limit, intact lower body resistance vessels withstand these pressures up to +2Gz, suggesting that myogenic control may contribute only little to increased vascular resistance. The fast component of increasing total Hb indicates microvascular blood pooling contributing to soft tissue capacitance. Future research will have to address possible alterations of these acute adaptations to gravity after deconditioning by exposure to micro-g.

  17. Microvascular function in pre-eclampsia is influenced by insulin resistance and an imbalance of angiogenic mediators.

    Science.gov (United States)

    Ghosh, Anshuman; Freestone, Nicholas S; Anim-Nyame, Nicholas; Arrigoni, Francesca I F

    2017-04-01

    In preeclampsia, maternal microvascular function is disrupted and angiogenesis is dysfunctional. Insulin resistance that occurs in some pregnancies also pathologically affects microvascular function. We wished to examine the relationship of angiogenic mediators and insulin resistance on microvascular health in pregnancy. We performed a nested, case-control study of 16 women who developed preeclampsia with 17 normal pregnant controls. We hypothesized that the impaired microvascular blood flow in preeclamptic women associated with an increased ratio of the antiangiogenic factors; (s-endoglin [sEng] and soluble fms-like tyrosine kinase-1 [sFlt-1]) and proangiogenic molecule (placental growth factor [PlGF]) could be influenced by insulin resistance. Serum samples taken after 28 weeks of gestation were measured for the angiogenic factors, insulin, and glucose alongside the inflammatory marker; tumor necrosis factor-α and endothelial activation, namely; soluble vascular cell adhesion molecule 1, intercellular adhesion molecule-1, and e-selectin. Maternal microvascular blood flow, measured by strain gauge plethysmography, correlated with ratios of pro- and antiangiogenic mediators independently of preeclampsia. Decreased microvascular function measured in preeclampsia strongly correlated with both the antiangiogenic factor (sFlt-1 + sEng): PlGF ratio and high levels of insulin resistance, and combining insulin resistance with antiangiogenic factor ratios further strengthened this relationship. In pregnancy, microvascular blood flow is strongly associated with perturbations in pro- and antiangiogenic mediators. In preeclampsia, the relationship of maternal microvascular dysfunction with antiangiogenic mediators is strengthened when combined with insulin resistance. © 2017 Kingston University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. [Microvascular decompression for hemifacial spasm. Ten years of experience].

    Science.gov (United States)

    Revuelta-Gutiérrez, Rogelio; Vales-Hidalgo, Lourdes Olivia; Arvizu-Saldaña, Emiliano; Hinojosa-González, Ramón; Reyes-Moreno, Ignacio

    2003-01-01

    Hemifacial spasm characterized by involuntary paroxistic contractions of the face is more frequent on left side and in females. Evolution is progressive and in a few cases may disappear. Management includes medical treatment, botulinum toxin, and microvascular decompression of the nerve. We present the results of 116 microvascular decompressions performed in 88 patients over 10 years. All patients had previous medical treatment. All patients were operated on with microsurgical technique by asterional craniotomy. Vascular compression was present in all cases with one exception. Follow-up was from 1 month to 133 months. Were achieved excellent results in 70.45% of cases after first operation, good results in 9.09%, and poor results in 20.45% of patients. Long-term results were excellent in 81.82%, good in 6.82%, and poor in 11.36% of patients. Hypoacusia and transitory facial palsy were the main complications. Hemifacial spasm is a painless but disabling entity. Medical treatment is effective in a limited fashion. Injection of botulinum toxin has good response but benefit is transitory. Microvascular decompression is treatment of choice because it is minimally invasive, not destructive, requires minimum technical support, and yields best long-term results.

  19. Thermogel-Coated Poly(ε-Caprolactone Composite Scaffold for Enhanced Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shao-Jie Wang

    2016-05-01

    Full Text Available A three-dimensional (3D composite scaffold was prepared for enhanced cartilage tissue engineering, which was composed of a poly(ε-caprolactone (PCL backbone network and a poly(lactide-co-glycolide-block-poly(ethylene glycol-block-poly(lactide-co-glycolide (PLGA–PEG–PLGA thermogel surface. The composite scaffold not only possessed adequate mechanical strength similar to native osteochondral tissue as a benefit of the PCL backbone, but also maintained cell-friendly microenvironment of the hydrogel. The PCL network with homogeneously-controlled pore size and total pore interconnectivity was fabricated by fused deposition modeling (FDM, and was impregnated into the PLGA–PEG–PLGA solution at low temperature (e.g., 4 °C. The PCL/Gel composite scaffold was obtained after gelation induced by incubation at body temperature (i.e., 37 °C. The composite scaffold showed a greater number of cell retention and proliferation in comparison to the PCL platform. In addition, the composite scaffold promoted the encapsulated mesenchymal stromal cells (MSCs to differentiate chondrogenically with a greater amount of cartilage-specific matrix production compared to the PCL scaffold or thermogel. Therefore, the 3D PCL/Gel composite scaffold may exhibit great potential for in vivo cartilage regeneration.

  20. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  1. Microvascular lesions of the true vocal fold.

    Science.gov (United States)

    Postma, G N; Courey, M S; Ossoff, R H

    1998-06-01

    Microvascular lesions, also called varices or capillary ectasias, in contrast to vocal fold polyps with telangiectatic vessels, are relatively small lesions arising from the microcirculation of the vocal fold. Varices are most commonly seen in female professional vocalists and may be secondary to repetitive trauma, hormonal variations, or repeated inflammation. Microvascular lesions may either be asymptomatic or cause frank dysphonia by interrupting the normal vibratory pattern, mass, or closure of the vocal folds. They may also lead to vocal fold hemorrhage, scarring, or polyp formation. Laryngovideostroboscopy is the key in determining the functional significance of vocal fold varices. Management of patients with a varix includes medical therapy, speech therapy, and occasionally surgical vaporization. Indications for surgery are recurrent hemorrhage, enlargement of the varix, development of a mass in conjunction with the varix or hemorrhage, and unacceptable dysphonia after maximal medical and speech therapy due to a functionally significant varix.

  2. Preventing microvascular complications in type 1 diabetes mellitus

    Science.gov (United States)

    Viswanathan, Vijay

    2015-01-01

    Patients with complications of diabetes such as retinopathy, nephropathy, and cardiovascular complications have increased hospital stay with greater economic burden. Prevention of complications should be started before the onset of type 1 diabetes mellitus (T1DM) by working on risk factors and thereafter by intervention upon confirmatory diagnosis which can prevent further damage to β-cells. The actual risk of getting microvascular complications like microalbuminuria and retinopathy progression starts at glycated hemoglobin (HbA1c) level of 7%. As per the American Diabetes Association, a new pediatric glycemic control target of HbA1c 20 years as compared to patients <10 years of age. Screening of these complications should be done regularly, and appropriate preventive strategies should be followed. Angiotensin converting enzyme inhibitors and angiotensin II receptor blocker reduce progression from microalbuminuria to macroalbuminuria and increase the regression rate to normoalbuminuria. Diabetic microvascular complications can be controlled with tight glycemic therapy, dyslipidemia management and blood pressure control along with renal function monitoring, lifestyle changes, including smoking cessation and low-protein diet. An integrated and personalized care would reduce the risk of development of microvascular complications in T1DM patients. The child with diabetes who receives limited care is more likely to develop long-term complications at an earlier age. Screening for subclinical complications and early interventions with intensive therapy is the need of the hour. PMID:25941647

  3. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms

    Science.gov (United States)

    Dongare, Shirish; Mathur, Rajani; Saxena, Rohit; Mathur, Sandeep; Agarwal, Renu; Nag, Tapas C.; Srivastava, Sushma; Kumar, Pankaj

    2016-01-01

    Purpose Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes. Methods Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels. Results Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract–treated group compared to the vehicle-treated group. Conclusions The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation. PMID:27293376

  4. Donor-recipient human leukocyte antigen matching practices in vascularized composite tissue allotransplantation: a survey of major transplantation centers.

    Science.gov (United States)

    Ashvetiya, Tamara; Mundinger, Gerhard S; Kukuruga, Debra; Bojovic, Branko; Christy, Michael R; Dorafshar, Amir H; Rodriguez, Eduardo D

    2014-07-01

    Vascularized composite tissue allotransplant recipients are often highly sensitized to human leukocyte antigens because of multiple prior blood transfusions and other reconstructive operations. The use of peripheral blood obtained from dead donors for crossmatching may be insufficient because of life support measures taken for the donor before donation. No study has been published investigating human leukocyte antigen matching practices in this field. A survey addressing human leukocyte antigen crossmatching methods was generated and sent to 22 vascularized composite tissue allotransplantation centers with active protocols worldwide. Results were compiled by center and compared using two-tailed t tests. Twenty of 22 centers (91 percent) responded to the survey. Peripheral blood was the most commonly reported donor sample for vascularized composite tissue allotransplant crossmatching [78 percent of centers (n=14)], with only 22 percent (n=4) using lymph nodes. However, 56 percent of the 18 centers (n=10) that had performed vascularized composite tissue allotransplantation reported that they harvested lymph nodes for crossmatching. Of responding individuals, 62.5 percent (10 of 16 individuals) felt that lymph nodes were the best donor sample for crossmatching. A slight majority of vascularized composite tissue allotransplant centers that have performed clinical transplants have used lymph nodes for human leukocyte antigen matching, and centers appear to be divided on the utility of lymph node harvest. The use of lymph nodes may offer a number of potential benefits. This study highlights the need for institutional review board-approved crossmatching protocols specific to vascularized composite tissue allotransplantation, and the need for global databases for sharing of vascularized composite tissue allotransplantation experiences.

  5. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Science.gov (United States)

    Babur, Betul Kul; Kabiri, Mahboubeh; Klein, Travis Jacob; Lott, William B; Doran, Michael Robert

    2015-01-01

    We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

  6. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.

    Science.gov (United States)

    Hayami, James W S; Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2010-03-15

    Herein we report on the development and characterization of a biodegradable composite scaffold for ligament tissue engineering based on the fundamental morphological features of the native ligament. An aligned fibrous component was used to mimic the fibrous collagen network and a hydrogel component to mimic the proteoglycan-water matrix of the ligament. The composite scaffold was constructed from cell-adherent, base-etched, electrospun poly(epsilon-caprolactone-co-D,L-lactide) (PCLDLLA) fibers embedded in a noncell-adherent photocrosslinked N-methacrylated glycol chitosan (MGC) hydrogel seeded with primary ligament fibroblasts. Base etching improved cellular adhesion to the PCLDLLA material. Cells within the MGC hydrogel remained viable (72 +/- 4%) during the 4-week culture period. Immunohistochemistry staining revealed ligament ECM markers collagen type I, collagen type III, and decorin organizing and accumulating along the PCLDLLA fibers within the composite scaffolds. On the basis of these results, it was determined that the composite scaffold design was a viable alternative to the current approaches used for ligament tissue engineering and merits further study. (c) 2009 Wiley Periodicals, Inc.

  7. The association of systemic microvascular changes with lung function and lung density: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Bianca Harris

    Full Text Available Smoking causes endothelial dysfunction and systemic microvascular disease with resultant end-organ damage in the kidneys, eyes and heart. Little is known about microvascular changes in smoking-related lung disease. We tested if microvascular changes in the retina, kidneys and heart were associated with obstructive spirometry and low lung density on computed tomography. The Multi-Ethnic Study of Atherosclerosis recruited participants age 45-84 years without clinical cardiovascular disease. Measures of microvascular function included retinal arteriolar and venular caliber, urine albumin-to-creatinine ratio and, in a subset, myocardial blood flow on magnetic resonance imaging. Spirometry was measured following ATS/ERS guidelines. Low attenuation areas (LAA were measured on lung fields of cardiac computed tomograms. Regression models adjusted for pulmonary and cardiac risk factors, medications and body size. Among 3,397 participants, retinal venular caliber was inversely associated with forced expiratory volume in one second (FEV(1 (P<0.001 and FEV(1/forced vital capacity (FVC ratio (P = 0.04. Albumin-to-creatinine ratio was inversely associated with FEV(1 (P = 0.002 but not FEV(1/FVC. Myocardial blood flow (n = 126 was associated with lower FEV(1 (P = 0.02, lower FEV(1/FVC (P = 0.001 and greater percentage LAA (P = 0.04. Associations were of greater magnitude among smokers. Low lung function was associated with microvascular changes in the retina, kidneys and heart, and low lung density was associated with impaired myocardial microvascular perfusion. These cross-sectional results suggest that microvascular damage with end-organ dysfunction in all circulations may pertain to the lung, that lung dysfunction may contribute to systemic microvascular disease, or that there may be a shared predisposition.

  8. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    Science.gov (United States)

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on "VEGF uncoupling with nitric oxide" and "competitive angiopoietin 1/angiopoietin 2" mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  9. Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage.

    Science.gov (United States)

    Kleinhans, Kelsey L; Jackson, Alicia R

    2017-03-01

    A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.

  10. The effects of anti-obesity intervention with orlistat and sibutramine on microvascular endothelial function.

    Science.gov (United States)

    Al-Tahami, Belqes Abdullah Mohammad; Ismail, Ab Aziz Al-Safi; Bee, Yvonne Tee Get; Awang, Siti Azima; Salha Wan Abdul Rani, Wan Rimei; Sanip, Zulkefli; Rasool, Aida Hanum Ghulam

    2015-01-01

    Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR). 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations. 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group. 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.

  11. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    Science.gov (United States)

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  12. Soft tissue healing in alveolar socket preservation technique: histologic evaluations.

    Science.gov (United States)

    Pellegrini, Gaia; Rasperini, Giulio; Obot, Gregory; Farronato, Davide; Dellavia, Claudia

    2014-01-01

    After tooth extraction, 14 alveolar sockets were grafted with porous bovine bone mineral particles and covered with non-cross-linked collagen membrane (test group), and 14 alveolar sockets were left uncovered. At 5 and 12 weeks, microvascular density (MVD), collagen content, and amount of lymphocytes (Lym) T and B were analyzed in soft tissue. At 5 weeks, MVD was significantly lower and Lym T was significantly higher in tests than in controls (P healing process of the soft tissue.

  13. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    Science.gov (United States)

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Myocardial tissue deformation is reduced in subjects with coronary microvascular dysfunction but not rescued by treatment with Ranolazine

    Science.gov (United States)

    Nelson, Michael D.; Sharif, Behzad; Shaw, Jaime L.; Cook-Wiens, Galen; Wei, Janet; Shufelt, Chrisandra; Mehta, Puja K.; Thomson, Louise EJ; Berman, Daniel S.; Thompson, Richard B.; Handberg, Eileen M.; Pepine, Carl J.; Li, Debiao; Bairey Merz, C. Noel

    2016-01-01

    Background Patients with coronary microvascular dysfunction (CMD) often have diastolic dysfunction, representing an important therapeutic target. Ranolazine—a late-sodium current inhibitor—improves diastolic function in animal models, and subjects with obstructive CAD. We hypothesized that ranolazine would beneficially alter diastolic function in CMD. Methods To test this hypothesis, we performed retrospective tissue tracking analysis to evaluate systolic/diastolic strain, using cardiac magnetic resonance imaging cine images: a) acquired in a recently completed, randomized, double-blind, placebo-controlled, crossover trial of short-term ranolazine in subjects with CMD, and b) from 43 healthy reference controls. Results Diastolic strain rate was impaired in CMD vs. controls (circumferential diastolic strain rate: 99.9 ± 2.5%/s vs. 120.1 ± 4.0%/s, p=0.0003; radial diastolic strain rate: −199.5 ± 5.5%/s vs. −243.1 ± 9.6%/s, p=0.0008, case vs. control). Moreover, peak systolic circumferential (CS) and radial (RS) strain were also impaired in cases vs. controls (CS: −18.8 ± 0.3% vs. −20.7 ± 0.3%; RS: 35.8 ± 0.7% vs. 41.4 ± 0.9%; respectively; both p < 0.0001), despite similar and preserved ejection fraction. In contrast to our hypothesis however, we observed no significant changes in left ventricular diastolic function in CMD cases after two weeks of ranolazine vs. placebo. Conclusions The case-control comparison both confirms and extends our prior observations of diastolic dysfunction in CMD. That CMD cases were also found to have sub-clinical systolic dysfunction is a novel finding, highlighting the utility of this retrospective approach. In contrast to previous studies in obstructive CAD, ranolazine did not improve diastolic function in CMD. PMID:28004395

  15. Photoperiod affects daily torpor and tissue fatty acid composition in deer mice

    Science.gov (United States)

    Geiser, Fritz; McAllan, B. M.; Kenagy, G. J.; Hiebert, Sara M.

    2007-04-01

    Photoperiod and dietary lipids both influence thermal physiology and the pattern of torpor of heterothermic mammals. The aim of the present study was to test the hypothesis that photoperiod-induced physiological changes are linked to differences in tissue fatty acid composition of deer mice, Peromyscus maniculatus (˜18-g body mass). Deer mice were acclimated for >8 weeks to one of three photoperiods (LD, light/dark): LD 8:16 (short photoperiod), LD 12:12 (equinox photoperiod), and LD 16:8 (long photoperiod). Deer mice under short and equinox photoperiods showed a greater occurrence of torpor than those under long photoperiods (71, 70, and 14%, respectively). The duration of torpor bouts was longest in deer mice under short photoperiod (9.3 ± 2.6 h), intermediate under equinox photoperiod (5.1 ± 0.3 h), and shortest under long photoperiod (3.7 ± 0.6 h). Physiological differences in torpor use were associated with significant alterations of fatty acid composition in ˜50% of the major fatty acids from leg muscle total lipids, whereas white adipose tissue fatty acid composition showed fewer changes. Our results provide the first evidence that physiological changes due to photoperiod exposure do result in changes in lipid composition in the muscle tissue of deer mice and suggest that these may play a role in survival of low body temperature and metabolic rate during torpor, thus, enhancing favourable energy balance over the course of the winter.

  16. Defibrotide prevents the activation of macrovascular and microvascular endothelia caused by soluble factors released to blood by autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Palomo, Marta; Diaz-Ricart, Maribel; Rovira, Montserrat; Escolar, Ginés; Carreras, Enric

    2011-04-01

    Endothelial activation and damage occur in association with autologous hematopoietic stem cell transplantation (HSCT). Several of the early complications associated with HSCT seem to have a microvascular location. Through the present study, we have characterized the activation and damage of endothelial cells of both macro (HUVEC) and microvascular (HMEC) origin, occurring early after autologous HSCT, and the potential protective effect of defibrotide (DF). Sera samples from patients were collected before conditioning (Pre), at the time of transplantation (day 0), and at days 7, 14, and 21 after autologous HSCT. Changes in the expression of endothelial cell receptors at the surface, presence and reactivity of extracellular adhesive proteins, and the signaling pathways involved were analyzed. The expression of ICAM-1 at the cell surface increased progressively in both HUVEC and HMEC. However, a more prothrombotic profile was denoted for HMEC, in particular at the time of transplantation (day 0), reflecting the deleterious effect of the conditioning treatment on the endothelium, especially at a microvascular location. Interestingly, this observation correlated with a higher increase in the expression of both tissue factor and von Willebrand factor on the extracellular matrix, together with activation of intracellular p38 MAPK and Akt. Previous exposure and continuous incubation of cells with DF prevented the signs of activation and damage induced by the autologous sera. These observations corroborate that conditioning treatment in autologous HSCT induces a proinflammatory and a prothrombotic phenotype, especially at a microvascular location, and indicate that DF has protective antiinflammatory and antithrombotic effects in this setting. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Health-related quality of life, surgical and aesthetic outcomes following microvascular free flap reconstructions: an 8-year institutional review

    Science.gov (United States)

    Dolan, RT; Butler, JS; Murphy, SM; Cronin, KJ

    2012-01-01

    INTRODUCTION Microvascular free flap reconstruction has revolutionised the reconstruction of complex defects of traumatic, oncological, congenital and infectious aetiologies. Complications of microvascular free flap procedures impact negatively on patient post-operative course and outcome. METHODS We performed a retrospective analysis of 102 consecutive patients undergoing 108 free flap procedures at a tertiary referral centre over an 8-year period. Logistic regression analysis was used to identify factors pRedictive of free flap complications. Health-related quality of life (HRQoL) and aesthetic outcomes were assessed using the Short Form 36 questionnaire and a satisfaction visual analogue scale respectively. RESULTS In total, 108 free tissue transfers were performed; 23% were fasciocutaneous free flaps, 69% musculocutaneous and 8% osteoseptocutaneous. The overall flap success rate was 92.6%. Over a third of patients (34.3%) had flap-related complications ranging from minor wound dehiscence to total flap loss. ASA (American Society of Anesthesiologists) grade ≥2 (OR: 16.9, 95% CI: 15.3–18.1, pprocedure to restore functionality and quality of life for patients. PMID:22524928

  18. Striated muscle microvascular response to silver implants: A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Hansis, M; Arens, S; Menger, M D; Vollmar, B

    2000-02-01

    Local microvascular perfusion is the primary line of defense of tissue against microorganisms and plays a considerable role in reparative processes. The impairment of the microcirculation by a biomaterial may therefore have profound consequences. Silver is known to have excellent antimicrobial activity and, although regional and systemic toxic effects have been described, silver is regularly discussed as an implant material in bone surgery. Because little is known about the influence of silver implants on the adjacent host tissue microvasculature, we studied in vivo nutritive perfusion and leukocytic response, and compared these results with those of the conventionally used materials titanium and stainless steel. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, the implantation of a commercially pure silver sample led to a distinct and persistent activation of leukocytes combined with a marked disruption of the microvascular endothelial integrity, massive leukocyte extravasation, and considerable venular dilation. Whereas animals with stainless-steel implants showed a moderate increase in these parameters with a tendency to recuperate, titanium implants caused only a transient increase of leukocyte-endothelial cell interaction within the first 120 min and no significant change in macromolecular leakage, leukocyte extravasation and venular diameter. After 3 days, five of six preparations with silver samples showed severe inflammation and massive edema. Thus, the use of silver as an implant material should be critically judged despite its bactericidal properties. The implant material titanium seems to be well tolerated by the local vascular system and currently represents the golden standard. Copyright 2000 John Wiley & Sons, Inc.

  19. Single walled carbon nanotube composites for bone tissue engineering.

    Science.gov (United States)

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications. Copyright © 2013 Orthopaedic Research Society.

  20. Association between the resolution of the ST with microvascular obstruction and the size of the infarction assessed by cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lluveras, N.; Parma, G.; Florio, L; Zamoro, J

    2012-01-01

    The absence of ST-segment resolution (STR) in patients with an ST-elevation myocardial infarction (STEMI) after reperfusion strategy has been related to impaired myocardial perfusion. This is likely due to extensive microvascular obstruction (MVO) and reperfusion tissue injury. The aim of the study was to analyze the value of STR in the prediction of infarct size, perfusion impairment and left ventricular function assessed with cardiac magnetic resonance (CMR) in acute STEMI

  1. Assessment of macrovascular endothelial function using pulse wave analysis and its association with microvascular reactivity in healthy subjects.

    Science.gov (United States)

    Ibrahim, N N I N; Rasool, A H G

    2017-08-01

    Pulse wave analysis (PWA) and laser Doppler fluximetry (LDF) are non-invasive methods of assessing macrovascular endothelial function and microvascular reactivity respectively. The aim of this study was to assess the correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF. 297 healthy and non-smoking subjects (159 females, mean age (±SD) 23.56 ± 4.54 years) underwent microvascular reactivity assessment using LDF followed by macrovascular endothelial function assessments using PWA. Pearson's correlation showed no correlation between macrovascular endothelial function and microvascular reactivity (r = -0.10, P = 0.12). There was no significant correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF in healthy subjects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Preventing microvascular complications in type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Vijay Viswanathan

    2015-01-01

    Full Text Available Patients with complications of diabetes such as retinopathy, nephropathy, and cardiovascular complications have increased hospital stay with greater economic burden. Prevention of complications should be started before the onset of type 1 diabetes mellitus (T1DM by working on risk factors and thereafter by intervention upon confirmatory diagnosis which can prevent further damage to β-cells. The actual risk of getting microvascular complications like microalbuminuria and retinopathy progression starts at glycated hemoglobin (HbA1c level of 7%. As per the American Diabetes Association, a new pediatric glycemic control target of HbA1c 20 years as compared to patients <10 years of age. Screening of these complications should be done regularly, and appropriate preventive strategies should be followed. Angiotensin converting enzyme inhibitors and angiotensin II receptor blocker reduce progression from microalbuminuria to macroalbuminuria and increase the regression rate to normoalbuminuria. Diabetic microvascular complications can be controlled with tight glycemic therapy, dyslipidemia management and blood pressure control along with renal function monitoring, lifestyle changes, including smoking cessation and low-protein diet. An integrated and personalized care would reduce the risk of development of microvascular complications in T1DM patients. The child with diabetes who receives limited care is more likely to develop long-term complications at an earlier age. Screening for subclinical complications and early interventions with intensive therapy is the need of the hour.

  3. Large arteriolar component of oxygen delivery implies a safe margin of oxygen supply to cerebral tissue.

    Science.gov (United States)

    Sakadžić, Sava; Mandeville, Emiri T; Gagnon, Louis; Musacchia, Joseph J; Yaseen, Mohammad A; Yucel, Meryem A; Lefebvre, Joel; Lesage, Frédéric; Dale, Anders M; Eikermann-Haerter, Katharina; Ayata, Cenk; Srinivasan, Vivek J; Lo, Eng H; Devor, Anna; Boas, David A

    2014-12-08

    What is the organization of cerebral microvascular oxygenation and morphology that allows adequate tissue oxygenation at different activity levels? We address this question in the mouse cerebral cortex using microscopic imaging of intravascular O2 partial pressure and blood flow combined with numerical modelling. Here we show that parenchymal arterioles are responsible for 50% of the extracted O2 at baseline activity, and the majority of the remaining O2 exchange takes place within the first few capillary branches. Most capillaries release little O2 at baseline acting as an O2 reserve that is recruited during increased neuronal activity or decreased blood flow. Our results challenge the common perception that capillaries are the major site of O2 delivery to cerebral tissue. The understanding of oxygenation distribution along arterio-capillary paths may have profound implications for the interpretation of blood-oxygen-level dependent (BOLD) contrast in functional magnetic resonance imaging and for evaluating microvascular O2 delivery capacity to support cerebral tissue in disease.

  4. Investigating tissue respiration and skin microhaemocirculation under adaptive changes and the synchronization of blood flow and oxygen saturation rhythms

    International Nuclear Information System (INIS)

    Dunaev, A V; Palmer, S G; Stewart, N A; Sokolovski, S G; Rafailov, E U; Sidorov, V V; Krupatkin, A I; Rafailov, I E

    2014-01-01

    Multi-functional laser non-invasive diagnostic systems allow the study of a number of microcirculatory parameters, including index of blood microcirculation (I m ) (by laser Doppler flowmetry, LDF) and oxygen saturation (S t O 2 ) of skin tissue (by tissue reflectance oximetry, TRO). This research aimed to use such a system to investigate the synchronization of microvascular blood flow and oxygen saturation rhythms under normal and adaptive change conditions. Studies were conducted on eight healthy volunteers of 21–49 years. These volunteers were observed between one and six months, totalling 422 basic tests (3 min each). Measurements were performed on the palmar surface of the right middle finger and the lower forearm's medial surface. Rhythmic oscillations of LDF and TRO were studied using wavelet analysis. Combined tissue oxygen consumption data for all volunteers during ‘adaptive changes’ increased relative to normal conditions with and without arteriovenous anastomoses. Data analysis revealed resonance and synchronized rhythms in microvascular blood flow and oxygen saturation as an adaptive change in myogenic oscillation (vasomotion) resulting from exercise and possibly psychoemotional stress. Synchronization of myogenic rhythms during adaptive changes may lead to increased oxygen consumption as a result of increased microvascular blood flow velocity. (paper)

  5. Direct spectrometry: a new alternative for measuring the fluorescence of composite resins and dental tissues.

    Science.gov (United States)

    da Silva, Tm; de Oliveira, Hpm; Severino, D; Balducci, I; Huhtala, Mfrl; Gonçalves, Sep

    2014-01-01

    The aim of this study was to evaluate the fluorescence intensity of different composite resins and compare those values with the fluorescence intensity of dental tissues. Different composite resins were used to make 10 discs (2 mm in depth and 4 mm in diameter) of each brand, divided into groups: 1) Z (Filtek Z350, 3M ESPE), 2) ES (Esthet-X, Dentsply), 3) A (Amelogen Plus, Ultradent), 4) DVS (Durafill-VS, Heraeus Kulzer) with 2 mm composite resin for enamel (A2), 5) OES ([Esthet-X] opaque-OA [1 mm] + enamel-A2 [1 mm]); 6) ODVSI ([Charisma-Opal/Durafill-VSI], opaque-OM (1 mm) + translucent [1mm]), and 7) DVSI ([Durafill- VSI] translucent [2 mm]). Dental tissue specimens were obtained from human anterior teeth cut in a mesiodistal direction to obtain enamel, dentin, and enamel/dentin samples (2 mm). The fluorescence intensity of specimens was directly measured using an optic fiber associated with a spectrometer (Ocean Optics USB 4000) and recorded in graphic form (Origin 8.0 program). Data were submitted to statistical analysis using Dunnet, Tukey, and Kruskall-Wallis tests. Light absorption of the composite resins was obtained in a spectral range from 250 to 450 nm, and that of dental tissues was between 250 and 300 nm. All composite resins were excited at 398 nm and exhibited maximum emissions of around 485 nm. Fluorescence intensity values for all of the resins showed statistically significant differences (measured in arbitrary units [AUs]), with the exception of groups Z and DVS. Group DVSI had the highest fluorescence intensity values (13539 AU), followed by ODVS (10440 AU), DVS (10146 AU), ES (3946 AU), OES (3841 AU), A (3540 AU), and Z (1146 AU). The fluorescence intensity values for the composite resins differed statistically from those of dental tissues (E=1380 AU; D=6262 AU; E/D=3251 AU). The opacity interfered with fluorescence intensity, and group Z demonstrated fluorescence intensity values closest to that of tooth enamel. It is concluded that the

  6. Impaired coronary microvascular function in diabetics

    International Nuclear Information System (INIS)

    Tsujimoto, Go

    2000-01-01

    Global and regional myocardial uptake was determined with technetium-99m tetrofosmin and a 4 hour exercise (370 MBq iv) and rest (740 MBq iv) protocol, in 24 patients with non-insulin dependent diabetes mellitus and in 22 control subjects. The purpose of this study was to evaluate impaired coronary microvascular function in diabetics by measurement of % uptake increase in myocardial counts. The parameter of % uptake increase (ΔMTU) was calculated as the ratio of exercise counts to rest myocardial counts with correction of myocardial uptake for dose administered and physical decay between the exercise study and the rest study. Global ΔMTU was significantly lower in the diabetics than in control subjects (14.4±5.4% vs. 21.7±8.5%, p<0.01). Regional ΔMTU in each of 4 left ventricular regions (anterior, septal, inferior, posterolateral) was significantly lower in the diabetic group than in the control group (p<0.01) respectively, but there were no significant differences between ΔMTU in the 4 left ventricular regions in the same group. ΔMTU was useful as a non-invasive means of evaluating impaired coronary microvascular function in diabetics. (author)

  7. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies.

    Science.gov (United States)

    Demitri, Christian; Sannino, Alessandro; Conversano, Francesco; Casciaro, Sergio; Distante, Alessandro; Maffezzoli, Alfonso

    2008-11-01

    Ultrasound medical imaging (UMI) is the most widely used image analysis technique, and often requires advanced in-vitro set up to perform morphological and functional investigations. These studies are based on contrast properties both related to tissue structure and injectable contrast agents (CA). In this work, we present a three-dimensional structure composed of two different hydrogels reassembly the microvascular network of a human tissue. This phantom was particularly suitable for the echocontrastographic measurements in human microvascular system. This phantom has been characterized to present the acoustic properties of an animal liver, that is, acoustic impedance (Z) and attenuation coefficient (AC), in UMI signal analysis in particular; the two different hydrogels have been selected to simulate the target organ and the acoustic properties of the vascular system. The two hydrogels were prepared starting from cellulose derivatives to simulating the target organ parenchyma and using a PEG-diacrylate to reproduce the vascular system. Moreover, harmonic analysis was performed on the hydrogel mimicking the liver parenchyma hydrogel to evaluate the ultrasound (US) distortion during echographic measurement. The phantom was employed in the characterization of an experimental US CA. Perfect agreement was found when comparing the hydrogel acoustical properties materials with the corresponding living reference tissues (i.e., vascular and parenchimal tissue).

  8. Microvascular versus macrovascular cerebral vasomotor reactivity in patients with severe internal carotid artery stenosis or occlusion.

    Science.gov (United States)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-02-01

    In patients with severe internal carotid artery steno-occlusive lesions (ISOL), impaired cerebrovascular reactivity (CVR) is predictive of future ischemic stroke (IS) or transient ischemic attack (TIA). Therefore, the evaluation of CVR in ISOL patients may be a means to evaluate the risk for IS/TIA and decide on an intervention. Our aim was (1) to explore the feasibility of concurrent near-infrared spectroscopy (NIRS-DOS), diffuse correlation spectroscopy, and transcranial Doppler for CVR assessment in ISOL patients, and (2) to compare macrovascular and microvascular CVR in ISOL patients and explore its potential for IS/TIA risk stratification. Twenty-seven ISOL patients were recruited. The changes in continuous microvascular and macrovascular hemodynamics upon acetazolamide injection were used to determine CVR. Oxyhemoglobin (HbO2, by near-infrared spectroscopy), microvascular cerebral blood flow (CBF, by diffuse correlation spectroscopy) and CBF velocity (by transcranial Doppler) showed significant increases upon acetazolamide injection in all subjects (P < .03). Only macrovascular CVR (P = .024) and none of the microvascular measures were significantly dependent on the presence of ISOL. In addition, while CBF was significantly correlated with HbO2, neither of these microvascular measures correlated with macrovascular CBF velocity. We demonstrated the simultaneous, continuous, and noninvasive evaluation of CVR at both the microvasculature and macrovasculature. We found that macrovascular CVR response depends on the presence of ISOL, whereas the microvascular CVR did not significantly depend on the ISOL presence, possibly due to the role of collaterals other than those of the circle of Willis. The concurrent microvascular and macrovascular CVR measurement in the ISOL patients might improve future IS/TIA risk assessment. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  9. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Gui-Zhen [Department of Health, Linyi People' s Hospital, Shandong University, Shandong (China); Tian, Wei [Department of Nursing, Linyi Oncosurgical Hospital, Shandong (China); Fu, Hai-Tao [Department of Ophthalmology, Linyi People' s Hospital, Shandong University, Shandong (China); Li, Chao-Peng, E-mail: lcpcn@163.com [Eye Institute of Xuzhou, Jiangsu (China); Liu, Ban, E-mail: liuban@126.com [Department of Cardiology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai (China)

    2016-02-26

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainly mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.

  10. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    International Nuclear Information System (INIS)

    Qiu, Gui-Zhen; Tian, Wei; Fu, Hai-Tao; Li, Chao-Peng; Liu, Ban

    2016-01-01

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainly mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.

  11. Silk-fibrin/hyaluronic acid composite gels for nucleus pulposus tissue regeneration.

    Science.gov (United States)

    Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B; Min, Byoung-Hyun; Kaplan, David L

    2011-12-01

    Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration.

  12. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuru; Neverve, Jodi; Nekolla, Stephan G.; Schwaiger, Markus; Bengel, Frank M. [Nuklearmedizinische Klinik und Poliklinik der Technischen Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich (Germany); Abletshauser, Claudia [Department of Medicine, Novartis Pharma GmbH, Nuernberg (Germany); Schnell, Oliver; Standl, Eberhard [Institut fuer Diabetesforschung, Munich (Germany)

    2002-12-01

    In diabetic patients, a number of studies have suggested an impairment of vascular reactivity in response to vasodilatory stimuli. The pattern of dysregulation at the coronary microcirculatory level, however, has not been clearly defined. Thus, it was the aim of this study to characterise coronary microvascular function non-invasively in a homogeneous group of asymptomatic type 2 diabetic patients. In 46 patients with type 2 diabetes, myocardial blood flow (MBF) was quantified at baseline, in response to cold pressor test (CPT) and during adenosine-mediated vasodilation using positron emission tomography and nitrogen-13 ammonia. None of the patients had been treated with insulin, and none had symptoms of cardiac disease. Decreased MBF during CPT, indicating microvascular dysregulation, was observed in 16 patients (CPT-), while 30 patients demonstrated increased MBF during CPT (CPT+). Response to CPT was mildly, but significantly correlated with response to adenosine (r=0.44, P=0.0035). There was no difference in HbA1c, serum lipid levels or serum endothelial markers between the groups. Microvascular dysregulation in the CPT- group was associated with elevated baseline MBF (P<0.0001), reduced baseline vascular resistance (P=0.0026) and an abnormal increase in resistance during CPT (P=0.0002). In conclusion, coronary microvascular dysregulation is present in approximately one-third of asymptomatic, non-insulin-treated type 2 diabetic patients. Elevated baseline blood flow and reduced microvascular resistance at rest are characteristics of this dysregulation. These data suggest a state of activation of endothelial-dependent vasodilation at baseline which appears to limit the flow response to stress conditions. (orig.)

  13. Skeletal muscle microvascular and interstitial PO2 from rest to contractions.

    Science.gov (United States)

    Hirai, Daniel M; Craig, Jesse C; Colburn, Trenton D; Eshima, Hiroaki; Kano, Yutaka; Sexton, William L; Musch, Timothy I; Poole, David C

    2018-03-01

    Oxygen pressure gradients across the microvascular walls are essential for oxygen diffusion from blood to tissue cells. At any given flux, the magnitude of these transmural gradients is proportional to the local resistance. The greatest resistance to oxygen transport into skeletal muscle is considered to reside in the short distance between red blood cells and myocytes. Although crucial to oxygen transport, little is known about transmural pressure gradients within skeletal muscle during contractions. We evaluated oxygen pressures within both the skeletal muscle microvascular and interstitial spaces to determine transmural gradients during the rest-contraction transient in anaesthetized rats. The significant transmural gradient observed at rest was sustained during submaximal muscle contractions. Our findings support that the blood-myocyte interface provides substantial resistance to oxygen diffusion at rest and during contractions and suggest that modulations in microvascular haemodynamics and red blood cell distribution constitute primary mechanisms driving increased transmural oxygen flux with contractions. Oxygen pressure (PO2) gradients across the blood-myocyte interface are required for diffusive O 2 transport, thereby supporting oxidative metabolism. The greatest resistance to O 2 flux into skeletal muscle is considered to reside between the erythrocyte surface and adjacent sarcolemma, although this has not been measured during contractions. We tested the hypothesis that O 2 gradients between skeletal muscle microvascular (PO2 mv ) and interstitial (PO2 is ) spaces would be present at rest and maintained or increased during contractions. PO2 mv and PO2 is   were determined via phosphorescence quenching (Oxyphor probes G2 and G4, respectively) in the exposed rat spinotrapezius during the rest-contraction transient (1 Hz, 6 V; n = 8). PO2 mv was higher than PO2 is in all instances from rest (34.9 ± 6.0 versus 15.7 ± 6.4) to contractions (28.4 ± 5

  14. Reconstruction with vascularized composite tissue in patients with excessive injury following surgery and irradiation

    International Nuclear Information System (INIS)

    Serafin, D.; DeLand, M.; Lesesne, C.B.; Smith, P.J.; Noell, K.T.; Georgiade, N.

    1982-01-01

    The biological effects of a single high dose of radiation are examined. Both cellular injury and repair are reviewed during early, intermediate, and late phases. Anticipated composite tissue morbidity is detailed for therapeutic radiation doses administered to the head and neck, breast and thorax, and perineum. Patients who demonstrated excessive time-dose fractionation values were irradiated with lower x-ray energies. Those in whom there was an overlap of treatment fields presented a serious challenge to the reconstructive surgeon. Judicious selection of well-vascularized composite tissue outside the portals of irradiation, preferably with a long vascular pedicle, facilitated reconstruction. When possible, both donor and recipient vasculature should be outside the irradiated area to ensure uninterrupted blood flow to the transferred or transplanted tissue

  15. Design, manufacture and in-vitro evaluation of a new microvascular anastomotic device.

    Science.gov (United States)

    Huang, Shao-Fu; Wang, Tien-Hsiang; Wang, Hsuan-Wen; Huang, Shu-Wei; Lin, Chun-Li; Kuo, Hsien-Nan; Yu, Tsung-Chih

    2013-01-01

    Many microvascular anastomoses have been proposed for use with physical assisted methods, such as cuff, ring-pin, stapler, clip to the anastomose blood vessel. The ring-pin type anastomotic device (e.g., 3M Microvascular Anastomotic System) is the most commonly used worldwide because the anastomotic procedure can be conducted more rapidly and with fewer traumas than using sutures. However, problems including vessel leakage, ring slippage, high cost and high surgical skill demand need to be resolved. The aim of this study is to design and manufacture a new anastomotic device for microvascular anastomosis surgery and validate the device functions with in-vitro testing. The new device includes one pair of pinned rings and a set of semi-automatic flap apparatus designed and made using computer-aided design / computer-aided manufacture program. A pair of pinned rings was used to impale vessel walls and establish fluid communication with rings joined. The semi-automatic flap apparatus was used to assist the surgeon to invert the vessel walls and impale onto each ring pin, then turning the apparatus knob to bring the rings together. The device was revised until it became acceptable for clinical requires. An in-vitro test was performed using a custom-made seepage micro-fluid system to detect the leakage of the anastomotic rings. The variation between input and output flow for microvascular anastomoses was evaluated. The new microvascular anastomotic device was convenient and easy to use. It requires less time than sutures to invert and impale vessel walls onto the pinned rings using the semi-automatic flap apparatus. The in-vitro test data showed that there were no tears from the joined rings seam during the procedures. The new anastomotic devices are effective even with some limitations still remaining. This device can be helpful to simplify the anastomosis procedure and reduce the surgery time.

  16. Dual energy spectral CT imaging for the evaluation of small hepatocellular carcinoma microvascular invasion.

    Science.gov (United States)

    Yang, Chuang-Bo; Zhang, Shuang; Jia, Yong-Jun; Yu, Yong; Duan, Hai-Feng; Zhang, Xi-Rong; Ma, Guang-Ming; Ren, Chenglong; Yu, Nan

    2017-10-01

    To study the clinical value of dual-energy spectral CT in the quantitative assessment of microvascular invasion of small hepatocellular carcinoma. This study was approved by our ethics committee. 50 patients with small hepatocellular carcinoma who underwent contrast enhanced spectral CT in arterial phase (AP) and portal venous phase (VP) were enrolled. Tumour CT value and iodine concentration (IC) were measured from spectral CT images. The slope of spectral curve, normalized iodine concentration (NIC, to abdominal aorta) and ratio of IC difference between AP and VP (RIC AP-VP : [RIC AP-VP =(IC AP -IC VP )/IC AP ]) were calculated. Tumours were identified as either with or without microvascular invasion based on pathological results. Measurements were statistically compared using independent samples t test. The receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of tumours microvascular invasion assessment. The 70keV images were used to simulate the results of conventional CT scans for comparison. 56 small hepatocellular carcinomas were detected with 37 lesions (Group A) with microvascular invasion and 19 (Group B) without. There were significant differences in IC, NIC and slope in AP and RIC AP-VP between Group A (2.48±0.70mg/ml, 0.23±0.05, 3.39±1.01 and 0.28±0.16) and Group B (1.65±0.47mg/ml, 0.15±0.05, 2.22±0.64 and 0.03±0.24) (all phepatocellular carcinoma with and without microvascular invasion. Quantitative iodine concentration measurement in spectral CT may be used to provide a new method to improve the evaluation for small hepatocellular carcinoma microvascular invasion. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Inhaled nitric oxide pretreatment but not posttreatment attenuates ischemia-reperfusion-induced pulmonary microvascular leak.

    Science.gov (United States)

    Chetham, P M; Sefton, W D; Bridges, J P; Stevens, T; McMurtry, I F

    1997-04-01

    Ischemia-reperfusion (I/R) pulmonary edema probably reflects a leukocyte-dependent, oxidant-mediated mechanism. Nitric oxide (NO) attenuates leukocyte-endothelial cell interactions and I/R-induced microvascular leak. Cyclic adenosine monophosphate (cAMP) agonists reverse and prevent I/R-induced microvascular leak, but reversal by inhaled NO (INO) has not been tested. In addition, the role of soluble guanylyl cyclase (sGC) activation in the NO protection effect is unknown. Rat lungs perfused with salt solution were grouped as either I/R, I/R with INO (10 or 50 ppm) on reperfusion, or time control. Capillary filtration coefficients (Kfc) were estimated 25 min before ischemia (baseline) and after 30 and 75 min of reperfusion. Perfusate cell counts and lung homogenate myeloperoxidase activity were determined in selected groups. Additional groups were treated with either INO (50 ppm) or isoproterenol (ISO-10 microM) after 30 min of reperfusion. Guanylyl cyclase was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ-15 microM), and Kfc was estimated at baseline and after 30 min of reperfusion. (1) Inhaled NO attenuated I/R-induced increases in Kfc. (2) Cell counts were similar at baseline. After 75 min of reperfusion, lung neutrophil retention (myeloperoxidase activity) and decreased perfusate neutrophil counts were similar in all groups. (3) In contrast to ISO, INO did not reverse microvascular leak. (4) 8-bromoguanosine 3',5'-cyclic monophosphate (8-br-cGMP) prevented I/R-induced microvascular leak in ODQ-treated lungs, but INO was no longer effective. Inhaled NO attenuates I/R-induced pulmonary microvascular leak, which requires sGC activation and may involve a mechanism independent of inhibition of leukocyte-endothelial cell interactions. In addition, INO is ineffective in reversing I/R-induced microvascular leak.

  18. Effect of oral oleoyl-estrone on adipose tissue composition in male rats.

    Science.gov (United States)

    Remesar, X; Fernández-López, J A; Blay, M T; Savall, P; Salas, A; Díaz-Silva, M; Esteve, M; Grasa, M M; Alemany, M

    2002-08-01

    To determine whether the oral administration of oleoyl-estrone has similar mass-decreasing effects on the main different sites of white adipose tissue (WAT). Adult male Zucker lean rats were given a daily oral gavage of oleoyl-estrone (OE, 10 micromol/kg) in 0.2 ml of sunflower oil for 10 days, and were compared with controls receiving only the oil. The mass of the main WAT sites: subcutaneous, epididymal, mesenteric, retroperitoneal, gluteal, perirenal and interscapular, as well as perirenal and interscapular brown adipose tissue (BAT), were dissected and studied. The tissue weight, DNA, protein, lipid and total cholesterol content, together with the levels of leptin and acyl-estrone in the larger WAT and BAT masses, were measured. The weights of WAT depots were correlated with body weight but those of BAT were not. Cell size was maximal for epididymal and mesenteric and minimal for subcutaneous and retroperitoneal WAT and BAT. Differences were detected in DNA, and in protein and lipid content between distinct WAT sites. OE treatment tended to decrease cell number and cell size in WAT; only small differences in composition were found between WAT locations inside the visceral cavity and those outside. Decreases in lipid content were maximal in mesenteric fat. Leptin and acyl-estrone content were fairly uniform at the different WAT sites, except for high concentrations in gluteal WAT. OE induced a greater decrease in leptin and acyl-estrone than in DNA and lipids; changes in these hormones were fairly parallel in all sites. In general, the differences in composition between visceral and peripheral subcutaneous WAT and their responses to OE were less marked than the individual differences observed between specific sites, regardless of location. WAT sites are fairly diverse in composition, but their response to OE treatment was uniform. OE decreased the weight of WAT through reduction of both cell numbers and size; but did not change the mass or composition of BAT

  19. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Betul Kul Babur

    Full Text Available We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage

  20. Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering.

    Science.gov (United States)

    Thayer, Patrick S; Dimling, Anna F; Plessl, Daniel S; Hahn, Mariah R; Guelcher, Scott A; Dahlgren, Linda A; Goldstein, Aaron S

    2014-01-13

    Electrospun meshes suffer from poor cell infiltration and limited thickness, which restrict their use to thin tissue applications. Herein, we demonstrate two complementary processes to overcome these limitations and achieve elastomeric composites that may be suitable for ligament repair. First, C3H10T1/2 mesenchymal stem cells were incorporated into electrospun meshes using a hybrid electrospinning/electrospraying process. Second, electrospun meshes were rolled and formed into composites with an interpenetrating polyethylene glycol (PEG) hydrogel network. Stiffer composites were formed from poly(lactic-co-glycolic acid) (PLGA) meshes, while softer and more elastic composites were formed from poly(ester-urethane urea) (PEUUR) meshes. As-spun PLGA and PEUUR rolled meshes had tensile moduli of 19.2 ± 1.9 and 0.86 ± 0.34 MPa, respectively, which changed to 11.6 ± 4.8 and 1.05 ± 0.39 MPa with the incorporation of a PEG hydrogel phase. In addition, cyclic tensile testing indicated that PEUUR-based composites deformed elastically to at least 10%. Finally, C3H10T1/2 cells incorporated into electrospun meshes survived the addition of the PEG phase and remained viable for up to 5 days. These results indicate that the fabricated cellularized composites are support cyclic mechanical conditioning, and have potential application in ligament repair.

  1. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.

    Science.gov (United States)

    Chen, Xi; Li, Yan; Gu, Ning

    2010-08-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  2. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair

    International Nuclear Information System (INIS)

    Chen Xi; Li Yan; Gu Ning

    2010-01-01

    A basalt fiber (BF) was, for the first time, introduced into a poly(l-lactic acid) (PLLA) matrix as innovative reinforcement to fabricate composite materials for hard tissue repair. Firstly, BF/PLLA composites and pure PLLA were produced by the methods of solution blending and freeze drying. The results showed that basalt fibers can be uniformly dispersed in the PLLA matrix and significantly improve the mechanical properties and hydrophilicity of the PLLA matrix. The presence of basalt fibers may retard the polymer degradation rate and neutralize the acid degradation from PLLA. Osteoblasts were cultured in vitro to evaluate the cytocompatibility of the composite. An MTT assay revealed that osteoblasts proliferated well for 7 days and there was little difference found in their viability on both PLLA and BF/PLLA films, which was consistent with the alkaline phosphatase (ALP) activity results. A fluorescent staining observation showed that osteoblasts grew well on the composites. SEM images displayed that osteoblasts tended to grow along the fiber axis. The formation of mineralized nodules was observed on the films by Alizarin red S staining. These results suggest that the presence of basalt fibers does not noticeably affect osteoblastic behavior and the designed composites are osteoblast compatible. It is concluded that basalt fibers, as reinforcing fibers, may have promising applications in hard tissue repair.

  3. Prolonged superficial local cryotherapy attenuates microcirculatory impairment, regional inflammation, and muscle necrosis after closed soft tissue injury in rats.

    Science.gov (United States)

    Schaser, Klaus-Dieter; Disch, Alexander C; Stover, John F; Lauffer, Annette; Bail, Herman J; Mittlmeier, Thomas

    2007-01-01

    Closed soft tissue injury induces progressive microvascular dysfunction and regional inflammation. The authors tested the hypothesis that adverse trauma-induced effects can be reduced by local cooling. While superficial cooling reduces swelling, pain, and cellular oxygen demand, the effects of cryotherapy on posttraumatic microcirculation are incompletely understood. Controlled laboratory study. After a standardized closed soft tissue injury to the left tibial compartment, male rats were randomly subjected to percutaneous perfusion for 6 hours with 0.9% NaCL (controls; room temperature) or cold NaCL (cryotherapy; 8 degrees C) (n = 7 per group). Uninjured rats served as shams (n = 7). Microcirculatory changes and leukocyte adherence were determined by intravital microscopy. Intramuscular pressure was measured, and invasion of granulocytes and macrophages was assessed by immunohistochemistry. Edema and tissue damage was quantified by gravimetry and decreased desmin staining. Closed soft tissue injury significantly decreased functional capillary density (240 +/- 12 cm(-1)); increased microvascular permeability (0.75 +/- 0.03), endothelial leukocyte adherence (995 +/- 77/cm(2)), granulocyte (182.0 +/- 25.5/mm(2)) and macrophage infiltration, edema formation, and myonecrosis (ratio: 2.95 +/- 0.45) within the left extensor digitorum longus muscle. Cryotherapy for 6 hours significantly restored diminished functional capillary density (393 +/- 35), markedly decreased elevated intramuscular pressure, reduced the number of adhering (462 +/- 188/cm(2)) and invading granulocytes (119 +/- 28), and attenuated tissue damage (ratio: 1.7 +/- 0.17). The hypothesis that prolonged cooling reduces posttraumatic microvascular dysfunction, inflammation, and structural impairment was confirmed. These results may have therapeutic implications as cryotherapy after closed soft tissue injury is a valuable therapeutic approach to improve nutritive perfusion and attenuate leukocyte

  4. Hand transplantation and vascularized composite tissue allografts in orthopaedics and traumatology.

    Science.gov (United States)

    Schuind, F

    2010-05-01

    Composite tissue allograft (CTA) is defined as heterologous transplantation of a complex comprising skin and subcutaneous, neurovascular and mesenchymal tissue. Such techniques allow complex reconstruction using matched tissue, without donor site morbidity. The potential indications in orthopaedics-traumatology could in the future be more frequent than the present indications of heart, lung, liver, kidney and pancreas transplantation. International clinical experience clearly demonstrates the feasibility of CTA, both surgically and immunologically. However, immunosuppression remains indispensable, exposing the patient to risks that are not acceptable for purely functional surgery, except in very particular indications. The main hope for the future lies in induction of graft-specific tolerance. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  5. Early microvascular changes in the preterm neonate: a comparative study of the human and guinea pig.

    Science.gov (United States)

    Dyson, Rebecca M; Palliser, Hannah K; Lakkundi, Anil; de Waal, Koert; Latter, Joanna L; Clifton, Vicki L; Wright, Ian M R

    2014-09-17

    Dysfunction of the transition from fetal to neonatal circulatory systems may be a major contributor to poor outcome following preterm birth. Evidence exists in the human for both a period of low flow between 5 and 11 h and a later period of increased flow, suggesting a hypoperfusion-reperfusion cycle over the first 24 h following birth. Little is known about the regulation of peripheral blood flow during this time. The aim of this study was to conduct a comparative study between the human and guinea pig to characterize peripheral microvascular behavior during circulatory transition. Very preterm (≤28 weeks GA), preterm (29-36 weeks GA), and term (≥37 weeks GA) human neonates underwent laser Doppler analysis of skin microvascular blood flow at 6 and 24 h from birth. Guinea pig neonates were delivered prematurely (62 day GA) or at term (68-71 day GA) and laser Doppler analysis of skin microvascular blood flow was assessed every 2 h from birth. In human preterm neonates, there is a period of high microvascular flow at 24 h after birth. No period of low flow was observed at 6 h. In preterm animals, microvascular flow increased after birth, reaching a peak at 10 h postnatal age. Blood flow then steadily decreased, returning to delivery levels by 24 h. Preterm birth was associated with higher baseline microvascular flow throughout the study period in both human and guinea pig neonates. The findings do not support a hypoperfusion-reperfusion cycle in the microcirculation during circulatory transition. The guinea pig model of preterm birth will allow further investigation of the mechanisms underlying microvascular function and dysfunction during the initial extrauterine period. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Treatment of Angina and Microvascular Coronary Dysfunction

    Science.gov (United States)

    Samim, Arang; Nugent, Lynn; Mehta, Puja K.; Shufelt, Chrisandra; Merz, C. Noel Bairey

    2014-01-01

    Opinion statement Microvascular coronary dysfunction (MCD) is an increasingly recognized cause of cardiac ischemia and angina, more commonly diagnosed in women. Patients with MCD present with the triad of persistent chest pain, ischemic changes on stress testing, and no obstructive coronary artery disease (CAD) on cardiac catheterization. Data from National Heart, Lung and Blood Institute (NHLBI)-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study has shown that the diagnosis of MCD is not benign, with a 2.5% annual risk of adverse cardiac events including myocardial infarction, stroke, congestive heart failure, or death. The gold standard diagnostic test for MCD is an invasive coronary reactivity test (CRT), which uses acetylcholine, adenosine, and nitroglycerin to test the endothelial dependent and independent, microvascular and macrovascular coronary function. The CRT allows for diagnostic and treatment options as well as further risk stratifying patients for future cardiovascular events. Treatment of angina and MCD should be aimed at ischemia disease management to reduce risk of adverse cardiac events, ameliorating symptoms to improve quality of life, and to decrease the morbidity from unnecessary and repeated cardiac catheterization in patients with open coronary arteries. A comprehensive treatment approach aimed at risk factor managment, including lifestyle counseling regarding smoking cessation, nutrition and physical activity should be initiated. Current pharmacotherapy for MCD can include the treatment of microvascular endothelial dysfunction (statins, angiotensin-converting enzyme inhibitor, low dose aspirin), as well as treatment for angina and myocardial ischemia (beta blockers, calcium channel blockers, nitrates, ranolazine). Additional symptom management techniques can include tri-cyclic medication, enhanced external counterpulsation, autogenic training, and spinal cord stimulation. While our current therapies are effective in the treatment

  7. Autologous Cartilage Chip Transplantation Improves Repair Tissue Composition Compared With Marrow Stimulation.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Olesen, Morten Lykke; Lind, Martin; Foldager, Casper Bindzus

    2017-06-01

    Repair of chondral injuries by use of cartilage chips has recently demonstrated clinical feasibility. To investigate in vivo cartilage repair outcome of autologous cartilage chips compared with marrow stimulation in full-thickness cartilage defects in a minipig model. Controlled laboratory study. Six Göttingen minipigs received two 6-mm chondral defects in the medial and lateral trochlea of each knee. The two treatment groups were (1) autologous cartilage chips embedded in fibrin glue (ACC) (n = 12) and (2) marrow stimulation (MST) (n = 12). The animals were euthanized after 6 months, and the composition of repair tissue was quantitatively determined using histomorphometry. Semiquantitative evaluation was performed by means of the International Cartilage Repair Society (ICRS) II score. Collagen type II staining was used to further evaluate the repair tissue composition. Significantly more hyaline cartilage was found in the ACC (17.1%) compared with MST (2.9%) group ( P cartilage repair tissue compared with MST at 6 months postoperatively. Further studies are needed to investigate ACC as a possible alternative first-line treatment for focal cartilage injuries in the knee.

  8. Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid Composition

    Science.gov (United States)

    Palm, Wilhelm; Sampaio, Julio L.; Brankatschk, Marko; Carvalho, Maria; Mahmoud, Ali; Shevchenko, Andrej; Eaton, Suzanne

    2012-01-01

    Interorgan lipid transport occurs via lipoproteins, and altered lipoprotein levels correlate with metabolic disease. However, precisely how lipoproteins affect tissue lipid composition has not been comprehensively analyzed. Here, we identify the major lipoproteins of Drosophila melanogaster and use genetics and mass spectrometry to study their assembly, interorgan trafficking, and influence on tissue lipids. The apoB-family lipoprotein Lipophorin (Lpp) is the major hemolymph lipid carrier. It is produced as a phospholipid-rich particle by the fat body, and its secretion requires Microsomal Triglyceride Transfer Protein (MTP). Lpp acquires sterols and most diacylglycerol (DAG) at the gut via Lipid Transfer Particle (LTP), another fat body-derived apoB-family lipoprotein. The gut, like the fat body, is a lipogenic organ, incorporating both de novo–synthesized and dietary fatty acids into DAG for export. We identify distinct requirements for LTP and Lpp-dependent lipid mobilization in contributing to the neutral and polar lipid composition of the brain and wing imaginal disc. These studies define major routes of interorgan lipid transport in Drosophila and uncover surprising tissue-specific differences in lipoprotein lipid utilization. PMID:22844248

  9. Effect of Thrombus Composition and Viscosity on Sonoreperfusion Efficacy in a Model of Micro-Vascular Obstruction.

    Science.gov (United States)

    Black, John J; Yu, Francois T H; Schnatz, Rick G; Chen, Xucai; Villanueva, Flordeliza S; Pacella, John J

    2016-09-01

    Distal embolization of micro-thrombi during stenting for myocardial infarction causes micro-vascular obstruction (MVO). We have previously shown that sonoreperfusion (SRP), a microbubble (MB)-mediated ultrasound (US) therapy, resolves MVO from venous micro-thrombi in vitro in saline. However, blood is more viscous than saline, and arterial thrombi that embolize during stenting are mechanically distinct from venous clot. Therefore, we tested the hypothesis that MVO created with arterial micro-thrombi are more resistant to SRP therapy compared with venous micro-thrombi, and higher viscosity further increases the US requirement for effective SRP in an in vitro model of MVO. Lipid MBs suspended in plasma with adjusted viscosity (1.1 cP or 4.0 cP) were passed through tubing bearing a mesh with 40-μm pores to simulate a micro-vascular cross-section; upstream pressure reflected thrombus burden. To simulate MVO, the mesh was occluded with either arterial or venous micro-thrombi to increase upstream pressure to 40 mmHg ± 5 mmHg. Therapeutic long-tone-burst US was delivered to the occluded area for 20 min. MB activity was recorded with a passive cavitation detector. MVO caused by arterial micro-thrombi at either blood or plasma viscosity resulted in less effective SRP therapy compared to venous thrombi. Higher viscosity further reduced the effectiveness of SRP therapy. The passive cavitation detector showed a decrease in inertial cavitation when viscosity was increased, while stable cavitation was affected in a more complex manner. Overall, these data suggest that arterial thrombi may require higher acoustic pressure US than venous thrombi to achieve similar SRP efficacy; increased viscosity decreases SRP efficacy; and both inertial and stable cavitation are implicated in observed SRP efficacy. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Transmural Variation and Anisotropy of Microvascular Flow Conductivity in the Rat Myocardium

    KAUST Repository

    Smith, Amy F.

    2014-05-28

    Transmural variations in the relationship between structural and fluid transport properties of myocardial capillary networks are determined via continuum modeling approaches using recent three-dimensional (3D) data on the microvascular structure. Specifically, the permeability tensor, which quantifies the inverse of the blood flow resistivity of the capillary network, is computed by volume-averaging flow solutions in synthetic networks with geometrical and topological properties derived from an anatomically-detailed microvascular data set extracted from the rat myocardium. Results show that the permeability is approximately ten times higher in the principal direction of capillary alignment (the "longitudinal" direction) than perpendicular to this direction, reflecting the strong anisotropy of the microvascular network. Additionally, a 30% increase in capillary diameter from subepicardium to subendocardium is shown to translate to a 130% transmural rise in permeability in the longitudinal capillary direction. This result supports the hypothesis that perfusion is preferentially facilitated during diastole in the subendocardial microvasculature to compensate for the severely-reduced systolic perfusion in the subendocardium.

  11. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.

    Science.gov (United States)

    Salmon, Andrew H J; Satchell, Simon C

    2012-03-01

    Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function

  12. Microvascular replantation of avulsed tissue after a dog bite of the face

    African Journals Online (AJOL)

    Various authors have described successful microsurgical replantation of totally avulsed facial tissue. In a significant nwnber of cases difficulties were experienced with the venous anastomoses and/or venous drainage of the tissue. Many different methods were used to overcome the problem. Despite these difficulties, good ...

  13. Sleep quality and duration are related to microvascular function: the Amsterdam Growth and Health Longitudinal Study

    NARCIS (Netherlands)

    Bonsen, T.; Wijnstok, N.J.; Hoekstra, T.; Eringa, E.C.; Serne, E.H.; Smulders, Y.M.; Twisk, J.W.R.

    2015-01-01

    Sleep and sleep disorders are related to cardiovascular disease, and microvascular function is an early cardiovascular disease marker. Therefore, the relationship of sleep (measured in sleep quality and duration) with microvascular function was examined in healthy adults. Sleep quality was assessed

  14. Microvascular filtration is increased in the forearms of patients with breast cancer-related lymphedema

    DEFF Research Database (Denmark)

    Jensen, Mads Radmer; Simonsen, Lene; Karlsmark, Tonny

    2013-01-01

    -enhanced ultrasound; venous occlusion strain-gauge plethysmography; lower-body negative pressure; noninvasive blood pressure measurements; and skin (99m)Tc-pertechnetate clearance technique. Measurements were performed bilaterally and simultaneously in the forearms, enabling use of the nonedematous forearm...... relative microvascular volume, forearm blood flow, skin blood flow, or central or local sympathetic vascular reflexes. Forearm microvascular filtration is increased in patients with BCRL, and more so in the edematous arm. The vascular sympathetic control mechanisms seem to be preserved. We propose...... with unilateral BCRL, the following aspects of upper extremity peripheral circulation were examined: muscle relative microvascular volume; capillary filtration coefficient; central and local sympathetic vascular reflexes; skin blood flow; and forearm blood flow. These were studied via real-time, contrast...

  15. Determination of quantitative tissue composition by iterative reconstruction on 3D DECT volumes

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Maria [Linkoeping Univ. (Sweden). Dept. of Electrical Engineering; Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Linkoeping Univ. (Sweden). Center for Medical Image Science and Visualization (CMIV); Malusek, Alexandr [Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Linkoeping Univ. (Sweden). Center for Medical Image Science and Visualization (CMIV); Nuclear Physics Institute AS CR, Prague (Czech Republic). Dept. of Radiation Dosimetry; Muhammad, Arif [Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Carlsson, Gudrun Alm [Linkoeping Univ. (Sweden). Dept. of Medical and Health Sciences, Radiation Physics; Linkoeping Univ. (Sweden). Center for Medical Image Science and Visualization (CMIV)

    2011-07-01

    Quantitative tissue classification using dual-energy CT has the potential to improve accuracy in radiation therapy dose planning as it provides more information about material composition of scanned objects than the currently used methods based on single-energy CT. One problem that hinders successful application of both single- and dual-energy CT is the presence of beam hardening and scatter artifacts in reconstructed data. Current pre- and post-correction methods used for image reconstruction often bias CT attenuation values and thus limit their applicability for quantitative tissue classification. Here we demonstrate simulation studies with a novel iterative algorithm that decomposes every soft tissue voxel into three base materials: water, protein, and adipose. The results demonstrate that beam hardening artifacts can effectively be removed and accurate estimation of mass fractions of each base material can be achieved. Our iterative algorithm starts with calculating parallel projections on two previously reconstructed DECT volumes reconstructed from fan-beam or helical projections with small conebeam angle. The parallel projections are then used in an iterative loop. Future developments include segmentation of soft and bone tissue and subsequent determination of bone composition. (orig.)

  16. Microvascularization on collared peccary placenta

    DEFF Research Database (Denmark)

    Santos, Tatiana Carlesso; Oliveira, Moacir Franco; Dantzer, Vibeke

    2012-01-01

    and fetal compartments of the placentae. The immunolocalization of vimentin in the vascular endothelium and in the smooth muscle cells of blood vessels showed indented capillaries along the uterine epithelium and the trophoblast at the sides of complementary maternal and fetal microfolds, or rugae...... into a microvascular network wall in a basket-like fashion. At the base of these baskets venules were formed. On the fetal side, arterioles branched centrally in the fetal rugae into a capillary network in a bulbous form, complementary to the opposite maternal depressions forming the baskets. At the base...

  17. Microvascular Architecture of Hepatic Metastases in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Darshini Kuruppu

    1997-01-01

    Full Text Available Development of effective treatment for hepatic metastases can be initiated by a better understanding of tumour vasculature and blood supply. This study was designed to characterise the microvascular architecture of hepatic metastases and observe the source of contributory blood supply from the host. Metastases were induced in mice by an intrasplenic injection of colon carcinoma cells (106 cells/ml. Vascularization of tumours was studied over a three week period by scanning electron microscopy of microvascular corrosion casts. Metastatic liver involvement was observed initially within a week post induction, as areas approximately 100 μm in diameter not perfused by the casting resin. On histology these spaces corresponded to tumour cell aggregates. The following weeks highlighted the angiogenesis phase of these tumours as they received a vascular supply from adjacent hepatic sinusoids. Direct sinusoidal supply of metastases was maintained throughout tumour growth. At the tumour periphery most sinusoids were compressed to form a sheath demarcating the tumour from the hepatic vasculature. No direct supply from the hepatic artery or the portal vein was observed. Dilated vessels termed vascular lakes dominated the complex microvascular architecture of the tumours, most tapering as they traversed towards the periphery. Four vascular branching patterns could be identified as true loops, bifurcations and trifurcations, spirals and capillary networks. The most significant observation in this study was the direct sinusoidal supply of metastases, together with the vascular lakes and the peripheral sinusoidal sheaths of the tumour microculature.

  18. Comparison of Generated Parallel Capillary Arrays to Three-Dimensional Reconstructed Capillary Networks in Modeling Oxygen Transport in Discrete Microvascular Volumes

    Science.gov (United States)

    Fraser, Graham M.; Goldman, Daniel; Ellis, Christopher G.

    2013-01-01

    Objective We compare Reconstructed Microvascular Networks (RMN) to Parallel Capillary Arrays (PCA) under several simulated physiological conditions to determine how the use of different vascular geometry affects oxygen transport solutions. Methods Three discrete networks were reconstructed from intravital video microscopy of rat skeletal muscle (84×168×342 μm, 70×157×268 μm and 65×240×571 μm) and hemodynamic measurements were made in individual capillaries. PCAs were created based on statistical measurements from RMNs. Blood flow and O2 transport models were applied and the resulting solutions for RMN and PCA models were compared under 4 conditions (rest, exercise, ischemia and hypoxia). Results Predicted tissue PO2 was consistently lower in all RMN simulations compared to the paired PCA. PO2 for 3D reconstructions at rest were 28.2±4.8, 28.1±3.5, and 33.0±4.5 mmHg for networks I, II, and III compared to the PCA mean values of 31.2±4.5, 30.6±3.4, and 33.8±4.6 mmHg. Simulated exercise yielded mean tissue PO2 in the RMN of 10.1±5.4, 12.6±5.7, and 19.7±5.7 mmHg compared to 15.3±7.3, 18.8±5.3, and 21.7±6.0 in PCA. Conclusions These findings suggest that volume matched PCA yield different results compared to reconstructed microvascular geometries when applied to O2 transport modeling; the predominant characteristic of this difference being an over estimate of mean tissue PO2. Despite this limitation, PCA models remain important for theoretical studies as they produce PO2 distributions with similar shape and parameter dependence as RMN. PMID:23841679

  19. Impact of an endothelial progenitor cell capturing stent on coronary microvascular function: comparison with drug-eluting stents.

    Science.gov (United States)

    Choi, Woong Gil; Kim, Soo Hyun; Yoon, Hyung Seok; Lee, Eun Joo; Kim, Dong Woon

    2015-01-01

    Although drug-eluting stents (DESs) effectively reduce restenosis following percutaneous coronary intervention (PCI), they also delay re-endothelialization and impair microvascular function, resulting in adverse clinical outcomes. Endothelial progenitor cell (EPC) capturing stents, by providing a functional endothelial layer on the stent, have beneficial effects on microvascular function. However, data on coronary microvascular function in patients with EPC stents versus DESs are lacking. Seventy-four patients who previously underwent PCI were enrolled in this study. Microvascular function was evaluated 6 months after PCI based on the index of microvascular resistance (IMR) and the coronary flow reserve (CFR). IMR was calculated as the ratio of the mean distal coronary pressure at maximal hyperemia to the inverse of the hyperemic mean transit time (hTmn). The CFR was calculated by dividing the hTmn by the baseline mean transit time. Twenty-one patients (age, 67.2 ± 9.6 years; male:female, 15:6) with an EPC stent and 53 patients (age, 61.5 ± 14.7 years; male:female, 40:13) with second-generation DESs were included in the study. There were no significant differences in the baseline clinical and angiographic characteristics of the two groups. Angiography performed 6 months postoperatively did not show significant differences in their CFR values. However, patients with the EPC stent had a significantly lower IMR than patients with second-generation DESs (median, 25.5 [interquartile range, 12.85 to 28.18] vs. 29.0 [interquartile range, 15.42 to 39.23]; p = 0.043). Microvascular dysfunction was significantly improved after 6 months in patients with EPC stents compared to those with DESs. The complete re-endothelialization achieved with the EPC stent may provide clinical benefits over DESs, especially in patients with microvascular dysfunction.

  20. Conflicting interactions of apolipoprotein A and high density lipoprotein cholesterol with microvascular complications of type 2 diabetes.

    Science.gov (United States)

    Aryan, Zahra; Afarideh, Mohsen; Ghajar, Alireza; Esteghamati, Sadaf; Esteghamati, Alireza; Nakhjavani, Manouchehr

    2017-11-01

    This study is amid at investigating the associations, and interactions of serum lipid biomarkers with microvascular complications of type 2 diabetes (T2D). A nested case-control study was conducted within an ongoing prospective study on patients with T2D. Microvascular complications of T2D including diabetic neuropathy, diabetic retinopathy and diabetic nephropathy were investigated. A total of 444 cases with at least one of the microvascular complications of T2D and 439 age- and gender-matched controls free of any of the chronic microvascular complications of T2D were included. The associations and interactions of a panel of serum lipid biomarkers with the microvascular complications of T2D were investigated. Serum triglyceride had the strongest association with microvascular complications of T2D (crude model: β=0.632, P value=0.045). Each standard deviation increment in serum TG was associated with 3.7 times increased frequency of microvascular complications. Despite high density lipoprotein cholesterol (HDL-C), serum apolipoprotein A1 (Apo A1) was positively associated with the presence of diabetic neuropathy. Each standard deviation increment in serum ApoA1 was associated with increased frequency of diabetic neuropathy (OR, 1.2, 95% CI, (1.1-1.3), P value=0.006). The frequency of diabetic neuropathy was higher in 2nd and 3rd quartiles of serum Lp(a) compared to diabetic patients in the first quartile (OR, 5.52, 95% (1.17-25.8), P value=0.047). ApoA1 but not HDL-C is straightly associated with diabetic neuropathy. Even Slight rise in serum Lp(a) is associated with increased frequency of diabetic retinopathLipid variables could serve as specific predictors of vascular complications in diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Role of aldose reductase C-106T polymorphism among diabetic Egyptian patients with different microvascular complications

    Directory of Open Access Journals (Sweden)

    Nermine Hossam Zakaria

    2014-04-01

    Full Text Available The aldose reductase pathway proves that elevated blood glucose promotes cellular dysfunction. The polyol pathway converts excess intracellular glucose into alcohols via activity of the aldose reductase. This enzyme catalyzes the conversion of glucose to sorbitol which triggers variety of intracellular changes in the tissues. Among diabetes, activity is drastically increased in association with three main consequences inside the cells. The aim of this study was to detect the association of the C-106 T polymorphism of the aldose reductase gene and its frequency among a sample of 150 Egyptian adults with type 2 diabetic patients having diabetic microvascular. The detection of the aldose reductase C-106 T polymorphism gene was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP. The genotype distribution of the C-106 T polymorphism showed that CC genotype was statistically significantly higher among patients with retinopathy compared to nephropathy. Patients with nephropathy had significant association with the TT genotype when compared with diabetic retinopathy patients. Follow up study after the genotype detection among recently diagnosed diabetic patients in order to give a prophylactic aldose reductase inhibitors; studying the microvascular complications and its relation to the genotype polymorphisms. The study may include multiple gene polymorphisms to make the relation between the gene and the occurrence of these complications more evident.

  2. The donor management algorithm in transplantation of a composite facial tissue allograft.. First experience in Russia

    Directory of Open Access Journals (Sweden)

    V. V. Uyba

    2016-01-01

    Full Text Available In the period from 2005 to December 2015, 37 transplantations of vascularized composite facial tissue allografts (VCAs were performed in the world. A vascularized composite tissue allotransplantation has been recognized as a solid organ transplantation rather than a special kind of tissue transplantation. The recent classification of composite tissue allografts into the category of donor organs gave rise to a number of organizational, ethical, legal, technical, and economic problems. In May 2015, the first successful transplantation of a composite facial tissue allograft was performed in Russia. The article describes our experience of multiple team interactions at donor management stage when involved in the identification, conditioning, harvesting, and delivering donor organs to various hospitals. A man, aged 51 years old, diagnosed with traumatic brain injury became a donor after the diagnosis of brain deathhad been made, his death had been ascertained, and the requested consent for organ donation had been obtained from relatives. At donor management stage, a tracheostomy was performed and a posthumous facial mask was molded. The "face first, concurrent completion" algorithm was chosen for organ harvesting and facial VCA procurement; meanwhile, the facial allograft was procured as the "full face" category. The total surgery duration from the incision to completing the procurement (including that of solid organs made 8 hours 20 minutes. Immediately after the procurement, the facial VCA complex was sent to the St. Petersburg clinic by medical aircraft transportation, and was there transplanted 9 hours later. Donor kidneys were transported to Moscow bycivil aviation and transplanted 17 and 20 hours later. The authors believe that this clinical case report demonstrates the feasibility and safety of multiple harvesting of solid organs and a vascularized composite facial tissue allograft. However, this kind of surgery requires an essential

  3. Fabrication and Characterization of Collagen-Immobilized Porous PHBV/HA Nano composite Scaffolds for Bone Tissue Engineering

    International Nuclear Information System (INIS)

    Jin-Young, B.; Zhi-Cai, X.; Giseop, K.; Keun-Byoung, Y.; Soo-Young, P.; Lee, S.P.; Inn-Kyu, K.

    2012-01-01

    The porous composite scaffolds (PHBV/HA) consisting of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and hydroxyapatite (HA) were fabricated using a hot-press machine and salt-leaching. Collagen (type I) was then immobilized on the surface of the porous PHBV/HA composite scaffolds to improve tissue compatibility. The structure and morphology of the collagen-immobilized composite scaffolds (PHBV/HA/Col) were investigated using a scanning electron microscope (SEM), Fourier transform infrared (FTIR), and electron spectroscopy for chemical analysis (ESCA). The potential of the porous PHBV/HA/Col composite scaffolds for use as a bone scaffold was assessed by an experiment with osteoblast cells (MC3T3-E1) in terms of cell adhesion, proliferation, and differentiation. The results showed that the PHBV/HA/Col composite scaffolds possess better cell adhesion and significantly higher proliferation and differentiation than the PHBV/HA composite scaffolds and the PHBV scaffolds. These results suggest that the PHBV/HA/Col composite scaffolds have a high potential for use in the field of bone regeneration and tissue engineering.

  4. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  5. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Chen, Ying; Kawazoe, Naoki; Chen, Guoping

    2018-02-01

    Although bone is regenerative, its regeneration capacity is limited. For bone defects beyond a critical size, further intervention is required. As an attractive strategy, bone tissue engineering (bone TE) has been widely investigated to repair bone defects. However, the rapid and effective bone regeneration of large non-healing defects is still a great challenge. Multifunctional scaffolds having osteoinductivity and osteoconductivity are desirable to fasten functional bone tissue regeneration. In the present study, biomimetic composite scaffolds of collagen and biphasic calcium phosphate nanoparticles (BCP NPs) with a controlled release of dexamethasone (DEX) and the controlled pore structures were prepared for bone TE. DEX was introduced in the BCP NPs during preparation of the BCP NPs and hybridized with collagen scaffolds, which pore structures were controlled by using pre-prepared ice particulates as a porogen material. The composite scaffolds had well controlled and interconnected pore structures, high mechanical strength and a sustained release of DEX. The composite scaffolds showed good biocompatibility and promoted osteogenic differentiation of hMSCs when used for three-dimensional culture of human bone marrow-derived mesenchymal stem cells. Subcutaneous implantation of the composite scaffolds at the dorsa of athymic nude mice demonstrated that they facilitated the ectopic bone tissue regeneration. The results indicated the DEX-loaded BCP NPs/collagen composite scaffolds had high potential for bone TE. Scaffolds play a crucial role for regeneration of large bone defects. Biomimetic scaffolds having the same composition of natural bone and a controlled release of osteoinductive factors are desirable for promotion of bone regeneration. In this study, composite scaffolds of collagen and biphasic CaP nanoparticles (BCP NPs) with a controlled release nature of dexamethasone (DEX) were prepared and their porous structures were controlled by using ice particulates

  6. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques

    NARCIS (Netherlands)

    Calcagno, Claudia; Lobatto, Mark E.; Dyvorne, Hadrien; Robson, Philip M.; Millon, Antoine; Senders, Max L.; Lairez, Olivier; Ramachandran, Sarayu; Coolen, Bram F.; Black, Alexandra; Mulder, Willem J. M.; Fayad, Zahi A.

    2015-01-01

    Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast-enhanced MRI (DCE-MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE-MRI

  7. Relative Composition of Fibrous Connective and Fatty/Glandular Tissue in Connective Tissue Grafts Depends on the Harvesting Technique but not the Donor Site of the Hard Palate.

    Science.gov (United States)

    Bertl, Kristina; Pifl, Markus; Hirtler, Lena; Rendl, Barbara; Nürnberger, Sylvia; Stavropoulos, Andreas; Ulm, Christian

    2015-12-01

    Whether the composition of palatal connective tissue grafts (CTGs) varies depending on donor site or harvesting technique in terms of relative amounts of fibrous connective tissue (CT) and fatty/glandular tissue (FGT) is currently unknown and is histologically assessed in the present study. In 10 fresh human cadavers, tissue samples were harvested in the anterior and posterior palate and in areas close to (marginal) and distant from (apical) the mucosal margin. Mucosal thickness, lamina propria thickness (defined as the extent of subepithelial portion of the biopsy containing ≤25% or ≤50% FGT), and proportions of CT and FGT were semi-automatically estimated for the entire mucosa and for CTGs virtually harvested by split-flap (SF) preparation minimum 1 mm deep or after deepithelialization (DE). Palatal mucosal thickness, ranging from 2.35 to 6.89 mm, and histologic composition showed high interindividual variability. Lamina propria thickness (P >0.21) and proportions of CT (P = 0.48) and FGT (P = 0.15) did not differ significantly among the donor sites (anterior, posterior, marginal, apical). However, thicker palatal tissue was associated with higher FGT content (P tissue composition in the hard palate, DE-harvested CTG contains much larger amounts of CT and much lower amounts of FGT than SF-harvested CTG, irrespective of the harvesting site.

  8. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; van den Beucken, J.J.; Tabata, Y.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.; Kasper, F.K.

    2014-01-01

    The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the

  9. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery.

    Directory of Open Access Journals (Sweden)

    Mattia Francesco Maria Gerli

    Full Text Available Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.

  10. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    Science.gov (United States)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  11. Microvascular anastomosis simulation using a chicken thigh model: Interval versus massed training.

    Science.gov (United States)

    Schoeff, Stephen; Hernandez, Brian; Robinson, Derek J; Jameson, Mark J; Shonka, David C

    2017-11-01

    To compare the effectiveness of massed versus interval training when teaching otolaryngology residents microvascular suturing on a validated microsurgical model. Otolaryngology residents were placed into interval (n = 7) or massed (n = 7) training groups. The interval group performed three separate 30-minute practice sessions separated by at least 1 week, and the massed group performed a single 90-minute practice session. Both groups viewed a video demonstration and recorded a pretest prior to the first training session. A post-test was administered following the last practice session. At an academic medical center, 14 otolaryngology residents were assigned using stratified randomization to interval or massed training. Blinded evaluators graded performance using a validated microvascular Objective Structured Assessment of Technical Skill tool. The tool is comprised of two major components: task-specific score (TSS) and global rating scale (GRS). Participants also received pre- and poststudy surveys to compare subjective confidence in multiple aspects of microvascular skill acquisition. Overall, all residents showed increased TSS and GRS on post- versus pretest. After completion of training, the interval group had a statistically significant increase in both TSS and GRS, whereas the massed group's increase was not significant. Residents in both groups reported significantly increased levels of confidence after completion of the study. Self-directed learning using a chicken thigh artery model may benefit microsurgical skills, competence, and confidence for resident surgeons. Interval training results in significant improvement in early development of microvascular anastomosis skills, whereas massed training does not. NA. Laryngoscope, 127:2490-2494, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering.

    Science.gov (United States)

    Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo

    2017-01-02

    Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. VEGF expression and microvascular density in relation to high-risk ...

    African Journals Online (AJOL)

    Bassma M. El Sabaa

    2012-01-13

    Jan 13, 2012 ... Eleven cases were low grade and 19 were high-grade cases. VEGF expression .... increasing microvascular permeability,26 degradation of extra- ...... soluble receptors in pre-invasive, invasive and recurrent cervical cancer.

  14. Systemic oxidative-nitrosative-inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity.

    Science.gov (United States)

    Woodside, John D S; Gutowski, Mariusz; Fall, Lewis; James, Philip E; McEneny, Jane; Young, Ian S; Ogoh, Shigehiko; Bailey, Damian M

    2014-12-01

    Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (V̇O2 max ). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine V̇O2 max in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at V̇O2 max to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower V̇O2 max (P exercise-induced increase in oxidative-nitrosative-inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower V̇O2 max in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  15. [Mesh structure of two-dimensional tumor microvascular architecture phenotype heterogeneity in non-small cell lung cancer].

    Science.gov (United States)

    Xiong, Zeng; Zhou, Hui; Liu, Jin-Kang; Hu, Cheng-Ping; Zhou, Mo-Ling; Xia, Yu; Zhou, Jian-Hua

    2009-11-01

    To investigate the structural characteristics and clinical significance of two-dimensional tumor microvascular architecture phenotype (2D-TMAP) in non-small cell lung cancer (NSCLC). Thirty surgical specimens of NSCLC were collected. The sections of the tumor tissues corresponding to the slice of CT perfusion imaging were selected to construct the 2D-TMAP expression. Spearman correlation analysis was used to examine the relation between the 2D-TMAP expression and the clinicopathological features of NSCLC. A heterogeneity was noted in the 2D-TMAP expression of NSCLC. The microvascular density (MVD) in the area surrounding the tumor was higher than that in the central area, but the difference was not statistically significant. The density of the microvessels without intact lumen was significantly greater in the surrounding area than in the central area (P=0.030). The total MVD was not correlated to tumor differentiation (r=0.042, P=0.831). The density of the microvessels without intact lumen in the surrounding area was positively correlated to degree of tumor differentiation and lymph node metastasis (r=0.528 and 0.533, P=0.041 and 0.028, respectively), and also to the expressions of vascular endothelial growth factor (VEGF), ephrinB2, EphB4, and proliferating cell nuclear antigen (PCNA) (r=0.504, 0.549, 0.549, and 0.370; P=0.005, 0.002, 0.002, and 0.048, respectively). The degree of tumor differentiation was positively correlated to PCNA and VEGF expression (r=0.604 and 0.370, P=0.001 and 0.048, respectively), but inversely to the integrity of microvascular basement membrane (r=-0.531, P=0.033). The 2D-TMAP suggests the overall state of the micro-environment for tumor growth. The 2D-TMAP of NSCLC regulates angiogenesis and tumor cell proliferation through a mesh-like structure, and better understanding of the characteristics and possible mechanism of 2D-TMAP expression can be of great clinical importance.

  16. A critical evaluation of body composition modalities used to assess adipose and skeletal muscle tissue in cancer.

    Science.gov (United States)

    Di Sebastiano, Katie M; Mourtzakis, Marina

    2012-10-01

    The majority of cancer patients experience some form of body composition change during the disease trajectory. For example, breast cancer patients undergoing chemotherapy and prostate cancer patients undergoing androgen deprivation therapy gain fat and lose skeletal muscle, which are associated with increased risk of cancer recurrence and clinical comorbidities. In contrast, advanced cancer patients, such as lung and colorectal cancer patients, experience symptoms of cancer cachexia (accelerated loss of skeletal muscle with or without adipose tissue loss), which are associated with decreased treatment response and poorer survival rates in advanced cancers. The heterogeneity of body composition features and their diverse implications across different cancer populations supports the need for accurate quantification of muscle and adipose tissue. Use of appropriate body composition modalities will facilitate an understanding of the complex relationship between body composition characteristics and clinical outcomes. This will ultimately support the development and evaluation of future therapeutic interventions that aim to counter muscle loss and fat gain in cancer populations. Despite the various metabolic complications that may confound the accurate body composition measurement in cancer patients (i.e., dehydration may confound lean tissue measurement), there are no guidelines for selecting the most appropriate modalities to make these measurements. In this review we outline specific considerations for choosing the most optimal approaches of lean and adipose tissue measurements among different cancer populations. Anthropometric measures, bioelectrical impedance analysis, air displacement plethysmography, dual-energy X-ray absorptiometry, computed tomography, and magnetic resonance imaging will be discussed.

  17. Microvascular resistance of the culprit coronary artery in acute ST-elevation myocardial infarction

    Science.gov (United States)

    Carrick, David; Haig, Caroline; Carberry, Jaclyn; McCartney, Peter; Welsh, Paul; Ahmed, Nadeem; McEntegart, Margaret; Petrie, Mark C.; Eteiba, Hany; Lindsay, Mitchell; Hood, Stuart; Watkins, Stuart; Rauhalammi, Samuli M.O.; Mordi, Ify; Ford, Ian; Radjenovic, Aleksandra; Sattar, Naveed; Oldroyd, Keith G.

    2016-01-01

    BACKGROUND. Failed myocardial reperfusion is common and prognostically important after acute ST-elevation myocardial infarction (STEMI). The purpose of this study was to investigate coronary flow reserve (CFR), a measure of vasodilator capacity, and the index of microvascular resistance (IMR; mmHg × s) in the culprit artery of STEMI survivors. METHODS. IMR (n = 288) and CFR (n = 283; mean age [SD], 60 [12] years) were measured acutely using guide wire–based thermodilution. Cardiac MRI disclosed left ventricular pathology, function, and volumes at 2 days (n = 281) and 6 months after STEMI (n = 264). All-cause death or first heart failure hospitalization was independently adjudicated (median follow-up 845 days). RESULTS. Myocardial hemorrhage and microvascular obstruction occurred in 89 (42%) and 114 (54%) patients with evaluable T2*-MRI maps. IMR and CFR were associated with microvascular pathology (none vs. microvascular obstruction only vs. microvascular obstruction and myocardial hemorrhage) (median [interquartile range], IMR: 17 [12.0–33.0] vs. 17 [13.0–39.0] vs. 37 [21.0–63.0], P < 0.001; CFR: 1.7 [1.4–2.5] vs. 1.5 [1.1–1.8] vs. 1.4 [1.0–1.8], P < 0.001), whereas thrombolysis in myocardial infarction blush grade was not. IMR was a multivariable associate of changes in left ventricular end-diastolic volume (regression coefficient [95% CI] 0.13 [0.01, 0.24]; P = 0.036), whereas CFR was not (P = 0.160). IMR (5 units) was a multivariable associate of all-cause death or heart failure hospitalization (n = 30 events; hazard ratio [95% CI], 1.09 [1.04, 1.14]; P < 0.001), whereas CFR (P = 0.124) and thrombolysis in myocardial infarction blush grade (P = 0.613) were not. IMR had similar prognostic value for these outcomes as <50% ST-segment resolution on the ECG. CONCLUSIONS. IMR is more closely associated with microvascular pathology, left ventricular remodeling, and health outcomes than the angiogram or CFR. TRIAL REGISTRATION. NCT02072850. FUNDING. A

  18. Acute effects of coffee on skin blood flow and microvascular function.

    Science.gov (United States)

    Tesselaar, Erik; Nezirevic Dernroth, Dzeneta; Farnebo, Simon

    2017-11-01

    Studies on the acute effects of coffee on the microcirculation have shown contradicting results. This study aimed to investigate if intake of caffeine-containing coffee changes blood flow and microvascular reactivity in the skin. We measured acute changes in cutaneous vascular conductance (CVC) in the forearm and the tip of the finger, the microvascular response to transdermal iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) and post-occlusive reactive hyperemia (PORH) in the skin, after intake of caffeinated or decaffeinated coffee. Vasodilatation during iontophoresis of ACh was significantly stronger after intake of caffeinated coffee compared to after intake of decaffeinated coffee (1.26±0.20PU/mmHg vs. 1.13±0.38PU/mmHg, Pcoffee. After intake of caffeinated coffee, a more pronounced decrease in CVC in the fingertip was observed compared to after intake of decaffeinated coffee (-1.36PU/mmHg vs. -0.52PU/mmHg, P=0.002). Caffeine, as ingested by drinking caffeinated coffee acutely improves endothelium-dependent microvascular responses in the forearm skin, while endothelium-independent responses to PORH and SNP iontophoresis are not affected. Blood flow in the fingertip decreases markedly during the first hour after drinking caffeinated coffee compared to decaffeinated coffee. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  20. Obesity, metabolic syndrome, impaired fasting glucose, and microvascular dysfunction: a principal component analysis approach.

    Science.gov (United States)

    Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G

    2012-11-13

    We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular

  1. Obesity, metabolic syndrome, impaired fasting glucose, and microvascular dysfunction: a principal component analysis approach

    Directory of Open Access Journals (Sweden)

    Panazzolo Diogo G

    2012-11-01

    Full Text Available Abstract Background We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Methods Data from 189 female subjects (34.0±15.5 years, 30.5±7.1 kg/m2, who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA. PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI, waist circumference, systolic and diastolic blood pressure (BP, fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c, low-density lipoprotein cholesterol (LDL-c, triglycerides (TG, insulin, C-reactive protein (CRP, and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV at rest and peak after 1 min of arterial occlusion (RBCVmax, and the time taken to reach RBCVmax (TRBCVmax. Results A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCVmax varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCVmax, but in the opposite way. Principal component 3 was

  2. Fabrication of nanocrystalline hydroxyapatite doped degradable composite hollow fiber for guided and biomimetic bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ning [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Nichols, Heather L. [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Tylor, Shila [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Wen Xuejun [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States)]. E-mail: xjwen@clemson.edu

    2007-04-15

    Natural bone tissue possesses a nanocomposite structure interwoven in a three-dimensional (3-D) matrix, which plays critical roles in conferring appropriate physical and biological properties to the bone tissue. Single type of material may not be sufficient to mimic the composition, structure and properties of native bone, therefore, composite materials consisting of both polymers, bioceramics, and other inorganic materials have to be designed. Among a variety of candidate materials, polymer-nanoparticle composites appear most promising for bone tissue engineering applications because of superior mechanical properties, improved durability, and surface bioactivity when compared with conventional polymers or composites. The long term objective of this project is to use highly aligned, bioactive, biodegradable scaffold mimicking natural histological structure of human long bone, and to engineer and regenerate human long bone both in vitro and in vivo. In this study, bioactive, degradable, and highly permeable composite hollow fiber membranes (HFMs) were fabricated using a wet phase phase-inversion approach. The structure of the hollow fiber membranes was examined using scanning electron microscopy (SEM); degradation behavior was examined using weigh loss assay, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC); and bioactivity was evaluated with the amount of calcium deposition from the culture media onto HFM surface. Doping PLGA HFMs with nanoHA results in a more bioactive and slower degrading HFM than pure PLGA HFMs.

  3. Fetal subcutaneous tissue measurements in pregnancy as a predictor of neonatal total body composition.

    Science.gov (United States)

    O'Connor, Clare; Doolan, Anne; O'Higgins, Amy; Segurado, Ricardo; Sheridan-Pereiraet, Margaret; Turner, Michael J; Stuart, Bernard; Kennelly, Máireád M

    2014-10-01

    The purpose of this study was to examine the relationship between prenatal measures of subcutaneous tissue as surrogate markers of fetal nutritional status and correlate them with neonatal total body composition. This prospective longitudinal study of 62 singleton pregnancies obtained serial biometry and subcutaneous tissue measurements at 28, 33 and 38 weeks gestation. These measurements were then correlated with neonatal body composition, which was analysed using the PEAPOD™ Infant Body Composition System (Cosmed USA, Concord, CA, USA). At 38 weeks gestation, fetal abdominal subcutaneous tissue (FAST) in millimetres was significantly associated with infant fat mass at delivery (+64 g per mm of FAST, p < 0.001). Thigh fat (TF) at 28 weeks gestation was associated with infant fat mass at delivery (+79 g/mm TF, p = 0.023). TF at 38 weeks gestation was associated with infant fat mass (+63/mm TF, p = 0.004). TF and FAST at 38 weeks were also predictive of both birth weight and increased abdominal circumference (AC) (p = 0.001) with FAST measurement predicting an additional 5.7 mm in AC per millimetre of FAST (p = 0.002) and TF predicting an additional 6.9 mm per mm of TF (p = 0.002). We believe that this study further validates the use of prenatal measures of subcutaneous tissue and may help to highlight fetuses at risk of newborn adiposity and metabolic syndrome. © 2014 John Wiley & Sons, Ltd.

  4. Clinical reference value of retinal microvascular changes in patients with cerebral microbleeds

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Guo

    2014-12-01

    Full Text Available AIM: To study clinical reference value of retinal microvascular changes in patients with cerebral microbleeds(CMBsand discuss its clinical significance. METHODS:From January 2012 to December 2013, 125 hospitalized patients were collected, including 81 cases were male, 44 cases were female, mean age 76.3±11.2 years old. For all patients, functions of liver and kidney, blood-lipoids, blood sugar and blood biochemical examination were tested, and fundus photography and cerebral MR was done. According to the fundus camera eyes, retinal arteriolar equivalent(RAE, retinal venular equivalent(RVE, retinal vein diameter ratio(AVRand arteriovenous crossing sign(AVNwere identified, CMBs were classified with cerebral MRI. All the data were processed by SPSS statistical software. RESULTS: The central retinal arteriolar equivalent(CRAE, central retinal venular equivalent(CRVEand AVR values in the eyes were found no statistical difference(PPCOCLUSION: The results show that retinal microvascular changes, especially small retinal vein arteriovenous cross width, and arteriovenous crossing phenomenon, in which CMBs will happen more likely. After sex, age, hypertension and hyperglycemia in patients with traditional cardiovascular risk factors being ruled out, the retinal microvascular changes are still relatively factors of CMB's occurrence.

  5. A new test phantom with different breast tissue compositions for image quality assessment in conventional and digital mammography

    International Nuclear Information System (INIS)

    Pachoud, Marc; Lepori, D; Valley, Jean-Francois; Verdun, Francis R

    2004-01-01

    Our objective is to describe a new test phantom that permits the objective assessment of image quality in conventional and digital mammography for different types of breast tissue. A test phantom, designed to represent a compressed breast, was made from tissue equivalent materials. Three separate regions, with different breast tissue compositions, are used to evaluate low and high contrast resolution, spatial resolution and image noise. The phantom was imaged over a range of kV using a Contour 2000 (Bennett) mammography unit with a Kodak MinR 2190-MinR L screen-film combination and a Senograph 2000D (General Electric) digital mammography unit. Objective image quality assessments for different breast tissue compositions were performed using the phantom for conventional and digital mammography. For a similar mean glandular dose (MGD), the digital system gives a significantly higher contrast-to-noise ratio (CNR) than the screen-film system for 100% glandular tissue. In conclusion, in mammography, a range of exposure conditions is used for imaging because of the different breast tissue compositions encountered clinically. Ideally, the patient dose-image quality relationship should be optimized over the range of exposure conditions. The test phantom presented in this work permits image quality parameters to be evaluated objectively for three different types of breast tissue. Thus, it is a useful tool for optimizing the patient dose-image quality relationship

  6. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network.

    Science.gov (United States)

    Wang, Ruofan; Pan, Qing; Kuebler, Wolfgang M; Li, John K-J; Pries, Axel R; Ning, Gangmin

    2017-09-01

    Hemodynamic pulsatility has been reported to regulate microcirculatory function. To quantitatively assess the impact of flow pulsatility on the microvasculature, a mathematical model was first developed to simulate the regulation of NO production by pulsatile flow in the microcirculation. Shear stress and pressure pulsatility were selected as regulators of endothelial NO production and NO-dependent vessel dilation as feedback to control microvascular hemodynamics. The model was then applied to a real microvascular network of the rat mesentery consisting of 546 microvessels. As compared to steady flow conditions, pulsatile flow increased the average NO concentration in arterioles from 256.8±93.1nM to 274.8±101.1nM (Pflow as compared to steady flow conditions. Network perfusion and flow heterogeneity were improved under pulsatile flow conditions, and vasodilation within the network was more sensitive to heart rate changes than pulse pressure amplitude. The proposed model simulates the role of flow pulsatility in the regulation of a complex microvascular network in terms of NO concentration and hemodynamics under varied physiological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Osteogenic stimulatory conditions enhance growth and maturation of endothelial cell microvascular networks in culture with mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Torbjorn O Pedersen

    2012-12-01

    Full Text Available To optimize culture conditions for in vitro prevascularization of tissue-engineered bone constructs, the development of organotypic blood vessels under osteogenic stimulatory conditions (OM was investigated. Coculture of endothelial cells and mesenchymal stem cells was used to assess proangiogenic effects of mesenchymal stem cells on endothelial cells. Four different culture conditions were evaluated for their effect on development of microvascular endothelial cell networks. Mineralization, deposition of extracellular matrix, and perivascular gene expression were studied in OM. After 3 days, endothelial cells established elongated capillary-like networks, and upregulated expression of vascular markers was seen. After 15 days, all parameters evaluated were significantly increased for cultures in OM. Mature networks developed in OM presented lumens enveloped by basement membrane-like collagen IV, with obvious mineralization and upregulated perivascular gene expression from mesenchymal stem cells. Our results suggest osteogenic stimulatory conditions to be appropriate for in vitro development of vascularized bone implants for tissue engineering.

  8. Composition of MRI phantom equivalent to human tissues

    International Nuclear Information System (INIS)

    Kato, Hirokazu; Kuroda, Masahiro; Yoshimura, Koichi; Yoshida, Atsushi; Hanamoto, Katsumi; Kawasaki, Shoji; Shibuya, Koichi; Kanazawa, Susumu

    2005-01-01

    We previously developed two new MRI phantoms (called the CAG phantom and the CAGN phantom), with T1 and T2 relaxation times equivalent to those of any human tissue at 1.5 T. The conductivity of the CAGN phantom is equivalent to that of most types of human tissue in the frequency range of 1 to 130 MHz. In this paper, the relaxation times of human tissues are summarized, and the composition of the corresponding phantoms are provided in table form. The ingredients of these phantoms are carrageenan as the gelling agent, GdCl 3 as a T1 modifier, agarose as a T2 modifier, NaCl (CAGN phantom only) as a conductivity modifier, NaN 3 as an antiseptic, and distilled water. The phantoms have T1 values of 202-1904 ms and T2 values of 38-423 ms when the concentrations of GdCl 3 and agarose are varied from 0-140 μmol/kg, and 0%-1.6%, respectively, and the CAGN phantom has a conductivity of 0.27-1.26 S/m when the NaCl concentration is varied from 0%-0.7%. These phantoms have sufficient strength to replicate a torso without the use of reinforcing agents, and can be cut by a knife into any shape. We anticipate the CAGN phantom to be highly useful and practical for MRI and hyperthermia-related research

  9. Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern.

    Science.gov (United States)

    Peevy, K J; Hernandez, L A; Moise, A A; Parker, J C

    1990-06-01

    To study the pulmonary microvascular injury produced by ventilation barotrauma, the isolated perfused lungs of 4 to 6-wk-old New Zealand white rabbits were ventilated by one of the following methods: peak inspiratory pressure (PIP) 23 cm H2O, gas flow rate 1.1 L/min (group 1); PIP 27 cm H2O, gas flow rate 6.9 L/min (group 2); PIP 50 cm H2O, gas flow rate 1.9 L/min (group 3); or PIP 53 cm H2O, gas flow rate 8.3 L/min (group 4). Microvascular permeability was assessed using the capillary filtration coefficient (Kfc) before and 5, 30, and 60 min after a 15-min period of ventilation. Baseline Kfc was not significantly different between groups. A significant increase over the baseline Kfc was noted at 60 min in group 2 and in all postventilation Kfc values in groups 3 and 4 (p less than .05). Group 1 Kfc values did not change significantly after ventilation. At all post-ventilation times, values for Kfc were significantly greater in groups 3 and 4 than in group 1 (p less than .05). Group 4 Kfc values were significantly greater than those in group 2 at 5 and 30 min postventilation. These data indicate that high PIP, and to a lesser extent, high gas flow rates cause microvascular injury in the compliant nonadult lung and suggest that the combination of high PIP and high gas flow rates are the most threatening to microvascular integrity.

  10. Nailfold Capillaroscopy - Its Role in Diagnosis and Differential Diagnosis of Microvascular Damage in Systemic Sclerosis.

    Science.gov (United States)

    Lambova, Sevdalina; Hermann, W; Muller-Ladner, Ulf

    2013-01-01

    In the nailfold area, specific diagnostic microvascular abnormalities are easily recognized via capillaroscopic examination in systemic sclerosis (SSc). They are termed "scleroderma" type capillaroscopic pattern, which includes presence of dilated, giant capillaries, haemorrhages, avascular areas, and neoangiogenic capillaries and are observed in the majority of SSc patients (in more than 90%). LeRoy and Medsger (2001) proposed criteria for early diagnosis of SSc with inclusion of the abnormal capillaroscopic changes and suggested to prediagnose SSc prior to the development of other manifestations of the disease. It is a new era in the diagnosis of SSc. At present, an international multicenter project is performed. It aims validation of criteria for very early diagnosis of SSc (project VEDOSS (Very Early Diagnosis of Systemic Sclerosis) and is organized by European League Against Rheumatism (EULAR) Scleroderma Trials and Reasearch. Very recently the first results of the VEDOSS project were processed and new EULAR/ACR (American College of Rheumatology) classification criteria have been validated and published (2013), in which the characteristic capillaroscopic changes have been included. Our observations confirm the high frequency of the specific capillaroscopic changes of the fingers in SSc, which have been found in 97.2% of the cases from the studied patient population. We have performed for the first time capillaroscopic examinations of the toes in SSc. Interestingly,"scleroderma type" capillaroscopic pattern was also found at the toes in a high proportion of patients - 66.7%, but it is significantly less frequent as compared with fingers (97.2%, p<0.05). In our opinion, the examination of the toes of SSc patients should be considered as it suggests an additional opportunity for evaluation of the microvascular changes in these patients although the observed changes are in a lower proportion of cases. Thus, capillaroscopic examination is a cornerstone for the very

  11. Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance

    DEFF Research Database (Denmark)

    Kunešová, M; Hlavatý, P; Tvrzická, E

    2012-01-01

    Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants...... of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with > 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI (HP....../HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic (16:1n-7...

  12. The immune cell composition in Barrett's metaplastic tissue resembles that in normal duodenal tissue.

    Directory of Open Access Journals (Sweden)

    Alexandra Lind

    Full Text Available BACKGROUND AND OBJECTIVE: Barrett's esophagus (BE is characterized by the transition of squamous epithelium into columnar epithelium with intestinal metaplasia. The increased number and types of immune cells in BE have been indicated to be due to a Th2-type inflammatory process. We tested the alternative hypothesis that the abundance of T-cells in BE is caused by a homing mechanism that is found in the duodenum. PATIENTS AND METHODS: Biopsies from BE and duodenal tissue from 30 BE patients and duodenal tissue from 18 controls were characterized by immmunohistochemistry for the presence of T-cells and eosinophils(eos. Ex vivo expanded T-cells were further phenotyped by multicolor analysis using flowcytometry. RESULTS: The high percentage of CD4(+-T cells (69±3% (mean±SEM/n = 17, by flowcytometry, measured by flowcytometry and immunohistochemistry, and the presence of non-activated eosinophils found in BE by immunohistochemical staining, were not different from that found in duodenal tissue. Expanded lymphocytes from these tissues had a similar phenotype, characterized by a comparable but low percentage of αE(CD103 positive CD4(+cells (44±5% in BE, 43±4% in duodenum of BE and 34±7% in duodenum of controls and a similar percentage of granzyme-B(+CD8(+ cells(44±5% in BE, 33±6% in duodenum of BE and 36±7% in duodenum of controls. In addition, a similar percentage of α4β7(+ T-lymphocytes (63±5% in BE, 58±5% in duodenum of BE and 62±8% in duodenum of controls was found. Finally, mRNA expression of the ligand for α4β7, MAdCAM-1, was also similar in BE and duodenal tissue. No evidence for a Th2-response was found as almost no IL-4(+-T-cells were seen. CONCLUSION: The immune cell composition (lymphocytes and eosinophils and expression of intestinal adhesion molecule MAdCAM-1 is similar in BE and duodenum. This supports the hypothesis that homing of lymphocytes to BE tissue is mainly caused by intestinal homing signals rather than to an

  13. Longitudinal study of microvascular involvement by nailfold capillaroscopy in children with Henoch-Schönlein purpura.

    Science.gov (United States)

    Zampetti, Anna; Rigante, Donato; Bersani, Giulia; Rendeli, Claudia; Feliciani, Claudio; Stabile, Achille

    2009-09-01

    The aim of this study is to describe by video-nailfold capillaroscopy the microvascular involvement and capillary changes in children with Henoch-Schönlein purpura (HSp) and to establish a possible correlation with clinical outcome. Thirty-one patients underwent capillaroscopic evaluation through a videomicroscope during the acute phase and after 6 months. Twenty sex/age-matched controls were also examined. All capillaroscopic variables were statistically examined in combination with laboratoristic/clinical data. Architectural and morphological changes recorded during the acute phase were statistically significant in comparison to the controls (p capillaroscopy changes, laboratoristic/clinical data, and outcome. Video-nailfold capillaroscopy can be a simple tool to evaluate microvascular abnormalities in the acute phase of HSp, and the persistence of oedema could suggest an incomplete disease resolution at a microvascular level.

  14. Composite Tissue Transplant of Hand or Arm: A Health Technology Assessment.

    Science.gov (United States)

    2016-01-01

    Injuries to arms and legs following severe trauma can result in the loss of large regions of tissue, disrupting healing and function and sometimes leading to amputation of the damaged limb. People experiencing amputations of the hand or arm could potentially benefit from composite tissue transplant, which is being performed in some countries. Currently, there are no composite tissue transplant programs in Canada. We conducted a systematic review of the literature, with no restriction on study design, examining the effectiveness and cost-effectiveness of hand and arm transplant. We assessed the overall quality of the clinical evidence with GRADE. We developed a Markov decision analytic model to determine the cost-effectiveness of transplant versus standard care for a healthy adult with a hand amputation. Incremental cost-effectiveness ratios (ICERs) were calculated using a 30-year time horizon. We also estimated the impact on provincial health care costs if these transplants were publicly funded in Ontario. Compared to pre-transplant function, patients' post-transplant function was significantly better. For various reasons, 17% of transplanted limbs were amputated, 6.4% of patients died within the first year after the transplant, and 10.6% of patients experienced chronic rejections. GRADE quality of evidence for all outcomes was very low. In the cost-effectiveness analysis, single-hand transplant was dominated by standard care, with increased costs ($735,647 CAD vs. $61,429) and reduced quality-adjusted life-years (QALYs) (10.96 vs. 11.82). Double-hand transplant also had higher costs compared with standard care ($633,780), but it had an increased effectiveness of 0.17 QALYs, translating to an ICER of $3.8 million per QALY gained. In most sensitivity analyses, ICERs for bilateral hand transplant were greater than $1 million per QALY gained. A hand transplant program would lead to an estimated annual budget impact of $0.9 million to $1.2 million in the next 3 years

  15. Improved myocardial perfusion after transmyocardial laser revascularization in a patient with microvascular coronary artery disease

    Directory of Open Access Journals (Sweden)

    Peyman Mesbah Oskui

    2014-03-01

    Full Text Available We report the case of a 59-year-old woman who presented with symptoms of angina that was refractory to medical management. Although her cardiac catheterization revealed microvascular coronary artery disease, her symptoms were refractory to optimal medical management that included ranolazine. After undergoing transmyocardial revascularization, her myocardial ischemia completely resolved and her symptoms dramatically improved. This case suggests that combination of ranolazine and transmyocardial revascularization can be applied to patients with microvascular coronary artery disease.

  16. Depth-dependent flow and pressure characteristics in cortical microvascular networks.

    Directory of Open Access Journals (Sweden)

    Franca Schmid

    2017-02-01

    Full Text Available A better knowledge of the flow and pressure distribution in realistic microvascular networks is needed for improving our understanding of neurovascular coupling mechanisms and the related measurement techniques. Here, numerical simulations with discrete tracking of red blood cells (RBCs are performed in three realistic microvascular networks from the mouse cerebral cortex. Our analysis is based on trajectories of individual RBCs and focuses on layer-specific flow phenomena until a cortical depth of 1 mm. The individual RBC trajectories reveal that in the capillary bed RBCs preferentially move in plane. Hence, the capillary flow field shows laminar patterns and a layer-specific analysis is valid. We demonstrate that for RBCs entering the capillary bed close to the cortical surface (< 400 μm the largest pressure drop takes place in the capillaries (37%, while for deeper regions arterioles are responsible for 61% of the total pressure drop. Further flow characteristics, such as capillary transit time or RBC velocity, also vary significantly over cortical depth. Comparison of purely topological characteristics with flow-based ones shows that a combined interpretation of topology and flow is indispensable. Our results provide evidence that it is crucial to consider layer-specific differences for all investigations related to the flow and pressure distribution in the cortical vasculature. These findings support the hypothesis that for an efficient oxygen up-regulation at least two regulation mechanisms must be playing hand in hand, namely cerebral blood flow increase and microvascular flow homogenization. However, the contribution of both regulation mechanisms to oxygen up-regulation likely varies over depth.

  17. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    Science.gov (United States)

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P lower limb heating improves both macro- and microvascular dilator function in an age dependent manner. We demonstrate that lower limb heating acutely improves macro- and microvascular dilator function within the atherosclerotic prone vasculature of the leg in aged adults. These findings provide evidence for a potential therapeutic use of chronic lower limb heating to improve vascular health in primary aging and various disease conditions. Copyright © 2017 the American Physiological Society.

  18. Approaches to improve angiogenesis in tissue-engineered skin.

    Science.gov (United States)

    Sahota, Parbinder S; Burn, J Lance; Brown, Nicola J; MacNeil, Sheila

    2004-01-01

    A problem with tissue-engineered skin is clinical failure due to delays in vascularization. The aim of this study was to explore a number of simple strategies to improve angiogenesis/vascularization using a tissue-engineered model of skin to which small vessel human dermal microvascular endothelial cells were added. For the majority of these studies, a modified Guirguis chamber was used, which allowed the investigation of several variables within the same experiment using the same human dermis; cell type, angiogenic growth factors, the influence of keratinocytes and fibroblasts, mechanical penetration of the human dermis, the site of endothelial cell addition, and the influence of hypoxia were all examined. A qualitative scoring system was used to assess the impact of these factors on the penetration of endothelial cells throughout the dermis. Similar results were achieved using freshly isolated small vessel human dermal microvascular endothelial cells or an endothelial cell line and a minimum cell seeding density was identified. Cell penetration was not influenced by the addition of angiogenic growth factors (vascular endothelial growth factor and basic fibroblast growth factor); similarly, including epidermal keratinocytes or dermal fibroblasts did not encourage endothelial cell entry, and neither did mechanical introduction of holes throughout the dermis. Two factors were identified that significantly enhanced endothelial cell penetration into the dermis: hypoxia and the site of endothelial cell addition. Endothelial cells added from the papillary surface entered into the dermis much more effectively than when cells were added to the reticular surface of the dermis. We conclude that this model is valuable in improving our understanding of how to enhance vascularization of tissue-engineered grafts.

  19. Data set characterizing the systemic alterations of microvascular reactivity and capillary density, in patients presenting with infective endocarditis.

    Science.gov (United States)

    Tibirica, Eduardo; Barcelos, Amanda; Lamas, Cristiane

    2018-06-01

    This article represents data associated with a prior publication from our research group, under the title: Evaluation of microvascular endothelial function and capillary density in patients with infective endocarditis using laser speckle contrast imaging and video-capillaroscopy [1]. Patients with definite infective endocarditis, under stable clinical conditions, were prospectively included. The clinical and laboratory features are presented for each of them in raw form. Microvascular reactivity was evaluated using a laser speckle contrast imaging (LSCI) system with a laser wavelength of 785 nm. LSCI was used in combination with the iontophoresis of acetylcholine (ACh) or sodium nitroprusside (SNP) for the noninvasive, continuous measurement of cutaneous microvascular perfusion changes in arbitrary perfusion units (APU). The images were analyzed using the manufacturer's software. One skin site on the ventral surface of the forearm was chosen for the experiment. Microvascular reactivity was also evaluated using post-occlusive reactive hyperemia, whereby arterial occlusion was achieved with supra-systolic pressure (50 mmHg above the systolic arterial pressure) using a sphygmomanometer for three minutes. Following the release of pressure, maximum flux was measured. Data on cutaneous microvascular density were obtained using intravital video-capillaroscopy. The data obtained may be helpful by showing the usefulness of laser-based noninvasive techniques in systemic infectious diseases other than sepsis, in different clinical settings and countries.

  20. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering.

    Science.gov (United States)

    Nasri-Nasrabadi, Bijan; Mehrasa, Mohammad; Rafienia, Mohammad; Bonakdar, Shahin; Behzad, Tayebeh; Gavanji, Shahin

    2014-08-08

    Starch/cellulose nanofibers composites with proper porosity pore size, mechanical strength, and biodegradability for cartilage tissue engineering have been reported in this study. The porous thermoplastic starch-based composites were prepared by combining film casting, salt leaching, and freeze drying methods. The diameter of 70% nanofibers was in the range of 40-90 nm. All samples had interconnected porous morphology; however an increase in pore interconnectivity was observed when the sodium chloride ratio was increased in the salt leaching. Scaffolds with the total porogen content of 70 wt% exhibited adequate mechanical properties for cartilage tissue engineering applications. The water uptake ratio of nanocomposites was remarkably enhanced by adding 10% cellulose nanofibers. The scaffolds were partially destroyed due to low in vitro degradation rate after more than 20 weeks. Cultivation of isolated rabbit chondrocytes on the fabricated scaffold proved that the incorporation of nanofibers in starch structure improves cell attachment and proliferation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of nitroglycerin on microvascular perfusion and oxygenation during gastric tube reconstruction.

    Science.gov (United States)

    Buise, Marc P; Ince, Can; Tilanus, Hugo W; Klein, Jan; Gommers, Diederik; van Bommel, Jasper

    2005-04-01

    Esophagectomy followed by gastric tube reconstruction is the surgical treatment of choice for patients with esophageal cancer. Complications of the cervical anastomosis are associated with impaired microvascular blood flow (MBF) and ischemia in the gastric fundus. The aim of the present study was to differentiate whether the decrease in MBF is a result of arterial insufficiency or of venous congestion. To do this we assessed MBF, microvascular hemoglobin oxygen saturation (muHbSo(2)), and microvascular hemoglobin concentration (muHbcon) simultaneously during different stages of gastric tube reconstruction. In 14 patients, MBF was determined with laser Doppler flowmetry, and muHbSo(2) and muHbcon were determined with reflectance spectro- photometry. After completion of the anastomosis, nitroglycerin was applied at the fundus. Although MBF did not change significantly in the pylorus, MBF decreased progressively during surgery in the fundus from 210 +/- 18 Arbitrary Units at baseline (normal stomach) to 52 +/- 9 Arbitrary Units after completion of reconstruction (mean +/- sem; P tube reconstruction but that muHbSo(2) and muHbcon do not. This decrease might be the result of venous congestion, which can partly be counteracted by application of nitroglycerin.

  2. Topical combinations aimed at treating microvascular dysfunction reduce allodynia in rat models of CRPS-I and neuropathic pain.

    Science.gov (United States)

    Ragavendran, J Vaigunda; Laferrière, André; Xiao, Wen Hua; Bennett, Gary J; Padi, Satyanarayana S V; Zhang, Ji; Coderre, Terence J

    2013-01-01

    Growing evidence indicates that various chronic pain syndromes exhibit tissue abnormalities caused by microvasculature dysfunction in the blood vessels of skin, muscle, or nerve. We tested whether topical combinations aimed at improving microvascular function would relieve allodynia in animal models of complex regional pain syndrome type I (CRPS-I) and neuropathic pain. We hypothesized that topical administration of either α(2)-adrenergic (α(2)A) receptor agonists or nitric oxide (NO) donors combined with either phosphodiesterase (PDE) or phosphatidic acid (PA) inhibitors would effectively reduce allodynia in these animal models of chronic pain. Single topical agents produced significant dose-dependent antiallodynic effects in rats with chronic postischemia pain, and the antiallodynic dose-response curves of PDE and PA inhibitors were shifted 2.5- to 10-fold leftward when combined with nonanalgesic doses of α(2)A receptor agonists or NO donors. Topical combinations also produced significant antiallodynic effects in rats with sciatic nerve injury, painful diabetic neuropathy, and chemotherapy-induced painful neuropathy. These effects were shown to be produced by a local action, lasted up to 6 hours after acute treatment, and did not produce tolerance over 15 days of chronic daily dosing. The present results support the hypothesis that allodynia in animal models of CRPS-I and neuropathic pain is effectively relieved by topical combinations of α(2)A or NO donors with PDE or PA inhibitors. This suggests that topical treatments aimed at improving microvascular function may reduce allodynia in patients with CRPS-I and neuropathic pain. This article presents the synergistic antiallodynic effects of combinations of α(2)A or NO donors with PDE or PA inhibitors in animal models of CRPS-I and neuropathic pain. The data suggest that effective clinical treatment of chronic neuropathic pain may be achieved by therapies that alleviate microvascular dysfunction in affected

  3. Serum ADEPONECTIN Level In Children And Adolescents With Type I Diabetes Mellitus And Its Association With Microvascular Complications

    International Nuclear Information System (INIS)

    MOAWAD, A.T.

    2010-01-01

    Adiponectin, an adipo cytokine, is secreted from the adipose tissue and plays an important role in obesity, type II diabetes and cardiovascular disease. This study aimed to determine the concentration of serum adiponectin in type I diabetic children and to establish its association with microvascular complications. For this reason, weight (kg), height (m), body mass index (BMI) (kg/m2), random blood sugar, HbAIc, kidney functions, urinary microalbuminuria, lipid profiles and serum adiponectin were assessed in 25 children (11 males, 14 females) with type I diabetes and twenty healthy control children. Careful history, clinical examination, acetomorphine and pirbuterol assessment were done for all patients and controls. The diabetic patients were stratified depending on the pubertal stage into pre-pubertal group and pubertal group, and according to gender into male group and female group. The results obtained displayed significant elevated values for random blood glucose (P<0.001), HbAIc (P<0.001), total cholesterol (P<0.05), low density lipoprotein (LDL) (P<0.05), BUN (P<0.001), creatinine (P<0.05), urinary microalbuminuria (P<0.001) and serum adiponectin (P<0.001) in diabetic children and control. In patients suffering from microvascular diabetic complications as retinopathy, nephropathy and neuropathy, serum adiponectin level showed high significant increase in patients with diabetic nephropathy and neuropathy than without. On the other hand, patients with retinopathy had no significant increase in serum adiponectin as compared with patients without retinopathy but this result may be due to small sample size. Positive significant correlation was detected between serum adiponectin and HbAIc, total cholesterol and urinary microalbuminuria in the same patients. Negative significant correlation was observed between serum adiponectin level and body mass index (BMI). It could be concluded that serum adiponectin which increased in diabetic children than healthy control

  4. ANAEMIA AS A RISK FACTOR FOR MICROVASCULAR COMPLICATIONS IN TYPE 2 DM- A CROSS-SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Kamanuru Ethirajulu Govindarajulu

    2016-11-01

    Full Text Available BACKGROUND It is well known that diabetes adversely affects the kidneys finally leading to anaemia by various mechanisms. Several studies had postulated that anaemia developing before renal complications has an independent association with microvascular complication in type 2 diabetic patients. The aim of the study is to estimate the prevalence of anaemia in persons with type 2 diabetes mellitus and its role as a risk factor for the presence and the severity of microvascular complication in a populationbased study. MATERIALS AND METHODS This is a cross-sectional study conducted in patients coming to OPD of the Department of General Medicine in Government Vellore Medical College for a duration of 3 months from June 01, 2016, to August 31, 2016. Type 2 DM patients between the age group 20-60 years attending our diabetic clinic of both sex were included in our study. RESULTS From a total of 100 patients, 41% had anaemia including 34% with normochromic normocytic, 65.85% with hyperchromic microcytic anaemia and none of the patient had macrocytic anaemia. Patients who are anaemic had more frequent microvascular complications. There was no significant difference between males and females. The average duration of diabetes has a positive correlation with anaemia. All the microvascular complications like neuropathy, nephropathy and retinopathy had significant association with the presence of anaemia in type 2 patients. Nephropathy had a significant higher frequency compared to others as a complication in type 2 DM. CONCLUSION Our study shows that there is increased prevalence of anaemia in type 2 DM patients and the prevalence of microvascular complications is significantly higher among the diabetic patients with anaemia.

  5. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    Science.gov (United States)

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  6. Preventing microvascular complications in type 1 diabetes mellitus

    OpenAIRE

    Viswanathan, Vijay

    2015-01-01

    Patients with complications of diabetes such as retinopathy, nephropathy, and cardiovascular complications have increased hospital stay with greater economic burden. Prevention of complications should be started before the onset of type 1 diabetes mellitus (T1DM) by working on risk factors and thereafter by intervention upon confirmatory diagnosis which can prevent further damage to β-cells. The actual risk of getting microvascular complications like microalbuminuria and retinopathy progressi...

  7. Capillaries within compartments: microvascular interpretation of dynamic positron emission tomography data

    DEFF Research Database (Denmark)

    Munk, O L; Keiding, S; Bass, L

    2003-01-01

    estimation of parameters in models with more physiological realism. We explore the standard compartmental model and find that incorporation of blood flow leads to paradoxes, such as kinetic rate constants being time-dependent, and tracers being cleared from a capillary faster than they can be supplied...... single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. Udgivelsesdato: 2003-Nov-7...... by blood flow. The inability of the standard model to incorporate blood flow consequently raises a need for models that include more physiology, and we develop microvascular models which remove the inconsistencies. The microvascular models can be regarded as a revision of the input function. Whereas...

  8. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Qian, Junmin; Xu, Weijun; Yong, Xueqing; Jin, Xinxia; Zhang, Wei

    2014-01-01

    In this study, biomorphic poly(DL-lactic-co-glycolic acid)/nano-hydroxyapatite (PLGA/nHA) composite scaffolds were successfully prepared using cane as a template. The porous morphology, phase, compression characteristics and in vitro biocompatibility of the PLGA/nHA composite scaffolds and biomorphic PLGA scaffolds as control were investigated. The results showed that the biomorphic scaffolds preserved the original honeycomb-like architecture of cane and exhibited a bimodal porous structure. The average channel diameter and micropore size of the PLGA/nHA composite scaffolds were 164 ± 52 μm and 13 ± 8 μm, respectively, with a porosity of 89.3 ± 1.4%. The incorporation of nHA into PLGA decreased the degree of crystallinity of PLGA, and significantly improved the compressive modulus of biomorphic scaffolds. The in vitro biocompatibility evaluation with MC3T3-E1 cells demonstrated that the biomorphic PLGA/nHA composite scaffolds could better support cell attachment, proliferation and differentiation than the biomorphic PLGA scaffolds. The localization depth of MC3T3-E1 cells within the channels of the biomorphic PLGA/nHA composite scaffolds could reach approximately 400 μm. The results suggested that the biomorphic PLGA/nHA composite scaffolds were promising candidates for bone tissue engineering. - Highlights: • Novel biomimetic PLGA/nHA composite scaffolds were successfully prepared. • nHA addition improved elastic modulus of PLGA scaffold and decreased its crystallinity. • PLGA/nHA composite scaffolds had better biocompatibility than PLGA scaffolds. • Biomorphic PLGA/nHA composite scaffold had great potential in bone tissue engineering

  9. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn; Xu, Weijun; Yong, Xueqing; Jin, Xinxia; Zhang, Wei

    2014-03-01

    In this study, biomorphic poly(DL-lactic-co-glycolic acid)/nano-hydroxyapatite (PLGA/nHA) composite scaffolds were successfully prepared using cane as a template. The porous morphology, phase, compression characteristics and in vitro biocompatibility of the PLGA/nHA composite scaffolds and biomorphic PLGA scaffolds as control were investigated. The results showed that the biomorphic scaffolds preserved the original honeycomb-like architecture of cane and exhibited a bimodal porous structure. The average channel diameter and micropore size of the PLGA/nHA composite scaffolds were 164 ± 52 μm and 13 ± 8 μm, respectively, with a porosity of 89.3 ± 1.4%. The incorporation of nHA into PLGA decreased the degree of crystallinity of PLGA, and significantly improved the compressive modulus of biomorphic scaffolds. The in vitro biocompatibility evaluation with MC3T3-E1 cells demonstrated that the biomorphic PLGA/nHA composite scaffolds could better support cell attachment, proliferation and differentiation than the biomorphic PLGA scaffolds. The localization depth of MC3T3-E1 cells within the channels of the biomorphic PLGA/nHA composite scaffolds could reach approximately 400 μm. The results suggested that the biomorphic PLGA/nHA composite scaffolds were promising candidates for bone tissue engineering. - Highlights: • Novel biomimetic PLGA/nHA composite scaffolds were successfully prepared. • nHA addition improved elastic modulus of PLGA scaffold and decreased its crystallinity. • PLGA/nHA composite scaffolds had better biocompatibility than PLGA scaffolds. • Biomorphic PLGA/nHA composite scaffold had great potential in bone tissue engineering.

  10. Time-Dependent Behavior of Microvascular Blood Flow and Oxygenation: A Predictor of Functional Outcomes.

    Science.gov (United States)

    Kuliga, Katarzyna Z; Gush, Rodney; Clough, Geraldine F; Chipperfield, Andrew John

    2018-05-01

    This study investigates the time-dependent behaviour and algorithmic complexity of low-frequency periodic oscillations in blood flux (BF) and oxygenation signals from the microvasculature. Microvascular BF and oxygenation (OXY: oxyHb, deoxyHb, totalHb, and SO 2 %) was recorded from 15 healthy young adult males using combined laser Doppler fluximetry and white light spectroscopy with local skin temperature clamped to 33  °C and during local thermal hyperaemia (LTH) at 43 °C. Power spectral density of the BF and OXY signals was evaluated within the frequency range (0.0095-1.6 Hz). Signal complexity was determined using the Lempel-Ziv (LZ) algorithm. Fold increase in BF during LTH was 15.6 (10.3, 22.8) and in OxyHb 4.8 (3.5, 5.9) (median, range). All BF and OXY signals exhibited multiple oscillatory components with clear differences in signal power distribution across frequency bands at 33 and 43 °C. Significant reduction in the intrinsic variability and complexity of the microvascular signals during LTH was found, with mean LZ complexity of BF and OxyHb falling by 25% and 49%, respectively ( ). These results provide corroboration that in human skin microvascular blood flow and oxygenation are influenced by multiple time-varying oscillators that adapt to local influences and become more predictable during increased haemodynamic flow. Recent evidence strongly suggests that the inability of microvascular networks to adapt to an imposed stressor is symptomatic of disease risk which might be assessed via BF and OXY via the combination signal analysis techniques described here.

  11. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase.

    Science.gov (United States)

    Kuebler, Wolfgang M; Wittenberg, Claudia; Lee, Warren L; Reppien, Eike; Goldenberg, Neil M; Lindner, Karsten; Gao, Yizhuo; Winoto-Morbach, Supandi; Drab, Marek; Mühlfeld, Christian; Dombrowsky, Heike; Ochs, Matthias; Schütze, Stefan; Uhlig, Stefan

    2016-04-15

    Transcellular albumin transport occurs via caveolae that are abundant in lung microvascular endothelial cells. Stimulation of albumin transcytosis by proinflammatory mediators may contribute to alveolar protein leak in lung injury, yet the regulation of albumin transport and its underlying molecular mechanisms are so far incompletely understood. Here we tested the hypothesis that thrombin may stimulate transcellular albumin transport across lung microvascular endothelial cells in an acid-sphingomyelinase dependent manner. Thrombin increased the transport of fluorescently labeled albumin across confluent human lung microvascular endothelial cell (HMVEC-L) monolayers to an extent that markedly exceeds the rate of passive diffusion. Thrombin activated acid sphingomyelinase (ASM) and increased ceramide production in HMVEC-L, but not in bovine pulmonary artery cells, which showed little albumin transport in response to thrombin. Thrombin increased total caveolin-1 (cav-1) content in both whole cell lysates and lipid rafts from HMVEC-L, and this effect was blocked by inhibition of ASM or de novo protein biosynthesis. Thrombin-induced uptake of albumin into lung microvascular endothelial cells was confirmed in isolated-perfused lungs by real-time fluorescence imaging and electron microscopy of gold-labeled albumin. Inhibition of ASM attenuated thrombin-induced albumin transport both in confluent HMVEC-L and in intact lungs, whereas HMVEC-L treatment with exogenous ASM increased albumin transport and enriched lipid rafts in cav-1. Our findings indicate that thrombin stimulates transcellular albumin transport in an acid sphingomyelinase-dependent manner by inducing de novo synthesis of cav-1 and its recruitment to membrane lipid rafts. Copyright © 2016 the American Physiological Society.

  12. Nonarterialized Venous Replantation of Part of Amputated Thumb—A Case Report and Review of the Literature

    Science.gov (United States)

    Kalimuthu, Ramasamy

    2006-01-01

    Since the first successful replantation of a human thumb reported by Komatsu and Tamai in 1968, thousands of severed digits and body parts have been successfully salvaged. Restoration of anatomic form and function are the goals of replantation after traumatic tissue amputation. Regardless of anatomic location, methods include microsurgical replantation and nonmicrosurgical replantation, such as composite graft techniques. Numerous techniques to maximize tissue survival after revascularization have been described, including “pocket procedures” to salvage composite grafts, interposition vein grafts, and medicinal leeches to name a few. Artery-to-venous anastomoses have been performed with successful “arterialization” of the distal venous system in fingertip replantation. Although there is documented survival of free venous cutaneous flaps, to our knowledge this is the first report of a replanted composite body part (bone, tendon, soft tissues, and skin) utilizing exclusively multiple, microvascular, nonarterialized venous–venous anastomoses. We present a patient with an isolated band saw fillet amputation to the back of the thumb at the metacarpal–phalangeal joint region, resulting in a composite graft composed of bone, tendon, soft tissue, and skin. The hand wound provided no viable regional arterial inflow source, but there were multiple good caliber superficial veins present. The amputated tissues were replanted and revascularized by using only venous blood flow. The replanted part survival was 100% with excellent function of the digit. We conclude that a hand composite body part involving bone, tendon, soft tissues, and skin can survive replantation with a strict venous blood supply if sufficient good caliber, microvascular, venous–venous anastomoses are performed, granted that arterial inflow options are not available. This is an isolated case, yet introduces a new way of thinking regarding tissue replantation. PMID:18780032

  13. Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain.

    Directory of Open Access Journals (Sweden)

    Austin J Moy

    Full Text Available The microvasculature is the network of blood vessels involved in delivering nutrients and gases necessary for tissue survival. Study of the microvasculature often involves immunohistological methods. While useful for visualizing microvasculature at the µm scale in specific regions of interest, immunohistology is not well suited to visualize the global microvascular architecture in an organ. Hence, use of immunohistology precludes visualization of the entire microvasculature of an organ, and thus impedes study of global changes in the microvasculature that occur in concert with changes in tissue due to various disease states. Therefore, there is a critical need for a simple, relatively rapid technique that will facilitate visualization of the microvascular network of an entire tissue.The systemic vasculature of a mouse is stained with the fluorescent lipophilic dye DiI using a method called "vessel painting". The brain, or other organ of interest, is harvested and fixed in 4% paraformaldehyde. The organ is then sliced into 1 mm sections and optically cleared, or made transparent, using FocusClear, a proprietary optical clearing agent. After optical clearing, the DiI-labeled tissue microvasculature is imaged using confocal fluorescence microscopy and adjacent image stacks tiled together to produce a depth-encoded map of the microvasculature in the tissue slice. We demonstrated that the use of optical clearing enhances both the tissue imaging depth and the estimate of the vascular density. Using our "optical histology" technique, we visualized microvasculature in the mouse brain to a depth of 850 µm.Presented here are maps of the microvasculature in 1 mm thick slices of mouse brain. Using combined optical clearing and optical imaging techniques, we devised a methodology to enhance the visualization of the microvasculature in thick tissues. We believe this technique could potentially be used to generate a three-dimensional map of the

  14. Evaluation of microvascular endothelial function and capillary density in patients with infective endocarditis using laser speckle contrast imaging and video-capillaroscopy.

    Science.gov (United States)

    Barcelos, Amanda; Tibirica, Eduardo; Lamas, Cristiane

    2018-07-01

    To evaluate the systemic microcirculation of patients with infective endocarditis (IE). This is a comparative study of patients with definite IE by the modified Duke criteria admitted to our center for treatment. A reference group of sex- and age-matched healthy volunteers was included. Microvascular flow was evaluated in the forearm using a laser speckle contrast imaging system, for noninvasive measurement of cutaneous microvascular perfusion, in combination with skin iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to test microvascular reactivity. Microvascular density was evaluated using skin video-capillaroscopy. We studied 22 patients with IE; 15 were male and seven female. The mean age and standard deviation (SD) were 45.5 ± 17.3 years. Basal skin microvascular conductance was significantly increased in patients with IE, compared with healthy individuals (0.36 ± 0.13 versus 0.21 ± 0.08 APU/mmHg; P < 0.0001). The increase in microvascular conductance induced by ACh in patients was 0.21 ± 0.17 and in the reference group, it was 0.37 ± 0.14 APU/mmHg (P = 0.0012). The increase in microvascular conductance induced by SNP in patients was 0.18 ± 0.14 and it was 0.29 ± 0.15 APU/mmHg (P = 0.0140) in the reference group. The basal mean skin capillary density of patients (135 ± 24 capillaries/mm 2 ) was significantly higher, compared with controls (97 ± 21 capillaries/mm 2 ; P < 0.0001). The main findings in the microcirculation of patients with IE were greater basal vasodilation and a reduction of the endothelium-dependent and -independent microvascular reactivity, as well as greater functional skin capillary density compared to healthy individuals. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Highly Concentrated Alginate-Gellan Gum Composites for 3D Plotting of Complex Tissue Engineering Scaffolds

    Directory of Open Access Journals (Sweden)

    Ashwini Rahul Akkineni

    2016-04-01

    Full Text Available In tissue engineering, additive manufacturing (AM technologies have brought considerable progress as they allow the fabrication of three-dimensional (3D structures with defined architecture. 3D plotting is a versatile, extrusion-based AM technology suitable for processing a wide range of biomaterials including hydrogels. In this study, composites of highly concentrated alginate and gellan gum were prepared in order to combine the excellent printing properties of alginate with the favorable gelling characteristics of gellan gum. Mixtures of 16.7 wt % alginate and 2 or 3 wt % gellan gum were found applicable for 3D plotting. Characterization of the resulting composite scaffolds revealed an increased stiffness in the wet state (15%–20% higher Young’s modulus and significantly lower volume swelling in cell culture medium compared to pure alginate scaffolds (~10% vs. ~23%. Cytocompatibility experiments with human mesenchymal stem cells (hMSC revealed that cell attachment was improved—the seeding efficiency was ~2.5–3.5 times higher on the composites than on pure alginate. Additionally, the composites were shown to support hMSC proliferation and early osteogenic differentiation. In conclusion, print fidelity of highly concentrated alginate-gellan gum composites was comparable to those of pure alginate; after plotting and crosslinking, the scaffolds possessed improved qualities regarding shape fidelity, mechanical strength, and initial cell attachment making them attractive for tissue engineering applications.

  16. Tissue-specific composite cell aggregates drive periodontium tissue regeneration by reconstructing a regenerative microenvironment.

    Science.gov (United States)

    Zhu, Bin; Liu, Wenjia; Zhang, Hao; Zhao, Xicong; Duan, Yan; Li, Dehua; Jin, Yan

    2017-06-01

    Periodontitis is the most common cause of periodontium destruction. Regeneration of damaged tissue is the expected treatment goal. However, the regeneration of a functional periodontal ligament (PDL) insertion remains a difficulty, due to complicated factors. Recently, periodontal ligament stem cells (PDLSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs) have been shown to participate in PDL regeneration, both pathologically and physiologically. Besides, interactions affect the biofunctions of different derived cells during the regenerative process. Therefore, the purpose of this study was to discuss the different derived composite cell aggregate (CA) systems of PDLSCs and BMMSCs (iliac-derived or jaw-derived) for periodontium regeneration under regenerative microenvironment reconstruction. Our results showed although all three mono-MSC CAs were compacted and the cells arranged regularly in them, jaw-derived BMMSC (JBMMSC) CAs secreted more extracellular matrix than the others. Furthermore, PDLSC/JBMMSC compound CAs highly expressed ALP, Col-I, fibronectin, integrin-β1 and periostin, suggesting that their biofunction is more appropriate for periodontal structure regeneration. Inspiringly, PDLSC/JBMMSC compound CAs regenerated more functional PDL-like tissue insertions in both nude mice ectopic and minipig orthotopic transplantation. The results indicated that the different derived CAs of PDLSCs/JBMMSCs provided an appropriate regenerative microenvironment facilitating a more stable and regular regeneration of functional periodontium tissue. This method may provide a possible strategy to solve periodontium defects in periodontitis and powerful experimental evidence for clinical applications in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – An experimental and finite element study

    DEFF Research Database (Denmark)

    Ojanen, X.; Tanska, P.; Malo, M. K.H.

    2017-01-01

    Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were charact......). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone....

  18. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans is mediated by NADPH Oxidase; Influence of Exercise Training

    Science.gov (United States)

    La Favor, Justin D.; Dubis, Gabriel S.; Yan, Huimin; White, Joseph D.; Nelson, Margaret A.M.; Anderson, Ethan J.; Hickner, Robert C.

    2016-01-01

    Objective The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and to determine the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results Young, sedentary men and women were divided into lean (BMI 18–25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered (normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox were increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions This study implicates Nox as a source of excessive ROS production in skeletal muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. PMID:27765769

  19. The brain microvascular endothelium supports T cell proliferation and has potential for alloantigen presentation.

    Directory of Open Access Journals (Sweden)

    Julie Wheway

    Full Text Available Endothelial cells (EC form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4(+ and CD8(+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases.

  20. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Holst, Jens Juul; Rattigan, Stephen

    2014-01-01

    The insulinotropic gut hormone, glucagon-like-peptide-1 (GLP-1) has been proposed to have effects on vascular function and glucose disposal. However, whether GLP-1 is able to increase microvascular recruitment (MVR) in humans has not been investigated. GLP-1 was infused in the femoral artery...... in overnight fasted healthy young men. Microvascular recruitment was measured with real time contrast-enhanced ultrasound and leg glucose uptake by the leg balance technique with and without inhibition of the insulinotropic response of GLP-1 by co-infusion of octreotide. As a positive control, MVR and leg...

  1. Dietary fat composition influences tissue lipid profile and gene expression in Fischer-344 rats.

    Science.gov (United States)

    Zhou, Albert L; Hintze, Korry J; Jimenez-Flores, Rafael; Ward, Robert E

    2012-12-01

    The AIN-76A diet causes fatty liver in rodents when fed for long periods of time. The aim of this study was to utilize fatty acid analysis and transcriptomics to investigate the effects of different fat sources in the AIN-76A diet on tissue lipid profiles and gene expression in male, weanling Fischer-344 rats. Animals were fed isocaloric diets that differed only in the fat source: (1) corn oil (CO) (2) anhydrous milk fat (AMF), and (3) AMF supplemented with 10% phospholipids from the milk fat globule membrane (AMF-MFGM). There were no differences in food intake, body weight, growth rate, or body fat composition among the groups, and the fatty acid compositions of red blood cells (RBC), plasma, muscle, and visceral adipose tissues reflected the dietary fat sources. Modifying the fat source resulted in 293 genes differentially regulated in skeletal muscle, 1,124 in adipose, and 831 in liver as determined by analysis of variance (ANOVA). Although tissue fatty acid profiles mostly reflected the diet, there were several quantitative differences in lipid classes in the liver and plasma. The AMF diet resulted in the highest level of hepatic triacylglycerols, but the lowest level in plasma. The CO diet resulted in significant accumulation of hepatic unesterified fatty acids and decreased DGAT expression and activity, a potential trigger for steatohepatitis. These results indicate that the fatty acid composition and presence of polar lipids in the AIN-76A diets have significant effects on lipid partitioning, gene expression, and potentially the development of liver pathology.

  2. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn

  3. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Arianna De Mori

    2018-03-01

    Full Text Available Injuries of bone and cartilage constitute important health issues costing the National Health Service billions of pounds annually, in the UK only. Moreover, these damages can become cause of disability and loss of function for the patients with associated social costs and diminished quality of life. The biomechanical properties of these two tissues are massively different from each other and they are not uniform within the same tissue due to the specific anatomic location and function. In this perspective, tissue engineering (TE has emerged as a promising approach to address the complexities associated with bone and cartilage regeneration. Tissue engineering aims at developing temporary three-dimensional multicomponent constructs to promote the natural healing process. Biomaterials, such as hydrogels, are currently extensively studied for their ability to reproduce both the ideal 3D extracellular environment for tissue growth and to have adequate mechanical properties for load bearing. This review will focus on the use of two manufacturing techniques, namely electrospinning and 3D printing, that present promise in the fabrication of complex composite gels for cartilage and bone tissue engineering applications.

  4. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).

    Science.gov (United States)

    DeStefano, Jackson G; Xu, Zinnia S; Williams, Ashley J; Yimam, Nahom; Searson, Peter C

    2017-08-04

    The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm -2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation

  5. Hemifacial spasm : Intraoperative electromyographic monitoring as a guide for microvascular decompression

    NARCIS (Netherlands)

    Mooij, JJA; Mustafa, MK; van Weerden, TW

    2001-01-01

    OBJECTIVE: Microvascular decompression is the logical and well-accepted treatment of choice for hemifacial spasm (HFS). In experienced hands, good to excellent results can be obtained. However, sometimes the exact site of the vascular compression is unclear. The aim of this study was to analyze

  6. MICROVASCULAR CHANGES IN AGED RAT FOREBRAIN - EFFECTS OF CHRONIC NIMODIPINE TREATMENT

    NARCIS (Netherlands)

    de Jong, Giena; Weerd, H. de; Schuurman, T.; Traber, J.; Luiten, P.G.M.

    1990-01-01

    In the present study the effects of long-term treatment with the 1,4-dihydropyridine calcium antagonist nimodipine on ultrastructural alterations of the microvascular morphology were examined in the frontoparietal cortex, entorhinal cortex and CA1 of the hippocampus in the aged rat. Qualitative

  7. Significance of determination of bone mineral density and osteocalcin in diabetic patients with diabetic microvascular complications

    International Nuclear Information System (INIS)

    Kong Xianghui; Mu Junqing; Lu Kuan

    2003-01-01

    Objective: To study the influence of diabetic microvascular complications on bone mineral density (BMI) and osteocalcin (BGP). Methods: 60 patients with type 2 diabetes mellitus were studied, including 33 with microvascular complications (retinopathy, nephropathy, neuropathy) (group 1) and 27 without complications (group 2). Fasting blood glucose, serum fructosamine (GSP), total alkaline phosphatase (TALP), calcium (Ca 2+ ) levels were measured by biochemical method; osteocalcin (BGP) level was detected by RIA. BMD of the lumbar spine and femur was measured by dual energy X-ray absorptiometry in all patients. Body mass index (BMI) was calculated from the height and body weight. Results: The BMI, GSP, FBG, TALP and Ca 2+ values in the two groups were not much different, but BGP and BMD in group 1 were significantly lower than those in group 2. Conclusion: Bone mineral density (BMD) and BGP values were closely related to the microvascular complications in diabetes, which could decrease bone formation and increase the frequency of osteoporosis

  8. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    Science.gov (United States)

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  9. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, K; Araki, F; Ohno, T [Kumamoto University, Kumamoto, Kumamoto (Japan)

    2016-06-15

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photon and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.

  10. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    Science.gov (United States)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Microvascular oxygen extraction during maximal isometric contraction in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Flavia Fernandes Manfredi de Freitas

    Full Text Available Abstract Introduction: COPD presents decrease in oxidative metabolism with possible losses of cardiovascular adjustments, suggesting slow kinetics microvascular oxygen during intense exercise. Objective: To test the hypothesis that chronic obstructive pulmonary disease (COPD patients have lower muscle performance in physical exercise not dependent on central factors, but also greater muscle oxygen extraction, regardless of muscle mass. Methods: Cross-sectional study with 11 COPD patients and nine healthy subjects, male, paired for age. Spirometry and body composition by DEXA were evaluated. Muscular performance was assessed by maximal voluntary isometric contraction (MVIC in isokinetic dynamometer and muscle oxygen extraction by the NIRS technique. Student t-test and Pearson correlation were applied. A significance level of p<0.05 was adopted. Results: Patients had moderate to severe COPD (FEV1 = 44.5 ± 9.6% predicted; SpO2 = 94.6 ± 1.6%. Lean leg mass was 8.3 ± 0.9 vs. 8.9 ± 1.0 kg (p =0.033, when comparing COPD and control patients, respectively. The decreased muscle oxygen saturation corrected by muscle mass was 53.2% higher (p=0.044 in the COPD group in MVIC-1 and 149.6% higher (p=0.006 in the MVIC-2. Microvascular extraction rate of oxygen corrected by muscle mass and total work was found to be 114.5% higher (p=0.043 in the COPD group in MVIC-1 and 210.5% higher (p=0.015 in the MVIC-2. Conclusion: COPD patients have low muscle performance and high oxygen extraction per muscle mass unit and per unit of work. The high oxygen extraction suggests that quantitative and qualitative mechanisms can be determinants of muscle performance in patients with COPD.

  12. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering.

    Science.gov (United States)

    Kular, Jaspreet K; Basu, Shouvik; Sharma, Ram I

    2014-01-01

    The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix-related cellular processes are also reviewed.

  13. Can the inflammatory response be evaluated using 18F-FDG within zones of microvascular obstruction after myocardial infarction?

    Science.gov (United States)

    Prato, Frank S; Butler, John; Sykes, Jane; Keenliside, Lynn; Blackwood, Kimberley J; Thompson, R Terry; White, James A; Mikami, Yoko; Thiessen, Jonathan D; Wisenberg, Gerald

    2015-02-01

    Inflammation that occurs after acute myocardial infarction plays a pivotal role in healing by facilitating the creation of a supportive scar. (18)F-FDG, which is taken up avidly by macrophages, has been proposed as a marker of cell-based inflammation. However, its reliability as an accurate indicator of inflammation has not been established, particularly in the early postinfarction period when regional myocardial perfusion is often severely compromised. Nine adult dogs underwent left anterior descending coronary occlusion with or without reperfusion. Animals were imaged between 7 and 21 d after infarction with PET/MR imaging after bolus injection of gadolinium-diethylenetriaminepentaacetic acid (DTPA), bolus injection of (18)F-FDG, bolus injection of (99)Tc-DTPA to simulate the distribution of gadolinium-DTPA (which represents its partition coefficient in well-perfused tissue), and injection of (111)In-labeled white blood cells 24 h earlier. After sacrifice, myocardial tissue concentrations of (18)F, (111)In, and (99)Tc were determined in a well counter. Linear regression analysis evaluated the relationships between the concentrations of (111)In and (18)F and the dependence of the ratio of (111)In/(18)F to the apparent distribution volume of (99m)Tc-DTPA. In 7 of 9 animals, (111)In increased as (18)F increased with the other 2 animals, showing weak negative slopes. With respect to the dependence of (111)In/(18)F with partition coefficient, 4 animals showed no dependence and 4 showed a weak positive slope, with 1 animal showing a negative slope. Further, in regions of extensive microvascular obstruction, (18)F significantly underestimated the extent of the presence of (111)In. In the early post-myocardial infarction period, (18)F-FDG PET imaging after a single bolus administration may underestimate the extent and degree of inflammation within regions of microvascular obstruction. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  15. Prediabetes and Type 2 Diabetes Are Associated With Generalized Microvascular Dysfunction: The Maastricht Study.

    Science.gov (United States)

    Sörensen, Ben M; Houben, Alfons J H M; Berendschot, Tos T J M; Schouten, Jan S A G; Kroon, Abraham A; van der Kallen, Carla J H; Henry, Ronald M A; Koster, Annemarie; Sep, Simone J S; Dagnelie, Pieter C; Schaper, Nicolaas C; Schram, Miranda T; Stehouwer, Coen D A

    2016-11-01

    Type 2 diabetes (T2DM) is associated with an increased risk of cardiovascular disease. This can be partly explained by large-artery dysfunction, which already occurs in prediabetes ("ticking clock hypothesis"). Whether a similar phenomenon also applies to microvascular dysfunction is not known. We therefore tested the hypothesis that microvascular dysfunction is already present in prediabetes and is more severe in T2DM. To do so, we investigated the associations of prediabetes, T2DM, and measures of hyperglycemia with microvascular function measured as flicker light-induced retinal arteriolar dilation and heat-induced skin hyperemia. In the Maastricht Study, a T2DM-enriched population-based cohort study (n=2213, 51% men, aged [mean±standard deviation] 59.7±8.2 years), we determined flicker light-induced retinal arteriolar %-dilation (Dynamic Vessel Analyzer), heat-induced skin %-hyperemia (laser-Doppler flowmetry), and glucose metabolism status (oral glucose tolerance test; normal glucose metabolism [n=1269], prediabetes [n=335], or T2DM [n=609]). Differences were assessed with multivariable regression analyses adjusted for age, sex, body mass index, smoking, physical activity, systolic blood pressure, lipid profile, retinopathy, estimated glomerular filtration rate, (micro)albuminuria, the use of lipid-modifying and blood pressure-lowering medication, and prior cardiovascular disease. Retinal arteriolar %-dilation was (mean±standard deviation) 3.4±2.8 in normal glucose metabolism, 3.0±2.7 in prediabetes, and 2.3±2.6 in T2DM. Adjusted analyses showed a lower arteriolar %-dilation in prediabetes (B=-0.20, 95% confidence interval -0.56 to 0.15) with further deterioration in T2DM (B=-0.61 [-0.97 to -0.25]) versus normal glucose metabolism (P for trend=0.001). Skin %-hyperemia was (mean±standard deviation) 1235±810 in normal glucose metabolism, 1109±748 in prediabetes, and 937±683 in T2DM. Adjusted analyses showed a lower %-hyperemia in prediabetes (B=-46

  16. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Nadeem, Danish; Kiamehr, Mostafa; Yang, Xuebin; Su, Bo

    2013-01-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO 2 , 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  17. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  18. Microvascular anastomosis using the vascular closure device in free flap reconstructive surgery: A 13-year experience.

    Science.gov (United States)

    Reddy, Chaitan; Pennington, David; Stern, Harvey

    2012-02-01

    The achievement of patency of the microvascular anastomosis in free flap surgery is dependent on a number of factors, central to which is atraumatic handling of the vessel lumen, and intimal apposition. Initial laboratory studies demonstrating the superiority of the non-penetrating vascular closure staple (VCS - Anastoclip ®) were followed by our report in 1999 on a series of free flaps. There is still a paucity of data in the literature on the use of non-penetrating devices for microvascular anastomosis, and our review gives evidence to support the routine use of the VCS in microsurgical free flap surgery. We now report on its successful use over a thirteen year period in 819 free flap reconstructions. Our data indicates the VCS device to be as effective as sutured anastomoses in free tissue transfer surgery. There is also statistically significant data (Barnard's Exact Test) to demonstrate a higher vascular patency rate of the VCS device over sutured anastomoses when sub group analysis is performed. 'Take-back' revision rates were lower amongst flaps that employed VCS use. For arterial anastomoses, this equated to 3/654(0.05%) vs 4/170(2.4%) with hand-sewn anastomoses (p = 0.02). Similarly, for venous anastomoses the 'take-back' revision rate was 7/661(1.1%) vs 8/165(4.8%) with hand-sewn anastomoses (p = 0.003). Furthermore, the major advantage of the VCS is reduction in anastomosis time, from approximately 25 min per anastomosis for sutures to between five and 10 min for staples. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Targeting the dominant mechanism of coronary microvascular dysfunction with intracoronary physiology tests

    NARCIS (Netherlands)

    Mejia-Renteria, H.; Hoeven, N. van der; Hoef, T.P. van de; Heemelaar, J.; Ryan, N.; Lerman, A.; Royen, N. van; Escaned, J.

    2017-01-01

    The coronary microcirculation plays a key role in modulating blood supply to the myocardium. Several factors like myocardial oxygen demands, endothelial and neurogenic conditions determine its function. Although there is available evidence supporting microvascular dysfunction as an important cause

  20. Hepatitis B and C seroprevalence in patients with diabetes mellitus and its relationship with microvascular complications

    Directory of Open Access Journals (Sweden)

    Kadir Gisi

    2016-12-01

    Full Text Available Introduction: Diabetic patients are susceptible to bacterial, viral and fungal infections because of various deficiencies in the immune system. Aim: To investigate a possible link between hepatitis B/C prevalence and microvascular complications as well as duration of diabetes. Material and methods: In total 1263 diabetic patients (1149 type 2, 114 type 1 were enrolled in the study. The control group consisted of 1482 healthy blood donors who were over 40 years old. All diabetic patients were tested for HBsAg, anti-HBs and anti-HCV beside routine laboratory tests. Diabetic patients were divided into three groups according to their diabetes duration, and all of the patients were scanned for microvascular complications. Demographic data of all patients were recorded. Results : HBsAg seropositivity was 3.7% in diabetic patients and 1.08% in the control group; this difference was statistically significant (p < 0.001. HBsAg positivity rates in type 1 and type 2 diabetics were 0.8% and 4%, respectively (p = 0.09. HCV seropositivity was 2.2% for diabetics and 0.5% for the control group; this difference was statistically significant (p 0.05. Also, no relationship was found between microvascular complications of diabetes and hepatitis B/C seropositivity. Conclusions : Hepatitis B and C seroprevalence was found to be increased in diabetes mellitus; however, there was no relationship between hepatitis seroprevalence and the duration or microvascular complications of diabetes.

  1. Increased Angiotensin II Sensitivity Contributes to Microvascular Dysfunction in Women Who Have Had Preeclampsia.

    Science.gov (United States)

    Stanhewicz, Anna E; Jandu, Sandeep; Santhanam, Lakshmi; Alexander, Lacy M

    2017-08-01

    Women who have had preeclampsia have increased cardiovascular disease risk; however, the mechanism(s) responsible for this association remain unclear. Microvascular damage sustained during a preeclamptic pregnancy may persist postpartum. The putative mechanisms mediating this dysfunction include a reduction in NO-dependent dilation and an increased sensitivity to angiotensin II. In this study, we evaluated endothelium-dependent dilation, angiotensin II sensitivity, and the therapeutic effect of angiotensin II receptor blockade (losartan) on endothelium-dependent dilation in vivo in the microvasculature of women with a history of preeclampsia (n=12) and control women who had a healthy pregnancy (n=12). We hypothesized that preeclampsia would have (1) reduced endothelium-dependent dilation, (2) reduced NO-mediated dilation, and (3) increased sensitivity to angiotensin II. We further hypothesized that localized losartan would increase endothelium-dependent vasodilation in preeclampsia. We assessed microvascular endothelium-dependent vasodilator function by measurement of cutaneous vascular conductance responses to graded infusion of acetylcholine (acetylcholine; 10 -7 -102 mmol/L) and a standardized local heating protocol in control sites and sites treated with 15 mmol/L L-NAME ( N G -nitro-l-arginine methyl ester; NO-synthase inhibitor) or 43 µmol/L losartan. Further, we assessed microvascular vasoconstrictor sensitivity to angiotensin II (10 -20 -10 -4 mol/L). Preeclampsia had significantly reduced endothelium-dependent dilation (-0.3±0.5 versus -1.0±0.4 log EC50 ; P Preeclampsia also had augmented vasoconstrictor sensitivity to angiotensin II (-10.2±1.3 versus -8.3±0.5; P =0.006). Angiotensin II type I receptor inhibition augmented endothelium-dependent vasodilation and NO-dependent dilation in preeclampsia but had no effect in healthy pregnancy. These data suggest that women who have had preeclampsia have persistent microvascular dysfunction postpartum

  2. Photocoagulation of microvascular and hemorrhagic lesions of the vocal fold with the KTP laser.

    Science.gov (United States)

    Hirano, Shigeru; Yamashita, Masaru; Kitamura, Morimasa; Takagita, Shin-ichi

    2006-04-01

    Ectasias and varices of the vocal fold are microvascular lesions that are often due to chronic abuse of the voice, and are occasionally encountered in association with other disorders such as polyps, Reinke's edema, and hematoma. The KTP laser can be used for photocoagulation of small vascular lesions, because the laser beam is well absorbed by hemoglobin, and damage to the epithelium is minimal. The present pilot study examined how the KTP laser could be used for microvascular lesions and their associated lesions. Twelve patients who had undergone phonomicrosurgery were enrolled in the present study. The microvascular lesions were treated by photocoagulation with the laser set at a low power of 1.5 W in the continuous mode, while preserving the epithelium, and associated lesions were then treated by microdissection with cold instruments. The postoperative phonatory function was assessed by maximum phonation time, a perceptual test rating (GRBAS scale), and stroboscopy. The procedures were completed successfully in all cases. An exceptional case of a small hemorrhagic polyp allowed treatment with the laser only. The postoperative stroboscopic findings, maximum phonation time, and perceptual test rating all showed significant improvement compared with the preoperative state. No adverse effects, such as scarring or reduction of the mucosal wave, were observed in the current series. KTP laser photocoagulation is a relatively simple and safe procedure for treating microvascular lesions of the vocal fold. It is not recommended for photocoagulation of hemorrhagic polyps or hematomas, because such lesions have little blood flow inside and thus photocoagulation is usually impossible or requires too much laser energy. However, photocoagulation of perimeter or feeding vessels of such disorders may facilitate the following procedure by avoiding unnecessary bleeding, as well as preventing recurrence of hemorrhagic lesions.

  3. Phase coherence of 0.1 Hz microvascular tone oscillations during the local heating

    Science.gov (United States)

    Mizeva, I. A.

    2017-06-01

    The origin of the mechanisms of blood flow oscillations at low frequencies is discussed. It is known that even isolated arteriole demonstrates oscillations with the frequency close to 0.1 Hz, which is caused by the synchronous activity of myocyte cells. On the other hand, oscillations with close frequency are found in the heart rate, which are associated with quite different mechanism. The main purpose of this work is to study phase coherence of the blood flow oscillations in the peripheral vessels under basal and perturbed conditions. Local heating which locally influences the microvascular tone, as one of currently elucidated in sufficient detail physiological test, was chosen. During such provocation blood flow though the small vessels significantly increases because of vasodilation induced by the local synthesis of nitric oxide. In the first part of the paper microvascular response to the local test is quantified in healthy and pathological conditions of diabetes mellitus type 1. It is obtained that regardless of the pathology, subjects with high basal perfusion had lower reserve for vasodilation, which can be caused by the low elasticity of microvascular structure. Further synchronization of pulsations of the heated and undisturbed skin was evaluated on the base of wavelet phase coherency analysis. Being highly synchronised in basal conditions 0.1 Hz pulsations became more independent during heating, especially during NO-mediated vasodilation.

  4. Application of microvascular free osteocutaneous flaps in the management of post-radiation recurrent oral cancer

    International Nuclear Information System (INIS)

    Rosen, I.B.; Manktelow, R.T.; Zuker, R.M.; Boyd, B.

    1985-01-01

    Fifty-nine patients underwent free flap osteocutaneous reconstruction that consisted of flaps of the dorsum of the foot in 26 patients and iliac crest flaps in 33 with a success rate of 92 percent and a mortality rate of 1.6 percent. These flaps, which require the expertise of microvascular surgeons, are time-consuming and complicate operating room and time management, but they represent a remarkable advance in reconstruction that can facilitate cosmetic and functional recovery of the patient. In particular, they promote healing in radiation-recurrent oral cancer and represent a definitive form of management for established radionecrosis of the mandible. The large volume of tissue available with iliac crest osteocutaneous grafts permits the management of patients with extensive cancer involving the skin, mucosa, and bone, but cancer control may still be disappointing and there is a need for improved adjuvant chemotherapy protocols. This technique appears to be a dependable, repeatable, and significant advance in management of the patient with head and neck cancer

  5. Better microvascular function on long-term treatment with lisinopril than with nifedipine in renal transplant recipients.

    Science.gov (United States)

    Asberg, A; Midtvedt, K; Vassbotn, T; Hartmann, A

    2001-07-01

    The prevalence of hypertension in renal transplant recipients is high but the pathophysiology is poorly defined. Impaired endothelial function may be a factor of major importance. The present study addresses the effects of long-term treatment with either lisinopril or slow-release nifedipine on microvascular function and plasma endothelin in renal transplant recipients on cyclosporin A (CsA). Seventy-five hypertensive renal transplant recipients were double-blind randomized to receive slow-release nifedipine (NIF, n=40) or lisinopril (LIS, n=35). Ten normotensive, age-matched recipients served as controls. All patients received CsA-based immunosuppressive therapy including prednisolone and azathioprine. Microvascular function was assessed in the forearm skin vasculature, using laser Doppler flowmetry in combination with post-occlusive reactive hyperaemia and endothelial-dependent function during local acetylcholine (ACh) stimulation. The analysis of microvascular function (AUC(rh)) showed that nifedipine-treated patients had significantly lower responses compared with lisinopril-treated patients (20+/-17 and 43+/-20 AU x min respectively, P=0.0016). Endothelial function was borderline significantly lower in the NIF group compared with the LIS group (640+/-345 and 817+/-404 AU x min respectively, P=0.056). The responses in the LIS group were comparable with those in non-hypertensive controls (AUC(rh) was 37+/-16 and AUC(ACh) was 994+/-566 AU x min). Plasma endothelin-1 concentrations were significantly higher in the NIF group compared with the LIS group (0.44+/-0.19 vs. 0.34+/-0.10 fmol/ml respectively, P=0.048), and were 0.29+/-0.09 fmol/ml in the control patients. AUC(ACh) was associated with plasma endothelin-1 (P=0.0053), while AUC(rh) was not (P=0.080). The study indicates that long-term treatment with lisinopril, when compared with nifedipine, yields a more beneficial effect on microvascular function in hypertensive renal transplant recipients on CsA. The

  6. Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue.

    Science.gov (United States)

    Gapeyev, Andrew B; Kulagina, Tatiana P; Aripovsky, Alexander V

    2013-08-01

    To test the participation of fatty acids (FA) in antitumor effects of extremely high-frequency electromagnetic radiation (EHF EMR), the changes in the FA composition in the thymus, liver, blood plasma, muscle tissue, and tumor tissue in mice with Ehrlich solid carcinoma exposed to EHF EMR were studied. Normal and tumor-bearing mice were exposed to EHF EMR with effective parameters (42.2 GHz, 0.1 mW/cm2, 20 min daily during five consecutive days beginning the first day after the inoculation of tumor cells). Fatty acid composition of various organs and tissues of mice were determined using a gas chromatography. It was shown that the exposure of normal mice to EHF EMR or tumor growth significantly increased the content of monounsaturated FA (MUFA) and decreased the content of polyunsaturated FA (PUFA) in all tissues examined. Exposure of tumor-bearing mice to EHF EMR led to the recovery of FA composition in thymocytes to the state that is typical for normal animals. In other tissues of tumor-bearing mice, the exposure to EHF EMR did not induce considerable changes that would be significantly distinguished between disturbances caused by EHF EMR exposure or tumor growth separately. In tumor tissue which is characterized by elevated level of MUFA, the exposure to EHF EMR significantly decreased the summary content of MUFA and increased the summary content of PUFA. The recovery of the FA composition in thymocytes and the modification of the FA composition in the tumor under the influence of EHF EMR on tumor-bearing animals may have crucial importance for elucidating the mechanisms of antitumor effects of the electromagnetic radiation.

  7. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  8. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Liu, Mingxian; Dai, Libing; Shi, Huizhe; Xiong, Sheng; Zhou, Changren

    2015-01-01

    In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100–200 μm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering. - Highlights: • We fabricated HNTs reinforced alginate composite scaffolds for biomedical applications. • The hydrogen bond interactions between HNTs and alginate are confirmed. • HNTs can significantly enhance the mechanical properties of alginate scaffold. • The scaffolds exhibit a highly porous structure with interconnected pores. • HNTs can improve the cell attachment and proliferation on alginate

  9. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingxian [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China); Dai, Libing [Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital Medical College, Jinan University, Guangzhou 510220 (China); Shi, Huizhe; Xiong, Sheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Department of Materials Science and Engineering, Jinan University, Guangzhou 510632 (China)

    2015-04-01

    In this study, a series of alginate/halloysite nanotube (HNTs) composite scaffolds were prepared by solution-mixing and freeze-drying method. HNTs are incorporated into alginate to improve both the mechanical and cell-attachment properties of the scaffolds. The interfacial interactions between alginate and HNTs were confirmed by the atomic force microscope (AFM), transmission electron microscope (TEM) and FTIR spectroscopy. The mechanical, morphological, and physico-chemical properties of the composite scaffolds were investigated. The composite scaffolds exhibit significant enhancement in compressive strength and compressive modulus compared with pure alginate scaffold both in dry and wet states. A well-interconnected porous structure with size in the range of 100–200 μm and over 96% porosity is found in the composite scaffolds. X-ray diffraction (XRD) result shows that HNTs are uniformly dispersed and partly oriented in the composite scaffolds. The incorporation of HNTs leads to increase in the scaffold density and decrease in the water swelling ratio of alginate. HNTs improve the stability of alginate scaffolds against enzymatic degradation in PBS solution. Thermogravimetrica analysis (TGA) shows that HNTs can improve the thermal stability of the alginate. The mouse fibroblast cells display better attachment to the alginate/HNT composite than those to the pure alginate, suggesting the good cytocompatibility of the composite scaffolds. Alginate/HNT composite scaffolds exhibit great potential for applications in tissue engineering. - Highlights: • We fabricated HNTs reinforced alginate composite scaffolds for biomedical applications. • The hydrogen bond interactions between HNTs and alginate are confirmed. • HNTs can significantly enhance the mechanical properties of alginate scaffold. • The scaffolds exhibit a highly porous structure with interconnected pores. • HNTs can improve the cell attachment and proliferation on alginate.

  10. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability.

    Science.gov (United States)

    Sarin, Hemant

    2010-08-11

    Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof

  11. Long-term effects of bariatric surgery on peripheral endothelial function and coronary microvascular function.

    Science.gov (United States)

    Tarzia, Pierpaolo; Lanza, Gaetano A; Sestito, Alfonso; Villano, Angelo; Russo, Giulio; Figliozzi, Stefano; Lamendola, Priscilla; De Vita, Antonio; Crea, Filippo

    We previously demonstrated that bariatric surgery (BS) leads to a short-term significant improvement of endothelial function and coronary microvascular function. In this study we assessed whether BS maintains its beneficial effect at long-term follow up. We studied 19 morbidly obese patients (age 43±9years, 12 women) without any evidence of cardiovascular disease who underwent BS. Patients were studied before BS, at 3 months and at 4.0±1.5years follow up. Peripheral vascular function was assessed by flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD), i.e., brachial artery diameter changes in response to post-ischemic forearm hyperhaemia and to nitroglycerin administration, respectively. Coronary microvascular function was assessed by measuring coronary blood flow (CBF) response to intravenous adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery. Together with improvement of anthropometric and metabolic profile, at long-term follow-up patients showed a significant improvement of FMD (6.43±2.88 vs. 8.21±1.73%, p=0.018), and CBF response to both adenosine (1.73±0.48 vs. 2.58±0.54; pfunction and on coronary microvascular dilator function. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  12. The pleiotropic effects of simvastatin on retinal microvascular endothelium has important implications for ischaemic retinopathies.

    Directory of Open Access Journals (Sweden)

    Reinhold J Medina

    Full Text Available BACKGROUND: Current guidelines encourage the use of statins to reduce the risk of cardiovascular disease in diabetic patients; however the impact of these drugs on diabetic retinopathy is not well defined. Moreover, pleiotropic effects of statins on the highly specialised retinal microvascular endothelium remain largely unknown. The objective of this study was to investigate the effects of clinically relevant concentrations of simvastatin on retinal endothelium in vitro and in vivo. METHODS AND FINDINGS: Retinal microvascular endothelial cells (RMECs were treated with 0.01-10 microM simvastatin and a biphasic dose-related response was observed. Low concentrations enhanced microvascular repair with 0.1 microM simvastatin significantly increasing proliferation (p<0.05, and 0.01 microM simvastatin significantly promoting migration (p<0.05, sprouting (p<0.001, and tubulogenesis (p<0.001. High concentration of simvastatin (10 microM had the opposite effect, significantly inhibiting proliferation (p<0.01, migration (p<0.01, sprouting (p<0.001, and tubulogenesis (p<0.05. Furthermore, simvastatin concentrations higher than 1 microM induced cell death. The mouse model of oxygen-induced retinopathy was used to investigate the possible effects of simvastatin treatment on ischaemic retinopathy. Low dose simvastatin (0.2 mg/Kg promoted retinal microvascular repair in response to ischaemia by promoting intra-retinal re-vascularisation (p<0.01. By contrast, high dose simvastatin(20 mg/Kg significantly prevented re-vascularisation (p<0.01 and concomitantly increased pathological neovascularisation (p<0.01. We also demonstrated that the pro-vascular repair mechanism of simvastatin involves VEGF stimulation, Akt phosphorylation, and nitric oxide production; and the anti-vascular repair mechanism is driven by marked intracellular cholesterol depletion and related disorganisation of key intracellular structures. CONCLUSIONS: A beneficial effect of low

  13. Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Balaji, S.; Kumar, Ramadhar; Sripriya, R.; Kakkar, Prachi; Ramesh, D. Vijaya; Reddy, P. Neela Kanta; Sehgal, P.K.

    2012-01-01

    We report fabrication of three dimensional scaffolds with well interconnected matrix of high porosity using keratin, chitosan and gelatin for tissue engineering and other biomedical applications. Scaffolds were fabricated using porous Keratin–Gelatin (KG), Keratin–Chitosan (KC) composites. The morphology of both KG and KC was investigated using SEM. The scaffolds showed high porosity with interconnected pores in the range of 20–100 μm. They were further tested by FTIR, DSC, CD, tensile strength measurement, water uptake and swelling behavior. In vitro cell adhesion and cell proliferation tests were carried out to study the biocompatibility behavior and their application as an artificial skin substitute. Both KG and KC composite scaffolds showed similar properties and patterns for cell proliferation. Due to rapid degradation of gelatin in KG, we found that it has limited application as compared to KC scaffold. We conclude that KC scaffold owing to its slow degradation and antibacterial properties would be a better substrate for tissue engineering and other biomedical application. Highlights: ► Extraction of reduced keratin from horn meal. ► Preparation of keratin–gelatin and keratin–chitosan composite scaffolds. ► Characterizations of the composite scaffolds. ► Comparative cytotoxicity analysis on NIH3T3 fibroblasts.

  14. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram Vinod; Hansen, Stinus; Nielsen, Morten Frost Munk

    2016-01-01

    OBJECTIVE AND DESIGN: Patients with type 2 diabetes mellitus (T2D) have an increased fracture risk despite a normal or elevated bone mineral density (BMD). The aim of this cross-sectional in vivo study was to assess parameters of peripheral bone microarchitecture, estimated bone strength and bone...... remodeling in T2D patients with and without diabetic microvascular disease (MVD+ and MVD- respectively) and to compare them with healthy controls. METHODS: Fifty-one T2D patients (MVD+ group: n=25) were recruited from Funen Diabetic Database and matched for age, sex and height with 51 healthy subjects. High...... deficits are not a characteristic of all T2D patients but of a subgroup characterized by the presence of microvascular complications. Whether this influences fracture rates in these patients needs further investigation....

  15. Restrictive use of perioperative blood transfusion does not increase complication rates in microvascular breast reconstruction.

    Science.gov (United States)

    O'Neill, Anne C; Barandun, Marina; Cha, Jieun; Zhong, Toni; Hofer, Stefan O P

    2016-08-01

    With increasing appreciation of the possible adverse effects of peri-operative blood transfusion, restrictive policies regarding use of blood products have been adopted in many surgical specialties. Although microvascular breast reconstruction has become a routine procedure, high peri-operative transfusion rates continue to be reported in the literature. In this study we examine the impact of our restrictive approach on blood transfusion rates and postoperative complications in patients undergoing microvascular blood transfusion. A retrospective review of patients undergoing microvascular breast reconstruction with abdominal flaps at a single institution was performed. Patient age and body mass index as well as type, timing and laterality of reconstruction was recorded. Pre-operative and post-operative hemoglobin and hematocrit were recorded. Peri-operative blood transfusion rates were calculated. Post-operative complication rates were compared between patients with higher and lower post-operative hemoglobin levels. Five hundred and twelve patients were included in this study. The peri-operative transfusion rate was 0.98% in this series. There was no significant difference between transfusion rates in unilateral and bilateral reconstructions (0.68 vs 1.36% p = 0.08) or immediate and delayed reconstructions (1.02 vs 0.51% p = 0.72 and 1.01 vs 1.60% p = 0.09 for unilateral and bilateral respectively). Lower post-operative hemoglobin levels were not associated with increased flap related, surgical or medical complications rates. A restrictive approach to peri-operative blood transfusion can be safely adopted in microvascular breast reconstruction without compromising flap viability or overall complication rates. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Improving diagnosis and treatment of women with angina pectoris and microvascular disease

    DEFF Research Database (Denmark)

    Prescott, Eva; Abildstrøm, Steen Zabell; Aziz, Ahmed

    2014-01-01

    BACKGROUND: The iPOWER study aims at determining whether routine assessment of coronary microvascular dysfunction (CMD) in women with angina and no obstructive coronary artery disease is feasible and identifies women at risk. METHODS: All women with angina referred to invasive angiographic assess...

  17. Fabrication of Chitin/Poly(butylene succinate/Chondroitin Sulfate Nanoparticles Ternary Composite Hydrogel Scaffold for Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Deepthi

    2014-12-01

    Full Text Available Skin loss is one of the oldest and still not totally resolved problems in the medical field. Since spontaneous healing of the dermal defects would not occur, the regeneration of full thickness of skin requires skin substitutes. Tissue engineering constructs would provide a three dimensional matrix for the reconstruction of skin tissue and the repair of damage. The aim of the present work is to develop a chitin based scaffold, by blending it with poly(butylene succinate (PBS, an aliphatic, biodegradable and biocompatible synthetic polymer with excellent mechanical properties. The presence of chondroitin sulfate nanoparticles (CSnp in the scaffold would favor cell adhesion. A chitin/PBS/CSnp composite hydrogel scaffold was developed and characterized by SEM (Scanning Electron Microscope, FTIR (Fourier Transform Infrared Spectroscopy, and swelling ratio of scaffolds were analyzed. The scaffolds were evaluated for the suitability for skin tissue engineering application by cytotoxicity, cell attachment, and cell proliferation studies using human dermal fibroblasts (HDF. The cytotoxicity and cell proliferation studies using HDF confirm the suitability of the scaffold for skin regeneration. In short, these results show promising applicability of the developed chitin/PBS/CSnps ternary composite hydrogel scaffolds for skin tissue regeneration.

  18. Presence of diabetic microvascular complications does not incrementally increase risk of ischemic stroke in diabetic patients with atrial fibrillation

    Science.gov (United States)

    Chou, Annie Y.; Liu, Chia-Jen; Chao, Tze-Fan; Wang, Kang-Ling; Tuan, Ta-Chuan; Chen, Tzeng-Ji; Chen, Shih-Ann

    2016-01-01

    Abstract Conventional stroke risk prediction tools used in atrial fibrillation (AF) incorporate the presence of diabetes mellitus (DM) as a risk factor. However, it is unknown whether this risk is homogenous or dependent on the presence of diabetic microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy. The present study examined the risk of ischemic stroke in diabetic patients with and without microvascular complications. The present study used the National Health Insurance Research Database in Taiwan with detailed healthcare data on all-comers to the Taiwanese medical system from January 1, 1996 to December 31, 2011. AF and DM were identified when listed as discharge diagnoses or confirmed more than twice in the outpatient department. Patients on antithrombotic agents were excluded. The clinical endpoint was ischemic stroke. Among the 50,180 AF patients with DM, the majority had no microvascular complications (72.7%), while 2.6% had diabetic retinopathy, 8.4% had diabetic nephropathy, and 16.1% had diabetic neuropathy. Ischemic stroke occurred in 6003 patients, with a 4.74% annual risk of ischemic stroke. When compared with DM patients without microvascular complications, those with diabetic retinopathy, nephropathy, or neuropathy had higher incidences of ischemic stroke (4.65 vs 5.07, 4.77, or 5.20 per 100 person-years, respectively). However, after adjusting for confounding factors, the differences were no longer significant. In a large nationwide AF cohort with DM, risk of ischemic stroke was similar between patients with and without microvascular complications, suggesting that risk stratification of these patients does not require inclusion of diabetic retinopathy, nephropathy, and neuropathy. PMID:27399075

  19. Microvascular Autonomic Composites

    Science.gov (United States)

    2012-01-06

    20. Kirby E, Rule JD, Michaud VJ, Sottos NR, White SR, Manson JAE. Embedded shape memory alloy wires to enhance performance of self-healing polymers...NR, White SR. Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer, 50: 5533-5538 (2009). 24...the resulting thermoset polymer are important to the degree of healing observed. 0,207 0.309 0.324 0.35S 0.401

  20. Fabrication and Properties of Silica Gel/Calcium Sulfate/Strontium-doped β-tricalcium Phosphate Composite Porous Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    QIN Xiao-su

    2018-03-01

    Full Text Available The calcium sulfate/strontium-doped β-tricalcium phosphate composite spherical pellets was fabricated, using the calcium sulfate/strontium-doped β-TCP as raw material, and through the stirring spray drying method, and then composite spherical pellets were combined with silica gel, porous silica gel/calcium sulfate/strontium-doped β-tricalcium phosphate scaffold was obtained by stacking aggregation method in the mould. The XRD, SEM and FT-IR, etc are employed to examine the chemical composition, composite morphology and structure characteristics, and the degradability, porosity, mechanical properties and cytotoxicity of the scaffolds materials were studied. The results reveal that the composite porous scaffolds have irregular pore structure with pore size between 0.2-1.0mm, and they have a large number of micropores on each of the composite spherical pellets, with the aperture between 50-200μm. Moreover, the porosity of the composite scaffolds is about 62%, which can meet the requirements of scaffolds for bone tissue engineering in porosity; the cytotoxicity tests show the composite scaffolds have no cytotoxic effect and it has good degradation. Therefore, it has good application prospect in bone tissue engineering of the bone defect repair of non-bearing site.

  1. Effect of physical exercise on blood lipids and adipose tissue composition in young healthy men

    NARCIS (Netherlands)

    Danner, S. A.; Wieling, W.; Havekes, L.; Leuven, J. G.; Smit, E. M.; Dunning, A. J.

    1984-01-01

    In a prospective, controlled study, the influence of strenuous physical exercise on plasma total cholesterol, HDL cholesterol, apolipoprotein A-I, total triglycerides and fatty acid composition of adipose tissue was studied during 7 months of training in 15 senior oarsmen and 21 controls matched for

  2. Macronutrient composition determines accumulation of persistent organic pollutants from dietary exposure in adipose tissue of mice

    DEFF Research Database (Denmark)

    Myrmel, Lene Secher; Fjære, Even; Midtbø, Lisa Kolden

    2016-01-01

    in metabolism and elimination of xenobiotics. Exposure to POPs, either as single compounds or mixtures, had no effect on obesity development, glucose tolerance or insulin sensitivity. In conclusion, this study demonstrates that the dietary composition of macronutrients profoundly modulates POP accumulation...... in adipose tissues adding an additional parameter to be included in future studies. Our results indicate that alterations in macronutrient composition might be an additional route for reducing total body burden of POPs....

  3. Free tissue transfer of the rectus abdominis myoperitoneal flap for oral reconstruction in a dog.

    Science.gov (United States)

    Lanz, O I

    2001-12-01

    A five-month-old intact/male Boxer dog was presented 5-days following bite wound trauma to the maxillary region resulting in an oronasal fistula extending from the maxillary canine teeth to the soft palate. Multiple surgical procedures using local, buccal mucosal flaps failed to repair the oronasal fistula. Free tissue transfer of the rectus abdominis myoperitoneal flap using microvascular surgical techniques was successful in providing soft tissue reconstruction of the hard palate area. Complications of these surgical techniques included muscle contraction and subsequent muzzle distortion. Small, refractory oronasal fistulae at the perimeter of the myoperitoneal flap were repaired by primary wound closure.

  4. Fiber/collagen composites for ligament tissue engineering: influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells.

    Science.gov (United States)

    Thayer, Patrick S; Verbridge, Scott S; Dahlgren, Linda A; Kakar, Sanjeev; Guelcher, Scott A; Goldstein, Aaron S

    2016-08-01

    Electrospun microfibers are attractive for the engineering of oriented tissues because they present instructive topographic and mechanical cues to cells. However, high-density microfiber networks are too cell-impermeable for most tissue applications. Alternatively, the distribution of sparse microfibers within a three-dimensional hydrogel could present instructive cues to guide cell organization while not inhibiting cell behavior. In this study, thin (∼5 fibers thick) layers of aligned microfibers (0.7 μm) were embedded within collagen hydrogels containing mesenchymal stem cells (MSCs), cultured for up to 14 days, and assayed for expression of ligament markers and imaged for cell organization. These microfibers were generated through the electrospinning of polycaprolactone (PCL), poly(ester-urethane) (PEUR), or a 75/25 PEUR/PCL blend to produce microfiber networks with elastic moduli of 31, 15, and 5.6 MPa, respectively. MSCs in composites containing 5.6 MPa fibers exhibited increased expression of the ligament marker scleraxis and the contractile phenotype marker α-smooth muscle actin versus the stiffer fiber composites. Additionally, cells within the 5.6 MPa microfiber composites were more oriented compared to cells within the 15 and 31 MPa microfiber composites. Together, these data indicate that the mechanical properties of microfiber/collagen composites can be tuned for the engineering of ligament and other target tissues. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1894-1901, 2016. © 2016 Wiley Periodicals, Inc.

  5. Bone marrow transplantation: Effects of conditioning and cyclosporin prophylaxis on microvascular permeability to a small solute (technetium 99m diethylene triamine penta-acetic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M. (Royal Postgraduate Medical School, London (UK). Dept. of Diagnostic Radiology); Vassilarou, D.S.; Hows, J.M. (Royal Postgraduate Medical School, London (UK). Dept. of Haematology); Ballardie, F.W. (Royal Postgraduate Medical School, London (UK). Dept. of Medicine)

    1991-03-01

    Microvascular permeability to small diffusible solutes has rarely been measured at a clinical level. We have developed a simple non-invasive technique for measuring the permeability surface area (PS) product, which is suitable for clinical use. We illustrate its potential value in six subjects who underwent bone marrow transplantation for chronic myeloid leukaemia. These patients received high-dose cyclosporin A (CyA) for prevention of graft versus host disease (GVHD) and sustained an easily measurable increase in microvascular permeability to technetium 99m diethyl triamine penta-acetic acid ({sup 99m}Tc-DTPA). This was measured as the PS product, which increased from 1.1 (SD 0.3) to 2.2 (0.4) ml/min per 100 ml tissue between baseline and treatment with CyA for prevention of GVHD (P < 0.01). The increase broadly correlated with nephrotoxicity which was measured, from the plasma DTPA clearance, as global glomerular filtration rate (GFR). This decreased from 106 (11.1) to 49 (6.7) ml/min (P < 0.001). These abnormalities, both in PS product and GFR, were sustained for several months, after which they tended to return towards baseline levels. We conclude firstly that this technique has a potential clinical role and secondly that endothelial abnormalities due to CyA deserve further study. (orig.).

  6. Evaluation of Microvascular Perfusion and Resuscitation after Severe Injury.

    Science.gov (United States)

    Lee, Yann-Leei L; Simmons, Jon D; Gillespie, Mark N; Alvarez, Diego F; Gonzalez, Richard P; Brevard, Sidney B; Frotan, Mohammad A; Schneider, Andrew M; Richards, William O

    2015-12-01

    Achieving adequate perfusion is a key goal of treatment in severe trauma; however, tissue perfusion has classically been measured by indirect means. Direct visualization of capillary flow has been applied in sepsis, but application of this technology to the trauma population has been limited. The purpose of this investigation was to compare the efficacy of standard indirect measures of perfusion to direct imaging of the sublingual microcirculatory flow during trauma resuscitation. Patients with injury severity scores >15 were serially examined using a handheld sidestream dark-field video microscope. In addition, measurements were also made from healthy volunteers. The De Backer score, a morphometric capillary density score, and total vessel density (TVD) as cumulative vessel area within the image, were calculated using Automated Vascular Analysis (AVA3.0) software. These indices were compared against clinical and laboratory parameters of organ function and systemic metabolic status as well as mortality. Twenty severely injured patients had lower TVD (X = 14.6 ± 0.22 vs 17.66 ± 0.51) and De Backer scores (X = 9.62 ± 0.16 vs 11.55 ± 0.37) compared with healthy controls. These scores best correlated with serum lactate (TVD R(2) = 0.525, De Backer R(2) = 0.576, P trauma patients, and seems to provide real-time assessment of microcirculatory perfusion. This study suggests that in severe trauma, many indirect measurements of perfusion do not correlate with microvascular perfusion. However, visualized perfusion deficiencies do reflect a shift toward anaerobic metabolism.

  7. Quantitative evaluation of capillaroscopic microvascular changes in patients with established coronary heart disease.

    Science.gov (United States)

    Sanchez-Garcia, M Esther; Ramirez-Lara, Irene; Gomez-Delgado, Francisco; Yubero-Serrano, Elena M; Leon-Acuña, Ana; Marin, Carmen; Alcala-Diaz, Juan F; Camargo, Antonio; Lopez-Moreno, Javier; Perez-Martinez, Pablo; Tinahones, Francisco José; Ordovas, Jose M; Caballero, Javier; Blanco-Molina, Angeles; Lopez-Miranda, Jose; Delgado-Lista, Javier

    2018-02-23

    Microcirculation disturbances have been associated to most of the cardiovascular risk factors as well as to multiple inflammatory diseases. However, whether these abnormalities are specifically augmented in patients with coronary heart disease is still unknown. We aimed to evaluate if there is a relationship between the presence of coronary heart disease and the existence of functional and structural capillary abnormalities evaluated in the cutaneous microcirculation by videocapillaroscopy. Two matched samples of 30 participants with and without coronary heart disease but with similar clinical and anthropometric characteristics were evaluated by videocapillaroscopy at the dorsal skin of the third finger of the non-dominant hand. We calculated basal capillary density as well as capillary density after a period of arterial and venous occlusion in order to evaluate functionality and maximum capillary density. We also measured capillary recruitment. Microvascular capillary density at rest was significantly lower in patients suffering from coronary heart disease than in controls. This fact was also found after dynamic tests (arterial and venous occlusion), suggesting functional impairments. Capillary recruitment of the samples was not different in our sample. In our study, patients with coronary heart disease exhibit functional and structural microvascular disturbances. Although this is a very preliminary study, these findings open the door for further studying the microvascular functionality in coronary patients and how it relates to the response to treatment and/or the prognosis of the disease. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  8. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  9. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    International Nuclear Information System (INIS)

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S.

    2007-01-01

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling

  10. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival

    Directory of Open Access Journals (Sweden)

    Bonkowski Drew

    2011-01-01

    Full Text Available Abstract The French scientist Charles Benjamin Rouget identified the pericyte nearly 140 years ago. Since that time the role of the pericyte in vascular function has been difficult to elucidate. It was not until the development of techniques to isolate and culture pericytes that scientists have begun to understand the true impact of this unique cell in the maintenance of tissue homeostasis. In the brain the pericyte is an integral cellular component of the blood-brain barrier and, together with other cells of the neurovascular unit (endothelial cells, astrocytes and neurons the pericyte makes fine-tuned regulatory adjustments and adaptations to promote tissue survival. These regulatory changes involve trans-cellular communication networks between cells. In this review we consider evidence for cell-to-cell crosstalk between pericytes and astrocytes during development and in adult brain.

  11. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    Science.gov (United States)

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630

  12. Encouraging effects of a short-term, adapted Nordic diet intervention on skin microvascular function and skin oxygen tension in younger and older adults.

    Science.gov (United States)

    Rogerson, David; McNeill, Scott; Könönen, Heidi; Klonizakis, Markos

    2018-05-01

    The microvascular benefits of regional diets appear in the literature; however, little is known about Nordic-type diets. We investigated the effects of a short-term, adapted, Nordic diet on microvascular function in younger and older individuals at rest and during activity. Thirteen young (mean age: 28 y; standard deviation: 5 y) and 15 older (mean age: 68 y; standard deviation: 6 y) participants consumed a modified Nordic diet for 4 wk. Laser Doppler flowmetry and transcutaneous oxygen monitoring were used to assess cutaneous microvascular function and oxygen tension pre- and postintervention; blood pressure, body mass, body fat percentage, ratings of perceived exertion, and peak heart rate during activity were examined concurrently. Axon-mediated vasodilation improved in older participants (1.17 [0.30] to 1.30 [0.30]; P Nordic diet might improve microvascular health. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study

    Science.gov (United States)

    Taroni, Paola; Paganoni, Anna Maria; Ieva, Francesca; Pifferi, Antonio; Quarto, Giovanna; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo

    2017-01-01

    Several techniques are being investigated as a complement to screening mammography, to reduce its false-positive rate, but results are still insufficient to draw conclusions. This initial study explores time domain diffuse optical imaging as an adjunct method to classify non-invasively malignant vs benign breast lesions. We estimated differences in tissue composition (oxy- and deoxyhemoglobin, lipid, water, collagen) and absorption properties between lesion and average healthy tissue in the same breast applying a perturbative approach to optical images collected at 7 red-near infrared wavelengths (635-1060 nm) from subjects bearing breast lesions. The Discrete AdaBoost procedure, a machine-learning algorithm, was then exploited to classify lesions based on optically derived information (either tissue composition or absorption) and risk factors obtained from patient’s anamnesis (age, body mass index, familiarity, parity, use of oral contraceptives, and use of Tamoxifen). Collagen content, in particular, turned out to be the most important parameter for discrimination. Based on the initial results of this study the proposed method deserves further investigation.

  14. In vitro aging of mineralized collagen-based composite as guided tissue regeneration membrane

    Energy Technology Data Exchange (ETDEWEB)

    Pan, S.X. [Department of Prothodontics, School of Stomatology, Peking University, Beijing 100875 (China)]. E-mail: sx_pan@sina.com; Li, Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, H.L. [Department of Prothodontics, School of Stomatology, Peking University, Beijing 100875 (China); Bai, W. [Department of Prothodontics, School of Stomatology, Peking University, Beijing 100875 (China); Gu, Y.Y. [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2006-05-15

    The technique of guided tissue regeneration (GTR) has been developed for the regeneration of periodontal tissues, bone around natural teeth and dental implants. The aim of this study is to investigate the biodegradability and mechanic behavior of a novel mineralized nano-hydroxyapatite/collagen/poly (lactic acid) (nHAC/PLA) composite as GTR membrane in vitro. The elastic modulus and maximum tensile strength of GTR film samples with different nHAC/PLA ratio were measured to get an optimal nHAC/PLA ratio. Thermogravimetric analysis was conducted to evaluate the change of the inorganic component in the samples during the process of in vitro aging. Morphology of samples was checked by using scanning electron microscopy. On the basis of the above results, it can be concluded that the GTR membranes maintained integrity and the original appearance throughout the 1-month in vitro aging. There is an active dissolution and deposition process of crystals which is propitious to the bone formation on the surface of the composite membrane. The optimal nHAC/PLA ratio of the novel membrane is 0.4:1. For a longer period of bone repair, PLA with higher molecular weight should be chosen as the scaffold for the GTR membrane.

  15. Automated segmentation of muscle and adipose tissue on CT images for human body composition analysis

    Science.gov (United States)

    Chung, Howard; Cobzas, Dana; Birdsell, Laura; Lieffers, Jessica; Baracos, Vickie

    2009-02-01

    The ability to compute body composition in cancer patients lends itself to determining the specific clinical outcomes associated with fat and lean tissue stores. For example, a wasting syndrome of advanced disease associates with shortened survival. Moreover, certain tissue compartments represent sites for drug distribution and are likely determinants of chemotherapy efficacy and toxicity. CT images are abundant, but these cannot be fully exploited unless there exist practical and fast approaches for tissue quantification. Here we propose a fully automated method for segmenting muscle, visceral and subcutaneous adipose tissues, taking the approach of shape modeling for the analysis of skeletal muscle. Muscle shape is represented using PCA encoded Free Form Deformations with respect to a mean shape. The shape model is learned from manually segmented images and used in conjunction with a tissue appearance prior. VAT and SAT are segmented based on the final deformed muscle shape. In comparing the automatic and manual methods, coefficients of variation (COV) (1 - 2%), were similar to or smaller than inter- and intra-observer COVs reported for manual segmentation.

  16. Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy.

    Directory of Open Access Journals (Sweden)

    Paola Taroni

    Full Text Available Breast tissue composition is recognized as a strong and independent risk factor for breast cancer. It is a heritable feature, but is also significantly affected by several other elements (e.g., age, menopause. Nowadays it is quantified by mammographic density, thus requiring the use of ionizing radiation. Optical techniques are absolutely non-invasive and have already proved effective in the investigation of biological tissues, as they are sensitive to tissue composition and structure.Time domain diffuse optical spectroscopy was performed at 7 wavelengths (635-1060 nm on 200 subjects to derive their breast tissue composition (in terms of water, lipid and collagen content, blood parameters (total hemoglobin content and oxygen saturation level, and information on the microscopic structure (scattering amplitude and power. The dependence of all optically-derived parameters on age, menopausal status, body mass index, and use of oral contraceptives, and the correlation with mammographic density were investigated.Younger age, premenopausal status, lower body mass index values, and use of oral contraceptives all correspond to significantly higher water, collagen and total hemoglobin content, and lower lipid content (always p < 0.05 and often p < 10-4, while oxygen saturation level and scattering parameters show significant dependence only on some conditions. Even when age-adjusted groups of subjects are compared, several optically derived parameters (and in particular always collagen and total hemoglobin content remain significantly different.Time domain diffuse optical spectroscopy can probe non-invasively breast tissue composition and physiologic blood parameters, and provide information on tissue structure. The measurement is suitable for in vivo studies and monitoring of changes in breast tissue (e.g., with age, lifestyle, chemotherapy, etc. and to gain insight into related processes, like the origin of cancer risk associated with breast density.

  17. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Science.gov (United States)

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  18. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Ain, Qurat Ul [Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad (Pakistan); Khan, Ahmad Nawaz, E-mail: ahmad.nawaz@scme.nust.edu.pk [Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad (Pakistan); Nabavinia, Mahboubeh [Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA (United States); Mujahid, Mohammad [Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad (Pakistan)

    2017-06-01

    The bioactivity and mechanical properties of hybrid composites of hydroxyapatite (HA) in cyclic olefinic copolymer (COC) also known commercially as TOPAS are investigated, first time, for regeneration and repair of the bone tissues. HA is synthesized to obtain the spherically shaped nanoparticles in the size range of 60 ± 20 nm. Various concentrations of HA ranging from 1 to 30 wt% are dispersed in TOPAS using sodium dodecyl sulfate (SDS) coupling agent for better dispersion and interaction of hydrophilic HA with hydrophobic TOPAS. Scanning electron microscope shows the uniform dispersion of HA ≤ 10 wt% in TOPAS and at higher concentrations > 10 wt%, agglomeration occurs in the hybrid composites. Tunable mechanical properties are achieved as the compressive modulus and strength are increased around 140% from 6.4 to 15.3 MPa and 185% from 0.26 to 0.74 MPa, respectively. Such increase in the mechanical properties of TOPAS is attributed to the anchoring of the polymer chains in the vicinity of HA nanoparticles owing to better dispersion and interfacial interactions. In comparison to neat TOPAS, hybrid composites of TOPAS/HA promoted the cell adhesion and proliferation significantly. The cell density and proliferation of TOPAS/HA hybrid composites is enhanced 9 and 3 folds, respectively, after 1 day culturing in preosteoblasts cells. Moreover, the morphology of cells changed from spherical to flattened spread morphology demonstrating clearly the migration of the cells for the formation of interconnected cellular network. Additionally, very few dead cells are found in hybrid composites showing their cytocompatibility. Overall, the hybrid composites of TOPAS/HA exhibited superior strength and stiffness along with enhanced cytocompatibility for bone tissue engineering applications. - Highlights: • TOPAS/HA hybrid composites exhibited enhanced mechanical properties owing to better dispersion and interaction of HA. • Without affecting the degradation rate, the

  19. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Ain, Qurat Ul; Khan, Ahmad Nawaz; Nabavinia, Mahboubeh; Mujahid, Mohammad

    2017-01-01

    The bioactivity and mechanical properties of hybrid composites of hydroxyapatite (HA) in cyclic olefinic copolymer (COC) also known commercially as TOPAS are investigated, first time, for regeneration and repair of the bone tissues. HA is synthesized to obtain the spherically shaped nanoparticles in the size range of 60 ± 20 nm. Various concentrations of HA ranging from 1 to 30 wt% are dispersed in TOPAS using sodium dodecyl sulfate (SDS) coupling agent for better dispersion and interaction of hydrophilic HA with hydrophobic TOPAS. Scanning electron microscope shows the uniform dispersion of HA ≤ 10 wt% in TOPAS and at higher concentrations > 10 wt%, agglomeration occurs in the hybrid composites. Tunable mechanical properties are achieved as the compressive modulus and strength are increased around 140% from 6.4 to 15.3 MPa and 185% from 0.26 to 0.74 MPa, respectively. Such increase in the mechanical properties of TOPAS is attributed to the anchoring of the polymer chains in the vicinity of HA nanoparticles owing to better dispersion and interfacial interactions. In comparison to neat TOPAS, hybrid composites of TOPAS/HA promoted the cell adhesion and proliferation significantly. The cell density and proliferation of TOPAS/HA hybrid composites is enhanced 9 and 3 folds, respectively, after 1 day culturing in preosteoblasts cells. Moreover, the morphology of cells changed from spherical to flattened spread morphology demonstrating clearly the migration of the cells for the formation of interconnected cellular network. Additionally, very few dead cells are found in hybrid composites showing their cytocompatibility. Overall, the hybrid composites of TOPAS/HA exhibited superior strength and stiffness along with enhanced cytocompatibility for bone tissue engineering applications. - Highlights: • TOPAS/HA hybrid composites exhibited enhanced mechanical properties owing to better dispersion and interaction of HA. • Without affecting the degradation rate, the

  20. Elevated plasma plasminogen activator inhibitor type-1 is an independent predictor of coronary microvascular dysfunction in hypertension

    International Nuclear Information System (INIS)

    Naya, Masanao; Tsukamoto, Takahiro; Inubushi, Masayuki; Morita, Koichi; Katoh, Chietsugu; Furumoto, Tomoo; Fujii, Satoshi; Tsutsui, Hiroyuki; Tamaki, Nagara

    2007-01-01

    Elevated plasma plasminogen activator inhibitor-1 (PAI-1) is related to cardiovascular events, but its role in subclinical coronary microvascular dysfunction remains unknown. Thus, in the present study it was investigated whether elevated plasma PAI-1 activity is associated with coronary microvascular dysfunction in hypertensive patients. Thirty patients with untreated essential hypertension and 10 age-matched healthy controls were studied prospectively. Myocardial blood flow (MBF) was measured by using 15 O-water positron emission tomography. Clinical variables associated with atherosclerosis (low-density lipoprotein-cholesterol, high-density lipoprotein (HDL)-cholesterol, triglyceride, homeostasis model assessment (HOMA-IR), and PAI-1 activity) were assessed to determine their involvement in coronary microvascular dysfunction. Adenosine triphosphate (ATP)-induced hyperemic MBF and coronary flow reserve (CFR) were significantly lower in hypertensive patients than in healthy controls (ATP-induced MBF: 2.77±0.82 vs 3.49±0.71 ml·g -1 ·min -1 ; p<0.02 and CFR: 2.95±1.06 vs 4.25±0.69; p<0.001). By univariate analysis, CFR was positively correlated with HDL-cholesterol (r=0.46, p<0.02), and inversely with HOMA-IR (r=-0.39, p<0.05) and PAI-1 activity (r=-0.61, p<0.001). By multivariate analysis, elevated PAI-1 activity remained a significant independent determinant of diminished CFR. Elevated plasma PAI-1 activity was independently associated with coronary microvascular dysfunction, which suggests that plasma PAI-1 activity is an important clue linking hypofibrinolysis to the development of atherosclerosis. (author)

  1. Pullulan-based composite scaffolds for bone tissue engineering: Improved osteoconductivity by pore wall mineralization.

    Science.gov (United States)

    Amrita; Arora, Aditya; Sharma, Poonam; Katti, Dhirendra S

    2015-06-05

    Porous hydrogels have been explored for bone tissue engineering; however their poor mechanical properties make them less suitable as bone graft substitutes. Since incorporation of fillers is a well-accepted method for improving mechanical properties of hydrogels, in this work pullulan hydrogels were reinforced with nano-crystalline hydroxyapatite (nHAp) (5 wt% nHAp in hydrogel) and poly(3-hydroxybutyrate) (PHB) fibers (3 wt% fibers in hydrogel) containing nHAp (3 wt% nHAp in fibers). Addition of these fillers to pullulan hydrogel improved compressive modulus of the scaffold by 10 fold. However, the hydrophilicity of pullulan did not support adhesion and spreading of cells. To overcome this limitation, porous composite scaffolds were modified using a double diffusion method that enabled deposition of hydroxyapatite on pore walls. This method resulted in rapid and uniform coating of HAp throughout the three-dimensional scaffolds which not only rendered them osteoconductive in vitro but also led to an improvement in their compressive modulus. These results demonstrate the potential of mineralized pullulan-based composite scaffolds in non-load bearing bone tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging.

    Science.gov (United States)

    Tarantini, Stefano; Tucsek, Zsuzsanna; Valcarcel-Ares, M Noa; Toth, Peter; Gautam, Tripti; Giles, Cory B; Ballabh, Praveen; Wei, Jeanne Y; Wren, Jonathan D; Ashpole, Nicole M; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2016-08-01

    Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f  + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased

  3. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks.

    NARCIS (Netherlands)

    De Goede, P.; Sen, Satish; Oosterman, Johanneke E; Kalsbeek, A.

    2018-01-01

    The effects of feeding behavior and diet composition,as well as their possible interactions,on daily (clock) gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue(WAT), but hardly in other metabolic tissues such as skeletal muscle (SM) and

  4. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications.

    Science.gov (United States)

    Ain, Qurat Ul; Khan, Ahmad Nawaz; Nabavinia, Mahboubeh; Mujahid, Mohammad

    2017-06-01

    The bioactivity and mechanical properties of hybrid composites of hydroxyapatite (HA) in cyclic olefinic copolymer (COC) also known commercially as TOPAS are investigated, first time, for regeneration and repair of the bone tissues. HA is synthesized to obtain the spherically shaped nanoparticles in the size range of 60±20nm. Various concentrations of HA ranging from 1 to 30wt% are dispersed in TOPAS using sodium dodecyl sulfate (SDS) coupling agent for better dispersion and interaction of hydrophilic HA with hydrophobic TOPAS. Scanning electron microscope shows the uniform dispersion of HA≤10wt% in TOPAS and at higher concentrations >10wt%, agglomeration occurs in the hybrid composites. Tunable mechanical properties are achieved as the compressive modulus and strength are increased around 140% from 6.4 to 15.3MPa and 185% from 0.26 to 0.74MPa, respectively. Such increase in the mechanical properties of TOPAS is attributed to the anchoring of the polymer chains in the vicinity of HA nanoparticles owing to better dispersion and interfacial interactions. In comparison to neat TOPAS, hybrid composites of TOPAS/HA promoted the cell adhesion and proliferation significantly. The cell density and proliferation of TOPAS/HA hybrid composites is enhanced 9 and 3 folds, respectively, after 1day culturing in preosteoblasts cells. Moreover, the morphology of cells changed from spherical to flattened spread morphology demonstrating clearly the migration of the cells for the formation of interconnected cellular network. Additionally, very few dead cells are found in hybrid composites showing their cytocompatibility. Overall, the hybrid composites of TOPAS/HA exhibited superior strength and stiffness along with enhanced cytocompatibility for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites.

    Science.gov (United States)

    Gabriel, Laís P; Santos, Maria Elizabeth M Dos; Jardini, André L; Bastos, Gilmara N T; Dias, Carmen G B T; Webster, Thomas J; Maciel Filho, Rubens

    2017-01-01

    In this work, thermoset polyurethane composites were prepared by the addition of hydroxyapatite nanoparticles using the reactants polyol polyether and an aliphatic diisocyanate. The polyol employed in this study was extracted from the Euterpe oleracea Mart. seeds from the Amazon Region of Brazil. The influence of hydroxyapatite nanoparticles on the structure and morphology of the composites was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), thermal properties were analyzed by thermogravimetry analysis (TGA), and biological properties were studied by in vitro and in vivo studies. It was found that the addition of HA nanoparticles promoted fibroblast adhesion while in vivo investigations with histology confirmed that the composites promoted connective tissue adherence and did not induce inflammation. In this manner, this study supports the further investigation of bio-based, polyurethane/hydroxyapatite composites as biocompatible scaffolds for numerous tissue engineering applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shavandi, Amin, E-mail: amin.shavandi@postgrad.otago.ac.nz [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Department of Applied Sciences, University of Otago, Dunedin (New Zealand); Bekhit, Alaa El-Din A. [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Sun, Zhifa; Ali, Azam [Department of Physics, University of Otago, Dunedin (New Zealand); Gould, Maree [Department of Anatomy, University of Otago, Dunedin (New Zealand)

    2015-10-01

    Squid pen chitosan was used in the fabrication of biocomposite scaffolds for bone tissue engineering. Hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) obtained from waste mussel shells were used as the calcium phosphate source. The composite was prepared using 2.5% tripolyphosphate (TPP) and 1% glycerol as a cross-linker and plasticizer, respectively. The weight percent (wt.%) ratios of the ceramic components in the composite were 20/10/70, 30/20/50 and 40/30/30 (HA/β-TCP/Chi). The biodegradation rate and structural properties of the scaffolds were investigated. Scanning electron microscopy (SEM) and microCT(μCT) results indicated that the composites have a well defined lamellar structure with an average pore size of 200 μm. The porosity of the composites decreased from 88 to 56% by increasing the ratio of HA/β-TCP from 30 to 70%. After 28 days of incubation in a physiological solution, the scaffolds were degraded by approximately 30%. In vitro investigations showed that the composites were cytocompatible and supported the growth of L929 and Saos-2 cells. The obtained data suggests that the squid pen chitosan composites are potential candidates for bone regeneration. - Highlights: • Biocomposite scaffolds were made from mussel shells HA and β-TCP, and squid pin chitosan. • The porosity of the composites decreased with an increase in HA/β-TCP ratio. • Composites were cytocompatible and supported the growth of L929 and Saos-2 cells. • Composite containing 50% HA and β-TCP had the best mechanical properties.

  7. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    Directory of Open Access Journals (Sweden)

    Laura Pandolfi

    2016-01-01

    Full Text Available Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.

  8. Assessment of tissue viability by polarization spectroscopy

    Science.gov (United States)

    Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.

    2008-09-01

    A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.

  9. The effects of Δ9-Tetrahydrocannabinole treatment on gonadal micro-vascularization and affected fertility examined by SEM and 3D-morphometry

    International Nuclear Information System (INIS)

    Erlbacher, K M T; Minnich, B

    2015-01-01

    The present study focuses on the effects of Δ 9 -tetrahydrocannabinol (THC) on the reproductive system in nude rats with special emphasis on how Δ 9 -THC impacts the vascularization of testes which in turn indirectly influences fertility. Basically, Δ 9 -tetrahydrocannabinol (THC) causes not only negative (psychoactive) effects in the human body as cannabinole administration in medical use (dose-dependent) offers multiple new treatment opportunities such as pain relief or containment of various cancers. Concerning the reproductive system it strongly influences CB-receptors along the hypothalamic-pituitary-gonadal axis resulting in reduced plasma testosterone levels. There is also altered sperm quality parameters reported such as sperm motility or sperm count. On the other hand Δ 9 -THC effects endothelial growth factors (VEGF, Ang-1 etc.) respectively acts on their specific receptors which in turn modify angiogenesis and vascularization of tissues and organs (e.g. tumorous tissues). This leads to new therapeutical strategies in the suppression of various cancers by inhibiting (neo-)vascularization and in turn famishment of tumorous tissues (lack of nutrition supply). Here we studied the micro-vascularization of gonads in a long-term THC-treated nude rat model by vascular corrosion casting, SEM and 3D-morphometry. (paper)

  10. The effects of Δ9-Tetrahydrocannabinole treatment on gonadal micro-vascularization and affected fertility examined by SEM and 3D-morphometry

    Science.gov (United States)

    Erlbacher, K. M. T.; Minnich, B.

    2015-10-01

    The present study focuses on the effects of Δ9-tetrahydrocannabinol (THC) on the reproductive system in nude rats with special emphasis on how Δ9-THC impacts the vascularization of testes which in turn indirectly influences fertility. Basically, Δ9-tetrahydrocannabinol (THC) causes not only negative (psychoactive) effects in the human body as cannabinole administration in medical use (dose-dependent) offers multiple new treatment opportunities such as pain relief or containment of various cancers. Concerning the reproductive system it strongly influences CB-receptors along the hypothalamic-pituitary-gonadal axis resulting in reduced plasma testosterone levels. There is also altered sperm quality parameters reported such as sperm motility or sperm count. On the other hand Δ9-THC effects endothelial growth factors (VEGF, Ang-1 etc.) respectively acts on their specific receptors which in turn modify angiogenesis and vascularization of tissues and organs (e.g. tumorous tissues). This leads to new therapeutical strategies in the suppression of various cancers by inhibiting (neo-)vascularization and in turn famishment of tumorous tissues (lack of nutrition supply). Here we studied the micro-vascularization of gonads in a long-term THC-treated nude rat model by vascular corrosion casting, SEM and 3D-morphometry.

  11. The effect of nitroglycerin on microvascular perfusion and oxygenation during gastric tube reconstruction

    NARCIS (Netherlands)

    Buise, Marc P.; Ince, Can; Tilanus, Hugo W.; Klein, Jan; Gommers, Diederik; van Bommel, Jasper

    2005-01-01

    Esophagectomy followed by gastric tube reconstruction is the surgical treatment of choice for patients with esophageal cancer. Complications of the cervical anastomosis are associated with impaired microvascular blood flow (MBF) and ischemia in the gastric fundus. The aim of the present study was to

  12. GLP-1-based therapies have no microvascular effects in type 2 diabetes mellitus

    NARCIS (Netherlands)

    Smits, Mark M.; Tonneijck, Lennart; Muskiet, Marcel H.A.; Hoekstra, Trynke; Kramer, Mark H.H.; Diamant, Michaela; Serné, Erik H.; Van Raalte, Daniël H.

    2016-01-01

    Objective - To assess the effects of glucagon-like peptide (GLP)-1-based therapies (ie, GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) on microvascular function in patients with type 2 diabetes mellitus. Approach and Results - We studied 57 patients with type 2 diabetes mellitus

  13. Preservation of intestinal microvascular Po2 during normovolemic hemodilution in a rat model

    NARCIS (Netherlands)

    van Bommel, J.; Siegemund, M.; Henny, C. P.; van den Heuvel, D. A.; Trouwborst, A.; Ince, C.

    2000-01-01

    The effect of hemodilution on the intestinal microcirculatory oxygenation is not clear. The aim of this study was to determine the effect of moderate normovolemic hemodilution on intestinal microvascular partial oxygen pressure (Po2) and its relation to the mesenteric venous Po2 (Pmvo2).

  14. Developing bioactive composite scaffolds for bone tissue engineering

    Science.gov (United States)

    Chen, Yun

    bone-like apatite/collagen composite coating. Saos-2 osteoblast-like cells were used to evaluate the cellular behaviors on these biomimetic coatings. Cell morphologies on the surfaces of PLLA films and scaffolds, PLLA films and scaffolds with apatite coating, and PLLA films and scaffolds with apatite/collagen composite coating were studied by SEM. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasodium bromide (MTT) assay. In addition, differentiated cell function was assessed by measuring alkaline phosphatase activity. These results suggested that the apatite coating and apatite/collagen composite coating fabricated through the accelerated biomimetic processes could improve the interactions between osteoblasts and PLLA. The composite coating was more effective than apatite coating in improving such interactions. PLLA scaffolds coated with submicron collagen fibrils and submicron apatite paticulates are expected to be one of the promising 3D substrates for bone tissue engineering. To facilitate coating into scaffolds, the flowing condition was introduced into the accelerated biomimetic process. The apatite formed in the different sites in the scaffold was characterized using SEM. It was found that the accelerated biomimetic process performed in the flowing condition yielded more uniform spatial distribution of apatite particles than that in the regular shaking condition. This work provides a novel condition for obtaining uniform spatial distribution of bone-like apatite within the scaffolds in a timely manner, which is expected to facilitate uniform distribution of attached cells within the scaffoldsin vitro and in vivo.

  15. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering

    International Nuclear Information System (INIS)

    Gautam, Sneh; Chou, Chia-Fu; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2–1.5 wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. - Highlights: • PCL/gelatin/collagen type I scaffold was fabricated for skin tissue engineering. • PCL/gelatin/collagen type I scaffold showed higher fibroblast growth than PCL/gelatin one. • PCL/gelatin/collagen type I might be one of the ideal scaffold for

  16. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  17. Microvascular volume in symptomatic Achilles tendons is associated with VISA-A score.

    Science.gov (United States)

    Praet, S F E; Ong, J H; Purdam, C; Welvaert, M; Lovell, G; Dixon, L; Gaida, J E; Anglim, J; Manzanero, S; Vlahovich, N; Hughes, D; Waddington, G

    2018-05-15

    The role of neovascularisation in tendinopathy is still poorly understood, potentially due to technical limitations of conventional power Doppler ultrasound. This study aimed to investigate the association between contrast-enhanced ultrasound (CEUS) microvascular volume (MV), Victorian Institute of Sports Assessment-Achilles (VISA-A) scores and intrinsic Achilles tendon tenderness, as well as two different Power Doppler modes. Cross-sectional study. 20 individuals with uni- or bilateral Achilles tendinopathy completed a VISA-A questionnaire, and underwent microvascular volume measurements of the Achilles tendon mid-portion using both conventional, ultrasensitive (SMI™) power Doppler ultrasound and CEUS. Intrinsic tendon tenderness was assessed with sensation detection threshold to extracorporeal shock waves (ESW). Linear Mixed Model analysis was used to determine the association between microvascular volume (MV), VISA-A, and ESW-detection threshold for both symptomatic and asymptomatic Achilles tendons. There was a significant association between VISA-A and MV (B=-5.3, 95%CI=[-8.5; -2.0], P=0.0004), and between MV and symptom duration (B=-1.7, 95%CI=[-3.2; -5.0], P=0.023). No significant associations were found between power Doppler ultrasound and CEUS-based MV or between CEUS-based MV and ESW-detection threshold. In comparison with conventional power Doppler ultrasound, SMI™ showed on average similar detection capacity for neovessels in the mid-portion of the Achilles tendon, whilst being superior for detecting neovessels within Kager's fat pad (t=3.46, 95%CI=[0.27; 1.03], P<0.005). Our results indicate that CEUS-based MV of the Achilles tendon is moderately associated with Achilles tendon symptoms. In accordance, CEUS-detected MV could be a novel target for treatment as it seems to be more sensitive than PDU and is correlated with symptoms. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Composites structures for bone tissue reconstruction

    International Nuclear Information System (INIS)

    Neto, W.; Santos, João; Avérous, L.; Schlatter, G.; Bretas, Rosario

    2015-01-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth

  19. Composites structures for bone tissue reconstruction

    Science.gov (United States)

    Neto, W.; Santos, João.; Avérous, L.; Schlatter, G.; Bretas, Rosario.

    2015-05-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  20. Early impairment of coronary microvascular perfusion capacity in rats on a high fat diet

    NARCIS (Netherlands)

    van Haare, Judith; Kooi, M. Eline; Vink, Hans; Post, Mark J.; van Teeffelen, Jurgen W. G. E.; Slenter, Jos; Munts, Chantal; Cobelens, Hanneke; Strijkers, Gustav J.; Koehn, Dennis; van Bilsen, Marc

    2015-01-01

    It remains to be established if, and to what extent, the coronary microcirculation becomes compromised during the development of obesity and insulin resistance. Recent studies suggest that changes in endothelial glycocalyx properties contribute to microvascular dysfunction under (pre-)diabetic

  1. Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.

    Science.gov (United States)

    Prisby, Rhonda D

    2014-07-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6 month; n=8) and old (22-24 month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via μCT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (pnecrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. DETECTION OF MICROVASCULAR COMPLICATIONS OF TYPE 2 DIABETES BY EZSCAN AND ITS COMPARISON WITH STANDARD SCREENING METHODS

    Directory of Open Access Journals (Sweden)

    Sarita Bajaj

    2016-08-01

    Full Text Available BACKGROUND EZSCAN is a new, noninvasive technique to detect sudomotor dysfunction and thus neuropathy in diabetes patients at an early stage. It further predicts chances of development of other microvascular complications. In this study, we evaluated EZSCAN for detection of microvascular complications in Type 2 diabetes patients and compared accuracy of EZSCAN with standard screening methods. MATERIALS AND METHODS 104 known diabetes patients, 56 males and 48 females, were studied. All cases underwent the EZSCAN test, Nerve Conduction Study (NCS test, Vibration perception threshold test (VPT, Monofilament test, Fundus examination and Urine micral test. The results of EZSCAN were compared with standard screening methods. The data has been analysed and assessed by applying appropriate statistical tests within different groups. RESULTS Mean age of the subjects was 53.5 ± 11.4 years. For detection of diabetic neuropathy, sensitivity and specificity of EZSCAN was found to be 77.0 % and 95.3%, respectively. Odd’s ratio (OR was 68.82 with p < 0.0001. AUC in ROC curve was 0.930. Sensitivity and specificity of EZSCAN for detection of nephropathy were 67.1% and 94.1%, respectively. OR = 32.69 with p < 0.0001. AUC was 0.926. Sensitivity of EZSCAN for detection of retinopathy was 90% while specificity is 70.3%. OR = 21.27; p< 0.0001. AUC came out to be 0.920. CONCLUSION Results of EZSCAN test compared significantly to the standard screening methods for the detection of microvascular complications of diabetes and can be used as a simple, noninvasive and quick method to detect microvascular complications of diabetes.

  3. Bone Marrow Blood Vessel Ossification and “Microvascular Dead Space” in Rat and Human Long Bone

    Science.gov (United States)

    Prisby, Rhonda D.

    2014-01-01

    Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4–6 mon; n=8) and old (22–24 mon; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner’s Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via µCT to quantify microvascular ossification. Bone marrow blood vessels from rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and “normal” vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p necrosis. The progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721

  4. Seasonal biochemical changes in composition of body wall tissues of sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Gao, Fei; Xu, Qiang; Yang, Hongsheng

    2011-03-01

    Seasonal Variation in proximate, amino acid and fatty acid composition of the body wall of sea cucumber Apostichopus japonicus was evaluated. The proximate composition, except for ash content, changed significantly among seasons ( P<0.05). Alanine, glycine, glutamic acid and asparagic acid were the most abundant amino acids. Total amino acid and essential amino acid Contents both varied clearly with seasons ( P<0.05). 16:0 and 16:ln7 were the primary saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) respectively for all months. EPA (20:5n-3), AA (20:4n-6) and DHA (22:6n-3) were the major polyunsaturated fatty acids (PUFA). The proportions of SFA and PUFA yielded significant seasonal variations ( P<0.001), but MUFA did not changed significantly. The results indicated that the biochemical compositions of the body wall in A. japonicus were significantly influenced by seasons and that the body wall tissue is an excellent source of protein, MUFA and n-3 PUFA for humans.

  5. Characterization of elasticity and hydration of composite hydrogel based on collagen-iota carrageenan as a corneal tissue engineering

    Science.gov (United States)

    Rinawati, M.; Triastuti, J.; Pursetyo, K. T.

    2018-04-01

    The cornea is a refractive element of the eye that serves to continue the stimulation of light into the eye it has a clear, transparent, elastic and relatively thick tissue. Factors caused corneal blindness, are dystrophy, keratoconus, corneal scaring. Hydrogels can be made from polysaccharide derivatives that have gelation properties such as iota carrageenan. Therefore, it is a need to develop composite hydrogel based collagen-iota carragenan as an engineeried corneal tissue with high elasticity and hydration properties. Collagen hydrogel has a maximum water content an has equlibrium up to 40 %, less than the human cornea, 81 % and under normal hydration conditions, the human cornea can transmit 87 % of visible light. In addition, the refractive index on the surface of the cornea with air is 1.375-1.380. Based on this study, it is necessary to conduct research on the development and composition of hydrogel composite collagen-iota carrageen hydrogen based on. The best result was K5 (5:5) treatment, which has the equilibrium water content of 87.07 % and viscosity of 10.7346 Pa.s.

  6. Gestational age dependent content, composition and intrauterine accretion rates of fatty acids in fetal white adipose tissue

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Offringa, Pieter J.; Martini, Ingrid A.; Boersma, E. Rudy; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2012-01-01

    Background: Little is known about the gestational age (GA) dependent content, composition and intrauterine accretion rates of fatty acids (FA) in fetal white adipose tissue (WAT). Objective & design: To acquire this information, we collected abdominal subcutaneous WAT samples from 40 preterm and

  7. Tissue-engineered collateral ligament composite allografts for scapholunate ligament reconstruction: an experimental study.

    Science.gov (United States)

    Endress, Ryan; Woon, Colin Y L; Farnebo, Simon J; Behn, Anthony; Bronstein, Joel; Pham, Hung; Yan, Xinrui; Gambhir, Sanjiv S; Chang, James

    2012-08-01

    In patients with chronic scapholunate (SL) dissociation or dynamic instability, ligament repair is often not possible, and surgical reconstruction is indicated. The ideal graft ligament would recreate both anatomical and biomechanical properties of the dorsal scapholunate ligament (dorsal SLIL). The finger proximal interphalangeal joint (PIP joint) collateral ligament could possibly be a substitute ligament. We harvested human PIP joint collateral ligaments and SL ligaments from 15 cadaveric limbs. We recorded ligament length, width, and thickness, and measured the biomechanical properties (ultimate load, stiffness, and displacement to failure) of native dorsal SLIL, untreated collateral ligaments, decellularized collateral ligaments, and SL repairs with bone-collateral ligament-bone composite collateral ligament grafts. As proof of concept, we then reseeded decellularized bone-collateral ligament-bone composite grafts with green fluorescent protein-labeled adipo-derived mesenchymal stem cells and evaluated them histologically. There was no difference in ultimate load, stiffness, and displacement to failure among native dorsal SLIL, untreated and decellularized collateral ligaments, and SL repairs with tissue-engineered collateral ligament grafts. With pair-matched untreated and decellularized scaffolds, there was no difference in ultimate load or stiffness. However, decellularized ligaments revealed lower displacement to failure compared with untreated ligaments. There was no difference in displacement between decellularized ligaments and native dorsal SLIL. We successfully decellularized grafts with recently described techniques, and they could be similarly reseeded. Proximal interphalangeal joint collateral ligament-based bone-collateral ligament-bone composite allografts had biomechanical properties similar to those of native dorsal SLIL. Decellularization did not adversely affect material properties. These tissue-engineered grafts may offer surgeons another

  8. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair

    International Nuclear Information System (INIS)

    Chao, Shao Ching; Wang, Ming-Jia; Pai, Nai-Su; Yen, Shiow-Kang

    2015-01-01

    Gelatin–hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO 3 ) 2 , NH 4 H 2 PO 4 and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G–HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6–10 nm and tangle into porous microspheres after blending. The cell culture indicates that G–HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G–HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G–HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. - Highlights: • G–HA composite microspheres were prepared by hydroxyapatite and gelatin. • In vitro tests indicated that the G–HA microspheres were biocompatible and bioactive. • In in vitro tests, G–HA microspheres could be applied in hard tissue engineering. • G–HA had healed the bone defect and provides a high proportion of surface area to open space

  9. Common factors method to predict the carcass composition tissue in kid goats

    Directory of Open Access Journals (Sweden)

    Helen Fernanda Barros Gomes

    2013-03-01

    Full Text Available The objective of this work was to analyze the interrelations among weights and carcass measures of the longissimus lumborum muscle thickness and area, and of sternum tissue thickness, measured directly on carcass and by ultrasound scan. Measures were taken on live animals and after slaughter to develop models of multiple linear regression, to estimate the composition of shoulder blade, from selected variables in 89 kids of both genders and five breed groups, raised in feedlot system. The variables considered relevant and not redundant on the information they carry, for the common factor analysis, were used in the carcass composition estimate development models. The presuppositions of linear regression models relative to residues were evaluated, the estimated residues were subjected to analysis of variance and the means were compared by the Student t test. Based in these results, the group of 32 initial variables could be reduced to four variables: hot carcass weight, rump perimeter, leg length and tissue height at the fourth sternum bone. The analysis of common factors was shown as an effective technique to study the interrelations among the independent variables. The measures of carcass dimension, alone, did not add any information to hot carcass weight. The carcass muscle weight can be estimated with high precision from simple models, without the need for information related to gender and breed, and they could be built based on carcass weight, which makes it easy to be applied. The fat and bones estimate models were not as accurate.

  10. Inter-arm Blood Pressure Difference and its Relationship with Retinal Microvascular Calibres in Young Individuals: The African-PREDICT Study.

    Science.gov (United States)

    Strauss, Michél; Smith, Wayne; Schutte, Aletta E

    2016-08-01

    Bilateral systolic blood pressure (SBP) differences > 10mmHg is a common finding in clinical practice. Such BP differences in older individuals are associated with peripheral vascular disease, linked to microvascular dysfunction. Investigating retinal vessel calibres could provide insight into systemic microvascular function and may predict cardiovascular outcomes. Therefore we investigated the link between inter-arm systolic blood pressure differences (IASBPD) and the retinal microvasculature to determine the usefulness of IASBPD as an early marker of microvascular changes. In this cross-sectional study, we used data from 403 apparently healthy participants (20-30 years) (42% men; 49% black) taking part in the African-PREDICT study. Participants underwent retinal vessel imaging, anthropometric measurements and blood sampling. Brachial BP was measured sequentially in both arms to determine the mean IASBPD. Participants were stratified into two groups with an IASBPD difference in characteristics being a higher right arm SBP in the latter group (p=0.005). We found no association between IASBPD and retinal vessel calibres in any group. Less than 2% of the variance in IASBPD was explained by potential risk factors, with only SBP associating independently with IASBPD (β=115; p=0.039). In a young population an increased IASBPD is not related to retinal vessel diameters suggesting that it does not reflect early microvascular alterations. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  11. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS).

    Science.gov (United States)

    Hildebrandt, Wulf; Schwarzbach, Hans; Pardun, Anita; Hannemann, Lena; Bogs, Björn; König, Alexander M; Mahnken, Andreas H; Hildebrandt, Olaf; Koehler, Ulrich; Kinscherf, Ralf

    2017-01-01

    Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans. Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS) parameters, i.e. microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF) calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat) and intermedius (VInt) muscle in 15 middle-aged (MA, 43.6±1.5 years) and 11 young (YG, 24.1±0.6 years) healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT). In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness. During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u.) and MBF (0.007±0.001 vs. 0.012±0.002 a.u.). In the VInt the (post-occlusive hyperemia) post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG. In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed.

  12. Coronary Microvascular Function and Cardiovascular Risk Factors in Women With Angina Pectoris and No Obstructive Coronary Artery Disease

    DEFF Research Database (Denmark)

    Mygind, Naja Dam; Michelsen, Marie Mide; Peña, Adam

    2016-01-01

    BACKGROUND: The majority of women with angina-like chest pain have no obstructive coronary artery disease when evaluated with coronary angiography. Coronary microvascular dysfunction is a possible explanation and associated with a poor prognosis. This study evaluated the prevalence of coronary...... microvascular dysfunction and the association with symptoms, cardiovascular risk factors, psychosocial factors, and results from diagnostic stress testing. METHODS AND RESULTS: After screening 3568 women, 963 women with angina-like chest pain and a diagnostic coronary angiogram without significant coronary.......01), hypertension (P=0.02), current smoking (Ppain characteristics or results from diagnostic stress testing...

  13. Tissue composition of the leg and meat quality of sheep fed castor bean hulls in replacement of tifton hay

    Directory of Open Access Journals (Sweden)

    Stela Antas Urbano

    2013-10-01

    Full Text Available The effects of replacing Tifton hay with castor bean hulls (0, 33, 66 and 100% on the leg tissue composition, chemical composition, physicochemical parameters and sensorial traits of sheep meat were studied. A total of 28 non-castrated sheep averaging seven months in age with an average initial weight of 19.5±4.3 kg were assigned to a randomized block design with four treatments and seven replicates and were slaughtered after 70 days of confinement. At slaughter, body weight and leg, muscle and bone weights decreased linearly, whereas the muscle-to-bone ratio increased linearly according to the treatments. There was a quadratic effect on yellow intensity (maximum of 8.05 with replacement of 54.5% and the percentage of cooking losses (minimum of 33.8% with replacement of 45.17%. The treatment employed did not affect either the chemical composition or sensorial traits of the lamb meat. Although replacing Tifton hay with castor bean hulls alters the tissue composition of the leg as well as some physicochemical parameters of the meat, the sensory analysis indicated good acceptability of the meat, regardless of the inclusion of this byproduct.

  14. Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization.

    Science.gov (United States)

    Kwiatkowski, M; Wurlitzer, M; Krutilin, A; Kiani, P; Nimer, R; Omidi, M; Mannaa, A; Bussmann, T; Bartkowiak, K; Kruber, S; Uschold, S; Steffen, P; Lübberstedt, J; Küpker, N; Petersen, H; Knecht, R; Hansen, N O; Zarrine-Afsar, A; Robertson, W D; Miller, R J D; Schlüter, H

    2016-02-16

    Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Novel scalable silicone elastomer and poly(2-hydroxyethyl methacrylate) (PHEMA) composite materials for tissue engineering and drug delivery applications

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Hemmingsen, Mette; Wojcik, Magdalena

    2013-01-01

    material with increased hydrophilicity in regard to virgin silicone elastomer, making it suitable as a scaffold for tissue engineering and with the concomitant possibility for delivering drug from the scaffold to the tissue. Interpenetrating polymer networks (IPNs) of silicone elastomer and PHEMA......In recent years hydrogels have received increasing attention as potential materials for applications in regenerative medicine. They can be used for scaffold materials providing structural integrity to tissue constructs, for controlled delivery of drugs and proteins to cell and tissues......, and for support materials in tissue growth. However, the real challenge is to obtain sufficiently good mechanical properties of the hydrogel. The present study shows the combination of two normally non-compatible materials, silicone elastomer and poly(2-hydroxyethyl methacrylate) (PHEMA), into a novel composite...

  16. Studies of pathological dynamics after microvascular injury using nonlinear optical methods

    Science.gov (United States)

    Rosidi, Nathanael L.

    Microvascular lesions are a common feature in the aging brain and clinical evidence has correlated microvascular pathology with the development of neurodegenerative diseases such as Alzheimer's disease and dementia. Traditional animal models that replicate hemorrhagic and ischemic lesions in the brain typically affect large regions in the cortex and do not reproduce the small-scale lesions linked to neurodegeneration that likely stem from injuries to single microvessels. Due in part to this lack of small-scale injury animal models, there remains an incomplete understanding of the cellular and pathophysiological dynamics following small-scale vascular lesions, making progress on therapeutic strategies difficult. We used tightly focused femtosecond laser pulses to injure single penetrating arterioles (PA) (i.e., arterioles that plunge into the brain) in the cortex of live anesthetized rodents and used two-photon excited fluorescence (2PEF) imaging to quantify blood flow changes and to determine the time course of pathological consequences in the brain after injury. We find that after ischemic occlusion of a PA, nearby pial and penetrating arterioles do not actively compensate for the reduction of blood flow observed near the occluded blood vessel. We find that capillaries connected downstream to the clotted vessel dilate but other capillaries in the vicinity do not, suggesting that any compensatory signal that results in a physiological response travels vascularly. We ruptured individual PAs to induce microhemorrhages that resulted in extravasation of blood into the parenchyma. We find that tissue compression due to the hematoma does not collapse capillaries and cause acute ischemia. 2PEF imaging of mice expressing yellow fluorescent protein (YFP) in a subset of cortical neurons revealed no dendrite degeneration out to seven days after microhemorrhage. However, we did observe an inflammatory response by microglia/macrophages as quickly as 1.5-hrs after

  17. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  18. Lipid composition of hepatic and adipose tissues from normal cats and from cats with idiopathic hepatic lipidosis.

    Science.gov (United States)

    Hall, J A; Barstad, L A; Connor, W E

    1997-01-01

    The purpose of this study was to characterize the lipid classes in hepatic and adipose tissues from cats with idiopathic hepatic lipidosis (IHL). Concentrations of triglyceride, phospholipid phosphorus, and free and total cholesterol were determined in lipid extracts of liver homogenates from 5 cats with IHL and 5 healthy control cats. Total fatty acid composition of liver and adipose tissue was also compared. Triglyceride accounted for 34% of liver by weight in cats with IHL (338 +/- 38 mg/g wet liver) versus 1% in control cats (9.9 +/- 1.0 mg/g wet liver, P hepatic tissue in the 2 groups differed; palmitate was higher (19.5 +/- 1.1% of total fatty acids in cats with IHL versus 9.2 +/- 2.7% in controls, P hepatic triglyceride in cats with IHL is the mobilization of fatty acids from adipose tissue.

  19. Composite hydrogel of chitosan-poly(hydroxybutyrate-co-valerate) with chondroitin sulfate nanoparticles for nucleus pulposus tissue engineering.

    Science.gov (United States)

    Nair, Manitha B; Baranwal, Gaurav; Vijayan, Prajuna; Keyan, Kripa S; Jayakumar, R

    2015-12-01

    Intervertebral disc degeneration, occurring mainly in nucleus pulposus (NP), is a leading cause of low back pain. In seeking to mitigate this condition, investigators in the field of NP tissue engineering have increasingly studied the use of hydrogels. However, these hydrogels should possess appropriate mechanical strength and swelling pressure, and concurrently support the proliferation of chondrocyte-like cells. The objective of this study was to develop and validate a composite hydrogel for NP tissue engineering, made of chitosan-poly(hydroxybutyrate-co-valerate) (CP) with chondroitin sulfate (CS) nanoparticles, without using a cross linker. The water uptake ability, as well as the viscoelastic properties of this composite hydrogel, was similar to native tissue, as reflected in the complex shear modulus and stress relaxation values. The hydrogel could withstand varying stress corresponding to daily activities like lying down (0.01 MPa), sitting (0.5 MPa) and standing (1.0 MPa) under dynamic conditions. The hydrogels were stable in PBS for 2 weeks and its stiffness, elastic and viscous modulus did not alter significantly during this period. Both CP and CP-CS hydrogels could assist the viability and adhesion of adipose derived rat mesenchymal stem cells (ADMSCs). The viability and chondrogenic differentiation of MSCs was significantly enhanced in presence of CS nanoparticles. Thus, CS nanoparticles-incorporated chitosan-PHBV hydrogels offer great potential for NP tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Prediction of Local Ultimate Strain and Toughness of Trabecular Bone Tissue by Raman Material Composition Analysis

    Directory of Open Access Journals (Sweden)

    Roberto Carretta

    2015-01-01

    Full Text Available Clinical studies indicate that bone mineral density correlates with fracture risk at the population level but does not correlate with individual fracture risk well. Current research aims to better understand the failure mechanism of bone and to identify key determinants of bone quality, thus improving fracture risk prediction. To get a better understanding of bone strength, it is important to analyze tissue-level properties not influenced by macro- or microarchitectural factors. The aim of this pilot study was to identify whether and to what extent material properties are correlated with mechanical properties at the tissue level. The influence of macro- or microarchitectural factors was excluded by testing individual trabeculae. Previously reported data of mechanical parameters measured in single trabeculae under tension and bending and its compositional properties measured by Raman spectroscopy was evaluated. Linear and multivariate regressions show that bone matrix quality but not quantity was significantly and independently correlated with the tissue-level ultimate strain and postyield work (r=0.65–0.94. Principal component analysis extracted three independent components explaining 86% of the total variance, representing elastic, yield, and ultimate components according to the included mechanical parameters. Some matrix parameters were both included in the ultimate component, indicating that the variation in ultimate strain and postyield work could be largely explained by Raman-derived compositional parameters.

  1. Engineering of Corneal Tissue through an Aligned PVA/Collagen Composite Nanofibrous Electrospun Scaffold.

    Science.gov (United States)

    Wu, Zhengjie; Kong, Bin; Liu, Rui; Sun, Wei; Mi, Shengli

    2018-02-24

    Corneal diseases are the main reason of vision loss globally. Constructing a corneal equivalent which has a similar strength and transparency with the native cornea, seems to be a feasible way to solve the shortage of donated cornea. Electrospun collagen scaffolds are often fabricated and used as a tissue-engineered cornea, but the main drawback of poor mechanical properties make it unable to meet the requirement for surgery suture, which limits its clinical applications to a large extent. Aligned polyvinyl acetate (PVA)/collagen (PVA-COL) scaffolds were electrospun by mixing collagen and PVA to reinforce the mechanical strength of the collagen electrospun scaffold. Human keratocytes (HKs) and human corneal epithelial cells (HCECs) inoculated on aligned and random PVA-COL electrospun scaffolds adhered and proliferated well, and the aligned nanofibers induced orderly HK growth, indicating that the designed PVA-COL composite nanofibrous electrospun scaffold is suitable for application in tissue-engineered cornea.

  2. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Zhou YY

    2015-04-01

    Full Text Available Yuanyuan Zhou,1,2 Hongchang Yao,1 Jianshe Wang,1 Dalu Wang,1 Qian Liu,1 Zhongjun Li11College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People’s Republic of China; 2Institute of Enviromental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People’s Republic of ChinaAbstract: In bone tissue engineering, collagen/hydroxyapatite (HAP fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the

  3. Silicone-based composite materials simulate breast tissue to be used as ultrasonography training phantoms.

    Science.gov (United States)

    Ustbas, Burcin; Kilic, Deniz; Bozkurt, Ayhan; Aribal, Mustafa Erkin; Akbulut, Ozge

    2018-03-02

    A silicone-based composite breast phantom is fabricated to be used as an education model in ultrasonography training. A matrix of silicone formulations is tracked to mimic the ultrasonography and tactile response of human breast tissue. The performance of two different additives: (i) silicone oil and (ii) vinyl-terminated poly (dimethylsiloxane) (PDMS) are monitored by a home-made acoustic setup. Through the use of 75 wt% vinyl-terminated PDMS in two-component silicone elastomer mixture, a sound velocity of 1.29 ± 0.09 × 10 3  m/s and an attenuation coefficient of 12.99 ± 0.08 dB/cm-values those match closely to the human breast tissue-are measured with 5 MHz probe. This model can also be used for needle biopsy as well as for self-exam trainings. Herein, we highlight the fabrication of a realistic, durable, accessible, and cost-effective training platform that contains skin layer, inner breast tissue, and tumor masses. Copyright © 2018. Published by Elsevier B.V.

  4. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.

    Science.gov (United States)

    Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo

    2016-01-01

    The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Esmaeel; Azami, Mahmoud [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Kajbafzadeh, Abdol-Mohammad [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Department of Pediatric Urology, Children' s Hospital Medical Center, Tehran, Iran (IRI) (Iran, Islamic Republic of); Moztarzadeh, Fatollah [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Faridi-Majidi, Reza [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shamousi, Atefeh; Karimi, Roya [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center (BASIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Bone tissue is a composite material made of organic and inorganic components. Bone tissue engineering requires scaffolds that mimic bone nature in chemical and mechanical properties. This study proposes a novel method for preparing composite scaffolds that uses sub-micron bioglass fibers as the organic phase and gelatin/collagen as the inorganic phase. The scaffolds were constructed by using freeze drying and electro spinning methods and their mechanical properties were enhanced by using genipin crosslinking agent. Electron microscopy micrographs showed that the structure of composite scaffolds were porous with pore diameters of approximately 70–200 μm, this was again confirmed by mercury porosimetery. These pores are suitable for osteoblast growth. The diameters of the fibers were approximately 150–450 nm. Structural analysis confirmed the formation of desirable phases of sub-micron bioglass fibers. Cellular biocompatibility tests illustrated that scaffolds containing copper ion in the bioglass structure had more cell growth and osteoblast attachment in comparison to copper-free scaffolds. - Highlights: • Fabrication of 45S5 sub-micron bioglass fiber using electrospinning method. • Production of copper doped submicron bioglass fibers on 45S5 bioglass base by electrospinning sol gel route method. • Incorporation of bioglass/Cu-bioglass sub-micron fibers into gelatin/collagen matrix to form biomimetic composite scaffold which were non-cytotoxic according to MTT assay. • Discovering that copper can decrease the glass transition temperatures and enhance osteoblast cell adhesion and viability.

  6. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering

    International Nuclear Information System (INIS)

    Sharifi, Esmaeel; Azami, Mahmoud; Kajbafzadeh, Abdol-Mohammad; Moztarzadeh, Fatollah; Faridi-Majidi, Reza; Shamousi, Atefeh; Karimi, Roya; Ai, Jafar

    2016-01-01

    Bone tissue is a composite material made of organic and inorganic components. Bone tissue engineering requires scaffolds that mimic bone nature in chemical and mechanical properties. This study proposes a novel method for preparing composite scaffolds that uses sub-micron bioglass fibers as the organic phase and gelatin/collagen as the inorganic phase. The scaffolds were constructed by using freeze drying and electro spinning methods and their mechanical properties were enhanced by using genipin crosslinking agent. Electron microscopy micrographs showed that the structure of composite scaffolds were porous with pore diameters of approximately 70–200 μm, this was again confirmed by mercury porosimetery. These pores are suitable for osteoblast growth. The diameters of the fibers were approximately 150–450 nm. Structural analysis confirmed the formation of desirable phases of sub-micron bioglass fibers. Cellular biocompatibility tests illustrated that scaffolds containing copper ion in the bioglass structure had more cell growth and osteoblast attachment in comparison to copper-free scaffolds. - Highlights: • Fabrication of 45S5 sub-micron bioglass fiber using electrospinning method. • Production of copper doped submicron bioglass fibers on 45S5 bioglass base by electrospinning sol gel route method. • Incorporation of bioglass/Cu-bioglass sub-micron fibers into gelatin/collagen matrix to form biomimetic composite scaffold which were non-cytotoxic according to MTT assay. • Discovering that copper can decrease the glass transition temperatures and enhance osteoblast cell adhesion and viability.

  7. Elemental composition of 'normal' and Alzheimer brain tissue by INA and PIXE analyses

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    Instrumental methods based on the nuclear and atomic properties of the elements have been used for many years to determine elemental concentrations in a variety of materials for biomedical, industrial and environmental applications. These methods offer high sensitivity for accurate trace element measurements, suffer few interfering or competing effects. Present no blank problems and are convenient for both research and routine analyses. The present article describes the use of two trace element techniques. Firstly the use of activation of stable nuclei irradiated by neutrons in the core of a low power research reactor as a means of detection of elements through the resulting gamma-rays emitted. Secondly, the observations of the interactions of energetic ion beams with the material in order to identify elemental species. Over recent years there has been some interest in determining the elemental composition of 'normal' and Alzheimer affected brain tissue, however literature findings are inconsistent. Possible reasons for discrepancies need to be identified for further progress to be made. Here, post-mortem tissue samples, provided by the Alzheimer's Disease Brain Bank, Institute of Psychiatry, London, were taken from the frontal, occipital, parietal and temporal lobes of both hemispheres of brains from 13 'normal' and 19 Alzheimer subjects. The elemental composition of the samples was determined using the analytical techniques of INAA (instrumental neutron activation analysis), RBS (Rutherford back-scattering) and PIXE (particle induced x-ray emission). The principal findings are summarised here. (author)

  8. Microvascular Outcomes of Pediatric-Onset Type 1 Diabetes Mellitus: A Single-Center Observational Case Reviews in Sana’a, Yemen

    Directory of Open Access Journals (Sweden)

    Abdallah Ahmed Gunaid

    2018-01-01

    Full Text Available Microvascular complications of pediatric-onset type 1 diabetes are common in low-income countries. In this study, we aimed at reviewing microvascular outcomes in 6 cases with type 1 diabetes over 14 to 31 years of follow-up. Severe proliferative diabetic retinopathy (PDR and/or diabetic macular edema (maculopathy (DME and overt diabetic nephropathy (macroalbuminuria were seen among 4 of 6 patients, whereas severe diabetic peripheral neuropathy with Charcot neuroarthropathy was seen in 1 patient only, who had the longest duration of follow-up. The weighted mean (SD (95% confidence interval hemoglobin A 1c was 8.9 (1.6 (8.4-9.4% [74 (17 (68-80 mmol/mol] for PDR/DME and 8.6 (1.7 (8.0-9.0% [71 (19 (65-77 mmol/mol] for macroalbuminuria. Thyroid autoimmunity was positive in 3 patients with overt hypothyroidism in 2 of them. Worse microvascular outcomes among these cases might be attributed to poor glycemic control, lack of knowledge, and limited financial resources.

  9. Quantitative Susceptibility Mapping of Human Brain Reflects Spatial Variation in Tissue Composition

    Science.gov (United States)

    Li, Wei; Wu, Bing; Liu, Chunlei

    2011-01-01

    Image phase from gradient echo MRI provides a unique contrast that reflects brain tissue composition variations, such as iron and myelin distribution. Phase imaging is emerging as a powerful tool for the investigation of functional brain anatomy and disease diagnosis. However, the quantitative value of phase is compromised by its nonlocal and orientation dependent properties. There is an increasing need for reliable quantification of magnetic susceptibility, the intrinsic property of tissue. In this study, we developed a novel and accurate susceptibility mapping method that is also phase-wrap insensitive. The proposed susceptibility mapping method utilized two complementary equations: (1) the Fourier relationship of phase and magnetic susceptibility; and (2) the first-order partial derivative of the first equation in the spatial frequency domain. In numerical simulation, this method reconstructed the susceptibility map almost free of streaking artifact. Further, the iterative implementation of this method allowed for high quality reconstruction of susceptibility maps of human brain in vivo. The reconstructed susceptibility map provided excellent contrast of iron-rich deep nuclei and white matter bundles from surrounding tissues. Further, it also revealed anisotropic magnetic susceptibility in brain white matter. Hence, the proposed susceptibility mapping method may provide a powerful tool for the study of brain physiology and pathophysiology. Further elucidation of anisotropic magnetic susceptibility in vivo may allow us to gain more insight into the white matter microarchitectures. PMID:21224002

  10. Heart irradiation reduces microvascular density and accumulation of HSPA1 in mice

    Energy Technology Data Exchange (ETDEWEB)

    Walaszczyk, Anna; Szoltysek, Katarzyna; Jelonek, Karol; Widlak, Piotr [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Center for Translational Research and Molecular Biology of Cancer, Gliwice (Poland); Polanska, Joanna [Silesian University of Technology, Gliwice (Poland); Doerr, Wolfgang [University of Technology, Department of Radiotherapy and Radiooncology, Medical Faculty Carl Gustav Carus, Dresden (Germany); Medical University Vienna, Department of Radiation Oncology, Applied and Translational Radiobiology (ATRAB), Vienna (Austria); Haagen, Julia [University of Technology, Department of Radiotherapy and Radiooncology, Medical Faculty Carl Gustav Carus, Dresden (Germany); Gabrys, Dorota [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Department of Radiotherapy, Gliwice (Poland)

    2018-03-15

    Improvement of radiotherapy techniques reduces the exposure of normal tissues to ionizing radiation. However, the risk of radiation-related late effects remains elevated. In the present study, we investigated long-term effects of radiation on heart muscle morphology. We established a mouse model to study microvascular density (MVD), deposition of collagen fibers, and changes in accumulation of heat shock 70 kDa protein 1 (HSPA1) in irradiated heart tissue. Hearts of C57BL/6 mice received a single dose of X-ray radiation in the range 0.2-16 Gy. Analyses were performed 20, 40, and 60 weeks after irradiation. Reduction in MD was revealed as a long-term effect observed 20-60 weeks after irradiation. Moreover, a significant and dose-dependent increase in accumulation of HSPA1, both cytoplasmic and nuclear, was observed in heart tissues collected 20 weeks after irradiation. We also noticed an increase in collagen deposition in hearts treated with higher doses. This study shows that some changes induced by radiation in the heart tissue, such as reduction in microvessel density, increase in collagen deposition, and accumulation of HSPA1, are observed as long-term effects which might be associated with late radiation cardiotoxicity. (orig.) [German] Die Verbesserung der Strahlentherapietechnik reduziert die Exposition von normalen Geweben mit ionisierender Strahlung. Allerdings bleibt das Risiko strahlenbedingter Spaetfolgen erhoeht. In der vorliegenden Studie untersuchten wir die Langzeitwirkung einer Strahlenexposition des Herzmuskels in Bezug auf morphologische Veraenderungen. Wir haben ein Mausmodell etabliert, um die mikrovaskulaere Dichte (MVD), Ablagerung von Kollagenfasern und Veraenderungen der Akkumulation von 70kDa-Hitzeschockprotein 1 (HSPA1) in bestrahltem Herzgewebe zu untersuchen. Maennliche C57BL/6-Maeuse erhielten in Einzeldosen Roentgenstrahlen zwischen 0,2-16 Gy. Die Herzen wurden fuer die Analyse 20, 40 und 60 Wochen nach der Bestrahlung entnommen. Als

  11. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Shao Ching [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Minimally Invasive Skull Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard, Sect. 4, Taichung, Taiwan (China); Department of Neurosurgery, ChangHua Hospital, Ministry of Health and Welfare, 80 Chung Cheng Road, Sect. 2 Chiu Kuan Village, Changhua 500, Taiwan (China); Wang, Ming-Jia; Pai, Nai-Su [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2015-12-01

    Gelatin–hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO{sub 3}){sub 2}, NH{sub 4}H{sub 2}PO{sub 4} and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G–HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6–10 nm and tangle into porous microspheres after blending. The cell culture indicates that G–HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G–HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G–HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. - Highlights: • G–HA composite microspheres were prepared by hydroxyapatite and gelatin. • In vitro tests indicated that the G–HA microspheres were biocompatible and bioactive. • In in vitro tests, G–HA microspheres could be applied in hard tissue engineering. • G–HA had healed the bone defect and provides a high proportion of surface area to open space.

  12. Microvascular decompression for the patient with painful tic convulsif after Bell palsy.

    Science.gov (United States)

    Jiao, Wei; Zhong, Jun; Sun, Hui; Zhu, Jin; Zhou, Qiu-Meng; Yang, Xiao-Sheng; Li, Shi-Ting

    2013-05-01

    Painful tic convulsif is referred to as the concurrent trigeminal neuralgia and hemifacial spasm. However, painful tic convulsif after ipsilateral Bell palsy has never been reported before. We report a case of a 77-year-old woman with coexistent trigeminal neuralgia and hemifacial spasm who had experienced Bell palsy half a year ago. The patient underwent microvascular decompression. Intraoperatively, the vertebrobasilar artery was found to deviate to the symptomatic side and a severe adhesion was observed in the cerebellopontine angle. Meanwhile, an ectatic anterior inferior cerebellar artery and 2 branches of the superior cerebellar artery were identified to compress the caudal root entry zone (REZ) of the VII nerve and the rostroventral cisternal portion of the V nerve, respectively. Postoperatively, the symptoms of spasm ceased immediately and the pain disappeared within 3 months. In this article, the pathogenesis of the patient's illness was discussed and it was assumed that the adhesions developed from inflammatory reactions after Bell palsy and the anatomic features of the patient were the factors that generated the disorder. Microvascular decompression surgery is the suggested treatment of the disease, and the dissection should be started from the caudal cranial nerves while performing the operation.

  13. Microvascular disease in children and adolescents with type 1 diabetes and obesity.

    Science.gov (United States)

    Marcovecchio, M Loredana; Chiarelli, Francesco

    2011-03-01

    The incidence of type 1 diabetes (T1D) is increasing worldwide and is associated with a significant burden, mainly related to the development of vascular complications. Over the last decades, concomitant with the epidemic of childhood obesity, there has been an increasing number of cases of type 2 diabetes (T2D) among children and adolescents. Microvascular complications of diabetes, which include nephropathy, retinopathy and neuropathy, are characterized by damage to the microvasculature of the kidney, retina and neurons. Although clinically evident microvascular complications are rarely seen among children and adolescents with diabetes, there is clear evidence that their pathogenesis and early signs develop during childhood and accelerate during puberty. Diabetic vascular complications are often asymptomatic during their early stages, and once symptoms develop, there is little to be done to cure them. Therefore, screening needs to be started early during adolescence and, in the case of T2D, already at diagnosis. Identification of risk factors and subclinical signs of complications is essential for the early implementation of preventive and therapeutic strategies, which could change the course of vascular complications and improve the prognosis of children, adolescents and young adults with diabetes.

  14. Association of Retinopathy and Retinal Microvascular Abnormalities With Stroke and Cerebrovascular Disease.

    Science.gov (United States)

    Hughes, Alun D; Falaschetti, Emanuela; Witt, Nicholas; Wijetunge, Sumangali; Thom, Simon A McG; Tillin, Therese; Aldington, Steve J; Chaturvedi, Nish

    2016-11-01

    Abnormalities of the retinal circulation may be associated with cerebrovascular disease. We investigated associations between retinal microvascular abnormalities and (1) strokes and subclinical cerebral infarcts and (2) cerebral white matter lesions in a UK-based triethnic population-based cohort. A total of 1185 participants (age, 68.8±6.1 years; 77% men) underwent retinal imaging and cerebral magnetic resonance imaging. Cerebral infarcts and white matter hyperintensities were identified on magnetic resonance imaging, retinopathy was graded, and retinal vessels were measured. Higher retinopathy grade (odds ratio [OR], 1.40 [95% confidence interval (95% CI), 1.16-1.70]), narrower arteriolar diameter (OR, 0.98 [95% CI, 0.97-0.99]), fewer symmetrical arteriolar bifurcations (OR, 0.84 [95% CI, 0.75-0.95]), higher arteriolar optimality deviation (OR, 1.16 [95% CI, 1.00-1.34]), and more tortuous venules (OR, 1.20 [95% CI, 1.09-1.32]) were associated with strokes/infarcts and white matter hyperintensities. Associations with quantitative retinal microvascular measures were independent of retinopathy. Abnormalities of the retinal microvasculature are independently associated with stroke, cerebral infarcts, and white matter lesions. © 2016 American Heart Association, Inc.

  15. Microvascularity, blood flow and tissue structure at the subchondral plate using an X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Muthuvelu, P.; Ellis, R.E.; Green, E.M.; Attenburrow, D.; Arkill, K.; Colridge, D.B.; Winlove, C.P.; Bradley, D.A.

    2007-01-01

    The measurement of blood flow and blood in bone and cartilaginous tissues is crucial to understanding of the development of various diseases, but it presents a formidable technical challenge. We have therefore developed a method based on the detection of metallized microspheres using X-ray fluorescence. This approach provides unrivalled sensitivity and spatial resolution and also allows us simultaneously to measure other markers of the metabolic status of the tissue. (author)

  16. Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men.

    Science.gov (United States)

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Limb, Marie C; Williams, John P; Smith, Kenneth

    2016-05-01

    The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve flow-mediated dilation, an established measure of endothelial function. However, their effect on muscle microvascular blood flow is currently unknown. Therefore, the objective of this study was to explore links between the consumption of cocoa flavanols, muscle microvascular blood flow, and muscle protein synthesis (MPS) in response to nutrition in older men. To achieve this objective, leg blood flow (LBF), muscle microvascular blood volume (MBV), and MPS were measured under postabsorptive and postprandial (intravenous Glamin (Fresenius Kabi, Germany), dextrose to sustain glucose ∼7.5 mmol·L(-1)) conditions in 20 older men. Ten of these men were studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 350 mg of cocoa flavanols at the same time that nutrition began. Leg (femoral artery) blood flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound using Definity (Lantheus Medical Imaging, Mass., USA) perflutren contrast agent and MPS using [1, 2-(13)C2]leucine tracer techniques. Our results show that although older individuals do not show an increase in LBF or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are given acutely with nutrition. However, this restoration in vascular responsiveness is not associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol supplementation improves muscle macro- and microvascular responses to nutrition, independently of modifying muscle protein anabolism.

  17. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto, E-mail: eamato@unime.it [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy); Italiano, Antonio [INFN – Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Baldari, Sergio [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy)

    2013-11-21

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm{sup −3} density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  18. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-01-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm −3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate

  19. Bioceramic/Poly (glycolic-poly (lactic acid composite induces mineralized barrier after direct capping of rat tooth pulp tissue

    Directory of Open Access Journals (Sweden)

    Alfonso Gala-Garcia

    2010-03-01

    Full Text Available The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC and poly (glycolic-poly (lactic acid (PLGA material or a calcium hydroxide [Ca(OH2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.

  20. In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering.

    Science.gov (United States)

    Gupta, Ashim; Main, Benjamin J; Taylor, Brittany L; Gupta, Manu; Whitworth, Craig A; Cady, Craig; Freeman, Joseph W; El-Amin, Saadiq F

    2014-11-01

    The purpose of this study was to develop three-dimensional single-walled carbon nanotube composites (SWCNT/PLAGA) using 10-mg single-walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3-E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3-E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc.

  1. Titanium-hydroxyapatite composites sintered at low temperature for tissue engineering: in vitro cell support and biocompatibility.

    Science.gov (United States)

    Comín, Romina; Cid, Mariana P; Grinschpun, Luciano; Oldani, Carlos; Salvatierra, Nancy A

    2017-04-26

    In clinical orthopedics, a critical problem is the bone tissue loss produced by a disease or injury. The use of composites from titanium and hydroxyapatite for biomedical applications has increased due to the resulting advantageous combination of hydroxyapatite bioactivity and favorable mechanical properties of titanium. Powder metallurgy is a simple and lower-cost method that uses powder from titanium and hydroxyapatite to obtain composites having hydroxyapatite phases in a metallic matrix. However, this method has certain limitations arising from thermal decomposition of hydroxyapatite in the titanium-hydroxyapatite system above 800°C. We obtained a composite from titanium and bovine hydroxyapatite powders sintered at 800°C and evaluated its bioactivity and cytocompatibility according to the ISO 10993 standard. Surface analysis and bioactivity of the composite was evaluated by X-ray diffraction and SEM. MTT assay was carried out to assess cytotoxicity on Vero and NIH3T3 cells. Cell morphology and cell adhesion on the composite surface were analyzed using fluorescence and SEM. We obtained a porous composite with hydroxyapatite particles well integrated in titanium matrix which presented excellent bioactivity. Our data did not reveal any toxicity of titanium-hydroxyapatite composite on Vero or NIH3T3 cells. Moreover, extracts from composite did not affect cell morphology or density. Finally, NIH3T3 cells were capable of adhering to and proliferating on the composite surface. The composite obtained displayed promising biomedical applications through the simple method of powder metallurgy. Additionally, these findings provide an in vitro proof for adequate biocompatibility of titanium-hydroxyapatite composite sintered at 800°C.

  2. Intercellular adhesion molecule-1 blockade attenuates inflammatory response and improves microvascular perfusion in rat pancreas grafts.

    Science.gov (United States)

    Preissler, Gerhard; Eichhorn, Martin; Waldner, Helmut; Winter, Hauke; Kleespies, Axel; Massberg, Steffen

    2012-10-01

    After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.

  3. Multimodal reconstruction of microvascular-flow distributions using combined two-photon microscopy and Doppler optical coherence tomography.

    Science.gov (United States)

    Gagnon, Louis; Sakadžić, Sava; Lesage, Fréderic; Mandeville, Emiri T; Fang, Qianqian; Yaseen, Mohammad A; Boas, David A

    2015-01-01

    Computing microvascular cerebral blood flow ([Formula: see text]) in real cortical angiograms is challenging. Here, we investigated whether the use of Doppler optical coherence tomography (DOCT) flow measurements in individual vessel segments can help in reconstructing [Formula: see text] across the entire vasculature of a truncated cortical angiogram. A [Formula: see text] computational framework integrating DOCT measurements is presented. Simulations performed on a synthetic angiogram showed that the addition of DOCT measurements, especially close to large inflowing or outflowing vessels, reduces the impact of pressure boundary conditions and estimated vessel resistances resulting in a more accurate reconstruction of [Formula: see text]. Our technique was then applied to reconstruct microvascular flow distributions in the mouse cortex down to [Formula: see text] by combining two-photon laser scanning microscopy angiography with DOCT.

  4. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.

    Science.gov (United States)

    Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša

    2017-03-06

    Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).

  5. Comparison between invasive and noninvasive techniques of evaluation of microvascular structural alterations.

    Science.gov (United States)

    De Ciuceis, Carolina; Agabiti Rosei, Claudia; Caletti, Stefano; Trapletti, Valentina; Coschignano, Maria A; Tiberio, Guido A M; Duse, Sarah; Docchio, Franco; Pasinetti, Simone; Zambonardi, Federica; Semeraro, Francesco; Porteri, Enzo; Solaini, Leonardo; Sansoni, Giovanna; Pileri, Paola; Rossini, Claudia; Mittempergher, Francesco; Portolani, Nazario; Ministrini, Silvia; Agabiti-Rosei, Enrico; Rizzoni, Damiano

    2018-05-01

    The evaluation of the morphological characteristics of small resistance arteries in humans is challenging. The gold standard method is generally considered to be the measurement by wire or pressure micromyography of the media-to-lumen ratio of subcutaneous small vessels obtained by local biopsies. However, noninvasive techniques for the evaluation of retinal arterioles were recently proposed; in particular, two approaches, scanning laser Doppler flowmetry (SLDF) and adaptive optics, seem to provide useful information; both of them provide an estimation of the wall-to-lumen ratio (WLR) of retinal arterioles. Moreover, a noninvasive measurement of basal and total capillary density may be obtained by videomicroscopy/capillaroscopy. No direct comparison of these three noninvasive techniques in the same population was previously performed; in particular, adaptive optics was never validated against micromyography. In the current study, we enrolled 41 controls and patients: 12 normotensive lean controls, 12 essential hypertensive lean patients, nine normotensive obese patients and eight hypertensive obese patients undergoing elective surgery. All patients underwent a biopsy of subcutaneous fat during surgery. Subcutaneous small resistance artery structure was assessed by wire micromyography and the media-to-lumen ratio was calculated. WLR of retinal arterioles was obtained by SLDF and adaptive optics. Functional (basal) and structural (total) microvascular density was evaluated by capillaroscopy before and after venous congestion. Our data suggest that adaptive optics has a substantial advantage over SLDF in terms of evaluation of microvascular morphology, as WLR measured with adaptive optics is more closely correlated with the M/L of subcutaneous small arteries (r = 0.84, P < 0.001 vs. r = 0.52, P < 0.05, slopes of the relations: P < 0.01 adaptive optics vs. SLDF). In addition, the reproducibility of the evaluation of the WLR with adaptive optics is

  6. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Song, Yue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Zhang, Jing [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); Liu, Wei [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Cui, Jihong, E-mail: cjh@nwu.edu.cn [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); and others

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  7. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    International Nuclear Information System (INIS)

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong

    2017-01-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  8. Fatty acid composition of ostrich (Struthio camelus abdominal adipose tissue

    Directory of Open Access Journals (Sweden)

    Daniela Belichovska

    2015-03-01

    Full Text Available Fatty acid composition of foods has a great impact on nutrition and health. Therefore, thе determination and knowledge of the fatty acid composition of food is very important for nutrition. Due to the high nutritional characteristics of ostrich meat and its products, the research determining their quality is of topical interest. The aim of the present investigation was the determination of fatty acid composition of ostrich adipose tissue. The content of fatty acids was determined according to AOAC Official Methods of Analysis and determination was performed using a gas chromatograph with a flame-ionization detector (GC-FID. The results are expressed as a percentage of the total content of fatty acids. The method was validated and whereupon the following parameters were determined: linearity, precision, recovery, limit of detection and limit of quantification. The repeatability was within of 0.99 to 2.15%, reproducibility from 2.01 to 4.57%, while recovery ranged from 94.89 to 101.03%. According to these results, this method is accurate and precise and can be used for analysis of fatty acids in foods. It was concluded that the content of saturated fatty acids (SFA accounted 34.75%, of monounsaturated fatty acids (MUFA 38.37%, of polyunsaturated fatty acids (PUFA 26.88%, of total unsaturated fatty acids (UFA 65.25% and of desirable fatty acids (DFA (total unsaturated + stearic acid 70.37% of the analysed samples. The ratio polyunsaturated/saturated fatty acids accounted 0.77. The most present fatty acid is the oleic (C18:1n9c with 28.31%, followed by palmitic (C16:0 with 27.12% and linoleic (C18:2n6c acid with 25.08%. Other fatty acids are contained in significantly lower quantities.

  9. Associations between diabetes self-management and microvascular complications in patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Fatemeh Mehravar

    2016-01-01

    Full Text Available OBJECTIVES: Diabetes is a major public health problem that is approaching epidemic proportions globally. Diabetes self-management can reduce complications and mortality in type 2 diabetic patients. The purpose of this study was to examine associations between diabetes self-management and microvascular complications in patients with type 2 diabetes. METHODS: In this cross-sectional study, 562 Iranian patients older than 30 years of age with type 2 diabetes who received treatment at the Diabetes Research Center of the Endocrinology and Metabolism Research Institute of the Tehran University of Medical Sciences were identified. The participants were enrolled and completed questionnaires between January and April 2014. Patients’ diabetes self-management was assessed as an independent variable by using the Diabetes Self-Management Questionnaire translated into Persian. The outcomes were the microvascular complications of diabetes (retinopathy, nephropathy, and neuropathy, identified from the clinical records of each patient. A multiple logistic regression model was used to estimate odds ratios (ORs and 95% confidence intervals (CIs between diabetes self-management and the microvascular complications of type 2 diabetes, adjusting for potential confounders. RESULTS: After adjusting for potential confounders, a significant association was found between the diabetes self-management sum scale and neuropathy (adjusted OR, 0.64; 95% CI, 0.45 to 0.92, p=0.01. Additionally, weak evidence was found of an association between the sum scale score of diabetes self-management and nephropathy (adjusted OR, 0.71; 95% CI, 0.47 to 1.05, p=0.09. CONCLUSIONS: Among patients with type 2 diabetes, a lower diabetes self-management score was associated with higher rates of nephropathy and neuropathy.

  10. The number of microvascular complications is associated with an increased risk for severity of periodontitis in type 2 diabetes patients: Results of a multicenter hospital-based cross-sectional study.

    Science.gov (United States)

    Nitta, Hiroshi; Katagiri, Sayaka; Nagasawa, Toshiyuki; Izumi, Yuichi; Ishikawa, Isao; Izumiyama, Hajime; Uchimura, Isao; Kanazawa, Masao; Chiba, Hiroshige; Matsuo, Akira; Utsunomiya, Kazunori; Tanabe, Haruyasu; Takei, Izumi; Asanami, Soichiro; Kajio, Hiroshi; Ono, Toaki; Hayashi, Yoichi; Ueki, Kiichi; Tsuji, Masatomi; Kurachi, Yoichi; Yamanouchi, Toshikazu; Ichinokawa, Yoshimi; Inokuchi, Toshiki; Fukui, Akiko; Miyazaki, Shigeru; Miyauchi, Takashi; Kawahara, Reiko; Ogiuchi, Hideki; Yoshioka, Narihito; Negishi, Jun; Mori, Masatomo; Mogi, Kenji; Saito, Yasushi; Tanzawa, Hideki; Nishikawa, Tetsuo; Takada, Norihiko; Nanjo, Kishio; Morita, Nobuo; Nakamura, Naoto; Kanamura, Narisato; Makino, Hirofumi; Nishimura, Fusanori; Kobayashi, Kunihisa; Higuchi, Yoshinori; Sakata, Toshiie; Yanagisawa, Shigetaka; Tei, Chuwa; Ando, Yuichi; Hanada, Nobuhiro; Inoue, Shuji

    2017-09-01

    To explore the relationships between periodontitis and microvascular complications as well as glycemic control in type 2 diabetes patients. This multicenter, hospital-based, cross-sectional study included 620 patients with type 2 diabetes. We compared the prevalence and severity of periodontitis between patients with ≥1 microvascular complication and those without microvascular complications. We also compared the prevalence and severity of periodontitis among patients with different degrees of glycemic control. After adjusting for confounding factors, multiple logistic regression analysis showed that the severity of periodontitis was significantly associated with the number of microvascular complications (odds ratio 1.3, 95% confidence interval 1.1-1.6), glycated hemoglobin ≥8.0% (64 mmol/mol; odds ratio 1.6; 95% confidence interval 1.1-2.3), and older age (≥50 years; odds ratio 1.7; 95% confidence interval 1.1-2.6). However, the prevalence of periodontitis was not significantly associated with the number of microvascular complications, but was associated with male sex, high glycated hemoglobin (≥8.0% [64 mmol/mol]), older age (≥40 years), longer duration of diabetes (≥15 years) and fewer teeth (≤25). Furthermore, propensity score matching for age, sex, diabetes duration and glycated hemoglobin showed that the incidence of severe periodontitis was significantly higher among patients with microvascular complications than among those without microvascular complications (P periodontitis in patients with type 2 diabetes, whereas poor glycemic control is a risk factor for increased prevalence and severity of periodontitis. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  11. [Successful microvascular decompression of the medulla oblongata for a case with respiratory failure: case report].

    Science.gov (United States)

    Koguchi, Motofumi; Nakahara, Yukiko; Kawashima, Masatou; Takase, Yukinori; Matsushima, Toshio

    2011-11-01

    We report a case of the medulla oblongata syndrome successfully treated by microvascular decompression surgery. The patient was a 75-year-old woman and had been suffering from gradual progressive dyspnea since July, 2009. Two month later, intubation and medial ventilator treatments were began because of severe respiratory problems. The central respiratory problems were considered in extensive testing by the physician. The head MR imaging showed that the left vertebral artery had markedly compressed the medulla oblongata. We thought that her respiratory problems were associated with this vertebral artery compression of the medulla oblongata. We performed the microvascular decompression surgery by left trans-condylar fossa approach. Her hypoventilation graduately improved after the surgery and she needed neither ventilator nor oxygen in several months. She is able to perform daily activities by herself. We report the case, and discuss the cause of respiratory problems especially by compression of the medulla oblongata.

  12. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Science.gov (United States)

    Soltani, M; Chen, P

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  13. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  14. Adipose-Derived Cell Construct Stabilizes Heart Function and Increases Microvascular Perfusion in an Established Infarct

    Science.gov (United States)

    Nguyen, Quang T.; Touroo, Jeremy S.; Aird, Allison L.; Chang, Raymond C.; Ng, Chin K.; Hoying, James B.; Williams, Stuart K.

    2013-01-01

    We have previously shown that myocardial infarction (MI) immediately treated with an epicardial construct containing stromal vascular fraction (SVF) from adipose tissue preserved microvascular function and left ventricle contractile mechanisms. In order to evaluate a more clinically relevant condition, we investigated the cardiac recovery potential of an SVF construct implanted onto an established infarct. SVF cells were isolated from rat adipose tissue, plated on Vicryl, and cultured for 14 days. Fischer-344 rats were separated into MI groups: (a) 6-week MI (MI), (b) 6-week MI treated with an SVF construct at 2 weeks (MI SVF), (c) 6-week MI with Vicryl construct at 2 weeks (MI Vicryl), and (d) MI 2wk (time point of intervention). Emax, an indicator of systolic performance and contractile function, was lower in the MI and MI Vicryl versus MI SVF. Positron emission tomography imaging (18F-fluorodeoxyglucose) revealed a decreased percentage of relative infarct volume in the MI SVF versus MI and MI Vicryl. Total vessel count and percentage of perfusion assessed via immunohistochemistry were both increased in the infarct region of MI SVF versus MI and MI Vicryl. Overall cardiac function, percentage of relative infarct, and percentage of perfusion were similar between MI SVF and MI 2wk; however, total vessel count increased after SVF treatment. These data suggest that SVF treatment of an established infarct stabilizes the heart at the time point of intervention by preventing a worsening of cardiac performance and infarcted volume, and is associated with increased microvessel perfusion in the area of established infarct. PMID:24106337

  15. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.

    Science.gov (United States)

    Gautam, Sneh; Chou, Chia-Fu; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2-1.5wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. © 2013.

  16. Peripheral Microvascular Responses to Whole-Body Tilting, G(z) Centrifugation, and Lower Body Negative Pressure Stresses in Humans

    Science.gov (United States)

    Breit, G. A.; Watenpaugh, D. E.; Buckley, T. M.; Ballard, R. E.; Murthy, G.; Hargens, A. R.

    1994-01-01

    The response of the cutaneous microcirculation to orthostatic stress varies along the length of the body due to the interaction of central controls with regional responses to local blood pressure. We hypothesize that artificial orthostatic stresses such as Gz centrifugation and LBNP differ from whole-body tilting in terms of the distribution of microvascular blood flow. Cutaneous microvascular flows were measured by laser Doppler flowmetry at the neck, thigh, and leg of 15 normal subjects. Volunteers underwent stepwise head-up tilt (HUT) and short- and long-arm centrifugation protocols from supine control (0 Gz) to 0.2, 0.4, 0.6, 0.8, 1.0, 0.8, 0.6, 0.4, 0.2, and 0 Gz at the feet, for 30-s periods with 10-s transitions between levels. The same subjects underwent a corresponding supine LBNP protocol, up to 100 mmHg (in 20 mmHg increments) and back to zero pressure, which produced transmural pressure across blood vessels in the foot approximately equal to the HUT protocol. In general, application of all orthostatic stresses produced significant flow reductions in the lower body (p less than 0.05) and inconsistent changes in the neck. At low levels of each stress (0.4 Gz, 40 mmHg), LBNP generated the greatest relative reduction in flow in the lower body (-66.9+/-5.7%, thigh; -60.6 +/-5.7%, leg, mean +/- SE). HUT caused a less severe flow reduction than LBNP at the thigh and leg (-39.9 +/- 8.1% and -55.9+/-4.8%), while the effects induced by both forms of centrifugation were the least profound. Higher levels of each stress generally resulted in similar responses. These responses exhibit a consistent relationship to hypothesized changes in local microvascular transmural pressure, suggesting that myogenic and veno-arteriolar reflexes play a significant role in determining microvascular perfusion during orthostatic stress.

  17. Uric acid is associated with inflammation, coronary microvascular dysfunction, and adverse outcomes in postmenopausal women

    Science.gov (United States)

    Prasad, Megha; Matteson, Eric L.; Herrmann, Joerg; Gulati, Rajiv; Rihal, Charanjit S.; Lerman, Lilach O.; Lerman, Amir

    2016-01-01

    Uric acid is a risk factor for coronary artery disease (CAD) in postmenopausal women but the association with inflammation and coronary microvascular endothelial dysfunction (CED) is not well-defined. The aim of this study was to determine the relationship of serum uric acid (SUA), inflammatory markers and CED. In this prospective cohort study, serum uric acid, hsCRP levels, and neutrophil count were measured in 229 postmenopausal women who underwent diagnostic catheterization, were found to have no obstructive CAD and underwent coronary microvascular function testing, to measure coronary blood flow (CBF) response to intracoronary acetylcholine. The average age was 58 years (IQR 52, 66) years. Hypertension was present in 48%, type 2 diabetes mellitus in 5.6%, and hyperlipidemia in 61.8%. CED was diagnosed in 59% of postmenopausal women. Mean uric acid level was 4.7 ± 1.3 mg/dL. Postmenopausal women with CED had significantly higher SUA compared to patients without CED (4.9 ± 1.3 vs. 4.4 ± 1.3 mg/dL; p=0.02). There was a significant correlation between SUA and % change in CBF to acetylcholine (p=0.009), and this correlation persisted in multivariable analysis. SUA levels were significantly associated with increased neutrophil count (p=0.02) and hsCRP levels (p=0.006) among patients with CED, but not those without CED. Serum uric acid is associated with coronary microvascular endothelial dysfunction in postmenopausal women and may be related to inflammation. These findings link serum uric acid levels to early coronary atherosclerosis in postmenopausal women. PMID:27993955

  18. Stationary Treatment Compared with Individualized Chinese Medicine for Type 2 Diabetes Patients with Microvascular Complications: Study Protocol for a Randomized Controlled Trial.

    Science.gov (United States)

    Huo, Jian; Liu, Li-Sha; Jian, Wen-Yuan; Zeng, Jie-Ping; Duan, Jun-Guo; Lu, Xue-Jing; Yin, Shuo

    2018-06-18

    Microvascular complications in type 2 diabetes (T2DM), including diabatic retinopathy (DR), diabetic kidney disease (DKD), diabetic peripheral neuropathy (DPN) are the leading causes of visual loss, end-stage renal disease or amputation, while the current therapies are still unsatisfactory. Chinese medicine (CM) has been widely used for treating diabetic mellitus. However, most of the previous studies focused on the single complication. The role of CM treatment in T2DM patients with 2 or multiple microvascular complications is not clear. To appraise the curative effect of CM in T2DM patients with 2 or multiple microvascular complications, and to compare the effects of stationary treatment and individualized treatment in T2DM patients with microvascular complications. This trial will be an 8-center, randomized, controlled study with 8 parallel groups. A total of 432 patients will be randomized to 8 groups: DR study group (32 cases) and a corresponding control group (32 cases), DR+DKD study group (64 cases) and a corresponding control group (64 cases), DR+DPN study group (64 cases) and a corresponding control group (64 cases), DR+DKD+DPN study group (56 cases) and a corresponding control group (56 cases). The control group will receive stationary treatment, and the study group will receive individualized treatment based on CM syndrome differentiation in addition to stationary treatment. The study duration will be 50 weeks, comprising a 2-week run-in period, 24 weeks of intervention, and 24 weeks of follow-up. The outcomes will assess efficacy of treatment, improvement in CM symptoms, safety assessments, adherence to the treatment, and adverse events. This study will provide evidence of evidence-based medicine for CM treatment in two or multiple microvascular complications caused by T2DM. (Registration No. ChiCTR-IPR-15007072).

  19. Composition and structure of porcine digital flexor tendon-bone insertion tissues.

    Science.gov (United States)

    Chandrasekaran, Sandhya; Pankow, Mark; Peters, Kara; Huang, Hsiao-Ying Shadow

    2017-11-01

    Tendon-bone insertion is a functionally graded tissue, transitioning from 200 MPa tensile modulus at the tendon end to 20 GPa tensile modulus at the bone, across just a few hundred micrometers. In this study, we examine the porcine digital flexor tendon insertion tissue to provide a quantitative description of its collagen orientation and mineral concentration by using Fast Fourier Transform (FFT) based image analysis and mass spectrometry, respectively. Histological results revealed uniformity in global collagen orientation at all depths, indicative of mechanical anisotropy, although at mid-depth, the highest fiber density, least amount of dispersion, and least cellular circularity were evident. Collagen orientation distribution obtained through 2D FFT of histological imaging data from fluorescent microscopy agreed with past measurements based on polarized light microscopy. Results revealed global fiber orientation across the tendon-bone insertion to be preserved along direction of physiologic tension. Gradation in the fiber distribution orientation index across the insertion was reflective of a decrease in anisotropy from the tendon to the bone. We provided elemental maps across the fibrocartilage for its organic and inorganic constituents through time-of-flight secondary ion mass spectrometry (TOF-SIMS). The apatite intensity distribution from the tendon to bone was shown to follow a linear trend, supporting past results based on Raman microprobe analysis. The merit of this study lies in the image-based simplified approach to fiber distribution quantification and in the high spatial resolution of the compositional analysis. In conjunction with the mechanical properties of the insertion tissue, fiber, and mineral distribution results for the insertion from this may potentially be incorporated into the development of a structural constitutive approach toward computational modeling. Characterizing the properties of the native insertion tissue would provide the

  20. New insights into the microvascular mechanisms of drag reducing polymers: effect on the cell-free layer.

    Science.gov (United States)

    Brands, Judith; Kliner, Dustin; Lipowsky, Herbert H; Kameneva, Marina V; Villanueva, Flordeliza S; Pacella, John J

    2013-01-01

    Drag-reducing polymers (DRPs) significantly increase blood flow, tissue perfusion, and tissue oxygenation in various animal models. In rectangular channel microfluidic systems, DRPs were found to significantly reduce the near-wall cell-free layer (CFL) as well as modify traffic of red blood cells (RBC) into microchannel branches. In the current study we further investigated the mechanism by which DRP enhances microvascular perfusion. We studied the effect of various concentrations of DRP on RBC distribution in more relevant round microchannels and the effect of DRP on CFL in the rat cremaster muscle in vivo. In round microchannels hematocrit was measured in parent and daughter branch at baseline and after addition of DRP. At DRP concentrations of 5 and 10 ppm, the plasma skimming effect in the daughter branch was eliminated, as parent and daughter branch hematocrit were equivalent, compared to a significantly lowered hematocrit in the daughter branch without DRPs. In anesthetized rats (N=11) CFL was measured in the cremaster muscle tissue in arterioles with a diameter of 32.6 ± 1.7 µm. In the control group (saline, N=6) there was a significant increase in CFL in time compared to corresponding baseline. Addition of DRP at 1 ppm (N=5) reduced CFL significantly compared to corresponding baseline and the control group. After DRP administration the CFL reduced to about 85% of baseline at 5, 15, 25 and 35 minutes after DRP infusion was complete. These in vivo and in vitro findings demonstrate that DRPs induce a reduction in CFL width and plasma skimming in the microvasculature. This may lead to an increase of RBC flux into the capillary bed, and thus explain previous observations of a DRP mediated enhancement of capillary perfusion.

  1. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.P. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Lopes, G.O. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Tibirica, E. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Laboratório de Investigação Cardiovascular, Departamento Osório de Almeida, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ (Brazil)

    2016-09-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.

  2. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Borges, J.P.; Lopes, G.O.; Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A.; Tibirica, E.

    2016-01-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men

  3. Homocysteine, S-adenosylmethionine and S-adenosylhomocysteine are associated with retinal microvascular abnormalities : the Hoorn Study

    NARCIS (Netherlands)

    van Hecke, Manon V.; Dekker, Jacqueline M.; Nijpels, Giel; Teeerlink, Tom; Jakobs, Cornelis; Stolk, Ronald P.; Heine, Rob J.; Bouter, Lex M.; Polak, Bettine C. P.; Stehouwer, Coen D. A.

    The aim of the present study was to investigate the relationship between homocysteine and homocysteine metabolism components and retinal microvascular disorders in subjects with and without Type 2 diabetes. In this population-based study of 256 participants, aged 60-85 years, we determined total

  4. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration

    DEFF Research Database (Denmark)

    Yannariello-Brown, J; Wewer, U; Liotta, L

    1988-01-01

    cells identified this protein in BAEC lysates. In frozen sections, these polyclonal antibodies and monoclonal antibodies raised against human tumor 69-kD stained the endothelium of bovine aorta and the medial smooth muscle cells, but not surrounding connective tissue or elastin fibers. When...... nonpermeabilized BAEC were stained in an in vitro migration assay, there appeared to be apical patches of 69 kD staining in stationary cells. However, when released from contact inhibition, 69 kD was localized to ruffling membranes on cells at the migrating front. Permeabilized BAEC stained for 69 kD diffusely...... in permeabilized cultured microvascular endothelial cells in a continuous staining pattern at 6 h postplating which redistributed to punctate patches along the length of the filaments at confluence (96 h). In addition, 69 kD co-distribution with laminin could also be demonstrated in cultured subconfluent cells...

  5. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    Science.gov (United States)

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  6. An Algorithmic Approach to Total Breast Reconstruction with Free Tissue Transfer

    Directory of Open Access Journals (Sweden)

    Seong Cheol Yu

    2013-05-01

    Full Text Available As microvascular techniques continue to improve, perforator flap free tissue transfer is now the gold standard for autologous breast reconstruction. Various options are available for breast reconstruction with autologous tissue. These include the free transverse rectus abdominis myocutaneous (TRAM flap, deep inferior epigastric perforator flap, superficial inferior epigastric artery flap, superior gluteal artery perforator flap, and transverse/vertical upper gracilis flap. In addition, pedicled flaps can be very successful in the right hands and the right patient, such as the pedicled TRAM flap, latissimus dorsi flap, and thoracodorsal artery perforator. Each flap comes with its own advantages and disadvantages related to tissue properties and donor-site morbidity. Currently, the problem is how to determine the most appropriate flap for a particular patient among those potential candidates. Based on a thorough review of the literature and accumulated experiences in the author’s institution, this article provides a logical approach to autologous breast reconstruction. The algorithms presented here can be helpful to customize breast reconstruction to individual patient needs.

  7. Potential of Dietary Non-Provitamin A Carotenoids in the Prevention and Treatment of Diabetic Microvascular Complications12

    Science.gov (United States)

    Murillo, Ana Gabriela

    2016-01-01

    Diabetes is a chronic metabolic disease that affects a substantial part of the population around the world. Whether type I or type II, this disease has serious macro- and microvascular complications that constitute the primary cause of death in diabetic patients. Microvascular complications include diabetic retinopathy, nephropathy, and neuropathy. Although these complications are clinically and etiologically diverse, they share a common factor: glucose-induced damage. In the progression of diabetic complications, oxidative stress, inflammation, and the formation of glycation end products play an important role. Previous studies have shown that a healthy diet is vital in preventing these complications; in particular, the intake of antioxidants has been studied for their potential effect in ameliorating hyperglycemic injuries. Carotenoids are lipid-soluble pigments synthesized by plants, bacteria, and some kinds of algae that are responsible for the yellow, red, and orange colors in food. These compounds are part of the antioxidant machinery in plants and have also shown their efficacy in quenching free radicals, scavenging reactive oxygen species, modulating gene expression, and reducing inflammation in vitro and in vivo, showing that they can potentially be used as part of a preventive strategy for metabolic disorders, including diabetes and its related complications. This review highlights the potential protective effects of 4 non-provitamin A carotenoids—lutein, zeaxanthin, lycopene, and astaxanthin—in the development and progression of diabetic microvascular complications. PMID:26773012

  8. Keyhole craniotomy through retrosigmoid approach followed by microvascular decompression for primary trigeminal neuralgia:a report of 23 cases

    Directory of Open Access Journals (Sweden)

    Gang-ge CHENG

    2011-03-01

    Full Text Available Objective To explore the surgical technique,effects,and complications of keyhole craniotomy through retrosigmoid approach followed by microvascular decompression for primary trigeminal neuralgia.Methods The craniotomy with a keyhole incision above postauricular hairline followed by microvascular decompression was performed in 23 patients with primary trigeminal neuralgia.Dissection of intracranial part of trigeminal nerve under microscope was done to search for the offending vessels,which were thereby freed and between which and the root entry zone(REZ of trigeminal nerve the Teflon grafts were placed.Effects and complications were observed in follow-up,ranging from 1 month to 2 years.Results Out of 23 patients who were all found compression in REZ of trigeminal nerves by the offending vessels in operation,disappearance of symptoms post-surgery was found in 22 cases,face numbness on the surgical side in 3 cases and no effects in 1 case.Recurrence of pain was not observed in patients who had initially benefited from the surgery at the follow-up.Conclusion The keyhole craniotomy through retrosigmoid approach followed by microvascular decompression is safe and effective for primary trigeminal neuralgia,in which accurate technique during operation plays a vital role in the decrease of complications and the outcome post-surgery.

  9. Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue.

    Science.gov (United States)

    Cao, Dandan; Xu, Zhengliang; Chen, Yixuan; Ke, Qinfei; Zhang, Changqing; Guo, Yaping

    2018-02-01

    Bone tissue engineering scaffolds for the reconstruction of large bone defects should simultaneously promote osteogenic differentiation and avoid postoperative infection. Herein, we develop, for the first time, Ag-loaded MgSrFe-layered double hydroxide/chitosan (Ag-MgSrFe/CS) composite scaffold. This scaffold exhibits three-dimensional interconnected macroporous structure with a pore size of 100-300 μm. The layered double hydroxide nanoplates in the Ag-MgSrFe/CS show lateral sizes of 200-400 nm and thicknesses of ∼50 nm, and the Ag nanoparticles with particle sizes of ∼20 nm are uniformly dispersed on the scaffold surfaces. Human bone marrow-derived mesenchymal stem cells (hBMSCs) present good adhesion, spreading, and proliferation on the Ag-MgSrFe/CS composite scaffold, suggesting that the Ag and Sr elements in the composite scaffold have no toxicity to hBMSCs. When compared with MgFe/CS composite scaffold, the Ag-MgSrFe/CS composite scaffold has better osteogenic property. The released Sr 2+ ions from the composite scaffold enhance the alkaline phosphatase activity of hBMSCs, promote the extracellular matrix mineralization, and increase the expression levels of osteogenic-related RUNX2 and BMP-2. Moreover, the Ag-MgSrFe/CS composite scaffold possesses good antibacterial property because the Ag nanoparticles in the composite scaffold effectively prevent biofilm formation against S. aureus. Hence, the Ag-MgSrFe/CS composite scaffold with excellent osteoinductivity and antibacterial property has a great potential for bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 863-873, 2018. © 2017 Wiley Periodicals, Inc.

  10. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    Science.gov (United States)

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  11. ABCD1 dysfunction alters white matter microvascular perfusion

    DEFF Research Database (Denmark)

    Lauer, Arne; Da, Xiao; Hansen, Mikkel Bo

    2017-01-01

    Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability...... of the blood–brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic reson- ance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased...... capillary flow heterogeneity in asymptom- atic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow hetero...

  12. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    Science.gov (United States)

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  13. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4 days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0–10 vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na{sup +},K{sup +}-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7 μmol) and zeta potential (i.e., -38.6 to − 56.5 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials. - Highlights: • We examine the corneal tissue responses to photopolymerized biomaterials. • Carboxyl groups in copolymers increased with increasing volume ratio of AAc/HEMA. • 15–20 vol.% AAc raised ocular score and caused corneal endothelial loss and edema. • High anionic charge density stimulated inflammation

  14. Composition of α-tocopherol and fatty acids in porcine tissues after dietary supplementation with vitamin E and different fat sources

    DEFF Research Database (Denmark)

    Lauridsen, Charlotte; Theil, Peter Kappel; Jensen, Søren Krogh

    2013-01-01

    in transfer of α-tocopherol, and oxidation and metabolism of fatty acids. From day 28 to 56 of age, pigs were provided 5% of tallow, fish oil or sunflower oil and 85, 150, or 300 mg/kg of all-rac-α-tocopheryl acetate. Samples of liver, heart, and adipose tissue were obtained from littermates at day 56. Tissue...... fatty acid composition was highly influenced by dietary fat sources. Dietary fatty acid composition (Pfish oil...... lower in pigs fed fish oil compared to other treatments, whereas the fatty acid oxidation, as indicated by the expression of PPAR-α, was higher when sunflower and fish oil was provided (P=0.03). Expression of α-TTP in liver was higher in pigs fed fish oil (P=0.01). Vitamin E supplementation did...

  15. Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms

    Directory of Open Access Journals (Sweden)

    Karl Heckler

    2017-09-01

    Full Text Available Diabetes mellitus (DM is a crucial metabolic disease that leads to severe disorders. These include macrovascular complications such as myocardial infarction, stroke, and peripheral artery disease and microvascular complications including diabetic nephropathy, neuropathy, and retinopathy. Diabetes mellitus, along with its associated organ pathologies, is one of the key problems in today’s medicine. Zebrafish is an upcoming disease model organism in diabetes research. Its glucose metabolism and the pathways of reactive metabolite formation are very similar to those of humans. Moreover, several physiological and pathophysiological pathways that also exist in humans and other mammals have been identified in this species or are currently under intense investigation. Zebrafish offer sophisticated imaging techniques and allow simple and fast genetic and pharmacological approaches with a high throughput. In this review, we highlight achievements and mechanisms concerning microvascular complications discovered in zebrafish, and we discuss the advantages and disadvantages of zebrafish as a model for studying diabetic complications.

  16. [The composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora].

    Science.gov (United States)

    Lei, D; Lin, Y; Jiang, X; Lan, L; Zhang, W; Wang, B X

    2017-03-02

    Objective: To explore the composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora. Method: Twenty-four specimens were collected from pregnant Kunming mouse including 8 mice of early embryonic (12-13 days) gastrointestinal tissues, 8 cases of late embryonic (19-20 days)gastrointestinal tissues, 8 of late pregnancy placental tissues.The 24 samples were extracted by DNeasy Blood & Tissue kit for high-throughput DNA sequencing. Result: The level of Proteobacteria, Bacteroidetes, Actino-bacteria and Firmicutes were predominantin all specimens.The relative content of predominant bacterial phyla in each group: Proteobacteria (95.00%, 88.14%, 87.26%), Bacteroidetes(1.71%, 2.15%, 2.63%), Actino-Bacteria(1.16%, 4.10%, 3.38%), Firmicutes(0.75%, 2.62%, 2.01%). At the level of family, there were nine predominant bacterial families in which Enterobacteriaeae , Shewanel laceae and Moraxellaceae were dominant.The relative content of dominant bacterial family in eachgroup: Enterobacteriaeae (46.99%, 44.34%, 41.08%), Shewanellaceae (21.99%, 21.10%, 19.05%), Moraxellaceae (9.18%, 7.09%, 5.64%). From the species of flora, the flora from fetal gastrointestinal in early pregnancy and late pregnancy (65.44% and 62.73%) were the same as that from placenta tissue in the late pregnancy.From the abundance of bacteria, at the level of family, the same content of bacteria in three groups accounted for 78.16%, 72.53% and 65.78% respectively. Conclusion: It was proved that the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora were colonized. At the same time the bacteria are classified.

  17. Influence of feeding graded levels of canned sardines on the inflammatory markers and tissue fatty acid composition of Wistar rats.

    Science.gov (United States)

    Rodrigues, Pedro O; Martins, Susana V; Lopes, Paula A; Ramos, Cristina; Miguéis, Samuel; Alfaia, Cristina M; Pinto, Rui M A; Rolo, Eva A; Bispo, Paulo; Batista, Irineu; Bandarra, Narcisa M; Prates, José A M

    2014-08-14

    Canned sardines are a ready-to-use fish product with excellent nutritional properties owing to its high n-3 long-chain PUFA content, mainly EPA (20 : 5n-3) and DHA (22 : 6n-3). The present study aimed to assess the effect of two dosages of canned sardines, recommended for the primary and secondary prevention of human CVD, on the inflammatory marker concentrations and fatty acid composition of erythrocytes and key metabolic tissues (liver, muscle, adipose tissue and brain) in the rat model. Wistar rats were fed a diet containing 11 % (w/w) of canned sardines (low-sardine (LS) diet) and a diet containing 22 % (w/w) of canned sardines (high-sardine (HS) diet) for 10 weeks. Daily food intake, weight gain, and organ and final body weights were not affected by the dietary treatments. The concentrations of total cholesterol, HDL-cholesterol and LDL-cholesterol decreased in both the LS and HS groups, while those of alanine aminotransferase and adiponectin increased. The concentrations of IL-1β increased only with the highest dosage of sardine. The dose-dependent influence of the graded levels of EPA+DHA was tissue specific. Compared with that of other tissues and erythrocytes, the fatty acid composition of the brain was less affected by the canned sardine-supplemented diets. In contrast, the retroperitoneal adipose tissue was highly responsive. The deposition ratios of EPA and DHA indicated that the LS diet was optimal for DHA deposition across the tissues, except in the retroperitoneal adipose tissue. Taken together, our findings indicate that a LS diet positively affects plasma lipid profiles and inflammatory mediators, whereas a HS diet has contradictory effects on IL-1β, which, in turn, is not associated with variations in the concentrations of other pro-inflammatory cytokines. This finding requires further investigation and pathophysiological understanding.

  18. Complicações microvasculares e disfunção autonômica cardíaca em pacientes com diabete melito tipo 1 Complicaciones microvasculares y disfunción autonómica cardíaca en pacientes con diabetes mellittus tipo 1 Microvascular complications and cardiac autonomic dysfunction in patients with diabetes mellitus type 1

    Directory of Open Access Journals (Sweden)

    Fernando K Almeida

    2011-06-01

    Full Text Available FUNDAMENTO: A presença de neuropatia autonômica cardíaca (NAC em pacientes com diabete melito (DM está associada a aumento da mortalidade e a complicações crônicas microvasculares do diabete. OBJETIVO: Investigar uma possível associação entre achados sugestivos de NAC durante a realização do teste ergométrico (TE e nefropatia e retinopatia em pacientes com DM tipo 1. MÉTODOS: Realizamos um estudo transversal com 84 pacientes com DM tipo 1. Todos os pacientes foram submetidos à avaliação clínica e laboratorial e realizaram TE, sendo que aqueles que apresentaram achados sugestivos de isquemia miocárdica foram excluídos da análise dos dados (n = 3. A avaliação de complicações microvasculares (retinopatia e nefropatia foi realizada na amostra. RESULTADOS: Os pacientes com nefropatia e aqueles com retinopatia atingiram uma frequência cardíaca (FC durante o pico de exercício (FC máxima menor e apresentaram aumento menor da FC em relação ao repouso (ΔFC pico quando comparados com aqueles sem estas complicações. Esses pacientes também apresentaram menor redução da FC no segundo e 4º minutos após o final do teste (ΔFC recuperação dois e 4 minutos. Após realização de análise multivariada com controle para os possíveis fatores de confusão, os ΔFC recuperação em dois e 4 minutos, FC máxima e o ΔFC pico permaneceram significativamente associados à retinopatia; e os ΔFC recuperação no segundo e 4º minutos permaneceram associados à presença de nefropatia. CONCLUSÃO: O TE pode ser considerado um instrumento adicional para a detecção precoce de NAC e para identificar pacientes em maior risco para complicações microvasculares do diabete.BACKGROUND: LA presencia de neuropatía autonómica cardíaca (NAC en pacientes con diabetes mellittus (DM está asociada a aumento de la mortalidad y a complicaciones crónicas microvasculares de diabetes. OBJECTIVE: Investigar una posible asociación entre

  19. Rat Pial Microvascular Changes During Cerebral Blood Flow Decrease and Recovery: Effects of Cyanidin Administration

    Directory of Open Access Journals (Sweden)

    Teresa Mastantuono

    2018-05-01

    Full Text Available The reactive oxygen species (ROS are known to play a major role in many pathophysiological conditions, such as ischemia and reperfusion injury. The present study was aimed to evaluate the in vivo cyanidin (anthocyanin effects on damages induced by rat pial microvascular hypoperfusion-reperfusion injury by cerebral blood flow decrease (CBFD and subsequent cerebral blood flow recovery (CBFR. In particular, the main purpose was to detect changes in ROS production after cyanidin administration. Rat pial microvasculature was investigated using fluorescence microscopy through a cranial window (closed; Strahler's method was utilized to define the geometric features of pial vessels. ROS production was investigated in vivo by 2′-7′-dichlorofluorescein-diacetate assay and neuronal damage was measured on isolated brain sections by 2,3,5-triphenyltetrazolium chloride staining. After 30 min of CBFD, induced by bilateral common carotid artery occlusion, and 60 min of CBFR, rats showed decrease of arteriolar diameter and capillary perfusion; furthermore, increase in microvascular leakage and leukocyte adhesion was observed. Conversely, cyanidin administration induced dose-related arteriolar dilation, reduction in microvascular permeability as well as leukocyte adhesion when compared to animals subjected to restriction of cerebral blood flow; moreover, capillary perfusion was protected. ROS generation increase and marked neuronal damage were detected in animals subjected to CBFD and CBFR. On the other hand, cyanidin was able to reduce ROS generation and neuronal damage. In conclusion, cyanidin treatment showed dose-related protective effects on rat pial microcirculation during CBFD and subsequent CBFR, inducing arteriolar dilation by nitric oxide release and inhibiting ROS formation, consequently preserving the blood brain barrier integrity.

  20. Tumor microvascular changes in antiangiogenic treatment : Assessment by magnetic resonance contrast media of different molecular weights

    NARCIS (Netherlands)

    Turetschek, K; Preda, A; Novikov, [No Value; Brasch, RC; Weinmann, HJ; Wunderbaldinger, P; Roberts, TPL

    Purpose: To test magnetic resonance (MR) contrast media of different molecular weights (MWs) for their potential to characterize noninvasively microvascular changes in an experimental tumor treatment model. Materials and Methods: MD-MBA-435, a poorly differentiated human breast cancer cell line, was

  1. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  2. Pulmonary microvascular hyperpermeability and expression of vascular endothelial growth factor in smoke inhalation- and pneumonia-induced acute lung injury.

    Science.gov (United States)

    Lange, Matthias; Hamahata, Atsumori; Traber, Daniel L; Connelly, Rhykka; Nakano, Yoshimitsu; Traber, Lillian D; Schmalstieg, Frank C; Herndon, David N; Enkhbaatar, Perenlei

    2012-11-01

    Acute lung injury (ALI) and sepsis are major contributors to the morbidity and mortality of critically ill patients. The current study was designed further evaluate the mechanism of pulmonary vascular hyperpermeability in sheep with these injuries. Sheep were randomized to a sham-injured control group (n=6) or ALI/sepsis group (n=7). The sheep in the ALI/sepsis group received inhalation injury followed by instillation of Pseudomonas aeruginosa into the lungs. These groups were monitored for 24 h. Additional sheep (n=16) received the injury and lung tissue was harvested at different time points to measure lung wet/dry weight ratio, vascular endothelial growth factor (VEGF) mRNA and protein expression as well as 3-nitrotyrosine protein expression in lung homogenates. The injury induced severe deterioration in pulmonary gas exchange, increases in lung lymph flow and protein content, and lung water content (P<0.01 each). These alterations were associated with elevated lung and plasma nitrite/nitrate concentrations, increased tracheal blood flow, and enhanced VEGF mRNA and protein expression in lung tissue as well as enhanced 3-nitrotyrosine protein expression (P<0.05 each). This study describes the time course of pulmonary microvascular hyperpermeability in a clinical relevant large animal model and may improve the experimental design of future studies. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  3. Variation in tissue outcome of ovine and human engineered heart valve constructs : relevance for tissue engineering

    NARCIS (Netherlands)

    Geemen, van D.; Driessen - Mol, A.; Grootzwagers, L.G.M.; Soekhradj - Soechit, R.S.; Riem Vis, P.W.; Baaijens, F.P.T.; Bouten, C.V.C.

    AIM: Clinical application of tissue engineered heart valves requires precise control of the tissue culture process to predict tissue composition and mechanical properties prior to implantation, and to understand the variation in tissue outcome. To this end we investigated cellular phenotype and

  4. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS.

    Directory of Open Access Journals (Sweden)

    Wulf Hildebrandt

    Full Text Available Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans.Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS parameters, i.e. microvascular blood volume (MBV, flow velocity (MFV and blood flow (MBF calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat and intermedius (VInt muscle in 15 middle-aged (MA, 43.6±1.5 years and 11 young (YG, 24.1±0.6 years healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT. In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness.During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u. and MBF (0.007±0.001 vs. 0.012±0.002 a.u.. In the VInt the (post-occlusive hyperemia post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG.In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed.

  5. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study.

    Science.gov (United States)

    2015-11-01

    Effective prevention is needed to combat the worldwide epidemic of type 2 diabetes. We investigated the long-term extent of beneficial effects of lifestyle intervention and metformin on diabetes prevention, originally shown during the 3-year Diabetes Prevention Program (DPP), and assessed whether these interventions reduced diabetes-associated microvascular complications. The DPP (1996-2001) was a randomised trial comparing an intensive lifestyle intervention or masked metformin with placebo in a cohort selected to be at very high risk of developing diabetes. All participants were offered lifestyle training at the end of the DPP. 2776 (88%) of the surviving DPP cohort were followed up in the DPP Outcomes Study (DPPOS, Sept 1, 2002, to Jan 2, 2014) and analysed by intention to treat on the basis of their original DPP assignment. During DPPOS, the original lifestyle intervention group was offered lifestyle reinforcement semi-annually and the metformin group received unmasked metformin. The primary outcomes were the development of diabetes and the prevalence of microvascular disease. For the assessment of microvascular disease, we used an aggregate microvascular outcome, composed of nephropathy, retinopathy, and neuropathy. During a mean follow-up of 15 years, diabetes incidence was reduced by 27% in the lifestyle intervention group (hazard ratio 0·73, 95% CI 0·65-0·83; pdiabetes were 55% in the lifestyle group, 56% in the metformin group, and 62% in the placebo group. The prevalences at the end of the study of the aggregate microvascular outcome were not significantly different between the treatment groups in the total cohort (placebo 12·4%, 95% CI 11·1-13·8; metformin 13·0%, 11·7-14·5; lifestyle intervention 11·3%, 10·1-12·7). However, in women (n=1887) the lifestyle intervention was associated with a lower prevalence (8·7%, 95% CI 7·4-10·2) than in the placebo (11·0%, 9·6-12·6) and metformin (11·2%, 9·7-12·9) groups, with reductions in the

  6. Use of Contrast-Enhanced Ultrasound to Study Relationship between Serum Uric Acid and Renal Microvascular Perfusion in Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2015-01-01

    Full Text Available Purpose. To investigate the relationship between uric acid and renal microvascular perfusion in diabetic kidney disease (DKD using contrast-enhanced ultrasound (CEUS method. Materials and Methods. 79 DKD patients and 26 healthy volunteers were enrolled. Renal function and urine protein markers were tested. DKD patients were subdivided into two groups including a normal serum uric acid (SUA group and a high SUA group. Contrast-enhanced ultrasound (CEUS was performed, and low acoustic power contrast-specific imaging was used for quantitative analysis. Results. Normal controls (NCs had the highest levels of AUC, AUC1, and AUC2. Compared to the normal SUA DKD group, high SUA DKD patients had significantly higher IMAX, AUC, and AUC1 (P<0.05. DKD patients with low urinary uric acid (UUA excretion had significantly higher AUC2 compared to DKD patients with normal UUA (P<0.05. Conclusion. Hyperuricemia in DKD patients was associated with a renal ultrasound image suggestive of microvascular hyperperfusion. The CEUS parameter AUC1 holds promise as an indicator for renal microvascular hyperperfusion, while AUC2 might be a useful indicator of declining glomerular filtration rate in DKD patients with decreased excretion of uric acid.

  7. Evaluation of applicability and efficacy of the reconstructive microvascular surgery of advanced cancer of the lower face with mandible infiltration

    International Nuclear Information System (INIS)

    Maciejewski, A.

    2008-01-01

    The aim of this study is to evaluate applicability and efficacy of reconstructive and microvascular surgery for patients with locally advanced cancer of the lower face with mandible infiltration, regarding to various technique of mandible and tongue reconstruction using flaps and to own modifications. Complex quality of life including functional, aesthetic, social and effect has also been evaluated. For patients with advanced cancer of the region infiltrating mandible reconstructive and microvascular surgery as a sole modality or combined with postoperative radiotherapy, is effective method of radical treatment, providing 80% of chance of 3-year disease-free survival and reduces the risk of recurrence by 60%. (author)

  8. Influence of fluid resuscitation on renal microvascular PO2 in a normotensive rat model of endotoxemia

    NARCIS (Netherlands)

    Johannes, Tanja; Mik, Egbert G.; Nohé, Boris; Raat, Nicolaas J. H.; Unertl, Klaus E.; Ince, Can

    2006-01-01

    INTRODUCTION: Septic renal failure is often seen in the intensive care unit but its pathogenesis is only partly understood. This study, performed in a normotensive rat model of endotoxemia, tests the hypotheses that endotoxemia impairs renal microvascular PO2 (microPO2) and oxygen consumption

  9. PATENCY AND HEALING OF MICROVASCULAR PROSTHESES - A REVIEW OF 10 YEARS OF EXPERIMENTAL WORK IN GRONINGEN

    NARCIS (Netherlands)

    VANDERLEI, B; ROBINSON, PH

    1993-01-01

    From 1982 onwards, in Groningen, The Netherlands, we have worked on the experimental evaluation and development of microvascular prostheses in rats and rabbits. In this review article a systematic overview of this experimental work is presented and the results are discussed with regard to the

  10. Peroneal perforator-based peroneus longus tendon and sural neurofasciocutaneous composite flap transfer for a large soft-tissue defect of the forearm: A case report.

    Science.gov (United States)

    Hayashida, Kenji; Saijo, Hiroto; Fujioka, Masaki

    2018-01-01

    We describe the use of a composite flap composed of a sural neurofasciocutaneous flap and a vascularized peroneus longus tendon for the reconstruction of severe composite forearm tissue defects in a patient. A 43-year-old man had his left arm caught in a conveyor belt resulting in a large soft-tissue defect of 18 × 11 cm over the dorsum forearm. The extensor carpi radialis, superficial radial nerve, and radial artery were severely damaged. A free neurofasciocutaneous composite flap measuring 16 × 11 cm was outlined on the patient's left lower leg to allow simultaneous skin, tendon, nerve, and artery reconstruction. The flap, which included the peroneus longus tendon, was elevated on the subfascial plane. After the flap was transferred to the recipient site, the peroneal artery was anastomosed to the radial artery in a flow-through manner. The vascularized tendon graft with 15 cm in length was used to reconstruct the extensor carpi radialis longus tendon defect using an interlacing suture technique. As the skin paddle of the sural neurofasciocutaneous flap and the vascularized peroneus longus tendon graft were linked by the perforator and minimal fascial tissue, the skin paddle was able to rotate and slide with comparative ease. The flap survived completely without any complications. The length of follow-up was 12 months and was uneventful. Range of motion of his left wrist joint was slightly limited to 75 degrees. This novel composite flap may be useful for reconstructing long tendon defects associated with extensive forearm soft tissue defects. © 2016 Wiley Periodicals, Inc.

  11. Experimental model for composite tissue allotransplantations Modelo experimental para alotransplantes de tecido composto

    Directory of Open Access Journals (Sweden)

    Lydia Masako Ferreira

    2004-12-01

    Full Text Available In homologous transplantation or allotranplantation of limbs, the great tissue diversity causes variability in the rejection process and, consequently, its immunology is very complex. Thus, limb transplantation is the most used prototype of compound tissue transplantation among the protocols of experimental studies. Composite tissue allotransplantation represents the experimental model to study the homologous transplantation (from an individual to another of vascularized, innervated musclecutaneous units, joints, bone or even the whole member. Groups of rats were undergone allogeneic hindlimb transplantation. The receptors were randomized and control groups were established as: Control Group A: Autograft controls (F344 rats had its limbs reimplanted and no immunosuppressive therapy. Control Group B: Allograft controls (BN rats limbs were transplanted to F344. Composite tissue homotransplantation allows the inclusion of innervated muscle-cutaneous units, joint and bone or even the hole limb, is considerably applicable in cases of congenital absence or deformity, trauma or greater resection due to malignant tumor. For many complex deformities, these transplantations would allow a more precise reconstruction than the current reconstruction techniques.Nos transplantes alógenos de membro a grande variabilidade de tecidos (pele, subcutâneo, músculo, osso, medula óssea, gânglios linfáticos, cartilagem, nervo, vasos, tendão, articulação leva a grande variação dentro do processo de rejeição e consequentemente a sua imunologia é bastante complexa. Os transplantes alógenos de tecido composto representam o modelo experimental para se estudar o transplante homólogo (de um indivíduo para outro de unidades músculo cutâneas inervadas, vascularizadas, articulações, osso ou mesmo de todo o membro. Os receptores foram randomizados e os grupos controle foram estabelecidos como: grupo controle A: transplante autógeno de membro em que ratos F344

  12. Alcohol consumption and risk of microvascular complications in type 1 diabetes patients; the EURODIAB Prospective Complications study

    NARCIS (Netherlands)

    Beulens, J.W.J.; Kruidhof, J.S.; Grobbee, D.E.; Chaturvedi, N.; Fuller, J.H.; Soedamah-Muthu, S.S.

    2008-01-01

    AIMS/HYPOTHESIS: The aim of this study was to investigate the association between alcohol consumption and risk of microvascular complications (retinopathy, neuropathy, nephropathy) in type 1 diabetes mellitus patients in the EURODIAB Prospective Complications Study. METHODS: The EURODIAB Prospective

  13. Compression properties and dissolution of bioactive glass S53P4 and n-butyl-2 cyanoacrylate tissue adhesive-composite.

    Science.gov (United States)

    Sarin, Jussi; Hiltunen, Markus; Hupa, Leena; Pulkkinen, Jaakko; Vallittu, Pekka K

    2016-09-28

    Bioactive glass (BG)-containing fiber-reinforced composite implants, typically screw-retained, have started to be used clinically. In this study, we tested the mechanical strength of composites formed by a potential implant adhesive of n-butyl-2-cyanoacrylate glue and BG S53P4 particles. Water immersion for 3, 10 or 30 days had no adverse effect on the compression strength. When cyanoacrylate glue-BG-composites were subjected to simulated body fluid immersion, the average pH rose to 7.52 (SD 0.066) from the original value of 7.35 after 7 days, and this pH increment was smaller compared to BG particle-group or fibrin glue-BG-composite group. Based on these results n-butyl-2 cyanoacrylate glue, by potentially producing a strong adhesion, might be considered a possible alternative for fixation of BG S53P4 containing composite implants. However, the mechanical and solubility properties of the cyanoacrylate glue may not encourage the use of this tissue adhesive with BG particles.

  14. Novel diffuse optics system for continuous tissue viability monitoring: extended recovery in vivo testing in a porcine flap model

    Science.gov (United States)

    Lee, Seung Yup; Pakela, Julia M.; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-02-01

    In reconstructive surgery, tissue perfusion/vessel patency is critical to the success of microvascular free tissue flaps. Early detection of flap failure secondary to compromise of vascular perfusion would significantly increase the chances of flap salvage. We have developed a compact, clinically-compatible monitoring system to enable automated, minimally-invasive, continuous, and quantitative assessment of flap viability/perfusion. We tested the system's continuous monitoring capability during extended non-recovery surgery using an in vivo porcine free flap model. Initial results indicated that the system could assess flap viability/perfusion in a quantitative and continuous manner. With proven performance, the compact form constructed with cost-effective components would make this system suitable for clinical translation.

  15. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method

    International Nuclear Information System (INIS)

    Gautam, Sneh; Dinda, Amit Kumar; Mishra, Narayan Chandra

    2013-01-01

    In the present study, composite nanofibrous tissue engineering-scaffold consisting of polycaprolactone and gelatin, was fabricated by electrospinning method, using a new cost-effective solvent mixture: chloroform/methanol for polycaprolactone (PCL) and acetic acid for gelatin. The morphology of the nanofibrous scaffold was investigated by using field emission scanning electron microscopy (FE-SEM) which clearly indicates that the morphology of nanofibers was influenced by the weight ratio of PCL to gelatin in the solution. Uniform fibers were produced only when the weight ratio of PCL/gelatin is sufficiently high (10:1). The scaffold was further characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, and X-ray diffraction (XRD). FT-IR and TG analysis indicated some interactions between PCL and gelatin molecules within the scaffold, while XRD results demonstrated crystalline nature of PCL/gelatin composite scaffold. Cytotoxicity effect of scaffold on L929 mouse fibroblast cells was evaluated by MTT assay and cell proliferation on the scaffold was confirmed by DNA quantification. Positive results of MTT assay and DNA quantification L929 mouse fibroblast cells indicated that the scaffold made from the combination of natural polymer (gelatin) and synthetic polymer (PCL) may serve as a good candidate for tissue engineering applications. - Highlights: ► PCL/Gelatin scaffold was successfully fabricated by electrospinning method. ► PCL in CHCl 3 /CH 3 OH and gelatin in acetic acid: a novel polymer-solvent system. ► The morphology of nanofibers was influenced by the weight ratio of PCL/gelatin. ► Chemical interactions between PCL and gelatin molecules enhanced cell growth. ► Cell culture studies indicate the suitability of scaffold for tissue regeneration

  16. In Vitro Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available This paper investigated the long-term in vitro degradation properties of scaffolds based on biodegradable polymers and osteoconductive bioceramic/polymer composite materials for the application of bone tissue engineering. The three-dimensional porous scaffolds were fabricated using emulsion-freezing/freeze-drying technique using poly(hydroxybutyrate-co-hydroxyvalerate (PHBV which is a natural biodegradable and biocompatible polymer. Nanosized hydroxyapatite (nHA particles were successfully incorporated into the PHBV scaffolds to render the scaffolds osteoconductive. The PHBV and nHA/PHBV scaffolds were systematically evaluated using various techniques in terms of mechanical strength, porosity, porous morphology, and in vitro degradation. PHBV and nHA/PHBV scaffolds degraded over time in phosphate-buffered saline at 37°C. PHBV polymer scaffolds exhibited slow molecular weight loss and weight loss in the in vitro physiological environment. Accelerated weight loss was observed in nHA incorporated PHBV composite scaffolds. An increasing trend of crystallinity was observed during the initial period of degradation time. The compressive properties decreased more than 40% after 5-month in vitro degradation. Together with interconnected pores, high porosity, suitable mechanical properties, and slow degradation profile obtained from long-term degradation studies, the PHBV scaffolds and osteoconductive nHA/PHBV composite scaffolds showed promises for bone tissue engineering application.

  17. Post-operative monitoring of tissue transfers: advantages using contrast enhanced ultrasound (CEUS) and contrast enhanced MRI (ceMRI) with dynamic perfusion analysis?

    Science.gov (United States)

    Lamby, P; Prantl, L; Fellner, C; Geis, S; Jung, E M

    2011-01-01

    The immediate evaluation of microvascular tissue flaps with respect to microcirculation after transplantation is crucial for optimal monitoring and outcome. The purpose of our investigation was to evaluate the clinical value of contrast-enhanced ultrasound (CEUS) and contrast-enhanced MRI (ceMRI) for monitoring the integrity of tissue flaps in plastic surgery. To this end, we investigated 10 patients (47 ± 16 a) between postoperative day 7 and 14 who underwent flap surgery in order to cover tissue defects in various body regions. For CEUS we utilized the GE LOGIQ E9 equipped with a linear transducer (6-9 MHz). After application of 2.4 ml SonoVue, the tissue perfusion was detected in Low MI-Technique (MI present, both technologies provide an optimal assessment of perfusion in cutaneous, subcutaneous and muscle tissue layers, whereby the detection of fatty tissue perfusion is currently more easily detected using CEUS compared to ceMRI.

  18. Titanium dioxide (TiO2) nanoparticles filled poly(d,l lactid acid) (PDLLA) matrix composites for bone tissue engineering

    NARCIS (Netherlands)

    Gerhardt, L.C.; Jell, G.M.R.; Boccaccini, A.R.

    2007-01-01

    Titanium dioxide (TiO2) nanoparticles were investigated for bone tissue engineering applications with regard to bioactivity and particle cytotoxicity. Composite films on the basis of poly(d,l lactid acid) (PDLLA) filled with 0, 5 and 30 wt% TiO2 nanoparticles were processed by solvent casting.

  19. [Low-dose aspirin in patients with diabete melitus: risks and benefits regarding macro and microvascular complications].

    Science.gov (United States)

    Camargo, Eduardo G; Gross, Jorge Luiz; Weinert, Letícia S; Lavinsky, Joel; Silveiro, Sandra P

    2007-04-01

    Aspirin is recommended as cardiovascular disease prevention in patients with diabetes mellitus. Due to the increased risk of bleeding and because of the hypothesis that there could be a worsening of microvascular complications related to aspirin, there has been observed an important underutilization of the drug. However, it is now known that aspirin is not associated with a deleterious effect on diabetic retinopathy and there is evidence indicating that it also does not affect renal function with usual doses (150 mg/d). On the other hand, higher doses may prove necessary, since recent data suggest that diabetic patients present the so called "aspirin resistance". The mechanisms of this resistance are not yet fully understood, being probably related to an abnormal intrinsic platelet activity. The employment of alternative antiplatelet strategies or the administration of higher aspirin doses (150-300 mg/d) should be better evaluated regarding effective cardiovascular disease prevention in diabetes as well as the possible effects on microvascular complications.

  20. The composition of engineered cartilage at the time of implantation determines the likelihood of regenerating tissue with a normal collagen architecture.

    Science.gov (United States)

    Nagel, Thomas; Kelly, Daniel J

    2013-04-01

    The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.

  1. COMPARISON OF SLAUGHTER YIELD AND CARCASS TISSUE COMPOSITION IN BROILER CHICKENS OF VARIOUS ORIGIN

    Directory of Open Access Journals (Sweden)

    DARIUSZ KOKOSZYŃSKI

    2008-07-01

    Full Text Available Slaughter yield and carcass tissue composition were compared in three different broiler chicken production sets. The highest body weight (1892.5 g, eviscerated carcass weight with neck (1406.9 g and slaughter yield (74.5% were found in Ross 308 chickens, whilst the lowest values of these traits occurred in JV chickens (respectively: 1753.3; 1288.2 g; 73.3%. The highest muscle contents (45.4% breast muscles and leg muscles in carcass and the lowest fattiness (7.9% skin with subcutaneous fat and 1.5% abdominal fat were found in Hubbard Evolution chickens.

  2. The reliability of a single protocol to determine endothelial, microvascular and autonomic functions in adolescents.

    Science.gov (United States)

    Bond, Bert; Williams, Craig A; Barker, Alan R

    2017-11-01

    Impairments in macrovascular, microvascular and autonomic function are present in asymptomatic youths with clustered cardiovascular disease risk factors. This study determines the within-day reliability and between-day reliability of a single protocol to non-invasively assess these outcomes in adolescents. Forty 12- to 15-year-old adolescents (20 boys) visited the laboratory in a fasted state on two occasions, approximately 1 week apart. One hour after a standardized cereal breakfast, macrovascular function was determined via flow-mediated dilation (FMD). Heart rate variability (root mean square of successive R-R intervals; RMSSD) was determined from the ECG-gated ultrasound images acquired during the FMD protocol prior to cuff occlusion. Microvascular function was simultaneously quantified as the peak (PRH) and total (TRH) hyperaemic response to occlusion in the cutaneous circulation of the forearm via laser Doppler imaging. To address within-day reliability, a subset of twenty adolescents (10 boys) repeated these measures 90 min afterwards on one occasion. The within-day typical error and between-day typical error expressed as a coefficient of variation of these outcomes are as follows: ratio-scaled FMD, 5·1% and 10·6%; allometrically scaled FMD, 4·4% and 9·4%; PRH, 11% and 13·3%; TRH, 29·9% and 23·1%; and RMSSD, 17·6% and 17·6%. The within- and between-day test-retest correlation coefficients for these outcomes were all significant (r > 0·54 for all). Macrovascular, microvascular and autonomic functions can be simultaneously and non-invasively determined in adolescents using a single protocol with an appropriate degree of reproducibility. Determining these outcomes may provide greater understanding of the progression of cardiovascular disease and aid early intervention. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.

    Science.gov (United States)

    Sosa, Jose M; Nielsen, Nathan D; Vignes, Seth M; Chen, Tanya G; Shevkoplyas, Sergey S

    2014-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0-0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further

  4. [The elemental composition of teeth hard tissues depending on the state of the environment].

    Science.gov (United States)

    Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K

    2014-01-01

    At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.

  5. Microvascular anastomosis in rodent model evaluated by Fourier domain Doppler optical coherence tomography

    Science.gov (United States)

    Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.

    2014-03-01

    Vascular and microvascular anastomosis are critical components of reconstructive microsurgery, vascular surgery and transplant surgery. Imaging modality that provides immediate, real-time in-depth view and 3D structure and flow information of the surgical site can be a great valuable tool for the surgeon to evaluate surgical outcome following both conventional and innovative anastomosis techniques, thus potentially increase the surgical success rate. Microvascular anastomosis for vessels with outer diameter smaller than 1.0 mm is extremely challenging and effective evaluation of the outcome is very difficult if not impossible using computed tomography (CT) angiograms, magnetic resonance (MR) angiograms and ultrasound Doppler. Optical coherence tomography (OCT) is a non-invasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. Phaseresolved Doppler OCT that explores the phase information of OCT signals has been shown to be capable of characterizing dynamic blood flow clinically. In this work, we explore the capability of Fourier domain Doppler OCT as an evaluation tool to detect commonly encountered post-operative complications that will cause surgical failure and to confirm positive result with surgeon's observation. Both suture and cuff based techniques were evaluated on the femoral artery and vein in the rodent model.

  6. Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction

    International Nuclear Information System (INIS)

    Cochet, Alexandre A.; Lalande, Alain; Walker, Paul M.; Touzery, Claude; Brunotte, Francois; Lorgis, Luc; Beer, Jean-Claude; Cottin, Yves; Zeller, Marianne; Wolf, Jean-Eric

    2009-01-01

    The aim of this study was to compare the prognostic significance of microvascular obstruction (MO) and persistent microvascular obstruction (PMO) as assessed by cardiac magnetic resonance (CMR) in patients with acute myocardial infarction (AMI). CMR was performed in 184 patients within the week following successfully reperfused first AMI. First-pass images were performed to evaluate extent of MO and late gadolinium-enhanced images to assess PMO and infarct size (IS). Major adverse cardiac events (MACE) were collected at 1-year follow-up. MO and PMO were found in 127 (69%) and 87 (47%) patients, respectively. By using univariate logistic regression analysis, high Global Registry of Acute Coronary Events (GRACE) risk score (odds ratio [OR] 95% confidence interval [CI]: 3.6 [1.8-7.4], p < 0.001), IS greater than 10% (OR [95% CI]: 2.7 [1.1-6.9], p = 0.036), left ventricular ejection fraction less than 40% (OR [95% CI]: 2.4 [1.1-5.2], p = 0.027), presence of MO (OR [95% CI]: 3.1 [1.3-7.3], p = 0.004) and presence of PMO (OR [95% CI]:10 [4.1-23.9], p < 0.001) were shown to be significantly associated with the outcome. By using multivariate analysis, presence of MO (OR [95% CI]: 2.5 [1.0-6.2], p = 0.045) or of PMO (OR [95% CI]: 8.7 [3.6-21.1], p < 0.001), associated with GRACE score, were predictors of MACE. Presence of microvascular obstruction and persistent microvascular obstruction is very common in AMI patients even after successful reperfusion and is associated with a dramatically higher risk of subsequent cardiovascular events, beyond established prognostic markers. Moreover, our data suggest that the prognostic impact of PMO might be superior to MO. (orig.)

  7. Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia

    NARCIS (Netherlands)

    Johannes, Tanja; Mik, Egbert G.; Klingel, Karin; Dieterich, Hans-Jürgen; Unertl, Klaus E.; Ince, Can

    2009-01-01

    There is growing evidence that impairment in intrarenal oxygenation and hypoxic injury might contribute to the pathogenesis of septic renal failure. An important molecule known to act on the renal microvascular tone and therefore consequently being involved in the regulation of intrarenal oxygen

  8. Dietary conjugated linoleic acids affect tissue lipid composition but not de novo lipogenesis in finishing pigs

    OpenAIRE

    Bee , Giuseppe

    2001-01-01

    International audience; Dietary conjugated linoleic acids (CLA) have been reported to profoundly affect lipid metabolism and to act as repartitioning agents. Currently, little is known about their effect on the fatty acid profile of tissue lipids in pigs. In the present study we determined the lipid composition of the backfat inner (BFI) and outer layer (BFO), omental fat (OF) and intramuscular fat (IMF) of the longissimus dorsi muscle in 24 Swiss Large White pigs fed diets supplemented eithe...

  9. Calculation of neutron kerma in tissues

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.

    2004-01-01

    Neutron kerma of normal and tumor tissues has been calculated using the tissues elemental concentration. A program developed in Math cad contains the kerma factors of C, H, O, N, Na, Mg, P, S, Cl, K, etc. that are in normal and tumor human tissues. Having the elemental composition of any human tissue the neutron kerma can be calculated. The program was tested using the elemental composition of tumor tissues such as sarcoma, melanoma, carcinoma and adenoid cystic, also neutron kerma for adipose and muscle tissue for normal adult was calculated. The results are in agreement with those published in literature. The neutron kerma for water was also calculated because in some dosimetric calculations water is used to describe normal and tumor tissues. From this comparison was found that at larger energies kerma factors are approximately the same, but energies less than 100 eV the differences are large. (Author)

  10. Hepatic microvascular dysfunction and increased advanced glycation end products are components of non-alcoholic fatty liver disease.

    Science.gov (United States)

    Pereira, Evelyn Nunes Goulart da Silva; Silvares, Raquel Rangel; Flores, Edgar Eduardo Ilaquita; Rodrigues, Karine Lino; Ramos, Isalira Peroba; da Silva, Igor José; Machado, Marcelo Pelajo; Miranda, Rosiane Aparecida; Pazos-Moura, Carmen Cabanelas; Gonçalves-de-Albuquerque, Cassiano F; Faria-Neto, Hugo Caire de Castro; Tibiriça, Eduardo; Daliry, Anissa

    2017-01-01

    This study aimed to investigate the pathophysiology of hepatic microcirculatory dysfunction in non-alcoholic fatty liver disease (NAFLD). In Wistar rats, NAFLD model was induced by 20 weeks of high-fat diet (HFD) feeding. Rolling and adhesion of leukocytes and tissue perfusion in hepatic microcirculation were examined using in vivo microscopic and laser speckle contrast imaging (LSCI), respectively. Oxidative stress and inflamatory parameters were analysed by TBARs, catalase enzyme activity, RT-PCR and ELISA. The participation of advanced glycation end-products (AGE) and its receptor RAGE was evaluated by the measurement of gene and protein expression of RAGE by RT-PCR and Western-blot, respectively and by liver and serum quantification of fluorescent AGEs. Wistar rats fed high-fat diet (HFD) showed increase in epididymal and abdominal fat content, systolic arterial blood pressure, fasting blood glucose levels, hepatic triglycerides and cholesterol, and impairment of glucose and insulin metabolisms. Liver histology confirmed the presence of steatosis and ultrasound analysis revealed increased liver size and parenchymal echogenicity in HFD-fed rats. HFD causes significant increases in leukocyte rolling and adhesion on hepatic microcirculation and decrease in liver microvascular blood flow. Liver tissue presented increase in oxidative stress and inflammtion. At 20 weeks, there was a significantly increase in AGE content in the liver and serum of HFD-fed rats and an increase in RAGE gene expression in the liver. The increase in liver AGE levels and microcirculatory disturbances could play a role in the pathogenesis of liver injury and are key components of NAFLD.

  11. Reduced cortical microvascular oxygenation in multiple sclerosis: a blinded, case-controlled study using a novel quantitative near-infrared spectroscopy method

    Science.gov (United States)

    Yang, Runze; Dunn, Jeff F.

    2015-11-01

    Hypoxia (low oxygen) is associated with many brain disorders as well as inflammation, but the lack of widely available technology has limited our ability to study hypoxia in human brain. Multiple sclerosis (MS) is a poorly understood neurological disease with a significant inflammatory component which may cause hypoxia. We hypothesized that if hypoxia were to occur, there should be reduced microvascular hemoglobin saturation (StO2). In this study, we aimed to determine if reduced StO2 can be detected in MS using frequency domain near-infrared spectroscopy (fdNIRS). We measured fdNIRS data in cortex and assessed disability of 3 clinical isolated syndrome (CIS), 72 MS patients and 12 controls. Control StO2 was 63.5 ± 3% (mean ± SD). In MS patients, 42% of StO2 values were more than 2 × SD lower than the control mean. There was a significant relationship between StO2 and clinical disability. A reduced microvascular StO2 is supportive (although not conclusive) that there may be hypoxic regions in MS brain. This is the first study showing how quantitative NIRS can be used to detect reduced StO2 in patients with MS, opening the door to understanding how microvascular oxygenation impacts neurological conditions.

  12. Local heart irradiation of ApoE−/− mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Seemann, Ingar; Visser, Nils L.; Gijbels, Marion J.; Pol, Jeffrey F.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2012-01-01

    Background and purpose: Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of radiation-induced heart disease, like a myocardial infarct. Cancer patients commonly have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal of this study is to define the interaction of irradiation with such cardiovascular risk factors in radiation-induced damage to the heart and coronary arteries. Material and methods: Hypercholesterolemic and atherosclerosis-prone ApoE −/− mice received local heart irradiation with a single dose of 0, 2, 8 or 16 Gy. Histopathological changes, microvascular damage and functional alterations were assessed after 20 and 40 weeks. Results: Inflammatory cells were significantly increased in the left ventricular myocardium at 20 and 40 weeks after 8 and 16 Gy. Microvascular density decreased at both follow-up time-points after 8 and 16 Gy. Remaining vessels had decreased alkaline phosphatase activity (2–16 Gy) and increased von Willebrand Factor expression (16 Gy), indicative of endothelial cell damage. The endocardium was extensively damaged after 16 Gy, with foam cell accumulations at 20 weeks, and fibrosis and protein leakage at 40 weeks. Despite an accelerated coronary atherosclerotic lesion development at 20 weeks after 16 Gy, gated SPECT and ultrasound measurements showed only minor changes in functional cardiac parameters at 20 weeks. Conclusions: The combination of hypercholesterolemia and local cardiac irradiation induced an inflammatory response, microvascular and endocardial damage, and accelerated the development of coronary atherosclerosis. Despite these pronounced effects, cardiac function of ApoE −/− mice was maintained.

  13. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    Science.gov (United States)

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  14. In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering.

    Science.gov (United States)

    Dinescu, Sorina; Ionita, Mariana; Pandele, Andreea Madalina; Galateanu, Bianca; Iovu, Horia; Ardelean, Aurel; Costache, Marieta; Hermenean, Anca

    2014-01-01

    Extensively studied nowadays, graphene oxide (GO) has a benefic effect on cell proliferation and differentiation, thus holding promise for bone tissue engineering (BTE) approaches. The aim of this study was not only to design a chitosan 3D scaffold improved with GO for optimal BTE, but also to analyze its physicochemical properties and to evaluate its cytocompatibility and ability to support cell metabolic activity and proliferation. Overall results show that the addition of GO in the scaffold's composition improved mechanical properties and pore formation and enhanced the bioactivity of the scaffold material for tissue engineering. The new developed CHT/GO 3 wt% scaffold could be a potential candidate for further in vitro and in vivo osteogenesis studies and BTE approaches.

  15. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks

    Directory of Open Access Journals (Sweden)

    Paul de Goede

    2018-01-01

    Full Text Available The effects of feeding behavior and diet composition, as well as their possible interactions, on daily (clock gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue (WAT, but hardly in other metabolic tissues such as skeletal muscle (SM and brown adipose tissues (BAT. We therefore subjected male Wistar rats to a regular chow or free choice high-fat-high sugar (fcHFHS diet in combination with time restricted feeding (TRF to either the light or dark phase. In SM, all tested clock genes lost their rhythmic expression in the chow light fed group. In the fcHFHS light fed group rhythmic expression for some, but not all, clock genes was maintained, but shifted by several hours. In BAT the daily rhythmicity of clock genes was maintained for the light fed groups, but expression patterns were shifted as compared with ad libitum and dark fed groups, whilst the fcHFHS diet made the rhythmicity of clock genes become more pronounced. Most of the metabolic genes in BAT tissue tested did not show any rhythmic expression in either the chow or fcHFHS groups. In SM Pdk4 and Ucp3 were phase-shifted, but remained rhythmically expressed in the chow light fed groups. Rhythmic expression was lost for Ucp3 whilst on the fcHFHS diet during the light phase. In summary, both feeding at the wrong time of day and diet composition disturb the peripheral clocks in SM and BAT, but to different degrees and thereby result in a further desynchronization between metabolically active tissues such as SM, BAT, WAT and liver.

  16. Comparative carcass and tissue nutrient composition of transgenic Yorkshire pigs expressing phytase in the saliva and conventional Yorkshire pigs.

    Science.gov (United States)

    Forsberg, C W; Meidinger, R G; Ajakaiye, A; Murray, D; Fan, M Z; Mandell, I B; Phillips, J P

    2014-10-01

    A transgenic line of Yorkshire (YK) pigs named the Cassie (CA) line was produced with a low copy number phytase transgene inserted in the genome. The transgenic line efficiently digests P, Ca, and other major minerals of plant dietary origin. The objectives of this study were to 1) compare carcass and tissue nutrient composition and meat quality traits for third generation hemizygous CA line market BW finisher pigs (n = 24) with age-matched conventional YK finisher pigs (n = 24) and 2) examine effects of outbreeding with high-index conventional YK boars on modifying carcass leanness from the third to sixth generations in CA line finisher boars (n = 73) and gilts (n = 103). Cassie boars (n = 12) and CA gilts (n = 12) were fed diets without supplemental P and comparable numbers of age-matched YK boars and gilts fed diets containing supplement P were raised throughout the finisher phase. The pigs were slaughtered and then fabricated into commercial pork primals before meat composition and quality evaluation. Proximate and major micronutrient composition was determined on tissues including fat, kidney, lean, liver, and skin. The main difference observed was greater (P = 0.033) crude fat content in CA boar carcasses and increased (P phytase action rather than to insertion of the transgene. However, from a meat composition perspective, transgenic expression of phytase in the CA line of YK pigs had little overall effect on meat composition. Outbreeding of high-index CA gilts with high-index commercial YK boars linearly reduced (P = 0.002) back fat thickness with a corresponding linear increase (P = 0.001) in lean yield in finisher CA gilts, although no change in these parameters was observed in CA finisher boars. The increase in lean yield in CA gilts by selective breeding without affecting the level of salivary phytase activity documents the value of conventional genetic selection in conjunction with genetic modification.

  17. Cardiovascular Magnetic Resonance T2-STIR Imaging is Unable to Discriminate Between Intramyocardial Haemorrhage and Microvascular Obstruction

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Pedersen, Steen Fjord; Pedersen, Steen Bønløkke

    2015-01-01

    Recent studies have used cardiovascular magnetic resonance (CMR) and T2-weighted short tau inversion recovery (T2-STIR) imaging to detect intramyocardial haemorrhage (IMH) as a measure of ischemic/reperfusion injury. We investigated the ability of T2-STIR to differentiate between microvascular...

  18. Determination of regional flow by use of intravascular PET tracers: microvascular theory and experimental validation for pig livers

    DEFF Research Database (Denmark)

    Munk, O L; Bass, L; Feng, H

    2003-01-01

    Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more...... physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared...... with the standard model in a pig liver study. METHODS: Eight pigs underwent a 5-min dynamic PET study after (15)O-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual...

  19. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering.

    Science.gov (United States)

    Vaquette, Cédryck; Kahn, Cyril; Frochot, Céline; Nouvel, Cécile; Six, Jean-Luc; De Isla, Natalia; Luo, Li-Hua; Cooper-White, Justin; Rahouadj, Rachid; Wang, Xiong

    2010-09-15

    We developed a novel technique involving knitting and electrospinning to fabricate a composite scaffold for ligament tissue engineering. Knitted structures were coated with poly(L-lactic-co-e-caprolactone) (PLCL) and then placed onto a rotating cylinder and a PLCL solution was electrospun onto the structure. Highly aligned 2-microm-diameter microfibers covered the space between the stitches and adhered to the knitted scaffolds. The stress-strain tensile curves exhibited an initial toe region similar to the tensile behavior of ligaments. Composite scaffolds had an elastic modulus (150 +/- 14 MPa) similar to the modulus of human ligaments. Biological evaluation showed that cells proliferated on the composite scaffolds and they spontaneously orientated along the direction of microfiber alignment. The microfiber architecture also induced a high level of extracellular matrix secretion, which was characterized by immunostaining. We found that cells produced collagen type I and type III, two main components found in ligaments. After 14 days of culture, collagen type III started to form a fibrous network. We fabricated a composite scaffold having the mechanical properties of the knitted structure and the morphological properties of the aligned microfibers. It is difficult to seed a highly macroporous structure with cells, however the technique we developed enabled an easy cell seeding due to presence of the microfiber layer. Therefore, these scaffolds presented attractive properties for a future use in bioreactors for ligament tissue engineering. (c) 2010 Wiley Periodicals, Inc.

  20. The Study on Biocompatibility of Porous nHA/PLGA Composite Scaffolds for Tissue Engineering with Rabbit Chondrocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2013-01-01

    Full Text Available Objective. To examine the biocompatibility of a novel nanohydroxyapatite/poly[lactic-co-glycolic acid] (nHA/PLGA composite and evaluate its feasibility as a scaffold for cartilage tissue engineering. Methods. Chondrocytes of fetal rabbit were cultured with nHA/PLGA scaffold in vitro and the cell viability was assessed by MTT assay first. Cells adhering to nHA/PLGA scaffold were then observed by inverted microscope and scanning electron microscope (SEM. The cell cycle profile was analyzed by flow cytometry. Results. The viability of the chondrocytes on the scaffold was not affected by nHA/PLGA comparing with the control group as it was shown by MTT assay. Cells on the surface and in the pores of the scaffold increased in a time-dependent manner. Results obtained from flow cytometry showed that there was no significant difference in cell cycle profiles between the coculture group and control (P>0.05. Conclusion. The porous nHA/PLGA composite scaffold is a biocompatible and good kind of scaffold for cartilage tissue engineering.

  1. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney.

    Science.gov (United States)

    Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R

    2012-08-15

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  2. The DD genotype of the angiotensin converting enzyme gene independently associates with CMR-derived abnormal microvascular perfusion in patients with a first anterior ST-segment elevation myocardial infarction treated with thrombolytic agents.

    Science.gov (United States)

    Bodi, Vicente; Sanchis, Juan; Nunez, Julio; Aliño, Salvador F; Herrero, Maria J; Chorro, Francisco J; Mainar, Luis; Lopez-Lereu, Maria P; Monmeneu, Jose V; Oltra, Ricardo; Chaustre, Fabian; Forteza, Maria J; Husser, Oliver; Riegger, Günter A; Llacer, Angel

    2009-12-01

    The role of the angiotensin converting enzyme (ACE) gene on the result of thrombolysis at the microvascular level has not been addressed so far. We analyzed the implications of the insertion/deletion (I/D) polymorphism of the ACE gene on the presence of abnormal cardiovascular magnetic resonance (CMR)-derived microvascular perfusion after ST-segment elevation myocardial infarction (STEMI). We studied 105 patients with a first anterior STEMI treated with thrombolytic agents and an open left anterior descending artery. Microvascular perfusion was assessed using first-pass perfusion CMR at 7+/-1 days. CMR studies were repeated 184+/-11 days after STEMI. The ACE gene insertion/deletion (I/D) polymorphism was determined using polymerase chain reaction amplification. Overall genotype frequencies were II-ID 58% and DD 42%. Abnormal perfusion (> or = 1 segment) was detected in 56% of patients. The DD genotype associated to a higher risk of abnormal microvascular perfusion (68% vs. 47%, p=0.03) and to a larger extent of perfusion deficit (median [percentile 25 - percentile 75]: 4 [0-6] vs. 0 [0-4] segments, p=0.003). Once adjusted for baseline characteristics, the DD genotype independently increased the risk of abnormal microvascular perfusion (odds ratio [95% confidence intervals]: 2.5 [1.02-5.9], p=0.04). Moreover, DD patients displayed a larger infarct size (35+/-17 vs. 27+/-15 g, p=0.01) and a lower ejection fraction at 6 months (48+/-14 vs. 54+/-14%, p=0.03). The DD genotype associates to a higher risk of abnormal microvascular perfusion after STEMI.

  3. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells.

    Science.gov (United States)

    Tuder, R M; Karasek, M A; Bensch, K G

    1990-02-01

    The maintenance of the normal epithelioid morphology of human dermal microvascular endothelial cells (MEC) grown in vitro depends strongly on the presence of factors that increase intracellular levels of cyclic AMP. Complete removal of dibutyryl cAMP and isobutylmethylxanthine (IMX) from the growth medium results in a progressive transition from an epithelioid to a spindle-shaped cell line. This transition cannot be reversed by the readdition of dibutyryl cAMP and IMX to the growth medium or by addition of agonists that increase cAMP levels. Spindle-shaped MEC lose the ability to express Factor VIII rAG and DR antigens and to bind peripheral blood mononuclear leukocyte (PBML). Ultrastructural analyses of transitional cells and spindle-shaped cells show decreased numbers of Weibel-Palade bodies in transitional cells and their complete absence in spindle-shaped cells. Interferon-gamma alters several functional properties of both epithelioid and spindle-shaped cells. In the absence of dibutyryl cAMP it accelerates the transition from epithelial to spindle-shaped cells, whereas in the presence of cyclic AMP interferon-gamma increases the binding of PBMLs to both epithelioid and spindle-shaped MEC and the endocytic activity of the endothelial cells. These results suggest that cyclic AMP is an important second messenger in the maintenance of several key functions of microvascular endothelial cells. Factors that influence the levels of this messenger in vivo can be expected to influence the angiogenic and immunologic functions of the microvasculature.

  4. Immediate pain relief by microvascular decompression for idiopathic trigeminal neuralagia

    International Nuclear Information System (INIS)

    Haq, N.U.; Ali, M.; Khan, H.M.; Ishaq, M.; Khattak, M.I.

    2016-01-01

    Background: Trigeminal neuralgia is a common entity which is managed by neurosurgeons in day to day practice. Up-till now many treatment options have been adopted for it but micro-vascular decompression is much impressive in terms of pain control and recurrence rate in all of them. The objective of study was known the efficacy of micro vascular decompression for idiopathic trigeminal neuralgia by using muscle patch in terms of immediate pain relief. Methods: This descriptive study was carried out in Neurosurgery Department lady reading hospital, Peshawar from January 2010 to December 2012. All patients who underwent micro vascular decompression for idiopathic trigeminal neuralgia were included in the study. Patients were assessed 72 hours after the surgery by borrow neurological institute pain scale (BNIP scale) for pain relief and findings were documented on predesigned proforma. Data was analysed by SPSS-17. Results: Total 52 patients were included in this study. Among these 32 (61.53 percentage) were female and 20 (38.46 percentage) were males having age from 22-76 years (mean 49 years). Right side was involved in 36 (69.23 percentage) and left side in 16 (30.76 percentage) patients. Duration of symptoms ranged from 6 months to 16 years (mean 8 years). History of dental extraction and peripheral neurectomy was present in 20 (38 percentage) and 3(5.76 percentage) patients while V3 was most commonly involved branch with 28(57.69 percentage) frequency and combined V2,V3 involvement was 1 (11.53 percentage). Superior cerebellar artery was most common offending vessel in 46(88.46 percentage) while arachnoid adhesions were in 2(3.84 percentage) patients. We assessed patient immediate postoperatively using BNIP pain scale. Conclusion: Micro-vascular decompression is most effective mode of treatment for trigeminal neuralgia in terms of immediate pain relief. (author)

  5. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment. PMID:17875991

  6. Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity▿

    OpenAIRE

    Siddiqui, Ruqaiyyah; Matin, Abdul; Warhurst, David; Stins, Monique; Khan, Naveed Ahmed

    2007-01-01

    Cycloheximide, ketoconazole, or preexposure of organisms to cytochalasin D prevented Balamuthia mandrillaris-associated cytopathogenicity in human brain microvascular endothelial cells, which constitute the blood-brain barrier. In an assay for inhibition of cyst production, these three agents prevented the production of cysts, suggesting that the biosynthesis of proteins and ergosterol and the polymerization of actin are important in cytopathogenicity and encystment.

  7. Fatty acid composition of muscle and adipose tissues of indigenous Caribbean goats under varying nutritional densities.

    Science.gov (United States)

    Liméa, L; Alexandre, G; Berthelot, V

    2012-02-01

    The effects of a concentrate diet on growth, carcass fat, and fatty acid (FA) composition of muscle (supraspinatus), perirenal, and intermuscular adipose tissues of Creole goats (n = 32) were evaluated. Goats were fed a tropical green forage Digitaria decumbens ad libitum with no concentrate (G0) or 1 of 3 levels of concentrate: 140 (G100), 240 (G200), and 340 g•d(-1) (G300), respectively. Goats were slaughtered according to the standard procedure at the commercial BW (22 to 24 kg of BW). Goats fed the concentrate diets (G100, G200, and G300) had greater ADG (P 0.05). Increased concentrate supplementation did not affect (P > 0.05) the proportion of MUFA in all tissues and had very little effect on SFA in perirenal tissue, but increased the PUFA proportion in muscle (P < 0.05). The major effect of feeding increased concentrate was an increase in n-6 PUFA proportions in all tissues (P < 0.001) and, surprisingly, a decrease in n-3 PUFA (P < 0.001). Focusing on FA, which are supposed to have a beneficial or an adverse effect on human health, feeding increased concentrate did not increase the content of any cholesterol-increasing SFA in meat, but increased the n-6/n-3 ratio above 4 when more than 240 g of concentrate was fed per day.

  8. Cross-sectional analysis of adult diabetes type 1 and type 2 patients with diabetic microvascular complications from a German retrospective observational study.

    Science.gov (United States)

    Happich, M; Breitscheidel, L; Meisinger, C; Ulbig, M; Falkenstein, P; Benter, U; Watkins, J

    2007-06-01

    To obtain epidemiological data on the prevalence of predefined stages of diabetic microvascular complications from a representative cross-section of patients with existing microvascular complications of type 1 or type 2 diabetes in Germany. A cross-sectional, retrospective study of medical records of 705 type 1 and 1910 type 2 adult diabetic patients with a diagnosis of retinopathy and/or peripheral neuropathy and/or nephropathy before 2002 and treated in 2002 in Germany. Of 376 patients with type 1 diabetes having retinopathy, 59.3% had mild or moderate non-proliferative retinopathy without macular oedema, 27.1% had macular oedema, and 13.6% had severe retinopathy without macular oedema. In 862 patients with type 2 diabetes, the distribution of retinopathy/maculopathy classes was 56.8%, 35.5%, and 7.7%, respectively. Of 381 type 1 diabetes patients with observed peripheral neuropathy, 81.4% had sensorimotor neuropathy, 8.9% had diabetic foot conditions, and 9.7% had lower extremity amputations because of diabetes. In 1005 patients with type 2 diabetes, the distribution of neuropathy classes was 78.2%, 12.1%, and 9.7%, respectively. The proportions of patients with renal insufficiency in type 1 and type 2 diabetes groups were 15.3% versus 13.5%, respectively. The study suggests that there are considerable proportions of patients with progressive stages of microvascular complications related to type 1 and type 2 diabetes in Germany. This underlines the importance of improvement of optimal quality of care and frequent screening for preventing late diabetic microvascular complications and the necessity of effective intervention strategies to tackle this major public health problem.

  9. A tissue in the tissue: models of microvascular plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Hornbech, Morten Sonne; Holstein-Rathlou, Niels-Henrik

    2009-01-01

    network. The pronounced plasticity and the inherently complex nature of vascular networks have spurred an enduring interest in mathematical modeling of the microcirculation. This has been advanced by the continuous increase in computing power over recent decades enabling simulation of increasingly...

  10. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation

    International Nuclear Information System (INIS)

    Sultana, Naznin; Wang Min

    2012-01-01

    Tissue engineering combines living cells with biodegradable materials and/or bioactive components. Composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramic with suitable properties are promising for bone tissue regeneration. In this paper, based on blending two biodegradable and biocompatible polymers, namely poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(l-lactic acid) (PLLA) with incorporated nano hydroxyapatite (HA), three-dimensional composite scaffolds with controlled microstructures and an interconnected porous structure, together with high porosity, were fabricated using an emulsion freezing/freeze-drying technique. The influence of various parameters involved in the emulsion freezing/freeze-drying technique was studied for the fabrication of good-quality polymer scaffolds based on PHBV polymers. The morphology, mechanical properties and crystallinity of PHBV/PLLA and HA in PHBV/PLLA composite scaffolds and PHBV polymer scaffolds were studied. The scaffolds were coated with collagen in order to improve wettability. During in vitro biological evaluation study, it was observed that SaOS-2 cells had high attachment on collagen-coated scaffolds. Significant improvement in cell proliferation and alkaline phosphatase activity for HA-incorporated composite scaffolds was observed due to the incorporation of HA. After 3 and 7 days of culture on all scaffolds, SaOS-2 cells also had normal morphology and growth. These results indicated that PHBV/PLLA-based scaffolds fabricated via an emulsion freezing/freeze-drying technique were favorable sites for osteoblastic cells and are promising for the applications of bone tissue engineering.

  11. The relationship between maternal body composition in early pregnancy and foetal mid-thigh soft-tissue thickness in the third trimester in a high-risk obstetric population.

    Science.gov (United States)

    Anglim, Breffini; Farah, Nadine; O'Connor, Clare; Daly, Niamh; Kennelly, Mairead M; Turner, Michael J

    2017-07-01

    Maternal obesity is an emerging challenge in contemporary obstetrics. To date there has been no study analysing the relationship between specific maternal body composition measurements and foetal soft-tissue measurements. The aim of this study was to determine whether measurement of maternal body composition at booking predicts foetal soft-tissue trajectories in the third trimester. We analysed the relationship between foetal thigh in the third trimester and both maternal BMI and body composition using the Tanita digital scales in the first trimester. Foetal subcutaneous thigh tissue measurements were obtained at intervals of 28, 32 and 36 weeks of gestation. A total of 160 women were identified. There was a direct correlation between MTST at 36 weeks and BMI (p = .002). There was a positive correlation between MTST at 36 weeks and leg fat mass (p = .13) and leg fat free mass (p = .013). There was a positive correlation between arm fat free mass and MTST at 36 weeks. We showed there is an association between maternal fat distribution and foetal subcutaneous thigh tissue measurements. MTST may be more useful in determining if a child is at risk of macrosomia. Impact statement Previous studies have suggested that maternal obesity programmes intrauterine foetal adiposity and growth. The aim of this study was to examine the relationship in a high-risk obstetric population between measurements of maternal body composition in early pregnancy and the assessment of foetal adiposity in the third trimester using serial ultrasound measurements of mid-thigh soft-tissue thickness. BMI is only a surrogate measurement of fat and does not measure fat distribution. Our study shows the distribution of both maternal fat and fat-free mass in early pregnancy may be positively associated with foetal soft-tissue measurements in the third trimester. Maternal arthropometric measurements other than BMI may help predict babies at risk of macrosomia and neonatal adiposity.

  12. Deleterious Effects of Intra-arterial Administration of Particulate Steroids on Microvascular Perfusion in a Mouse Model.

    Science.gov (United States)

    Laemmel, Elisabeth; Segal, Nicolas; Mirshahi, Massoud; Azzazene, Dalel; Le Marchand, Sylvie; Wybier, Marc; Vicaut, Eric; Laredo, Jean-Denis

    2016-06-01

    Purpose To determine the in vivo effects of several particulate steroids on microvascular perfusion by using intravital microscopy in a mice model and to investigate the in vitro interactions between these particulate steroids and red blood cells (RBCs). Materials and Methods The study was conducted in agreement with the guidelines of the National Committee of Ethic Reflection on Animal Experimentation. By using intravital microscopy of mouse cremaster muscle, the in vivo effects of several particulate steroids on microvascular perfusion were assessed. Four to five mice were allocated to each of the following treatment groups: saline solution, dexamethasone sodium phosphate, a nonparticulate steroid, and the particulate steroids cortivazol, methylprednisolone, triamcinolone, and prednisolone. By using in vitro blood microcinematography and electron microscopy, the interactions between these steroids and human RBCs were studied. All results were analyzed by using nonparametric tests. Results With prednisolone, methylprednisolone, or triamcinolone, blood flow was rapidly and completely stopped in all the arterioles and venules (median RBC velocity in first-order arterioles, 5 minutes after administration was zero for these three groups) compared with a limited effect in mice treated with saline, dexamethasone, and cortivazol (20.3, 21.3, and 27.5 mm/sec, respectively; P effect was associated with a large decrease in the functional capillary density (4.21, 0, and 0 capillaries per millimeter for methylprednisolone, triamcinolone, or prednisolone, respectively, vs 21.0, 21.4, and 19.1 capillaries per millimeter in mice treated with saline, dexamethasone, and cortivazol, respectively; P steroids. Conclusion Several particulate steroids have an immediate and massive effect on microvascular perfusion because of formation of RBC aggregates associated with the transformation of RBCs into spiculated RBCs. (©) RSNA, 2016 Online supplemental material is available for this

  13. Autologous Latissimus Dorsi Breast Reconstruction Flap Salvage: Microvascular Anastomosis with Serratus Branch

    Directory of Open Access Journals (Sweden)

    Victoria Kuta, BScH

    2017-07-01

    Full Text Available Summary:. Autologous breast reconstruction has become a standard option during the recovery of breast cancer survivors. Although pedicle damage is a rare complication of this procedure, extensive torsion or tension can lead to partial or total flap failure. We report a case of partial flap salvage after accidental transection of the pedicled blood supply within the intramuscular course of a latissimus dorsi musculocutaneous flap. This salvage technique involved microvascular anastomosis between the remaining vasculature of the latissimus dorsi pedicle and the serratus branch of the thoracodorsal artery and vein.

  14. Substâncias vasoativas e a modulação do sistema microvascular hepático

    Directory of Open Access Journals (Sweden)

    Loureiro-Silva M.R.

    1999-01-01

    Full Text Available OBJETIVO. Revisão da filogênese e ontogênese hepáticas, do sistema microvascular hepático e da modulação do tônus deste sistema vascular por diferentes substâncias vasoativas. MÉTODO. Levantamento de artigos por meio do sistema MEDLINE e consulta a livros-texto. RESULTADO. Foram selecionados 52 trabalhos publicados entre 1949 e 1997, dos quais retiramos as informações a respeito de filogênese e ontogênese hepáticas, sistema microvascular hepático e mecanismos de controle do tônus vascular hepático. CONCLUSÃO. O fígado possui sistema vascular altamente especializado na promoção de mecanismos de troca entre hepatócitos e sangue. Diferentes fatores atuam continuamente sobre estruturas contrácteis deste sistema vascular adequando a perfusão do tecido hepático às necessidades homeostáticas de cada momento. O fígado é órgão eminentemente mantenedor do meio interno.

  15. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats

    NARCIS (Netherlands)

    Legrand, Matthieu; Almac, Emre; Mik, Egbert G.; Johannes, Tanja; Kandil, Asli; Bezemer, Rick; Payen, Didier; Ince, Can

    2009-01-01

    Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, Payen D, Ince C. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 296: F1109-F1117, 2009. First published February 18, 2009;

  16. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration.

    Science.gov (United States)

    Kim, MinSung; Jung, Won-Kyo; Kim, GeunHyung

    2013-11-01

    Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.

  17. Intractable lung abscess successfully treated with cavernostomy and free omental plombage using microvascular surgery.

    Science.gov (United States)

    Shimizu, Junzo; Arano, Yoshihiko; Adachi, Iwao; Ikeda, Chikako; Ishikawa, Norihiko; Ohtake, Hiroshi

    2009-11-01

    A 68-year-old man, complaining of fever and puriform sputum, was referred to our hospital. A giant abscess was detected in the upper lobe of the right lung. Percutaneous drainage of a lung abscess was carried out. When the pus collected was cultured, Candida was 1+ and Escherichia coli was 2+. Later, it became difficult to control the abscess by drainage, and cavernostomy was selected. The contents of the abscess cavity were removed, and the cavity was opened, followed by exchange of gauze every day. For 14 months after cavernostomy, once-weekly gauze exchange was continued at the outpatient clinic to clean the abscess cavity. Finally, the abscess was filled with a free greater omentum flap, accompanied by microvascular anastomosis. In this way, the intractable lung abscess was successfully cured. Conventionally, surgical treatment, particularly cavernostomy, has been applied only to limited cases when dealing with a lung abscess. Our experience with the present case suggests that surgical treatment, including cavernostomy as one option, should also be considered when dealing with lung abscesses resisting medical treatment and causing compromised respiratory function. To enable maximum utilization of the greater omental flap, which is available in only a limited amount, it seems useful to prepare and graft a free omental flap making use of microvascular surgery.

  18. COMPARISON OF REAL-TIME MICROVASCULAR ABNORMALITIES IN PEDIATRIC AND ADULT SICKLE CELL ANEMIA PATIENTS

    Science.gov (United States)

    Cheung, Anthony T.W.; Miller, Joshua W.; Craig, Sarah M.; To, Patricia L.; Lin, Xin; Samarron, Sandra L.; Chen, Peter C.Y.; Zwerdling, Theodore; Wun, Ted; Li, Chin-Shang; Green, Ralph

    2010-01-01

    The conjunctival microcirculation in 14 pediatric and 8 adult sickle cell anemia (SCA) patients was studied using computer-assisted intravital microscopy. The bulbar conjunctiva in SCA patients in both age groups exhibited a blanched/avascular appearance characterized by decreased vascularity. SCA patients from both age groups had many of the same abnormal morphometric {vessel diameter, vessel distribution, morphometry (shape), tortuosity, arteriole:venule (A:V) ratio, and hemosiderin deposits} and dynamic {vessel sludging/sludged flow, boxcar blood (trickled) flow and abnormal flow velocity} abnormalities. A severity index (SI) was computed to quantify the degree of vasculopathy for comparison between groups. The severity of vasculopathy differed significantly between the pediatric and adult patients (SI: 4.2 ± 1.8 vs 6.6 ± 2.4; p=0.028), indicative of a lesser degree of overall severity in the pediatric patients. Specific abnormalities that were less prominent in the pediatric patients included abnormal vessel morphometry and tortuosity. Sludged flow, abnormal vessel distribution, abnormal A:V ratio, and boxcar flow, appeared in high prevalence in both age groups. The results indicate that SCA microvascular abnormalities develop in childhood and the severity of vasculopathy likely progresses with age. Intervention and effective treatment/management modalities should target pediatric patients to ameliorate, slow down or prevent progressive microvascular deterioration. PMID:20872552

  19. Radioisotope albumin flux measurement of microvascular lung permeability: an independent parameter in acute respiratory failure?

    International Nuclear Information System (INIS)

    Hoegerle, S.; Nitzsche, E.U.; Reinhardt, M.J.; Moser, E.; Benzing, A.; Geiger, K.; Schulte Moenting, J.

    2001-01-01

    Aim: To evaluate the extent to which single measurements of microvascular lung permeability may be relevant as an additional parameter in a heterogenous clinical patient collective with Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Methods: In 36 patients with pneumonia (13), non pneumogenic sepsis (9) or trauma (14) meeting the consensus conference criteria of ALI or ARDS double-isotope protein flux measurements ( 51 Cr erythrocytes as intravascular tracer, Tc-99m human albumin as diffusible tracer) of microvascular lung permeability were performed using the Normalized Slope Index (NSI). The examination was to determine whether there is a relationship between the clinical diagnosis of ALI/ARDS, impaired permeability and clinical parameters, that is the underlying disease, oxygenation, duration of mechanical ventilation and mean pulmonary-artery pressure (PAP). Results: At the time of study, 25 patients presented with increased permeability (NSI > 1 x 10 -3 min -1 ) indicating an exudative stage of disease, and 11 patients with normal permeability. The permeability impairment correlated with the underlying disease (p > 0.05). With respect to survival, there was a negative correlation to PAP (p [de

  20. Wide-area mapping of resting state hemodynamic correlations at microvascular resolution with multi-contrast optical imaging (Conference Presentation)

    Science.gov (United States)

    Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.

    2017-02-01

    Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.