Sample records for composite materials subjected

  1. Mechanics of composite material subjected to eigenstress

    DEFF Research Database (Denmark)

    Fuglsang Nielsen, L.

    In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given...... to the topic of frost resistance of wet building materials. Three computer algorithms are presented to facilitate the numerical analysis of the phenomenons considered....

  2. Mechanics of composite material subjected to eigenstress

    DEFF Research Database (Denmark)

    Fuglsang Nielsen, L.

    In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given to the t......In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given...... to the topic of frost resistance of wet building materials. Three computer algorithms are presented to facilitate the numerical analysis of the phenomenons considered....

  3. Mechanics of composite material subjected to eigenstress

    DEFF Research Database (Denmark)

    Fuglsang Nielsen, L.

    In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given to the t......In this SBI Bulletin a theory is presented dealing with the mechanical behavior of composites subjected to hygro-thermal actions such as shrinkage caused by moisture variations and expansion caused by temperature variations of freezing of water in pore systems. Special attention is given...

  4. Cytogenetic genotoxic investigation in peripheral blood lymphocytes of subjects with dental composite restorative filling materials. (United States)

    Pettini, F; Savino, M; Corsalini, M; Cantore, S; Ballini, A


    Dental composite resins are biomaterials commonly used to aesthetically restore the structure and function of teeth impaired by caries, erosion, or fracture. Residual monomers released from resin restorations as a result of incomplete polymerization processes interact with living oral tissues. The objective of this study was to evaluate the genotoxicity of a common dental composite material (Enamel Plus-HFO), in subjects with average 13 filled teeth with the same material, compared to a control group (subjects having neither amalgam nor composite resin fillings). Genotoxicity assessment of composite materials was carried out in vitro in human peripheral blood leukocytes using sister-chromatid exchange (SCE) and chromosomal aberrations (CA) cytogenetic tests. The results of correlation and multiple regression analyses confirmed the absence of a relationship between SCE/cell, high frequency of SCE(HFC) or CA frequencies and exposure to dental composite materials. These results indicate that composite resins used for dental restorations differ extensively in vivo in their cytotoxic and genotoxic potential and in their ability to affect chromosomal integrity, cell-cycle progression, DNA replication and repair.

  5. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading (United States)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.


    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  6. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading: Appendices (United States)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.


    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  7. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. [Appendices (United States)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.


    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  8. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  9. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  10. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    , viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous......This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry...

  11. Composite material (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN


    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  12. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    . The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous...... materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  13. Effect of temperature on composite sandwich structures subjected to low velocity impact. [aircraft construction materials (United States)

    Sharma, A. V.


    The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.

  14. Subject-specific left ventricular dysfunction modeling using composite material mechanics approach (United States)

    Haddad, Seyed Mohammad Hassan; Karami, Elham; Samani, Abbas


    Diverse cardiac conditions such as myocardial infarction and hypertension can lead to diastolic dysfunction as a prevalent cardiac condition. Diastolic dysfunctions can be diagnosed through different adverse mechanisms such as abnormal left ventricle (LV) relaxation, filling, and diastolic stiffness. This paper is geared towards evaluating diastolic stiffness and measuring the LV blood pressure non-invasively. Diastolic stiffness is an important parameter which can be exploited for more accurate diagnosis of diastolic dysfunction. For this purpose, a finite element (FE) LV mechanical model, which works based on a novel composite material model of the cardiac tissue, was utilized. Here, this model was tested for inversion-based applications where it was applied for estimating the cardiac tissue passive stiffness mechanical properties as well as diastolic LV blood pressure. To this end, the model was applied to simulate diastolic inflation of the human LV. The start-diastolic LV geometry was obtained from MR image data segmentation of a healthy human volunteer. The obtained LV geometry was discretized into a FE mesh before FE simulation was conducted. The LV tissue stiffness and diastolic LV blood pressure were adjusted through optimization to achieve the best match between the calculated LV geometry and the one obtained from imaging data. The performance of the LV mechanical simulations using the optimal values of tissue stiffness and blood pressure was validated by comparing the geometrical parameters of the dilated LV model as well as the stress and strain distributions through the LV model with available measurements reported on the LV dilation.

  15. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices (United States)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.


    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  16. Effect of Material Parameters on Steady State Creep in a Thick Composite Cylinder Subjected to Internal Pressure

    Directory of Open Access Journals (Sweden)

    Tejeet Singh


    Full Text Available The steady state creep in Al- SiCP composite cylinder subjected to internal pressure was investigated. The creep behavior of the material were described by threshold stress based creep law by assuming a stress exponent of 5. The effect of size and content of the reinforcement (SiCP , and operating temperature on the stresses and strain rates in the composite cylinder were investigated. The stresses in the cylinder did not have significant variation with varying size and content of the reinforcement, and operating temperature. However, the tangential as well as radial strain rates in the cylinder could be reduced to a significant extent by decreasing size of SiCP, increasing the content of SiCP and decreasing operating temperature.

  17. Effect of nonlinear material behavior of laminated composite plates with central rectangular hole subjected to out -of- plane loading

    Directory of Open Access Journals (Sweden)

    Abu-Farsakh Ghazi


    Full Text Available The purpose of this paper is to investigate the effect of nonlinear material behavior on four layered, symmetric; angle-ply laminated composite plate with various fiber-orientation angles; (θ = 30°, 45° and 60°. The plate has a central square-hole and subjected to out-of-plane uniformly distributed load. The effect of Stress Concentration Factor (SCF resulting from redistribution of in-plane stresses (σx, σy, τxy around the hole was taken into consideration. Square plates with simply supported boundary conditions were considered in the present study. The analysis was carried out utilizing the ANSYS-computer program. The presence of a central hole was found to concentrate the maximum stresses at the corners of the hole. The nonlinear material behavior was found to redistribute the in-plane stresses more reasonably and smoothly around the hole-perimeter and hence resulting in smaller SCF-values.

  18. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    materials. Numerical procedures are outlined which facilitate the practical analysis of any feature considered in this book. Examples are presented which illustrate the analysis of well-known materials such as concrete, hardening cement paste, ceramics, tile, wood, impregnated and reinforced materials...

  19. Fatigue life prediction in a unidirectional glass-epoxy composite material subjected to off-axis cyclic loads

    Directory of Open Access Journals (Sweden)

    Revuelta, D.


    Full Text Available Most of today s fatigue analysis and design methods for composite laminates were developed primarily on the basis of experience with homogeneous metals. Such methods are subject to serious drawbacks, however, because the failure the modes of failure observed in metals. A theoretical model for predicting the fatigue life of continuous glass-fibre/epoxy composite materials under general loading conditions has been developed on the basis of fundamental fatigue failure modes and local failure criteria.

    La mayoría de los actuales métodos de cálculo y diseño a fatiga de estructuras de materiales compuestos se han desarrollado principalmente a partir de la experiencia previa en materiales metálicos homogéneos. Sin embargo, estos métodos presentan serios inconvenientes debido a que la heterogeneidad y micro estructura orientada características de los materiales compuestos laminados provocan modos de fallo diferentes a los de los metales. Basándose en los modos fundamentales de rotura por fatiga y en criterios de rotura local, se desarrolla un modelo teórico de vida a fatiga para materiales compuestos de matriz epoxi reforzados con fibra de vidrio bajo condiciones generales de carga

  20. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings (United States)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.


    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  1. Aerogel / Polymer Composite Materials (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)


    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  2. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George


    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  3. Modeling Non-Linear Material Properties in Composite Materials (United States)


    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  4. Composite structural materials (United States)

    Loewy, R. G.; Wiberley, S. E.


    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  5. Influence of the average stress in a unidirectional glass-epoxi composite material subjected to off-axis cyclic loads

    Directory of Open Access Journals (Sweden)

    Revuelta, D.


    Full Text Available A fatigue theoretical model for continuous glass-fibrereinforced epoxy composite material under general loadconditions was developed in previous works based onthe principal fatigue failure modes and on local failurecriteria. It was demonstrated that fatigue life dependedon the cyclic shear stress and the maximum stress transverseto the crack growth direction. Following the previousmodel, this work analyzes the influence of the averageapplied stress on the fatigue life of the material.En trabajos anteriores del autor desarrollo un modeloteorico de vida a fatiga para materiales compuestos unidireccionalesde matriz epoxi reforzados con fibra devidrio bajo condiciones generales de carga basado en losmodos fundamentales de rotura por fatiga y en criteriosde rotura local. Se comprobo que la vida de fatigadependia de la tension ciclica de cortadura y de la maximatension transversal a la direccion de crecimiento delas grietas. Siguiendo el modelo previo, este trabajo analizala influencia que tiene la tension media aplicada enla vida a fatiga de estos materiales.

  6. Nano-composite materials (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland


    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  7. Multifunctional materials and composites (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan


    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  8. Multifunctional Composite Materials Project (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  9. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L


    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  10. Composite structural materials (United States)

    Loewy, Robert G.; Wiberley, Stephen E.


    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  11. Nanostructured composite reinforced material (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN


    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  12. Biotechnology and Composite Materials (United States)


    Three Biotechnology Areas for the Development of Advanced Composite Materials and Structures" " Seashells as a Natural Model to Study Laminated...cell [7]. Application areas of wood to man-made composites could include its cellular microstructure for providing information to the design of novel...respectively however their volumes are equal [11]. Bone utilizes such unique designs as a cellular microstructure (osteons), a fibrous matrix and

  13. Nanowear Testing of Composite Materials

    Czech Academy of Sciences Publication Activity Database

    Sedláček, R.; Suchý, Tomáš; Šepitka, J.; Lukeš, J.; Sochor, M.; Balík, Karel; Sucharda, Zbyněk; Beneš, J.


    Roč. 106, S3 (2012), s.519-s520 ISSN 0009-2770. [Local Mechanical Properties 2011. Olomouc, 09.11.2011-11.11.2011] R&D Projects: GA ČR(CZ) GAP108/10/1457 Institutional research plan: CEZ:AV0Z30460519 Keywords : nanoindentation * wear * mechanical properties Subject RIV: JI - Composite Materials Impact factor: 0.453, year: 2012

  14. Aerogel/polymer composite materials (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)


    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  15. Composite materials processing, applications, characterizations

    CERN Document Server


    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  16. Processing composite materials (United States)

    Baucom, R. M.


    The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

  17. Vibrational Damping of Composite Materials


    Biggerstaff, Janet M.


    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  18. Composite structural materials. [fiber reinforced composites for aircraft structures (United States)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.


    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  19. Analysis of Steel-With-Composite Material Substitution in Military Vehicle Hull Floors Subjected to Shallow-Buried Landmine-Detonation Loads (United States)


    performance of alumina/S-2 glass-reinforced polymer-matrix composite hybrid lightweight armor against armor piercing (AP) and Non-AP projectiles...road performance of an up-armored high- mobility multi-purpose wheeled vehicle (HMMWV)”, Journal of Automobile Engineering, Vol. 223 No. 3, pp. 301...reduction of a prototypical high-mobility multi-purpose wheeled vehicle subjected to mine-blast”, Journal of Automobile Engineering, Vol. 223 No. 7

  20. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W


    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  1. Study of Composite Insulator Sheds Subjected to Wheel Test


    Mackiewicz M.; Mikulski J.L.; Wańkowicz J.; Kucharski S.; Ranachowski P.; Ranachowski Z.


    The paper presents investigation of the properties of the surface and the material stiffness – flexibility of series of samples taken from the sheds of the composite insulators. The insulators were previously subjected to wheel test. The wheel test and 1000 h salt fog test are regarded as alternative examination of the material resistance to the effects of electrical surface discharges. There were investigated two series of the samples of the composite insulators sheds. Examined specimens, ma...

  2. Virtual materiality, potentiality and gendered subjectivity

    DEFF Research Database (Denmark)

    Søndergaard, Dorte Marie

    How do we conceptualize virtual materiality, in terms of for instance avatars and weapons in computer games, virtual discourse, subjectivity and the enactment of masculinity as phenomena intra-acting with real life materiality, discourse, subjectivity and masculinity in children’s everyday lives...

  3. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald


    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  4. Erosion-resistant composite material (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  5. Composite Materials in Overhead Lines

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim


    The use of composite materials, e.g. fibreglass materials, in overhead transmission line systems is nothing new. Composite based insulators have been applied to transmission lines for over 30 years, mainly as suspension and post insulators and often as an option for special applications. Also...... towers and recently conductors based on composite materials are available at transmission levels. In this paper it is investigated which composite based solutions are available in connection with complete overhead line systems including insulators, towers and conductors. The components are reviewed...... with respect to solved and persisting known failures/problems of both mechanical and electrical nature. Major challenges related to extensive use of composite materials in an overhead line system are identified, as are possible benefits - both when using standard as well as customised composite components, e...

  6. Strain-Detecting Composite Materials (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)


    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about C. to form the composite material.

  7. Vibrational damping of composite materials (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  8. Reversibly assembled cellular composite materials. (United States)

    Cheung, Kenneth C; Gershenfeld, Neil


    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  9. Carbon nanotube composite materials (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas


    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  10. Multilayer Electroactive Polymer Composite Material (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)


    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  11. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko


    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  12. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang


    , and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...... is successfully justified comparing predicted results with experimental data obtained in the HETEK-project on creep, relaxation, and shrinkage of very young concretes cured at a temperature of T = 20^o C and a relative humidity of RH = 100%. The model is also justified comparing predicted creep, shrinkage......, linear-viscoelastic analysis methods are justified from the age of approximately 10 hours.The rheological properties of plain cement paste are determined. These properties are the principal material properties needed in any stress analysis of concrete. Shrinkage (autogeneous or drying) of mortar...

  13. Composite materials for space applications (United States)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.


    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  14. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola


    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  15. Dense, finely, grained composite materials (United States)

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.


    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  16. Impact response of composite materials (United States)

    Tiwari, S. N.; Srinivasan, K.


    Composite materials composed of carbon fibers and resin matrices offer great promise in reducing the weight of aerospace structures. However they remain extremely vulnerable to out of plane impact loads, which lead to severe losses in strength and stiffness. The results of an experimental program, undertaken to investigate the low velocity impact damage tolerance of composite materials is presented. The objectives were to identify key neat resin/composite properties that lead to enhancement of composite impact damage tolerance and to find a small scale test that predicts compression after impact properties of panels. Five materials were selected for evaluation. These systems represented different classes of material behavior such as brittle epoxy, modified epoxies, and amorphous and semicrystalling thermoplastics. The influence of fiber properties on the impact performance was also studied in one material, i.e., in polyether ether ketone (PEEK). Several 24 and 48 ply quasi-isotropic and 24 ply orthotropic laminates were examined using an instrumented drop weight impactor. Correlations with post impact compression behavior were made.

  17. Delamination growth in composite materials (United States)

    Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.


    Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

  18. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu


    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly decreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  19. Composite Materials: An Educational Need. (United States)

    Saliba, Tony E.; Snide, James A.


    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  20. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu


    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  1. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans


    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...


    Directory of Open Access Journals (Sweden)

    Gigliola Salerno


    Full Text Available Composite materials became an advantageous option due high specific strength and stiffness; nowadays the applications grow. Unidirectional fiber composite materials have complexes damage mechanisms; moreover the delamination process is the most important mechanism considering the structural integrity, being important its understanding and evaluation. As a consequence, the main purpose of this work, using previous fracture properties identification, is to simulate numerically delamination process through a finite element code. For that, delamination tests: DCB (Double Cantilever Beam and ENF (End Notched Flexure, which identified critical fracture energies for interface 0/0 and 0/90 in modes I and II. Numerical simulations were run, these based on damage interface model that considers deformation energy and activation force for the delamination inception. Preliminary results show the numerical simulations ability to predict the experimental data.

  3. Asymmetric Dielectric Elastomer Composite Material (United States)

    Stewart, Brian K. (Inventor)


    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  4. Improved Silica Aerogel Composite Materials (United States)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven


    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  5. Tailored material properties using textile composites (United States)

    Pastore, C. M.


    Lightweighting is essential for the reduction of energy consumption in transportation. The most common approach is through the application of high specific strength and stiffness materials, such as composites and high performance aluminum alloys. One of the challenges associated with the use of advanced materials is the high cost. This paper explores the opportunities of using hybrid composites (glass and carbon, for example) with selective fiber placement to optimize the weight subject to price constraints for given components. Considering the example of a hat-section for hood reinforcement, different material configurations were modeled and developed. The required thickness of the hat section to meet the same bending stiffness as an all carbon composite beam was calculated. It was shown that selective placement of fiber around the highest moments results in a weight savings of around 14% compared to a uniformly blended hybrid with the same total material configuration. From this it is possible to estimate the materials cost of the configurations as well as the weight of the component. To determine which is best it is necessary to find an exchange constant that converts weight into cost – the penalty of carrying the extra weight. The value of this exchange constant will depend on the particular application.

  6. Study of Composite Insulator Sheds Subjected to Wheel Test

    Directory of Open Access Journals (Sweden)

    Mackiewicz M.


    Full Text Available The paper presents investigation of the properties of the surface and the material stiffness – flexibility of series of samples taken from the sheds of the composite insulators. The insulators were previously subjected to wheel test. The wheel test and 1000 h salt fog test are regarded as alternative examination of the material resistance to the effects of electrical surface discharges. There were investigated two series of the samples of the composite insulators sheds. Examined specimens, made of HTV silicone rubber, were taken from the sheds of medium-voltage composite insulators of two different manufacturers. Insulators of both types passed the 1000 h salt fog test without reservation. Meanwhile, the wheel test can provide a basis for better distinguishing between physical properties of the tested materials. In the case of the insulators of one of the manufacturers the wheel test result was negative. Cross puncture effect of the sheds took place in several places. In addition, sheds were covered with dark coating of varying thicknesses. The results of the study indicated a significantly stronger influence of electrical and temperature factors on the sheds under investigations during the wheel test than in the case of the 1000 h salt fog test. It can be stated that these tests cannot be considered as alternative and it seems that wheel test enables better distinguishing between properties of the materials.

  7. Self-lubricating composite materials (United States)

    Sliney, H. E.


    The mechanical properties of two types of self lubricating composites (polymer matrix composites and inorganic composites) are discussed. Specific emphasis is given to the applicability of these composites in the aerospace industry.

  8. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials (United States)


    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  9. Thin film dielectric composite materials (United States)

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho


    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  10. Polyolefin composites containing a phase change material (United States)

    Salyer, Ival O.


    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  11. Friendship network composition and subjective wellbeing


    Awaworyi Churchill, Sefa; Smyth, Russell


    Using data from the UK Community Life Survey, we present the first study to examine the relationship between heterogeneity in one’s friendship network and subjective wellbeing. We measure network heterogeneity by the extent to which one’s friends are similar to oneself with regard to ethnicity and religion. We find that people who have friendship networks with characteristics dissimilar to themselves have lower levels of subjective wellbeing. Specifically, our two-stage least squares (2SLS) e...

  12. Micromechanical models for graded composite materials (United States)

    Reiter, Thomas; Dvorak, George J.; Tvergaard, Viggo


    Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting of piecewise homogeneous layers with equivalent elastic properties estimated by Mori-Tanaka and selfconsistent methods are also analysed under similar boundary conditions. Comparisons of the overall and local fields predicted by the discrete and homogenized models are made using a C/SiC composite system with very different Young's moduli of the phases, and relatively steep composition gradients. The conclusions reached from these comparisons suggest that in those parts of the graded microstructure which have a well-defined continuous matrix and discontinuous second phase, the overall properties and local fields are predicted by Mori-Tanaka estimates. On the other hand, the response of graded materials with a skeletal microstructure in a wide transition zone between clearly defined matrix phases is better approximated by the self-consistent estimates. Certain exceptions are noted for loading by overall transverse shear stress. The results suggest that the averaging methods originally developed for statistically homogeneous aggregates may be selectively applied, with a reasonable degree of confidence, to aggregates with composition gradients, subjected to both uniform and nonuniform overall loads.

  13. Language and Composition: Does the Subject Matter? (United States)

    Alexis, Gerhard T.


    Attempts to combine language and composition in the freshman English course at Gustavus Adolphus College (St. Peter, Minnesota) should interest all teachers of English. One project utilized a single key word for several assignments. Students were asked to (1) think through the meaning of the word for a week and write definitions and associations,…

  14. Does the bracket composition material influence initial biofilm formation?


    Gustavo Antônio Martins Brandão; Antonio Carlos Pereira; Ana Maria Martins Brandão; Haroldo Amorim de Almeida; Rogério Heládio Lopes Motta


    Context: Orthodontic treatment has been reported to contribute to the development and accumulation of dental biofilm, which is commonly found on bracket and adjacent surfaces. Aims: The aim of this work is to test the hypothesis if there are differences in dental biofilm formation on the surface of orthodontic brackets according to the type of composition material. Subjects and Methods: Three bracket types (metallic, composite, and ceramic) had been evaluated. Subjects wore acrylic pa...

  15. Bioenvironmental Engineering Guide for Composite Materials (United States)


    encountered in the Air Force are glass, boron, carbon/graphite, and aramid (commonly known as Kevlar®). Glass fibers can be bound together by polymer...there are composite materials that blend two or more basic fiber types into a blended hybrid material, such as “carbon- aramid -fiberglass” composite...Only) 2.0 (all forms except graphite fibers ) 5.0 All Other Respirable Composite Materials (i.e., aramid , boron, carbon, or combination

  16. Composite materials formed with anchored nanostructures (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei


    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  17. Process for producing dispersed particulate composite materials (United States)

    Henager, Jr., Charles H.; Hirth, John P.


    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  18. Composite materials for battery applications (United States)

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo


    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  19. Wave propagation and impact in composite materials (United States)

    Moon, F. C.


    Anisotropic waves in composites are considered, taking into account wave speeds, wave surfaces, flexural waves in orthotropic plates, surface waves, edge waves in plates, and waves in coupled composite plates. Aspects of dispersion in composites are discussed, giving attention to pulse propagation and dispersion, dispersion in rods and plates, dispersion in a layered composite, combined material and structural dispersion, continuum theories for composites, and variational methods for periodic composites. The characteristics of attenuation and scattering processes are examined and a description is given of shock waves and impact problems in composites. A number of experiments are also reported.

  20. Composite materials and method of making (United States)

    Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA


    A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

  1. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L


    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  2. Structure and properties of hybrid composite materials (United States)

    Chernyshova, T. A.; Kobeleva, L. I.; Bolotova, L. K.; Katin, I. V.


    The structure and interfacial interaction are studied in the hybrid aluminum-matrix composite materials fabricated by reactive casting combined with mechanical mixing of fillers with a metallic melt. The following types of hardening are considered: hardening by ceramic particles and by the phases formed as isolated inclusions or coatings on ceramic particles during in situ reactions. The hardness and tribological properties of the composite materials as functions of their compositions are discussed.

  3. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll


    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...


    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka


    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fi l (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and x-tra base (XB), and conventional control material X-Flow (XF). Composite samples (n=5) were polymerized for 20 s with Bluephase G2 curing unit. Vickers hardness was used to determine microhardness of each material at the surface, and at 2-mm and 4-mm depth. GSO on average recorded significantly higher microhardness values than bulk-fill materials (pcomposite XF revealed similar microhardness values as SDR, but significantly lower than XB (pmaterials was lower than microhardness of the conventional composite material (GSO). Surface microhardness of low-viscosity materials was generally even lower. The microhardness of all tested materials at 4 mm was not different from their surface values. However, additional capping layer was a necessity for low-viscosity bulk-fill materials due to their low microhardness.

  5. Strengthening bridges using composite materials. (United States)


    The objective of this research project is to outline methodologies for using Fiber Reinforced Polymer (FRP) composites to strengthen and rehabilitate reinforced concrete bridge elements. : Infrastructure deterioration and bridge strengthening techniq...

  6. Polymer Matrix Composite Material Oxygen Compatibility (United States)

    Owens, Tom


    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  7. Composite Materials for Low-Temperature Applications (United States)


    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  8. Combinatorial synthesis of inorganic or composite materials (United States)

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An


    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  9. Natural Composite Systems for Bioinspired Materials. (United States)

    Frezzo, Joseph A; Montclare, Jin Kim


    From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.

  10. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo


    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  11. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.


    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap E/sub g1/ in the presence of a second semiconductor material of a different composition and direct bandgap E/sub g2/, wherein E/sub g2/>E/sub g1/. The second semiconductor material is not substantially etched during the method, comprising subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons are not present, the photons being of an energy greater than E/sub g1/ but less than E/sub g2/, whereby the first semiconductor material is photochemically etched and the second material is substantially not etched.

  12. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)


    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  13. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.


    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  14. Fibrous and textile materials for composite applications

    CERN Document Server

    Fangueiro, Raul


    This book focuses on the fibers and textiles used in composite materials. It presents both existing technologies currently used in commercial applications and the latest advanced research and developments. It also discusses the different fiber forms and architectures, such as short fibers, unidirectional tows, directionally oriented structures or advanced 2D- and 3D-textile structures that are used in composite materials. In addition, it examines various synthetic, natural and metallic fibers that are used to reinforce polymeric, cementitious and metallic matrices, as well as fiber properties, special functionalities, manufacturing processes, and composite processing and properties. Two entire chapters are dedicated to advanced nanofiber and nanotube reinforced composite materials. The book goes on to highlight different surface treatments and finishes that are applied to improve fiber/matrix interfaces and other essential composite properties. Although a great deal of information about fibers and textile str...

  15. Optimal structural design of biomorphic composite materials


    Hoppe, Ronald H. W. (Prof. Dr.)


    Optimal structural design of biomorphic composite materials / R. H. W. Hoppe, S. Petrova. - In: Numerical methods and applications / Ivan Dimov ... - Berlin u.a. : Springer, 2003. - S. 479-487. - (Lecture notes in computer science ; 2542)

  16. Cryogenic Cycling Behavior of Polymeric Composite Materials

    National Research Council Canada - National Science Library

    Seferis, James


    The basis of this research was an exploration of the fundamental phenomena that determine the response of fiber-reinforced composite materials to thermal cycling between cryogenic and ambient temperatures...

  17. Development of Web Based Learning Material in Physics Subject for Kalor and Temperature Material

    Directory of Open Access Journals (Sweden)

    Fatwa Aji Kurniawan


    Full Text Available It has been done, the research which aims to develop a web-based teaching materials on the subjects of physics subject with subject mater of temperature and heat. This study using a modified model of the 4D development by eliminating the deployment phase. The validation of product development conducted by validator media experts and experts matter of physics, whereas small-scale trials conducted by physics teacher and 10 students. Validator review results stating that the quality of the product development were included in the category very well with the average percentage rating of 83.93%. The percentage value assigned by media expert by 75% in the good category and the percentage of the value provided by a matter expert 92.85% were in the very good category. Experiments by physics teacher to obtain result of equal to 94.44% were in the very good category and the average percentage of the test results by the students of 90.5% were in the very good category. The characteristics of the products developed include material composition using the curriculum in 2013, there was a recording facility and the results of evaluation of students' activities, there were feedback evaluation results were immediately known by the students and there were some links related to the material either youtube or other learning website.

  18. Composite materials with improved phyllosilicate dispersion (United States)

    Chaiko, David J.


    The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

  19. Composite Material Hazard Assessment at Crash Sites (United States)


    and optical microscopy. Other samples utilized optical microscopy on 0.8-µm MCE filters in open-face cassettes. Technicians collected gravimetric...instruments (DRIs) measured particle and aerosol mass concentrations. A condensation particle counter and optical particle counter were the DRIs measured... fiberglass is one specific type of composite material, it is the only type of composite material for which there is a standard measured in f/cc. All

  20. Method to fabricate layered material compositions (United States)

    Fleming, James G.; Lin, Shawn-Yu


    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the spectral range.

  1. Composite materials inspection. [ultrasonic vibration holographic NDT (United States)

    Erf, R. K.


    Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

  2. Thermoviscoelastic dynamic response for a composite material thin narrow strip

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Hong Liang; Qi, Li-Li; Liu, Hai-Bo [Hunan University, Changsha (China)


    Based on von Karman nonlinear strain-displacement relationships and classical thin plate theory, a list of nonlinear dynamic equilibrium equations for a viscoelastic composite material thin narrow strip under thermal and mechanic loads are deduced. According to the material constitutive relationship and the relaxation modulus in the form of the Prony series, combing with the Newmark method and the Newton-cotes integration method, a new numerical algorithm for direct solving the whole problem in the time domain is established. By applying this numerical algorithm, the viscoelastic composite material thin narrow strip as the research subject is analyzed systematically, and its rich dynamical behaviors are revealed comprehensively. To verify the accuracy of the present work, a comparison is made with previously published results. Finally, the viscoelastic composite material thin narrow strip under harmonic excitation load and impact load are discussed in detail, and many valuable thermoviscoelastic dynamic characteristics are revealed.

  3. Oxygen Compatibility Testing of Composite Materials (United States)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael


    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  4. Automotive applications for advanced composite materials (United States)

    Deutsch, G. C.


    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  5. Surface roughness of composite resins subjected to hydrochloric acid. (United States)

    Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez


    The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.

  6. Current developments in composite materials and techniques. (United States)

    Dietschi, D; Dietschi, J M


    General reduction of dental caries and patient interest in dental aesthetics have resulted in the development of new restorative materials and techniques. Composite materials and adhesive techniques have become the foundation of modern restorative dentistry. Mechanical performance, wear resistance, and aesthetic potential of composite resins have been significantly improved, and the material is now used in cases ranging from the restoration of initial decays and cosmetic corrections to the veneering in extended prosthetic rehabilitation. Polymerization shrinkage of the resin matrix remains a challenge and still imposes limitations in the application of direct techniques. The learning objective of this article is to review the most significant advances of composite materials and the importance of utilizing the available treatment options with discretion, selecting those which preserve the tooth structure and require the least maintenance.

  7. Nonlinear optical properties of composite materials (United States)

    Haus, Joseph W.; Inguva, Ramarao


    The optical properties of a new class of composite nonlinear materials composed of coated grains, such as cadmium sulfide with a silver coating, are examined. These materials exhibit intrinsic optical bistability and resonantly enhanced conjugate reflectivity. The threshold for intrinsic optical bistability is low enough for practical applications in optical communications and optical computing. Some problems associated with the fabrication of these materials are addressed. Based on preliminary results, switching times are expected to be in the subpicosecond range.

  8. Dental composite materials and renal function in children. (United States)

    Trachtenberg, F L; Shrader, P; Barregard, L; Maserejian, N N


    To examine whether greater exposure to resin-based composite materials, which may intra-orally release bisphenol A (BPA), is associated with worse renal function outcomes in children. Prospective multi-centre study. Community health dental clinics in Boston and Maine from 1997-2005.Subjects and methods Five hundred and thirty-four New England Children's Amalgam Trial participants aged six to ten years were randomised to treatment with amalgam or resin-based composite restorations over five years of follow-up. Restorations were placed according to treatment arm, and sealants placed per standard of care. Cumulative composite exposure was calculated using surface-years (each treated surface weighted by number years present). Urinary excretion of albumin, gamma-glutamyl transpeptidase (gamma-GT), and N-acetyl-β-D-glucosaminidase (NAG) were available for 417 children. Analysis of covariance showed no association between exposure to dental composites, polyacid-modified compomer, or flowable composite dental sealants and preventative resin restorations with levels of renal function. There was no association between composite materials and thresholds indicating renal damage in logistic regression models. This study found no harmful associations between dental composite materials and renal function in children. Therefore, concerns about renal function need not be a consideration in the choice of dental restoration material or placement of preventative dental sealants.

  9. Color stability of different composite resin materials. (United States)

    Falkensammer, Frank; Arnetzl, Gerwin Vincent; Wildburger, Angelika; Freudenthaler, Josef


    Data are needed to better predict the color stability of current composite resin materials. The purpose of this study was to evaluate the impact of different storage solutions on the color stability of different composite resin materials. Different restorative and adhesive composite resin specimens (dual-polymerizing self-adhesive resin cement, autopolymerizing resin-based composite resin, dual-polymerizing resin-based composite resin, nanohybrid composite resin, and microhybrid composite resin) were fabricated and stored in red wine, black tea, chlorhexidine, sodium fluoride, tea tree oil, or distilled water for 4 weeks at 37°C. Color parameters were measured with a colorimeter before and after storage. Total color differences and specific coordinate differences were expressed as ΔE, ΔL, Δa, and Δb. A 2-way and 1-way analysis of variance (ANOVA) with Bonferroni adjustment for multiple comparisons were applied for statistical calculations (α=.05). Red wine caused the most severe discoloration (ΔE >10), followed by black tea with perceptible (ΔE >2.6) to clinically unacceptable discoloration (ΔE >5.5). Colored mouth rinses discolored the materials to a lesser extent with clinically acceptable values. Dual-polymerizing resin adhesives showed a higher amount of discoloration. Current restorative and adhesive composite resin materials discolor over time under the influence of different storage solutions. The composition related to the polymerizing mode seemed to be a causative factor. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  10. On the Mechanical Behavior of Advanced Composite Material Structures (United States)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  11. 37 CFR 202.1 - Material not subject to copyright. (United States)


    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Material not subject to copyright. 202.1 Section 202.1 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS COPYRIGHT OFFICE AND PROCEDURES PREREGISTRATION AND REGISTRATION OF CLAIMS TO COPYRIGHT § 202.1 Material not...

  12. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil


    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  13. Impact testing of textile composite materials (United States)

    Portanova, Marc


    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  14. Health monitoring method for composite materials (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA


    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  15. Modeling of failure and response to laminated composites subjected to in-plane loads (United States)

    Shahid, Iqbal; Chang, Fu-Kuo


    An analytical model was developed for predicting the response of laminated composites with or without a cutout and subjected to in-plane tensile and shear loads. Material damage resulting from the loads in terms of matrix cracking, fiber-matrix shearing, and fiber breakage was considered in the model. Delamination, an out-of-plane failure mode, was excluded from the model.

  16. Properties of composite materials used for bracket bonding. (United States)

    Gama, Ana Caroline Silva; Moraes, André Guaraci de Vito; Yamasaki, Lilyan Cardoso; Loguercio, Alessandro Dourado; Carvalho, Ceci Nunes; Bauer, José


    The purpose of this study was to evaluate in vitro the shear bond strength to enamel, flexural strength, flexural modulus, and contraction stress of one orthodontic composite and two flowable composites. Orthodontic brackets were bonded to 45 human maxillary premolars with the composites Transbond XT, Filtek Z-350 flow and Opallis flow and tested for shear bond strength. For measurement of flexural strength and flexural modulus, specimens were fabricated and tested under flexion. For the contraction stress test, cylindrical specimens were tested and an extensometer determined the height of the specimens. The data were subjected to one-way ANOVA and Tukey's test (α=0.05). The shear bond strength values were significantly lower (p0.05) while the flexural modulus was significantly higher (plight-activated orthodontic composite material presented higher flexural modulus and shear bond strength and lower contraction stress than both flowable composites.

  17. Amorphous titania/carbon composite electrode materials (United States)

    Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.


    An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about C. to less than about C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.

  18. Subjective evaluation of chosen typographical characteristics in marketing materials

    Directory of Open Access Journals (Sweden)

    Petra Talandová


    Full Text Available This paper concentrates on the problems of marketing materials quality evaluation and their formal aspect and also customers’ marketing materials evaluation. This area has not been concentrated on very much and nor in the literature is described. The paper presents the results of our own research which queries how the customers subjectively perceive and evaluate the marketing materials. The emphasis was put on the materials quality i.e. on what materials are considered as quality materials by the customers and which attributes mainly influence the quality. The results were aggregated on the basis of customers’ responses an also on the basis of practical examples evaluation which included intentional mistakes. The subjects of the evaluation were marketing materials quality as a general feature, the attributes influencing the quality and marketing materials quality and company quality relation. Also the exam­ples including mistakes were evaluated. According to the questioning results, the respondents’ answers vary much. It is not possible to find unambiguously right or wrong marketing materials eva­lua­tion. This area will be developed in further research which will be concentrated mainly on the typographical aspects.The aim of this paper is to delimit and to define the present situation through the research result exa­mi­na­tion, to define ‘quality’ and to describe the way how marketing materials are perceived by the customers.

  19. Method of making carbon nanotube composite materials (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas


    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  20. Ultrasonic Characterization of Material Properties of Composite Materials, (United States)


    ferrltschen GuOelsen-werkstoffen," Zeltschrlft Materials and Composites at Low Temperatures, Plenum f’ur Metallkunde , Vol. 74, 1983, pp. 265-27r. Press...Arbitrary Metallkunde , Vol. 73, 1982, pp. 69-71. Configurations in Three Dimensions," Journal of Mathe- 7. hes, C.G. and Spurling, R.A., "Fiber-matrix

  1. Theorizing the complexities of discursive and material subjectivity

    DEFF Research Database (Denmark)

    Højgaard, Lis; Søndergaard, Dorte Marie


    This article seeks to address the theoretical foundations of subjectivity as co-constituted by discursive and material/technological forces. Our ambition is to develop a conceptual framework that draws from Science and Technology Studies and related “new materialist” frameworks and poststructural......This article seeks to address the theoretical foundations of subjectivity as co-constituted by discursive and material/technological forces. Our ambition is to develop a conceptual framework that draws from Science and Technology Studies and related “new materialist” frameworks...... to a redefinition of the concept of subjectivity that emphasizes the multiplicity of enacting forces including human as well as non-human, material/technological actors; and that underlinesthe importance of a conceptualization of all actors as simultaneously enacting and enacted forces....

  2. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.


    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of


    African Journals Online (AJOL)

    INTRODUCTION. Composite materials have found an extensive use in many applications within the broad fields of aerospace & automobile, marine construction, ... This is due to their significant and attractive advantages in terms of high strength and stiffness coupled with mass savings, and other tremendous properties that ...

  4. Raw materials for wood-polymer composites. (United States)

    Craig Clemons


    To understand wood-plastic composites (WPCs) adequately, we must first understand the two main constituents. Though both are polymer based, they are very different in origin, structure, and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. In WPCs, a polymer matrix forms the continuous phase...

  5. Preliminary Validation of Composite Material Constitutive Characterization (United States)

    John G. Michopoulos; Athanasios lliopoulos; John C. Hermanson; Adrian C. Orifici; Rodney S. Thomson


    This paper is describing the preliminary results of an effort to validate a methodology developed for composite material constitutive characterization. This methodology involves using massive amounts of data produced from multiaxially tested coupons via a 6-DoF robotic system called NRL66.3 developed at the Naval Research Laboratory. The testing is followed by...

  6. Test Plan for Composite Hydrogen Getter Materials

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, R.R.


    The intent of this test plan is to provide details of the Savannah River Technology Center (SRTC) effort to evaluate composite getter materials for eventual use in expanding the wattage limits for transportation of contact-handled transuranic waste (CH-TRU). This effort is funded by the Mixed Waste Focus Area (MWFA) under Technical Task Plan (TTP) SR-1-9-MW-45 and is the result of a competitive process initiated by a MWFA request for proposals. In response to this request, SRTC presented data on several composite getter materials that demonstrated good potential for application in transportation of transuranic wastes. The tests outlined in the SRTC proposal for composite getter materials should demonstrate compliance with functional requirements provided by the MWFA in a Statement of Work (SOW) which accompanied the request for proposals. Completion of Phase 1 testing, as defined in the TTP, should provide sufficient data to determine if composite getters should progress to Phase s 2 and 3. These test results will provide support for future safety reviews as part of the Transuranic Package Transporter-II (TRUPACT-II) certification process to utilize getter technology. This test plan provides details of the test descriptions, test objectives, required measurements, data quality objectives, data analysis, and schedule information relevant to Phase 1 of the TTP. The results of these tests are expected to help identify any potential weaknesses in the use of composite getter for transportation of CH-TRU wastes. Where a potential weakness is identified, this will be addressed as part of Phase 2 of the proposed effort. It is also important to recognize that these tests are focused on the individual composite getter materials and not the engineered system that would eventually be used in a TRUPACT-II. However, these test results will be very helpful in establishing the requirements for the design of a TRUPACT-II getter system that is included as part of the propo sed Phase

  7. Composite materials for wind power turbine blades

    DEFF Research Database (Denmark)

    Brøndsted, P.; Lilholt, H.; Lystrup, Aa.


    Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood...... procedures for documentation of properties are reviewed, and fatigue loading histories are discussed, together with methods for data handling and statistical analysis of (large) amounts of test data. Future challenges for materials in the field of wind turbines are presented, with a focus on thermoplastic...... composites, new structural materials concepts, new structural design aspects, structural health monitoring, and the coming trends and markets for wind energy....

  8. Chloride binding of cement-based materials subjected to external chloride environment - A review


    Yuan, Q; Shi, C.; Schutter, G. de; K. Audenaert; Deng, D.


    This paper reviews the chloride binding of cement-based materials subjected to external chloride environments. Chloride ion exist either in the pore solution, chemically bound to the hydration products, or physically held to the surface of the hydration products. Chloride binding of cement-based material is very complicated and influenced by many factors, such as chloride concentration, cement composition, hydroxyl concentration, cation of chloride salt, temperature, supplementary cementing m...

  9. The Cryogenic Impact Resistant Evaluation of Composite Materials for Use in Composite Pressure Vessels with an Additional Cryogenic Bonding Scope Project (United States)

    National Aeronautics and Space Administration — The intent of the proposed effort is to investigate the detailed composite material performance characteristics after being subjected to cryogenic temperatures and...

  10. Carbon Nanotube Composites: Strongest Engineering Material Ever? (United States)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)


    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  11. Mechanics of failure of composite materials (United States)

    Reifsnider, K. L.


    Composite materials are both inhomogeneous and anisotropic. Both of these characteristics affect the internal stress distributions since inhomogeneity involves variations in both strength and stiffness. The fracture mechanics of nonuniform materials are considered, taking into account the effect of nonuniformity on stress distributions near the crack tip, predicted yield zones in nonuniform and uniform materials, and the fracture of a center-notched unidirectional specimen. The mechanics of failure of laminated materials is discussed. It is found that the development of damage in a laminate with increasing load and, possibly, increasing numbers of cycles of loading is peculiar to the laminate in question, i.e., the material system, the stacking sequence, and the geometry. Approaches for monitoring damage development are also described.

  12. Infrared thermography to impact damaging of composite materials (United States)

    Boccardi, Simone; Boffa, Natalino D.; Carlomagno, Giovanni M.; Meola, Carosena; Ricci, Fabrizio; Russo, Pietro; Simeoli, Giorgio


    Composite materials are becoming ever more popular and being used in an increasing number of applications. This because, to meet the users' demand, it is possible to create a new material of given characteristics in a quite simple way by changing either the type of matrix, or reinforcement. Of course, any new material requires characterization for its appropriate exploitation. In this context, infrared thermography (IRT) represents a viable means since it is non-contact, non-intrusive and can be used either for non-destructive evaluation to detect manufacturing defects, or fatigue induced degradation, or else for monitoring online the response to applied loads. In this work, IRT is used to investigate different types of composite materials which are based on either a thermoset, or a thermoplastic matrix, which may be neat, or modified by addition of a percentage of a specific compatibilizing agent, and reinforced with carbon, glass, or jute fibers. IRT is used with a twofold function. First, to non-destructively evaluate, with the lock-in technique, materials before and after impact to either assure absence of manufacturing defects, or discover the damage caused by the impact. Second, IRT is used to visualize thermal effects, which develop when the material is subjected to impact. The obtained results show that it is possible to follow the material bending, delamination and eventual failure under impact and get information, which may be valuable to deepen the complex impact damaging mechanisms of composites

  13. Elementary damping properties in braided composite materials (United States)

    Dion, Bernard L.; Sadler, Robert; Silverberg, Larry


    This paper investigates the damping level trends of three-dimensionally braided composites as a function of matrix material, fiber-matrix interface, fiber braid angle, fiber volume, and axial fiber tow size. With knowledge of such trends, designers may increase the structural damping in a 3-D braided composite component, thereby reducing component vibration, shock response, and fatigue. The logarithmic decrements of the fundamental mode response of cantilevered, 3-D braided composite beam specimens were calculated for comparison. Although the logarithmic decrements of two specimens, differing only in their matrix materials (Tactix 123 and Epon 828), were essentially identical, both were considerably larger than that for steel. The value for the decrement of these two composite specimens' response was taken as a reference. Altering the nature of the fiber-matrix interface by lubricating the fibers before specimen consolidation greatly increased the damping relative to the baseline. Trends of increasing damping were measured with both increasing fiber braid angle and fiber volume. Finally, increasing levels of damping are reported for decreases in axial fiber tow size. Explanations for these trends, based on the possible microscopic and macroscopic nature of the braided composites, are offered.

  14. Auditors’ Assessments of Materiality Between Professional Judgment and Subjectivity

    Directory of Open Access Journals (Sweden)

    Saher Aqel


    Full Text Available Abstract: Materiality has been and continues to be a topic of importance for auditors. It is considered as a significant factor in the planning of the audit procedures, performing the planned audit procedures, evaluating the results of the audit procedures and issuing an audit report. Recently, there has been a renewed interest in the concept of materiality motivated by concerns at the Sarbanes-Oxley Act, Securities and Exchange Commission and International Auditing and Assurance Standards Board issuance of proposed standards on materiality. The objective of this paper is to discuss and analyze comprehensively the concept of audit materiality including how materiality threshold is determined by auditors. Auditing standards settings bodies pointed out that auditor’s determination of materiality threshold is a matter of professional judjment. As a judgmental concept, however, materiality is susceptible to subjectivity. Furthermore, the absence of audting standards on how materiality is determined has highlighted the significance of this issue and indicated that guidance for materiality professional judgments must come from other non-authoritative sources such as empirical researches. A number of new and important areas of materiality are in need of further investigation.

  15. Material resources availability, parent subject perception and school ...

    African Journals Online (AJOL)

    Students' poor performance in the Yoruba language is being considered a serious problem by researchers and education stakeholders. Despite their efforts, no appreciable improvement is noticeable for hardly are enough researches on the extent to which school material resources availability, parental subject perception ...

  16. Behavior of granite-epoxy composite beams subjected to mechanical vibrations

    Directory of Open Access Journals (Sweden)

    Antonio Piratelli-Filho


    Full Text Available The capacity to damp mechanical vibrations is one of the most important properties of granite-epoxy composites, even superior to the cast iron one. For this reason, these materials have been adopted for manufacturing of tool machine foundations and precision instruments. This work presents a study concerning the behavior of particulate composite beams, based on granite powder and epoxy, subjected to mechanical vibrations. Composite samples were prepared with different combinations of processing variables, like the weight fraction of epoxy in the mixture and size distributions of granite particles. The damping behavior of the material was investigated adopting the logarithmic decrement method. Samples, in the form of prismatic beams, were excited in the middle point and the output signal was measured in a point located at the extremity. The obtained results showed that composite samples, with weight fractions of about 80% of granite and 20% of epoxy, presented damping properties approximately three times greater than gray cast iron.

  17. Effect of Piezoelectric Implant on the Structural Integrity of Composite Laminates Subjected to Tensile Loads (United States)

    Masmoudi, Sahir; El Mahi, Abderrahim; Turki, Saïd


    The embedment of sensors within composite structures gives the opportunity to develop smart materials for health and usage monitoring systems. This study investigates the use of acoustic emission monitoring with embedded piezoelectric sensor during mechanical tests in order to identify the effects of introducing the sensor into the composite materials. The composite specimen with and without embedded sensor were subject to tensile static and fatigue loading. The analysis and observation of AE signals show that the integration of a sensor presents advantage of the detection of the acoustic events and also show the presence of three or four types of damage during tests. The incorporation of piezoelectric sensor has a negligible influence on the mechanical properties of materials.

  18. Mechanical and magnetic properties of composite materials with polymer matrix

    Directory of Open Access Journals (Sweden)

    Grujić A.


    Full Text Available Many of modern technologies require materials with unusual combinations of properties that cannot be met by the conventional metal alloys, ceramics, and polymeric materials. Material property combinations and ranges have been extended by the development of composite materials. Development of Nd-Fe-B/polymer composite magnetic materials has significantly increased interest in research and development of bonded magnets, since particles of Nd-Fe-B alloys are proved to be very suitable for their production. This study investigates the mechanical and magnetic properties of compression molded Nd-Fe-B magnets with different content of magnetic powder in epoxy matrix. Mechanical properties were investigated at ambient temperature according to ASTM standard D 3039-00. The obtained results show that tensile strength and elongation decrease with an increase of Nd-Fe-B particles content in epoxy matrix. The modulus of elasticity increases, which means that in exploitation material with higher magnetic powder content, subjected to the same level of stress, undergoes 2 to 3.5 times smaller deformation. Scanning Electron Microscopy (SEM was used to examine the morphology of sample surfaces and fracture surfaces caused by the tensile strength tests. The results of SQUID magnetic measurements show an increase of magnetic properties of the investigated composites with increasing content of Nd-Fe-B particles.

  19. Metal Matrix Composite Materials for Aerospace Applications (United States)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)


    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  20. Stratospheric experiments on curing of composite materials (United States)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey


    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  1. Multifunctional Hybrid Composites for Thermal Materials (United States)


    Hierarchical carbon fiber morphology for tailored thermal properties in heterogeneous materials systems – Fiber reinforced composites – Sensors , Heat sink...Interfaces, 4 (2), 2012 • Metal – CNT interface – MD simulation, processing, measurements 5 MWCNT Graphite Interface (Hexagonal Crystal ED Patterns...Simulations • Values are low (metal-metal 300-1000 MW/m2/K) • Similar conductance found for MWCNT and SWCNT interfaces • Conductance is higher for

  2. Mechanics Methodology for Textile Preform Composite Materials (United States)

    Poe, Clarence C., Jr.


    NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. A set of test methods for measuring material properties and design allowables; 2. Mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and fatigue life; and 3. An electronic data base of coupon type test data. This report describes these three deliverables.

  3. Neutron Shielding Effectiveness of Multifunctional Composite Materials (United States)


    colliding with a nucleus is elastic scattering . Elastic scattering continues to moderate the neutron until the neutrons are captured or pass through...thermal neutrons 60% better than aluminum. Overall, there is promise in this composite material, but the fast neutrons are not down- scattered ...beryllium radiation”, the gamma rays observed would have had to be on the order of 50 MeV to produce the Compton recoil velocities that were recorded

  4. Impact of solids on composite materials (United States)

    Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.


    The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.

  5. Inspection for kissing bonds in composite materials using vibration measurements (United States)

    Adams, Douglas E.; Sharp, Nathan D.; Myrent, Noah; Sterkenburg, Ronald


    Improper bonding of composite structures can result in close contact cracks under compressive stresses, called kissing bonds. These bond defects are very difficult to detect using conventional inspection techniques such as tap testing or local ultrasonic scanning and can lead to local propagation of damage if the structure is subjected to crack opening stresses. A method is investigated for identifying kissing bonds in composite material repairs based on vibration measurements. A damage feature of the kissing bond is extracted from the response of the input-output measurement that is a function of the structural path. This path exhibits local decoupling associated with the close contact cracks. Experimental vibration measurements from sandwich composite materials are presented along with the results of the damage detection algorithm for the healthy sections of the material and the kissing bond sections. A vibration based inspection technique could increase the ability to detect kissing bonds in composite material repairs while decreasing inspection time. Benefits of this method of identification over conventional techniques include its robust, objective damage detection methodology and the reduced requirement for specimen preparation and surface texture when compared to ultrasonic scanning.

  6. Shock enhancement of cellular materials subjected to intensive pulse loading (United States)

    Zhang, J.; Fan, J.; Wang, Z.; Zhao, L.; Li, Z.


    Cellular materials can dissipate a large amount of energy due to their considerable stress plateau, which contributes to their extensive applications in structural design for crashworthiness. However, in some experiments with specimens subjected to intense impact loads, transmitted stress enhancement has been observed, leading to severe damage to the objects protected. Transmitted stress through two-dimensional Voronoi cellular materials as a protective device is qualitatively studied in this paper. Dimensionless parameters of material properties and loading parameters are defined to give critical conditions for shock enhancement and clarify the correlation between the deformations and stress enhancement. The effect of relative density on this amplifying phenomenon is investigated as well. In addition, local strain fields are calculated by using the optimal local deformation gradient, which gives a clear presentation of deformations and possible local non-uniformity in the crushing process. This research provides valuable insight into the reliability of cellular materials as protective structures.

  7. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Zhu


    that the specimens were subjected to during testing. The Ag-LSCF composite contact materials proved more effective in trapping Cr within the contact material and preventing Cr migration into the cathode than the Ag-LSM composites. Ag-perovskite composite contact materials are promising candidates for use in intermediate-temperature SOFC stacks with ferritic stainless steel interconnects due to their ability to maintain acceptably low ASRs while reducing Cr migration into the cathode material.

  8. Synthesizing Smart Polymeric and Composite Materials (United States)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4

  9. Theorizing the complexities of discursive and material subjectivity

    DEFF Research Database (Denmark)

    Højgaard, Lis; Søndergaard, Dorte Marie


    This article seeks to address the theoretical foundations of subjectivity as co-constituted by discursive and material/technological forces. Our ambition is to develop a conceptual framework that draws from Science and Technology Studies and related “new materialist” frameworks and poststructural......This article seeks to address the theoretical foundations of subjectivity as co-constituted by discursive and material/technological forces. Our ambition is to develop a conceptual framework that draws from Science and Technology Studies and related “new materialist” frameworks...... and poststructuralist analyses in order to develop analytics that embrace the complexities we face in our empirical work. We discuss the potentialities and weaknesses of the two theoretical frameworks at a conceptual level as well as through an empirical case on peer bullying in schools. The discussion leads us...

  10. Composite materials for thermal energy storage (United States)

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.


    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  11. Composite material systems for hydrogen management (United States)

    Pangborn, R. N.; Queeney, R. A.


    The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

  12. Guided wave attenuation in composite materials (United States)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw


    In this paper problem of guided wave damping in composite materials is investigated. Material damping is estimated from experimental measurements based on energy of propagating guided waves. Simply Rayleigh damping is introduced into the model in the form of damping matrix proportional to the mass matrix. The numerical model is based on Spectral Element Method (SEM). Numerical model includes the piezoelectric transducer and bond layer between actuator and the host structure. In this paper each ply of composite laminate is simulated by separate layer consisting of 3D brick spectral elements. Numerical results are experimentally validated using Scanning Laser Doppler Vibrometry (SLDV). Guided waves are excited using piezoelectric transducer and registered using non-contact device - the laser vibrometer. Validation is based on signals gathered in dispersed points as well as on full wavefield measurements. The full wavefield measurements are conducted on dense grid of points. In this paper results for simple carbon fiber reinforced polymer are presented. Paper presents result for composite structure for damaged case. Investigated damage is in the form of delamination.

  13. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report. (United States)

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  14. Characterization of material composite marble-polyester

    Directory of Open Access Journals (Sweden)

    Corpas, F. A.


    Full Text Available In this work we characterize a new material composite, formed with a polyester and crushed white marble mixture. The final purpose is double: to obtain a material for applications sufficiently competitive after an economic viability study, increasing the yield of the main commodity, using waste marble and improving the jobs in the quarries area. From the results obtained, we deduce then that this material could be used to inside and outside adornment.

    En este trabajo, caracterizamos un nuevo material compuesto, formado con una mezcla de poliéster y de mármol blanco triturado. El propósito final es doble: por un lado obtener un material para aplicaciones lo suficientemente competitivas como para que se pueda iniciar un estudio económico de viabilidad, aumentando el rendimiento de la materia prima y mejorando las salidas laborales de las comarcas extractoras. Para la caracterización del material se ha determinado el porcentaje adecuado de poliéster. Así como las propiedades mecánicas (flexión, compresión y dureza, químicas, fatiga térmica y su influencia a la exposición solar In order to characterized of material, we have determined the suitable porcentage of polyester Also we have carried out a study of the mechanical (stretching, resistance to traction, hardeness and thermal fatigue chemicals properties and solar radiation influence. De los resultados obtenidos, este material podría ser utilizado para ornamentación tanto de interior como de exterior.

  15. Glasses, ceramics, and composites from lunar materials (United States)

    Beall, George H.


    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  16. Ecological performance of construction materials subject to ocean climate change. (United States)

    Davis, Kay L; Coleman, Melinda A; Connell, Sean D; Russell, Bayden D; Gillanders, Bronwyn M; Kelaher, Brendan P


    Artificial structures will be increasingly utilized to protect coastal infrastructure from sea-level rise and storms associated with climate change. Although it is well documented that the materials comprising artificial structures influence the composition of organisms that use them as habitat, little is known about how these materials may chemically react with changing seawater conditions, and what effects this will have on associated biota. We investigated the effects of ocean warming, acidification, and type of coastal infrastructure material on algal turfs. Seawater acidification resulted in greater covers of turf, though this effect was counteracted by elevated temperatures. Concrete supported a greater cover of turf than granite or high-density polyethylene (HDPE) under all temperature and pH treatments, with the greatest covers occurring under simulated ocean acidification. Furthermore, photosynthetic efficiency under acidification was greater on concrete substratum compared to all other materials and treatment combinations. These results demonstrate the capacity to maximise ecological benefits whilst still meeting local management objectives when engineering coastal defense structures by selecting materials that are appropriate in an ocean change context. Therefore, mitigation efforts to offset impacts from sea-level rise and storms can also be engineered to alter, or even reduce, the effects of climatic change on biological assemblages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Tunable optical sensitivity of composite energetic materials (United States)

    Rashkeev, Sergey; Wang, Fenggong; Tsyshevskiy, Roman; Kuklja, Maija; University of Maryland College Park Team

    Optical initiation to detonation of energetic materials is compelling because it opens up new ways for safe handling, storage, and use of high explosives. Despite this, laser irradiation has been mainly perceived as a source of heat for vibrational excitation rather than viable means of photo-stimulated initiation of energy release. Limitations of our knowledge on photo-stimulated energy release from high energy density materials hampers progress in design and manufacturing of efficient optical devices for energy storage and conversion. Here we show how electronic and optical properties of interfaces formed between nitro energetic materials and various metal oxides can be effectively tuned to achieve highly controllable surface chemistry. We discuss mechanisms of photo stimulated reactions triggered by defects on these interfaces. We demonstrate that the key in achieving tunable sensitivity is the proper alignment of the filled and vacant electronic states of oxide defects and energetic materials and provide guidelines for design composite energetic materials suitable for optical initiation. Research is supported by the US ONR (Grants N00014-16-1-2069 and N00014-16-1-2346) and NSF. We used NERSC, XSEDE and MARCC computational resources.

  18. Carbon Fiber Composite Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Jr., Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mainka, Hendrik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Volkswagen (VW) is internationally recognized for quantity and quality of world-wide vehicle production and the Oak Ridge National Laboratory (ORNL) is internationally recognized in materials research and development. With automotive production ramping up in the recently constructed VW Group of America facility in Chattanooga, Tennessee, ORNL and VW initiated discussions in 2012 concerning opportunities for collaboration around ORNL’s carbon fiber and composites programs. ORNL is conducting an internationally recognized program to develop and implement lower cost carbon fibers and composites for automotive and other “energy missions” for the US Department of Energy. Significant effort is ongoing in selecting, developing, and evaluating alternative precursors, developing and demonstrating advanced conversion techniques, and developing and tailoring surface treatment, sizings, and formatting fiber for specific composite matrices and end-use applications. ORNL already had North America’s most comprehensive suite of tools for carbon fiber research and development and established a semiproduction demonstration line referred to as the Carbon Fiber Technology Facility (CFTF) to facilitate implementation of low cost carbon fiber (LCCF) approaches in early 2013. ORNL and VW agreed to collaborate in a formal Cooperative Research and Development Agreement (NFE-12-03992) specifically focused on evaluating applicability of low cost carbon fiber products for potential vehicle components. The goal of the work outlined in this report was to develop and qualify uses for carbon fiber-reinforced structures in connection with civilian ground transportation. Significant progress was achieved in evaluating and understanding lignin-based precursor materials; however, availability of carbon fiber converted from lignin precursor combined with logistical issues associated with the Visa limitations for the VW participant resulted in significantly shortening of the collaboration

  19. Nanotube/Polymer Composites: Materials Selection and Process Design

    National Research Council Canada - National Science Library

    Winey, Karen


    ...) define processing methods most appropriate for the materials identified. Our study of SWNT-polymer composites focuses on thermoplastics, because these materials can be readily drawn into fibers...

  20. Intelligent Image Segment for Material Composition Detection

    Directory of Open Access Journals (Sweden)

    Liang Xiaodan


    Full Text Available In the process of material composition detection, the image analysis is an inevitable problem. Multilevel thresholding based OTSU method is one of the most popular image segmentation techniques. How, with the increase of the number of thresholds, the computing time increases exponentially. To overcome this problem, this paper proposed an artificial bee colony algorithm with a two-level topology. This improved artificial bee colony algorithm can quickly find out the suitable thresholds and nearly no trap into local optimal. The test results confirm it good performance.

  1. Composite Materials and Measurement of Their Acoustic Properties (United States)

    Kondo, Toshio; Kitatuji, Mituyoshi


    A composite material consists of two or more materials and its optimum acoustic properties can be designed by selecting its constituents. Unidirectional composite materials have a very low transverse Poisson’s ratio of less than 0.1. By considering such composite material features, the applications of carbon fiber-epoxy and highly crystalline polyethylene fiber-polyurethane composite materials to a medical transducer array are proposed. The sound velocities and densities of the composite materials are measured and their transverse Poisson’s ratios are calculated from experimental data.

  2. Micro-Scale Experiments and Models for Composite Materials with Materials Research

    DEFF Research Database (Denmark)

    Zike, Sanita

    Numerical models are frequently implemented to study micro-mechanical processes in polymer/fibre composites. To ensure that these models are accurate, the length scale dependent properties of the fibre and polymer matrix have to be taken into account. Most often this is not the case, and material...... properties acquired at macro-scale are used for micro-mechanical models. This is because material properties at the macro-scale are much more available and the test procedures to obtain them are well defined. The aim of this research was to find methods to extract the micro-mechanical properties of the epoxy...... resin used in polymer/fibre composites for wind turbine blades combining experimental, numerical, and analytical approaches. Experimentally, in order to mimic the stress state created by a void in a bulk material, test samples with finite root radii were made and subjected to a double cantilever beam...

  3. Precursor to damage state quantification in composite materials (Conference Presentation) (United States)

    Patra, Subir; Banerjee, Sourav


    Nonlinear damage in the composite materials is developed with the growth of damages in the material under fatigue loading. Nonlinear ultrasonic techniques are sensitive to early stage damages such as, fiber breakages, matrix micro-cracking, and deboning etc. Here, in this work, early stage damages are detected in Unidirectional (UD) carbon fiber composite under fatigue loading. Specimens are prepared according to American Society for Testing and Materials (ASTM) standard. Specimens are subjected to low cycle high load (LCHL) fatigue loading until 150,000 cycles. Sensors are mounted on the specimen used for actuation and sensing. A five count tone burst with low frequency (fc =375 kHz) followed by high frequency (fc =770 kHz) signal, was used as actuation signal. Pitch-catch experiments are collected at the interval of 5,000 cycles. Sensor signals are collected for various excitation voltage (from 5V to 20V, with 5V interval). First Fourier Transform (FFT) of the sensor signals are performed and side band frequencies are observed at around 770 kHz. Severity of damages in the material is quantified from the ratio of amplitude of side band frequencies with the central frequency. Nonlinearity in the material due to damage development is also investigated from the damage growth curve obtained at various excitation amplitude. Optical Microcopy imaging were also performed at the interval of 5,000 to examine developments of damages inside the material. This study has a good potential in detection of early stage damages in composite materials.

  4. Method for preparing dielectric composite materials (United States)

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.


    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  5. Composite materials application on FORMOSAT-5 remote sensing instrument structure


    Jen-Chueh Kuo; Heng-Chuan Hung; Mei-Yi Yang; Chia-Ray Chen; Jer Lin


    Composite material has been widely applied in space vehicle structures due to its light weight and designed stiffness modulus. Some special mechanical properties that cannot be changed in general metal materials, such as low CTE (coefficient of thermal expansion) and directional material stiffness can be artificially adjusted in composite materials to meet the userâs requirements. Space-qualified Carbon Fiber Reinforced Plastic (CFRP) composite materials are applied In the FORMOSAT-5 Remote S...

  6. Influence of Material Distribution on Impact Resistance of Hybrid Composites (United States)

    Abatan, Ayu; Hu, Hurang


    Impact events occur in a wide variety of circumstances. A typical example is a bullet impacting a target made of composite material. These impact events produce time-varying loads on a structure that can result in damage. As a first step to understanding the damage resistance issue in composite laminates, an accurate prediction of the transient response during an impact event is necessary. The analysis of dynamic loadings on laminated composite plates has undergone considerable development recently. Rayleigh-Ritz energy method was used to determine the impact response of laminated plates. The impact response of composite plates using shear deformation plate theory was analyzed. In recent work a closed-form solution was obtained for a rectangular plate with four edges simply supported subjected to a center impact load using classical plate theory. The problem was further investigated and the analysis results compared of both classical plate theory and shear deformation theory, and found that classical plate theory predicts very accurate results for the range of small deformations considered. In this study, the influence of cross sectional material distribution on the comparative impact responses of hybrid metal laminates subjected to low and medium velocity impacts is investigated. A simple linear model to evaluate the magnitude of the impact load is proposed first, and it establishes a relation between the impact velocity and the impact force. Then a closed-form solution for impact problem is presented. The results were compared with the finite element analysis results. For an 11 layer-hybrid laminate, the impact response as a function of material distribution in cross-section is presented. With equal areal weight, the effect of the number of laminate layers on the impact resistance is also investigated. Finally, the significance of the presented results is discussed.

  7. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials (United States)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier


    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  8. Contact problem for a composite material with nacre inspired microstructure (United States)

    Berinskii, Igor; Ryvkin, Michael; Aboudi, Jacob


    Bi-material composites with nacre inspired brick and mortar microstructures, characterized by stiff elements of one phase with high aspect ratio separated by thin layers of the second one, are considered. Such microstructure is proved to provide an efficient solution for the problem of a crack arrest. However, contrary to the case of a homogeneous material, an external pressure, applied to a part of the composite boundary, can cause significant tensile stresses which increase the danger of crack nucleation. Investigation of the influence of microstructure parameters on the magnitude of tensile stresses is performed by means of the classical Flamant-like problem of an orthotropic half-plane subjected to a normal external distributed loading. Adequate analysis of this problem represents a serious computational task due to the geometry of the considered layout and the high contrast between the composite constituents. This difficulty is presently circumvented by deriving a micro-to-macro analysis in the framework of which an analytical solution of the auxiliary elasticity problem, followed by the discrete Fourier transform and the higher-order theory are employed. As a result, full scale continuum modeling of both composite constituents without employing any simplifying assumptions is presented. In the framework of the present proposed modeling, the influence of stiff elements aspect ratio on the overall stress distribution is demonstrated.

  9. Facesheet Delamination of Composite Sandwich Materials at Cryogenic Temperatures (United States)

    Gates, Thomas S.; Odegard, Gregory M.; Herring, Helen M.


    The next generation of space transportation vehicles will require advances in lightweight structural materials and related design concepts to meet the increased demands on performance. One potential source for significant structural weight reduction is the replacement of traditional metallic cryogenic fuel tanks with new designs for polymeric matrix composite tanks. These new tank designs may take the form of thin-walled sandwich constructed with lightweight core and composite facesheets. Life-time durability requirements imply the materials must safely carry pressure loads, external structural loads, resist leakage and operate over an extremely wide temperature range. Aside from catastrophic events like tank wall penetration, one of the most likely scenarios for failure of a tank wall of sandwich construction is the permeation of cryogenic fluid into the sandwich core and the subsequent delamination of the sandwich facesheet due to the build-up of excessive internal pressure. The research presented in this paper was undertaken to help understand this specific problem of core to facesheet delamination in cryogenic environments and relate this data to basic mechanical properties. The experimental results presented herein provide data on the strain energy release rate (toughness) of the interface between the facesheet and the core of a composite sandwich subjected to simulated internal pressure. A unique test apparatus and associated test methods are described and the results are presented to highlight the effects of cryogenic temperature on the measured material properties.

  10. Electromagnetic Shielding Efficiency Measurement of Composite Materials (United States)

    Dřínovský, J.; Kejík, Z.


    This paper deals with the theoretical and practical aspects of the shielding efficiency measurements of construction composite materials. This contribution describes an alternative test method of these measurements by using the measurement circular flange. The measured results and parameters of coaxial test flange are also discussed. The measurement circular flange is described by measured scattering parameters in the frequency range from 9 kHz up to 1 GHz. The accuracy of the used shielding efficiency measurement method was checked by brass calibration ring. The suitability of the coaxial test setup was also checked by measurements on the EMC test chamber. This data was compared with the measured data on the real EMC chamber. The whole measurement of shielding efficiency was controlled by the program which runs on a personal computer. This program was created in the VEE Pro environment produced by © Agilent Technology.

  11. Composite Materials Design Database and Data Retrieval System Requirements (United States)


    market is a viable development route. However, in order to achieve generality, gateway arrangements are necessary to combine specific databases developed...filamentary composites in woven and nonwoven forms. constituent materials - Individual materials that make up the composite material. cross-ply laminate...woven and nonwoven composite materials. Most common fibers are glass, boron, graphite, and aramid. fiber content - Percent volume of fiber in a

  12. Fabricating porous materials using interpenetrating inorganic-organic composite gels (United States)

    Seo, Dong-Kyun; Volosin, Alex


    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  13. The Assessing of the Failure Behavior of Glass/Polyester Composites Subject to Quasi Static Stresses (United States)

    Stanciu, M. D.; Savin, A.; Teodorescu-Drăghicescu, H.


    Using glass fabric reinforced composites for structure of wind turbine blades requires high mechanical strengths especially to cyclic stresses. Studies have shown that approximately 50% of composite material failure occurs because of fatigue. Composites behavior to cyclic stresses involves three stages regarding to stiffness variation: the first stage is characterized by the accelerated decline of stiffness with micro-cracks, the second stage - a slight decrease of stiffness characterized by the occurrence of delamination and third stage characterized by higher decreases of resistance and occurrence of fracture thereof. The aim of the paper is to analyzed the behavior of composites reinforced with glass fibers fabric type RT500 and polyester resin subjected to tensile cyclic loading with pulsating quasi-static regime with asymmetry coefficient R = 0. The samples were tested with the universal tensile machine LS100 Lloyd Instruments Plus, with a load capacity of 100 kN. The load was applied with different speeds of 1 mm/min, 10 mm/min and 20 mm/min. After tests, it was observed that the greatest permanent strains were recorded in the first load cycles when the total energy storage by material was lost due to internal friction. With increasing number of cycles, the glass/polyester composites ability to store energy of deformation decreases, the flow phenomenon characterized by large displacements to smaller loading forces appearing.

  14. Composite materials: Tomorrow for the day after tomorrow (United States)

    Condom, P.


    A description is given of the history of the use of composite materials in the aerospace industry. Research programs underway to obtain exact data on the behavior of composite materials over time are discussed. It is concluded that metal composites have not yet replaced metals, but that that this may be a future possibility.

  15. Composition and method for removing photoresist materials from electronic components (United States)

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.


    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  16. Conformal growth method of ferroelectric materials for multifunctional composites (United States)

    Bowland, Christopher Charles

    Multifunctional composites are the next generation of composites and aim to simultaneously meet multiple performance objectives to create system-level performance enhancements. Current fiber-reinforced composites have offered improved efficiency and performance through weight reduction and increased strength. However, these composites satisfy singular performance objectives. Therefore, the concept of multifunctional composites was developed as an approach to create components in a system that serve multiple functions. These composites aim to reduce the required components in a system by integrating unifunctional components together thus reducing the weight and complexity of the system as a whole. This work offers an approach to create multifunctional composites through the development of a structural, multifunctional fiber. This is achieved by synthesizing a ferroelectric material on the surface of carbon fiber. In this work, a two-step hydrothermal reaction is developed for synthesizing a conformal film of barium titanate (BaTiO3) on the surface of carbon fiber. A fundamental understanding of this hydrothermal process is performed on planar substrates leading to the development of processing parameters that result in epitaxial-type growth of highly-aligned BaTiO3 nanowires. This work establishes the hydrothermal reaction as a powerful synthesis technique for generating nanostructured BaTiO3 on carbon fiber creating a novel, multifunctional fiber. A reaction optimization process leads to the development of parameters that stabilize tetragonal phase BaTiO3 without the need for subsequent heat treatments. The application potential of these fibers is illustrated with both single fibers and woven fabrics. Single fiber cantilever beams are fabricated and subjected to vibrations to determine its voltage output with the ultimate goal of producing an air flow sensor. Carbon fiber reinforced composite integration is carried out by scaling up the hydrothermal reaction to

  17. Method for preparing polyolefin composites containing a phase change material (United States)

    Salyer, Ival O.


    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  18. Verification and Validation of a Three-Dimensional Generalized Composite Material Model (United States)

    Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam D.; Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Blankenhorn, Gunther


    A general purpose orthotropic elasto-plastic computational constitutive material model has been developed to improve predictions of the response of composites subjected to high velocity impact. The three-dimensional orthotropic elasto-plastic composite material model is being implemented initially for solid elements in LS-DYNA as MAT213. In order to accurately represent the response of a composite, experimental stress-strain curves are utilized as input, allowing for a more general material model that can be used on a variety of composite applications. The theoretical details are discussed in a companion paper. This paper documents the implementation, verification and qualitative validation of the material model using the T800-F3900 fiber/resin composite material

  19. Glass matrix composite material prepared with waste foundry sand

    Directory of Open Access Journals (Sweden)

    ZHANG Zhao-shu


    Full Text Available The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  20. Mechanical and magnetic properties of composite materials with polymer matrix


    Grujić A.; Talijan N.; Stojanović D.; Stajić-Trošić J.; Burzić Z.; Balanović Lj.; Aleksić R.


    Many of modern technologies require materials with unusual combinations of properties that cannot be met by the conventional metal alloys, ceramics, and polymeric materials. Material property combinations and ranges have been extended by the development of composite materials. Development of Nd-Fe-B/polymer composite magnetic materials has significantly increased interest in research and development of bonded magnets, since particles of Nd-Fe-B alloys are proved to be very suitable for their ...

  1. Developing Raman spectroscopy for the nondestructive testing of composite materials. (United States)


    The proposed research will develop the application of Raman Spectroscopy as a nondestructive evaluation tool for the condition assessment of carbon fiber composites. Composite materials are increasingly being used in engineered structures and compone...

  2. Numerical simulation of mechanical behavior of composite materials

    CERN Document Server

    Oller, Sergio


    An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...

  3. Developing polymer composite materials: carbon nanotubes or graphene? (United States)

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng


    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Non-Catalytic Self Healing Composite Material Solution Project (United States)

    National Aeronautics and Space Administration — Fiber reinforce polymer (FRP) composite materials are seeing increasing use in the construction of a wide variety of aerospace structures. However, uncertainties...

  5. Multi-material Preforming of Structural Composites

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eberle, Cliff C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pastore, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sudbury, Thomas Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xiong, Fue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hartman, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Fiber-reinforced composites offer significant weight reduction potential, with glass fiber composites already widely adopted. Carbon fiber composites deliver the greatest performance benefits, but their high cost has inhibited widespread adoption. This project demonstrates that hybrid carbon-glass solutions can realize most of the benefits of carbon fiber composites at much lower cost. ORNL and Owens Corning Reinforcements along with program participants at the ORISE collaborated to demonstrate methods for produce hybrid composites along with techniques to predict performance and economic tradeoffs. These predictions were then verified in testing coupons and more complex demonstration articles.

  6. Detonation Shock Dynamics of Composite Energetic Materials. (United States)

    Lee, Jaimin


    A reaction-rate equation for a composite energetic material was calibrated from two-dimensional steady-state experiment data by using the detonation shock dynamics theory. From experimental detonation velocities and shock -front shapes at different diameters for an ammonium nitrate -based emulsion explosive at 1.248 g/cm^3, the relationship between the detonation velocity normal to the shock-front and the shock-front curvature was obtained. By using this relationship and solving the quasi one-dimensional Euler equations of motion in a problem -conforming intrinsic-coordinate frame obtained from the detonation shock dynamics theory, the reaction rate was determined as a function of pressure and density: {dlambdaover dt} = 20.0 times 10^6 {rm exp}({-}14390/ sqrt{P/rho^{0.8418}})(1 - lambda)^{1.889}where lambda is the reaction extent, t is the time in s, P is the pressure in Pa, and rho is the density in kg/m^3 . The reaction-rate equation obtained for this emulsion explosive shows that the rate is very slow and weakly state dependent. These characteristics of the rate indicated that the nonideal behavior of most industrial-type explosives can be attributed to their slow and state-insensitive rates. By using the above rate equation, one-dimensional initiation experiments (wedge tests) were numerically modeled with a one-dimensional Lagrangian hydrodynamic code. The calculated shock trajectories agreed very well with experimental wedge test data. This agreement also suggested that the small shock-curvature asymptotics may be valid even for a relatively large value of the curvature. The calibration method developed in this study is independent of the form of the rate. Realistic rate equations for explosives can be obtained in a very systematic way from two-dimensional steady-state experiments.

  7. Fluid-Structure Interaction in a Fluid-Filled Composite Structure Subjected to Low Velocity Impact (United States)


    this study of impact force, deflection, and strain were measured in a carbon fiber reinforced polymer (CFRP) composite cylinder subjected to low...Sanchez, J. Lopez-Puente, and D. Varas, “On the influence of filling level in CFRP aircraft fuel tank subjected to high velocity impacts,” Composite ...and back sides. The baffle provided the greatest strain reduction at the high fill levels. 14. SUBJECT TERMS glass fiber composite , fluid structure

  8. Copper-based Composite Materials Reinforced with Carbon Nanostructures

    Directory of Open Access Journals (Sweden)

    Tatiana Larionova


    Full Text Available The present work is devoted to development of high performance Cu-based material reinforced with carbon. For this purpose Cu-C composite powders were produced by one-step CVD process. The powders containing carbon nanofibers and graphene were subjected to compacting and analyzed. Mechanical properties of Cu-carbon nanofibers (CNFs and Cu-graphene composites were compared to traditional Cu-graphite and pure copper samples compacted under the same technology. Cu-CNFs material showed the best performance (1.7 times increase in the hardness compared to copper, that is primarily explained by the smallest matrix grain size, which growth is inhibited by the homogeneously dispersed CNFs. Friction coefficient of the Cu-(17-33vol.%CNF was found to be 9 times less than that of pure copper and coincides within the error with Cu-graphite, however the wear of Cu-33vol.%CNF reduced by more than 2 times over Cu-33vol.% graphite samples.DOI:

  9. Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys (United States)

    Paine, Jeffrey S. N.; Rogers, Craig A.


    Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which

  10. Composite materials application on FORMOSAT-5 remote sensing instrument structure

    Directory of Open Access Journals (Sweden)

    Jen-Chueh Kuo


    Full Text Available Composite material has been widely applied in space vehicle structures due to its light weight and designed stiffness modulus. Some special mechanical properties that cannot be changed in general metal materials, such as low CTE (coefficient of thermal expansion and directional material stiffness can be artificially adjusted in composite materials to meet the user’s requirements. Space-qualified Carbon Fiber Reinforced Plastic (CFRP composite materials are applied In the FORMOSAT-5 Remote Sensing (RSI structure because of its light weight and low CTE characteristics. The RSI structural elements include the primary mirror supporting plate, secondary mirror supporting ring, and supporting frame. These elements are designed, manufactured, and verified using composite materials to meet specifications. The structure manufacturing process, detailed material properties, and CFRP structural element validation methods are introduced in this paper.

  11. Composite Materials and Films Based on Melanins, Polydopamine, and Other Catecholamine-Based Materials

    Directory of Open Access Journals (Sweden)

    Vincent Ball


    Full Text Available Polydopamine (PDA is related to eumelanins in its composition and structure. These pigments allow the design, inspired by natural materials, of composite nanoparticles and films for applications in the field of energy conversion and the design of biomaterials. This short review summarizes the main advances in the design of PDA-based composites with inorganic and organic materials.

  12. Mechanical properties of wood-based composite materials (United States)

    Zhiyong Cai; Robert J. Ross


    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  13. Application of composite materials in structures of modern airplanes

    Directory of Open Access Journals (Sweden)

    В.В. Астанін


    Full Text Available  The application efficiency  of composite plastic materials in structures of modern civil and military airplanes are investigated. Detaled analisys of Antonov branch airplanes is presented on general diagrams. The 25–27%  diaposon of the mass reduction that was achieved due to composite materials application is determined.

  14. Application of composite materials in structures of modern airplanes


    В.В. Астанін; А.В. Хоменко; ШЕВЧЕНКО О.А.


     The application efficiency  of composite plastic materials in structures of modern civil and military airplanes are investigated. Detaled analisys of Antonov branch airplanes is presented on general diagrams. The 25–27%  diaposon of the mass reduction that was achieved due to composite materials application is determined.

  15. Application of Modern Polymeric Composite Materials in Industrial Construction

    Directory of Open Access Journals (Sweden)

    Gabriel Oprişan


    Full Text Available The large variety of modern composite materials and products existing nowadays in the construction market provides multiple and convenient possibilities to use them in both structural and nonstructural industrial construction elements. The main advantages of modern composite materials such as: corrosion resistance, high strength and modulus values compared to their density, acceptable deformability, tailored design and excellent formability enable the fabrication of new elements and the structural rehabilitation of the existing parts made of traditional materials. The high potential of the applicability of polymeric composites in new industrial construction correlated with fabrication procedures as well as the use of composites in modern strengthening solutions are presented in the paper.

  16. Flexible hydrogel-based functional composite materials (United States)

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P


    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  17. Buckling and postbuckling of composite panels with cutouts subjected to combined edge shear and temperature change (United States)

    Noor, Ahmed K.; Kim, Yong H.


    The results of a detailed study of the buckling and postbuckling responses of composite panels with central circular cutouts are presented. The panels are subjected to combined edge shear and temperature change. The panels are discretized by using a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the panel. The fundamental unknowns consist of the average mechanical strains through the thickness and the displacement components. The effects of geometric nonlinearities and laminated anisotropic material behavior are included. The stability boundary, postbuckling response and the hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the buckling and postbuckling responses to variations in the panel stiffnesses, and the material properties of both the individual layers and the constituents (fibers and matrix). Numerical results are presented for composite panels with central circular cutouts subjected to combined edge shear and temperature change, showing the effects of variations in the hole diameter, laminate stacking sequence and fiber orientation, on the stability boundary and postbuckling response and their sensitivity to changes in the various panel parameters.

  18. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.


    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  19. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K


    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  20. NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview (United States)

    Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne


    A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

  1. Reflection and transmission for layered composite materials (United States)

    Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.


    A layered planar structure consisting of different bianisotropic materials separated by jump-immittance sheets is considered. Reflection and transmission coefficients are determined via a chain-matrix algorithm. Applications are important for radomes and radar-absorbing materials.

  2. Nano composite phase change materials microcapsules (United States)

    Song, Qingwen

    MicroPCMs with nano composite structures (NC-MicroPCMs) have been systematically studied. NC-MicroPCMs were fabricated by the in situ polymerization and addition of silver NPs into core-shell structures. A full factorial experiment was designed, including three factors of core/shell, molar ratio of formaldehyde/melamine and NPs addition. 12 MicroPCMs samples were prepared. The encapsulated efficiency is approximately 80% to 90%. The structural/morphological features of the NC-MicroPCMs were evaluated. The size was in a range of 3.4 mu m to 4.0 mu m. The coarse appearance is attributed to NPs and NPs are distributed on the surface, within the shell and core. The NC-MicroPCMs contain new chemical components and molecular groups, due to the formation of chemical bonds after the pretreatment of NPs. Extra X-ray diffraction peaks of silver were found indicating silver nano-particles were formed into an integral structure with the core/shell structure by means of chemical bonds and physical linkages. Extra functionalities were found, including: (1) enhancement of IR radiation properties; (2) depression of super-cooling, and (3) increase of thermal stabilities. The effects of SERS (Surface Enhanced Raman Spectroscopy) arising from the silver nano-particles were observed. The Raman scattering intensity was magnified more than 100 times. These effects were also exhibited in macroscopic level in the fabric coatings as enhanced IR radiation properties were detected by the "Fabric Infrared Radiation Management Tester" (FRMT). "Degree of Crystallinity" (DOC) was measured and found the three factors have a strong influence on it. DOC is closely related to thermal stability and MicroPCMs with a higher DOC show better temperature resistance. The thermal regulating effects of the MicroPCMs coatings were studied. A "plateau regions" was detected around the temperature of phase change, showing the function of PCMs. Addition of silver nano-particles to the MicroPCMs has a positive

  3. Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading (United States)

    Armaghani, Seyamend Bilind

    Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences

  4. The Cyogenic Evaluation of Irradiated Composite Materials for Use in Composite Pressure Vessels Project (United States)

    National Aeronautics and Space Administration — HyPerComp Engineering, Inc. (HEI) proposes to continue the characterization of the cryogenic evaluation of irradiated composite materials for use in composite...

  5. Effect of Service Environment on Composite Materials (United States)


    by the senior author’s experience with graphite/ epoxy sandwich components of the Space Lauttle Orbiter . There, the tracking of the moistu-S •re flow...Zigrang and H.W. Bergmann, "The Response of the Space Shuttle Orbiter Graphite/ "A Epoxy Sandwich Panels to Exposure to Moisture and Heat... CARACTERISATION DE LA RESISTANCE AU FOUDROIEMENT DES MATERIAUX COMPOSITES Apriis une mise en Evidence de la vulnirabilit6 des mat~riaux: composites vis a vis de

  6. Effect of topical fluoride agents on the morphologic characteristics and composition of resin composite restorative materials. (United States)

    Papagiannoulis, L; Tzoutzas, J; Eliades, G


    The high reactivity of fluoride agents used in topical fluoride treatments have raised important questions on their potential adverse effects on restorative materials. The purpose of this study was to evaluate the effect of topical fluoride agents used for office or home treatments on the surface morphologic characteristics and composition of composite restoratives. The fluorides used were Act, Phosflur, Gel II, Prevident, Stop, Butler APE, Nupro, and Omni Gel & Rinse. The composites tested were Brilliant DI, Heliomolar Ro, Herculite XRV, and P-50. The pH of the fluorides was measured as received and after dilution with water at a 1:3 volume ratio. The composites were subjected to the fluoride treatments until the total number of applications simulated the equivalent of 4 years under treatment. The changes induced on the surface morphologic features and composition of the restoratives were assessed by multiple internal reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray microanalysis. All fluorides showed an acidic pH that was not significantly changed after dilution, except Stop, which exhibited a significant pH reduction. All fluorides increased the amount of loosely bound water in the composite matrix. Butler APF gel was the most aggressive for Brilliant DI and Herculite XRV, leading to excessive surface degradation, porosity, destruction of the filler-matrix interface, filler dissolution, and debonding. A reduction in the extent of remaining C = C bonds was observed in Herculite XRV after Butler APF treatment; Phosflur, Gel II, and Prevident had a milder effect. Treatment of Brilliant Dl and Herculite XRV with Omni Gel & Rinse resulted in the formation of a stable precipitation layer rich in barium, phosphorus, tin, oxygen, and fluoride. P-50 was severely affected at the resin-matrix interface after Stop treatment, whereas Omni Gel & Rinse induced fewer surface changes. Heliomolar Ro was the least affected restorative

  7. Discussion on the Standardization of Shielding Materials — Sensitivity Analysis of Material Compositions

    Directory of Open Access Journals (Sweden)

    Ogata Tomohiro


    Full Text Available The overview of standardization activities for shielding materials is described. We propose a basic approach for standardizing material composition used in radiation shielding design for nuclear and accelerator facilities. We have collected concrete composition data from actual concrete samples to organize a representative composition and its variance data. Then the sensitivity analysis of the composition variance has been performed through a simple 1-D dose calculation. Recent findings from the analysis are summarized.

  8. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  9. Composite Material Suitable for Use as Electrode Material in a SOC

    DEFF Research Database (Denmark)


    in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-[delta] or (Ln1-xSrx)1-sFe1-yCioyO3-[delta](s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material...

  10. Impact damage analysis of balsawood sandwich composite materials (United States)

    Abdalslam, Suof Omran

    In this study, a new composite sandwich structure with a balsa wood core (end grain and regular balsa) in conjunction with E-glass/epoxy face sheets was proposed, fabricated, impact tested, and modeled. The behavior of the sandwich structure under low velocity impact and compression after impact was investigated. Low velocity impact tests were carried out by drop-weight impact tower at different energy levels (8J-35J) to evaluate the impact response of the sandwich structure. Visual inspection, destructive and non destructive evaluation methods have been conducted. For the sandwich plate with end grain core, the damage was very clear and can be visually detected. However, the damage in regular balsa core was not clearly visible and destructive evaluation method was used. Compression testing was done after subjecting the specimens to impact testing. Impact test results; load-time, load-deflection history and energy absorption for sandwich composites with two different cores, end grain and regular balsa were compared and they were investigated at three different impact energies. The results show that the sandwich structures with end grain core are able to withstand impact loading better than the regular balsa core because the higher stiffness of end grain core informs of sustaining higher load and higher overall energy. The results obtained from compression after impact testing show that the strengths of sandwich composites with end grain and regular balsa cores were reduced about 40% and 52%, respectively, after impact. These results were presented in terms of stress-strain curves for both damaged and undamaged specimens. Finite element analysis was conducted on the sandwich composite structure using LS-DYNA code to simulate impact test. A 3- D finite element model was developed and appropriate material properties were given to each component. The computational model was developed to predict the response of sandwich composite under dynamic loading. The experimental

  11. The Problem of Subject Access to Visual Materials

    Directory of Open Access Journals (Sweden)

    Heather P. Jespersen


    Full Text Available This article discusses the problem of giving subject access to works of art. We survey both concept-based and content-based access by computers and by indexers/catalogers respectively, as well as issues of interoperability, database and indexer consistency, and cataloging standards. The authors, both of whom are trained art historians, question attempts to mystify fine art subject matter by the creation of clever library science systems that are executed by the naive. Only when trained art historians and knowledgeable catalogers are finally responsible for providing subject access to works of art, will true interoperability and consistency happen.

  12. Understanding gas adsorption in MOF-5/graphene oxide composite materials. (United States)

    Lin, Li-Chiang; Paik, Dooam; Kim, Jihan


    Metal-organic framework (MOF) and graphene oxide (GO) composite materials (MOF/GO) have been regarded as promising for separation applications due to their synergistically enhanced adsorption properties. Molecular-level understandings of these materials, however, remain unknown to date. In this study, molecular simulations were used, for the first time, to model these composite materials. Specifically, the composite MOF-5/GO material was modeled as stacks of sandwich-like layers on top of one another, consistent with experimental observations inferred from XRD and the SEM images. Simulations indicate that CO 2 and CH 4 bind strongly in the MOF/GO interface region, resulting in synergistically enhanced adsorption properties. To exploit the interface region, we found that in simulating linear alkanes, larger guest molecules show substantially improved adsorption properties in composites compared to the parent MOF-5 structure, illustrating that the performance of adsorption in these molecules will benefit the most from the MOF/GO composites.

  13. Interfacial Design of Composite Ablative Materials Project (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) project proposes the development of a computational software package to provide NASA with advanced materials...

  14. Flexible composite material with phase change thermal storage (United States)

    Buckley, Theresa M. (Inventor)


    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  15. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo


    Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting...... of piecewise homogeneous layers with equivalent elastic properties estimated by Mori-Tanaka and self-consistent methods are also analysed under similar boundary conditions. Comparisons of the overall and local fields predicted by the discrete and homogenized models are made using a C/SiC composite system...... with very different Young's moduli of the phases, and relatively steep composition gradients. The conclusions reached from these comparisons suggest that in those parts of the graded microstructure which have a well-defined continuous matrix and discontinuous second phase, the overall properties and local...

  16. Aging of polymer composite materials exposed to the conditions in outer space (United States)

    Startsev, O. V.; Nikishin, E. F.


    A comprehensive investigation is made of glass, carbon, organic fiber-reinforced plastics, and epoxy-based hybrid composite materials employed in Salyut-type spacecraft which remained in space for up to 1501 1501 days. In particular, the properties, aging mechanism, and strain-strength variations in these materials due to exposure to the conditions in outer space were studied. After a series of tests were performed in space the standard strain and strength parameters as well as the mass, density, and thickness changes in the composite materials were estimated. Electron-microscopic and dynamic-mechanical analyses were performed, and the thermal expansion was estimated for a wide range of temperatures. The principal, dominant process occurring due to the continuous presence in outer space was found to be post-curing of the resin materials, which in turn affected the mechanical characteristics of the composite materials. After 456-1501 days in space the room-temperature strength of the composite materials (except for organic plastics) did not decrease, while at high temperatures it even increased. The post-curing and restructuring of some composite materials lowered their dynamic shear moduli in the glassy state of the resin. Due to consolidation of the surface layer of hybrid composite materials irradiated and subjected to thermal cycles, failure during bending varied from transverse fracture to delamination. The negative effect of the post-curing process was expressed as higher internal tension in the hybrid composite materials with different linear thermal expansion coefficients. The magnitude of this effect depended on the amplitude of the thermal cycles. The unprotected surface of the composites bombarded by atomic oxygen, microparticles, and space garbage were subjected to pickling and microerosion, the maximum effect occurring at the initial stage of exposure. Desorption of moisture and low-molecular products during the first 100-200 days of thermal cycling in

  17. Uncertainty modelling and code calibration for composite materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Mishnaevsky, Leon, Jr


    Uncertainties related to the material properties of a composite material can be determined from the micro-, meso- or macro-scales. These three starting points for a stochastic modelling of the material properties are investigated. The uncertainties are divided into physical, model, statistical...

  18. Radiopacity of bulk fill flowable resin composite materials | Yildirim ...

    African Journals Online (AJOL)

    Objectives: The purpose of this study was to evaluate the radiopacity of currently marketed bulk fill flowable dental composite materials (Beautifil Bulk Flowable, SDR Flow, Filtek Bulk Fill Flow, and x‑tra Base Bulk Fill). Materials and Methods: Six specimens of each material with a thickness of 1 mm were prepared, and ...

  19. Structured Piezoelectric Composites : Materials and Applications

    NARCIS (Netherlands)

    Van den Ende, D.A.


    The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits


    Directory of Open Access Journals (Sweden)

    V. Pugachev Oleg


    Full Text Available A number of papers deals with the heat conductivity of composite materials: Zarubin et al used new approaches to the problem of evaluation of the effective heat conductivity coefficients of composite material with ball inclusions. We used variational analysis for a simplified model in a vicinity of inclusion. Contemporary computers allow implementing another approach to solving the problem of the effective heat conductivity: it may be modelled by the Brownian motion of virtual heat particles. The main idea is to obtain the exact formula for the heat conductivity for a homogeneous material and subsequently obtain a statistical evaluation of this formula for a composite material.In the present paper we compare two methods for finding the effective heat conductivity coefficients of composite materials by modeling the process of heat conduction via the Brownian motion of virtual heat particles. We consider a composite with ball inclusions of a material with heat conductivity and heat capacity coefficientsdiffering from those of the matrix material. In a computational experiment, we simulate the process of heatconduction through a flat layer of the composite material, which has been heated on one side at the initial moment. In order to find the confidence interval for the effective heat conductivity coefficient, we find, by means of statistics, either the displacement of the center of heat energy, or the probability of a virtual particle to pass through the layer during a certain time. We compare our results with theoretical assessments suggested by other authors.

  1. Characterization of candidate solar sail materials subjected to electron radiation (United States)

    Edwards, David L.; Hubbs, Whitney S.; Gray, Perry A.; Wertz, George E.; Hoppe, David T.; Nehls, Mary K.; Semmel, Charles L.; Albarado, Tesia L.; Hollerman, William A.


    Solar sailing is a unique form of propulsion in which a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the light-weight film in the space environment and the distance to the Sun. Once considered difficult or impossible, solar sailing has left the realm of science fiction for the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra light-weight, and radiation-resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is concentrating research into the use of ultra light-weight materials for spacecraft propulsion. MSFC's Space Environmental Effects Team is actively characterizing candidate solar sail materials to evaluate thermo-optical and mechanical properties after exposure to space environmental effects. This paper describes irradiation of candidate materials with energetic electrons in vacuum to determine the hardness of several candidate sail materials. [Hardness is defined as the amount of electron fluence (electrons/area) required to cause the sail material to fail.] This paper describes the testing procedure and preliminary results of this investigation. Comparisons to approximate the engineering functional lifetimes of candidate sail materials will be shown.

  2. Effect of particle size in composite materials on radiative properties (United States)

    Lee, Siu-Chun; White, Susan; Grzesik, Jan


    A numerical model for the radiative properties of a composite material composed of ceramic oxide fibers and particles was developed and used to determine the effect of the size parameters of the two components. Results include the computed phase functions for the zirconia and silica composite materials, showing the location and strength of the strong forward-scattering peak. The phase function and the optical properties of the composite are strongly influenced by the particle size parameter through the fiber or particle diameter and the wavelength, the material, and the mixture fraction.

  3. Effect of particle size in composite materials on radiative properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Siuchun; White, S.; Grzesik, J. (Applied Sciences Lab., Inc., City of Industry, CA (United States) NASA, Ames Research Center, Moffett Field, CA (United States))


    A numerical model for the radiative properties of a composite material composed of ceramic oxide fibers and particles was developed and used to determine the effect of the size parameters of the two components. Results include the computed phase functions for the zirconia and silica composite materials, showing the location and strength of the strong forward-scattering peak. The phase function and the optical properties of the composite are strongly influenced by the particle size parameter through the fiber or particle diameter and the wavelength, the material, and the mixture fraction. 16 refs.

  4. W-Cu composites subjected to heavy hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Xu, Xiaoqiang; Zhang, Wencong [Harbin Institute of Technology-Weihai (China). School of Materials Science and Engineering


    The effect of plastic deformation on the properties and microstructure of W-Cu composites produced by multi-pass hot extrusion with steel cup was investigated. W-Cu composites were sintered at 1 100 C and then the sintered billets were firstly extruded at 900 C with different extrusion ratios. The second hot extrusion was performed at 900 C. The plastic deformation of copper phase plays a dominant part during the whole extrusion process. The microstructural evolution of W phase during the whole processing of heavy hot deformation can be divided into different stages. Experimental results indicate that the W agglomeration will be broken into fine particles effectively when the accumulated plastic deformation amounts to 97.6 % after the second extrusion.

  5. Fire response of composite columns subject to sway

    DEFF Research Database (Denmark)

    Virdi, Kuldeep

    the scope of the project which covered control tests under ambient conditions, carried out by the author while at City University London. Other aspects covered in the project included fire tests carried out by CTICM in France, on isolated columns and on two frames designed by Leibniz Universität Hannover...... conditions is adequately covered in the relevant standard, Eurocode 4, simplified design of unbraced composite columns for the fire limit state has not been included. Recognising this, a collaborative research project was undertaken with funding from the Research Fund for Coal and Steel. The paper describes...... as well as extensive numerical studies aimed at developing a design method for sway composite columns exposed to fire....

  6. Delamination durability of composite materials for rotorcraft (United States)

    Obrien, T. Kevin


    Delamination is the most commonly observed failure mode in composite rotorcraft dynamic components. Although delamination may not cause immediate failure of the composite part, it often precipitates component repair or replacement, which inhibits fleet readiness, and results in increased life cycle costs. A fracture mechanics approach for analyzing, characterizing, and designing against delamination will be outlined. Examples of delamination problems will be illustrated where the strain energy release rate associated with delamination growth was found to be a useful generic parameter, independent of thickness, layup, and delamination source, for characterizing delamination failure. Several analysis techniques for calculating strain energy release rates for delamination from a variety of sources will be outlined. Current efforts to develop ASTM standard test methods for measuring interlaminar fracture toughness and developing delamination failure criteria will be reviewed. A technique for quantifying delamination durability due to cyclic loading will be presented. The use of this technique for predicting fatigue life of composite laminates and developing a fatigue design philosophy for composite structural components will be reviewed.

  7. Optical characteristics of contemporary dental composite resin materials. (United States)

    Mikhail, Sarah S; Schricker, Scott R; Azer, Shereen S; Brantley, William A; Johnston, William M


    Optical and physical properties of dental restorative composite materials are affected by composition. Basic optical absorption and scattering properties have been derived through the use of a corrected reflectance model, but practical and important optical properties are not easily derived from these basic spectral characteristics. The purposes of this study are to derive and compare colour and translucency characteristics of two cured contemporary nanohybrid composites being marketed as universal composites, and to evaluate colour difference between each composite material and published shade guide data. Previously derived optical scattering and absorption coefficients for five diverse shades of these composite materials were used to calculate the CIE colour parameters of L*, a* and b* at infinite thickness under various illuminants and to derive ideal translucency parameters at various thicknesses using two colour difference formulae. Differences were found in the inherent colour parameters and in the translucency parameters between the brands for some of the shades studied. The colour differences of the inherent colours from published shade guide data were always higher than the perceptibility limit, and often higher than the acceptability limit. Inherent colours and ideal translucency parameters may be calculated from optical coefficients for a variety of illuminants. Different inherent colour parameters of composite materials marked for the same shade indicate the influence of compositional differences between these materials. Since patients are seen under various illuminations, the ability to assess appearance matching characteristics under diverse illuminants will help assure an optimum match for the patient. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Microbiological destruction of composite polymeric materials in soils (United States)

    Legonkova, O. A.; Selitskaya, O. V.


    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  9. Mathematical model predicts the elastic behavior of composite materials

    Directory of Open Access Journals (Sweden)

    Zoroastro de Miranda Boari


    Full Text Available Several studies have found that the non-uniform distribution of reinforcing elements in a composite material can markedly influence its characteristics of elastic and plastic deformation and that a composite's overall response is influenced by the physical and geometrical properties of its reinforcing phases. The finite element method, Eshelby's method and dislocation mechanisms are usually employed in formulating a composite's constitutive response. This paper discusses a composite material containing SiC particles in an aluminum matrix. The purpose of this study was to find the correlation between a composite material's particle distribution and its resistance, and to come up with a mathematical model to predict the material's elastic behavior. The proposed formulation was applied to establish the thermal stress field in the aluminum-SiC composite resulting from its fabrication process, whereby the mixture is prepared at 600 °C and the composite material is used at room temperature. The analytical results, which are presented as stress probabilities, were obtained from the mathematical model proposed herein. These results were compared with the numerical ones obtained by the FEM method. A comparison of the results of the two methods, analytical and numerical, reveals very similar average thermal stress values. It is also shown that Maxwell-Boltzmann's distribution law can be applied to identify the correlation between the material's particle distribution and its resistance, using Eshelby's thermal stresses.

  10. Material parameter identification on metal matrix composites

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ


    Full Text Available these strain gauges indicate that some compression instability, eccentric loading or other resulting bending condition is present. In this work, a finite element inverse analysis is employed to determine not only material parameters but also the boundary...

  11. Composite materials for polymer electrolyte membrane microbial fuel cells. (United States)

    Antolini, Ermete


    Recently, the feasibility of using composite metal-carbon, metal-polymer, polymer-carbon, polymer-polymer and carbon-carbon materials in microbial fuel cells (MFCs) has been investigated. These materials have been tested as MFC anode catalyst (microorganism) supports, cathode catalysts and membranes. These hybrid materials, possessing the properties of each component, or even with a synergistic effect, would present improved characteristics with respect to the bare components. In this paper we present an overview of the use of these composite materials in microbial fuel cells. The characteristics of the composite materials as well as their effect on MFC performance were compared with those of the individual component and/or the conventionally used materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mechanical behaviour of composite materials made by resin film infusion

    Directory of Open Access Journals (Sweden)

    Casavola C.


    Full Text Available Innovative composite materials are frequently used in designing aerospace, naval and automotive components. In the typical structure of composites, multiple layers are stacked together with a particular sequence in order to give specific mechanical properties. Layers are organized with different angles, different sequences and different technological process to obtain a new and innovative material. From the standpoint of engineering designer it is useful to consider the single layer of composite as macroscopically homogeneous material. However, composites are non homogeneous bodies. Moreover, layers are not often perfectly bonded together and delamination often occurs. Other violations of lamination theory hypotheses, such as plane stress and thin material, are not unusual and in many cases the transverse shear flexibility and the thickness-normal stiffness should be considered. Therefore the real behaviour of composite materials is quite different from the predictions coming from the traditional lamination theory. Due to the increasing structural performance required to innovative composites, the knowledge of the mechanical properties for different loading cases is a fundamental source of concern. Experimental characterization of materials and structures in different environmental conditions is extremely important to understand the mechanical behaviour of these new materials. The purpose of the present work is to characterize a composite material developed for aerospace applications and produced by means of the resin film infusion process (RFI. Different tests have been carried out: tensile, open-hole and filled-hole tensile, compressive, openhole and filled-hole compressive. The experimental campaign has the aim to define mechanical characteristics of this RFI composite material in different conditions: environmental temperature, Hot/Wet and Cold.

  13. Multi-Material Design Optimization of Composite Structures

    DEFF Research Database (Denmark)

    Hvejsel, Christian Frier

    This PhD thesis entitled “Multi-Material Design Optimization of Composite Structures” addresses the design problem of choosing materials in an optimal manner under a resource constraint so as to maximize the integral stiffness of a structure under static loading conditions. In particular stiffness...... design of laminated composite structures is studied including the problem of orienting orthotropic material optimally. The approach taken in this work is to consider this multi-material design problem as a generalized topology optimization problem including multiple candidate materials with known...... properties. The modeling encompasses discrete orientationing of orthotropic materials, selection between different distinct materials as well as removal of material representing holes in the structure within a unified parametrization. The direct generalization of two-phase topology optimization to any number...

  14. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications

    Directory of Open Access Journals (Sweden)

    Haribabu Palneedi


    Full Text Available Multiferroic magnetoelectric (ME composites are attractive materials for various electrically and magnetically cross-coupled devices. Many studies have been conducted on fundamental understanding, fabrication processes, and applications of ME composite material systems in the last four decades which has brought the technology closer to realization in practical devices. In this article, we present a review of ME composite materials and some notable potential applications based upon their properties. A brief summary is presented on the parameters that influence the performance of ME composites, their coupling structures, fabrications processes, characterization techniques, and perspectives on direct (magnetic to electric and converse (electric to magnetic ME devices. Overall, the research on ME composite systems has brought us closer to their deployment.

  15. Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials (United States)

    Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.


    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

  16. Multiwalled Carbon Nanotubes Reinforced Polypropylene Composite Material

    Directory of Open Access Journals (Sweden)

    Juan Li


    Full Text Available Polypropylene (PP composites reinforced with multiwalled carbon nanotubes (MWNTs were prepared by using twin screw extruder. The experimental results showed that with the increasing amount of MWNTs the elongation at break decreased whereas the tensile strength, bending strength, and impact strength increased. By using scanning electron microscope (SEM, we find that the hydroxyl-modified carbon nanotube has better dispersion performance in PP and better mechanical properties.

  17. Vibration Damping Response of Composite Materials (United States)


    unidirectional composite panels were made having thicknesses as specified in the ASTM D3039 -76 test procedure. After fabrication, these panels were...established procedures which are typically utilized. Specifically, the ASTM test methodologies were utilized. To determine El, E2, V󈧐, and, the ASTM D2584-68 Ignition Loss of Cured Reinfoiced Resins test procedure was used. In all cases, the fiber volume fraction was



    E. A. Pitukhin; A. S. Ustinov


    Subject of Research. Research results of the fire-resistance for “water glass - graphite microparticles” composite material (CM) are given. The method for fire-resistance test of the micro composition is suggested in order to determine the limit state of the experimental samples under hightemperature action. Method. Test-benchequipment being used for research includes metering devices of temperature and time, as well as laboratory electric furnace PL20 with a maximum temperature in the chambe...

  19. Functional correlates of detailed body composition in healthy elderly subjects. (United States)

    Geisler, Corinna; Schweitzer, Lisa; Müller, Manfred James


    Methods of body composition analysis are now widely used to characterize health status, i.e., nutritional status, metabolic rates, and cardiometabolic risk factors. However, the functional correlates of individual body components have not been systematically analyzed. In this study, we have used a two-compartment model, which was assessed by air displacement plethysmography. Detailed body composition was measured by whole body magnetic resonance imaging in a healthy population of 40 Caucasians, aged 65-81 yr (20 men; body mass index range: 18.6-37.2 kg/m 2 ). Physical, metabolic, as well as endocrine functions included pulmonary function, handgrip strength, gait speed, sit-to-stand test, physical activity, blood pressure, body temperature, resting energy expenditure (REE), liver and kidney functions (glomerular filtration rate), insulin sensitivity [homeostasis model assessment (HOMA)], plasma lipids, plasma leptin, testosterone, dehydroepiandrosterone, insulin-like growth factor I levels, thyroid status, vitamins, and inflammation. Individual body compartments were intercorrelated, e.g., skeletal muscle mass (SM) correlated with visceral adipose tissue ( r = 0.53) and kidneys ( r = 0.62). For the functional correlates, SM ( r = 0.58) and liver volume ( r = 0.63) were associated with REE, SM correlated with handgrip strength ( r = 0.57), and kidneys with glomerular filtration rate ( r = 0.57). While visceral adipose tissue correlated with HOMA ( r = 0.59), subcutaneous adipose tissue was related to plasma leptin levels ( r = 0.84). The subcutaneous adipose tissue-to-leptin relationship was moderated by inflammation increasing the explained variance of leptin levels by 4.0%. In linear regression analysis, detailed body composition explained variances in REE (75.0%), HOMA (41.0%), and leptin (78.0%) compared with a body mass index-based model (REE 16.0%, HOMA 31.0%, leptin 45.0%). In addition, detailed body composition explained 39

  20. Electrode material comprising graphene-composite materials in a graphite network (United States)

    Kung, Harold H.; Lee, Jung K.


    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  1. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures (United States)

    Ge, Zhiwei; Ye, Feng; Ding, Yulong


    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  2. Nanocomposite Interphases for Improved Transparent Polymer Composite Materials

    National Research Council Canada - National Science Library

    O'Brien, Daniel J; Robinette, Jason; Heflin, James R; Ridley, Jason


    ... on the engineer's ability to specify the acoustic impedance of each layer. Composite materials offer the ability to tailor mechanical properties but, due to scattering at multiple interfaces, are not typically transparent unless the refractive indices (RI...

  3. Space Radiation Effects in Inflatable and Composite Habitat Materials (United States)

    Waller, Jess; Rojdev, Kristina


    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  4. Steel - Concrete Materials Performance in Composite Joints Configuration (United States)

    Pop, M.; Corbu, O.; Pernes, P.


    In many buildings there is a need to combine reinforced concrete, steel or composite members. The paper aims to an experimental program focused on the behaviour of the materials steel and concrete what makes up for a composite joint configuration. Material tests were performed prior each type of testing. The main purpose is to investigate the main parameters that affect the response and the contribution of the two materials. The tests were performed at the TUCN - Laboratory of Civil Engineering Faculty, Romania. The results of the tests on the materials were used for preliminary experimental analysis and presented in the paper.

  5. Low-Cost Composite Materials and Structures for Aircraft Applications (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.


    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  6. Choosing the optimal Pareto composition of the charge material for the manufacture of composite blanks (United States)

    Zalazinsky, A. G.; Kryuchkov, D. I.; Nesterenko, A. V.; Titov, V. G.


    The results of an experimental study of the mechanical properties of pressed and sintered briquettes consisting of powders obtained from a high-strength VT-22 titanium alloy by plasma spraying with additives of PTM-1 titanium powder obtained by the hydride-calcium method and powder of PV-N70Yu30 nickel-aluminum alloy are presented. The task is set for the choice of an optimal charge material composition of a composite material providing the required mechanical characteristics and cost of semi-finished products and items. Pareto optimal values for the composition of the composite material charge have been obtained.

  7. Composite materials for x-ray protection

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, M.J.; Mawdsley, G.E.; Lilley, M.; Servant, R.; Reh, G. (Univ. of Toronto, Ontario, (Canada))


    We have developed and tested a radiation protection material that provides similar attenuation for diagnostic x-ray spectra to that of conventional Pb apron materials with approximately 30% reduced weight. By combining a number of elements with different K absorption energies, such as Ba, W, and Pb, energy attenuation for given spectra can be optimized with respect to total cross-sectional mass loading. Alternatively, garments with much higher protective factors at equivalent weight to conventional garments could be produced. The reduction in the amount of Pb used also reduces problems associated with the toxicity of the material during manufacture and disposal. Back strain can be reduced for personnel performing special radiological procedures that require wearing protective garments for long periods of time.

  8. Chemical composition of the clays as indicator raw material sources


    Khramchenkova Rezida Kh.


    The paper presents the results of study on the chemical composition of unglazed pottery from the excavations of the Bulgar fortified settlement site and the clay, selected from the modern deposits of ceramic raw materials located near the medieval settlement sites. Significant differences in macro- and microelement composition of different groups of ceramics have been revealed. The difference in the macroelemental composition is largely determined by the ceramic fabric recipe. Thus, the high ...

  9. Development of graphite-polymer composites as electrode materials

    Directory of Open Access Journals (Sweden)

    Carolina Maria Fioramonti Calixto


    Full Text Available Graphite powder was mixed to polyurethane, silicon rubber and Araldite® (epoxy in order to prepare composite materials to be used in the preparation of electrodes. Results showed that voltammetric response could be obtained when at least 50% of graphite (w.w-1 is present in the material. SEM and thermogravimetry were also used in the characterization of the composites.

  10. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...... for linear damage accumulation. Test data analyzed are taken from the Optimat database [1] which is public available. The composite material tested within the Optimat project is normally used for wind turbine blades....

  11. Injectable degradable composite materials for bone repair and drug delivery


    Zhao, X.


    The aim of this project was to develop injectable materials to repair damaged bone and, to simultaneously release antibacterial drugs and genes in a controllable manner. Fluid poly (propylene glycol -co- lactide) dimethacrylate (PGLA-DMA) was first synthesised and then filled with varying levels of β- tricalcium phosphate (β-TCP) and monocalcium phosphate monohydrate (MCPM) to fabricate composite materials. For all formulations (including polymer and composites), full methac...

  12. Support Assembly for Composite Laminate Materials During Roll Press Processing (United States)

    Catella, Luke A.


    A composite laminate material is supported during the roll press processing thereof by an assembly having: first and second perforated films disposed adjacent to first and second opposing surfaces of a mixture of uncured resin and fibers defining the composite laminate material, a gas permeable encasement surrounding the mixture and the first and second films, a gas impervious envelope sealed about the gas permeable encasement, and first and second rigid plates clamped about the gas impervious envelope.

  13. Resistance fail strain gage technology as applied to composite materials (United States)

    Tuttle, M. E.; Brinson, H. F.


    Existing strain gage technologies as applied to orthotropic composite materials are reviewed. The bonding procedures, transverse sensitivity effects, errors due to gage misalignment, and temperature compensation methods are addressed. Numerical examples are included where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain measurement errors.

  14. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard


    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  15. Composite perovskite materials, methods of making, and methods of use

    KAUST Repository

    Yu, Weili


    Embodiments of the present disclosure provide materials, devices and systems including a composite of halide perovskite single crystals and nanotubes, and the like. Embodiments of the composite can be used in devices such as detectors, solar panels, transistors, sensors, and the like.

  16. Mechanical Characterization of Cotton Fiber/Polyester Composite Material

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Rajper


    Full Text Available Development of composite from natural fiber for lower structural application is growing for long-term sustainable perspective. Cotton fiber composite material has the added advantages of high specific strength, corrosion resistance, low cost and low weight compared to glass fiber on the expense of internal components of IC engines. The primary aim of the research study is to examine the effect of the cotton fiber on mechanical properties of lower structural applications when added with the polyester resin. In this paper composite material sample has been prepared by hand Lay-Up process. A mould is locally developed in the laboratory for test sample preparation. Initially samples of polyester resin with appropriate ratio of the hardener were developed and tested. At the second stage yarns of cotton fiber were mixed with the polyester resin and sample specimens were developed and tested. Relative effect of the cotton as reinforcing agent was examined and observed that developed composite specimen possess significant improvement in mechanical properties such as tensile strength was improved as 19.78 % and modulus of elasticity was increased up to 24.81%. Through this research it was also observed that developed composite material was of ductile nature and its density decreases up to 2.6%. Results from this study were compared with relevant available advanced composite materials and found improved mechanical properties of developed composite material

  17. Accounting for Material Reality in the Analytic Subject

    Directory of Open Access Journals (Sweden)

    Robin McCoy Brooks


    Full Text Available Scientific advances made in the 21st century contend that the forces of nature and nurture work together through an ongoing series of complex correspondences between brain and mental activity in our daily activities with others. Jung’s cosmological model of the psyche minimizes the fundamental corporeal condition of human nature and as such is critiqued and amended, influenced by the transcendental materialist theories of subjectivity inspired by Žižek, Johnston and Laplanche.

  18. Sterilization Decomposition Evaluation of Composite Materials based on Carbon Fibers for use in Medicine

    Czech Academy of Sciences Publication Activity Database

    Sedláček, R.; Suchý, Tomáš; Balík, Karel; Sochor, M.; Sucharda, Zbyněk


    Roč. 14, 109-111 (2011), s. 9-11 ISSN 1429-7248 R&D Projects: GA ČR(CZ) GAP108/10/1457 Institutional research plan: CEZ:AV0Z30460519 Keywords : composite material * sterilization decomposition * carbon fibers Subject RIV: BO - Biophysics

  19. Statistical analysis and interpolation of compositional data in materials science. (United States)

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M


    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  20. Friction Stir Processing of Particle Reinforced Composite Materials (United States)

    Gan, Yong X.; Solomon, Daniel; Reinbolt, Michael


    The objective of this article is to provide a review of friction stir processing (FSP) technology and its application for microstructure modification of particle reinforced composite materials. The main focus of FSP was on aluminum based alloys and composites. Recently, many researchers have investigated this technology for treating other alloys and materials including stainless steels, magnesium, titanium, and copper. It is shown that FSP technology is very effective in microstructure modification of reinforced metal matrix composite materials. FSP has also been used in the processing and structure modification of polymeric composite materials. Compared with other manufacturing processes, friction stir processing has the advantage of reducing distortion and defects in materials. The layout of this paper is as follows. The friction stir processing technology will be presented first. Then, the application of this technology in manufacturing and structure modification of particle reinforced composite materials will be introduced. Future application of friction stir processing in energy field, for example, for vanadium alloy and composites will be discussed. Finally, the challenges for improving friction stir processing technology will be mentioned.

  1. In situ observation and measurement of composites subjected to extremely high temperature (United States)

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue


    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  2. Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads (United States)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid


    Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.

  3. Shear measurements of viscoelastic damping materials embedded in composite plates (United States)

    Biggerstaff, Janet M.; Kosmatka, John B.


    Embedding viscoelastic damping materials into graphite/epoxy composites can greatly increase the damping of composite structures. Cocuring the damping material with the composite, however, has been shown to increase the modulus and lower the damping in many viscoelastic materials because epoxy penetrates many damping materials (especially acrylics). In this paper, the changes in shear modulus were measured using double lap shear tests. Also presented are shear moduli comparisons of samples cured with three different barrier film layers, KaptonR, TedlarR,and polyester, which are used to prevent the epoxy penetration. Lastly, samples with an embedded loosely woven scrim cloth placed between two damping material layers are tested to measure how the scrim affects the shear modulus.

  4. Method of tissue repair using a composite material (United States)

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M


    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  5. Method of tissue repair using a composite material

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O' Neill, Hugh M.


    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  6. Bearing material. [composite material with low friction surface for rolling or sliding contact (United States)

    Sliney, H. E. (Inventor)


    A composite material is described which will provide low friction surfaces for materials in rolling or sliding contact and is self-lubricating and oxidation resistant up to and in excess of about 930 C. The composite is comprised of a metal component which lends strength and elasticity to the structure, a fluoride salt component which provides lubrication and, lastly, a glass component which not only provides oxidation protection to the metal but may also enhance the lubrication qualities of the composite.

  7. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries (United States)

    Woodworth James; Baldwin, Richard; Bennett, William


    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  8. Body composition in normal subjects: relation to lipid and glucose variables

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Almdal, Thomas Peter; Gotfredsen, A


    OBJECTIVE: To describe sex- and age-dependent values of total and regional body composition as determined by dual-energy X-ray absorptiometry (DXA) in normal subjects, and furthermore to relate body composition measurements to blood lipids, glucose and insulin concentrations. DESIGN: A cross...... subjects. In 87 of the subjects fasting blood glucose, S-insulin and lipid profile were measured. RESULTS: The study population was for each sex divided into five decades for which results on body composition and blood lipids are presented. Body weight increased 2 kg per age decade, representing...

  9. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    by the material type of the sample and the physico-chemical parameter to be analyzed. For example, studies examining mechanical sample preparation methods suggest that plastic fractions are especially prone to de-mixing effects and that differing mechanical properties within a sample (e.g. plastic and metal) can...... lead to biased results. In the experimental part of this PhD project the milling of plastics and metals was especially challenging and alternative methods for preparation and analysis should be investigated. Furthermore, chemical sample preparation by means of acid digestion was found to severely...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions...

  10. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark


    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  11. Computed Tomography analysis of damage in composites subjected to impact loading


    E. Guglielmino; G. Epasto; Crupi, V


    The composites, used in the transportation engineering, include different classes with a wide range of materials and properties within each type. The following different typologies of composites have been investigated: laminated composites, PVC foam sandwiches, aluminium foam and honeycomb sandwiches.Aim of this paper was the analysis of low-velocity impact response of such composites and the investigation of their collapse modes. Low velocity impact tests were carried out by a drop test mach...

  12. Composition and process for making an insulating refractory material (United States)

    Pearson, A.; Swansiger, T.G.


    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  13. Summary of: dental composite materials and renal function in children. (United States)

    McGinley, Emma Louise


    To examine whether greater exposure to resin-based composite materials, which may intra-orally release bisphenol A (BPA), is associated with worse renal function outcomes in children. Prospective multi-centre study. Community health dental clinics in Boston and Maine from 1997-2005. Five hundred and thirty-four New England Children's Amalgam Trial participants aged six to ten years were randomised to treatment with amalgam or resin-based composite restorations over five years of follow-up. Restorations were placed according to treatment arm, and sealants placed per standard of care. Cumulative composite exposure was calculated using surface-years (each treated surface weighted by number years present). Urinary excretion of albumin, gamma-glutamyl transpeptidase (gamma-GT), and N-acetyl-β-D-glucosaminidase (NAG) were available for 417 children. Analysis of covariance showed no association between exposure to dental composites, polyacid-modified compomer, or flowable composite dental sealants and preventative resin restorations with levels of renal function. There was no association between composite materials and thresholds indicating renal damage in logistic regression models. This study found no harmful associations between dental composite materials and renal function in children. Therefore, concerns about renal function need not be a consideration in the choice of dental restoration material or placement of preventative dental sealants.

  14. Analysis of Textile Composite Structures Subjected to High Temperature Oxidizing Environment (United States)


    idealized material shown in the figure is exposed to oxygen and the oxidation propagates to the right. Zone III is the region of the material that is un... propagation Figure 3.5: Oxidation zones and corresponding values of the oxidation state variable 28 Assuming that the weight loss is proportional to...Oxidation of C/SiC Composites, Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics Materials and Structures, Cocoa Beach

  15. Measurement of complex permittivity of composite materials using waveguide method

    NARCIS (Netherlands)

    Tereshchenko, O.V.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes


    Complex dielectric permittivity of 4 different composite materials has been measured using the transmissionline method. A waveguide fixture in L, S, C and X band was used for the measurements. Measurement accuracy is influenced by air gaps between test fixtures and the materials tested. One of the

  16. Effective media properties of hyperuniform disordered composite materials. (United States)

    Wu, Bi-Yi; Sheng, Xin-Qing; Hao, Yang


    The design challenge of new functional composite materials consisting of multiphase materials has attracted an increasing interest in recent years. In particular, understanding the role of distributions of ordered and disordered particles in a host media is scientifically and technologically important for designing novel materials and devices with superior spectral and angular properties. In this work, the effective medium property of disordered composite materials consisting of hyperuniformly distributed hard particles at different filling fractions is investigated. To accurately extract effective permittivity of a disordered composite material, a full-wave finite element method and the transmission line theory are used. Numerical results show that the theory of hyperuniformity can be conveniently used to design disordered composite materials with good accuracy compared with those materials with randomly dispersed particles. Furthermore, we demonstrate that a Luneburg lens based on the proposed hyperuniform media has superior radiation properties in comparison with previously reported metamaterial designs and it may open up a new avenue in electromagnetic materials-by-design.

  17. The behavior of delaminations in composite materials - experimental results (United States)

    Chermoshentseva, A. S.; Pokrovskiy, A. M.; Bokhoeva, L. A.


    Delamination is one of the most common failure modes of composite materials. It may occur as a consequence of imperfections in the production process or the effects of external factors during the operational life of the composite laminates, such as the impact by foreign objects. This paper presents the results of mechanical tests and the optimum degrees of filling the composite materials (CM) with hydrophobic powder (Tarkosil T-20) depending on the latter mass concentration. The results present test samples of the CM with the underlying interlayer defects. The samples were fabricated of twenty-ply pre-preg (fiberglass or carbon fiber). The industrial grade glass is T-25 (VM) specification 6-11-380-76. The composite materials have nanosized additives in structure. The volume concentration of nanopowders is varying from 0.1% to 0.5%. This kind of research has been done for the first time.

  18. Investigation of woven composites as potential cryogenic tank materials (United States)

    Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.


    In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.

  19. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)


    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  20. Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach (United States)

    Kohlman, Lee W.; Roberts, Gary D.


    Textile-based composites could significantly benefit from local toughening using nanofiber coatings. Nanofibers, thermoplastic or otherwise, can be applied to the surface of the fiber tow bundle, achieving toughening of the fiber tow contact surfaces, resulting in tougher and more damage-resistant/tolerant composite structures. The same technique could also be applied to other technologies such as tape laying, fiber placement, or filament winding operations. Other modifications to the composite properties such as thermal and electrical conductivity could be made through selection of appropriate nanofiber material. Control of the needle electric potential, precursor solution, ambient temperature, ambient humidity, airflow, etc., are used to vary the diameter and nanofiber coating morphology as needed. This method produces a product with a toughening agent applied to the fiber tow or other continuous composite precursor material where it is needed (at interfaces and boundaries) without interfering with other composite processing characteristics.

  1. Active Structural Fibers for Multifunctional Composite Materials (United States)


    a “smart board” for vibration suppression. More recently Sato et al. [5] applied a hydrothermal method to grow PZT coating onto nickel titanium...material with controlled thickness. The process dispersed 3 wt% of BaTiO3 nano-powder (BaTiO3, 99.95%, average particle size: 100nm, cubic phase...following reaction 2H2O + 2e – <==> H2 + 2OH – . This hydrolysis reaction results in the accumulation of colloidal particles near the electrode

  2. Dynamic Deformation Properties of Energetic Composite Materials (United States)


    CAVENDISH LABORATORY Material Density/kg m-3 Wave Speed/m s-1 Impedance/kgm-2 s-1 Magnesium 1798 4920 8.85x106 AZM Dural 2711 5040 13.7 x 106 Ti6Al4V (red lines) with that obtained using the dropweight (black lines) for Ti6Al4V specimens 4mm diameter, 8mm long. If it is desired in future to... Ti6Al4V and tungsten carbide. The low impedance titanium alloy rods are intended for testing polymer-bonded explosives and their binders. The tungsten

  3. Polymeric compositions incorporating polyethylene glycol as a phase change material (United States)

    Salyer, Ival O.; Griffen, Charles W.


    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  4. Materials selection for carbon nanotube composites in power transmission

    Directory of Open Access Journals (Sweden)

    Nikolov K.


    Full Text Available Nowadays designers and producers implement non-metallic gears in power transmissions because of their better mechanical properties, like high elastic modulus, tensile strength and high wear resistance. In order to examine these properties we need to get familiarized with the most common materials used to make composites, like POM, PEEK, PA 6, PA 6/6, UHMWPE and one of newest materials in this area – carbon nanotubes (CNTs. This paper describes how to select the best materials in order to create the composite we need for the necessary applications. The article also gives information about the polymers and a comparison between them and CNTs.

  5. DOE Automotive Composite Materials Research: Present and Future Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.D.


    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  6. Experimental and Numerical Investigation of Fiber Reinforced Laminated Composites Subject to Low-Velocity Impact (United States)

    Thorsson, Solver I.

    Foreign object impact on composite materials continues to be an active field due to its importance in the design of load bearing composite aerostructures. The problem has been studied by many through the decades. Extensive experimental studies have been performed to characterize the impact damage and failure mechanisms. Leaders in aerospace industry are pushing for reliable, robust and efficient computational methods for predicting impact response of composite structures. Experimental and numerical investigations on the impact response of fiber reinforced polymer matrix composite (FRPC) laminates are presented. A detailed face-on and edge-on impact experimental study is presented. A novel method for conducting coupon-level edge-on impact experiments is introduced. The research is focused on impact energy levels that are in the vicinity of the barely visible impact damage (BVID) limit of the material system. A detailed post-impact damage study is presented where non-destructive inspection (NDI) methods such as ultrasound scanning and computed tomography (CT) are used. Detailed fractography studies are presented for further investigation of the through-the-thickness damage due to the impact event. Following the impact study, specimens are subjected to compression after impact (CAI) to establish the effect of BVID on the compressive strength after impact (CSAI). A modified combined loading compression (CLC) test method is proposed for compression testing following an edge-on impact. Experimental work on the rate sensitivity of the mode I and mode II inter-laminar fracture toughness is also investigated. An improved wedge-insert fracture (WIF) method for conducting mode I inter-laminar fracture at elevated loading rates is introduced. Based on the experimental results, a computational modeling approach for capturing face-on impact and CAI is developed. The model is then extended to edge-on impact and CAI. Enhanced Schapery Theory (EST) is utilized for modeling the full

  7. Multi-length Scale Material Model Development for Armorgrade Composites (United States)


    Enriched Continuum-Level Material Model for Kevlar ®- Fiber -Reinforced Polymer-Matrix Composites, Journal of Materials Engineering and Performance, (03... Fiber -Level Modeling of Dynamic Strength of Kevlar ® KM2 Ballistic Fabric, Journal of Materials Engineering and Performance, (07 2011): 0. doi: 10.1007...high specific-strength, high specific-stiffness p-phenylene terephthalamide (PPTA) polymeric fiber /filament (e.g. Kevlar ®, Twaron®, etc.) based

  8. Tribology of ceramics and composites materials science perspective

    CERN Document Server

    Basu, Bikramjit


    This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

  9. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    -reinforced polymers, were considered, and it was first shown that the loading history controls equilibrium process. Then the High-speed servo-hydraulic test machine was analysed in terms its ability to create a state of constant strain rate in the specimen. The invertible inertial forces in the load train prevented...... a linear elastic specimen to reach a state of constant strain rate before fracture. This was in contrast to ductile materials, which are widely tested with for the High-speed servohydraulic test machine. The development of the analysis and the interpretation of the results, were based on the experience...... from designing and constructing a high-speed servo-hydraulic test machine and by performing a comprehensive test series. The difficulties encountered in the test work could be addressed with the developed analysis. The conclusion was that the High-speed servo-hydraulic test machine is less suited...

  10. Highly explosive nanosilicon-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Clement, D.; Diener, J.; Gross, E.; Kuenzner, N.; Kovalev, D. [Technical University of Munich, Physics Department, James-Franck-Str., 85747 Garching (Germany); Timoshenko, V.Yu. [Moscow State M.V. Lomonosov University, Physics Department, 119899 Moscow (Russian Federation)


    We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. A grammatical approach to customization of shape and composite materials (United States)

    Nandi, Soumitra

    With the increasing use of composite materials in Mechanical and Aerospace industries, an approach is required to facilitate designing of components using composite materials, while ensuring customization of the shape such a way that multiple design goals for the components are satisfied. Existing design methods may be used in some cases, where the component shape and loadings are simple. While a significant amount of research has been conducted to study the properties of composite materials, little attention has been paid to find out a design approach such that (1) the user requirements in the very general form may be used directly and as the input for the design, (2) the best possible composite material are selected to meet multiple desired functions, and (3) shape variation is analyzed in order to enable mass customization of the design. Thus an approach is required that will be able to handle both the shape and the material in order to design a load bearing component using composite materials. In this research the focus is to develop a design approach that will consider the user requirements for a composite component in its very general form and generate component shape and material details in a systematic order so that the designed component can withstand a given loading condition. Consequently, the Primary Research Question is: How to simultaneously explore shape and composite materials during the design of a product to meet multiple property and functional goals? The wide range of properties, covered by various fiber-matrix combinations, along with their directional property characteristics, maximizes the flexibility of the designers, while designing composite material products. Meeting multiple property goals, however, complicates the design process as both the composite material selection and the component shape formation becomes highly intricate with the loading conditions and a number of matrix calculations needs to be performed to determine theoretical

  12. Physical and mechanical properties of composite materials of different compositions based on waste products


    A.E. Burdonov; V.V. Barakhtenko; E.V. Zelinskaya; E.O. Suturina; A.V. Burdonova; A.V. Golovnina


    This paper presents a study on the effect of mineral filler on the polymer composite material based on waste products of heat and power engineering - fly ash. This type of waste products has never been used for the production of polymer-mineral composites. Depending on the type of ash, its chemical composition and its quantity in the material, we can adjust the properties of the resulting composites. The use of fly ash as a filler will not only make a product less expensive, but it also will ...

  13. Insulin resistance, exercise capacity and body composition in subjects with two hypertensive parents

    DEFF Research Database (Denmark)

    Andersen, U B; Dige-Petersen, H; Ibsen, H


    OBJECTIVE: To study insulin resistance in subjects with strong genetic predisposition to essential hypertension, compared with non-disposed subjects. SUBJECTS: Thirty normotensive subjects aged 18-35 years whose parents both had essential hypertension, and 30 age- and sex matched subjects whose...... parents were both normotensive, were studied. Subjects or parents with diabetes and morbid obesity were excluded. METHODS: The study comprised (1) a frequent sampling oral glucose tolerance test; (2) an isoglycemic hyperinsulinemic clamp study; (3) an analysis of body composition by dual-energy X......-ray absorptiometry; (4) an exercise test with gas exchange analysis; and (5) investigation of composition of usual diet by diet registration for 5 days. RESULTS: The 24-h diastolic blood pressure was higher in subjects predisposed to hypertension compared with the controls: 78.1 versus 74.0 mmHg (confidence interval...

  14. Microflora and chemical composition of dental plaque from subjects with hereditary fructose intolerance.


    Hoover, C I; Newbrun, E; Mettraux, G; Graf, H


    We compared the microbiological and chemical composition of dental plaque from subjects with hereditary fructose intolerance who restrict their dietary sugar intake with that of control subjects who do not. The two groups showed no significant differences in chemical composition of plaque: the mean protein, carbohydrate, calcium, magnesium, and phosphate contents were similar. Dental plaque from both groups contained similar numbers of total colony-forming units per microgram of plaque protei...

  15. Longevity of dental amalgam in comparison to composite materials

    Directory of Open Access Journals (Sweden)

    Windisch, Friederike


    Full Text Available Health political background: Caries is one of the most prevalent diseases worldwide. For (direct restaurations of carious lesions, tooth-coloured composite materials are increasingly used. The compulsory health insurance pays for composite fillings in front teeth; in posterior teeth, patients have to bear the extra cost. Scientific background: Amalgam is an alloy of mercury and other metals and has been used in dentistry for more than one hundred and fifty years. Composites consist of a resin matrix and chemically bonded fillers. They have been used for about fifty years in front teeth. Amalgam has a long longevity; the further development of composites has also shown improvements regarding their longevity. Research questions: This HTA-report aims to evaluate the longevity (failure rate, median survival time (MST, median age of direct amalgam fillings in comparison to direct composite fillings in permanent teeth from a medical and economical perspective and discusses the ethical, legal and social aspects of using these filling materials. Methods: The systematic literature search yielded a total of 1,149 abstracts. After a two-step selection process based on defined criteria 25 publications remained to be assessed. Results: The medical studies report a longer longevity for amalgam fillings than for composite fillings. However, the results of these studies show a large heterogeneity. No publication on the costs or the cost-effectiveness of amalgam and composite fillings exists for Germany. The economic analyses (NL, SWE, GB report higher costs for composite fillings when longevity is assumed equal (for an observation period of five years or longer for amalgam compared to composite fillings. These higher costs are due to the higher complexity of placing composite fillings. Discussion: Due to different study designs and insufficient documentation of study details, a comparison of different studies on longevity of direct amalgam and composite

  16. Uncertainty Quantification in Experimental Structural Dynamics Identification of Composite Material Structures

    DEFF Research Database (Denmark)

    Luczak, Marcin; Peeters, Bart; Kahsin, Maciej


    Aerospace and wind energy structures are extensively using components made of composite materials. Since these structures are subjected to dynamic environments with time-varying loading conditions, it is important to model their dynamic behavior and validate these models by means of vibration...... for uncertainty evaluation in experimentally estimated models. Investigated structures are plates, fuselage panels and helicopter main rotor blades as they represent different complexity levels ranging from coupon, through sub-component up to fully assembled structures made of composite materials. To evaluate...

  17. Composites Materials and Manufacturing Technologies for Space Applications (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.


    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  18. Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials

    Directory of Open Access Journals (Sweden)

    Xing S. Li


    Full Text Available Since the initial research leading to the production of diamond composite materials, there have been several important developments leading to significant improvements in the properties of these superhard composite materials. Apart from the fact that diamonds, whether originating from natural resources or synthesised commercially, are the hardest and most wear-resistant materials commonly available, there are other mechanical properties that limit their industrial application. These include the low fracture toughness and low impact strength of diamond. By incorporating a range of binder phases into the sintering production process of these composites, these critically important properties have been radically improved. These new composites can withstand much higher operating temperatures without markedly reducing their strength and wear resistance. Further innovative steps are now being made to improve the properties of diamond composites by reducing grain and particle sizes into the nano range. This review will cover recent developments in diamond composite materials with special emphasis on microstructural characterisation. The results of such studies should assist in the design of new, innovative diamond tools as well as leading to radical improvements in the productivity of cutting, drilling and sawing operations in the exploration, mining, civil construction and manufacturing industries.

  19. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sartor, George B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reeder, Craig L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  20. Probabilistic fatigue life prediction of metallic and composite materials (United States)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  1. Review on advanced composite materials boring mechanism and tools (United States)

    Shi, Runping; Wang, Chengyong


    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  2. Multi-physics modeling of multifunctional composite materials for damage detection (United States)

    Sujidkul, Thanyawalai

    This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to

  3. Insulin resistance, exercise capacity and body composition in subjects with two hypertensive parents

    DEFF Research Database (Denmark)

    Andersen, U B; Dige-Petersen, H; Ibsen, H


    correlated to abdominal fat mass but not to insulin sensitivity. CONCLUSION: Subjects with a strong genetic predisposition to essential hypertension had increased diastolic blood pressure compared with subjects with normotensive parents, but they were not insulin resistant. This may be due to the subjects......OBJECTIVE: To study insulin resistance in subjects with strong genetic predisposition to essential hypertension, compared with non-disposed subjects. SUBJECTS: Thirty normotensive subjects aged 18-35 years whose parents both had essential hypertension, and 30 age- and sex matched subjects whose...... parents were both normotensive, were studied. Subjects or parents with diabetes and morbid obesity were excluded. METHODS: The study comprised (1) a frequent sampling oral glucose tolerance test; (2) an isoglycemic hyperinsulinemic clamp study; (3) an analysis of body composition by dual-energy X...

  4. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials (United States)

    Baker, James Stewart


    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  5. Radiopacity of bulk fill flowable resin composite materials. (United States)

    Yildirim, T; Ayar, M K; Akdag, M S; Yesilyurt, C


    The purpose of this study was to evaluate the radiopacity of currently marketed bulk fill flowable dental composite materials (Beautifil Bulk Flowable, SDR Flow, Filtek Bulk Fill Flow, and x-tra Base Bulk Fill). Six specimens of each material with a thickness of 1 mm were prepared, and digital radiographs were taken, using a CCD sensor along with an aluminum stepwedge and 1 mm-thick tooth slice. The mean gray level of each aluminum stepwedge and selected materials was measured, using the equal-density area tool of Kodak Dental Imaging software. The equivalent thickness of aluminum for each material was then calculated by using the stepwedge values in the CurveExpert version 1.4 program. The radiopacity of bulk fill flowable composites sorted in descending order as follows: Beautifil Bulk Flowable (2.96 mm Al) = x-tra base bulk fill (2.92 mm Al) = SureFil SDR Flow (2.89 mm Al) > Filtek Bulk Fill Flow (2.51 mm Al) (P materials had a radiopacity greater than dentin and enamel; their adequate radiopacity will help the clinicians during radiographic examination of restorations. Bulk fill composite materials have greater radiopacity, enabling clinicians to distinguish the bulk fill composites from dentin and enamel.

  6. Advanced composite materials of the future in aerospace industry

    Directory of Open Access Journals (Sweden)

    Maria MRAZOVA


    Full Text Available Since Orville and Wilbur Wright first decided to power their Flyer with a purpose built, cast aluminium engine to meet the specific requirements for power to weight ratio, new materials have been necessary to improve and advance aviation. This improvement in material properties has helped us to travel quickly and inexpensively around the world, by improving the performance and operations of modern aircraft. In the first part of this study the author introduces the composites materials with their advantages and disadvantages. Airbus and its innovation in composite materials are introduced in the second part of the thesis. Composite technology continues to advance, and the advent of new types such as nanotube forms is certain to accelerate and extend composite usage. This issue is introduced in the last part of this thesis. Anyway, a continuing trend in material development is the improvement in processing and production of incumbent materials to either improve physical properties or to allow their application in new areas and roles for further usage in the future.

  7. Damage of Wood-Concrete Composite subjected to variable hygrometric conditions

    Directory of Open Access Journals (Sweden)

    Bornert M.


    Full Text Available This paper discusses the factors influencing the durability of glued assemblies of wood and cementitious material under variable hygrometric conditions. The composite specimens are composed of cement paste connected to plywood using epoxy glue. The cement paste is subjected to autogeneous shrinkage and the wood is subjected to imbibition test. Plywood is used so that the swelling deformations due to the imbibition process are parallel to the connection plane. Swelling strains in wood are related to the water content measured by gammadensimetry technique. Global strains above and below the glue interface have been measured and have been compared to the free strains. We showed that there are restrained deformations at the glue interface and that the cement paste is damaged. Local strains have been characterized by means of the digital image correlation technique. We showed in particular that the deformations in wood are related to the microstructure of the layers of plywood and that the restrained deformations at the glue interface lead to a bending of the cement paste. In the case of strong adhesion properties, this bending induces cracking in cement paste.

  8. Mechanical Anisotropy Development of a Two-Phase Composite Subject to Large Deformation (United States)

    Dabrowski, M.; Schmid, D. W.; Yu, Podladchikov, Yu,


    Evolution of overall mechanical properties has been demonstrated in large strain deformation experiments. Strain softening is frequently employed in geodynamic simulations. In this paper, we quantify the structural and mechanical evolution of a two-phase composite rock subject to pure and simple shear. An inclusion-host type of geometry is assumed, we focus on the weak inclusion scenario and both materials obey a linear viscous behavior. Finite deformation leads to a shape preferred orientation development that results in an overall mechanical anisotropy. We derive the shape evolution model based on an analytical solution for an isolated elliptical inclusion embedded in an anisotropic host and subject to a uniform far field load. The presence of a strong anisotropy in the host leads to an enhanced inclusion stretching. A differential effective medium type of scheme predicting an overall anisotropic viscosity of a composite consisting of aligned elliptical inclusions is proposed and validated by finite element modeling. A comparison with an existing self-consistent averaging scheme is given and the new scheme is shown to provide an improved estimate of the effective normal and shear viscosity for high inclusion concentrations. The two models are combined into a final set of equations describing evolution of a two-phase rock under a shear. Hardening is predicted in pure shear. In simple shear, the hardening phase is followed by a pronounced softening after a shear strain of one, irrespective of inclusion concentration. Numerical simulations resolving evolution of inclusion-host systems under pure and simple shear demonstrate the high accuracy of our model prediction. The shape evolution model provides a sufficient approximation to the shape preferred orientation developing in an aggregate of interacting inclusions. Both in pure and simple shear, deformation localizes into conjugate trails of inclusions leading to formation of complex sigmoidal inclusion shapes.

  9. Vegetable Fibers for Composite Materials In Constructive Sector (United States)

    Giglio, Francesca; Savoja, Giulia


    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  10. Application of composite materials to impact-insensitive munitions (United States)

    Neradka, Vincent F.; Chang, Yale; Grady, Joseph E.; Trowbridge, Daniel A.


    An approach is outlined for developing bullet-impact-insensitive munitions based on composite materials that provide rapid venting of the rocket-motor case. Impact experiments are conducted with test specimens of hybrid laminates of graphite/epoxy and epoxy reinforcing with woven glass fibers. The dynamic strain response and initial impact force are measured with strain gauges, and perforation damage is examined in the plates. The results show that impact damage can be designed by means of parametric variations of the fiber, matrix, and ply orientations. It is suggested that rocket-motor cases can be designed with composite materials to provide rapid venting during the failure mode. The experimental ballistic testing performed provides data that can be used comparatively with analytical data on composite materials.

  11. Percolation Phenomena For New Magnetic Composites And Tim Nanocomposites Materials

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed


    Full Text Available This paper presents a theoretical investigation in order to obtain new composite and nanocomposite magnetic industrial materials. The effective conductivity and thermal effective conductivity have been predicted by adding various types and percentages of conductive particles (Al2O3, MgO, ZnO, Graphite etc. to the main matrices of Epoxy, Iron and Silicon for formulating new composite and nanocomposite industrial materials. The characterization of effective conductivity of new polymeric composites has been investigated with various applied forces, inclusion types and their concentrations. In addition, the effect of inclusion types and their concentrations on the effective thermal conductivities of thermal interface nanocomposite industrial materials has been explained and discussed.

  12. Prosthetic limb sockets from plant-based composite materials. (United States)

    Campbell, Andrew I; Sexton, Sandra; Schaschke, Carl J; Kinsman, Harry; McLaughlin, Brian; Boyle, Martin


    There is a considerable demand for lower limb prostheses globally due to vascular disease, war, conflict, land mines and natural disasters. Conventional composite materials used for prosthetic limb sockets include acrylic resins, glass and carbon fibres, which produce harmful gasses and dust in their manufacture. To investigate the feasibility of using a renewable plant oil-based polycarbonate-polyurethane copolymer resin and plant fibre composite, instead of conventional materials, to improve safety and accessibility of prosthetic limb manufacture. Experimental, bench research. Test pieces of the resin with a range of plant fibres (10.0% by volume) were prepared and tensile strengths were tested. Test sockets of both conventional composite materials and plant resin with plant fibres were constructed and tested to destruction. Combinations of plant resin and either banana or ramie fibres gave high tensile strengths. The conventional composite material socket and plant resin with ramie composite socket failed at a similar loading, exceeding the ISO 10328 standard. Both wall thickness and fibre-matrix adhesion played a significant role in socket strength. From this limited study we conclude that the plant resin and ramie fibre composite socket has the potential to replace the standard layup. Further mechanical and biocompatibility testing as well as a full economic analysis is required. Using readily sourced and renewable natural fibres and a low-volatile bio-resin has potential to reduce harm to those involved in the manufacture of artificial limb sockets, without compromising socket strength and benefitting clinicians working in poorer countries where safety equipment is scarce. Such composite materials will reduce environmental impact.

  13. Hot extruded carbon nanotube reinforced aluminum matrix composite materials (United States)

    Kwon, Hansang; Leparoux, Marc


    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics.

  14. Chemical composition of the clays as indicator raw material sources

    Directory of Open Access Journals (Sweden)

    Khramchenkova Rezida Kh


    Full Text Available The paper presents the results of study on the chemical composition of unglazed pottery from the excavations of the Bulgar fortified settlement site and the clay, selected from the modern deposits of ceramic raw materials located near the medieval settlement sites. Significant differences in macro- and microelement composition of different groups of ceramics have been revealed. The difference in the macroelemental composition is largely determined by the ceramic fabric recipe. Thus, the high calcium content corresponds to the addition of river shells, the high content of silicon results from sand addition. A more interesting picture has been revealed in the course of studies of the so-called “trace elements” (microelements. Nine groups of ceramics with different elemental set have been distinguished. The first two groups consist of imported ceramics; other groups have demonstrated a rather pronounced elemental composition. The most notable variations are observed in chromium, vanadium and nickel content. Similar microelement composition variety has been observed in clays from deposits of different localization, while the concentration of the mentioned elements in a variety of clays also differs considerably. Therefore, marker elements typical of different clays have been identified. A comparative analysis of the data obtained for clay raw materials and ceramics has been conducted. The results demonstrate the potential of studying the elemental composition in order to determine the localization of the raw material sources for ceramic production.

  15. Development and characterization of composite materials for production of composite risers by filament winding


    Ledjane Lima Sobrinho; Verônica Maria de Araújo Calado; Fernando Luiz Bastian


    Industry has been challenged to provide riser systems which are more cost effective and which can fill the technology gaps with respect to water depth, riser diameter and high temperatures left open by flexibles, steel catenary risers (SCRs) and hybrid risers. Composite materials present advantages over conventional steel risers because composite materials are lighter, more fatigue and corrosion resistant, better thermal insulators and can be designed for improving the structural and mechanic...

  16. Subjectivity

    Directory of Open Access Journals (Sweden)

    Jesús Vega Encabo


    Full Text Available In this paper, I claim that subjectivity is a way of being that is constituted through a set of practices in which the self is subject to the dangers of fictionalizing and plotting her life and self-image. I examine some ways of becoming subject through narratives and through theatrical performance before others. Through these practices, a real and active subjectivity is revealed, capable of self-knowledge and self-transformation. 

  17. Material Programming: a Design Practice for Computational Composites

    DEFF Research Database (Denmark)

    Vallgårda, Anna; Boer, Laurens; Tsaknaki, Vasiliki


    In this paper we propose the notion of material programming as a future design practice for computational composites. Material programming would be a way for the interaction designer to better explore the dynamic potential of computational materials at hand and through that familiarity be able...... to compose more sophisticated and complex temporal forms in their designs. The contribution of the paper is an analysis of qualities that we find a material programming practice would and should support: designs grounded in material properties and experiences, embodied programming practice, real-time on......-site explorations, and finally a reasonable level of complexity in couplings between input and output. We propose material programming knowing that the technology and materials are not entirely ready to support this practice yet, however, we are certain they will be and that the interaction design community...

  18. Effective thermal conductivity of a thin composite material

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, P.E. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mechanical and Aerospace Engineering; Niemann, R.C. [Argonne National Lab., IL (United States)


    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thickness. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relatively low thermal conductivity. Results indicate that, below some threshold thickness, the composite thermal conductivity increases with decreasing thickness, while above the threshold the thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between filler and matrix thermal conductivities.

  19. Composite Overwrapped Pressure Vessels (COPV) Materials Aging Issues (United States)


    This slide presentation reviews some of the issues concerning the aging of the materials in a Composite Overwrapped Pressure Vessels (COPV). The basic composition of the COPV is a Boss, a composite overwrap, and a metallic liner. The lifetime of a COPV is affected by the age of the overwrap, the cyclic fatigue of the metallic liner, and stress rupture life, a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. There is information about the coupon tests that were performed, and a test on a flight COPV.

  20. Determination of replicate composite bone material properties using modal analysis. (United States)

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander


    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A comparison of microhardness of indirect composite restorative materials

    DEFF Research Database (Denmark)

    Miranda, Carolina Baptista; Pagani, Clóvis; Bottino, Marco Cícero


    The purpose of this study was to compare the microhardness of four indirect composite resins. Forty cylindrical samples were prepared according to the manufacturer’s recommendations using a Teflon mold. Ten specimens were produced from each tested material, constituting four groups (n=10) as foll......The purpose of this study was to compare the microhardness of four indirect composite resins. Forty cylindrical samples were prepared according to the manufacturer’s recommendations using a Teflon mold. Ten specimens were produced from each tested material, constituting four groups (n=10...

  2. Nondestructive evaluation of composite materials via scanning laser ultrasound spectroscopy (United States)

    Koskelo, Elise Anne C.; Flynn, Eric B.


    Composite materials pose a complex problem for ultrasonic nondestructive evaluation due to their unique material properties, greater damping, and often complicated geometry. In this study, we explored acoustic wavenumber spectroscopy (AWS) as a means of rapid inspection of laminate and honeycomb composites. Each aerospace sample was tested at different ultrasonic frequencies using steady-state excitation via a piezo electric actuator. We measured the velocity response of the composite at each pixel via a raster scan using a laser Doppler vibrometer. We were able to detect radial inserts along corners, delamination, and facing-core separation by analyzing local amplitude and wavenumber responses. For each honeycomb composite, we excited the sample at the first resonant frequency of the individual cells. The local mode shape for each cell was extracted from the local amplitude response. Analyzing local amplitude and phase responses for each cell provided an accurate indication as to the presence, size, shape, and type of defect present in the composite. We detected both delamination and deformation of cells within a honeycomb composite. For the laminar composites, we analyzed the non-resonance steady-state response at several excitation frequencies.

  3. Performance of Pre-Stressed Sandwich Composites Subjected to Shock Wave Loading

    Directory of Open Access Journals (Sweden)

    Shukla A.


    Full Text Available The present paper experimentally studies the dynamic behaviour of prestressed sandwich composites under blast loading. The in-plane static compression loadings are implemented on the sandwich composites before they are subjected to the transverse shock wave loading. Three different pre-stress levels are chosen. 3-D realtime deformation data are captured by two high-speed photography systems: a backview Digital Image Correlation (DIC system and a side-view camera system. The results show that pre-stresses can induce local buckling in the front face-sheet of sandwich composites, consequently reduce the blast resistance of sandwich composites.

  4. Development of Engineering Data on Advanced Composite Materials (United States)


    were nmonitored with strain gages. This test procedure also corresponds to ASTM rnetho4 D3039 -74 except for the tab materials. in the ASTM spe...Composite Materials.[5, 6 ] The second type of inplane shear test was a double rail shear tech- nique described as Method B in a proposed ASTM standard ...matrices are all identified with a specific reinforcement since these were the standard products of the various prepreg suppliers indicated in parenthesis

  5. High-Capacity, High-Voltage Composite Oxide Cathode Materials (United States)

    Hagh, Nader M.


    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  6. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  7. Influence of mechanical and chemical degradation on surface gloss of resin composite materials. (United States)

    Ardu, Stefano; Braut, Vedrana; Uhac, Ivone; Benbachir, Nacer; Feilzer, Albert J; Krejci, Ivo


    To determine the changes in surface gloss of different composite materials after simulation of mechanical and chemical aging mechanisms. 36 specimens were fabricated for each material and polished with 120-, 220-, 500-, 1200-, 2400- and 4000- grit SiC abrasive paper, respectively. Gloss measurements were made with a glossmeter (Novo-Curve) prior to testing procedures. Specimens of each material were randomly divided into three groups. Group 1 was conditioned for 7 days at 37 degrees C in 75% ethanol aqueous solution. Group 2 was immersed in fluoride gel (Elmex Gelée) at 37 degrees C for 1 hour. Group 3 was subjected to simulated toothbrushing with an electric toothbrush while being immersed in toothpaste. Surface gloss measurements were made subsequently. Significant difference between surface gloss of the composite materials tested were detected after simulated brushing (Kruskal Wallis, P natural enamel and Durafill (Wilcoxon signed-rank test, P< 0.05).

  8. Novel Microstructures for Polymer-Liquid Crystal Composite Materials (United States)

    Magda, Jules J.


    There are a number of interface-dominated composite materials that contain a liquid crystalline (LC) phase in intimate contact with an isotropic phase. For example, polymer- dispersed liquid crystals, used in the fabrication of windows with switchable transparency, consist of micron size LC droplets dispersed in an isotropic polymer matrix. Many other types of liquid crystal composite materials can be envisioned that might have outstanding optical properties that could be exploited in novel chemical sensors, optical switches, and computer displays. This research project was based on the premise that many of these potentially useful LC composite materials can only be fabricated under microgravity conditions where gravity driven flows are absent. In the ground-based research described below, we have focused on a new class of LC composites that we call thermotropic- lyotropic liquid crystal systems (TLLCs). TLLCs consist of nanosize droplets of water dispersed in an LC matrix, with surfactants at the interface that stabilize the structure. By varying the type of surfactant one can access almost an infinite variety of unusual LC composite microstructures. Due to the importance of the interface in these types of systems, we have also developed molecular simulation models for liquid crystals at interfaces, and made some of the first measurements of the interfacial tension between liquid crystals and water.

  9. Composite glass ceramics - a promising material for aviation

    Directory of Open Access Journals (Sweden)

    М. В. Дмитрієв


    Full Text Available The analysis of the technical and technological characteristics of the composite ceramic as a material for electrical and structural parts in aircraft. The economic and technological advantages compared to ceramic pottery and proposed options for development of production in Ukraine

  10. The Deflated Preconditioned Conjugate Gradient Method Applied to Composite Materials

    NARCIS (Netherlands)

    Jönsthövel, T.B.


    Simulations with composite materials often involve large jumps in the coefficients of the underlying stiffness matrix. These jumps can introduce unfavorable eigenvalues in the spectrum of the stiffness matrix. We show that the rigid body modes; the translations and rotations, of the disjunct rigid

  11. Preparation of Magnetic Composite Materials: Experiments for Secondary School Students

    Czech Academy of Sciences Publication Activity Database

    Baldíková, Eva; Pospíšková, K.; Maděrová, Zdeňka; Šafaříková, Miroslava; Šafařík, Ivo


    Roč. 110, č. 1 (2016), s. 64-68 ISSN 0009-2770 Keywords : dyes removal * nanoparticles * mechanochemistry * technology * adsorbent * fe3o4 * magnet ic modification * magnet ic composite materials * magnet ic separation * microwave-assisted synthesis * mechanochemical synthesis Impact factor: 0.387, year: 2016

  12. Nanostructured Composite Materials for High Temperature Thermoelectric Energy Conversion (United States)


    classes of materials, half-Heusler intermetallic bulk nanocomposites and bismuth -telluride based nanocomposites; • Complete structural and...measurements K. Stokes Physics/AMRI Bismuth telluride/metallic nanoparticle composites, transport measurements J. Wiley Chemistry/AMRI inclusions for nanocomposites. Here, the nanoparticles are synthesized by sol-gel chemistry using hafnium(IV) tert-butoxide and ammonium hydroxide

  13. Quantitative Description of the Morphology and Microdamages of Composite Materials

    DEFF Research Database (Denmark)

    Axelsen, M. S.

    The purpose of the present Ph.D project is to investigate correlation between the microstructure variability and transverse mechanical properties. The material considered here is a polymer based unidirectional composite with long cylindrical fibers, and the transverse properties can be analysed...

  14. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe


    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...

  15. and O-based composite materials derived from differential ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have made an effort to determine whether the effective atomic numbers of H-, C-, N- and O-based composite materials would indeed remain a constant over the energy grid of 280–1200 keV wherein incoherent scattering dominates their interaction with photons. For this purpose, the differential ...

  16. Development of Fracture Mechanics Maps for Composite Materials. Volume 1. (United States)


    Besonderheiten beim Konstruieren mit Kohlenstoff-Fasern. Kunststoffe 74 (1984) H. 11, S. 686-691. 16.71 Tsai, S.W., Introduction to Composite Materials...1975. 6-13 16.9] Gadke, M. Ermittlung mechanischer Eigenschaften kohlenstoffaserverstdrkter Kunststoff - laminate in AbhAngigkeit von den

  17. Data-driven design optimization for composite material characterization (United States)

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos; Samuel G. Lambrakos; Tomonari Furukawa


    The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data...

  18. NASA Composite Materials Development: Lessons Learned and Future Challenges (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman


    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  19. Engineered cementitious composites with low volume of cementitious materials

    NARCIS (Netherlands)

    Zhou, J.; Quian, S.; Van Breugel, K.


    Engineered cementitious composite (ECC) is an ultra ductile cement-based material reinforced with fibers. It is characterized by high tensile ductility and tight crack width control. Thanks to the excellent performance, ECC is emerging in broad applications to enhance the loading capacity and the

  20. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh


    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  1. Radiopacity of bulk fill flowable resin composite materials

    African Journals Online (AJOL)


    Aug 23, 2015 ... selected by avoiding areas containing air bubbles inside the material. This procedure was repeated 5 times for each specimen and aluminum stepwedge, and the .... Financial support and sponsorship. Nil. Conflicts of interest. There are no conflicts of interest. References. 1. Ferracane JL. Resin composite ...

  2. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  3. Moisture effect on mechanical properties of polymeric composite materials (United States)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.


    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  4. The CVD coating of fibers for composite materials (United States)

    Alam, M. Khairul; Jain, Sulekh C.


    Among the new composite materials, fiber-reinforced metal-matrix composites and ceramic-matrix composites have been given special attention for their potential uses in a variety of fields. A successful fabrication process for a fiber-reinforced composite requires that the fiber be protected, usually by a coating, during fabrication and service. The chemical vapor deposition process is a key technology for fiber coating. A survey of the current fiber coating programs seems to show that current process design in the industry is based on trial-and-error methods. New coating processes are, therefore, developed primarily by experimentation and prior experience. Ultimately, it is hoped that analytical and numerical process simulation will be used to reduce the need for costly trial-and-error process development.

  5. Fracture mechanics for delamination problems in composite materials (United States)

    Wang, S. S.


    A fracture mechanics approach to the well-known delamination problem in composite materials is presented. Based on the theory of anisotropic laminate elasticity and interlaminar fracture mechanics concepts, the composite delamination problem is formulated and solved. The exact order of the delamination crack-tip stress singularity is determined. Asymptotic stress and displacement fields for an interlaminar crack are obtained. Fracture mechanics parameters such as mixed-mode stress intensity factors, KI, KII, KIII, and the energy release rate, G, for composite delamination problems are defined. To illustrate the fundamental nature of the delamination crack behavior, solutions for edge-delaminated graphite-epoxy composites under uniform axial extension are presented. Effects of fiber orientation, ply thickness, and delamination length on the interlaminar fracture are examined.

  6. Thermomechanical response of HTPB-based composite beams subjected to near-resonant inertial excitation


    Woods, Daniel; Miller, Jacob; Rhoads, Jeffrey


    At this time, there is a pressing need to develop new technologies capable of detecting, identifying, and potentially neutralizing energetic materials, preferably from a stand-off distance. To address this need, an improved understanding of the mechanics of energetic materials, prior to detonation or deflagration, must be developed. In light of this, the present effort seeks to characterize the thermomechanical response of a polymer-based composite material, which is a mechanical surrogate fo...

  7. Body composition changes over 9 years in healthy elderly subjects and impact of physical activity. (United States)

    Genton, Laurence; Karsegard, Véronique L; Chevalley, Thierry; Kossovsky, Michel P; Darmon, Patrice; Pichard, Claude


    Age-related changes of body composition affect health status. This study aims at clarifying body composition changes in healthy elderly subjects, and evaluating the impact of physical activity on these changes. In 1999, 213 subjects ≥ 65 years recruited through advertisements underwent assessment of health state, energy expenditure by physical activity, body composition by bioimpedance analysis and body cell mass by total body potassium. In 2008, 112 of them repeated these assessments with additional determination of Barthel index, Mini Mental State Examination and Geriatric Depression Score. Lean tissues decreased in both genders (p physical activity limited lean tissue loss in men but not in women. Loss of lean tissues occurs exponentially with aging. Further research should confirm these changes in subjects over 80 years. Increasing physical activity limits fat-free mass loss in men but not women. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Designing Listening Material Based on Visual Multimodality Compositions

    Directory of Open Access Journals (Sweden)

    Jepri Ali Saiful


    Full Text Available In recent decades, multimodality has eventually augmented into the realm of language teaching and learning known as Applied Multimodality. This interdisciplinary approach draws on a multiplicity of communication or representation modes, all of which contribute to meaning. Accordingly, images, colors, and sounds within a text are catalysts to increase an audience’s reception of an idea or concept of the text, that is, a message. Thus, the present article intends to make a contribution to the field of material development in English language teaching. The aim of this article is therefore to provide guidelines for ELT teachers on how to design listening materials based on visual multimodal compositions of image and text. The result is that the compositions of image and text in designing listening materials rests upon three main principles: information value, salience and framing. These principles enable students’ L2 acquisition through listening as proved by recent research.

  9. Investigation of low velocity impact damage on filamentary composite materials (United States)

    Bower, Mark V.


    Presented are the results of an investigation of the effect of low velocity impact on the residual modulus and residual strength of flat filamentary composite materials. Theoretical analysis of composite materials indicates that the modulus of the material must decrease as impact damage increases. This decrease must also correlate to the decrease in residual strength. This study attempts to verify these hypotheses. Graphite/epoxy laminates (AS4/3501-6) of various fiber orientations (8 (0 deg), 2 (+ or - 45 deg)sub 8) were impacted using a falling weight impact tester. Impact energies ranged from 0.42 to 1.55 ft-lb, with impact velocities from 2.03 to 3.98 ft/sec. The results show that there is a reduction in residual modulus of the plate as the impact energy increases.

  10. Preparation of the Jaws Damaged Parts from Composite Biopolymers Materials

    Directory of Open Access Journals (Sweden)

    Riyam A. Al-husseini


    Full Text Available Composite materials composing of fusing two materials or more are disaccorded in mechanical and physical characteristics, The studied the effect of changing in the reinforcement percentage by Hydroxyapatite Prepared nano world via the size of the nanoscale powder manufacturing manner chemical precipitation and microwave powders were two types their preparations have been from natural sources: the first type of eggshells and the other from the bones of fish in mechanical Properties which include the tensile strength, elastic modulus, elongation, hardness and tear for composite material consisting of Silicone rubber (SIR reinforced by (µ-n-HA, after strengthening silicone rubber Protect proportions (5,10,15,20 wt% of Article achieved results that increase the additive lead to increased hardness while tougher and modulus of elasticity decreases with added as shown in the diagrams.

  11. Composite material based on fluoroplast and low melting oxyfluoride glass (United States)

    Ignatieva, L. N.; Savchenko, N. N.; Lalayan, V. M.; Zverev, G. A.; Goncharuk, V. K.; Ustinov, A. Yu.; Shaulov, A. Yu.; Berlin, A. A.; Bouznik, V. M.


    The present work summarizes the results of studies of the samples fabricated through extrusion blending of mixtures composed of the perfluorocarbon polymer (polyvinylidene fluoride, PVDF), which presently undergoes intensive studies, and the inorganic glass (BF-glass) of the composition 3B2O3-97(40SnF2-30SnO-30P2O5). It is revealed as a result of application of the suggested technique the composite material whose structure depends on the component ratio in the mixture (from individual areas formed by each component to homogeneously distributed composite particles) has been fabricated. The peculiarities of formation of composites were studied on the basis of the results of studying their morphology, molecular structure and phase composition. It was revealed the preservation of the polymer molecular structure and the absence of interaction with the glass in the fabricated samples. We found that in the process of sample fabrication there occur melting of the mixture, mixing of particles and changing of the phase compositions. The polymer partially and the glass almost completely crystallize in the process of composite fabrication. Glass crystals fill polymer cavities forming agglomerates. Along with the increase of the amount of inorganic component crystals, the polymer monolithic nature is disrupted and an inversion occurs at a certain component ratio: polymer particles are located between crystals of the inorganic component, mixing with them and covering them. The glass crystallization is facilitated through pre-crushing in extruder mill.

  12. Influence of filler charge on gloss of composite materials before and after in vitro toothbrushing. (United States)

    Jassé, Fernanda Ferreira; de Campos, Edson Alves; Lefever, Dorien; Di Bella, Enrico; Salomon, Jean Pierre; Krejci, Ivo; Ardu, Stefano


    This study evaluated the gloss behaviour of experimental resin composites loaded with different filler percentages, immediately after polishing and after toothbrushing simulation. Sixteen disc-shaped specimens were fabricated for each different-charged composite (40%, 50%, 60%, 70% and 75%) and polished with SiC abrasive papers. Gloss measurements were made prior to simulated toothbrushing. The specimens were subjected to the simulation for 5, 15, 30 and 60 min using an electrical toothbrush with a standardized pressure while being immersed in a toothpaste/artificial saliva slurry. Baseline composite gloss values ranged from 69.7 (40%) to 81.3 (75%) GU (gloss units) and from 18.1 (40%) to 32.3 (75%) GU after 1h of brushing. Highest gloss values were obtained by 75%-charged resin, while the lowest values were obtained by the 40%-charged one. All tested materials showed a gloss decrease. However, the higher filler load a composite resin has, the higher gloss it can achieve. Gloss of resin composite materials is an important factor in determining aesthetic success of anterior restorations, and this property may vary according to the filler charge of the restorative material. Higher filler load of a composite resin results in higher gloss values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Optical study on the dependence of breast tissue composition and structure on subject anamnesis (United States)

    Taroni, Paola; Quarto, Giovanna; Pifferi, Antonio; Abbate, Francesca; Balestreri, Nicola; Menna, Simona; Cassano, Enrico; Cubeddu, Rinaldo


    Time domain multi-wavelength (635 to 1060 nm) optical mammography was performed on 200 subjects to estimate their average breast tissue composition in terms of oxy- and deoxy-hemoglobin, water, lipid and collagen, and structural information, as provided by scattering parameters (amplitude and power). Significant (and often marked) dependence of tissue composition and structure on age, menopausal status, body mass index, and use of oral contraceptives was demonstrated.

  14. Percolation Modeling of Self-Damaging of Composite Materials (United States)

    Domanskyi, Sergii; Privman, Vladimir

    We propose the concept of autonomous self-damaging in ``smart'' composite materials, controlled by activation of added nanosize ``damaging'' capsules. Percolation-type modeling approach earlier applied to the related concept of self-healing materials, is used to investigate the behavior of the initial material's fatigue. We aim at achieving a relatively sharp drop in the material's integrity after some initial limited fatigue develops in the course of the sample's usage. Our theoretical study considers a two-dimensional lattice model and involves Monte Carlo simulations of the connectivity and conductance in the high-connectivity regime of percolation. We give several examples of local capsule-lattice and capsule-capsule activation rules and show that the desired self-damaging property can only be obtained with rather sophisticated ``smart'' material's response involving not just damaging but also healing capsules.

  15. Aspects regarding manufacturing technologies of composite materials for brake pad application (United States)

    Craciun, A. L.; Hepuţ, T.; Pinca-Bretotean, C.


    Current needs in road safety, requires the development of new technical solutions for automotive braking system. Their safe operation is subject to following factors: concept design, materials used and electronic control. Among the factors previously listed, choice of materials and manufacturing processes are difficult stage but very important for achieving technical performance and getting a relatively small cost of constituting parts of brake system. The choice is based on the promotion of organic composite material, popular in areas where the weight of materials plays an important role. The brake system is composed of many different parts including brake pads, a master cylinder, wheel cylinders and a hydraulic control system. The brake pads are an important component in the braking system of automotive. These are of different types, suitable for different types of automotive and engines. Brake pads are designed for friction stability, durability, minimization of noise and vibration. The typology of the brake pads depends on the material which they are made. The aim of this paper is to presents the manufacturing technologies for ten recipes of composite material used in brake pads applications. In this work will be done: choosing the constituents of the recipes, investigation of their basic characteristics, setting the proportions of components, obtaining the composite materials in laboratory, establishing the parameters of manufacturing technology and technological analysis.

  16. Properties of modified polysiloxane based ceramic matrix for long fibre reinforced composite materials

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Černý, Martin; Strachota, Adam; Kozák, Vladislav


    Roč. 40, 6-7 (2011), s. 380-385 ISSN 1465-8011 R&D Projects: GA ČR GA106/09/1101 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z30460519; CEZ:AV0Z40500505 Keywords : Polysiloxane resin * Pyrolysis * Indentation Subject RIV: JI - Composite Materials Impact factor: 0.597, year: 2011

  17. The effects of fibre architecture on fatigue life-time of composite materials

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Østergaard, Rasmus

    Wind turbine rotor blades are among the largest composite structures manufactured of fibre reinforced polymer. During the service life of a wind turbine rotor blade, it is subjected to cyclic loading that potentially can lead to material failure, also known as fatigue. With reference to glass fibre...... reinforced composites used for the main laminate of a wind turbine rotor blade, the problem addressed in the present work is the effect of the fibre and fabric architecture on the fatigue life-time under tension-tension loading. Fatigue of composite materials has been a central research topic for the last...... methodologies in order to be assessed. Furthermore, numerical evaluation and predictions of the fatigue damage evolution are decisive in order to make future improvements. The present work is focused around two central themes: fibre architecture and fatigue failure. The fibre architecture is characterised using...

  18. Validation of Material Models For Automotive Carbon Fiber Composite Structures Via Physical And Crash Testing (VMM Composites Project)

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, Anthony [General Motors Company, Flint, MI (United States); Faruque, Omar [Ford Motor Company, Dearborn, MI (United States); Truskin, James F [FCA US LLC, Auburn Hills, MI (United States); Board, Derek [Ford Motor Company, Dearborn, MI (United States); Jones, Martin [Ford Motor Company, Dearborn, MI (United States); Tao, Jian [FCA US LLC, Auburn Hills, MI (United States); Chen, Yijung [Ford Motor Company, Dearborn, MI (United States); Mehta, Manish [M-Tech International LLC, Dubai (United Arab Emirates)


    advances in order to assess the correlation of the predicted results to the physical tests. The FBCC was developed to meet a goal of 30-35% mass reduction while aiming for equivalent energy absorption as a steel component for which baseline experimental results were obtained from testing in the same crash modes. The project also evaluated crash performance of thermoplastic composite structures fabricated from commercial prepreg materials and low cost carbon fiber sourced from Oak Ridge National Laboratory. The VMM Project determined that no set of predictions from a CAE supplier were found to be universally accurate among all the six crash modes evaluated. In general, crash modes that were most dependent on the properties of the prepreg were more accurate than those that were dependent on the behavior of the joints. The project found that current CAE modeling methods or best practices for carbon fiber composites have not achieved standardization, and accuracy of CAE is highly reliant on the experience of its users. Coupon tests alone are not sufficient to develop an accurate material model, but it is necessary to bridge the gap between the coupon data and performance of the actual structure with a series of subcomponent level tests. Much of the unreliability of the predictions can be attributed to shortcomings in our ability to mathematically link the effects of manufacturing and material variability into the material models. This is a subject of ongoing research in the industry. The final report is organized by key technical tasks to describe how the validation project developed, modeled and compared crash data obtained on the composite FBCC to the multiple sets of CAE predictions. Highlights of the report include a discussion of the quantitative comparison between predictions and experimental data, as well as an in-depth discussion of remaining technological gaps that exist in the industry, which are intended to spur innovations and improvements in CAE technology.

  19. Dual-nanoparticulate-reinforced aluminum matrix composite materials (United States)

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira


    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al4C3) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al4C3. Along with the CNT and the nano-SiC, Al4C3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials.

  20. A Study of Failure Criteria of Fibrous Composite Materials (United States)

    Paris, Federico; Jackson, Karen E. (Technical Monitor)


    The research described in this paper is focused on two areas: (1) evaluation of existing composite failure criteria in the nonlinear, explicit transient dynamic finite element code, MSC.Dytran, and (2) exploration of the possibilities for modification of material and failure models to account for large deformations, progressive failure, and interaction of damage accumulation with stress/strain response of laminated composites. Following a review of the MSC.Dytran user manual, a bibliographical review of existing failure criteria of composites was performed. The papers considered most interesting for the objective of this report are discussed in section 2. The failure criteria included in the code under consideration are discussed in section 3. A critical summary of the present procedures to perform analysis and design of composites is presented in section 4. A study of the most important historical failure criteria for fibrous composite materials and some of the more recent modifications proposed were studied. The result of this analysis highlighted inadequacies in the existing failure criteria and the need to perform some numerical analyses to elucidate the answer to questions on which some of the proposed criteria are based. A summary of these ideas, which is a proposal of studies to be developed, is presented in section 5. Finally, some ideas for future developments are summarized in section 6.

  1. A generalized methodology to characterize composite materials for pyrolysis models (United States)

    McKinnon, Mark B.

    The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to

  2. Fissure sealant materials: Wear resistance of flowable composite resins. (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi


    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  3. Fissure sealant materials: Wear resistance of flowable composite resins

    Directory of Open Access Journals (Sweden)

    Sohrab Asefi


    Full Text Available Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow, Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists. A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  4. Photonics and fracture toughness of heterogeneous composite materials. (United States)

    Antony, S Joseph; Okeke, George; Tokgoz, D Deniz; Ozerkan, N Gozde


    Fracture toughness measures the resistance of a material to fracture. This fundamental property is used in diverse engineering designs including mechanical, civil, materials, electronics and chemical engineering applications. In spite of the advancements made in the past 40 years, the evaluation of this remains challenging for extremely heterogeneous materials such as composite concretes. By taking advantage of the optical properties of a thin birefringent coating on the surface of opaque, notched composite concrete beams, here we sense the evolution of the maximum shear stress distribution on the beams under loading. The location of the maximum deviator stress is tracked ahead of the crack tip on the experimental concrete samples under the ultimate load, and hence the effective crack length is characterised. Using this, the fracture toughness of a number of heterogeneous composite beams is evaluated and the results compare favourably well with other conventional methods using combined experimental and numerical/analytical approaches. Finally a new model, correlating the optically measured shear stress concentration factor and flexural strength with the fracture toughness of concretes is proposed. The current photonics-based study could be vital in evaluating the fracture toughness of even opaque and complex heterogeneous materials more effectively in future.

  5. Composite smart materials using high-volume microelectronics fabrication techniques (United States)

    Winzer, Stephen R.; Shankar, Natarajan; Caldwell, Paul J.; May, Russell G.


    Smart materials, containing sensors, actuators and processing electronics, are of great potential use in defense and commercial applications from acoustic stealth to medial imaging. While 1:3 composites using PZT rods are now available commercially in limited quantities, composites with individually addressable actuator and sensor arrays are not, nor have conditioning and processing electronics been embedded in the same material. There are several technical and cost reasons for this, including the complexity of interconnections, capacitance of individual elements, thermal dissipation, and the expense of fabricating the material. We have been developing composite materials comprising arrays of miniature actuators fabricated using surface mount capacitor technology, and amenable to automated fabrication using `pick and place' techniques. Miniature actuators with up to 0.1% strain, and operating at 30 V bias and ac swing of +/- 30 V have been fabricated, and placed in 10-by- 10 actuator arrays on Kapton sheets on which circuits have been printed. The arrays were then `potted' in RTV liquid rubbers. Individual actuator motion and multiple actuator influence functions were measured as a function of applied voltage and adjacent actuator motion. These results, along with in-water performance (source level and directivity), are presented.

  6. Weight reduction and strengthening of marine hatch covers by using composite materials

    Directory of Open Access Journals (Sweden)

    Basem E. Tawfik


    Full Text Available The application of composites as an alternative material for marine steel hatch covers is the subject of this study. Two separate approaches are considered; weight reduction approach and strengthening approach. For both approaches Finite Element Analysis (FEA was performed using ANSYS software. Critical design parameters of the composite hatch cover and FEA are discussed in details. Regarding the weight reduction approach; steel hatch covers of a bulk carrier were replaced by composite covers and a weight reduction of 44.32% was achieved leading to many benefits including fuel saving, Deadweight Increment and lower center of gravity of the vessel. For the strengthening approach; the foremost hatch cover was strengthened to withstand 150% of the load required by IACS for safer navigation while no change in weight was made between the steel and composite covers. Results show that both approaches are feasible and advantageous.

  7. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)


    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  8. [Comparative analysis of bone mineral composition in human archeological material taken from different regions of Poland]. (United States)

    Noceń, I


    The actual paper presents the method and results of studies covering the mineral composition of the skulls of humans in the archaeological material stemming from different regions of Poland. The concentration of fluoride, zinc, iron, manganese, lead, calcium, magnesium and phosphorus was determined in 248 skulls. Distribution of individual burial sites providing the study material is presented in Fig. 1. The material was divided into four groups in relation to the place of deposition and in relation to the soil composition. Macro-, microelements determined by the method of atom absorption, phosphate by colourometric method, fluoride by potentiometric method. It has been disclosed that the bony material at the burial site is subjected to processes of fossilisation--replacing the organic matter by mineral one under definite soil conditions. The soil composition is the factor that influences the mineral composition of the bones in case of the following elements: zinc, manganese, lead, magnesium (Tab. 1). No influence was exerted by components contained in the soil on the determined concentrations of fluoride and iron in bones being explored from human skulls originating from archaeological excavation, undergo dynamic transformations in their mineral composition during their deposition in the soil. With the lapse of the time the content of fluoride (Tab. 2), magnesium (Tab. 7), calcium (Tab. 8), phosphate (Tab. 9) increases, while that of zinc (Tab. 3), iron (Tab. 4), manganese (Tab. 5) and lead (Tab. 6) decreases. The end concentration of elements in the archaeological bony material results from the following processes, namely: Cumulation, the example of which is the change in the concentration of fluoride, washing out the components of bone into the soil, to which the compounds of iron and manganese are subjected, compensations of concentrations of the bone soil border. That process took place in the case involving the changes in concentration of zinc, lead

  9. The aqueous corrosion behavior of technetium - Alloy and composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K. [Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154 (United States)


    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection.

  10. Feasibility of fiber reinforced composite materials used in highway bridge superstructures


    Lin, Shih-Yung


    Composite materials are considered here as structural materials of highway bridge superstructures. Bridge deck designs can be done according to AASHTO1 specification and elastic design concepts. In order to evaluate the feasibility of composites as structural materials of highway bridge superstructures, composite materials are compared not only to composite materials themselves but also to the most popular bridge structural materials, which are reinforced concrete and struc...

  11. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert


    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  12. Fitness Considerations for Contemporary Composite Materials: (Who's Afraid of the Composite Micro-Crack?) (United States)

    Beaumont, Peter W. R.; Soutis, Costas; Johnson, Alastair


    Avoiding the catastrophic failure of a large structure demands the material's microstructure be designed in such as a way as to render any crack present innocuous thereby raising the integrity of that structure. Structural integrity of a composite material embraces contributions from: materials science and engineering; processing science; design and fabrication technology. It combines a number of interacting factors: the criticality of the application; the accessibility for and ability to inspect vital parts and components; the intended use including load spectrum and time; the consequences of impact, fatigue, temperature and hostile environment; the nature of inherent flaws; the constituent properties of the material system utilized; and it takes into account human factors.

  13. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials (United States)

    Hejazi, Vahid

    Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental

  14. Multimaterial magnetically assisted 3D printing of composite materials (United States)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.


    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature.

  15. Multimaterial magnetically assisted 3D printing of composite materials (United States)

    Kokkinis, Dimitri; Schaffner, Manuel; Studart, André R.


    3D printing has become commonplace for the manufacturing of objects with unusual geometries. Recent developments that enabled printing of multiple materials indicate that the technology can potentially offer a much wider design space beyond unusual shaping. Here we show that a new dimension in this design space can be exploited through the control of the orientation of anisotropic particles used as building blocks during a direct ink-writing process. Particle orientation control is demonstrated by applying low magnetic fields on deposited inks pre-loaded with magnetized stiff platelets. Multimaterial dispensers and a two-component mixing unit provide additional control over the local composition of the printed material. The five-dimensional design space covered by the proposed multimaterial magnetically assisted 3D printing platform (MM-3D printing) opens the way towards the manufacturing of functional heterogeneous materials with exquisite microstructural features thus far only accessible by biological materials grown in nature. PMID:26494528

  16. Interpenetrating network ceramic-resin composite dental restorative materials. (United States)

    Swain, M V; Coldea, A; Bilkhair, A; Guess, P C


    This paper investigates the structure and some properties of resin infiltrated ceramic network structure materials suitable for CAD/CAM dental restorative applications. Initially the basis of interpenetrating network materials is defined along with placing them into a materials science perspective. This involves identifying potential advantages of such structures beyond that of the individual materials or simple mixing of the components. Observations from a number of recently published papers on this class of materials are summarized. These include the strength, fracture toughness, hardness and damage tolerance, namely to pointed and blunt (spherical) indentation as well as to burr adjustment. In addition a summary of recent results of crowns subjected to simulated clinical conditions using a chewing simulator are presented. These results are rationalized on the basis of existing theoretical considerations. The currently available ceramic-resin IPN material for clinical application is softer, exhibits comparable strength and fracture toughness but with substantial R-curve behavior, has lower E modulus and is more damage tolerant than existing glass-ceramic materials. Chewing simulation observations with crowns of this material indicate that it appears to be more resistant to sliding/impact induced cracking although its overall contact induced breakage load is modest. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Computed Tomography analysis of damage in composites subjected to impact loading

    Directory of Open Access Journals (Sweden)

    E. Guglielmino


    Full Text Available The composites, used in the transportation engineering, include different classes with a wide range of materials and properties within each type. The following different typologies of composites have been investigated: laminated composites, PVC foam sandwiches, aluminium foam and honeycomb sandwiches.Aim of this paper was the analysis of low-velocity impact response of such composites and the investigation of their collapse modes. Low velocity impact tests were carried out by a drop test machine in order to investigate and compare their structural response in terms of energy absorption capacity.The failure mode and the internal damage of the impacted composites have been, also, investigated using 3D Computed Tomography.

  18. Textual Rhetorics and Textual Carnivals: Susan Miller and the "Subjects" of Rhetoric and Composition. (United States)

    Reynolds, Nedra


    Reviews two books by Susan Miller: "Rescuing the Subject: A Critical Introduction to Rhetoric and the Writer" (1989) and "Textual Carnivals: The Politics of Composition" (1991). Notes how she rereads dominant histories of rhetoric and writing instruction, argues for a theory of textuality, and illustrates how attention to…

  19. Nonlinear mechanics of composite materials with periodic microstructure (United States)

    Jordan, E. H.; Walker, K. P.


    This report summarizes the result of research done under NASA NAG3-882 Nonlinear Mechanics of Composites with Periodic Microstructure. The effort involved the development of non-finite element methods to calculate local stresses around fibers in composite materials. The theory was developed and some promising numerical results were obtained. It is expected that when this approach is fully developed, it will provide an important tool for calculating local stresses and averaged constitutive behavior in composites. NASA currently has a major contractual effort (NAS3-24691) to bring the approach developed under this grant to application readiness. The report has three sections. One, the general theory that appeared as a NASA TM, a second section that gives greater details about the theory connecting Greens functions and Fourier series approaches, and a final section shows numerical results.

  20. Designing Neat and Composite Carbon Nanotube Materials by Porosimetric Characterization (United States)

    Kobashi, Kazufumi; Yoon, Howon; Ata, Seisuke; Yamada, Takeo; Futaba, Don N.; Hata, Kenji


    We propose a porosimetry-based method to characterize pores formed by carbon nanotubes (CNTs) in the CNT agglomerates for designing neat CNT-based materials and composites. CNT agglomerates contain pores between individual CNTs and/or CNT bundles (micropore 50 nm). We investigated these pores structured by CNTs with different diameters and number of walls, clarifying the broader size distribution and the larger volume with increased diameters and number of walls. Further, we demonstrated that CNT agglomerate structures with different bulk density were distinguished depending on the pore sizes. Our method also revealed that CNT dispersibility in solvent correlated with the pore sizes of CNT agglomerates. By making use of these knowledge on tailorable pores for CNT agglomerates, we successfully found the correlation between electrical conductivity for CNT rubber composites and pore sizes of CNT agglomerates. Therefore, our method can distinguish diverse CNT agglomerate structures and guide pore sizes of CNT agglomerates to give high electrical conductivity of CNT rubber composites.

  1. Mechanical properties of Al-mica particulate composite material (United States)

    Nath, D.; Bhatt, R. T.; Rohatgi, P. K.; Biswas, S. K.


    Cast aluminum alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40-120 microns) the tensile and compression strengths of aluminum alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/sq mm and compression strength of 28 kg/sq mm performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminum-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.

  2. Study of erosion characterization of carbon fiber reinforced composite material (United States)

    Debnath, Uttam Kumar; Chowdhury, Mohammad Asaduzzaman; Kowser, Md. Arefin; Mia, Md. Shahin


    Carbon fiber composite materials are widely used at different engineering and industrial applications there are good physical, mechanical, chemical properties and light weight. Erosion behavior of materials depends on various factors such as impact angle, particle velocity, particle size, particle shape, particle type, particle flux, temperature of the tested materials. Among these factors impact angle and particle velocity have been recognized as two parameters that noticeably influence the erosion rates of all tested materials. Irregular shaped sand (SiO2) particles of various sizes (200-300 µm, 400-500 µm, and 500-600 µm) were selected erosive element. Tested conditions such as impingement angles between 15 degree to 90 degree, impact velocities between 30-50 m/sec, and stand-off distances 15-25 mm at surrounding room temperature were maintained. The highest level of erosion of the tested composite is obtained at 60° impact angle, which signifies the semi-ductile behavior of this material. Erosion showed increasing trend with impact velocity and decreasing nature in relation to stand-off distance. Surface damage was analyzed using SEM to examine the nature of the erosive wear mechanism.

  3. Investigation of shock-wave phenomena in composite materials (United States)

    Afanas'eva, S. A.; Belov, N. N.; Biryukov, Yu. A.; Burkin, V. V.; Zakharov, V. M.; Ishchenko, A. N.; Skosyrskii, A. V.; Tabachenko, A. N.; Khorev, I. E.; Yugov, N. T.


    We propose a complex experimental-theoretical approach to the investigation and development of high-energy and composite materials for the conditions of high-velocity throwing and interaction with the application of nanotechnologies. We have obtained data on the character of the high-velocity interaction of strikers made from tungsten composites by different technologies with a steel obstacle. A nanostructured material based on copper with higher strength characteristics has been developed. The conditions for increasing the muzzle velocity of a barrel throwing installation due to the application of nanocomposite fuels have been investigated and realized. A computing-experimental method for investigating the processes of high-velocity collision of bodies has been elaborated.

  4. High-cycle fatigue strength of a pultruded composite material

    Directory of Open Access Journals (Sweden)

    L. Vergani


    Full Text Available Dealing with composites in polymeric matrix, the pultruded ones are among the more suitable for large production rates and volumes. For this reason, their use is increasing also in structural applications in civil and mechanical engineering. However, their use is still limited by the partial knowledge of their fatigue behaviour; in many applications it is, indeed, required a duration of many millions of cycles, while most of the data that can be found in literature refer to a maximum number of cycles equal to 3 millions. In this paper a pultruded composite used for manufacturing structural beams is considered and its mechanical behaviour characterized by means of static and high-cycle fatigue tests. The results allowed to determine the S-N curve of the material and to assess the existence of a fatigue limit. Observations at the scanning electronic microscope (SEM allowed to evaluate the damage mechanisms involved in the static and fatigue failure of the material.

  5. Peridynamics for analysis of failure in advanced composite materials

    KAUST Repository

    Askari, A.


    Peridynamics has been recently introduced as a way to simulate the initiation and propagation of multiple discontinuities (e.g. cracks). It is an alternative to classical continuum damage mechanics and fracture mechanics and is based on a nonlocal rewriting of the equilibrium equation. This new technique is particularly promising in the case of composite materials, in which very complex mechanisms of degradation must be described. We present here some fundamental aspects of peridynamics models for composite materials, and especially laminates. We also propose an approach to couple peridynamics domains with classical continuum mechanics (which relies on the concept of contact forces) by the use of a recently introduced coupling technique: the morphing technique, that appears to be a very versatile and powerful tool for coupling local to nonlocal descriptions.


    Directory of Open Access Journals (Sweden)

    Bernardeta Dębska


    Full Text Available In recent years, the idea of sustainable development has become one of the most important require-ments of civilization. Development of sustainable construction involves the need for the introduction of innovative technologies and solutions that will combine beneficial economic effects with taking care of the health and comfort of users, reducing the negative impact of the materials on the environment. Composites obtained from the use of waste materials are part of these assumptions. These include modified epoxy mortar containing waste wood fibres, described in this article. The modification consists in the substitution of sand by crushed waste boards, previously used as underlays for panels, in quantities of 0%, 10%, 20%, 35% and 50% by weight, respectively. Composites containing up to 20% of the modifier which were characterized by low water absorption, and good mechanical properties, also retained them after the process of cyclic freezing and thawing.

  7. A comparison of microhardness of indirect composite restorative materials

    DEFF Research Database (Denmark)

    Miranda, Carolina Baptista; Pagani, Clóvis; Bottino, Marco Cícero


    test through: (I) Levene's for homogeneity of variances; (II) ANOVA on ranks (Kruskal-Wallis); (III) Dunn's multiple comparison test (0.05). Targis presented the highest microhardness values while Sinfony presented the lowest. Artglass and Solidex were found as intermediate materials. These results......The purpose of this study was to compare the microhardness of four indirect composite resins. Forty cylindrical samples were prepared according to the manufacturer’s recommendations using a Teflon mold. Ten specimens were produced from each tested material, constituting four groups (n=10...

  8. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites (United States)

    Generazio, Edward R.


    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  9. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA (United States)


    and radio frequency properties and carbon fiber materials characterization and development. As mentioned previously, selective tasks, subtasks and...comparison to pristine graphene at 0.34 nm, attributable to the presence of the covalent sp 3 carbon bonds formed above and below the plane of the 2-D

  10. Micromechanics of Composite Materials Governed by Vector Constitutive Laws (United States)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.


    The high-fidelity generalized method of cells micromechanics theory has been extended for the prediction of the effective property tensor and the corresponding local field distributions for composites whose constituents are governed by vector constitutive laws. As shown, the shear analogy, which can predict effective transverse properties, is not valid in the general three-dimensional case. Consequently, a general derivation is presented that is applicable to both continuously and discontinuously reinforced composites with arbitrary vector constitutive laws and periodic microstructures. Results are given for thermal and electric problems, effective properties and local field distributions, ordered and random microstructures, as well as complex geometries including woven composites. Comparisons of the theory's predictions are made to test data, numerical analysis, and classical expressions from the literature. Further, classical methods cannot provide the local field distributions in the composite, and it is demonstrated that, as the percolation threshold is approached, their predictions are increasingly unreliable. XXXX It has been observed that the bonding between the fibers and matrix in composite materials can be imperfect. In the context of thermal conductivity, such imperfect interfaces have been investigated in micromechanical models by Dunn and Taya (1993), Duan and Karihaloo (2007), Nan et al. (1997) and Hashin (2001). The present HFGMC micromechanical method, derived for perfectly bonded composite materials governed by vector constitutive laws, can be easily generalized to include the effects of weak bonding between the constituents. Such generalizations, in the context of the mechanical micromechanics problem, involve introduction of a traction-separation law at the fiber/matrix interface and have been presented by Aboudi (1987), Bednarcyk and Arnold (2002), Bednarcyk et al. (2004) and Aboudi et al. (2013) and will be addressed in the future.

  11. Calculation of Gamma Photon Propagation Processes in a Composite Material (United States)

    Pavlenko, V. I.; Cherkashina, N. I.; Noskov, A. V.; Yastrebinskii, R. N.; Sokolenko, I. V.


    The paper presents the data on radiation protection properties of a composite material consisting of the glass-crystalline matrix and nanotubular chrysotile modified by inserting PbWO4 into its structure, as well as the data on key physico-mechanical characteristics of the composite, such as density, ultimate compression strength, microhardness, porosity, water absorption, temperature stability, and thermostability. It was established that in addition to radiation protection properties, the examined material has enhanced practical design characteristics and can be used as a construction material. The propagation of gamma photons with different energy levels through the composite material is examined. A graph is built for dependence of the linear gamma radiation attenuation coefficient (μ) on energy in the range 0.25 < E < 1.4 MeV. The contribution of the Compton effect and the photoeffect into the total linear gamma photon flow attenuation coefficient are considered. It is established that at energy levels from 0.25 to 0.7 MeV, photoeffect makes the largest contribution to the total linear gamma radiation attenuation coefficient, while at energy levels from 0.7 to 1.4 MeV the largest contribution is made by the Compton effect. Error of the linear gamma radiation attenuation coefficient based on estimates and experimental data is very small and equals around 2%, which confirms that the developed model is correct. It is established that the composite possesses enhanced radiation protection characteristics, far exceeding those of iron and slightly (by 10.4%) yielding to pure lead.

  12. Scarf Joint Modeling and Analysis of Composite Materials (United States)


    MODELING AND ANALYSIS OF COMPOSITE MATERIALS by Armando Marrón June 2009 Thesis Advisor: Young W. Kwon Second Reader: Douglas C. Loup THIS...June 2009 Author: Armando Marrón Approved by: Professor Young W. Kwon Thesis Advisor Douglas C. Loup Second Reader...W. Kwon Naval Postgraduate School Monterey, California 4. Douglas C. Loup Naval Surface Warfare Center, Carderock Division West Bethesda

  13. Non-destructive evaluation of composite materials using ultrasound (United States)

    Miller, J. G.


    Investigation of the nondestructive evaluation of advanced composite-laminates is summarized. Indices derived from the measurement of fundamental acoustic parameters are used in order to quantitatively estimate the local material properties of the laminate. The following sections describe ongoing studies of phase insensitive attenuation measurements, and discuss several phenomena which influences the previously reported technique of polar backscatter. A simple and effective programmable gate circuit designed for use in estimating attenuation from backscatter is described.

  14. New topics on nanoindentation of polymers and composite materials (United States)

    Martinez Hernandez, Ricardo

    In this study, nanoindentation was used to determine Young's modulus of homogeneous plastic materials as well as inhomogeneous epoxy woven fabric composites using various indenters. In the first part, homogeneous PMMA and polycarbonate were characterized using conical and spherical indenters. The conventional approach of the inverse analysis was modified in order to account for effects obtained during spherical nanoindentation. The experimental results were verified using FEA analysis in ABAQUS. It was found that viscous effects were present in conical nanoindentations which led to an overestimation of contact stiffness. The second part, the response of carbon and glass fiber woven fabric epoxy composites was investigated using Berkovich and spherical indenters. Localized nanoindentation was performed using the Berkovich probe in both materials which led to determination of glass fibers and matrix stiffnesses. The anisotropic nature of the response was treated modifying the classical approach to calculate transverse modulus of a unidirectional composite. Finally, fiber volume ratios were calculated according to type of composite and indenter used.

  15. Materials and Process Activities for NASA's Composite Crew Module (United States)

    Polis, Daniel L.


    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.

  16. Compositional analysis of water-soluble materials in switchgrass. (United States)

    Chen, Shou-Feng; Mowery, Richard A; Sevcik, Richard S; Scarlata, Christopher J; Chambliss, C Kevin


    Any valuation of a potential feedstock for bioprocessing is inherently dependent upon detailed knowledge of its chemical composition. Accepted analytical procedures for compositional analysis of biomass water-soluble extracts currently enable near-quantitative mass closure on a dry weight basis. Techniques developed in conjunction with a previous analytical assessment of corn stover have been applied to assess the composition of water-soluble materials in four representative switchgrass samples. To date, analytical characterization of water-soluble material in switchgrass has resulted in >78% mass closures for all four switchgrass samples, three of which have a mass closure of >85%. Over 30 previously unknown constituents in aqueous extracts of switchgrass were identified and quantified using a variety of chromatographic techniques. Carbohydrates (primarily sucrose, glucose, and fructose) were found to be the predominant water-soluble components of switchgrass, accounting for 18-27% of the dry weight of extractives. Total glycans (monomeric and oligomeric sugars) contributed 25-32% to the dry weight of extractives. Additional constituents contributing to the mass balance for extractives included various alditols (2-3%), organic acids (10-13%), inorganic ions (11-13%), and a distribution of oligomers presumed to represent a diverse mixture of lignin-carbohydrate complexes (30-35%). Switchgrass results are compared with previous analyses of corn stover extracts and presented in the context of their potential impact on biomass processing, feedstock storage, and future analyses of feedstock composition.

  17. Intermetallic and titanium matrix composite materials for hypersonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Berton, B.; Surdon, G.; Colin, C. [Dassault Aviation, Saint-Cloud (France)]|[Aersopatiale Space & Defence, St Medard en Jalles (France)


    As part of the French Program of Research and Technology for Advanced Hypersonic Propulsion (PREPHA) which was launched in 1992 between Aerospatiale, Dassault Aviation, ONERA, SNECMA and SEP, an important work is specially devoted to the development of titanium and intermetallic composite materials for large airframe structures. At Dassault Aviation, starting from a long experience in Superplastic Forming - Diffusion Bonding (SPF-DB) of titanium parts, the effort is brought on the manufacturing and characterization of composites made from Timet beta 21S or IMI 834 foils and Textron SCS6 fiber fabrics. At `Aersopatiale Espace & Defence`, associated since a long time about intermetallic composite materials with university research laboratories, the principal effort is brought on plasma technology to develop the gamma titanium aluminide TiAl matrix composite reinforced by protected silicon carbide fibers (BP SM 1240 or TEXTRON SCS6). The objective, is to achieve, after 3 years of time, to elaborate a medium size integrally stiffened panel (300 x 600 sq mm).

  18. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang


    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  19. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation (United States)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.


    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  20. Finite element analysis of a composite crash box subjected to low velocity impact (United States)

    Shaik Dawood, M. S. I.; Ghazilan, A. L. Ahmad; Shah, Q. H.


    In this work, finite element analyses using LS-DYNA had been carried out to investigate the energy absorption capability of a composite crash box. The analysed design incorporates grooves to the cross sectional shape and E-Glass/Epoxy as design material. The effects of groove depth, ridge lines, plane width, material properties, wall thickness and fibre orientation had been quantitatively analysed and found to significantly enhance the energy absorption capability of the crash box.

  1. Mechanical and time-dependent behavior of wood-plastic composites subjected to bending (United States)

    S. E. Hamel; John Hermanson; S. M. Cramer


    The most popular use of wood–plastic composite (WPC) members in the United States has been as outdoor decking material in residential construction. If the use of these products expands into more structural applications, such as beams and joists, it is imperative that the material’s mechanical behavior be understood. Since most of the potential structural uses of this...


    Directory of Open Access Journals (Sweden)

    N. N. Trifonova


    Full Text Available Siberian Research and Design Institute for Nonferrous Metallurgy (JSC “Sibtsvetmetniiproekt” was established in August 1949 for the technology development for the nonferrous ore extraction and treatment as well as for the engineering of mining plants in Siberia and the Russian Far East. Nowadays JSC "Sibtsvetmetniiproekt" continues to develop the quality projects and actual technology for material treatment for new mineral companies as well as reference materials for composition of technological conversion products. During 1970-2012 JSC "Sibtsvetmetniiproekt" developed 83 reference materials which includes 42 types of State reference materials for silver, cuprum, silver alloys with noble metals, cuprum alloys with noble metals, ores, mattes, sludge, concentrates etc., State reference materials for fluorites as well as 41 types of in-house reference materials for the following companies: PJSC "Mining and Metallurgical Company 'Norilsk Nickel'", fluorite branches companies, OJSC "Gorevsky Gok" and others. All developed reference materials are high-demand and used by analytical department and testing laboratories of Russian and foreign leading academic and research companies, geological enterprises.

  3. Complete Recycling of Composite Material Comprising Polybutylene Terephthalate and Copper

    Directory of Open Access Journals (Sweden)

    Fabian Knappich


    Full Text Available Composite materials comprising plastic and metal parts generate a large amount of waste containing valuable components that are difficult to separate and recycle. We therefore developed an economical solvent-based process for the recovery of costly manufactured composite materials comprising several copper panels over-moulded with a polymeric matrix of polybutylene terephthalate (PBT. We applied the CreaSolv® Process, which uses proprietary formulations with a low risk to user and environment, in order to dissolve the polymer and retain the inert copper. After separating the metal from the solution, solvent recovery was achieved by means of vacuum distillation and melt degassing extrusion. The recovered solvent was collected and recycled while maintaining its original properties. We tested two candidate solvents with PBT, measuring their impact on the molecular weight (Mw and polydispersity of the polymer at different residence times and dissolution temperatures. We found that increasing the temperature-time-load had a negative effect on the Mw. Both solvents we tested were able to dissolve the polymeric matrix within 30 min and with moderate energy consumption. Furthermore, we found that the exclusion of oxygen during dissolution significantly increases the quality of the recovered polymer and metal. We transferred the process from the laboratory scale to the small-technical scale and produced material for large analytical and mechanical quality evaluation, revealing no decline in the polymer quality by blending with new plastic. The recovered copper met virgin material properties. Therefore, both components of the original composite material have been recovered in a form suitable for reuse.


    Directory of Open Access Journals (Sweden)

    V. A. Okovity


    Full Text Available A composite ceramic material has been developed for thermal spraying that permits to increase wear resistance due to introduction of high-chromium steel and molybdenum in its structure, to obtain optimum porosity in the starting charge material while synthesizing  FeCrMo – MoS2/CaF2/С – TiC compositions,  to improve technological parameters of powders and thereby increase coefficient of powder usage in spraying, to reduce cost of wear-resistant coating technology. The paper presents characteristics and parameters of the developed material and coating which is based on it. Methodology is based on  complex metallographical, X-ray diffraction and electron microscopy investigations of structural elements of composite plasma coatings. Main components of composite particles are solid solutions based on iron, titanium carbides, solid lubricant inclusions in the form of molybdenum disulfide, calcium fluoride, carbon. Presence of such powder particles predetermines obtaining wear-resistant coatings which are rather efficient in case of molecular and mechanical and abrasive wear-out under disadvantageous friction conditions (boundary lubrication or absence of lubrication material, elevated temperature actions.  The contemplated powders are characterized by complex geometric shape and developed surface relief of particles. There has been observed a stable distribution of hard carbide phase in volumes of deposited materials and absence of superficial zone with deficit of TiC inclusions that positively influence on working capacity of the investigated wear-resistant coatings. Plasma coatings which have been deposited with the help of  FeCrMo – MoS2 – TiC powders in accordance with the technology developed by authors have better wear resistance in case of dry friction in a steel 45 (coating wear-out is less by 1.2-fold; scoring load is higher by 1.2-fold than a coating which has been obtained with the help of Ni80Cr20 – 12 % MoS2 – 50

  5. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves (United States)

    Rokhlin, S. I.


    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual

  6. Achieving Functionally Graded Material Composition Through Bicontinuous Mesostructural Geometry in Material Extrusion Additive Manufacturing (United States)

    Stoner, Brant; Bartolai, Joseph; Kaweesa, Dorcas V.; Meisel, Nicholas A.; Simpson, Timothy W.


    Functionally graded materials (FGMs) gradually change composition throughout their volume, allowing for areas of a part to be optimized for specific performance requirements. While additive manufacturing (AM) process types such as material jetting and directed energy deposition are capable of creating FGMs, design guidelines for varying the material composition in an FGM do not exist. This article presents a novel design solution for FGMs: creating the material gradient by varying the mesostructural size and thickness of bicontinuous, multi-material geometries. By using a bicontinuous structure, such as Schoen's gyroid surface or Schwarz's P and D surfaces, each component material exists as a continuous discrete structure, which allows FGMs to be fabricated by a wider range of AM processes. The gradient is created by varying the volume fraction occupied by the surface structure inside the part volume. This article explores the use of this technique to create FGMs with material extrusion AM. Properties of these bicontinuous structures are experimentally characterized and shown to outperform typical material extrusion FGMs.

  7. Standard Test Methods for Constituent Content of Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 These test methods determine the constituent content of composite materials by one of two approaches. Method I physically removes the matrix by digestion or ignition by one of seven procedures, leaving the reinforcement essentially unaffected and thus allowing calculation of reinforcement or matrix content (by weight or volume) as well as percent void volume. Method II, applicable only to laminate materials of known fiber areal weight, calculates reinforcement or matrix content (by weight or volume), and the cured ply thickness, based on the measured thickness of the laminate. Method II is not applicable to the measurement of void volume. 1.1.1 These test methods are primarily intended for two-part composite material systems. However, special provisions can be made to extend these test methods to filled material systems with more than two constituents, though not all test results can be determined in every case. 1.1.2 The procedures contained within have been designed to be particularly effective for ce...

  8. SQUID measurements of magnetization for a magnetically tagged composite material (United States)

    Ma, Yu Pei; Wikswo, John P.; Fitzpatrick, Gerald


    Magnetic anomalies produced by a magnetically tagged composite material under stress may provide useful information for non-destructive inspection of the material. Magneto-optic methods (MOI) have been used previously to demonstrate that for a fiberglass and epoxy composite sample that is tagged with the magnetostrictive material Terfenol-D, tensile stress above a critical value alters the initial magnetization in regions near a structural defect. We have used a vector SQUID gradiometer, which can measure three components of the magnetic field, to study the stress response of the material. The SQUID detected a large remnant magnetization near the crack after degaussing without any applied tension. After the sample was magnetized, mainly in the z direction, the tensile stress reduces the magnetization Mz throughout the sample length, except that it increased (or decreased) the magnetization in the y direction in the immediate vicinity of the crack. For better understanding of the measured data, we also simulated three components of the magnetic field.

  9. Parametric Study of Single Bolted Composite Bolted Joint Subjected to Static Tensile Loading (United States)

    Awadhani, L. V.; Bewoor, Anand, Dr.


    The use of composites is increasing in the engineering applications in order to reduce the weight, building energy efficient systems, designing a suitable material according to the requirements of the application. But at the same time, building a structure is possible only by bonding or bolting or combination of them. There are limitations for the bonding methods and problems with the bolting such as stress concentration near the neighborhood of the bolt hole, tensile or shear failure, delamination etc. Hence the design of a composite bolted structure needs a special attention. This paper focuses on the performance of the composite bolted joint under static tensile loading and the effect of variation in the parameters such as the bolt pitch, plate width, thickness, bolt tightening torque, composite material, coefficient of friction between the bolt and plate etc. A simple spring mass model is used to study the single bolted composite bolted joint. The influencing parameters are identified through the developed model and compared with the results from the literature. The best geometric parameters for the applied load are identified for the composite bolted joints.

  10. Evaluation of fracture resistance of indirect composite resin crowns by cyclic impact test: influence of crown and abutment materials. (United States)

    Sakoguchi, Kenji; Minami, Hiroyuki; Suzuki, Shiro; Tanaka, Takuo


    This study evaluated the effect of abutment materials on the fracture resistance of composite crowns for premolars. Composite crowns were fabricated using two different indirect composite resin materials (Meta Color Prime Art or Estenia C&B) and cemented onto either a metal (Castwell M.C. 12) or composite resin (Build-It FR and FibreKor) abutment with resin cement (Panavia F2.0). Twenty-four specimens were fabricated for four groups (n=6 each) and subjected to 280-N cyclic impact loading at 1.0 Hz. The number of cycles which caused the composite crown to fracture was defined as its fracture resistance. All data were statistically analyzed using ANOVA and the Bonferroni test (α=0.05). Composite crowns cemented onto resin abutments showed higher fracture resistance than those cemented onto metal abutments.

  11. Computational Modeling of Progressive Failure in FRP Composite Laminates Subjected to Static and Impact Transverse loading

    NARCIS (Netherlands)

    Ahmed, A.


    In order to arrive at safe and reliable design of composite structures, understanding of the mechanisms and mechanics of damage growth in these materials is of paramount significance. Numerical models, if designed, implemented and used carefully, can be helpful not only to understand the mechanisms

  12. "Bucky gels" for tailoring electroactive materials and devices: the composites of carbon materials with ionic liquids. (United States)

    Lee, Jeongho; Aida, Takuzo


    Bucky gels are gelatinous composite materials consisting of carbon nanotubes and ionic liquids. This article gives an overview of some promising applications of bucky gels reported mostly in the last few years and a possible extension to the dispersion of graphene sheets. This journal is © The Royal Society of Chemistry 2011

  13. Recent developments of discrete material optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Lund, Erik; Sørensen, Rene


    This work will give a quick summary of recent developments of the Discrete Material Optimization approach for structural optimization of laminated composite structures. This approach can be seen as a multi-material topology optimization approach for selecting the best ply material and number....... The different interpolation schemes used are described, and it is briefly outlined how design rules/manufacturing constraints can be included in the optimization. The approach has been demonstrated for a number of global design criteria like mass, compliance, buckling load factors, etc., but recent work makes...... it possible also to include local criteria such as strength criteria in the formulations. This is illustrated by structural optimization of a corner hinged laminated plate in this paper, and at ICCM20 it will also be demonstrated for optimization of a main spar from a wind turbine blade....

  14. Ternary gypsum-based materials: Composition, properties and utilization (United States)

    Doleželová, M.; Svora, P.; Vimmrová, A.


    In spite of the fact that gypsum is one of the most environmentally friendly binders, utilization of gypsum products is relatively narrow. The main problem of gypsum materials is their low resistance to the wet environment and radical decrease of mechanical properties with increasing moisture. The solution of the problem could be in use of composed gypsum-based binders, usually ternary, comprising gypsum, pozzolan and alkali activator of pozzolan reaction. These materials have a better moisture resistance and often also better mechanical properties. Paper provides literature survey of the possible compositions, properties and ways of utilization of the composed gypsum-based binders with latent hydraulic and pozzolan materials together with some results of present research performed by authors.

  15. An enhanced Whipple Bumper system - Impact resistance of composite materials (United States)

    Zwiener, J.; Mount, A.; Herren, K.; Nettles, A.; Semmel, C.; Sims, J.


    For long-duration space flights where human occupation is expected, micrometeroid and debris shields are necessary to prevent puncture of the pressure vessels. Current 'Whipple Bumper' designs range from single thin sheets of aluminum to complicated structures of many energy absorbing layers. This paper details the results of an experimental program tao determine the increased protection afforded by intermediate bumpers made of composite material structures. Various configurations of honeycomb support structures sandwiched between layers of materials such as Kevlar, Spectra, aluminum, and others are inserted between the bumper and pressure shell. The areal densities of each new material structure are maintained constant so that the results compare directly with single-sheet aluminum intermediate bumpers.

  16. New Materials for Structural Composites and Protective Coatings (United States)


    The objective of this Phase I project was to create novel conductive materials that are lightweight and strong enough for multiple ground support equipment and Exploration applications. The long-term goal is to combine these materials within specially designed devices to create composites or coatings with diagnostic capabilities, increased strength, and tunable properties such as transparency, electroluminescence, and fire resistance. One such technology application is a smart windows system. In such a system, the transmission of light through a window is controlled by electrical power. In the future, these materials may also be able to absorb sunlight and convert it into electrical energy to produce light, thereby creating a self-sufficient lighting system. This experiment, conducted in collaboration with the Georgia Institute of Technology, demonstrated enhancements in fabricating fiber materials from carbon nanotubes (CNT). These nanotubes were grown as forests in an ultra-high-purity chemical vapor deposition (CVD) furnace and then drawn, using novel processing techniques, into fibers and yarns that would be turned into filaments. This work was submitted to the Journal of Advanced Functional Materials. The CNT fibers were initially tested as filament materials at atmospheric pressure; however, even under high current loads, the filaments produced only random sparking. The CNT fibers were also converted into transparent, hydrophobic, and conductive sheets. Filament testing at low vacuum pressures is in progress, and the technology will be enhanced in 2008. As initial proof of the smart-windows application concept, the use of CNT sheets as composites/ protective coatings was demonstrated in collaboration with Nanocomp Technologies of Concord, New Hampshire.

  17. Novel SiO2-C composite adsorptive material

    Directory of Open Access Journals (Sweden)

    Volzone, C.


    Full Text Available The present work is about the development of a Novel Composite that has several properties in only one material. This material is composed by a silica network with a sharpened pore size distribution - diameter near 1000 Å - intercrossed with another carbon network that has carbonaceous microdomains of high activity. The first network facilitates the entrance of big molecules to the interior of the material grains so they quickly reach the active sites of the carbonous network, minimizing the diffusional resistance observed when high performance activated carbons are used in adsorption processes or catalytic applications. These two intercrossed structures are self-supporting and independent among them, so one from the other can be isolated without losing the original shape and volume of the starting composite, then, their possible uses may be multiplied. The Novel Composite is stable with respect to other support or adsorbent materials due to its high obtention temperature (1550 ºC. The obtention methods of the composite and its isolated structures are described. The material was characterized by different techniques (XRD, IR, Loss on ignition, pore size distribution, specific surface area, adsorption desorption isotherms, methylene blue adsorption and SEM.En el presente trabajo se describe el desarrollo de un nuevo material compuesto que reúne distintas propiedades en un solo material. Dicho material está formado por una red de sílice con distribución de tamaño de poro estrecha - diámetro cercano a los 1000 Å - entrecruzada con otra red de carbón pseudografítica donde los microdominios carbonosos son de alta actividad. La primer red facilita la entrada de grandes moléculas al interior de los granos del material permitiendo su rápido acceso a los sitios activos de la red carbonosa, esto minimiza la resistencia difusional observada cuando se utilizan carbones activados de alto rendimiento en los procesos de adsorción o aplicaciones

  18. Fluorescent single walled carbon nanotube/silica composite materials. (United States)

    Satishkumar, B C; Doorn, Stephen K; Baker, Gary A; Dattelbaum, Andrew M


    We present a new approach for the preparation of single walled carbon nanotube silica composite materials that retain the intrinsic fluorescence characteristics of the encapsulated nanotubes. Incorporation of isolated nanotubes into optically transparent matrices, such as sol-gel prepared silica, to take advantage of their near-infrared emission properties for applications like sensing has been a challenging task. In general, the alcohol solvents and acidic conditions required for typical sol-gel preparations disrupt the nanotube/surfactant assembly and cause the isolated nanotubes to aggregate leading to degradation of their fluorescence properties. To overcome these issues, we have used a sugar alcohol modified silica precursor molecule, diglycerylsilane, for encapsulation of nanotubes in silica under aqueous conditions and at neutral pH. The silica/nanotube composite materials have been prepared as monoliths, at least 5 mm thick, or as films (characteristics of the silica encapsulated carbon nanotubes by means of redox doping studies as well as demonstrated their potential for biosensing applications. Such nanotube/silica composite systems may allow for new sensing and imaging applications that are not currently achievable.

  19. Comparative in vitro wear resistance of CAD/CAM composite resin and ceramic materials. (United States)

    Zhi, Li; Bortolotto, Tissiana; Krejci, Ivo


    Composite resin is a promising option in computer-aided design and computer-aided manufacturing (CAD/CAM) dentistry; however, the wear resistance of composite resin remains a primary concern. The purpose of this in vitro study was to evaluate the wear resistance of 5 CAD/CAM materials (n=10), consisting of 4 composite resins (3M Lava Ultimate, Kerr experimental composite resin material, Vita Enamic, 3M Paradigm MZ100) and 1 ceramic (Vita Mark II) in contact with natural human enamel cusps. Specimens were loaded into a computer-controlled mastication simulator and subjected to 200000 mechanical cycles (49 N) against natural human enamel simultaneously with 500 thermal cycles (5°C to 50°C to 5°C). The wear resistance was analyzed by measuring the vertical substance loss (the maximum depth of the worn area) in the contact point area of the specimen. The worn surfaces were observed by scanning electron microscopy to determine the wear patterns. Vita Mark II exhibited the best wear resistance among the tested materials, followed by 3M Lava Ultimate, Vita Enamic, and 3M Paradigm MZ100. The Kerr experimental material exhibited the lowest wear resistance, yet its results were not significantly different from those of the 3 other composite resin blocks (P>.05). Within the limitations of this in vitro study, the wear resistance of composite resin blocks in contact with enamel cusps was significantly lower than that of a ceramic block. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Field dependent permittivity of composite materials containing ferromagnetic wires (United States)

    Makhnovskiy, D. P.; Panina, L. V.


    A type of a composite material is proposed, the microwave permittivity of which changes under the effect of a dc magnetic field applied to the whole composite sample. The composite consists of short ferromagnetic wires embedded into a dielectric matrix. A strong field dependence of the permittivity is seen in the vicinity of the antenna resonance, where the dispersion behavior can experience a transformation from a resonant spectrum to a relaxation one under the effect of the field. This permittivity behavior is due to a high sensitivity of the ac surface impedance of a ferromagnetic wire to a magnetic field, known as the magnetoimpedance (MI) effect. If the resonance-like dispersion behavior is realized, the real part of the effective permittivity can be made negative past the resonance for wire inclusion concentrations well below the percolation threshold. Applying a magnetic field, the negative peak continuously decreases as the dispersion tends to become of a relaxation type. The effective permittivity is analyzed within a one-particle approximation, by considering a wire piece as an independent scatterer and solving the scattering problem with the impedance boundary condition. A magnetic field is assumed to be applied in parallel to the wire. A new integrodifferential equation for the current distribution in a wire is obtained, which is valid for the surface impedance matrix of a general form. This work demonstrates the possibility of using the MI effect to design field-controlled composites and band-gap structures.

  1. Glassy Carbon Coating Deposited on Hybrid Structure of Composite Materials

    Directory of Open Access Journals (Sweden)

    Posmyk A.


    Full Text Available This paper presents a method of production metal matrix composites with aluminum oxide foam covered by glassy carbon layer used as reinforcement. The glassy carbon coating was formed for decreasing of friction coefficient and reducing the wear. In first step of technology liquid glassy carbon precursor is on ceramic foam deposited, subsequently cured and carbonated at elevated temperature. In this way ceramic foam is covered with glassy carbon coating with thickness of 2-8 μm. It provides desirable amount of glassy carbon in the structure of the material. In the next step, porous spheres with carbon coating are infiltrated by liquid matrix of Al-Cu-Mg alloy. Thereby, equable distribution of glassy carbon in composite volume is achieved. Moreover, typical problems for composites reinforced by particles like sedimentation, agglomeration and clustering of particles are avoided. Tribological characteristics during friction in air versus cast iron as a counterpart were made. Produced composites with glassy carbon layer are characterised by friction coefficient between 0.08-0.20, thus meeting the typical conditions for solid lubricants.

  2. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Ishihara, Masahiro; Souzawa, Shizuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and {gamma}-ray spectrum are reported. (author)

  3. Preparation and characterization of phase transition/graphite foam composite materials. (United States)

    Yu, Jia; Tang, ChenLong; Yu, ZhiChao


    Phase transition/graphite foam (PCM/GF) composite materials are a kind of composite materials that fill graphite foam with phase change materials. In this paper, graphite foam was prepared firstly by the soft template method, the heat conductivity of which at room temperature is 5.44 W/(m∙K). Then, four phase change materials including eicosane, acetamide, xylitol, and erythritol were chosen for filling into the prepared graphite foam to obtain PCM/GF composite materials. Among the four kinds of materials, erythritol composite material has the highest melting point (118.5°C) and the highest enthalpy of fusion (266.3J/g), weight loss ratios of xylitol composite material after ten cycles is the lowest (2.1%), the compressive strength of xylitol composite material is the highest (9.08 MPa) and that of eicosane composite material is the lowest (3.32 MPa).

  4. Structural integrity of engineering composite materials: a cracking good yarn. (United States)

    Beaumont, Peter W R; Soutis, Costas


    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  5. Present and Future Automotive Composite Materials Research Efforts at DOE

    Energy Technology Data Exchange (ETDEWEB)

    Warren, C.D.


    Automobiles of the future will be forced to travel fi.uther on a tank of fuel while discharging lower levels of pollutants. Currently, the United States uses in excess of 16.4 million barrels of petroleum per day. Sixty-six percent of that petroleum is used in the transportation of people and goods. Automobiles currently account for just under two-thirds of the nation's gasoline consumptio~ and about one-third of the total United States energy usage. [1] By improving transportation related fiel efficiency, the United States can lessen the impact that emissions have on our environment and provide a cleaner environment for fiture generations. In 1992, The Department of Energy's (DOE) Office of Transportation Materials completed a comprehensive program plan entitled, The Lightweight MateriaIs (LWko Multi-Year Program Plan, for the development of technologies aimed at reducing vehicle mass [2]. This plan was followed in 1997 by the more comprehensive Office of Advanced Automotive Technologies research and development plan titled, Energy Eficient Vehicles for a Cleaner Environment [3] which outlines the department's plans for developing more efficient vehicles during the next ~een years. Both plans identi~ potential applications, technology needs, and R&D priorities. The goal of the Lightweight Materials Program is to develop materials and primary processing methods for the fabrication of lighter weight components which can be incorporated into automotive systems. These technologies are intended to reduce vehicle weight, increase fuel efficiency and decrease emissions. The Lightweight Materials program is jointly managed by the Department of Energy(DOE) and the United States Automotive Materials Partnership (USAMP). Composite materiak program work is coordinated by cooperative research efforts between the DOE and the Automotive Composites Consortium (ACC).

  6. Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications (United States)

    Williams, Martha K.; Fesmire, James E.


    This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.

  7. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.


    The use of different types of fibers simultaneously for reinforcing cementitious matrices is motivated by the concept of a multi-scale nature of the crack propagation process. Fibers with different geometrical and mechanical properties are used to bridge cracks of different sizes from the micro......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...... reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid...

  8. Designing magnetic composite materials using aqueous magnetic fluids

    CERN Document Server

    Galicia, J A; Cousin, F; Guemghar, D; Menager, C; Cabuil, V


    In this paper, we report on how to take advantage of good knowledge of both the chemistry and the stability of an aqueous magnetic colloidal suspension to realize different magnetic composites. The osmotic pressure of the magnetic nanoparticles is set prior to the realization of the composite to a given value specially designed for the purpose for each hybrid material: magnetic particles in polymer networks, particles as probes for studying the structure of clay suspensions and shape modification of giant liposomes. First, we show that the introduction of magnetic particles in polyacrylamide gels enhances their Young modulus and reduces the swelling caused by water. The particles cause both a mechanical and an osmotic effect. The latter is strongly dependent on the ionic strength and is attributed to an attraction between particles and the polymeric matrix. In the second part, we determine the microscopic structure of suspensions of laponite as a function of concentration, by combining SANS and magneto-optica...

  9. Modelling the behaviour of composite sandwich structures when subject to air-blast loading

    Directory of Open Access Journals (Sweden)

    H Arora


    Full Text Available Large-scale glass fibre reinforced polymer (GFRP and carbon fibre reinforced polymer (CFRP sandwich structures (1.6 m x 1.3 m were subject to explosive air blast (100 kg TNT equivalent at stand-off distances of 14 m. Digital image correlation (DIC was used to obtain full-field data for the rear-face of each deforming target. A steel plate of comparable mass per unit area was also subjected to the same blast conditions for comparison. The experimental data was then verified with finite element models generated in Abaqus/Explicit. Close agreement was obtained between the numerical and experimental results, confirming that the CFRP panels had a superior blast performance to the GFRP panels. Moreover all composite targets sustained localised failures (that were more severe in the GFRP targets but retained their original shape post blast. The rear-skins remained intact for each composite target with core shear failure present.

  10. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong


    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  11. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)


    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  12. Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon


    The present invention relates to compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and an organic compound comprising a carboxylic acid moiety, a lactone moiety, a phenolic moiety, a flavonoid moiety, or a combination thereof, wherein the combination of the GH61 polypeptide having cellulolytic enhancing activity and the organic compound enhances hydrolysis of a cellulosic material by a cellulolytic enzyme compared to the GH61 polypeptide alone or the organic compound alone. The present invention also relates to methods of using the compositions.

  13. A Nanotechnology Approach to Lightweight Multifunctional Polyethylene Composite Materials for Use Against the Space Environment Project (United States)

    National Aeronautics and Space Administration — Polyethylene-based composite materials are under consideration as multifunctional structural materials, with the expectation that they can provide radiation...

  14. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials (United States)

    Martin, Richard E.


    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  15. Metal Matrix Composite Material by Direct Metal Deposition (United States)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  16. Degree of conversion and microhardness of dental composite resin materials (United States)

    Marovic, D.; Panduric, V.; Tarle, Z.; Ristic, M.; Sariri, K.; Demoli, N.; Klaric, E.; Jankovic, B.; Prskalo, K.


    Dental composite resins (CRs) are commonly used materials for the replacement of hard dental tissues. Degree of conversion (DC) of CR measures the amount of the un-polymerized monomers in CR, which can cause adverse biological reactions and weakening of the mechanical properties. In the past, studies have determined the positive correlation of DC values determined by Fourier transform infrared spectroscopy (FT-IR) and microhardness (MH) values. The aim of this study was to establish whether MH can replace FTIR for the determination of DC of contemporary CR.

  17. Characterization of selected LDEF polymer matrix resin composite materials (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.


    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  18. Thermal-vacuum effects on polymer matrix composite materials (United States)

    Tennyson, R. C.; Mabson, G. E.


    Results are presented on the thermal-vacuum response of a variety of fiber reinforced polymers matrix composites that comprised the UTIAS experiment on the LDEF satellite. Theoretical temperature-time predictions for this experiment are in excellent agreement with test data. Results also show quite clearly the effect of outgassing in the dimensional changes of these materials and the corresponding coefficients of thermal expansion. Finally, comparison with ground-based simulation tests are presented as well. Use of these data for design purposes are also given.

  19. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard


    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...... is also estimated based on test results. The results show that Miners rule gives a non-conservative estimate on the accumulated damage at failure. The reliability of a wind turbine blade is estimated for both out-of-plane and in-plane loading using three different design standards. The estimated annual...

  20. The bond of different post materials to a resin composite cement and a resin composite core material. (United States)

    Stewardson, D; Shortall, A; Marquis, P


    To investigate the bond of endodontic post materials, with and without grit blasting, to a resin composite cement and a core material using push-out bond strength tests. Fiber-reinforced composite (FRC) posts containing carbon (C) or glass (A) fiber and a steel (S) post were cemented into cylinders of polymerized restorative composite without surface treatment (as controls) and after grit blasting for 8, 16, and 32 seconds. Additional steel post samples were sputter-coated with gold before cementation to prevent chemical interaction with the cement. Cylindrical composite cores were bonded to other samples. After sectioning into discs, bond strengths were determined using push-out testing. Profilometry and electron microscopy were used to assess the effect of grit blasting on surface topography. Mean (standard deviation) bond strength values (MPa) for untreated posts to resin cement were 8.41 (2.80) for C, 9.61(1.88) for A, and 19.90 (3.61) for S. Prolonged grit blasting increased bond strength for FRC posts but produced only a minimal increase for S. After 32 seconds, mean values were 20.65 (4.91) for C, 20.41 (2.93) for A, and 22.97 (2.87) for S. Gold-coated steel samples produced the lowest bond strength value, 7.84 (1.40). Mean bond strengths for untreated posts bonded to composite cores were 6.19 (0.95) for C, 13.22 (1.61) for A, and 8.82 (1.18) for S, and after 32 seconds of grit blasting the values were 17.30 (2.02) for C, 26.47 (3.09) for A, and 20.61 (2.67) for S. FRC materials recorded higher roughness values before and after grit blasting than S. With prolonged grit blasting, roughness increased for A and C, but not for S. There was no evidence of significant bonding to untreated FRC posts, but significant bonding occurred between untreated steel posts and the resin cement. Increases in the roughness of FRC samples were material dependent and roughening significantly increased bond strength values (p<0.05). Surface roughening of the tested FRC posts is

  1. Comparison of Effect of C-Factor on Bond Strength to Human Dentin Using Different Composite Resin Materials. (United States)

    Singh, Thakur Veerandar; Patil, Jaya Prakash; Raju, Rvs Chakradhar; Venigalla, Bhuvan Shome; Jyotsna, S V; Bhutani, Neha


    The study was planned to assess the use of low shrinkage composites for restoring cavities with high configuration factor (C-factor) which are subjected to high stresses. The aim of the study was to evaluate the effect of C- factor on tensile bond strength to human dentin using methacrylate based nanohybrid and low shrinkage silorane composite. In this study 40 non carious human molar teeth were selected and assigned into two main groups - cavity (Class I cavity with high C-factor) and flat group (flat surface with low C-factor). Two different composite materials- methacrylate based and silorane low shrinkage composite were used to restore the teeth. Dentin surface was treated, adhesive application was done and composite was applied as per manufacturer's instructions. Samples were stored in distilled water then subjected to tensile bond strength measurement using universal testing machine. Statistical analysis was done using Independent sample t-test. The mean bond strength in methacrylate based and silorane composite was significantly higher in flat preparation (Low C-factor) than cavity preparation. The mean bond strength in both cavity (High C-factor) and flat preparation(Low C-factor) was significantly higher in silorane than in conventional methacrylate based composite. The bond strength of composites to dentin is strongly influenced by C-factor and type of composite resin material used.

  2. Effects of pulp capping materials on fracture resistance of Class II composite restorations. (United States)

    Kucukyilmaz, Ebru; Yasa, Bilal; Akcay, Merve; Savas, Selcuk; Kavrik, Fevzi


    The aim of this study was to investigate the effect of cavity design and the type of pulp capping materials on the fracture resistance of Class II composite restorations. Sixty freshly extracted, sound molar teeth were selected for the study. A dovetail cavity on the mesio-occlusal and a slot cavity on disto-occlusal surfaces of each tooth were prepared, and the teeth were divided 4 groups which one of them as a control group. The pulp capping materials (TheraCal LC, Calcimol LC, Dycal) applied on pulpo-axial wall of each cavity, and the restoration was completed with composite resin. The teeth were subjected to a compressive load in a universal mechanical testing machine. The surfaces of the tooth and restoration were examined under a stereomicroscope. The data were analyzed using factorial analysis of variance and Tukey's test. For pulp capping materials, the highest fracture load (931.15 ± 203.81 N) and the lowest fracture load (832.28 ± 245.75 N) were calculated for Control and Dycal group, respectively. However, there were no statistically significant differences among all groups (P > 0.05). The fracture load of the dovetail groups was significantly higher than those of the slot cavity groups (P resistance in Class II composite restorations, independent of used or not used pulp capping materials.

  3. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load (United States)

    Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong


    Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

  4. New Elastomeric Materials and Functional Composites for Stretchable Electronics (United States)

    Vohra, Akhil

    This dissertation reports a diverse range of new components for the fabrication of soft flexible, stretchable and wearable electronic devices. The components investigated spans design and development of a new elastomer, layered elastomeric material, investigation and modification of surface chemistries, and development of new techniques for fabrication of stretchable, conductive composites using nanomaterials and metals. Simple, low-cost, benchtop techniques for the fabrication of the functional materials has been a strong focus of the work reported in this dissertation. Chapter 2 reports the development of a new transparent formulation of a renowned elastomer, butyl rubber, that enables its use in stretchable electronics applications. We design a new compression molding method to prepare highly smooth and transparent butyl rubber (T-IIR) substrates. We demonstrate the T-IIR protection to sensitive electronic materials from degradation and corrosion by oxygen and moisture to extend the lifetimes of stretchable devices. The demonstrated benefits positions T-IIR as an important elastomer for future generation of impermeable stretchable electronics. Chapter 3 examines the surface properties of T-IIR reported in Chapter 2 and reports methods to modify the surface chemistry of T-IIR to enable the deposition of electronic materials. This report advances the new elastomer from being a mere encapsulant to a substrate for direct device fabrication on its surface. As a proof of concept, we demonstrate the deposition of stretchable gold films on the organosilane-modified surface of T-IIR. Chapter 4 expands upon the work presented in Chapter 3 and reports the fabrication of a multilayered elastomeric composite built upon T-IIR. The properties of the composite enables the deposition of stretchable metal films, while T-IIR prevents degradation from gases and water vapor when the composite/metal is used in electronic devices. We demonstrate the fabrication and long lifetime

  5. Evaluation of hybrid composite materials in cylindrical specimen geometries (United States)

    Liber, T.; Daniel, I. M.


    Static and fatigue properties of three composite materials and hybrids were examined. The materials investigated were graphite/epoxy, S-glass/epoxy, PRD-49 (Kevlar 49)/epoxy, and hybrids in angle-ply configurations. A new type of edgeless cylindrical specimen was developed. It is a flattened tube with two flat sides connected by curved sections and it is handled much like the standard flat coupon. Special specimen fabrication, tabbing, and tab region reinforcing techniques were developed. Axial modulus, Poisson's ratio, strength, and ultimate strain were obtained under static loading from flattened tube specimens of nine laminate configurations. In the case of graphite/epoxy the tubular specimens appeared to yield somewhat higher strength and ultimate strain values than flat specimens. Tensile fatigue tests were conducted with all nine types of specimens and S-N curves obtained. Specimens surviving 10 million cycles of tensile loading were subsequently tested statically to failure to determine residual properties.

  6. Wave dynamics and composite mechanics for microstructured materials and metamaterials

    CERN Document Server


    This volume deals with topical problems concerning technology and design in construction of modern metamaterials. The authors construct the models of mechanical, electromechanical and acoustical behavior of the metamaterials, which are founded upon mechanisms existing on micro-level in interaction of elementary structures of the material. The empiric observations on the phenomenological level are used to test the created models. The book provides solutions, based on fundamental methods and models using the theory of wave propagation, nonlinear theories and composite mechanics for media with micro- and nanostructure. They include the models containing arrays of cracks, defects, with presence of micro- and nanosize piezoelectric elements and coupled physical-mechanical fields of different nature. The investigations show that the analytical, numerical and experimental methods permit evaluation of the qualitative and quantitative properties of the materials of this sort, with diagnosis of their effective characte...

  7. Compositional stratigraphy of crustal material from near-infrared spectra (United States)

    Pieters, Carle M.


    An Earth-based telescopic program to acquire near-infrared spectra of freshly exposed lunar material now contains data for 17 large impact craters with central peaks. Noritic, gabbroic, anorthositic and troctolitic rock types can be distinguished for areas within these large craters from characteristic absorptions in individual spectra of their walls and central peaks. Norites dominate the upper lunar crust while the deeper crustal zones also contain significant amounts of gabbros and anorthosites. Data for material associated with large craters indicate that not only is the lunar crust highly heterogeneous across the nearside, but that the compositional stratigraphy of the lunar crust is nonuniform. Crustal complexity should be expected for other planetary bodies, which should be studied using high spatial and spectral resolution data in and around large impact craters.

  8. Composite-Material Tanks with Chemically Resistant Liners (United States)

    DeLay, Thomas K.


    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  9. Bamboo–Polylactic Acid (PLA Composite Material for Structural Applications

    Directory of Open Access Journals (Sweden)

    Angel Pozo Morales


    Full Text Available Developing an eco-friendly industry based on green materials, sustainable technologies, and optimum processes with low environmental impact is a general societal goal, but this remains a considerable challenge to achieve. Despite the large number of research on green structural composites, limited investigation into the most appropriate manufacturing methodology to develop a structural material at industrial level has taken place. Laboratory panels have been manufactured with different natural fibers but the methodologies and values obtained could not be extrapolated at industrial level. Bamboo industry panels have increased in the secondary structural sector such as building application, flooring and sport device, because it is one of the cheapest raw materials. At industrial level, the panels are manufactured with only the inner and intermediate region of the bamboo culm. However, it has been found that the mechanical properties of the external shells of bamboo culm are much better than the average cross-sectional properties. Thin strips of bamboo (1.5 mm thick and 1500 mm long were machined and arranged with the desired lay-up and shape to obtain laminates with specific properties better than those of conventional E-Glass/Epoxy laminates in terms of both strength and stiffness. The strips of bamboo were bonded together by a natural thermoplastic polylactic acid (PLA matrix to meet biodegradability requirements. The innovative mechanical extraction process developed in this study can extract natural strip reinforcements with high performance, low cost, and high rate, with no negative environmental impact, as no chemical treatments are used. The process can be performed at the industrial level. Furthermore, in order to validate the structural applications of the composite, the mechanical properties were analyzed under ageing conditions. This material could satisfy the requirements for adequate mechanical properties and life cycle costs at

  10. Particle LET spectra from microelectronics packaging materials subjected to neutron and proton irradiation (United States)

    Browning, J. S.; Holtkamp, D. B.


    Cumulative fractions for LET spectra were measured for particles ejected from microelectronics packaging materials subjected to neutron and proton irradiation. The measurements for the neutron irradiation compare well with Monte Carlo theoretical calculations. The spectra can be used to access microelectronics vulnerabilities in strategic-nuclear- weapon, space-trapped, and neutral-beam directed-energy particle environments.

  11. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material. (United States)


    ... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  12. Carbon Nanotube Enhanced Aerospace Composite Materials A New Generation of Multifunctional Hybrid Structural Composites

    CERN Document Server

    Kostopoulos, V


    The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The curre...

  13. Brazing composite intermetallic TiAl with structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Sevryukov, O.N.; Fedotov, V.T.; Kalin, B.A.; Golikov, M.Y. [MIFI-AMENTO, Moscow (Russian Federation)


    The intermetallic alloys based on a titanium aluminide have a high strength, a low specific weight, and a chemical and thermal stability. Owing to a similar combination of physical and chemical properties, the given type of materials can be considered as an alternative to the traditional materials used for the manufacture of units of the thermonuclear reactor first wall. The technology to manufacture samples of composite alloys based on a titanium aluminide intermetallide has been improved in the present work with subsequent tests of brazed joints by thermo cycling tests. To estimate the possibility of using this intermetallic alloy as a structural material, brazed joints of Ti-48at.%Al with bronze and titanium were produced. Brazing was carried out by the STEMET 1202 registered filler metal of the Ti-Cu-Zr-Ni-V-Be system. The distribution of chemical elements in the brazed seam was investigated by X-ray spectrum analysis. It has been found that the distribution of the main and doping elements is sufficiently uniform in the contact zone of the filler metal with brazed materials; inclusions, cracks, and delamination are absent. (orig.)

  14. A composite material model for improved bone formation. (United States)

    Scaglione, Silvia; Lazzarini, Erica; Ilengo, Cristina; Quarto, Rodolfo


    The combination of synthetic polymers and calcium phosphates represent an improvement in the development of scaffolds for bone-tissue regeneration. Ideally, these composites provide both mechanically and architecturally enhanced performances; however, they often lack properties such as osteoconductivity and cell bioactivation. In this study we attempted to generate a composite bone substitute maximizing the available osteoconductive surface for cell adhesion and activity. Highly porous scaffolds were prepared through a particulate leaching method, combining poly-ε-caprolactone (PCL) and hydroxyapatite (HA) particles, previously coated with a sucrose layer, to minimize their embedding by the polymer solution. Composite performances were evaluated both in vitro and in vivo. In PCL-sucrose-coated HA samples, the HA particles were almost completely exposed and physically distinct from the polymer mesh, while uncoated control samples showed ceramic granules massively covered by the polymer. In vivo results revealed a significant extent of bone deposition around all sucrose-coated HA granules, while only parts of the control uncoated HA granules were surrounded by bone matrix. These findings highlight the possibility of generating enhanced osteoconductive materials, basing the scaffold design on physiological and cellular concepts. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Confirmation of theoretical colour predictions for layering dental composite materials. (United States)

    Mikhail, Sarah S; Johnston, William M


    The aim of this study is to confirm the theoretical colour predictions for single and double layers of dental composite materials on an opaque backing. Single and double layers of composite resins were fabricated, placed in optical contact with a grey backing and measured for spectral radiance. The spectral reflectance and colour were directly determined. Absorption and scattering coefficients as previously reported, the measured thickness of the single layers and the effective reflectance of the grey backing were utilized to theoretically predict the reflectance of the single layer using corrected Kubelka-Munk reflectance theory. For double layers the predicted effective reflectance of the single layer was used as the reflectance of the backing of the second layer and the thickness of the second layer was used to predict the reflectance of the double layer. Colour differences, using both the CIELAB and CIEDE2000 formulae, measured the discrepancy between each directly determined colour and its corresponding theoretical colour. The colour difference discrepancies generally ranged around the perceptibility threshold but were consistently below the respective acceptability threshold. This theory can predict the colour of layers of composite resin within acceptability limits and generally also within perceptibility limits. This theory could therefore be incorporated into computer-based optical measuring instruments that can automate the shade selections for layers of a more opaque first layer under a more translucent second layer for those clinical situations where an underlying background colour and a desirable final colour can be measured. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Development and characterization of composite materials for production of composite risers by filament winding

    Directory of Open Access Journals (Sweden)

    Ledjane Lima Sobrinho


    Full Text Available Industry has been challenged to provide riser systems which are more cost effective and which can fill the technology gaps with respect to water depth, riser diameter and high temperatures left open by flexibles, steel catenary risers (SCRs and hybrid risers. Composite materials present advantages over conventional steel risers because composite materials are lighter, more fatigue and corrosion resistant, better thermal insulators and can be designed for improving the structural and mechanical response. This paper contains a study of the toughening mechanism of an epoxy resin under rubber addition by means of fractographic analysis and its relation with the fracture process and increase of strength of a composite riser employing this polymeric matrix. Initially, an epoxy resin system was toughened by rubber CTBN addition (10 wt. (% as a way of improving the flexibility of future risers. Mechanical and thermal analyses were carried out for characterizing the polymeric systems. Later, composite tubes were prepared and mechanically characterized. The influence of matrix toughening on the mechanical behavior of the tubes was also studied. Split-disk tests were used to determine the hoop tensile strength of these specimens. The results indicate that the matrix plays an important role in composite fracture processes. The adding rubber to the polymeric matrix promoted a simultaneous increase of stress and elongation at fracture of the tubes manufactured herein, which is not often reported. These results, probably, is function of better adhesion between fibers and polymeric matrix observed in the CTBN-modified composite rings, which was evidenced in the fractografic analysis by SEM after the split-disk tests.

  17. A new rate-dependent unidirectional composite model - Application to panels subjected to underwater blast (United States)

    Wei, Xiaoding; de Vaucorbeil, Alban; Tran, Phuong; Espinosa, Horacio D.


    In this study, we developed a finite element fluid-structure interaction model to understand the deformation and failure mechanisms of both monolithic and sandwich composite panels. A new failure criterion that includes strain-rate effects was formulated and implemented to simulate different damage modes in unidirectional glass fiber/matrix composites. The laminate model uses Hashin's fiber failure criterion and a modified Tsai-Wu matrix failure criterion. The composite moduli are degraded using five damage variables, which are updated in the post-failure regime by means of a linear softening law governed by an energy release criterion. A key feature in the formulation is the distinction between fiber rupture and pull-out by introducing a modified fracture toughness, which varies from a fiber tensile toughness to a matrix tensile toughness as a function of the ratio of longitudinal normal stress to effective shear stress. The delamination between laminas is modeled by a strain-rate sensitive cohesive law. In the case of sandwich panels, core compaction is modeled by a crushable foam plasticity model with volumetric hardening and strain-rate sensitivity. These constitutive descriptions were used to predict deformation histories, fiber/matrix damage patterns, and inter-lamina delamination, for both monolithic and sandwich composite panels subjected to underwater blast. The numerical predictions were compared with experimental observations. We demonstrate that the new rate dependent composite damage model captures the spatial distribution and magnitude of damage significantly more accurately than previously developed models.

  18. Interphase formation of a resin transfer molded silica phenolics composites subjected to dynamic impregnation process (United States)

    Wang, Baichen; Huang, Yudong


    In this study interphase formation of a resin transfer molded (RTMed) silica-phenolics composites subjected to dynamic impregnation process was investigated. The solvent effect on the interphase formation of silica fiber-phenolics composites was evaluated. UV-vis spectra, XPS and electron paramagnetic resonance (EPR) techniques were used to characterize the competitive adsorption of the components of phenolics solution onto silica reinforcement surfaces. Interlaminar shear strength (ILSS) and void content of silica-phenolics composites were also measured. It has been found that phenolics forms distribution gradient over RTM mold with respect to isomeric composition under the effect of solvent, which result, to varying extent, in the inhomogeneity of void content and thus ILSS of a final product. For the first time, it has been shown that the RTM process of silica-phenolics composites is highly solvent-dependent. Our work gives an insight into the role of organic solvent in a RTM solution impregnation processing and provides useful information and trends relating microscopic to macroscopic behavior.

  19. Material intensity of advanced composite materials: Results of asudy for the Verbundwerkstofflabor Bremen e.V.


    Stiller, Hartmut


    In this paper the results of an analysis of the material intensity of advanced composite materialsare presented. The analysis is based on the MIPS-concept of the Wuppertal Institute whichallows the calculation of the overall material intensity of products and services. It can be shownthat the production of one kg of E-Glass fibers is connected with the consumption of 6.2 kgmaterials, 95 kg water and 2.1 kg oxygen which is of similar size compared to the inputsrequired in steel production. Mat...

  20. Vibration analysis of an axially moving multiscale composite plate subjected to thermal loading

    Directory of Open Access Journals (Sweden)

    Marynowski Krzysztof


    Full Text Available This study investigated the effects of temperature on free vibrations and critical transport speeds of an axially moving multiscale composite plate. On the basis of the frequency-temperature equivalence principle, a linear mathematical model of the moving multiscale composite plate is derived in the complex frequency domain. Fractional standard rheological model of the plate material as the function of reduced frequency depended on the temperature is determined. In numerical investigations carbon nanotubes- and graphene-reinforced copper plate was taken into account.. To describe thermomechanical properties of the plate material, the investigation results obtained from the molecular dynamics studies and the experimental characteristic of beryllium copper in low temperatures presented in literature is taken into account.. The effects of temperature, transport speed, and internal damping on natural frequencies and critical transport speed are analyzed. The critical transport speeds of the graphene-reinforced multiscale composite are higher than both carbon nanotubes-reinforced composite as well as the comparable copper alloy.


    Directory of Open Access Journals (Sweden)

    Ioan CURTU


    Full Text Available This paper presents the results of numerical analysis of stress and strain states which develop in wind turbine blades, modeled from various lignocellulosic composites. A blade structure type NACA 44XX with length 1.5m, power of 2.5kW and a rotational speed of 636 rpm, based on numerical calculations and the aerodynamic theory was designed in Catia program. The model was imported in finite element analysis program - HyperMesh, which were successively awarded four types of elastic properties corresponding to solid wood - oak, lignocellulose composites based on mixture of polyurethane resin and wood particle, glass fiber composite and carbon fibers. Four types of external loads were placed successively in different areas of the longitudinal axis of the blade, simulating wind force. The variation of stress and strain states expressing the advantages and disadvantages of the proposed materials, noting that risk areas of the blade structure can be reduced through various technological ways - through the addition of material thicknesses, changes to the reinforcement of composite layers by introducing layers with higher elastic properties, the introduction of local or global reinforcing elements.

  2. Impact of Wheelchair Rugby on Body Composition of Subjects With Tetraplegia: A Pilot Study. (United States)

    Gorla, José I; Costa e Silva, Anselmo de A; Borges, Mariane; Tanhoffer, Ricardo A; Godoy, Priscila S; Calegari, Décio R; Santos, Allan de O; Ramos, Celso D; Nadruz Junior, Wilson; Cliquet Junior, Alberto


    To investigate the longitudinal effects of wheelchair rugby (WR) training on body composition of subjects with tetraplegia. Subjects were evaluated at baseline and after WR training. Faculty of physical education settings. Individuals with tetraplegia (N=13; age, 26.6±6.0y). Four sessions per week of WR training composed by aerobic and anaerobic activities and technical and tactical aspects of WR. The average time of intervention was 8.1±2.5 months. Body composition assessed by dual-energy x-ray absorptiometry. After training, fat mass was significantly reduced in the whole body (15,191±4603 vs 13,212±3318 g, P=.016), trunk (7058±2639 vs 5693±1498 g, P=.012), and legs (2847±817 vs 2534±742 g, P=.003). Conversely, increased bone mineral content (183±35 vs 195±32 g, P=.01) and fat-free mass (2991±549 vs 3332±602 g, P=.016) in the arms and reduced bone mineral content in the trunk (553±82 vs 521±86 g, P=.034) were observed after training. Furthermore, no significant correlation between the duration of training and changes in body composition was detected. Regular WR training increased lean mass and bone mineral content in the arms and decreased total body fat mass. Conversely, WR training was associated with decreased bone mineral content in the trunk. These results suggest that regular WR training improves body composition in subjects with tetraplegia. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials (United States)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na


    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  4. Processing and properties of Titanium alloy based materials with tailored porosity and composition (United States)

    Cabezas-Villa, Jose Luis; Olmos, Luis; Lemus-Ruiz, Jose; Bouvard, Didier; Chavez, Jorge; Jimenez, Omar; Manuel Solorio, Victor


    This paper deals with powder processing of Ti6Al4V titanium alloy based materials with tailored porosity and composition. Ti6Al4V powder was mixed either with salt particles acting as space holder, so as to provide two-scale porosity, or with hard TiN particles that significantly modified the microstructure of the material and increased its hardness. Finally an original three-layer component was produced. Sample microstructure was observed by SEM and micro-tomography with special interest in pore size and shape, inclusion distribution and connectivity. Compression tests provided elastic modulus and yield stress as functions of density. These materials are representative of bone implants subjected to complex biological and mechanical conditions. These results thus open avenues for processing personalized implants by powder metallurgy.

  5. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa


    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  6. Preparation of Lanthanide-Polymer Composite Material via Click Chemistry. (United States)

    Chen, Bin; Wen, Guian; Wu, Jiajie; Feng, Jiachun


    Covalently attaching lanthanide complexes to the polymer backbone can effectively reduce the clustering of lanthanides and thus become an important strategy to fully unleash their potential. In this Communication, a metal-free click reaction is used for the first time to link a lanthanide complex to the polymer matrix. A diene-bearing copolymer with anthracenylmethyl methacrylate as a monomer and a dienophile-bearing lanthanide complex with 5-maleimido-1,10-phenanthroline as the second ligand are synthesized and coupled together through a Diels-Alder cycloaddition (DA). A comparative investigation demonstrates that the composite material prepared by DA click reaction shows the highest quantum yields in the same lanthanide concentration as compared to materials prepared by widely used "directly doping" and "in situ coordinating lanthanide ions with macromolecular ligand" approaches. This work suggests that the "metal-free" DA click reaction can be a promising tool in the synthesis of high efficient lanthanide functionalized polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Pyrolysis of municipal plastic wastes: Influence of raw material composition. (United States)

    López, A; de Marco, I; Caballero, B M; Laresgoiti, M F; Adrados, A


    The objective of this work is the study of pyrolysis as a feedstock recycling process, for valorizing the rejected streams that come from industrial plants, where packing and packaging wastes are classified and separated for their subsequent mechanical recycling. Four real samples collected from an industrial plant at four different times of the year, have been pyrolysed under nitrogen in a 3.5dm(3) autoclave at 500 degrees C for 30min. Pyrolysis liquids are a complex mixture of organic compounds containing valuable chemicals as styrene, ethyl-benzene, toluene, etc. Pyrolysis solids are composed of the inorganic material contained in the raw materials, as well as of some char formed in the pyrolysis process, and pyrolysis gases are mainly composed of hydrocarbons together with some CO and CO(2), and have very high gross calorific values (GCV). It has been proved by the authors that the composition of the raw material (paper, film, and metals contents) plays a significant role in the characteristics of pyrolysis products. High paper content yields water in the pyrolysis liquids, and CO and CO(2) in the gases, high PE film content gives rise to high viscosity liquids, and high metals content yields more aromatics in the liquid products, which may be attributed to the metals catalytic effect. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Production integrated nondestructive testing of composite materials and material compounds - an overview (United States)

    Straß, B.; Conrad, C.; Wolter, B.


    Composite materials and material compounds are of increasing importance, because of the steadily rising relevance of resource saving lightweight constructions. Quality assurance with appropriate Nondestructive Testing (NDT) methods is a key aspect for reliable and efficient production. Quality changes have to be detected already in the manufacturing flow in order to take adequate corrective actions. For materials and compounds the classical NDT methods for defectoscopy, like X-ray and Ultrasound (US) are still predominant. Nevertheless, meanwhile fast, contactless NDT methods, like air-borne ultrasound, dynamic thermography and special Eddy-Current techniques are available in order to detect cracks, voids, pores and delaminations but also for characterizing fiber content, distribution and alignment. In Metal-Matrix Composites US back-scattering can be used for this purpose. US run-time measurements allow the detection of thermal stresses at the metal-matrix interface. Another important area is the necessity for NDT in joining. To achieve an optimum material utilization and product safety as well as the best possible production efficiency, there is a need for NDT methods for in-line inspection of the joint quality while joining or immediately afterwards. For this purpose EMAT (Electromagnetic Acoustic Transducer) technique or Acoustic Emission testing can be used.

  9. Effect of bleaching on staining susceptibility of resin composite restorative materials. (United States)

    Celik, Ciğdem; Yüzügüllü, Bulem; Erkut, Selim; Yazici, A Rüya


    Effect of bleaching procedures on staining susceptibility of resin restorative materials is still questionable. The aim of this study was to evaluate the staining susceptibility of restorative materials bleached with 20% carbamide peroxide home bleaching agent and subsequently immersed in coffee and tea. Forty-two disk-shaped specimens were fabricated for each of the resin composites (Filtek Supreme XT [3M ESPE, St. Paul, MN, USA], Ceram-X Mono [Dentsply, Konstanz, Germany], and Aelite All Purpose Body [BISCO, Inc., Shaumburg, IL, USA]). The baseline color values were measured with a spectrophotometer. The specimens of each restorative material were randomly divided into two groups (N = 21). While the first group specimens were stored in distilled water (nonbleaching group-control), bleaching agent (Opalescence PF 20% [Ultradent Poducts, South Jordan, UT, USA]) was applied on the top surface of each specimen of the second group (bleaching group). After color change values were measured, the specimens were randomly divided into three subgroups (N = 7) according to the staining solutions. The color change values (DeltaE*ab) were calculated and the data were subjected to analysis of variance. Statistical significance was declared if the p value was 0.05 or less. There was no statistically significant difference within each restorative material's DeltaE*ab values after bleaching (p = 0.714). Also, the staining solutions did not cause a statistically significant difference between DeltaE*ab values of bleaching compared with nonbleaching groups (p = 0.146). Significant interaction was found only between restorative materials and staining solutions (p = 0.000). Bleaching of the tested resin composites did not increase their susceptibility to extrinsic staining in vitro. CLINICAL SIGNIFICANCE Bleaching did not affect staining susceptibility of the tested resin composite restorative materials. (J Esthet Restor Dent 21:407-415, 2009).

  10. Degradation in the dentin-composite interface subjected to multi-species biofilm challenges. (United States)

    Li, Y; Carrera, C; Chen, R; Li, J; Lenton, P; Rudney, J D; Jones, R S; Aparicio, C; Fok, A


    Oral biofilms can degrade the components in dental resin-based composite restorations, thus compromising marginal integrity and leading to secondary caries. This study investigates the mechanical integrity of the dentin-composite interface challenged with multi-species oral biofilms. While most studies used single-species biofilms, the present study used a more realistic, diverse biofilm model produced directly from plaques collected from donors with a history of early childhood caries. Dentin-composite disks were made using bovine incisor roots filled with Z100(TM) or Filtek(TM) LS (3M ESPE). The disks were incubated for 72 h in paired CDC biofilm reactors, using a previously published protocol. One reactor was pulsed with sucrose, and the other was not. A sterile saliva-only control group was run with sucrose pulsing. The disks were fractured under diametral compression to evaluate their interfacial bond strength. The surface deformation of the disks was mapped using digital image correlation to ascertain the fracture origin. Fracture surfaces were examined using scanning electron microscopy/energy-dispersive X-ray spectroscopy to assess demineralization and interfacial degradation. Dentin demineralization was greater under sucrose-pulsed biofilms, as the pH dropped Biofilm growth with sucrose pulsing also caused preferential degradation of the composite-dentin interface, depending on the composite/adhesive system used. Specifically, Z100 specimens showed greater bond strength reduction and more frequent cohesive failure in the adhesive layer. This was attributed to the inferior dentin coverage by Z100 adhesive, which possibly led to a higher level of chemical and enzymatic degradation. The results suggested that factors other than dentin demineralization were also responsible for interfacial degradation. A clinically relevant in vitro biofilm model was therefore developed, which would effectively allow assessment of the degradation of the dentin-composite

  11. Functional materials - Study of process for CVD SiC/C composite material

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Doo Jin; Wang, Chae Chyun; Lee, Young Jin; Oh, Byung Jun [Yonsei University, Seoul (Korea)


    The CVD SiC coating techniques are the one of high functional material manufactures that improve the thermal, wear, oxidization and infiltration resistance of the surface of raw materials and extend the life of material. Silicon carbide films have been grown onto graphite substrates by low pressure chemical vapor deposition using MTS(CH{sub 3}SiCl{sub 3}) as a source precursor and H{sub 2} or N{sub 2} as a diluent gas. The experiments for temperature and diluent gas addition changes were performed. The effect of temperature from 900 deg. C to 1350 deg. C and the alteration of diluent gas species on the growth rate and structure of deposits have been studied. The experimental results showed that the deposition rate increased with increasing deposition temperature irrespective of diluent gases and reactant depletion effect increased especially at H{sub 2} diluent gas ambient. As the diluent gas added, the growth rate decreased parabolically. For N{sub 2} addition, surface morphology of leaf-like structure appeared, and for H{sub 2}, faceted structure at 1350 deg. C. The observed features were involved by crystalline phase of {beta}-SiC and surface composition with different gas ambient. We also compared the experimental results of the effect of partial pressure on the growth rate with the results of theoretical approach based on the Langmuir-Hinshelwood model. C/SiC composites were prepared by isothermal chemical vapor infiltration (ICVI). In order to fabricate the more dense C/SiC composites, a novel process of the in-situ whisker growing and filling during ICVI was devised, which was manipulated by alternating dilute gas species. The denser C/SiC composites were successfully prepared by the novel process comparing with the conventional ICVI process. 64 refs., 36 figs., 5 tabs. (Author)

  12. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction

    Directory of Open Access Journals (Sweden)

    Insub Choi


    Full Text Available A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.

  13. Composite Behavior of Insulated Concrete Sandwich Wall Panels Subjected to Wind Pressure and Suction. (United States)

    Choi, Insub; Kim, JunHee; Kim, Ho-Ryong


    A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs) subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP) shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.

  14. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads (United States)

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.


    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

  15. Progressive failure of composite wind blades with a shear-web spar subjected to static testing (United States)

    Kam, T. Y.; Chiu, Y. H.


    Composite wind blades of 1m long comprising glass-fabric/epoxy skins and a sandwich plate-type spar were designed and fabricated for static testing. In the composite wind blades, the spar supports the top and bottom skins to form the airfoil shape of NACA4418. The blades were tested to failure and the failure modes were identified at different loading stages. A structural failure analysis method which consists of a geometrically nonlinear finite element (FE) model and appropriate phenomenological failure criteria is used to study the progressive failure behaviours of the blades subjected to different types of quasi-static loads. The experimental load-displacement curves as well as failure loads and locations for different failure modes are used to validate the suitability of the proposed failure analysis method.

  16. Nonlinear Dynamic Characteristics and Optimal Control of SMA Composite Wings Subjected to Stochastic Excitation

    Directory of Open Access Journals (Sweden)

    Zhi-Wen Zhu


    Full Text Available A kind of high-aspect-ratio shape memory alloy (SMA composite wing is proposed to reduce the wing’s fluttering. The nonlinear dynamic characteristics and optimal control of the SMA composite wings subjected to in-plane stochastic excitation are investigated where the great bending under the flight loads is considered. The stochastic stability of the system is analyzed, and the system’s response is obtained. The conditions of stochastic Hopf bifurcation are determined, and the probability density of the first-passage time is obtained. Finally, the optimal control strategy is proposed. Numerical simulation shows that the stability of the system varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the reliability of the system is improved through optimal control, and the first-passage time is delayed. Finally, the effects of the control strategy are proved by experiments. The results of this paper are helpful for engineering applications of SMA.

  17. Analytical and Numerical Modeling of Delamination Evolution in Fiber Reinforced Laminated Composites Subject to Flexural Loading (United States)

    Xie, Jiawen

    Delamination is a common failure mode in composite (fiber reinforced and layered) structures subject to low-velocity impacts by foreign objects. To maximize the design capacity, it is important to have reliable tools to predict delamination evolution in laminated composites. The focus of this research is to analyze flexural responses and delamination evolution in laminated composites subject to flexural loading. Analytical solutions were derived from linear elasticity theory and structural mechanics of beam and plate configurations. Formulations and evaluations of the proposed analytical approaches were validated by comparing with results of finite element (FE) simulations in similar settings and published experiment data. Two-dimensional (2D) elasticity theory for laminated panels was extended to analyze elastodynamic responses of pristine panels and quasi-static responses of pre-delaminated panels. A highlight of the approach is exact solutions of displacement and stress fields it provides. Further investigations showed that the 2D elasticity theory is not amenable to a closed-form solution for laminates containing off-axis angle plies due to three-dimensional (3D) states of stress. Closed-form solutions of cohesive zone modeling (CZM) were developed for popular delamination toughness tests of laminated beams. A laminate was modeled as an assembly of two sub-laminates connected by a virtual deformable layer with infinitesimal thickness. Comprehensive parametric studies were performed, offering a deeper understanding of CZM. The studies were further simplified so that closed-form expressions can be obtained, serving as a quick estimation of the flexural responses and the process zone lengths. Analytical CZM solutions were extended analyze quasi-static impact tests of laminated composite plates with arbitrary stacking sequences, aiming to predict critical load, critical interfaces and extent of delamination at that interface. The Rayleigh-Ritz method was used to

  18. Numerical Simulation of Delamination Growth in Composite Materials (United States)

    Camanho, P. P.; Davila, C. G.; Ambur, D. R.


    The use of decohesion elements for the simulation of delamination in composite materials is reviewed. The test methods available to measure the interfacial fracture toughness used in the formulation of decohesion elements are described initially. After a brief presentation of the virtual crack closure technique, the technique most widely used to simulate delamination growth, the formulation of interfacial decohesion elements is described. Problems related with decohesion element constitutive equations, mixed-mode crack growth, element numerical integration and solution procedures are discussed. Based on these investigations, it is concluded that the use of interfacial decohesion elements is a promising technique that avoids the need for a pre-existing crack and pre-defined crack paths, and that these elements can be used to simulate both delamination onset and growth.

  19. The strength of laminated composite materials under repeated impact loading (United States)

    Rotem, Assa


    When low velocity and energy impact is exerted on a laminated composite material, in a perpendicular direction to the plane of the laminate, invisible damage may develop. It is shown analytically and experimentally that the invisible damage occurs during the first stage of contact between the impactor and the laminate and is a result of the contact stresses. However, the residual flexural strength changes only slightly, because it depends mainly on the outer layers, and these remain undamaged. Repeated impact intensifies the damage inside the laminate and causes larger bending under equivalent impact load. Finally, when the damage is most severe, even though it is still invisible, the laminate fails because of bending on the tension side. If the repeated impact is halted before final fracture occurs the residual strength and modulus would decrease by a certain amount.

  20. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)


    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  1. Electromagnetic properties of carbon black and barium titanate composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guiqin [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)], E-mail:; Chen Xiaodong; Duan Yuping; Liu Shunhua [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)


    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands.

  2. Bacterial colonization of resin composite cements: influence of material composition and surface roughness. (United States)

    Glauser, Stephanie; Astasov-Frauenhoffer, Monika; Müller, Johannes A; Fischer, Jens; Waltimo, Tuomas; Rohr, Nadja


    So-called secondary caries may develop in the cement gap between the tooth and the bonded restoration. Cement materials with a low susceptibility to biofilm formation are therefore desirable. In the present study, the adhesion of Strepococcus mutans onto three adhesive (Multilink Automix, RelyX Ultimate, and Panavia V5) and three self-adhesive (Multilink Speed Cem, RelyX Unicem 2 Automix, and Panavia SA plus) resin composite cements was evaluated. Previous studies have failed to evaluate concomitantly the effect of both the composition of the cements and their surface roughness on biofilm formation. The presence of S. mutans on cement surfaces with differing degrees of roughness was therefore recorded using fluorescence microscopy and crystal violet staining, and the composition of the cements was analyzed using energy-dispersive X-ray spectroscopy mapping. Biofilm formation on resin composite cements was found to be higher on rougher surfaces, implying that adequate polishing of the cement gap is essential. The use of copper-containing cements (Multilink Automix, Panavia V5, and Panavia SA plus) significantly reduced biofilm formation. © 2017 Eur J Oral Sci.

  3. Predicting the residual strength of open-hole (OH) composite specimens subjected to cyclic loading (United States)

    Ceparano, Angelo; Dell'Aversano, Raffaella


    A procedure is reported that allows the prediction of the fatigue life and the residual strength of "open hole" composite specimens subjected to constant amplitude cyclic loadings. Based on a two-parameter phenomenological model explicitly accounting for the maximum applied stress, σmax, and the stress ratio, R, the procedure relies on a relatively small set of experimental fatigue life data. The approach reliability is checked in predicting the fatigue life and residual strength of AS4 carbon/epoxy 3k/E7K8 Plain Weave Fabric "open-hole" (OH) samples subjected to a very broad loading conditions from prevailing tension (R=0 and R=-0.2) to compression (R=5) to mixed tension/compression (R=-1) loadings.

  4. Development of a certified reference material for genetically modified potato with altered starch composition. (United States)

    Broothaerts, Wim; Corbisier, Philippe; Emons, Hendrik; Emteborg, Håkan; Linsinger, Thomas P J; Trapmann, Stefanie


    The presence of genetically modified organisms (GMOs) in food and feed products is subject to regulation in the European Union (EU) and elsewhere. As part of the EU authorization procedure for GMOs intended for food and feed use, reference materials must be produced for the quality control of measurements to quantify the GMOs. Certified reference materials (CRMs) are available for a range of herbicide- and insect-resistant genetically modified crops such as corn, soybean, and cotton. Here the development of the first CRM for a GMO that differs from its non-GMO counterpart in a major compositional constituent, that is, starch, is described. It is shown that the modification of the starch composition of potato (Solanum tuberosum L.) tubers, together with other characteristics of the delivered materials, have important consequences for the certification strategy. Moreover, the processing and characterization of the EH92-527-1 potato material required both new and modified procedures, different from those used routinely for CRMs produced from genetically modified seeds.

  5. Microtensile Bond Strength of New Ceramic/Polymer Materials Repaired with Composite Resin (United States)


    34Microtensile Bond Strength of New Ceramic/Polymer Materials Repaired with Composite Resin " 7. Intended publication/meeting: General Dentistry 8...Strength of New Ceramic/Polymer Materials Repaired with Composite Resin Maj Stephen S. Potter APPROVED: Lt Col Clifton W. Bailey I Col Villa l...Microtensile Bond Strength of New Ceramic/Polymer Materials Repaired with Composite Resin Abstract The new millable ceramic/polymer block materials

  6. Ultrasonic guided wave mechanics for composite material structural health monitoring (United States)

    Gao, Huidong

    The ultrasonic guided wave based method is very promising for structural health monitoring of aging and modern aircraft. An understanding of wave mechanics becomes very critical for exploring the potential of this technology. However, the guided wave mechanics in complex structures, especially composite materials, are very challenging due to the nature of multi-layer, anisotropic, and viscoelastic behavior. The purpose of this thesis is to overcome the challenges and potentially take advantage of the complex wave mechanics for advanced sensor design and signal analysis. Guided wave mechanics is studied in three aspects, namely wave propagation, excitation, and damage sensing. A 16 layer quasi-isotropic composite with a [(0/45/90/-45)s]2 lay up sequence is used in our study. First, a hybrid semi-analytical finite element (SAFE) and global matrix method (GMM) is used to simulate guided wave propagation in composites. Fast and accurate simulation is achieved by using SAFE for dispersion curve generation and GMM for wave structure calculation. Secondly, the normal mode expansion (NME) technique is used for the first time to study the wave excitation characteristics in laminated composites. A clear and simple definition of wave excitability is put forward as a result of NME analysis. Source influence for guided wave excitation is plotted as amplitude on a frequency and phase velocity spectrum. This spectrum also provides a guideline for transducer design in guided wave excitation. The ultrasonic guided wave excitation characteristics in viscoelastic media are also studied for the first time using a modified normal mode expansion technique. Thirdly, a simple physically based feature is developed to estimate the guided wave sensitivity to damage in composites. Finally, a fuzzy logic decision program is developed to perform mode selection through a quantitative evaluation of the wave propagation, excitation and sensitivity features. Numerical simulation algorithms are

  7. Materiality, Language and the Production of Knowledge: Art, Subjectivity and Indigenous Ontology

    Directory of Open Access Journals (Sweden)

    Estelle Barrett


    Full Text Available Since all theories of knowing deal with the being of subjects, objects, instruments and environments, they can be viewed as onto-epistemological.  This chapter examines key ideas that emerge from the work of Julia Kristeva – 'the speaking subject', 'materiality of language' and 'heterogeneity' – to demonstrate how ontology and epistemology are inextricably entwined in knowledge production. Kristeva also affirms both the agency of matter and  the dimension of human/subjective agency implicated in cultural production. This is contrasted with Gilles Deleuze and Felix Guattari’s account creative practice. The article also draws on the artistic work of researcher-practitioner Brian Martin, and his account of the relationship between Indigenous Australian art and culture to demonstrate that in an Indigenous world view, the real, the immaterial, the imaginary and the representational occur concurrently.

  8. Multistep Optimization of Composite Drive Shaft Subject to Strength, Buckling, Vibration and Manufacturing Constraints (United States)

    Cherniaev, Aleksandr; Komarov, Valeriy


    Composite drive shafts are extensively used in automotive and aeronautical applications due to lightweight combined with exceptional strength and stiffness. Complexity of the drive shaft design problem associated with the need to determine rational values for multiple parameters characterizing composite material (fiber orientation angles, stacking sequence and ply thicknesses), as well as with the fact that multiple conflicting design constraints should be considered simultaneously. In this paper we approach this problem considering carbon/epoxy drive shaft design as a multistep optimization process. It includes the following steps: 1) determination of fiber orientation angles and laminate stacking sequence based on analysis of loading conditions and analytical expressions predicting buckling load and minimal natural frequency of idealized drive shaft; 2) finding rational ply thicknesses using formal optimization procedure utilizing response surface approximations and gradient-based optimization algorithm; and 3) verification analysis of the optimized configuration with the use of nonlinear buckling analysis to ensure satisfaction of stability constraint.

  9. Experimental investigation on the flexural fatigue behavior of pultruded composite materials (United States)

    Ahmed, Sabry Taha


    Flexural fatigue analysis is important for design applications of composite materials subject to fluctuating stress or strain conditions. The effects of fatigue parameters including mean stress (sigmasb{m}), stress ratio (R), and number of cycles (N) were investigated for aspultruded composite materials. Shell EPON 9310 epoxy and Alpha Owens Corning AOC E606-6-polyester pultruded composites reinforced with unidirectional E-glass fiber were produced using a commercial pultrusion machine. Specimens of these materials were initially subjected to static three-point displacement control, 16 - 1 and 32 - 1 span-to-depth ratio flexural testing, to determine the static behavior; these data were used to establish the base-line ultimate mechanical properties. Three-point flexural tests were performed according to ASTM D790-92 standard test method using a MTS universal servo-hydraulic testing machine. The flexural fatigue performance of the composites was determined under load control using similar flexural test methods as in static testing. Specimens considered for fatigue testing were subjected to five different values of mean stress level lbracksigmasb{m} = (0.5, 0.45, 0.4, 0.35 and 0.3) sigmasb{u}rbrack and four different stress ratios (R = 0.1, 0.2, 0.3 and 0.4). From the dynamic load-displacement response, fatigue data were monitored for damage measurements including loss factor and damage index. Also, a parametric study was conducted to investigate the correlation between static flexural and flexural fatigue behavior in addition to constructing S-N curves of these pultruded composite materials. Results from three-point, displacement control static mechanical tests indicated initial failure on the tensile side without any evidence of fiber breakage until maximum peak load followed by a small number of delaminations before final specimen breakage. The strain in the outermost fibers did not vary greatly depending on the flexural test method, but for the apoxy based system

  10. Material Model Evaluation of a Composite Honeycomb Energy Absorber (United States)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.


    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  11. Characterizing and Modeling Brittle Bi-material Interfaces Subjected to Shear

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Berggreen, Christian


    This work is based on the investigation, both experimentally and numerically, of the Mode II fracture process and bond strength of bondlines formed in co-cured composite/metal joints. To this end, GFRP-to-steel double strap joints were tested in tension, so that the bimaterial interface was subje......This work is based on the investigation, both experimentally and numerically, of the Mode II fracture process and bond strength of bondlines formed in co-cured composite/metal joints. To this end, GFRP-to-steel double strap joints were tested in tension, so that the bimaterial interface...... which characterize the bi-material interface, by considering the joint’s failure load, geometry and involved materials. The derived stress and toughness magnitudes were further utilized as the parameters of an extrinsic cohesive law, applied in connection with the modeling the bi-material interface...... was identified and utilized as a characterization test for measuring the Mode II fracture toughness of brittle bimaterial interfaces....

  12. Suitability of new anode materials in mammography: dose and subject contrast considerations using Monte Carlo simulation. (United States)

    Delis, H; Spyrou, G; Costaridou, L; Tzanakos, G; Panayiotakis, G


    Mammography is the technique with the highest sensitivity and specificity, for the early detection of nonpalpable lesions associated with breast cancer. As screening mammography refers to asymptomatic women, the task of optimization between the image quality and the radiation dose is critical. A way toward optimization could be the introduction of new anode materials. A method for producing the x-ray spectra of different anode/filter combinations is proposed. The performance of several mammographic spectra, produced by both existing and theoretical anode materials, is evaluated, with respect to their dose and subject contrast characteristics, using a Monte Carlo simulation. The mammographic performance is evaluated utilizing a properly designed mathematical phantom with embedded inhomogeneities, irradiated with different spectra, based on combinations of conventional and new (Ru, Ag) anode materials, with several filters (Mo, Rh, Ru, Ag, Nb, Al). An earlier developed and validated Monte Carlo model, for deriving both image and dose characteristics in mammography, was utilized and overall performance results were derived in terms of subject contrast to dose ratio and squared subject contrast to dose ratio. Results demonstrate that soft spectra, mainly produced from Mo, Rh, and Ru anodes and filtered with k-edge filters, provide increased subject contrast for inhomogeneities of both small size, simulating microcalcifications and low density, simulating masses. The harder spectra (W and Ag anode) come short in the discrimination task but demonstrate improved performance when considering the dose delivered to the breast tissue. As far as the overall performance is concerned, new theoretical spectra demonstrate a noticeable good performance that is similar, and in some cases better compared to commonly used systems, stressing the possibility of introducing new materials in mammographic practice as a possible contribution to its optimization task. In the overall

  13. Investigation of Brittle Fractures in Graphite-Epoxy Composites Subjected to Impact (United States)


    Steel Impacto ; 121 CL• BIDIRECTION1AL PRD 49-EPOXYONIAGE ZONIE BIDIRECTIONAL THORNEL 300-EPOXY 0.10•,, A/0’.• 05 t=0.125 IN. 0 0.05 0.10 0.15 0.20...isotropic, and the reinforcing fibers used in these specimens were Thornel 300. Specimens AP vere added to the test group at the sug- gestion of the...1973. 38. Olster, E. F., and Woodbury, H. A., EVALUATION OF BALLIS- TIC DAMAGE RESISTANCE AND FAILURE MECHANISMS OF COMPOSITE MATERIALS, AVCO Corp

  14. Reduced sleep duration affects body composition, dietary intake and quality of life in obese subjects. (United States)

    Poggiogalle, Eleonora; Lubrano, Carla; Gnessi, Lucio; Marocco, Chiara; Di Lazzaro, Luca; Polidoro, Giampaolo; Luisi, Federica; Merola, Gianluca; Mariani, Stefania; Migliaccio, Silvia; Lenzi, Andrea; Donini, Lorenzo M


    Sleep duration has emerged as a crucial factor affecting body weight and feeding behaviour. The aim of our study was to explore the relationship among sleep duration, body composition, dietary intake, and quality of life (QoL) in obese subjects. Body composition was assessed by DXA. "Sensewear Armband" was used to evaluate sleep duration. SF-36 questionnaire was used to evaluate quality of life (QoL). A 3-day dietary record was administered. Subjects were divided into 2 groups: sleep duration > and ≤300 min/day. 137 subjects (105 women and 32 men), age: 49.8 ± 12.4 years, BMI: 38.6 ± 6.7 kg/m(2), were enrolled. Sleep duration was ≤300 min in 30.6 % of subjects. Absolute and relative fat mass (FM) (40.5 ± 9 vs. 36.5 ± 9.1 kg; 40.2 ± 4.7 vs. 36.9 ± 5.6 %), and truncal fat mass (19.2 ± 6.1 vs. 16.6 ± 5 kg; 38.6 ± 5.3 vs. 35.2 ± 5.5 %) were higher in subjects sleeping ≤300 min when compared to their counterparts (all p BMI was observed (p = 0.077). Even though energy intake was not different between groups, subjects sleeping ≤300 min reported a higher carbohydrate consumption per day (51.8 ± 5.1 vs. 48.4 ± 9.2 %, p = 0.038). SF-36 total score was lower in subjects sleeping ≤300 min (34.2 ± 17.8 vs. 41.4 ± 12.9, p = 0.025). Sleep duration was negatively associated with FM (r = -0.25, p = 0.01) and SF-36 total score (r = -0.31, p sleep duration and SF-36 total score was confirmed by the regression analysis after adjustment for BMI and fat mass (R = 0.43, R (2) = 0.19, p = 0.012). Reduced sleep duration negatively influences body composition, macronutrient intake, and QoL in obese subjects.

  15. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues (United States)

    Seredin, P. V.; Goloshchapov, D. L.; Prutskij, T.; Ippolitov, Yu. A.

    This study investigated the luminescence characteristics of synthesized biocomposites similar in organic and mineral composition to native dental tissues, enamel and dentine. It was found that the luminescence spectrum of intact enamel is similar to that of calcium hydroxyapatite (HAP) used to synthesize biomimetic materials. Despite the morphological differences between the synthesized biocomposite and native tissue, their luminescence spectra suggest that the shape of the luminescence spectrum is more influenced by defects in the crystal structure of the employed hydroxyapatite than by the structure and order of the apatite nanocrystals typical of native dental tissues. The spectrum of intact human dentine possessed a wider luminescence band, unlike that of enamel, with a maximum typical of intact dentine. Analysis of the spectra of biomimetic material modelling the properties of dentine indicated that both the organic and non-organic components contribute to their luminescence.

  16. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials. (United States)

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald


    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

  17. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials (United States)

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald


    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192

  18. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    Directory of Open Access Journals (Sweden)

    Manjusha Ramakrishnan


    Full Text Available This paper provides an overview of the different types of fiber optic sensors (FOS that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

  19. Nutritional status, yield and composition of peach fruit subjected to the application of organic compost

    Directory of Open Access Journals (Sweden)

    George Wellington Bastos de Melo


    Full Text Available The purpose of this study was to evaluate the nutritional state, yield and composition of peaches on peach trees subjected to the application of organic compost to the soil. This experiment was conducted during the 2008 and 2009 cropping season in an orchard containing Chimarrita cultivars grafted onto Capdeboscq rootstocks and Haplumbrept soils in the municipality of Farroupilha (RS, Brazil. The treatments included 0, 9, 18, 36, 72 and 144 liters of organic compost per plant-1 year-1. The total nutrient contents in the leaves, yield components, yields per plant and hectare and compositions of the fruits were evaluated in 2008 and 2009 soon after harvest and after 30 days of storage. The application of organic compost to the soil increased the yield components and the yields per plant and hectare in the two treatments with the highest compost additions, which indicated that the addition of 72 L of compost per plant-1 is ideal economically. The organic compost had little effect on the composition of the peach fruit after harvest and after 30 days of storage.

  20. Probabilistic fatigue life of balsa cored sandwich composites subjected to transverse shear

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Berggreen, Christian


    be controlled to the same extent as an industrial manufacturing processes. The large variance in the probabilistic model for fatigue life is reflected in the corresponding calibrated partial safety factors, which are higher thanthe factors usually associated with synthetic materials such as fiber...... model are obtaining characteristic S–Ncurves corresponding to a given survival probability, and calibrating partial safety factorsfor material fatigue. The latter is demonstrated by a calibration performed using reliability analysis with the first-order reliability method. The measured variance in balsa...... shearproperties, for both static strength and fatigue failure, is higher than the variance normallyobserved in the properties for fiber-reinforced polymer composite laminates. This could be attributed to the fact that end-grain balsa wood is the product of a naturally occurringgrowth process, which cannot...