WorldWideScience

Sample records for composite material strength

  1. Review of probabilistic models of the strength of composite materials

    International Nuclear Information System (INIS)

    Sutherland, L.S.; Guedes Soares, C.

    1997-01-01

    The available literature concerning probabilistic models describing the strength of composite materials has been reviewed to highlight the important aspects of this behaviour which will be of interest to the modelling and analysis of a complex system. The success with which these theories have been used to predict experimental results has been discussed. Since the brittle reinforcement phase largely controls the strength of composites, the probabilistic theories used to describe the strength of brittle materials, fibres and bundles of fibres have been detailed. The use of these theories to predict the strength of composite materials has been considered, along with further developments incorporating the damage accumulation observed in the failure of such materials. Probabilistic theories of the strength of short-fibre composites have been outlined. Emphasis has been placed throughout on straightforward engineering explanations of these theories and how they may be used, rather than providing comprehensive statistical descriptions

  2. Prediction of strength of wood composite materials using ultrasonic

    International Nuclear Information System (INIS)

    Mahmoud, M.K.; Emam, A.

    2005-01-01

    Wood is a biological material integrating a very large variability of its mechanical properties (tensile and compressive), on the two directional longitudinal and transverse Ultrasonic method has been utilized to measure both wood physical and / or wood mechanical properties. The aim of this article is to show the development of ultrasonic technique for quality evaluation of trees, wood material and wood based composites. For quality assessment of these products we discuss the nondestructive evaluation of different factors such as: moisture content, temperature, biological degradation induced by bacterial attack and fungal attack. These techniques were adapted for trees, timber and wood based composites. The present study discusses the prediction of tensile and compressive strength of wood composite materials using ultrasonic testing. Empirical relationships between the tensile properties, compression strength and ultrasonic were proposed. The experimental results indicate the possibility of establishing a relationship between tensile strength and compression values. Moreover, the fractures in tensile and compressive are discussed by photographic

  3. Shear bond strength of indirect composite material to monolithic zirconia.

    Science.gov (United States)

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (Pcomposite material and monolithic zirconia.

  4. Novel high-strength Fe-based composite materials with large plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzna; Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Siegel, Uwe; Bartusch, Birgit; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland)

    2007-07-01

    Among glass-forming alloy systems reported so far, Fe-based bulk metallic glasses play a special role. Compared to other amorphous alloys e.g. Zr-, Ti-based, such glasses show superior mechanical strength. However, due to the general brittleness their wider application as structural materials is strongly restricted. The alternative approach to overcome this defect is to design BMG composites. In this work we present a series of new Fe-Cr-Mo-Ga-(Si,C) composite materials derived from an Fe-Cr-Mo-Ga-C-P-B glassy alloy, with the aim to improve the ductility of this high-strength material. The effect of the composition and the phase formation on the resulting mechanical properties was investigated. It has been found that the formation of a complex microstructure, which essentially consists of soft Ga-rich dendrites embedded in a hard Cr- and Mo-rich matrix, leads to a material with excellent compressive mechanical properties. While the obtained values of true strength are comparable with data reported for Fe-Cr-Mo-Ga-C-P-B BMG, the values of true strain are greatly improved for investigated composites.

  5. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    Science.gov (United States)

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.

  6. FY98 Final Report Initial Interfacial Chemical Control for Enhancement of Composite Material Strength; TOPICAL

    International Nuclear Information System (INIS)

    GE Fryxell; KL Alford; KL Simmons; RD Voise; WD Samuels

    1999-01-01

    The U.S. Army Armament Research Development and Engineering Center (ARDEC) sponsored this research project to support the development of new self-assembled monolayer fiber coatings. These coatings can greatly increase the bond strength between the fiber and the resin matrix of a composite material. Composite ammunition components molded from such materials will exhibit higher strength than current materials, and will provide a major improvement in the performance of composites in military applications. Use of composite materials in military applications is desirable because of the lighter weight of the materials and their high strengths. The FY97 project investigated initial interfacial chemical control for enhancement of composite material strength. The core of the project was to modify the covalent interface of glass fibers (or other reinforcing fibers) to induce strong, uniform, defect-free adhesion between the fibers' surfaces and the polymer matrix. Installing a self-assembled monolayer tailored to the specific matrix resin accomplished this. Simply, the self-assembled monolayer modifies the fiber to make it appear to have the same chemical composition as the resin matrix. The self-assembled monolayer creates a receptive, hydrophobic interface that the thermoset resin (or polymer precursors) would wet more effectively, leading to a higher contact surface area and more efficient adhesion. The FY97 work phase demonstrated that it is possible to increase the adhesive strength, as well as increase the heat deflection temperature through the use of self-assembled monolayer

  7. Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo

    2012-10-01

    This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.

  8. High strength bimetallic composite material fabricated by electroslag casting and characteristics of its composite interface

    Directory of Open Access Journals (Sweden)

    Tian-shun Dong

    2016-11-01

    Full Text Available Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy dispersive spectrometer (EDS. Results show that the tensile strength (1,450 MPa, hardness (HRC 41-47 and impact toughness (94.7J·cm-2 of bainitic steel were comparatively high, while its elongation was slightly low (4.0%. Tensile strength (1,100 MPa, hardness (>HRC 31 and elongation (7.72% of the interface were also relatively high, but its impact toughness was low at 20.4 J·cm-2. Results of theoretical calculation of the element distribution in the interface region were basically consistent with that of EDS. Therefore, electroslag casting is a practical process to produce bimetallic composite material of bainitic steel and PD3 steel, and theoretical calculation also is a feasible method to study element distribution of their interface.

  9. Strength of Fibrous Composites

    CERN Document Server

    Huang, Zheng-Ming

    2012-01-01

    "Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.

  10. Chemical composition and strength of dolomite geopolymer composites

    Science.gov (United States)

    Aizat, E. A.; Al Bakri, A. M. M.; Liew, Y. M.; Heah, C. Y.

    2017-09-01

    The chemical composition of dolomite and the compressive strength of dolomite geopolymer composites were studied. The both composites prepared with mechanical mixer manufactured by with rotor speed of 350 rpm and curing in the oven for 24 hours at 80˚C. XRF analysis showThe dolomite raw materials contain fewer amounts of Si and Al but high Ca in its composition. Dolomite geopolymer composites with 20M of NaOH shows greater and optimum compressive strength compared to dolomite geopolymer with other NaOH molarity. This indicated better interaction of dolomite raw material and alkaline activator need high molarity of NaOH in order to increase the reactivity of dolomite.

  11. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-06-01

    Full Text Available The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the composite materials was 10, 20, 30 and 40 vol.%. The results of the compressive strength of manufactured materials were presented and basing on the microscopic observations the effect of the volume content of strengthening alumina particles on the cracking mechanisms during compression at indicated temperatures were shown and discussed. The highest compressive strength of 470 MPa at ambient temperature showed composite materials strengthened with 40 vol.% of α-Al2O3 particles.

  12. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  13. Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials

    Science.gov (United States)

    Nemeth, Noel, N.

    2013-01-01

    Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.

  14. Manufacture of high-strength composite materials from prepregs prepared by radiation processing

    International Nuclear Information System (INIS)

    Laricheva, V.P.; Korotkij, A.F.

    2008-01-01

    Scientific principles of the manufacture of high-strength heat-resistant polymer composite materials with the successive ionizing-radiation and heat treatment (via the step of long-lived prepregs) were developed. Methods for the selection of components for the preparation of long-lived prepregs, as well as for the determination of the optimal curing conditions, were proposed. The mechanical properties of the materials were studied [ru

  15. Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo

    2015-06-01

    This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

  16. Impact strength on fiber-reinforced hybrid composite

    International Nuclear Information System (INIS)

    Firdaus, S M; Nurdina; Ariff, M Azmil

    2013-01-01

    Acrylonitrile-Butadiene-Styrene (ABS) has been well known composite in automotive players to have light weight with high impact strength material compared to sheet metal material which has high impact strength but heavy in weight. In this project, the impact strength properties of fabricated pure ABS were compared to the eight samples of hybrid ABS composite with different weight percentages of short fibers and particle sizes of ground rubber. The objective was to improve the impact strength in addition of short fibers and ground rubber particles. These samples were then characterized using an un-notched Izod impact test. Results show that the increasing of filler percentage yielded an adverse effect on the impact strength of the hybrid composite. The effect of the ground rubber particulate sizes however are deemed to be marginal than the effect of varying filler percentage based on the collected impact strength data from all physically tested hybrid composites

  17. Material composition – Pinning strength correlation in Nb thin films with focused ion beam-milled washboard nanostructures

    International Nuclear Information System (INIS)

    Dobrovolskiy, Oleksandr V.; Begun, Evgeniya; Huth, Michael; Shklovskij, Valerij A.

    2013-01-01

    Highlights: •We fabricated an array of grooves in Nb films by using focused ion beam milling. •We determined the material composition in different areas of the processed films. •We deduced the pinning activation energies from the magneto-resistivity data. •We obtained the material composition – pinning strength correlation in the processed films. -- Abstract: An analysis of the interrelated changes in the material composition and the pinning strength in nanostructured Nb (1 1 0) thin films is presented. The nanopatterns were prepared by focused ion beam milling of an array of uniaxial grooves. They induce a washboard-like pinning potential landscape for vortices in the mixed state. By applying different magnetic fields, the most likely pinning sites along which the flux lines move through the samples have been selected. By this, either the background isotropic pinning of the pristine film or the enhanced isotropic pinning originating from the nanoprocessing has been probed. The enhanced pinning strength in the processed films has been found to correlate with the content of Ga implanted into the films during the nanopatterning

  18. Material composition – Pinning strength correlation in Nb thin films with focused ion beam-milled washboard nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolskiy, Oleksandr V., E-mail: Dobrovolskiy@Physik.uni-frankfurt.de [Physikalisches Institut, Goethe-Universität, 60438 Frankfurt am Main (Germany); Physical Department, Kharkiv National University, 61077 Kharkiv (Ukraine); Begun, Evgeniya; Huth, Michael [Physikalisches Institut, Goethe-Universität, 60438 Frankfurt am Main (Germany); Shklovskij, Valerij A. [Physical Department, Kharkiv National University, 61077 Kharkiv (Ukraine); Institute for Theoretical Physics, NSC-KIPT, 61108 Kharkiv (Ukraine)

    2013-11-15

    Highlights: •We fabricated an array of grooves in Nb films by using focused ion beam milling. •We determined the material composition in different areas of the processed films. •We deduced the pinning activation energies from the magneto-resistivity data. •We obtained the material composition – pinning strength correlation in the processed films. -- Abstract: An analysis of the interrelated changes in the material composition and the pinning strength in nanostructured Nb (1 1 0) thin films is presented. The nanopatterns were prepared by focused ion beam milling of an array of uniaxial grooves. They induce a washboard-like pinning potential landscape for vortices in the mixed state. By applying different magnetic fields, the most likely pinning sites along which the flux lines move through the samples have been selected. By this, either the background isotropic pinning of the pristine film or the enhanced isotropic pinning originating from the nanoprocessing has been probed. The enhanced pinning strength in the processed films has been found to correlate with the content of Ga implanted into the films during the nanopatterning.

  19. The effect of different surface treatments on the bond strength of a gingiva-colored indirect composite veneering material to three implant framework materials.

    Science.gov (United States)

    Koizuka, Mai; Komine, Futoshi; Blatz, Markus B; Fushiki, Ryosuke; Taguchi, Kohei; Matsumura, Hideo

    2013-09-01

    To evaluate and compare the shear-bond strength of a gingiva-colored indirect composite material to three different implant framework materials (zirconia ceramics, gold alloy, and titanium), and to investigate the effect of surface pretreatment by air-particle abrasion and four priming agents. A gingiva-colored indirect composite (Ceramage) was bonded to three framework materials (n = 80): commercially pure titanium (CP- Ti ), ADA (American Dental Association)-type 4 casting gold alloy (Type IV), and zirconia ceramics (Zirconia) with or without airborne-particle abrasion. Before bonding, the surface of the specimens was treated using no (control) or one of four priming agents: Alloy Primer (ALP), Estenia Opaque Primer (EOP), Metal Link Primer (MLP), and V-Primer (VPR). Shear-bond strength was determined after 24-h wet storage. Data were analyzed using Steel-Dwass for multiple comparisons, and Mann-Whitney U-test (P = 0.05). For both CP- Ti and Zirconia substrates, three groups, ALP, EOP, and MLP, showed significantly higher bond strengths (P composite material to commercially pure titanium and zirconia frameworks. Combined use of a thione monomer with a phosphoric monomer enhances the bond strengths to airborne-particle abraded type IV gold alloy. © 2012 John Wiley & Sons A/S.

  20. THE BIODEGRADABILITY AND MECHANICAL STRENGTH OF NUTRITIVE POTS FOR VEGETABLE PLANTING BASED ON LIGNOCELLULOSE COMPOSITE MATERIALS

    OpenAIRE

    Petronela Nechita; Elena Dobrin; Florin Ciolacu; Elena Bobu

    2010-01-01

    Considering the mild degradation strength and the fact that it may be an organic matter reserve for the soil, in the past years lignocellulosic materials have been used as fibrous raw materials in the manufacture of biodegradable nutritive pots for the seedling in vegetable containerized production. This paper analyses the behavior of the nutritive pots made from biodegradable composites for the vegetable seedling production process, focusing on their mechanical strength properties and biodeg...

  1. The influence of double nested layer waviness on compression strength of carbon fiber composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    1997-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, optimization of their production processes in eagerly being sought. One of the most common defect in production of structural composites is layer waviness. Layer waviness is more pronounced in thick section flat and cylindrical laminates that are extensively used in missile casings, submersibles and space platforms. Layer waviness undulates the entire layers of a multidirectional laminate in through-the-thickness direction leading to gross deterioration of its compression strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wave 0 degree centigrade layer fabricated in IM/85510-7 carbon - epoxy composite laminate on a steel mold using single step fabrication procedure. The laminate was cured on a heated press according to specific curing cycle. Static compression testing was performed using NASA short block compression fixture on an MTS servo Hydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of composite laminate. The experimental and analytical results revealed that up to about 35% fraction of wave 0 degree layer exceeded 35%. This analysis indicated that the percentage of 0 degree wavy layer may be used to estimate the reduction in compression strength of a composite laminate under restricted conditions. (author)

  2. Shear bond strength of a denture base acrylic resin and gingiva-colored indirect composite material to zirconia ceramics.

    Science.gov (United States)

    Kubochi, Kei; Komine, Futoshi; Fushiki, Ryosuke; Yagawa, Shogo; Mori, Serina; Matsumura, Hideo

    2017-04-01

    To evaluate the shear bond strengths of two gingiva-colored materials (an indirect composite material and a denture base acrylic resin) to zirconia ceramics and determine the effects of surface treatment with various priming agents. A gingiva-colored indirect composite material (CER) or denture base acrylic resin (PAL) was bonded to zirconia disks with unpriming (UP) or one of seven priming agents (n=11 each), namely, Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Act), Metal Link (MEL), Meta Fast Bonding Liner (MFB), MR. bond (MRB), and V-Primer (VPR). Shear bond strength was determined before and after 5000 thermocycles. The data were analyzed with the Kruskal-Wallis test and Steel-Dwass test. The mean pre-/post-thermalcycling bond strengths were 1.0-14.1MPa/0.1-12.1MPa for the CER specimen and 0.9-30.2MPa/0.1-11.1MPa for the PAL specimen. For the CER specimen, the ALP, CPB, and CPB+Act groups had significantly higher bond strengths among the eight groups, at both 0 and 5000 thermocycles. For the PAL specimen, shear bond strength was significantly lower after thermalcycling in all groups tested. After 5000 thermocycles, bond strengths were significantly higher in the CPB and CPB+Act groups than in the other groups. For the PAL specimens, bond strengths were significantly lower after thermalcycling in all groups tested. The MDP functional monomer improved bonding of a gingiva-colored indirect composite material and denture base acrylic resin to zirconia ceramics. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Influence of increment thickness on dentin bond strength and light transmission of composite base materials.

    Science.gov (United States)

    Omran, Tarek A; Garoushi, Sufyan; Abdulmajeed, Aous A; Lassila, Lippo V; Vallittu, Pekka K

    2017-06-01

    Bulk-fill resin composites (BFCs) are gaining popularity in restorative dentistry due to the reduced chair time and ease of application. This study aimed to evaluate the influence of increment thickness on dentin bond strength and light transmission of different BFCs and a new discontinuous fiber-reinforced composite. One hundred eighty extracted sound human molars were prepared for a shear bond strength (SBS) test. The teeth were divided into four groups (n = 45) according to the resin composite used: regular particulate filler resin composite: (1) G-ænial Anterior [GA] (control); bulk-fill resin composites: (2) Tetric EvoCeram Bulk Fill [TEBF] and (3) SDR; and discontinuous fiber-reinforced composite: (4) everX Posterior [EXP]. Each group was subdivided according to increment thickness (2, 4, and 6 mm). The irradiance power through the material of all groups/subgroups was quantified (MARC® Resin Calibrator; BlueLight Analytics Inc.). Data were analyzed using two-way ANOVA followed by Tukey's post hoc test. SBS and light irradiance decreased as the increment's height increased (p composite used. EXP presented the highest SBS in 2- and 4-mm-thick increments when compared to other composites, although the differences were not statistically significant (p > 0.05). Light irradiance mean values arranged in descending order were (p composites. Discontinuous fiber-reinforced composite showed the highest value of curing light transmission, which was also seen in improved bonding strength to the underlying dentin surface. Discontinuous fiber-reinforced composite can be applied safely in bulks of 4-mm increments same as other bulk-fill composites, although, in 2-mm thickness, the investigated composites showed better performance.

  4. THE BIODEGRADABILITY AND MECHANICAL STRENGTH OF NUTRITIVE POTS FOR VEGETABLE PLANTING BASED ON LIGNOCELLULOSE COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    Petronela Nechita

    2010-04-01

    Full Text Available Considering the mild degradation strength and the fact that it may be an organic matter reserve for the soil, in the past years lignocellulosic materials have been used as fibrous raw materials in the manufacture of biodegradable nutritive pots for the seedling in vegetable containerized production. This paper analyses the behavior of the nutritive pots made from biodegradable composites for the vegetable seedling production process, focusing on their mechanical strength properties and biodegradability. It was found that the biodegradability of composite materials obtained from a mixture of secondary cellulosic fibers, peat, and additives, is strongly influenced by the presence or absence of the rhizosphere effect and the synergistic relations set in the culture substrate between the plant roots and microorganisms, which develop permanently the recycling and solubilization of mineral nutrients. The results showed that the presence in the substrate of some complex populations made by heterotrophic bacteria favors full degradation of the pulp and lignin contained in the substrate and pots composition. Therefore, unlike the reference sample (plant-free, cultivated versions exhibited an intense biodegradation on the account of rhizosphere effect.

  5. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites.

    Science.gov (United States)

    Gao, Honghong; Qiang, Tao

    2017-06-07

    Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure-property relationships of composite materials from a new perspective.

  6. The tensile strength of mechanical joint prototype of lontar fiber composite

    Science.gov (United States)

    Bale, Jefri; Adoe, Dominggus G. H.; Boimau, Kristomus; Sakera, Thomas

    2018-03-01

    In the present study, an experimental activity has been programmed to investigate the effect of joint prototype configuration on tensile strength of lontar (Borassus Flabellifer) fiber composite. To do so, a series of tests were conducted to establish the tensile strength of different joint prototype configuration specimen of lontar fiber composite. In addition, post observation of macroscope was used to map damage behavior. The analysis of lontar fiber composite is a challenge since the material has limited information than others natural fiber composites materials. The results shown that, under static tensile loading, the tensile strength of 13 MPa produced by single lap joint of lontar fiber composite is highest compare to 11 MPa of tensile strength generated by step lap joint and double lap joint where produced the lowest tensile strength of 6 MPa. It is concluded that the differences of tensile strength depend on the geometric dimensions of the cross-sectional area and stress distribution of each joint prototype configuration.

  7. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  8. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J. W.

    2017-01-01

    The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the co...

  9. Notched Strength of Woven Fabric Kenaf Composites with Different Fiber Orientations

    Directory of Open Access Journals (Sweden)

    Ahmad Hilton

    2017-01-01

    Full Text Available The awareness of implementing sustainable materials in construction industry is gaining good attention among engineers worldwide. Kenaf fibers are local renewable materials to combine with epoxy polymers matrix in producing lightweight composite materials which may replace imported synthetic fiber composites especially in developing countries. Other benefits of using kenaf fiber composites are relatively cheap, less abrasive and less hazardous during fabrication handling. Current study investigates parametric study on notched strength of woven fabric kenaf composite plates with different fiber orientations and circular hole sizes. Stress concentration occurred at the notch edge promotes to micro-damage events such as matrix cracking and fiber fracture as remote tensile loading applied. Current study showed that 0° fiber orientation gives optimum notched strength, plates with larger fiber tilting than 0° are associated with further strength reduction. Kenaf fibers give an alternative to material designers to opt woven fabric kenaf composites in low and medium load bearing applications.

  10. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-09-01

    Full Text Available The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume at an ambient of 23°C and at elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the reinforcing particles were performed.

  11. Impact Strength of Composite Materials Based on EN AC-44200 Matrix Reinforced with Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J.W.

    2017-01-01

    The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms made of Al2O3 particles of 3-6μm with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by ...

  12. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  13. Effect of bulk-fill base material on fracture strength of root-filled teeth restored with laminate resin composite restorations.

    Science.gov (United States)

    Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E

    2017-08-01

    To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Face compression yield strength of the copper-Inconel composite specimen

    International Nuclear Information System (INIS)

    Horie, T.

    1987-05-01

    A new equation for the face compression yield strength of copper-Inconel composite material has been derived. Elastic-plastic finite element analyses were also made for composite specimens with various aspect ratios to examine the edge effect of the specimen. According to the results of both the new equation and the analyses, the face compression yield strength of the composite should be decreased by about 25% from the value obtained with Becker's equation

  15. Composites materials: the technology of future

    International Nuclear Information System (INIS)

    Ahmed, M.N.; Memon, I.R.; Ahmad, F.; Zafar, N.

    2001-01-01

    Composite materials have a long history of usage. Their precise beginnings are not known; however all recorded history contains references to some form of composite material. e.g. straw was used by man to strengthen mud bricks thousands of years ago. This article presents the use of advanced composites materials in aircraft and space industry. Its brief history, use in military and civil aviation, use in space program, future usage, advantages in terms of cost, weight and strength. Use of composites in unmanned aerial vehicles and problems associated with usage of composites materials are also discussed. (author)

  16. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  17. Effect of Cement Composition in Lampung on Concrete Strength

    OpenAIRE

    Riyanto, Hery

    2014-01-01

    The strength and durability of concrete depends on the composition of its constituent materials ie fine aggregate, coarse aggregate, cement, water and other additives. The cement composition is about 10% acting as a binder paste material fine and coarse aggregates. In the Lampung market there are several brands of portland cement used by the community to make concrete construction. Although there is a standard of the government of portland cement composition, yet each brand of cement has diff...

  18. The bond of different post materials to a resin composite cement and a resin composite core material.

    Science.gov (United States)

    Stewardson, D; Shortall, A; Marquis, P

    2012-01-01

    To investigate the bond of endodontic post materials, with and without grit blasting, to a resin composite cement and a core material using push-out bond strength tests. Fiber-reinforced composite (FRC) posts containing carbon (C) or glass (A) fiber and a steel (S) post were cemented into cylinders of polymerized restorative composite without surface treatment (as controls) and after grit blasting for 8, 16, and 32 seconds. Additional steel post samples were sputter-coated with gold before cementation to prevent chemical interaction with the cement. Cylindrical composite cores were bonded to other samples. After sectioning into discs, bond strengths were determined using push-out testing. Profilometry and electron microscopy were used to assess the effect of grit blasting on surface topography. Mean (standard deviation) bond strength values (MPa) for untreated posts to resin cement were 8.41 (2.80) for C, 9.61(1.88) for A, and 19.90 (3.61) for S. Prolonged grit blasting increased bond strength for FRC posts but produced only a minimal increase for S. After 32 seconds, mean values were 20.65 (4.91) for C, 20.41 (2.93) for A, and 22.97 (2.87) for S. Gold-coated steel samples produced the lowest bond strength value, 7.84 (1.40). Mean bond strengths for untreated posts bonded to composite cores were 6.19 (0.95) for C, 13.22 (1.61) for A, and 8.82 (1.18) for S, and after 32 seconds of grit blasting the values were 17.30 (2.02) for C, 26.47 (3.09) for A, and 20.61 (2.67) for S. FRC materials recorded higher roughness values before and after grit blasting than S. With prolonged grit blasting, roughness increased for A and C, but not for S. There was no evidence of significant bonding to untreated FRC posts, but significant bonding occurred between untreated steel posts and the resin cement. Increases in the roughness of FRC samples were material dependent and roughening significantly increased bond strength values (p<0.05). Surface roughening of the tested FRC posts is

  19. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  20. Creep-rupture strength prediction of an epoxy composite under tension

    Czech Academy of Sciences Publication Activity Database

    Krastev, R.K.; Zachariev, G.; Hristova, J.; Minster, Jiří

    2009-01-01

    Roč. 13, č. 2 (2009), s. 207-214 ISSN 1385-2000 Institutional research plan: CEZ:AV0Z20710524 Keywords : materials testing * creep * strength prediction Subject RIV: JI - Composite Materials Impact factor: 1.051, year: 2009

  1. Microtensile bond strength of bulk-fill restorative composites to dentin.

    Science.gov (United States)

    Mandava, Jyothi; Vegesna, Divya-Prasanna; Ravi, Ravichandra; Boddeda, Mohan-Rao; Uppalapati, Lakshman-Varma; Ghazanfaruddin, M D

    2017-08-01

    To facilitate the easier placement of direct resin composite in deeper cavities, bulk fill composites have been introduced. The Mechanical stability of fillings in stress bearing areas restored with bulk-fill resin composites is still open to question, since long term clinical studies are not available so far. Thus, the objective of the study was to evaluate and compare the microtensile bond strength of three bulk-fill restorative composites with a nanohybrid composite. Class I cavities were prepared on sixty extracted mandibular molars. Teeth were divided into 4 groups (n= 15 each) and in group I, the prepared cavities were restored with nanohybrid (Filtek Z250 XT) restorative composite in an incremental manner. In group II, III and IV, the bulk-fill composites (Filtek, Tetric EvoCeram, X-tra fil bulk-fill restoratives) were placed as a 4 mm single increment and light cured. The restored teeth were subjected to thermocycling and bond strength testing was done using instron testing machine. The mode of failure was assessed by scanning electron microscope (SEM). The bond strength values obtained in megapascals (MPa) were subjected to statistical analysis, using SPSS/PC version 20 software.One-way ANOVA was used for groupwise comparison of the bond strength. Tukey's Post Hoc test was used for pairwise comparisons among the groups. The highest mean bond strength was achieved with Filtek bulk-fill restorative showing statistically significant difference with Tetric EvoCeram bulk-fill ( p composites. Adhesive failures are mostly observed with X-tra fil bulk fill composites, whereas mixed failures are more common with other bulk fill composites. Bulk-fill composites exhibited adequate bond strength to dentin and can be considered as restorative material of choice in posterior stress bearing areas. Key words: Bond strength, Bulk-fill restoratives, Configuration factor, Polymerization shrinkage.

  2. Evaluation of residual strength in the basalt fiber reinforced composites under impact damage

    Science.gov (United States)

    Kim, Yun-Hae; Lee, Jin-Woo; Moon, Kyung-Man; Yoon, Sung-Won; Baek, Tae-Sil; Hwang, Kwang-Il

    2015-03-01

    Composites are vulnerable to the impact damage by the collision as to the thickness direction, because composites are being manufactured by laminating the fiber. The understanding about the retained strength after the impact damage of the material is essential in order to secure the reliability of the structure design using the composites. In this paper, we have tried to evaluate the motion of the material according to the kinetic energy and potential energy and the retained strength after impact damage by testing the free fall test of the basalt fiber reinforced composite in the limelight as the environment friendly characteristic.

  3. Zirconia-hydroxyapatite composite material with micro porous structure.

    Science.gov (United States)

    Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi

    2011-11-01

    Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    Science.gov (United States)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  5. High-strength cellular ceramic composites with 3D microarchitecture.

    Science.gov (United States)

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  6. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    Science.gov (United States)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  7. Multi-material topology design of laminates with strength criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    The objective of this paper is to present a novel approach for multi-material topology optimization of laminated composite structures where strength constraints are taken into account together with other global structural performance measures. The topology design problem considered contains very...... many design variables, and when strength criteria are included in the problem, a very large number of criteria functions must be considered in the optimization problem to be solved. Thus, block aggregation methods are introduced, such that global strength measures are obtained. These formulations...... are illustrated for multi-material laminated design problems where the maximum failure index is minimized while compliance and mass constraints are taken into account....

  8. Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Junko; Kawakami, Masashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Kondoh, Katsuyoshi, E-mail: kondoh@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Ayman, El-Sayed; Imai, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan)

    2010-10-01

    Pure titanium (Ti) particulate reinforced pure magnesium (Mg) composite materials were fabricated via powder metallurgy route, and their microstructural and mechanical properties were evaluated. When using the elemental mixture of pure Mg and pure Ti powders and consolidating them by solid-state sintering process, no significant increase in tensile strength of the composites was obtained, because of poor bonding strength at the interface between {alpha}-Mg matrix and Ti particles. In particular, coarse magnesium oxide (MgO) particles of about 100 nm were formed via thermite reaction between TiO{sub 2} surface films of Ti particles and Mg raw powders and resulted in preventing the improvement of the mechanical properties of the composite material. On the other hand, when using the atomized pure Mg composite powders reinforced with Ti particulates, their extruded composite material showed obviously improved tensile strength and good elongation, compared to the extruded pure Mg powder material including no Ti particle. The obvious improvement in the tensile strength was due to the restriction of dislocation movement by Ti reinforcements under applied tensile load.

  9. Fracture strength testing of crowns made of CAD/CAM composite resins.

    Science.gov (United States)

    Okada, Ryota; Asakura, Masaki; Ando, Akihiro; Kumano, Hirokazu; Ban, Seiji; Kawai, Tatsushi; Takebe, Jun

    2018-03-28

    The purpose of this study was to ascertain whether computer aided design/computer aided manufacturing (CAD/CAM) composite resin crowns have sufficient strength to withstand the bite force of the molar teeth. The null hypothesis was that the fracture strength of CAD/CAM composite resin crowns is lower than the average maximum bite force of the molar tooth. The crowns, which shape is the right maxillary first molar, were fabricated using four CAD/CAM blanks made of composite resins (Block HC: HC, KZR-CAD HR: HR, KZR-CAD HR2: HR2, Avencia Block: AVE) and one CAD/CAM blank made of lithium disilicate glass-ceramic (IPS e.max CAD: IPS), which was used as a control. Fracture strength of fabricated crowns bonded to metal abutment and biaxial flexural strength of the materials were evaluated. The results of fracture strength test and biaxial flexural strength test showed different tendencies. The fracture strength of CAD/CAM composite resin crowns except HC ranged from 3.3kN to 3.9kN, and was similar to that of IPS (3.3kN). In contrast, biaxial flexural strength of CAD/CAM composite resins ranged from 175MPa to 247MPa, and was significantly lower than that of IPS (360MPa). All CAD/CAM composite resin crowns studied presented about 3-4 times higher fracture strength than the average maximum bite force of the molar tooth (700-900N), which result leads to the conclusion that CAD/CAM composite resin crowns would have sufficient strength to withstand the bite force of the molar teeth. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Accelerated Strength Testing of Thermoplastic Composites

    Science.gov (United States)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  11. Effect of different dispersants in compressive strength of carbon fiber cementitious composites

    Science.gov (United States)

    Lestari, Yulinda; Bahri, Saiful; Sugiarti, Eni; Ramadhan, Gilang; Akbar, Ari Yustisia; Martides, Erie; Khaerudini, Deni S.

    2013-09-01

    Carbon Fiber Cementitious Composites (CFCC) is one of the most important materials in smart concrete applications. CFCC should be able to have the piezoresistivity properties where its resistivity changes when there is applied a stress/strain. It must also have the compressive strength qualification. One of the important additives in carbon fiber cementitious composites is dispersant. Dispersion of carbon fiber is one of the key problems in fabricating piezoresistive carbon fiber cementitious composites. In this research, the uses of dispersants are methylcellulose, mixture of defoamer and methylcellulose and superplasticizer based polycarboxylate. The preparation of composite samples is similar as in the mortar technique according to the ASTM C 109/109M standard. The additives material are PAN type carbon fibers, methylcellulose, defoamer and superplasticizer (as water reducer and dispersant). The experimental testing conducts the compressive strength and resistivity at various curing time, i.e. 3, 7 and 28 days. The results obtained that the highest compressive strength value in is for the mortar using superplasticizer based polycarboxylate dispersant. This also shown that the distribution of carbon fiber with superplasticizer is more effective, since not reacting with the cementitious material which was different from the methylcellulose that creates the cement hydration reaction. The research also found that the CFCC require the proper water cement ratio otherwise the compressive strength becomes lower.

  12. Repair bond strength of nanohybrid composite resins with a universal adhesive.

    Science.gov (United States)

    Altinci, Pinar; Mutluay, Murat; Tezvergil-Mutluay, Arzu

    2018-01-01

    Objective: To investigate the repair bond strength of fresh and aged nanohybrid and hybrid composite resins using a universal adhesive (UA). Materials and methods: Fresh and aged substrates were prepared using two nanohybrid (Venus Pearl, Heraus Kulzer; Filtek Supreme XTE, 3 M ESPE) and one hybrid (Z100, 3 M ESPE) composite resin, and randomly assigned to different surface treatments: (1) no treatment (control), (2) surface roughening with 320-grit (SR), (3) SR + UA (iBOND, Heraus Kulzer), (4) SR + Silane (Signum, Ceramic Bond I, Heraeus Kulzer) + UA, (5) SR + Sandblasting (CoJet, 3 M ESPE) + Silane + UA. After surface treatment, fresh composite resin was added to the substrates at 2 mm layer increments to a height of 5 mm, and light cured. Restored specimens were water-stored for 24 h and sectioned to obtain 1.0 × 1.0 mm beams ( n  = 12), and were either water-stored for 24 h at 37 °C, or water-stored for 24 h, and then thermocycled for 6000 cycles before microtensile bond strength (µTBS) testing. Data were analyzed with ANOVA and Tukey's HSD tests ( p  = .05). Results: Combined treatment of SR, sandblasting, silane and UA provided repair bond strength values comparable to the cohesive strength of each tested resin material ( p  composite resins upto 65% ( p  composite repair. Sandblasting and silane application slightly increases the repair strength for all substrate types.

  13. A review of mechanical and tribological behaviour of polymer composite materials

    Science.gov (United States)

    Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K.

    2018-04-01

    Composite materials are finding increased applications in many industrial applications. A nano-composite is a matrix to which nanosized particles have been incorporated to drastically improve the mechanical performance of the original material. The structural components produced using nano-composites will exhibit a high strength-to-weight ratio. The properties of nano-composites have caused researchers and industries to consider using this material in several fields. Polymer nanocomposites consists of a polymer material having nano-particles or nano-fillers dispersed in the polymer matrix which may be of different shapes with at least one of the dimensions less than 100nm. In this paper, comprehensive review of polymer nanocomposites was done majorly in three different areas. First, mechanical behaviour of polymer nanocomposites which focuses on the mechanical property evaluation such as tensile strength, impact strength and modulus of elasticity based on the different combination of filler materials and nanoparticle inclusion. Second, wear behavior of Polymer composite materials with respect to different impingement angles and variation of filler composition using different processing techniques. Third, tribological (Friction and Wear) behaviour of nanocomposites using various combination of nanoparticle inclusion and time. Finally, it summarized the challenges and prospects of polymer nanocomposites.

  14. Effect of gas release in hot molding on flexural strength of composite friction brake

    Science.gov (United States)

    Rusdja, Andy Permana; Surojo, Eko; Muhayat, Nurul; Raharjo, Wijang Wisnu

    2018-02-01

    Composite friction brake is a vital part of braking system which serves to reduce the speed of vehicle. To fulfill the requirement of brake performance, composite friction brake must have friction and mechanical characteristic as required. The characteristics of composite friction brake are affected by brake material formulation and manufacturing parameter. In the beginning of hot molding, intermittent hot pressing was carried out to release the gases that consist of ammonia gas and water vapor. In composite friction brake, phenolic resin containing hexamethylenetetramine (HMTA) is often used as a binder. During hot molding, the reaction of phenolic resin and HMTA forms ammonia gas. Hot molding also generates water vapor because raw materials absorb moisture from environment when they are placed in storage. The gas release in hot molding is supposed affecting mechanical properties because it avoid entrapped gas in composite, so that this research investigated effect of gas release on flexural strength. Manufacturing of composite specimen was carried out as follow: mixing of raw materials, cold molding, and hot molding. In this research, duration of intermittent hot pressing and number of gas release were varied. The flexural strength of specimen was measured using three point bending test. The results showed that flexural strength specimens that were manufactured without gas release, using 4 times gas release with intermittent hot pressing for 5 and 10 seconds were not remarkably different. Conversely, hot molding using 4 times gas release with intermittent hot pressing for 15 seconds decreased flexural strength of composite. Hot molding using 2, 4, and 8 times gas release with intermittent hot pressing for 10 seconds also had no effect on increasing flexural strength. Increasing of flexural strength of composite was obtained only by using 6 times gas release with intermittent hot pressing for 10 seconds.

  15. The tensile strength test of thermoplastic materials based on poly(butylene terephtalate

    Directory of Open Access Journals (Sweden)

    Rzepecka Anna

    2017-01-01

    Full Text Available Thermoplastic composites go toward making an increasingly greater percentage of all manufacturing polymer composites. They have a lot of beneficial properties and their manufacturing using injecting and extrusion methods is a very easy and cheap process. Their properties significantly overtake the properties of traditional materials and it is the reason for their use. Scientists are continuously carrying out research to find new applications of composites materials in new industries, not only in the automotive or aircraft industry. When thermoplastic composites are manufactured a very important factor is the appropriate accommodation of tensile strength to their predestination. Scientists need to know the behaviour of these materials during the impact of different forces, and the factors of working in normal conditions too. The main aim of this article was macroscopic and microscopic analysis of the structure of thermoplastic composites after static tensile strength test. Materials which were analysed were thermoplastic materials which have poly(butylene terephthalate – PBT matrix reinforced with different content glass fibres – from 10% for 30%. In addition, research showed the necessary force to receive fracture and set their distinguishing characteristic down.

  16. Using Virtual Testing for Characterization of Composite Materials

    Science.gov (United States)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  17. Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials.

    Science.gov (United States)

    Peumans, Marleen; Valjakova, Emilija Bajraktarova; De Munck, Jan; Mishevska, Cece Bajraktarova; Van Meerbeek, Bart

    To evaluate the influence of different surface treatments of six novel CAD/CAM materials on the bonding effectiveness of two luting composites. Six different CAD/CAM materials were tested: four ceramics - Vita Mark II; IPS Empress CAD and IPS e.max CAD; Celtra Duo - one hybrid ceramic, Vita Enamic, and one composite CAD/CAM block, Lava Ultimate. A total of 60 blocks (10 per material) received various mechanical surface treatments: 1. 600-grit SiC paper; 2. sandblasting with 30-μm Al2O3; 3. tribochemical silica coating (CoJet). Subsequent chemical surface treatments involved either no further treatment (control), HF acid etching (HF), silanization (S, or HF acid etching followed by silanization (HF+S). Two specimens with the same surface treatment were bonded together using two dual-curing luting composites: Clearfil Esthetic Cement (self-etching) or Panavia SA Cement (self-adhesive). After 1 week of water storage, the microtensile bond strength of the sectioned microspecimens was measured and the failure mode was evaluated. The bonding performance of the six CAD/CAM materials was significantly influenced by surface treatment (linear mixed models, p CAD (p = 0.0115), and Lava Ultimate (p CAD/CAM materials: Vita Mark II and IPS Empress CAD: S, HF+S; Celtra Duo: HF, HF+S; IPS e.max CAD: HF+S; Vita Enamic: HF+S, S. For Lava Ultimate, the highest bond strengths were obtained with HF, S, HF+S. Failure analysis showed a relation between bond strength and failure type: more mixed failures were observed with higher bond strengths. Mainly adhesive failures were noticed if no further surface treatment was done. The percentage of adhesive failures was higher for CAD/CAM materials with higher flexural strength (Celtra Duo, IPS e.max CAD, and Lava Ultimate). The bond strength of luting composites to novel CAD/CAM materials is influenced by surface treatment. For each luting composite, an adhesive cementation protocol can be specified in order to obtain the highest bond to the

  18. Radiation processed composite materials of wood and elastic polyester resins

    International Nuclear Information System (INIS)

    Tapolcai, I.; Czvikovszky, T.

    1983-01-01

    The radiation polymerization of multifunctional unsaturated polyester-monomer mixtures in wood forms interpenetrating network system. The mechanical resistance (compression, abrasion, hardness, etc.) of these composite materials are generally well over the original wood, however the impact strength is almost the same or even reduced, in comparison to the wood itself. An attempt is made using elastic polyester resins to produced wood-polyester composite materials with improved modulus of elasticity and impact properties. For the impregnation of European beech wood two types of elastic unsaturated polyester resins were used. The exothermic effect of radiation copolymerization of these resins in wood has been measured and the dose rate effects as well as hardening dose was determined. Felxural strength and impact properties were examined. Elastic unsaturated polyester resins improved the impact strength of wood composite materials. (author)

  19. Research on optimizing components of microfine high-performance composite cementitious materials

    International Nuclear Information System (INIS)

    Hu Shuguang; Guan Xuemao; Ding Qingjun

    2002-01-01

    The relationship between material components and mechanical properties was studied in terms of composite material principles and orthogonal experimental design. Moreover, the microstructure of microfine high-performance composite cementitious material (MHPCC) paste was investigated by means of scanning electron microscopy (SEM) methods. The results showed that the composite material consisting of blast furnace slag (BFS), gypsum (G 2 ) and expansive agent (EA) could obviously improve the strength of the cementitious material containing 40% fly ash (FA). Although microfine cement (MC) was merely 45% percent of the MHPCC, the compressive strength of MHPCC paste was higher than that of neat MC paste. BFS played an important role in MHPCC. The optimum-added quantity of BFS was 15%. The needle-shaped ettringite obtained from the EA reacting with Ca(OH) 2 forms a three-dimensional network structure, which not only improved the early strength of MHPCC paste but also increased its late strength. The reason was that the network structure, which was similar to a fiber-reinforced composite, was formed in the late period of hydration with the progress of hydration and the deposition of hydration products into the network structure

  20. Mechanical Characterization of Cotton Fiber/Polyester Composite Material

    Directory of Open Access Journals (Sweden)

    Altaf Hussain Rajper

    2014-04-01

    Full Text Available Development of composite from natural fiber for lower structural application is growing for long-term sustainable perspective. Cotton fiber composite material has the added advantages of high specific strength, corrosion resistance, low cost and low weight compared to glass fiber on the expense of internal components of IC engines. The primary aim of the research study is to examine the effect of the cotton fiber on mechanical properties of lower structural applications when added with the polyester resin. In this paper composite material sample has been prepared by hand Lay-Up process. A mould is locally developed in the laboratory for test sample preparation. Initially samples of polyester resin with appropriate ratio of the hardener were developed and tested. At the second stage yarns of cotton fiber were mixed with the polyester resin and sample specimens were developed and tested. Relative effect of the cotton as reinforcing agent was examined and observed that developed composite specimen possess significant improvement in mechanical properties such as tensile strength was improved as 19.78 % and modulus of elasticity was increased up to 24.81%. Through this research it was also observed that developed composite material was of ductile nature and its density decreases up to 2.6%. Results from this study were compared with relevant available advanced composite materials and found improved mechanical properties of developed composite material

  1. Investigation on Failures of Composite Beam and Substrate Concrete due to Drying Shrinkage Property of Repair Materials

    Science.gov (United States)

    Pattnaik, Rashmi Ranjan

    2017-06-01

    A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.

  2. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material.

    Science.gov (United States)

    Yang, Lijun; Guo, Jing; Yu, Yue; An, Qingda; Wang, Liyan; Li, Shenglin; Huang, Xuelin; Mu, Siyang; Qi, Shanwei

    2016-05-20

    Sodium alginate/Antarctic krill protein composite material (SA/AKP) was successfully obtained by blending method. The hydrogen bonds of SA/AKP composite material were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance hydrogen spectrum (HNMR). Experiment manifested the existence of intermolecular and intramolecular hydrogen bonds in SA/AKP system; strength of intermolecular hydrogen bond enhanced with the increase of AKP in the composite material and the interaction strength of hydrogen bonding followed the order: OH…Ether O>OH…π>OH…N. The percentage of intermolecular hydrogen bond decreased with increase of pH. At the same time, the effect of hydrogen bonds on properties of the composite material was discussed. The increase of intermolecular hydrogen bonding led to the decrease of crystallinity, increase of apparent viscosity and surface tension, as well as obvious decrease of heat resistance of SA/AKP composite material. SA/AKP fiber SEM images and energy spectrum showed that crystallized salt was separated from the fiber, which possibly led to the fibrillation of the composite fibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins

    Directory of Open Access Journals (Sweden)

    Rafael Torres Brum

    2017-01-01

    Full Text Available Background: This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct and nanofilled (Filtek Z350 XT composite resins. Materials and Methods: A total of 120 specimens of each material (7.5 x 4.5 x 3 mm were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment, Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds. The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair were prepared (positive control. The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS and scanning electron microscopy (SEM. Results: The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. Conclusion: The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  4. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    Science.gov (United States)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.

  5. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  6. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  7. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers

    International Nuclear Information System (INIS)

    Kimmig, S.; Allen, I.; You, J.H.

    2013-01-01

    A SiC long fiber-reinforced copper composite offers a beneficial combination of high strength and high thermal conductivity at elevated temperatures. Both properties make the composite a promising material for the heat sink of high-heat-flux components. In this work, we developed a novel Cu/SiC f composite using the Sigma fiber. Based on HIP technique, a metallurgical process was established for fabricating high quality specimens using a TiC interface coating. Extensive tensile tests were conducted on the unidirectionally reinforced composite at 20 °C and 300 °C for a wide range of fiber volume fraction (V f ). In this paper, a large amount of test data is presented. The transversal thermal conductivity varies from 260 to 130 W/mK at 500 °C as V f is increased from 13% to 37%. The tensile strength reached up to 1246 MPa at 20 °C for V f = 37.6%, where the fracture strain was limited to 0.8%. The data of both elastic modulus and ultimate strength exhibited a good agreement with the rule-of-mixture predictions indicating a high quality of the materials. The strength of the composite with the Sigma fibers turned out to be superior to those of the SCS6 fibers at 300 °C, although the SCS6 fiber actually has a higher strength than the Sigma fiber. The fractographic pictures of tension test and fiber push-out test manifested a sufficient interfacial bonding

  8. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  9. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    Science.gov (United States)

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  10. Nano-modified cement composites and its applicability as concrete repair material

    Science.gov (United States)

    Manzur, Tanvir

    Nanotechnology or Nano-science, considered the forth industrial revolution, has received considerable attention in the past decade. The physical properties of a nano-scaled material are entirely different than that of bulk materials. With the emerging nanotechnology, one can build material block atom by atom. Therefore, through nanotechnology it is possible to enhance and control the physical properties of materials to a great extent. Composites such as concrete materials have very high strength and Young's modulus but relatively low toughness and ductility due to their covalent bonding between atoms and lacking of slip systems in the crystal structures. However, the strength and life of concrete structures are determined by the microstructure and mass transfer at nano scale. Cementitious composites are amenable to manipulation through nanotechnology due to the physical behavior and size of hydration products. Carbon nanotubes (CNT) are nearly ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. So there is a great potential to utilize CNT in producing new cement based composite materials. It is evident from the review of past literature that mechanical properties of nanotubes reinforced cementitious composites have been highly variable. Some researches yielded improvement in performance of CNT-cement composites as compared to plain cement samples, while other resulted in inconsequential changes in mechanical properties. Even in some cases considerable less strengths and modulus were obtained. Another major difficulty of producing CNT reinforced cementitious composites is the attainment of homogeneous dispersion of nanotubes into cement but no standard procedures to mix CNT within the cement is available. CNT attract more water to adhere to their surface due to their high aspect ratio which eventually results in less workability of the cement mix. Therefore, it is extremely important to develop a suitable mixing technique and an

  11. Effect of a New Surface Treatment Solution on the Bond Strength of Composite to Enamel

    Science.gov (United States)

    2016-06-01

    Bond Strength of Composite to Enamel " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner...Solution on the Bond Strength of Composite to Enamel ABSTRACT Clean & Boost (Apex Dental Materials) is a novel surface treatment solution...designed to be used in place of phosphoric acid to increase the bond strength of self-etch adhesives to enamel and more effectively remove contaminants

  12. Composite materials research and education program: The NASA-Virginia Tech composites program

    Science.gov (United States)

    Herakovich, C. T.

    1980-01-01

    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.

  13. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    Science.gov (United States)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  14. Reliability, failure probability, and strength of resin-based materials for CAD/CAM restorations

    Directory of Open Access Journals (Sweden)

    Kiatlin Lim

    Full Text Available ABSTRACT Objective: This study investigated the Weibull parameters and 5% fracture probability of direct, indirect composites, and CAD/CAM composites. Material and Methods: Discshaped (12 mm diameter x 1 mm thick specimens were prepared for a direct composite [Z100 (ZO, 3M-ESPE], an indirect laboratory composite [Ceramage (CM, Shofu], and two CAD/CAM composites [Lava Ultimate (LU, 3M ESPE; Vita Enamic (VE, Vita Zahnfabrik] restorations (n=30 for each group. The specimens were polished, stored in distilled water for 24 hours at 37°C. Weibull parameters (m= modulus of Weibull, σ0= characteristic strength and flexural strength for 5% fracture probability (σ5% were determined using a piston-on-three-balls device at 1 MPa/s in distilled water. Statistical analysis for biaxial flexural strength analysis were performed either by both one-way ANOVA and Tukey's post hoc (α=0.05 or by Pearson's correlation test. Results: Ranking of m was: VE (19.5, LU (14.5, CM (11.7, and ZO (9.6. Ranking of σ0 (MPa was: LU (218.1, ZO (210.4, CM (209.0, and VE (126.5. σ5% (MPa was 177.9 for LU, 163.2 for CM, 154.7 for Z0, and 108.7 for VE. There was no significant difference in the m for ZO, CM, and LU. VE presented the highest m value and significantly higher than ZO. For σ0 and σ5%, ZO, CM, and LU were similar but higher than VE. Conclusion: The strength characteristics of CAD/ CAM composites vary according to their composition and microstructure. VE presented the lowest strength and highest Weibull modulus among the materials.

  15. The Effect of Fiber Strength Stochastics and Local Fiber Volume Fraction on Multiscale Progressive Failure of Composites

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.

  16. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  17. Physical properties of a new sonically placed composite resin restorative material.

    Science.gov (United States)

    Ibarra, Emily T; Lien, Wen; Casey, Jeffery; Dixon, Sara A; Vandewalle, Kraig S

    2015-01-01

    A new nanohybrid composite activated by sonic energy has been recently introduced as a single-step, bulk-fill restorative material. The purpose of this study was to compare the physical properties of this new composite to various other composite restorative materials marketed for posterior or bulk-fill placement. The following physical properties were examined: depth of cure, volumetric shrinkage, flexural strength, flexural modulus, fracture toughness, and percent porosity. A mean and standard deviation were determined per group. One-way ANOVA and Tukey's post hoc tests were performed per property (α = 0.05). Percent porosity was evaluated with a Kruskal-Wallis/Mann-Whitney test (α = 0.005). Significant differences were found between groups (P composite restorative materials, the new nanohybrid composite showed low shrinkage and percent porosity, moderate fracture toughness and flexural modulus, and high flexural strength. However, it also demonstrated a relatively reduced depth of cure compared to the other composites.

  18. Apparent interfacial shear strength of short-flax-fiber/starch acetate composites

    DEFF Research Database (Denmark)

    Andersons, J.; Modniks, J.; Joffe, R.

    2016-01-01

    The paper deals with an indirect industry-friendly method for identification of the interfacial shear strength (IFSS) in a fully bio-based composite. The IFSS of flax fiber/starch acetate is evaluated by a modified Bowyer and Bader method based on an analysis of the stress-strain curve of a short......-fiber-reinforced composite in tension. A shear lag model is developed for the tensile stress-strain response of short-fiber-reinforced composites allowing for an elastic-perfectly plastic stress transfer. Composites with different fiber volume fractions and a variable content of plasticizer have been analyzed. The apparent...... IFSS of flax/starch acetate is within the range of 5.5-20.5 MPa, depending on composition of the material. The IFSS is found to be greater for composites with a higher fiber loading and to decrease with increasing content of plasticizer. The IFSS is equal or greater than the yield strength of the neat...

  19. Experimental Tensile Strength Analysis of Woven-Glass/Epoxy Composite Plates with Central Circular Hole

    Science.gov (United States)

    Hadi, Bambang K.; Rofa, Bima K.

    2018-04-01

    The use of composite materials in aerospace engineering, as well as in maritime structure has increased significantly during the recent years. The extensive use of composite materials in industrial applications should make composite structural engineers and scientists more aware of the advantage and disadvantage of this material and provide them with necessary data and certification process. One of the problems in composite structures is the existence of hole. Hole can not be avoided in actual structures, since it may be the necessity of providing access for maintenance or due to impact damage. The presence of hole will weaken the structures. Therefore, in this paper, the effect of hole on the strength of glass-woven/epoxy composite will be discussed. Extensive tests have been carried out to study the effect of hole-diameter on the tensile strengths of these specimens. The results showed that the bigger the hole-diameter compared to the width of the specimens has weakened the structures further, as expected. Further study should be carried in the future to model it with the finite element and theoretical analysis precisely.

  20. Choosing the optimal Pareto composition of the charge material for the manufacture of composite blanks

    Science.gov (United States)

    Zalazinsky, A. G.; Kryuchkov, D. I.; Nesterenko, A. V.; Titov, V. G.

    2017-12-01

    The results of an experimental study of the mechanical properties of pressed and sintered briquettes consisting of powders obtained from a high-strength VT-22 titanium alloy by plasma spraying with additives of PTM-1 titanium powder obtained by the hydride-calcium method and powder of PV-N70Yu30 nickel-aluminum alloy are presented. The task is set for the choice of an optimal charge material composition of a composite material providing the required mechanical characteristics and cost of semi-finished products and items. Pareto optimal values for the composition of the composite material charge have been obtained.

  1. Comparison of tensile strength of different carbon fabric reinforced epoxy composites

    Directory of Open Access Journals (Sweden)

    Jane Maria Faulstich de Paiva

    2006-03-01

    Full Text Available Carbon fabric/epoxy composites are materials used in aeronautical industry to manufacture several components as flaps, aileron, landing-gear doors and others. To evaluate these materials become important to know their mechanical properties, for example, the tensile strength. Tensile tests are usually performed in aeronautical industry to determinate tensile property data for material specifications, quality assurance and structural analysis. For this work, it was manufactured four different laminate families (F155/PW, F155/HS, F584/PW and F584/HS using pre-impregnated materials (prepregs based on F155TM and F584TM epoxy resins reinforced with carbon fiber fabric styles Plain Weave (PW and Eight Harness Satin (8HS. The matrix F155TM code is an epoxy resin type DGEBA (diglycidil ether of bisphenol A that contains a curing agent and the F584TM code is a modified epoxy resin type. The laminates were obtained by handing lay-up process following an appropriate curing cycle in autoclave. The samples were evaluated by tensile tests according to the ASTM D3039. The F584/PW laminates presented the highest values of tensile strength. However, the highest modulus results were determined for the 8HS composite laminates. The correlation of these results emphasizes the importance of the adequate combination of the polymeric matrix and the reinforcement arrangement in the structural composite manufacture. The microscopic analyses of the tested specimens show valid failure modes for composites used in aeronautical industry.

  2. Development and characterization of composite materials for production of composite risers by filament winding

    Energy Technology Data Exchange (ETDEWEB)

    Sobrinho, L.L.; Bastian, F.L. [Federal University of Rio de Janeiro, RJ (Brazil). Dept. of Metallurgical and Materials Engineering], e-mail: ledjane@metalmat.ufrj.br; Calado, V.M.A. [Federal University of Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2008-07-01

    Industry has been challenged to provide riser systems which are more cost effective and which can fill the technology gaps with respect to water depth, riser diameter and high temperatures left open by flexible, steel catenary risers (SCRs) and hybrid risers. Composite materials present advantages over conventional steel risers because composite materials are lighter, more fatigue and corrosion resistant, better thermal insulators and can be designed for improving the structural and mechanical response. Besides, composite materials present some attractive attributes for the offshore service, such as: high specific strength and stiffness. This paper focuses on the development and characterization of a polymer matrix (epoxy) and of material composite (epoxy/fiber glass), which will be used in a development for composites risers by the filament winding process (wet winding). (author)

  3. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  4. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    Directory of Open Access Journals (Sweden)

    John Bridge

    2009-12-01

    Full Text Available Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon coated fibers are compared using room temperature 3-point bend testing. Carbon coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  5. Adhesive bond strength evaluation in composite materials by laser-generated high amplitude ultrasound

    International Nuclear Information System (INIS)

    Perton, M; Blouin, A; Monchalin, J-P

    2011-01-01

    Adhesive bonding of composites laminates is highly efficient but is not used for joining primary aircraft structures, since there is presently no nondestructive inspection technique to ensure the quality of the bond. We are developing a technique based on the propagation of high amplitude ultrasonic waves to evaluate the adhesive bond strength. Large amplitude compression waves are generated by a short pulse powerful laser under water confinement and are converted after reflection by the assembly back surface into tensile waves. The resulting tensile stresses can cause a delamination inside the laminates or at the bond interfaces. The adhesion strength is evaluated by increasing the laser pulse energy until disbond. A good bond is unaffected by a certain level of stress whereas a weaker one is damaged. The method is shown completely non invasive throughout the whole composite assembly. The sample back surface velocity is measured by an optical interferometer and used to estimate stress history inside the sample. The depth and size of the disbonds are revealed by a post-test inspection by the well established laser-ultrasonic technique. Experimental results show that the proposed method is able to differentiate weak bond from strong bonds and to estimate quantitatively their bond strength.

  6. The behavior of high-strength unidirectional composites under tension with superposed hydrostatic pressure

    NARCIS (Netherlands)

    Zinoviev, P.A.; Tsvetkov, S.V.; Kulish, G.G.; Berg, van den R.W.; Schepdael, van L.J.M.M.

    2001-01-01

    Three types of high-strength unidirectional composite materials were studied under longitudinal tension with superposed high hydrostatic pressure. Reinforcing fibers were T1000G carbon, S2 glass and Zylon PBO fibers; the Ciba 5052 epoxy resin was used as matrix. The composites were tested under

  7. Yield strengths of tungsten-base composites determined from bend tests

    International Nuclear Information System (INIS)

    Zukas, E.G.; Eash, D.T.

    1976-08-01

    The variation in yield strength with either strain rate or temperature was determined for a number of tungsten-base composites by use of the simple three-point bend test. The yield strengths were comparable with those obtained in standard tensile tests. Additional studies on 1019 steel, either in the as-rolled or annealed condition, gave results in agreement with handbook values, as did two aluminum alloys. These results demonstrate that the bend test deserves wider acceptance in materials testing programs

  8. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering.

    Science.gov (United States)

    Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo

    2017-01-02

    Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Single fibre and multifibre unit cell analysis of strength and cracking of unidirectional composites

    DEFF Research Database (Denmark)

    Wang, H.W.; Zhou, H.W.; Mishnaevsky, Leon

    2009-01-01

    damageable parts in composites (matrix cracks, fibre/matrix interface damage and fibre fracture) was observed in the simulations. The strength of interface begins to influence the deformation behaviour of the cell only after the fibre is broken. In this case, the higher interface layer strength leads...... to the higher stiffness of the damaged material. The damage in the composites begins by fibre breakage, which causes the interface damage, followed by matrix cracking....

  10. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system.

    Science.gov (United States)

    Shinohara, Ayano; Taira, Yohsuke; Sakihara, Michino; Sawase, Takashi

    2018-01-01

    Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study.

  11. The Effect of Gamma Radiation on the Bond Strength and Micro leakage of Two Aesthetic Restorative Materials

    International Nuclear Information System (INIS)

    Seif, M.B.

    2013-01-01

    To evaluate the effect of gamma radiation on bond strength and micro leakage of nano-composite and nano-glassionomer, and to detect any alterations in their molecular structure due to gamma radiation. Materials and Methods: 80 specimens were used as follow; 40 specimens for shear bond strength evaluation, 20 specimens for micro leakage assessment, while the remaining 20 specimens for deducing the chemical structure. For shear bond strength (SBS) test 2 mm thick wafers of dentine were sectioned and 3 mm diameter holes were drilled through the wafers. 20 specimens were restored with nano-composite and nano-glassionomer without irradiation (Group A1, B1). The remaining 20 specimens were restored with nano-composite and nano-glassionomer (Group A2, B2), then they were irradiated with therapeutic dose of 60 gray for 1 week (3 days/week). For micro leakage, 10 natural teeth with two prepared class V cavities were used. One of the cavities was restored with nano-composite while the other one with nano-glassionomer to be examined before and after gamma radiation. Spectrophotometric analysis was performed for all tested materials before and after radiation to trace any structural changes. Results: Significant increase in SBS of nano-composite after irradiation while nano-glassionomer was insignificantly increased. For micro leakage no significant difference existed between the irradiated and non-irradiated groups of both materials. Conclusion: Therapeutic dose of head and neck gamma radiation had improved dentin shear bond strength of nano-composite. On the other hand, it had not an effect on shear bond strength of nano-glassionomer and the micro leakage of both tested materials. Gamma radiation did not alter the chemical structure of the tested material.

  12. Effect of Various Surface Treatment on Repair Strength of Composite Resin

    Directory of Open Access Journals (Sweden)

    Y. Alizade

    2004-12-01

    Full Text Available Statement of Problem: In some clinical situations, repair of composite restorations is treatment of choice. Improving the bond strength between one new and old composite usually requires increased surface roughness to promote mechanical interlocking sincechemical bonding might not be adequate. Similarly, the treatment of a laboratory fabricated resin composite restoration involves the same procedures, and there is a need to create the strongest possible bond of a resin cement to a previously polymerized composite.Purpose: The aim of this study was to evaluate the effect of various surface treatments on the shear bond strength of repaired to aged composite resin.Materials and Methods: Eighty four cylindrical specimens of a composite resin were fabricated and stored in distilled water for 100 days prior to surface treatment. Surface treatment of old composite was done in 6 groups as follow:1- Air abrasion with CoJet sand particles with micoretcher + silane + dentin bonding agent2- Air abrasion with 50μm Al2O3 particles+ phosphoric acid+ silane+ dentin bonding agent3- Air abrasion with 50μm Al2O3 particles + phosphoric acid + dentin bonding agent4- Diamond bur + phosphoric acid + silane + dentin bonding agent5- Diamond bur + phosphoric acid + dentin bonding agent6- Diamond bur + phosphoric acid + composite activator + dentin bonding agentThen fresh composite resin was bonded to treated surfaces. Twelve specimens were also fabricated as control group with the same diameter but with the height twice as much as other specimens. All of the specimens were thermocycled prior to testing for shear bondstrength. The bond strength data were analyzed statistically using one way ANOVA test, t test and Duncan's grouping test.Results: One-way ANOVA indicated no significant difference between 7 groups (P=0.059. One-way ANOVA indicated significant difference between the three diamond bur groups (P=0.036. Silane had a significant effect on the repair bond

  13. Enhanced Flexural Strength of Tellurium Nanowires/epoxy Composites with the Reinforcement Effect of Nanowires

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao

    2018-02-01

    Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.

  14. About the possibility of obtaining cementitious soil composites of high strength on the basis of belozems of carbonate composition

    Science.gov (United States)

    Karapetyan, K. A.; Hayroyan, S. G.; Manukyan, E. S.

    2018-04-01

    The problem of manufacturing high strength cementitious soils based on belozems of carbonate composition, which experience compression (no less than 10 MPa), without application of surface active substances is considered. The portland cement of type 400 was used as a binding agent to develop compositions of cementitious soil composites, and the ordinary pipe water was used to obtain solutions of cementitious soils. The chemical and mineralogical composition of the initial ingredients and the granulometric composition of belozems were determined. The measurements showed that the upper and lower plasticity limits, the optimum moisture content, and the maximal density of the skeleton of belozems, as well as the considered compositions of cementitious soils, are insignificant, while the plasticity index of cementitious soils is less than one for belozems. It is experimentally proved that an increase in the portland cement amount lead to an increase in the compressive strength of cementitious soils with a decreasing speed. But for the same amount of portland cement used in the cementitious soil compositions, the values of the strength ratio of the pieces tested at the age of 60 and 28 days remain the same and are approximately equal to 1.2. A comparison of experimental data showed that it seems to be real to manufacture a cementitious soil on the basis of belozems of carbonate composition, which contain 10% of cement of the weight of dry mixture and have strength more than 10 MPa, without adding any surfactants to the material composition.

  15. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    Science.gov (United States)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  16. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    Science.gov (United States)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  17. Adhesion of resin composite core materials to dentin.

    Science.gov (United States)

    O'Keefe, K L; Powers, J M

    2001-01-01

    This study determined (1) the effect of polymerization mode of resin composite core materials and dental adhesives on the bond strength to dentin, and (2) if dental adhesives perform as well to dentin etched with phosphoric acid as to dentin etched with self-etching primer. Human third molars were sectioned 2 mm from the highest pulp horn and polished. Three core materials (Fluorocore [dual cured], Core Paste [self-cured], and Clearfil Photo Core [light cured]) and two adhesives (Prime & Bond NT Dual Cure and Clearfil SE Bond [light cured]) were bonded to dentin using two dentin etching conditions. After storage, specimens were debonded in microtension and bond strengths were calculated. Scanning electron micrographs of representative bonding interfaces were analyzed. Analysis showed differences among core materials, adhesives, and etching conditions. Among core materials, dual-cured Fluorocore had the highest bond strengths. There were incompatibilities between self-cured Core Paste and Prime & Bond NT in both etched (0 MPa) and nonetched (3.0 MPa) dentin. Among adhesives, in most cases Clearfil SE Bond had higher bond strengths than Prime & Bond NT and bond strengths were higher to self-etched than to phosphoric acid-etched dentin. Scanning electron micrographs did not show a relationship between resin tags and bond strengths. There were incompatibilities between a self-cured core material and a dual-cured adhesive. All other combinations of core materials and adhesives produced strong in vitro bond strengths both in the self-etched and phosphoric acid-etched conditions.

  18. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  19. Environment-friendly wood fibre composite with high bonding strength and water resistance

    Science.gov (United States)

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi; Guo, Minghui

    2018-04-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.

  20. Potential of Carbon Nanotube Reinforced Cement Composites as Concrete Repair Material

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2016-01-01

    Full Text Available Carbon nanotubes (CNTs are a virtually ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. It is evident from contemporary research that utilization of CNT in producing new cement-based composite materials has a great potential. Consequently, possible practical application of CNT reinforced cementitious composites has immense prospect in the field of applied nanotechnology within construction industry. Several repair, retrofit, and strengthening techniques are currently available to enhance the integrity and durability of concrete structures with cracks and spalling, but applicability and/or reliability is/are often limited. Therefore, there is always a need for innovative high performing concrete repair materials with good mechanical, rheological, and durability properties. Considering the mechanical properties of carbon nanotubes (CNTs and the test results of CNT reinforced cement composites, it is apparent that such composites could be used conveniently as concrete repair material. With this end in view, the applicability of multiwalled carbon nanotube (MWNT reinforced cement composites as concrete repair material has been evaluated in this study in terms of setting time, bleeding, and bonding strength (slant shear tests. It has been found that MWNT reinforced cement mortar has good prospective as concrete repair material since such composites exhibited desirable behavior in setting time, bleeding, and slant shear.

  1. Creep Strength of Discontinuous Fibre Composites

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker

    1974-01-01

    relation between stress and strain rate. Expressions for the interface stress, the creep velocity profile adjacent to the fibres and the creep strength of the composite are derived. Previous results for the creep strength, sc = aVfs0 ( \\frac[( Î )\\dot] [( Î )\\dot] 0 )1/nr1 + 1/n c=Vf001n1+1n in which[( Î...... )\\dot] is the composite creep rate,V f is the fibre volume fraction,sgr 0,epsi 0 andn are the constants in the matrix creep law. The creep strength coefficient agr is found to be very weakly dependent onV f and practically independent ofn whenn is greater than about 6....

  2. Utilization of Local Ingredients for the Production of High-Early-Strength Engineered Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Hanwen Deng

    2018-01-01

    Full Text Available The rapid repair and retrofitting of existing transportation infrastructure requires dimensional stability and ductile repair material that can obtain sufficiently high strength in a few hours to accommodate the large loading and deformation at an early age. Engineering cementitious composites (ECCs is a class representative of the new generation of high-performance fiber-reinforced cement-based composites (HPFRCC with medium fiber content. The unique properties of tremendous ductility and tight multiple crack behavior indicate that ECC can be used as an effective retrofit material. The wide application of this material in China will require the use of all local ingredients. In this study, based on Chinese domestic ingredients, including matrix materials and all fibers, high-early-strength ECC (HES-ECC was designed under the guidance of strain-hardening criterion of ECC. The matrix properties and fiber/matrix interfacial micromechanics properties were obtained from three-point-bending test and single-fiber pullout test. The mechanical properties of HES-ECC were achieved by direct tensile test. The experimental results show that HES-ECC was successfully developed by using all Chinese materials. When using the domestic PVA fiber at 2%, the strength requirement can be achieved but only a low ductility. When using the domestic PE fiber at 0.8%, the strength and deformation requirement both can be obtained. The HES-ECC developed in this study exhibited compressive strength of more than 25 MPa within 6 hours, and an ultimate tensile strength of 5-6 MPa and tensile strain capacity of 3-4% after 60 days. Moreover, the cost of using domestic fiber can be largely reduced compared with using imported fiber, up to 70%; it is beneficial to the promotion of these high-early-strength ECCs in the Chinese market.

  3. The stress analysis method for three-dimensional composite materials

    Science.gov (United States)

    Nagai, Kanehiro; Yokoyama, Atsushi; Maekawa, Zen'ichiro; Hamada, Hiroyuki

    1994-05-01

    This study proposes a stress analysis method for three-dimensionally fiber reinforced composite materials. In this method, the rule-of mixture for composites is successfully applied to 3-D space in which material properties would change 3-dimensionally. The fundamental formulas for Young's modulus, shear modulus, and Poisson's ratio are derived. Also, we discuss a strength estimation and an optimum material design technique for 3-D composite materials. The analysis is executed for a triaxial orthogonally woven fabric, and their results are compared to the experimental data in order to verify the accuracy of this method. The present methodology can be easily understood with basic material mechanics and elementary mathematics, so it enables us to write a computer program of this theory without difficulty. Furthermore, this method can be applied to various types of 3-D composites because of its general-purpose characteristics.

  4. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  5. Advanced Technology Composite Fuselage - Materials and Processes

    Science.gov (United States)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  6. Comparative Evaluation of Flexural Strength of Provisional Crown and Bridge Materials-An Invitro Study.

    Science.gov (United States)

    Singh, Ankita; Garg, Sandeep

    2016-08-01

    Provisional restorations serve a key role as a functional and esthetic try-in for the design of the final prosthesis. During selection of materials for this restoration, clinicians must consider physical properties, ease of handling, cost and patient satisfaction and approval. To evaluate and compare the flexural strength of provisional crown and bridge materials available commercially. This in-vitro study was done to compare the flexural strength of six temporary crown and bridge materials available commercially at 24 hours, 8 days and after repair. Three poly methyl methacrylate based materials (DPI, SC10 and Trulon) and three bis-acrylic based composite resins (Protemp, Cooltemp and Luxatemp) were selected. A total of 72 specimens of dimensions 64mm×10mm×2.5mm were prepared from these materials (12 from each material) and divided into two groups (n=36). Specimens were stored in artificial saliva and were fractured after 24 hours and 8 days using Universal Testing Machine. The fractured samples from the 8 days study were then subjected to repair. A uniform space of 2mm and a 450 bevel was maintained for all the repaired samples for better distribution of forces. Flexural strength of these repaired samples was recorded using the same machine. RESULTs were recorded and statistically analysed by one-way Anova and Post hoc tests. RESULTs revealed that there was decrease in flexural strength for all the materials tested from 24 hours to 8 days, though flexural strength between poly methyl methacrylate and bis-acrylic resins was similar at 24 hours and 8 days time interval. A substantial decrease was noticed in the strength of bis-acrylic composite resins after repair. From the current study it can be suggested that though there is decrease in flexural strength for all the materials from 24 hours to 8 days, both can be used to fabricate the provisional restorations. However, in the event of a fracture of a bis-acrylic provisional restoration, it may be more

  7. Review on advanced composite materials boring mechanism and tools

    Science.gov (United States)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  8. Effect Of RPC Compositions On: Compressive Strength and Absorption

    Directory of Open Access Journals (Sweden)

    Ahmed Sultan Ali

    2016-03-01

    Full Text Available Concrete is a critical material for the construction of infrastructure facilities throughout the world. A new material known as Reactive Powder Concrete (RPC, or sometimes called Ultra-High Performance Concrete (UHPC, is becoming available that differs significantly from traditional concretes. It is an ultra high strength and high ductility composite material with advanced mechanical properties. It consists of special concrete whose microstructure is optimized by precise gradation of all particles in the mix to yield maximum density. Different RPC mixes in the experimental investigation of the present study the mechanical properties of RPC including compressive strength, density and absorption. The main variables used in the production of the different RPC mixes of the present research are three, namely, type of pozzolanic admixture (metakaolin, micro silica, and silica fume, type of fibers (steel and polypropylene fibers and volume fraction of fibers (1.0,1.5, and 2.0%. The experimental results indicated that RPC mixes with silica fume gave the highest values of compressive strength and density and lowest value of absorption in comparison with RPC using micro silica or metakaolin where metakaolin was the third in such comparisons. However the RPC mixes used in the present investigation gave group compressive strength ranging between 164 -195 MPa. It was also found that the use of steel fibers with high volume fraction (2% in an RPC mix increases the compressive strength by 8% and density of the concrete by 2.5% and reduces its absorption by 13%, unlike an RPC mix using polypropylene fibers of lesser volume fraction.

  9. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-Filled Composites

    OpenAIRE

    Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam

    2013-01-01

    Objectives: The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel...

  10. Evaluation of radiation-shielding properties of the composite material

    International Nuclear Information System (INIS)

    Pavlenko, V.I.; Chekashina, N.I.; Yastrebinskij, R.N.; Sokolenko, I.V.; Noskov, A.V.

    2016-01-01

    The paper presents the evaluation of radiation-shielding properties of composite materials with respect to gamma-radiation. As a binder for the synthesis of radiation-shielding composites we used lead boronsilicate glass matrix. As filler we used nanotubular chrysotile filled with lead tungstate PbWO4. It is shown that all the developed composites have good physical-mechanical characteristics, such as compressive strength, thermal stability and can be used as structural materials. On the basis of theoretical calculation we described the graphs of the gamma-quanta linear attenuation coefficient depending on the emitted energy for all investigated composites. We founded high radiation-shielding properties of all the composites on the basis of theoretical and experimental data compared to materials conventionally used in the nuclear industry - iron, concrete, etc

  11. Summary of the Effects of Two Years of Hygro-Thermal Cycling on a Carbon/Epoxy Composite Material

    Science.gov (United States)

    Kohlman, Lee W.; Binienda, Wieslaw K.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael; Bail, Justin L.

    2011-01-01

    Composite materials are beginning to be used for structures in the fan section of commercial gas turbine engines. This paper explores the type of damage that could occur within one type of composite material after exposure to hygrothermal cycles (temperature/humidity cycles) that are representative of the environment in the fan section of an engine. The effect of this damage on composite material properties is measured. Chemical changes in the matrix material were limited to the exposed surface. Microcrack formation was identified in the composite material. This damage did not cause a significant reduction in tensile strength or impact penetration resistance of the composite material. Additional data is needed to assess the effect of damage on compressive strength.

  12. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  13. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  14. Tensile and fatigue strength properties of Kevlar 29 aramid/epoxy unidirectional composites

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, C.

    1981-07-22

    Static and fatigue tensile strength properties of filament wound undirectional Kevlar 29/epoxy, typical of filament wound material used in flywheel rotors, were studied. Machining techniques were developed to minimize fiber fuzzing on edges. The static modulus, normalized to 70% fiber volume fraction is 8.87 x 10/sup 6/ psi. The major Poisson's ratio is 0.37. The static composite tensile strength, normalized to 70% fiber volume fraction is 200 x 10/sup 3/ psi, corresponding to a fiber stress at failure of 286 x 10/sup 3/ psi, which is good for materials having a very high fiber volume fraction. The S-N curve for R = 0.7 was found to be quite flat. Although the techniques used in this program had previously been employed successfully to study the fatigue behavior of Kevlar 29/epoxy and Kevlar 49/epoxy unidirectional materials, we were unable to overcome the persistent problem of cohesive material failure in the tab regions. The apparent reason for this is the very low interlaminar shear strength of the filament wound material. 16 figures.

  15. DEVELOPMENT AND VALIDATION OF NUMERICAL METHOD FOR STRENGTH ANALYSIS OF LATTICE COMPOSITE FUSELAGE STRUCTURES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Lattice composite fuselage structures are developed as an alternative to conventional composite structures based on laminated skin and stiffeners. Structure layout of lattice structures allows to realize advantages of current composite materials to a maximal extent, at the same time minimizing their main shortcomings, that allows to provide higher weight efficiency for these structures in comparison with conventional analogues.Development and creation of lattice composite structures requires development of novel methods of strength anal- ysis, as conventional methods, as a rule, are aiming to strength analysis of thin-walled elements and do not allow to get confident estimation of local strength of high-loaded unidirectional composite ribs.In the present work the method of operative strength analysis of lattice composite structure is presented, based onspecialized FE-models of unidirectional composite ribs and their intersections. In the frames of the method, every rib is modeled by a caisson structure, consisting of arbitrary number of flanges and webs, modeled by membrane finite elements. Parameters of flanges and webs are calculated automatically from the condition of stiffness characteristics equality of real rib and the model. This method allows to perform local strength analysis of high-loaded ribs of lattice structure without use of here-dimensional finite elements, that allows to shorten time of calculations and sufficiently simplify the procedure of analysis of results of calculations.For validation of the suggested method, the results of experimental investigations of full-scale prototype of shell of lattice composite fuselage section have been used. The prototype of the lattice section was manufactured in CRISM and tested in TsAGI within the frames of a number of Russian and International scientific projects. The results of validation have shown that the suggested method allows to provide high operability of strength analysis, keeping

  16. Carbon fibre as a composites materials precursor-A review

    International Nuclear Information System (INIS)

    Ismail, A.F.; Yusof, N.; Mustafa, A.

    2010-01-01

    Carbon fibers are widely used as reinforcement in composite materials such as carbon fiber reinforced plastics, carbon fiber reinforced ceramics, carbon-carbon composites and carbon fiber reinforced metals, due to their high specific strength and modulus. Carbon fiber composites are ideally suited to applications where strength, stiffness, lower weight and outstanding fatigue characteristics are critical requirements. Generally, there are two main sectors of carbon fiber applications. Application of carbon fiber in high technology sectors includes aerospace and nuclear engineering whereby the use of carbon fiber is driven by maximum performance and not significantly influenced by cost factors. Meanwhile, the application in general engineering and transportations sector is dominated by cost constraints. Carbon fibers used in composites are often coated or surface treated to improve interaction between the fiber surface and the matrix. PAN/ CNT composite fibers are good candidates for the development of next generation carbon fibers with improved tensile strength and modulus while retaining its compressive strength. This paper aims at reviewing and critically discussing the fabrication aspects of carbon fiber for composites which can be divided into several sections: precursor selection, spinning process, pretreatment of the precursor, pyrolysis process, and also surface treatment of the carbon fiber. The future direction of carbon fiber for composite is also briefly identified to further extend the boundary of science and technology in order to fully exploit its potential. (author)

  17. Strength training and body composition in middle-age women.

    Science.gov (United States)

    Burrup, Rachelle; Tucker, Larry A; LE Cheminant, James D; Bailey, Bruce W

    2018-01-01

    Strength training is a sound method to improve body composition. However, the effect of age, diet, menopause, and physical activity on the relationship between strength training and body composition in women remains unknown. The purpose of this study was to examine the intricacies of the relationship between strength training and body composition in 257 middle-age women and to quantify the effect of these factors on the association. The study was cross-sectional. Five variables were used to index strength training participation. Body composition was assessed by dual-energy X-ray absorptiometry. Diet was assessed by 7-day weighed food records, and physical activity was measured objectively using accelerometers. There were 109 strength trainers in the sample. For each day per week of strength training, body fat was 1.3 percentage points lower (F=14.8, Pdevote to strength training, the lower their body fat and the higher their fat-free mass tend to be. A significant portion of the differences in body composition seems to result from lifters participating in more physical activity than non-lifters. Menopause status also contributes significantly to the relationship.

  18. Flexible Composite-Material Pressure Vessel

    Science.gov (United States)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  19. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    Science.gov (United States)

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Processes for fabricating composite reinforced material

    Science.gov (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  1. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material.

    Science.gov (United States)

    Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo

    2018-04-10

    To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  2. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  3. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2018-01-01

    Full Text Available Uniaxial tensile tests of basalt fiber/epoxy (BF/EP composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the fiber orientation angle is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all increase with increasing fiber volume fraction. A certain degree of fiber clustering appears in the epoxy resin when the basalt fiber volume fraction is >1.2%. The fiber equidistribution coefficient and clustering fiber content were used to characterize the basalt fiber clustering effect. With the increase of fiber volume fraction, the clustering fiber content gradually increased, but the fiber equidistribution coefficient decreased. Meanwhile, based on Tsai theory, a geometric model and a tensile mechanical model of the clustering fiber are established. By considering the fiber clustering effect, the BF/EP composite material tensile strength is calculated, and the calculated values are close to the experimental results.

  4. Microbiological destruction of composite polymeric materials in soils

    Science.gov (United States)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  5. Properties analysis of tensile strength, crystallinity degree and microstructure of polymer composite polypropylene-sand

    International Nuclear Information System (INIS)

    Sudirman; Karo-Karo, Aloma; Ari-Handayani; Bambang-Sugeng; Rukihati; Mashuri

    2004-01-01

    Materials modification base on polymer toward polymer composite is needed by addition of filler. Mechanical properties such as tensile strength, crystallinity degree and microstructure of polymer composite based on polypropylene with sand filler have been investigated. In this work, the polymer composite has been made by mixing the matrix of polypropylene melt flow 2 (PP MF2) or polypropylene melt flow 10 (PP MF 10) with sand filler in a labo plastomill. The composition of sand filler was varied to 10, 30, 40 and 50 % v/v, a then the composite were casted to the film sheets form. The sheets were characterized mechanically i.e tensile strength, crystallinity degree and microstructure. The result showed that the tensile strength decreased by increasing the volume fraction of sand filler, in accordance with microstructure investigation that the matrix area under zone plastic deformation (more cracks), while the filler experienced elastic deformation, so that the strength mechanism of filler did not achieved with expectation (Danusso and Tieghi theory). For filler more than 30 % of volume fraction, the tensile strength of polypropylene melt flow 10 (PP MF 10) was greater than that polypropylene melt flow 2 (PP MF2). It was caused by plasticities in PP MF 10. The tensile strength of PP MF2 was greater than that PP MF 10 for volume fraction of sand filler less than 30 %. It was caused by PP MF2 to be have more degree of crystallinity

  6. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  7. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  8. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  9. Efficacy of ceramic repair material on the bond strength of composite resin to zirconia ceramic.

    Science.gov (United States)

    Kirmali, Omer; Kapdan, Alper; Harorli, Osman Tolga; Barutcugil, Cagatay; Ozarslan, Mehmet Mustafa

    2015-01-01

    The aim of this study was to evaluate the shear bond strength of composite resin in five different repair systems. Sixty specimens (7 mm in diameter and 3 mm in height) of zirconia ceramic were fabricated. All specimen surfaces were prepared with a 30 µm fine diamond rotary cutting instrument with water irrigation for 10 s and dried with oil-free air. Specimens were then randomly divided into six groups for the following different intra-oral repair systems (n = 10): Group 1, control group; Group 2, Cojet system (3M ESPE, Seefeld, Germany); Group 3, Cimara® System (Voco, Cuxhaven, Germany); Group 4, Z-Prime Plus System (Bisco Inc., Schaumburg, IL); Group 5, Clearfil™ System (Kuraray, Osaka, Japan); and Group 6, Z-Bond System (Danville, CA). After surface conditioning, a composite resin Grandio (Voco, Cuxhaven, Germany) was applied to the zirconia surface using a cylindrical mold (5 mm in diameter and 3 mm in length) and incrementally filled up, according to the manufacturer's instructions of each intra-oral system. Each specimen was subjected to a shear load at a crosshead speed of 1 mm/min until fracture. One-way analysis of variance (ANOVA) and Tukey post-hoc tests were used to analyze the bond strength values. There were significant differences between Groups 2-6 and Group 1. The highest bond strength values were obtained with Group 2 (17.26 ± 3.22) and Group 3 (17.31 ± 3.62), while the lowest values were observed with Group 1 (8.96 ± 1.62) and Group 6 (12.85 ± 3.95). All repair systems tested increased the bond strength values between zirconia and composite resin that used surface grinding with a diamond bur.

  10. Compressive strength of thick composite panels

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    2011-01-01

    The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used in the structu......The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used...

  11. Jordanian silica sand and cement as a reinforcement material for polystyrene matrix composites

    International Nuclear Information System (INIS)

    Jalham, S. I.

    1999-01-01

    The behaviour of polystyrene matrix composites with different percentages of Jordaanian Silica Sand as a Reinforcement Materials (0, 5, 25, 50, and 75 wt%) and different mean grain sizes of sand particles (60, 75, 85, and 300μ m) and with cement as a boning materials in the amount fo 1/6 wt% of the wt% of silica sand were manufactured and tested under compression loading in the Industrial Engineering Department as the Uninersity of Jordan as a part of large study on local materials. The main conclusions of this investigation are: a long-term, durable structure of the polystyrene composite reinforced by silica sand and cement was achieved by mixing the constituents with water; the higher the volume fraction of the reinforcement, the higher the volume fraction of reinforcement, the higher the strength while for 75% of reinforcement, the strength dropped to an amount less than that of the matrix; the higher the grain size, the higher the strength; longitudinal brittle fracture was observed for the composites, and a homogeneous distribution of the sand particles helped in increasing the strength of the composite by playing an important role in distributing the applied load. (author). 11 refs., 6 tabs, 2 figs

  12. Synthesizing Smart Polymeric and Composite Materials

    Science.gov (United States)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4

  13. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance

    Science.gov (United States)

    Rahman, AKM Samsur

    Geopolymers have the potential to cross the process performance gap between polymer matrix and ceramic matrix composites (CMC), enabling high temperature capable composites that are manufactured at relatively low temperatures. Unfortunately, the inherently low toughness of these geopolymers limits the performance of the resulting fiber reinforced geopolymer matrix composites. Toughness improvements in composites can be addressed through the adjustments in the fiber/matrix interfacial strength and through the improvements in the inherent toughness of the constituent materials. This study investigates the potential to improve the inherent toughness of the geopolymer matrix material through the addition of nanofillers, by considering physical dimensions, mechanical properties, reinforcing capability and interfacial bond strength effects. A process optimization study was first undertaken to develop the ability to produce consistent, neat geopolymer samples, a critical precursor to producing nano-filled geopolymer for toughness evaluation. After that, single edge notched bend beam fracture toughness and un-notched beam flexural strength were evaluated for silicon carbide, alumina and carbon nanofillers reinforced geopolymer samples treated at various temperatures in reactive and inert environments. Toughness results of silicon carbide and carbon nanofillers reinforced geopolymers suggested that with the improved baseline properties, high aspect ratio nanofillers with high interfacial bond strength are the most capable in further improving the toughness of geopolymers. Among the high aspect ratio nanofillers i.e. nanofibers, 2vol% silicon carbide whicker (SCW) showed the highest improvement in fracture toughness and flexural strength of ~164% & ~185%, respectively. After heat treatment at 650 °C, SCW reinforcement was found to be effective, with little reduction in the performance, while the performance of alumina nanofiber (ANF) reinforced geopolymer significantly

  14. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  15. Flame-Resistant Composite Materials For Structural Members

    Science.gov (United States)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  16. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    Science.gov (United States)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  17. Repair bond strength of resin composite to bilayer dental ceramics

    Science.gov (United States)

    2018-01-01

    PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430

  18. Development of LTCC Materials with High Mechanical Strength

    International Nuclear Information System (INIS)

    Kawai, Shinya; Nishiura, Sousuke; Terashi, Yoshitake; Furuse, Tatsuji

    2011-01-01

    We have developed LTCC materials suitable for substrates of RF modules used in mobile phone. LTCC can provide excellent solutions to requirements of RF modules, such as down-sizing, embedded elements and high performance. It is also important that LTCC material has high mechanical strength to reduce risk of fracture by mechanical impact. We have established a method of material design for high mechanical strength. There are two successive steps in the concept to achieve high mechanical strength. The first step is to improve mechanical strength by increasing the Young's modulus, and the second step is either further improvement through the Young's modulus or enhancement of the fracture energy. The developed material, so called high-strength LTCC, thus possesses mechanical strength of 400MPa, which is twice as strong as conventional material whose mechanical strength is approximately 200MPa in typical. As a result, high-strength LTCC shows an excellent mechanical reliability, against the drop impact test for example. The paper presents material design and properties of LTCC materials.

  19. International conference on composite materials and energy: Proceedings. Enercomp 95

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    World demand for composite materials is continuously increasing. High strength and rigidity, associated with light weight, are the key factors for composites' success. These materials find numerous applications in all sectors of industry. Presently, a sector of particular interest in terms of demand for composite materials is the energy industry. More and more applications are found in the field of the forms of energy: electrical, petroleum, gas, nuclear, solar and wind. The topics addressed in various sessions of the conference cover potential applications of the entire range of polymer, metal and ceramic composites in all sectors of energy. Papers are divided into sessions covering the following topics: properties; design and analysis; fracture; fatigue and long-term performance; new materials; innovative processing; liquid molding; joining and repairs; radiation curing; recycling; development in ceramic materials; innovations in metallic materials; metal-matrix composites; nondestructive evaluation; energy savings in transportation; pressure vessels and piping; wind energy applications; electrical components; concrete applications; power plant applications; and new materials in the energy field. Most of the papers have been processed separately for inclusion on the data base

  20. Chitosan-cellulose composite materials: Preparation, Characterization and application for removal of microcystin

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Chieu D., E-mail: chieu.tran@marquette.edu [Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States); Duri, Simon [Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States); Delneri, Ambra; Franko, Mladen [Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5001 Nova Gorica (Slovenia)

    2013-05-15

    Highlights: •A novel and recyclable synthetic method using an ionic liquid, a Green Solvent. •Ecocomposite materials were synthesized from cellulose (CEL) and chitosan (CS). •Adding CEL into CS substantially increases tensile strength of the composite. •The composite is much better adsorbent for cyanotoxins than other materials. •The composite can be reused because adsorbed microcystin can be desorbed. -- Abstract: We developed a simple and one-step method to prepare biocompatible composites from cellulose (CEL) and chitosan (CS). [BMIm{sup +}Cl{sup −}], an ionic liquid (IL), was used as a green solvent to dissolve and prepare the [CEL + CS] composites. Since majority (>88%) of IL used was recovered for reuse by distilling the aqueous washings of [CEL + CS], the method is recyclable. XRD, FTIR, NIR, {sup 13}C CP-MAS-NMR and SEM were used to monitor the dissolution and to characterize the composites. The composite was found to have combined advantages of their components: superior mechanical strength (from CEL) and excellent adsorption capability for microcystin-LR, a deadly toxin produced by cyanobacteria (from CS). Specifically, the mechanical strength of the composites increased with CEL loading; e.g., up to 5× increase in tensile strength was achieved by adding 80% of CEL into CS. Kinetic results of adsorption confirm that unique properties of CS remain intact in the composite, i.e., it is not only a very good adsorbent for microcystin but also is better than all other available adsorbents. For example, it can adsorb 4× times more microcystin than the best reported adsorbent. Importantly, the microcystin adsorbed can be quantitatively desorbed to enable the composite to be reused with similar adsorption efficiency.

  1. Chitosan-cellulose composite materials: Preparation, Characterization and application for removal of microcystin

    International Nuclear Information System (INIS)

    Tran, Chieu D.; Duri, Simon; Delneri, Ambra; Franko, Mladen

    2013-01-01

    Highlights: •A novel and recyclable synthetic method using an ionic liquid, a Green Solvent. •Ecocomposite materials were synthesized from cellulose (CEL) and chitosan (CS). •Adding CEL into CS substantially increases tensile strength of the composite. •The composite is much better adsorbent for cyanotoxins than other materials. •The composite can be reused because adsorbed microcystin can be desorbed. -- Abstract: We developed a simple and one-step method to prepare biocompatible composites from cellulose (CEL) and chitosan (CS). [BMIm + Cl − ], an ionic liquid (IL), was used as a green solvent to dissolve and prepare the [CEL + CS] composites. Since majority (>88%) of IL used was recovered for reuse by distilling the aqueous washings of [CEL + CS], the method is recyclable. XRD, FTIR, NIR, 13 C CP-MAS-NMR and SEM were used to monitor the dissolution and to characterize the composites. The composite was found to have combined advantages of their components: superior mechanical strength (from CEL) and excellent adsorption capability for microcystin-LR, a deadly toxin produced by cyanobacteria (from CS). Specifically, the mechanical strength of the composites increased with CEL loading; e.g., up to 5× increase in tensile strength was achieved by adding 80% of CEL into CS. Kinetic results of adsorption confirm that unique properties of CS remain intact in the composite, i.e., it is not only a very good adsorbent for microcystin but also is better than all other available adsorbents. For example, it can adsorb 4× times more microcystin than the best reported adsorbent. Importantly, the microcystin adsorbed can be quantitatively desorbed to enable the composite to be reused with similar adsorption efficiency

  2. Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites

    Science.gov (United States)

    Abral, H.; Kenedy, E.

    2015-07-01

    The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix.

  3. Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites

    International Nuclear Information System (INIS)

    Abral, H; Kenedy, E

    2015-01-01

    The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix. (paper)

  4. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness.

    Science.gov (United States)

    Zhang, Yunya; Li, Xiaodong

    2017-11-08

    Nacre, commonly referred to as nature's armor, has served as a blueprint for engineering stronger and tougher bioinspired materials. Nature organizes a brick-and-mortar-like architecture in nacre, with hard bricks of aragonite sandwiched with soft biopolymer layers. However, cloning nacre's entire reinforcing mechanisms in engineered materials remains a challenge. In this study, we employed hybrid graphene/Al 2 O 3 platelets with surface nanointerlocks as hard bricks for primary load bearer and mechanical interlocking, along with aluminum laminates as soft mortar for load distribution and energy dissipation, to replicate nacre's architecture and reinforcing effects in aluminum composites. Compared with aluminum, the bioinspired, graphene/Al 2 O 3 doubly reinforced aluminum composite demonstrated an exceptional, joint improvement in hardness (210%), strength (223%), stiffness (78%), and toughness (30%), which are even superior over nacre. This design strategy and model material system should guide the synthesis of bioinspired materials to achieve exceptionally high strength and toughness.

  5. An evaluation of the +/-45 deg tensile test for the determination of the in-plane shear strength of composite materials

    Science.gov (United States)

    Kellas, S.; Morton, J.; Jackson, K. E.

    1991-01-01

    The applicability of the +/-45 deg tensile test for the determination of the in-plane shear strength of advanced composite laminates is studied. The assumptions used for the development of the shear strength formulas were examined, and factors such as the specimen geometry and stacking sequence were assessed experimentally. It was found that the strength of symmetric and balanced +/-45 deg laminates depends primarily upon the specimen thickness rather than the specimen width. These findings have important implications for the +/-45 deg tensile test which is recommended by several organizations for the determination of the in-plane shear stress/strain response and the shear strength of continuous fiber reinforced composites. Modifications to the recommended practices for specimen selection and shear strength determination are suggested.

  6. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials

    Directory of Open Access Journals (Sweden)

    Janaina Barros Cruz

    2012-08-01

    Full Text Available This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva and eroded dentin (pH cycling model - 3× / cola drink for 7 days. Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix, resin-modified glass ionomer cement (VitremerTM or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250. Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×. Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05. Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001. For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  7. Effect of Electrospun Nanofibers on the Short Beam Strength of Laminated Fiberglass Composite

    Science.gov (United States)

    Shinde, Dattaji K.

    High specific modulus and strength are the most desirable properties for the material used in structural applications. Composite materials exhibit these properties and over the last decade, their usage has increased significantly, particularly in automotive, defense, and aerospace applications. The major cause of failures in composite laminates is due to delaminations. Delamination in composite laminates can occur due to fatigue, low velocity impact and other loadings modes. Conventional methods like "through-the-thickness stitching" or "Z-Pinning" have limitations for improving flexural and interlaminar properties in woven composites due to the fact that while improving interlaminar properties, the presence of stitches or Z pins affects in-plane properties. This study investigates the flexural behavior of fiberglass composites interleaved with non-woven Tetra Ethyl Orthosilicate (TEOS) electrsopsun nanofibers (ENFs). TEOS ENFs were manufactured using an electrospinning technique and then sintered. Nanoengineered beams were fabricated by interleaving TEOS ENFs between the laminated fiberglass composites to improve the flexural properties. TEOS ENFs, resin film, and failed fiberglass laminated composites with and without nanofibers were characterized using SEM Imaging and ASTM standard testing methods. A hybrid composite was made by interleaving a non-woven sheet of TEOS ENFs between the fiberglass laminates with additional epoxy resin film and fabricated using the out of autoclave vacuum bagging method. Four commonly used stacking sequences of fiberglass laminates with and without nanofibers were used to study the progressive failure and deformation mechanics under flexural loadings. The experimental study has shown significant improvements in short beam strength and strain energy absorption in the nanoengineered laminated fiberglass composites before complete failure. The modes were investigated by performing detailed fractographic examination of failed specimens

  8. Effective longitudinal strength of high temperature metal-matrix composites

    International Nuclear Information System (INIS)

    Craddock, J.N.; Savvides, I.

    1991-01-01

    Several models for predicting the longitudinal strength of fiber composites are presented, ranging from a simple netting analysis to a model incorporating curvilinear strain hardening for all the components. Results from these models are presented for tungsten fiber reinforced superalloys, FeCrAlY and MARM200. It is shown that a simple elastic limit micromechanical model does not always adequately describe the useful strength of the composites. The methods proposed here are shown to be more appropriate for predicting the effective composite strength. 2 refs

  9. Effect of composite warming on shear bond strength.

    Science.gov (United States)

    McDaniel, Thomas F; Sigrist, Thomas W; Johnson, Gary M

    2018-01-01

    Several manufacturers produce devices designed to warm composite resins used in restorative dentistry. Previous investigators have examined the effects of heating composite restorative resins prior to placement and polymerization. Heating has been reported to reduce viscosity, improve ease of placement, enhance monomer conversion, and reduce microleakage. The aim of the present study was to compare shear bond strengths of room temperature (22°C) and prewarmed (54°C) restorative composite resin. Extracted bovine mandibular incisors were sectioned sagittally and embedded in acrylic cylinders. Enamel was selectively etched with 37% phosphoric acid, rinsed, and dried. Self-etching primer was applied to both enamel and dentin. Self-etching adhesive was then applied and photopolymerized. Composite resin capsules were then divided into prewarmed and room temperature groups. Fourteen composite specimens prewarmed in an incubator were applied to the prepared enamel and dentin and photopolymerized. Fourteen room temperature composite specimens were likewise placed. After storage in water for 24 hours, all composite specimens were subjected to shear stress testing. The resulting data were analyzed with a t test (P = 0.05). There was no statistically significant difference between the shear bond strengths of the prewarmed and room temperature composite resin specimens. Warming does not appear to affect bond strength of composite resin bonded to both dentin and enamel.

  10. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  11. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    Science.gov (United States)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  12. In vitro study of transverse strength of fiber reinforced composites.

    Science.gov (United States)

    Mosharraf, R; Hashemi, Z; Torkan, S

    2011-01-01

    Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitro study was to compare the transverse strength of composite resin bars reinforced with pre-impregnated and non-impregnated fibers. Thirty six bar type composite resin specimens (3×2×25 mm) were constructed in three groups. The first group was the control group (C) without any fiber reinforcement. The specimens in the second group (P) were reinforced with pre-impregnated fibers and the third group (N) with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength. Data were statistically analyzed with one way ANOVA and Tukey's tests. There was a significant difference among the mean primary transverse strength in the three groups (Ptransverse strength (Pstudy, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnation of the fiber used implemented no significant difference in the transverse strength of composite resin samples.

  13. Determination of composition of pozzolanic waste mixtures with optimized compressive strength

    Directory of Open Access Journals (Sweden)

    Nardi José Vidal

    2004-01-01

    Full Text Available The utilization of ceramic wastes with pozzolanic properties along with other compounds for obtaining new materials with cementating properties is an alternative for reducing the environmental pollution. The acceptance of these new products in the market demands minimal changes in mechanical properties according to its utilization. For a variable range of compositional intervals, attempts were made to establish limiting incorporation proportions that assure the achievement of minimum pre-established mechanical strength values in the final product. In this case minimum compressive strength value is 3,000 kPa. A simultaneous association of other properties is also possible.

  14. Fracture Strength of Indirect Resin Composite Laminates to Teeth with Existing Restorations : An Evaluation of Conditioning Protocols

    NARCIS (Netherlands)

    Mese, Ayse; Ozcan, Mutlu

    2009-01-01

    Purpose: This study evaluated the fracture strength and failure types of indirect resin-based composite laminates bonded to teeth with aged Class III composite restorations that were conditioned according to various protocols. Materials and Methods: Maxillary central incisors (N = 60) with

  15. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates

    Science.gov (United States)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.

    2016-01-01

    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  16. Lost foam casting of aluminum alloy-SiCp composite material

    International Nuclear Information System (INIS)

    Baalasuburamaniam, R.; Cvetnic, C.; Ravindran, C.

    2002-01-01

    Metal matrix composites are a viable alternative to cast irons in automotive components with possible increase in strength-to-weight ratio. Lost foam casting of aluminum alloy matrix composite containing 20 volume percent SiC was carried out at 690, 730, and 770 o C with a view to determining the effects of cooling rate on microstructure, particle distribution, microporosity and mechanical properties. These results were compared with those for the matrix material cast under similar conditions. The results and the correlations are of particular interest as there is no published literature on lost foam casting of composite materials. (author)

  17. Improving body composition and strength in athletes through a 4-month combined martial arts and strength training program

    Directory of Open Access Journals (Sweden)

    Aleksandra Stachoń

    2016-06-01

    2Zakład Sportów Indywidualnych, Akademia Wychowania Fizycznego, ul. Paderewskiego 35, Wrocław       Corresponding author: Dr Aleksandra Jadwiga Stachoń, e-mail: aleksandra.stachon@awf.wroc.pl Departament of Physical Anthropology, University School of Physical Education in Wrocław, al. I.J. Paderewskiego 35, bud. P2, 51-612 Wrocław; Poland Phone: 71 347 33 44         Key words: resistance training, body build, body composition, combat sport.   Abstract Background and aim. Body composition is one of key components of health in both general and athletic populations. In martial arts great significance is attached to the development of mesomorphy and strength, which are crucial for performing offensive and defensive actions during fights. The study proposes to introduce progressive strength training programme - arranged primarily for beginners – in order to improve body composition of non-elite male martial arts competitors. The present study aims to evaluate the changes in body massiveness, body composition and strength in 31 martial arts practitioners from academic sports clubs after a combined martial arts and strength training programme. Material and methods. The 16-week intervention was based on a targeted progressive resistance training protocol developed by Stefaniak [1995]. The anthropometric, physical and motoric measurements were performed twice at four months interval. This programme includes training three times weekly with increased number of repetitions (19-24, number of sets (1-3 and increased loads (5%. Results. After the completion of the training program, significant increase for about 1.8 kgin body mass was observed. Body massiveness (BMI increased from 23.2 ± 1.8 kg/m2 to 23.9 ± 1.8 kg/m2. The analysis using Sheldon’s somatotypes revealed an increase of mesomorphy (from 5.5 to 5.7 and decrease of ectomorphy (from 2.5 to 2.4. The level of endomorphy became stable (2.1. The maximal circumferences of flexed arm, forearm, calf and

  18. Immediate Repair Bond Strength of Fiber-reinforced Composite after Saliva or Water Contamination.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Flett, Andrew; Lassila, Lippo V J; Vallittu, Pekka K

    2018-05-31

    This in vitro study aimed to evaluate the shear bond strength (SBS) of particulate filler composite (PFC) to saliva- or water-contaminated fiber-reinforced composite (FRC). One type of FRC substrate with semi-interpenetrating polymer matrix (semi-IPN) (everStick C&B) was used in this investigation. A microhybrid PFC (Filtek Z250) substrate served as control. Freshly cured PFC and FRC substrates were first subjected to different contamination and surface cleaning treatments, then the microhybrid PFC restorative material (Filtek Z250) was built up on the substrates in 2-mm increments and light cured. Uncontaminated and saliva- or water-contaminated substrate surfaces were either left untreated or were cleaned via phosphoric acid etching or water spray accompanied with or without adhesive composite application prior applying the adherent PFC material. SBS was evaluated after thermocycling the specimens (6000 cycles, 5°C and 55°C). Three-way ANOVA showed that both the surface contamination and the surface treatment signficantly affected the bond strength (p contamination reduced the SBS more than did the water contamination. SBS loss after saliva contamination was 73.7% and 31.3% for PFC and FRC, respectively. After water contamination, SBS loss was 17.2% and 13.3% for PFC and FRC, respectively. The type of surface treatment was significant for PFC (p contamination of freshly cured PFC or semi-IPN FRC, surfaces should be re-prepared via phosphoric acid etching, water cleaning, drying, and application of adhesive composite in order to recover optimal bond strength.

  19. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu

    2015-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  20. Irradiation effects on C/C composite materials for high temperature nuclear applications

    International Nuclear Information System (INIS)

    Eto, M.; Ugachi, H.; Baba, S.I.; Ishiyama, S.; Ishihara, M.; Hayashi, K.

    2000-01-01

    Excellent characteristics such as high strength and high thermal shock resistance of C/C composite materials have led us to try to apply them to the high temperature components in nuclear facilities. Such components include the armour tile of the first wall and divertor of fusion reactor and the elements of control rod for the use in HTGR. One of the most important aspects to be clarified about C/C composites for nuclear applications is the effect of neutron irradiation on their properties. At the Japan Atomic Energy Research Institute (JAERI), research on the irradiation effects on various properties of C/C composite materials has been carried out using fission reactors (JRR-3, JMTR), accelerators (TANDEM, TIARA) and the Fusion Neutronics Source (FNS). Additionally, strength tests of some neutron-irradiated elements for the control rod were carried out to investigate the feasibility of C/C composites. The paper summarises the R and D activities on the irradiation effects on C/C composites. (authors)

  1. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  2. Diametral tensile strength of two dental composites when immersed in ethanol, distilled water and artificial saliva.

    Science.gov (United States)

    Rehman, Abdur; Amin, Faiza; Abbas, Muhammad

    2014-11-01

    To examine the effect of distilled water, artificial saliva and ethanol on the tensile strength of direct tooth-coloured restorative material. The study was conducted at Dr. Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences (DUHS), Karachi, from April 2011 to September 2012. The testing was performed at the Pakistan Council of Scientific and Industrial Research (PCSIR) laboratories. Two composite resins Filtek Z250 and Spectrum TPH were tested. Specimens (13 mm x 3 mm x 2 mm) of each material were prepared in the stainless steel mould according to the manufacturers' instructions and distributed into 3 equal groups: one immersed in distilled water, the other in artificial saliva, and the last one in ethanol for 24 hours. Tensile strength was determined after 24 hours in universal Instron Testing Machine. There were 72 specimens in all; 36 (50%) each for Filtek Z250 and Spectrum TPH. The three sub-groups in each case had 12 (33.3%) specimens. For the Filtek Z250, there was no statistically significant difference between immersion in distilled water and artificial saliva, but the ethanol group presented lower tensile strength (ptensile strength compared to distilled water (ptested composite resins were affected by the immersion media and adversely affected the mechanical properties of composite resins.

  3. Evaluation of fracture toughness for metal/ceramics composite materials by means of miniaturized specimen technique

    International Nuclear Information System (INIS)

    Saito, Masahiro; Takahashi, Hideaki; Jeong, Hee-Don; Kawasaki, Akira; Watanabe, Ryuzo

    1991-01-01

    In order to evaluate fracture strength for Y 2 O 3 -ZrO 2 , 3 mol% Y 2 O 3 -ZrO 2 (PSZ)/SUS 304 composite materials, Macor as a machinable ceramics and comercially available ceramics (SiC, Si 3 N 4 , PSZ, Al 2 O 3 ), fracture toughness tests were carried out by use of RCT or bending specimens. On the other hand, the fracture strength of these materials was evaluated and inspected the correlation between fracture toughness and fracture stress of small punch (SP) or modified small punch (MSP) test data to predict the fracture toughness value by using miniaturized specimens. Characteristic of the MSP testing method is the ability to evaluate elastic modulus (Young's modulus), fracture strength, yield strength, fracture strain, and fracture energy, etc., with high accuracy and good reproducibility for brittle materials. For a series of metal/ ceramics composites which from ductile to brittle, this paper clarified clear the applicable range for SP and MSP testing methods, which suggested that the simultaneous use of SP and MSP test methods can evaluate the fracture strength of metal/ ceramics composites. (author)

  4. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-10-15

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  5. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    International Nuclear Information System (INIS)

    Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

    2016-01-01

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  6. Composite material reinforced with atomized quasicrystalline particles and method of making same

    Science.gov (United States)

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  7. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    OpenAIRE

    He, Jingjing; Shi, Junping; Cao, Xiaoshan; Hu, Yifeng

    2018-01-01

    Uniaxial tensile tests of basalt fiber/epoxy (BF/EP) composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the ...

  8. Microtensile Bond Strength of New Ceramic/Polymer Materials Repaired with Composite Resin

    Science.gov (United States)

    2015-06-30

    also have been shown to have higher enamel wear rates than composite-resin CAD/CAM restorations (Mӧrmann et al, 2013). As material choices, cost, and...although the longevity of these repairs has not been validated by clinical studies. Paradigm MZ100 showed the least amount of opposing enamel wear...ability to absorb shock, resist staining and stop crack propagation. Further manufacturer claims are that ceramic/polymer materials are easily

  9. Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement.

    Science.gov (United States)

    Wang, Zhengdong; Liu, Jingya; Cheng, Yonghong; Chen, Siyu; Yang, Mengmeng; Huang, Jialiang; Wang, Hongkang; Wu, Guanglei; Wu, Hongjing

    2018-04-15

    Development of polymer-based composites with simultaneously high thermal conductivity and breakdown strength has attracted considerable attention owing to their important applications in both electronic and electric industries. In this work, boron nitride (BN) nanofibers (BNNF) are successfully prepared as fillers, which are used for epoxy composites. In addition, the BNNF in epoxy composites are aligned by using a film casting method. The composites show enhanced thermal conductivity and dielectric breakdown strength. For instance, after doping with BNNF of 2 wt%, the thermal conductivity of composites increased by 36.4% in comparison with that of the epoxy matrix. Meanwhile, the breakdown strength of the composite with 1 wt% BNNF is 122.9 kV/mm, which increased by 6.8% more than that of neat epoxy (115.1 kV/mm). Moreover, the composites have maintained a low dielectric constant and alternating current conductivity among the range of full frequency, and show a higher thermal decomposition temperature and glass-transition temperature. The composites with aligning BNNF have wide application prospects in electronic packaging material and printed circuit boards.

  10. Flexural and diametral tensile strength of composite resins

    Directory of Open Access Journals (Sweden)

    Álvaro Della Bona

    2008-03-01

    Full Text Available This study evaluated the flexural strength (sf and the diametral tensile strength (st of light-cured composite resins, testing the hypothesis that there is a positive relation between these properties. Twenty specimens were fabricated for each material (Filtek Z250- 3M-Espe; AM- Amelogen, Ultradent; VE- Vit-l-escence, Ultradent; EX- Esthet-X, Dentsply/Caulk, following ISO 4049 and ANSI/ADA 27 specifications and the manufacturers’ instructions. For the st test, cylindrical shaped (4 mm x 6 mm specimens (n = 10 were placed with their long axes perpendicular to the applied compressive load at a crosshead speed of 1.0 mm/min. The sf was measured using the 3-point bending test, in which bar shaped specimens (n = 10 were tested at a crosshead speed of 0.5 mm/min. Both tests were performed in a universal testing machine (EMIC 2000 recording the fracture load (N. Strength values (MPa were calculated and statistically analyzed by ANOVA and Tukey (a = 0.05. The mean and standard deviation values (MPa were Z250-45.06 ± 5.7; AM-35.61 ± 5.4; VE-34.45 ± 7.8; and EX-42.87 ± 6.6 for st; and Z250-126.52 ± 3.3; AM-87.75 ± 3.8; VE-104.66 ± 4.4; and EX-119.48 ± 2.1 for sf. EX and Z250 showed higher st and sf values than the other materials evaluated (p < 0.05, which followed a decreasing trend of mean values. The results confirmed the study hypothesis, showing a positive relation between the material properties examined.

  11. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Pooran Samimi

    2016-01-01

    Full Text Available Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB and Prompt L-Pop (PLP adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1 Immediate light-curing, (2 delayed light-curing after 20 min, and (3 self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P 0.05. PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  12. Preparation and characterization of nano hydroxyapatite/polymeric composites materials. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); El-Rashidy, Zenab M. [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); Salama, Aida A. [Biophysics Dept., Faulty of Science, El-Azhar Univ., Cairo (Egypt)

    2011-10-17

    Highlights: {yields} The formation and coating of CHA increased by increasing polymer content. {yields} The size of the prepared CHA was within nano-range scale. {yields} The composites had homogeneity and CHA formed within the polymeric matrix. - Abstract: The present study is focused on preparation of nano composite materials and the effect of citric acid on their different properties. The formation of nano HA and its interaction with chitosan (C), gelatin (G) polymers and citric acid (CA) materials were studied. The Fourier Transformed Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), and scanning electron microscope (SEM) were used to characterize these composite materials. The compressive strength (CS) was also measured to know the reinforcement of the prepared composites. The results show that carboxylic and amino groups play crucial role for HA formation on chitosan-gelatin polymeric matrix in the presence of citric acid (CA). The formation of nano HA particles and its average size of crystallite is increased with increase of CG content and decreased with addition of CA. Also, the HA formation and binding strength between its particles are improved into the composites especially with CA. The nano-composites containing the best ratio of nHA (70%) with CA (0.2 M) are promising for medical applications in the future.

  13. Experimental and Analytical Characterization of the Macromechanical Response for Triaxial Braided Composite Materials

    Science.gov (United States)

    Littell, Justin D.

    2013-01-01

    micromacromechanical computer model is created to simulate the behavior of these composite material systems under static and ballistic impact loading using the test data acquired. The model also quantifies the way in which the fiber/matrix interface affects material response under static and impact loading. The results show that the test methods are capable of accurately quantifying the polymer resin under a variety of strain rates and temperature for three loading conditions. The resin strength and stiffness data show a clear rate and temperature dependence. The data also show the hydrostatic stress effects and hysteresis, all of which can be used by researchers developing composite constitutive models for the resins. The results for the composite data reveal noticeable differences in strength, failure strain, and stiffness in the different material systems presented. The investigations into the microscale failure mechanisms provide information about the nature of the different material system behaviors. Finally, the developed computer model predicts composite static strength and stiffness to within 10 percent of the gathered test data and also agrees with composite impact data, where available.

  14. Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    OpenAIRE

    Scafè, M.; Raiteri, G.; Brentari, A.; Dlacic, R.; Troiani, E.; Falaschetti, M. P.; Besseghini, E.

    2014-01-01

    In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen. The method chosen to perform the compression tests is the Wyoming Combined Loading Compr...

  15. Shear bond strength of bulk-fill and nano-restorative materials to dentin.

    Science.gov (United States)

    Colak, Hakan; Ercan, Ertugrul; Hamidi, Mehmet Mustafa

    2016-01-01

    Bulk-fill composite materials are being developed for preparation depths of up to 4 mm in an effort to simplify and improve the placement of direct composite posterior restorations. The aim of our study was to compare shear-bond strength of bulk-fill and conventional posterior composite resins. In this study, 60 caries free extracted human molars were used and sectioned parallel to occlusal surface to expose midcoronal dentin. The specimens were randomly divided into four groups. Total-etch dentine bonding system (Adper Scotchbond 1XT, 3M ESPE) was applied to dentin surface in all the groups to reduce variability in results. Then, dentine surfaces covered by following materials. Group I: SonicFill Bulk-Fill, Group II: Tetric EvoCeram (TBF), Group III: Herculite XRV Ultra, and Group IV: TBF Bulk-Fill, 2 mm × 3 mm cylindrical restorations were prepared by using application apparatus. Shear bond testing was measured by using a universal testing machine. Kruskal-Wallis and Mann-Whitney U-tests were performed to evaluate the data. The highest value was observed in Group III (14.42 ± 4.34) and the lowest value was observed in Group IV (11.16 ± 2.76) and there is a statistically significant difference between these groups (P = 0.046). However, there is no statistically significant difference between the values of other groups. In this study, Group III was showed higher strength values. There is a need for future studies about long-term bond strength and clinical success of these adhesive and bulk-fill systems.

  16. Discrete Material and Thickness Optimization of laminated composite structures including failure criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2017-01-01

    This work extends the Discrete Material and Thickness Optimization approach to structural optimization problems where strength considerations in the form of failure criteria are taken into account for laminated composite structures. It takes offset in the density approaches applied for stress...... constrained topology optimization of single-material problems and develops formulations for multi-material topology optimization problems applied for laminated composite structures. The method can be applied for both stress- and strain-based failure criteria. The large number of local constraints is reduced...

  17. Strength evaluation code STEP for brittle materials

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Futakawa, Masatoshi.

    1997-12-01

    In a structural design using brittle materials such as graphite and/or ceramics it is necessary to evaluate the strength of component under complex stress condition. The strength of ceramic materials is said to be influenced by the stress distribution. However, in the structural design criteria simplified stress limits had been adopted without taking account of the strength change with the stress distribution. It is, therefore, important to evaluate the strength of component on the basis of the fracture model for brittle material. Consequently, the strength evaluation program, STEP, on a brittle fracture of ceramic materials based on the competing risk theory had been developed. Two different brittle fracture modes, a surface layer fracture mode dominated by surface flaws and an internal fracture mode by internal flaws, are treated in the STEP code in order to evaluate the strength of brittle fracture. The STEP code uses stress calculation results including complex shape of structures analyzed by the generalized FEM stress analysis code, ABAQUS, so as to be possible to evaluate the strength of brittle fracture for the structures having complicate shapes. This code is, therefore, useful to evaluate the structural integrity of arbitrary shapes of components such as core graphite components in the HTTR, heat exchanger components made of ceramics materials etc. This paper describes the basic equations applying to the STEP code, code system with a combination of the STEP and the ABAQUS codes and the result of the verification analysis. (author)

  18. Insights on synergy of materials and structures in biomimetic platelet-matrix composites

    Science.gov (United States)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2018-01-01

    Hybrid materials such as biomimetic platelet-matrix composites are in high demand to confer low weight and multifunctional mechanical properties. This letter reports interfacial-bond regulated assembly of polymers on cement-an archetype model with significant infrastructure applications. We demonstrate a series of 20+ molecular dynamics studies on decoding and optimizing the complex interfacial interactions including the role and types of various heterogeneous, competing interfacial bonds that are key to adhesion and interfacial strength. Our results show an existence of an optimum overlap length scale (˜15 nm) between polymers and cement crystals, exhibiting the best balance of strength, toughness, stiffness, and ductility for the composite. This finding, combined with the fundamental insights into the nature of interfacial bonds, provides key hypotheses for selection and processing of constituents to deliberate the best synergy in the structure and materials of platelet-matrix composites.

  19. Statistical Analysis Of Failure Strength Of Material Using Weibull Distribution

    International Nuclear Information System (INIS)

    Entin Hartini; Mike Susmikanti; Antonius Sitompul

    2008-01-01

    In evaluation of ceramic and glass materials strength a statistical approach is necessary Strength of ceramic and glass depend on its measure and size distribution of flaws in these material. The distribution of strength for ductile material is narrow and close to a Gaussian distribution while strength of brittle materials as ceramic and glass following Weibull distribution. The Weibull distribution is an indicator of the failure of material strength resulting from a distribution of flaw size. In this paper, cumulative probability of material strength to failure probability, cumulative probability of failure versus fracture stress and cumulative probability of reliability of material were calculated. Statistical criteria calculation supporting strength analysis of Silicon Nitride material were done utilizing MATLAB. (author)

  20. Development and characterization of composite materials for production of composite risers by filament winding

    Directory of Open Access Journals (Sweden)

    Ledjane Lima Sobrinho

    2011-09-01

    Full Text Available Industry has been challenged to provide riser systems which are more cost effective and which can fill the technology gaps with respect to water depth, riser diameter and high temperatures left open by flexibles, steel catenary risers (SCRs and hybrid risers. Composite materials present advantages over conventional steel risers because composite materials are lighter, more fatigue and corrosion resistant, better thermal insulators and can be designed for improving the structural and mechanical response. This paper contains a study of the toughening mechanism of an epoxy resin under rubber addition by means of fractographic analysis and its relation with the fracture process and increase of strength of a composite riser employing this polymeric matrix. Initially, an epoxy resin system was toughened by rubber CTBN addition (10 wt. (% as a way of improving the flexibility of future risers. Mechanical and thermal analyses were carried out for characterizing the polymeric systems. Later, composite tubes were prepared and mechanically characterized. The influence of matrix toughening on the mechanical behavior of the tubes was also studied. Split-disk tests were used to determine the hoop tensile strength of these specimens. The results indicate that the matrix plays an important role in composite fracture processes. The adding rubber to the polymeric matrix promoted a simultaneous increase of stress and elongation at fracture of the tubes manufactured herein, which is not often reported. These results, probably, is function of better adhesion between fibers and polymeric matrix observed in the CTBN-modified composite rings, which was evidenced in the fractografic analysis by SEM after the split-disk tests.

  1. Properties of SBS and sisal fiber composites: ecological material for shoe manufacturing

    Directory of Open Access Journals (Sweden)

    José Carlos Krause de Verney

    2008-12-01

    Full Text Available The worldwide trend toward using cheap, atoxic and durable materials from renewable resources contributes to sustainable development. Thus, the investigation of the potential use of vegetal fibers as reinforcing agent in polymeric composites has gained new significance. Sisal fiber has emerged as a reinforcing material for polymers used in automobile, footwear and civil industries. In this work, properties such as hardness, tensile strength and tear strength of polymer composites composed by block copolymer styrene-butadiene-styrene (SBS and 5, 10 and 20% by weight of sisal fiber were evaluated. The influence of conventional polymer processing techniques such as single-screw and double-screw extrusion, as well as the addition of coupling agent on the composite mechanical performance was investigated. Also, the morphology and thermal stability of the composites were analyzed. The addition of 2 wt. (% maleic anhydride as coupling agent between sisal fiber and SBS has improved the composite mechanical performance and the processing in a double-screw extruder has favored the sisal fiber distribution in the SBS matrix.

  2. Characterization of SiCf/SiC and CNT/SiC composite materials produced by liquid phase sintering

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Cho, K.S.; Byun, J.H.; Bae, D.S.

    2011-01-01

    This paper dealt with the microstructure and mechanical properties of SiC based composites reinforced with different reinforcing materials. The composites were fabricated using reinforcing materials of carbon nanotubes (CNT) and Tyranno Lox-M SiC chopped fibers. The volume fraction of carbon nanotubes was also varied in this composite system. An Al 2 O 3 -Y 2 O 3 powder mixture was used as a sintering additive in the consolidation of the SiC matrix. The characterization of the composites was investigated by means of SEM and three point bending tests. These composites showed a dense morphology of the matrix region, by the creation of a secondary phase. The composites reinforced with SiC chopped fibers possessed a flexural strength of about 400 MPa at room temperature. The flexural strength of the carbon nanotubes composites had a tendency to decrease with increased volume fraction of the reinforcing material.

  3. Structurally integrated fiber optic damage assessment system for composite materials.

    Science.gov (United States)

    Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C

    1989-07-01

    Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.

  4. Metal/graphite-composite materials for fusion device

    International Nuclear Information System (INIS)

    Kneringer, G.; Kny, E.; Fischer, W.; Reheis, N.; Staffler, R.; Samm, U.; Winter, J.

    1995-01-01

    The utilization of graphite as a structural material depends to an important extent on the availability of a joining technique suitable for the production of reliable large scale metal/graphite-composites. This study has been conducted to evaluate vacuum brazes and procedures for graphite and metals which can be used in fusion applications up to about 1500 degree C. The braze materials included: AgCuTi, CuTi, NiTi, Ti, ZrTi, Zr. Brazing temperatures ranged from 850 degree C to 1900 degree C. The influence of graphite quality on wettability and pore-penetration of the braze has been investigated. Screening tests of metal/graphite-assemblies with joint areas exceeding some square-centimeters have shown that they can only successfully be produced when graphite is brazed to a metal, such as tungsten or molybdenum with a coefficient of thermal expansion closely matching that of graphite. Therefore all experimental work on evaluation of joints has been concentrated on molybdenum/graphite brazings. The tensile strength of molybdenum/graphite-composites compares favorably with the tensile strength of bulk graphite from room temperature close to the melting temperature of the braze. In electron beam testing the threshold damage line for molybdenum/graphite-composites has been evaluated. Results show that even composites with the low melting AgCuTi-braze are expected to withstand 10 MW/m 2 power density for at least 10 3 cycles. Limiter testing in TEXTOR shows that molybdenum/graphite-segments with 3 mm graphite brazed on molybdenum-substrate withstand severe repeated TEXTOR plasma discharge conditions without serious damage. Results prove that actively cooled components on the basis of a molybdenum/graphite-composite can sustain a higher heat flux than bulk graphite alone. (author)

  5. Reliable non-destructive inspection of composite materials in use in the aviation industry

    CSIR Research Space (South Africa)

    Johannes, Manfred

    2010-08-31

    Full Text Available Fibre reinforced composite materials are increasingly being used in engineering applications in the aircraft industry as they display an excellent weight to strength ratio. The limitation on the use of these materials in load-bearing applications...

  6. Study on influence of vibration behavior of composite material damage by holography

    Science.gov (United States)

    Guo, Linfeng; Zhao, Zhimin; Gao, Mingjuan; Zhuang, Xianzhong

    2006-01-01

    Composite material has been applied widely in aeronautics, astronautics and some other fields due to their high strength, light weight and antifatigue and etc. But in the application, composite material may be destroyed or damaged, which may have impact on its further applications. Therefore, study on the influence of behavior of composite material damage becomes a hot research. In this paper, the common composite material for aircraft is used as the test object, and a study is conducted to investigate the influence of vibration behavior of composite material damage. The authors adopt the method of light-carrier wave and time-average holography. Compared the interference fringes of composite materials before and after damage, the width of the interference fringes of hologram of the damaged composite material is narrower than that of the fringes before. It means that the off-plane displacement of each point on the test object is larger than before. Based on the elastic mechanics theory, the off-plane displacement is inverse to the bending stiffness, and the bending stiffness of the test object will decrease after it is damaged. In other words, the vibration property of the composite material changes after damages occur. The research results of the paper show that the results accord with the analysis of theory.

  7. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    Science.gov (United States)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  8. Effect of newer antioxidants on the bond strength of composite on bleached enamel

    Directory of Open Access Journals (Sweden)

    M Manoharan

    2016-01-01

    Full Text Available Aim: The study aims to evaluate the effect of the application of two antioxidants on the bond strength of composite resin to bleached enamel. Materials and Methods: Eighty enamel surfaces were obtained from forty human extracted premolars. Specimens were randomly divided into four groups (n = 20. Group 1: No bleaching (control; Group 2a: Bleaching with 15% carbamide peroxide gel; Group 2b: Bleaching, followed by application of 10% sodium ascorbate gel; Group 2c: Bleaching, followed by application of 5% proanthocyanidin agent. Surfaces were etched followed by application of total etch bonding system, and composite resin cylinders were bonded. Specimens were tested for shear bond strength. Statistical Analysis Used: One-way analysis of variance was used for multiple group comparison and post hoc Tukey′s test for individual group-wise comparison. Results: Significantly higher shear bond strength values were observed in Group 2c and 2b as compared with Group 1 and 2a (P < 0.05. Among the antioxidants, Group 2c showed significantly higher shear bond strength values than Group 2b (P < 0.05. Conclusion: It can be concluded that the use of antioxidant before bonding procedures on bleached enamel completely neutralizes the deleterious effects of bleaching and increases the bond strength significantly.

  9. Mechanical Properties of Composite Waste Material Based Styrofoam, Baggase and Eggshell Powder for Application of Drone Frames

    Science.gov (United States)

    Perdana, Mastariyanto; Prastiawan; Hadi, Syafrul

    2017-12-01

    The garbage issue becomes a very serious problem at the moment. Much research has been done to make waste into useful materials. One of the utilization of waste is as the basic material of composite material that can be applied in the field of engineering. Some of the wastes generated are styrofoam, bagasse and eggshell. Styrofoam, bagasse and eggshell can be applied to a composite material. Styrofoam serves as a composite binder material while the bagasse and eggshells serve as a reinforcement. Volume fraction between styrofoam, bagasse and eggshell are 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25%. The aims of research are determine the mechanical properties of composite material based waste materials from styrofoam, bagasse and eggshell. Mechanical properties tested in this study are bending strength and toughness of composite materials. The results showed bending strength of composite for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 5.07 MPa, 8.45 MPa, 8.68 MPa, and 11.01 MPa, respectively. Toughness of composite materials for each volume fraction of 80%:10%:10%, 70%:15%:15%, 60%:20%:20%, and 50%:25%:25% are 0.33 J/mm2, 0.42 J/mm2, 0.75 J/mm2, and 0.75 J/mm2, respectively. Composite materials based on waste materials from styrofoam, bagasse and eggshell can be used as an alternative material for drone frames.

  10. Study on mechanical properties of the laminated composite materials with compatible heat treatments

    International Nuclear Information System (INIS)

    Pashkov, P.O.; Pektemirov, B.G.; Yaroshenko, A.P.

    1980-01-01

    Considered is the behaviour during axial extension of trilament composite materials, the mechanical properties of which are formed mainly by heat treatment. Application in the composite of the materials with compatible heat treatment is most rational. It is shown that for (ATsMg+N18K8M5T+ATsMg), (KhN78+VKS+KhH78) composites, the constituents of which are relatively plastic and tightly bound with each other, the tensile strength and uniform strain are changed additively

  11. Deployment Testing of Flexible Composite Hinges in Bi-Material Beams

    Science.gov (United States)

    Sauder, Jonathan F.; Trease, Brian

    2016-01-01

    Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter linear deployment repeatability, and sub-degree angular deployment repeatability. Also, an interesting relaxation effect was discovered, as a hinges deployment error would decrease with time.

  12. Mechanical behaviour of dental composite filling materials using digital holography

    OpenAIRE

    Monteiro, J.M.; Lopes, H.; Vaz, M.A.P.; Campos, J.C. Reis

    2010-01-01

    One of the most common clinical problems in dentistry is tooth decay. Among the dental filling materials used to repair tooth structure that has been destroyed by decay are dental amalgam and composite materials based on acrylics. Dental amalgam has been used by dentists for the past 150 years as a dental restorative material due to its low cost, ease of application, strength, durability, and bacteriostatic effects. However its safety as a filling material has been questioned due to th...

  13. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...

  14. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...

  15. Potential of using coconut shell particle fillers in eco-composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarki, J., E-mail: sarksj@yahoo.com [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria); Hassan, S.B., E-mail: hassbolaji@yahoo.com [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria); Aigbodion, V.S., E-mail: aigbodionv@yahoo.com [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria); Oghenevweta, J.E. [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria)

    2011-02-03

    Research highlights: > The production and characterization of the composites has been done. - Abstract: Morphology and mechanical properties of coconut shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material in engineering applications. Coconut shell filled composites were prepared from epoxy polymer matrix containing up to 30 wt% coconut shell fillers. The effects of coconut shell particle content on the mechanical properties of the composites were investigated. Scanning electron microscopy (SEM) of the composite surfaces indicates that there are fairly good interfacial interaction between coconut shell particles and epoxy matrix. It was shown that the value of tensile modulus and tensile strength values increases with the increase of coconut shell particles content, while the impact strength slightly decreased, compared to pure epoxy resin. This work has shown that coconut shell particles can be used to improve properties of epoxy polymer composite to be used in eco-buildings.

  16. Potential of using coconut shell particle fillers in eco-composite materials

    International Nuclear Information System (INIS)

    Sarki, J.; Hassan, S.B.; Aigbodion, V.S.; Oghenevweta, J.E.

    2011-01-01

    Research highlights: → The production and characterization of the composites has been done. - Abstract: Morphology and mechanical properties of coconut shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material in engineering applications. Coconut shell filled composites were prepared from epoxy polymer matrix containing up to 30 wt% coconut shell fillers. The effects of coconut shell particle content on the mechanical properties of the composites were investigated. Scanning electron microscopy (SEM) of the composite surfaces indicates that there are fairly good interfacial interaction between coconut shell particles and epoxy matrix. It was shown that the value of tensile modulus and tensile strength values increases with the increase of coconut shell particles content, while the impact strength slightly decreased, compared to pure epoxy resin. This work has shown that coconut shell particles can be used to improve properties of epoxy polymer composite to be used in eco-buildings.

  17. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    Science.gov (United States)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  18. Mechanical characterization of composite materials by optical techniques: A review

    Science.gov (United States)

    Bruno, Luigi

    2018-05-01

    The present review provides an overview of work published in recent years dealing with the mechanical characterization of composite materials performed by optical techniques. The paper emphasizes the strengths derived from the employment of full-field methods when the strain field of an anisotropic material must be evaluated. This is framed in contrast to the use of conventional measurement techniques, which provide single values of the measured quantities unable to offer thorough descriptions of deformation distribution. The review outlines the intensity and articulation of work in this research field to date and its ongoing importance not only in the academy, but also in industrial sectors where composite materials represent a strategic resource for development.

  19. On strength of porous material

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1999-01-01

    The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...

  20. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  1. Dentin-Composite Bond Strength Measurement Using the Brazilian Disk Test

    Science.gov (United States)

    Carrera, Carola A.; Chen, Yung-Chung; Li, Yuping; Rudney, Joel; Aparicio, Conrado; Fok, Alex

    2016-01-01

    Objectives This study presents a variant of the Brazilian disk test (BDT) for assessing the bond strength between composite resins and dentin. Methods Dentin-composite disks (φ 5 mm × 2 mm) were prepared using either Z100 or Z250 (3M ESPE) in combination with one of three adhesives, Adper Easy Bond (EB), Adper Scotchbond Multi-Purpose (MP) and Adper Single Bond (SB), and tested under diametral compression. Acoustic emission (AE) and digital image correlation (DIC) were used to monitor debonding of the composite from the dentin ring. A finite element (FE) model was created to calculate the bond strengths using the failure loads. Fracture modes were examined by scanning electron microscopy (SEM). Results Most specimens fractured along the dentin-resin composite interface. DIC and AE confirmed interfacial debonding immediately before fracture of the dentin ring. Results showed that the mean bond strength with EB (14.9±1.9 MPa) was significantly higher than with MP (13.2±2.4 MPa) or SB (12.9±3.0 MPa) (p0.05). Z100 (14.5±2.3 MPa) showed higher bond strength than Z250 (12.7±2.5 MPa) (padhesive failure mode. EB failed mostly at the dentin-adhesive interface, whereas MP at the composite-adhesive interface; specimens with SB failed at the composite-adhesive interface and cohesively in the adhesive. Conclusions The BDT variant showed to be a suitable alternative for measuring the bond strength between dentin and composite, with zero premature failure, reduced variability in the measurements, and consistent failure at the dentin-composite interface. PMID:27395367

  2. Fast and simple method for prediction of the micromechanical parameters and macromechanical properties of composite materials

    OpenAIRE

    Delgado Aguilar, Marc; Julián Pérez, Fernando; Pèlach Serra, Maria Àngels; Espinach Orús, Xavier; Méndez González, José Alberto; Mutjé Pujol, Pere

    2016-01-01

    The method described in the present work was assessed through the production of composite materials made of polypropylene reinforced with chemical thermomechanical pulp of hemp core fibers. Composite materials were obtained by extrusion and injection molding, and by the addition of a coupling agent to ensure a good interphase between fiber and matrix. In all cases, the composite materials were considered as semi-aligned reinforced. Tensile strength was selected as a representative...

  3. Effect of Pin Geometry on the Mechanical Strength of Friction-Stir-Welded Polypropylene Composite Plates

    Science.gov (United States)

    Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.

    2017-09-01

    Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.

  4. Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar

    Science.gov (United States)

    Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.

    2017-11-01

    Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.

  5. Shear bond strength of brackets on restorative materials: Comparison on various dental restorative materials using the universal primer Monobond® Plus.

    Science.gov (United States)

    Ebert, Thomas; Elsner, Laura; Hirschfelder, Ursula; Hanke, Sebastian

    2016-03-01

    The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent). Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass-ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns. The metal brackets showed the highest mean SBS values on the glass-ceramic material (68.61 N/mm(2)) and the composite resin (67.58 N/mm(2)) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm(2)). The ceramic brackets showed the highest mean SBS on the glass-ceramic material (63.36 N/mm(2)) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm(2)). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p bracket types, fractures of the composite-resin and the glass-ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive. Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass-ceramic samples, we recommend

  6. Measurement of moisture depth distribution in composite materials using positron lifetime technique

    International Nuclear Information System (INIS)

    Singh, J.J.; Holt, W.H.; Mock, W. Jr.; Mall, G.H.

    1980-01-01

    Fiber-reinforced resin matrix composites reportedly suffer significant degradation in their mechanical properties when exposed to hot, moist, environments for extended periods. Moisture weakens the fiber matrix bond as well as the matrix shear strength. An important factor in determining the extent of degradation is the depth distribution of moisture in the resin matrix. Despite the importance of measuring moisture distribution and its effects on composite material properties, not enough data are available on suitable nondestructive techniques for detecting and measuring moisture diffusion in organic composite materials. This paper addresses itself to the problem of measuring the moisture content of such materials, with special emphasis on its depth distribution, using positron lifetime technique

  7. First industrial strength multi-axial Robotic testing campaign for composite material characterization

    Science.gov (United States)

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos

    2012-01-01

    In this paper we are reporting on the first successful campaign of systematic, automated and massive multiaxial tests for composite material constitutive characterization. The 6 degrees of freedom system developed at the Naval Research Laboratory (NRL) called NRL66.3, was used for this task. This was the inaugural run that served as the validation of the...

  8. Comparison of shear bond strengths of conventional orthodontic composite and nano-ceramic restorative composite: An in vitro study

    Directory of Open Access Journals (Sweden)

    Namit Nagar

    2013-01-01

    Full Text Available Objectives: To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X MonoTM♦, a restorative resin with the traditional orthodontic composite Transbond XTTM† and to evaluate the site of bond failure using Adhesive Remnant Index. Materials and Methods: Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XTTM† (Group I and Ceram-X MonoTM♦ (Group II according to manufacturer′s protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired ′t′ test and Chi square test. Results: The mean shear bond strength of Group I (Transbond XTTM† was 12.89 MPa ± 2.19 and that of Group II (Ceram-X MonoTM was 7.29 MPa ± 1.76. Unpaired ′t′ test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Conclusions: Ceram-X MonoTM♦ had a lesser mean shear bond strength when compared to Transbond XTTM† which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X MonoTM† and Transbond XTTM† showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.

  9. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  10. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    OpenAIRE

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho; Garcia, Lucas da Fonseca Roberti

    2014-01-01

    Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/S...

  11. Ultrastructural Analysis and Long-term Evaluation of Composite-Zirconia Bond Strength.

    Science.gov (United States)

    Aboushelib, Moustafa N; Ragab, Hala; Arnaot, Mohamed

    2018-01-01

    To evaluate the influence of different aging techniques on zirconia-composite microtensile bond strength using different surface treatments over a 5-year follow-up period. Zirconia disks received three surface treatments: airborne-particle abrasion with 50-μm aluminum oxide particles, selective infiltration etching (SIE), or fusion sputtering (FS). The specimens were bonded to pre-aged composite disks using a composite cement containing phosphate monomers (Panavia F2.0). Bonded specimens were sectioned into microbars (1 x 1 x 6 mm) using a precision cutting machine, and all microbars received thermocycling (15,000 cycles between 5°C and 55°C). Initial microtensile bond strength was evaluated, and the test was repeated after storage in the following media for five years (artificial saliva, 20% ethanol, 5% NaOH, 4% acetic acid, and 5% phosphoric acid). The test was repeated every 12 months for 5 years. Scanning electron microscopic images were used to analyze the zirconia-composite interface. A repeated measures ANOVA and Bonferroni post-hoc tests were used to analyze the data (n = 20, α = 0.05). Significantly higher microtensile bond strength was observed for SIE compared to fusion sputtering and airborne particle abrasion. Five years of artificial aging resulted in significant reduction of zirconia-composite bond strength for all tested specimens. Zirconia-composite bond strength was more sensitive to storage in sodium hydroxide and phosphoric acid, while it was least affected when stored under saliva. These changes were related to the mechanism of ultra-structural interaction between surface treatment and adhesive, as deterioration of the hybrid layer (composite-infiltrated ceramic) was responsible for bond degeneration. Zirconia-composite bond strength was influenced by 5 years of artificial aging.

  12. Producing New Composite Materials by Using Tragacanth and Waste Ash

    OpenAIRE

    Yasar Bicer; Serif Yilmaz

    2013-01-01

    In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conduct...

  13. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  14. Strength and fracture behavior of aluminide matrix composites with ceramic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M.; Suganuma, K.; Niihara, K.

    1999-07-01

    This paper investigates the fracture behavior of FeAl and Ni{sub 3}Al matrix composites with ceramic continuous fibers 8.5--10 {micro}m in diameter. When stress is applied to these composites, multiple-fracture of fibers predominantly occurs before matrix cracking, because the load carried by the fibers reaches their fracture strength. Fragments which remain longer than the critical length can provide significant strengthening through load bearing even though fiber breaking has occurred. The ultimate fracture strength of the composites also depends on stress relaxation by plastic deformation of the matrix at a crack tip in the multiple-fractured fibers. Ductilizing of the matrix by B doping improves the ultimate strength at ambient temperatures in both composites. However, their mechanical properties at elevated temperatures are quite different. In the case of Ni{sub 3}Al matrix composites, embrittlement of the matrix is undesirable for high strength and reliability at 873--973 K.

  15. Strain-Detecting Composite Materials

    Science.gov (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  16. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  17. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  18. Bending Strength of EN AC-44200 – Al2O3 Composites at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-03-01

    Full Text Available The paper presents results of bend tests at elevated temperatures of aluminium alloy EN AC-44200 (AlSi12 based composite materials reinforced with aluminium oxide particles. The examined materials were manufactured by squeeze casting. Preforms made of Al2O3 particles, with volumetric fraction 10, 20, 30 and 40 vol.% of particles joined with sodium silicate bridges were used as reinforcement. The preforms were characterised by open porosity ensuring proper infiltration with the EN AC-44200 (AlSi12 liquid alloy. The largest bending strength was found for the materials containing 40 vol.% of reinforcing ceramic particles, tested at ambient temperature. At increased test temperature, bending strength Rg of composites decreased in average by 30 to 50 MPa per 100°C of temperature increase. Temperature increase did not significantly affect cracking of the materials. Cracks propagated mainly along the interfaces particle/matrix, with no effect of the particles falling-out from fracture surfaces. Direction of cracking can be affected by a small number of agglomerations of particles or of non-reacted binder. In the composites, the particles strongly restrict plastic deformation of the alloy, which leads to creation of brittle fractures. At elevated temperatures, however mainly at 200 and 300°C, larger numbers of broken, fragmented particles was observed in the vicinity of cracks. Fragmentation of particles occurred mainly at tensioned side of the bended specimens, in the materials with smaller fraction of Al2O3 reinforcement, i.e. 10 and 20 vol.%.

  19. Dentin-composite bond strength measurement using the Brazilian disk test.

    Science.gov (United States)

    Carrera, Carola A; Chen, Yung-Chung; Li, Yuping; Rudney, Joel; Aparicio, Conrado; Fok, Alex

    2016-09-01

    This study presents a variant of the Brazilian disk test (BDT) for assessing the bond strength between composite resins and dentin. Dentin-composite disks (ϕ 5mm×2mm) were prepared using either Z100 or Z250 (3M ESPE) in combination with one of three adhesives, Adper Easy Bond (EB), Adper Scotchbond Multi-Purpose (MP) and Adper Single Bond (SB), and tested under diametral compression. Acoustic emission (AE) and digital image correlation (DIC) were used to monitor debonding of the composite from the dentin ring. A finite element (FE) model was created to calculate the bond strengths using the failure loads. Fracture modes were examined by scanning electron microscopy (SEM). Most specimens fractured along the dentin-resin composite interface. DIC and AE confirmed interfacial debonding immediately before fracture of the dentin ring. Results showed that the mean bond strength with EB (14.9±1.9MPa) was significantly higher than with MP (13.2±2.4MPa) or SB (12.9±3.0MPa) (p0.05). Z100 (14.5±2.3MPa) showed higher bond strength than Z250 (12.7±2.5MPa) (pstrength between dentin and composite, with zero premature failure, reduced variability in the measurements, and consistent failure at the dentin-composite interface. The new test could help to predict the clinical performance of adhesive systems more effectively and consistently by reducing the coefficient of variation in the measured bond strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Survey of advanced composite material technology; Senshin fukugo zairyo gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Results of functions and examples are investigated and described for more than 190 fiber reinforced composite materials. There should be a new viewpoint for even the same material when changing the point to observe it, and new industries will be expected if the viewpoint is adequate. This report has proposed a new concept of `composite functions.` The development works based on non-strength functions which will differentiate the other materials have been stressed. After describing the brief history of the advanced composite materials and significance of composite functions, the present situations and future possibilities of such functions as heat resistance, electricity-electromagnetism, chemicals-proof, adsorption, vibration-proof and resistance, tribology, erosion, sound, adaptability to living bodies and etc. have been examined based on the practical examples. As the future important subjects, adapting possibility of materials having composite functions to marine structures, and possibility of water cleaning system are described. 59 refs., 4 figs., 10 tabs.

  1. FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna

    2016-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  2. Strength Analysis and Process Simulation of Subway Contact Rail Support Bracket of Composite Materials

    Science.gov (United States)

    Fedulov, Boris N.; Safonov, Alexander A.; Sergeichev, Ivan V.; Ushakov, Andrey E.; Klenin, Yuri G.; Makarenko, Irina V.

    2016-10-01

    An application of composites for construction of subway brackets is a very effective approach to extend their lifetime. However, this approach involves the necessity to prevent process-induced distortions of the bracket due to thermal deformation and chemical shrinkage. At present study, a process simulation has been carried out to support the design of the production tooling. The simulation was based on the application of viscoelastic model for the resin. Simulation results were verified by comparison with results of manufacturing experiments. To optimize the bracket structure the strength analysis was carried out as well.

  3. Generating material strength standards of aluminum alloys for research reactors. Pt. 1. Yield strength values Sy and tensile strength values Su

    International Nuclear Information System (INIS)

    Tsuji, H.; Miya, K.

    1995-01-01

    Aluminum alloys are frequently used as structural materials for research reactors. The material strength standards, however, such as the yield strength values (S y ), the tensile strength values (S u ) and the design fatigue curve -which are needed to use aluminum alloys as structural materials in ''design by analysis'' - for those materials have not been determined yet. Hence, a series of material tests was performed and the results were statistically analyzed with the aim of generating these material strength standards. This paper, the first in a series on material strength standards of aluminum alloys, describes the aspects of the tensile properties of the standards. The draft standards were compared with MITI no. 501 as well as with the ASME codes, and the trend of the available data also was examined. It was revealed that the draft proposal could be adopted as the material strength standards, and that the values of the draft standards at and above 150 C for A6061-T6 and A6063-T6 could be applied only to the reactor operating conditions III and IV. Also the draft standards have already been adopted in the Science and Technology Agency regulatory guide (standards for structural design of nuclear research plants). (orig.)

  4. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  5. Influence of Graphene Nanosheets on Rheology, Microstructure, Strength Development and Self-Sensing Properties of Cement Based Composites

    Directory of Open Access Journals (Sweden)

    Sardar Kashif Ur Rehman

    2018-03-01

    Full Text Available In this research, Graphene oxide (GO, prepared by modified hammer method, is characterized using X-ray Diffraction (XRD, Fourier Transform Infrared (FT-IR Spectrometry and Raman spectra. The dispersion efficiency of GO in aqueous solution is examined by Ultraviolet–visible spectroscopy and it is found that GO sheets are well dispersed. Thereafter, rheological properties, flow diameter, hardened density, compressive strength and electrical properties of GO based cement composite are investigated by incorporating 0.03% GO in cement matrix. The reasons for improvement in strength are also discussed. Rheological results confirm that GO influenced the flow behavior and enhanced the viscosity of the cement based system. From XRD and Thermogravimetric Analysis (TGA results, it is found that more hydration occurred when GO was incorporated in cement based composite. The GO based cement composite improves the compressive strength and density of mortar by 27% and 1.43%, respectively. Electrical properties results showed that GO–cement based composite possesses self-sensing characteristics. Hence, GO is a potential nano-reinforcement candidate and can be used as self-sensing sustainable construction material.

  6. Explorations in the application of nanotechnology to improve the mechanical properties of composite materials

    Science.gov (United States)

    Yang, Cheng

    2007-12-01

    This thesis presents the research achievements on the design, preparation, characterization, and analysis of a series of composite materials. By studying the interface interaction of the composite materials using nanotechnology, we developed composite materials that achieve satisfactory mechanical properties in two classes of materials. Durable press (DP) natural textiles are important consumer products usually achieved by erosslinking the molecules in the textiles to achieve long-term wrinkle resistance, which, however, also leads to the simultaneous significant drop of mechanical properties. Herein, a series of polymeric nanoparticl es were investigated, the application of as little as ˜0.14 wt% addition of the nanoparticles improved the mechanical property of the DP cotton fabric by 56% in tearing resistance and 100% in abrasion resistance; the loss in recovery angle is negligible. The author also studied the enzyme-triggered DP treatments of silk fabrics, as a green process method. After the treatment of enzymes, excellent DP property was achieved with improved strain property. Injectable calcium phosphate powder containing acrylic bone cements are widely used in orthopedic surgery to fix artificial prostheses. However, the bending strength is still unsatisfactory. The author modified the surface of the strontium (Sr) containing hydroxyapatite (HA) filler powders with acrylolpamidronate in order to improve the overall mechanical performance of the bone cement composites. By adding 0.25 wt% of acrylolpamidronate to the Sr-HA nanopowders, more than 19% of the bending strength and more than 23% compression strength of the Sr-HA bone cement were improved. Biological evaluations revealed that these bone cement composites were biocompatible and bioactive in cell culture. The results obtained in this thesis work show an effective method to significantly enhance the mechanical properties of composite materials. Different from other available methods, by developing a

  7. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    Directory of Open Access Journals (Sweden)

    Laura AlveBastos

    2015-02-01

    Full Text Available Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE, the specific self-etching adhesive system (Adhesive System P90, 3M ESPE was used with and without pre-etching (Pre-etching/Silorane and Silorane groups. Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray, with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups, or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE (Three-step/Methacrylate group (n = 6. The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm, and coupled to a universal test machine (0.5 mm/min to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05. However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin.

  8. In-Vitro Evaluation of the Effect of Herbal Antioxidants on Shear Bond Strength of Composite Resin to Bleached Enamel

    Directory of Open Access Journals (Sweden)

    Zahra Khamverdi

    2016-11-01

    Full Text Available Objectives: A reduction in bond strength of composite to bleached enamel has been reported immediately after bleaching treatment. Application of some antioxidant agents may decrease the adverse effects of whitening agents on bond strength and enhance composite bond to enamel. This study aimed to assess the effect of green tea, sodium ascorbate, sage and grape seed extract on bond strength of composite to bleached enamel.Materials and Methods: In this in-vitro study, 90 human enamel surfaces were randomly divided into six groups as follows (n=15: G1, no bleaching; G2, bleaching with 40% hydrogen peroxide (HP; G3, HP+1000 μmol epigallocatechin gallate (EGCG for 10 minutes; G4, HP+10% sodium ascorbate for 10 minutes; G5, HP+10% sage for 10 minutes and G6, HP+5% grape seed extract for 10 minutes. The specimens were bonded to composite in all groups. The shear bond strength of specimens was measured in Megapascals (MPa. Data were analyzed using one-way ANOVA and Tukey’s HSD test (α=0.05.Results: The highest and the lowest mean shear bond strength values were observed in group 1 (22.61±3.29MPa and group 2 (5.87±1.80MPa, respectively. The reduction in bond strength in group 2 was greater than that in other groups (P<0.001. No significant difference was found among groups 1, 3, 4, 5 and 6 (P>0.05. Conclusions: All the herbal antioxidants used in this study equally compensated for the reduced bond strength of composite to bleached enamel.Keywords: Antioxidants; Tooth Bleaching; Composite Resins; Shear Strength 

  9. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  10. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  11. Structure and characteristics of functional powder composite materials obtained by spark plasma sintering

    Science.gov (United States)

    Oglezneva, S. A.; Kachenyuk, M. N.; Kulmeteva, V. B.; Ogleznev, N. B.

    2017-07-01

    The article describes the results of spark plasma sintering of ceramic materials based on titanium carbide, titanium carbosilicide, ceramic composite materials based on zirconium oxide, strengthened by carbon nanostructures and composite materials of electrotechnical purpose based on copper with addition of carbon structures and titanium carbosilicide. The research shows that the spark plasma sintering can achieve relative density of the material up to 98%. The effect of sintering temperature on the phase composition, density and porosity of the final product has been studied. It was found that with addition of carbon nanostructures the relative density and hardness decrease, but the fracture strength of ZrO2 increases up to times 2. The relative erosion resistance of the electrodes made of composite copper-based powder materials, obtained by spark plasma sintering during electroerosion treatment of tool steel exceeds that parameter of pure copper up to times 15.

  12. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  13. Compressive strength measurements of hybrid dental composites treated with dry heat and light emitting diodes (LED post cure treatment

    Directory of Open Access Journals (Sweden)

    Jenny Krisnawaty

    2014-11-01

    Full Text Available Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa was lower than dry heat treatment (227.339 MPa, which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.

  14. Computational simulation of coupled material degradation processes for probabilistic lifetime strength of aerospace materials

    Science.gov (United States)

    Boyce, Lola; Bast, Callie C.

    1992-01-01

    The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  15. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    Science.gov (United States)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  16. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Directory of Open Access Journals (Sweden)

    Michael Wendler

    2016-07-01

    Full Text Available The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand, as well as bonding protocols (Primer/Adhesive were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA and the Student–Newman–Keuls test (α = 0.05. Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role.

  17. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  18. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  19. Mechanical, Spectroscopic and Micro-structural Characterization of Banana Particulate Reinforced PVC Composite as Piping Material

    Directory of Open Access Journals (Sweden)

    B. Dan-asabe

    2016-06-01

    Full Text Available A banana particulate reinforced polyvinyl chloride (PVC composite was developed with considerabley low cost materials having an overall light-weight and good mechanical properties for potential application as piping material. The specimen composite material was produced with the banana (stem particulate as reinforcement using compression molding. Results showed that density and elastic Modulus of the composite decreases and increases respectively with increasing weight fraction of the particulate reinforcement. The tensile strength increased to a maximum of 42 MPa and then decreased steadily. The composition with optimum mechanical property (42 MPa was determined at 8, 62 and 30 % formulation of banana stem particulates (reinforcement, PVC (matrix and Kankara clay (filler respectively with corresponding percentage water absorption of 0.79 %, Young’s Modulus of 1.3 GPa, flexural strength of 92 MPa and density of 1.24 g/cm3. Fourier Transform Infrared (FTIR analysis of the constituents showed identical bands within the range 4000–1000 cm-1 with renown research work. Scanning Electron Microscopy (SEM result showed fairly uniform distribution of constituents’ phases. X-Ray Fluorescence (XRF confirms the X-ray diffraction (XRD result of the presence of minerals of kaolinite, quartz, rutile and illite in the kaolin clay. Comparison with conventional piping materials showed the composite offered a price savings per meter length of 84 % and 25 % when compared with carbon steel and PVC material.

  20. Preparation of the Jaws Damaged Parts from Composite Biopolymers Materials

    Directory of Open Access Journals (Sweden)

    Riyam A. Al-husseini

    2017-10-01

    Full Text Available Composite materials composing of fusing two materials or more are disaccorded in mechanical and physical characteristics, The studied the effect of changing in the reinforcement percentage by Hydroxyapatite Prepared nano world via the size of the nanoscale powder manufacturing manner chemical precipitation and microwave powders were two types their preparations have been from natural sources: the first type of eggshells and the other from the bones of fish in mechanical Properties which include the tensile strength, elastic modulus, elongation, hardness and tear for composite material consisting of Silicone rubber (SIR reinforced by (µ-n-HA, after strengthening silicone rubber Protect proportions (5,10,15,20 wt% of Article achieved results that increase the additive lead to increased hardness while tougher and modulus of elasticity decreases with added as shown in the diagrams.

  1. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    Science.gov (United States)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  2. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature.

    Science.gov (United States)

    Spitznagel, Frank A; Horvath, Sebastian D; Guess, Petra C; Blatz, Markus B

    2014-01-01

    Resin bonding is essential for clinical longevity of indirect restorations. Especially in light of the increasing popularity of computer-aided design/computer-aided manufacturing-fabricated indirect restorations, there is a need to assess optimal bonding protocols for new ceramic/polymer materials and indirect composites. The aim of this article was to review and assess the current scientific evidence on the resin bond to indirect composite and new ceramic/polymer materials. An electronic PubMed database search was conducted from 1966 to September 2013 for in vitro studies pertaining the resin bond to indirect composite and new ceramic/polymer materials. The search revealed 198 titles. Full-text screening was carried out for 43 studies, yielding 18 relevant articles that complied with inclusion criteria. No relevant studies could be identified regarding new ceramic/polymer materials. Most common surface treatments are aluminum-oxide air-abrasion, silane treatment, and hydrofluoric acid-etching for indirect composite restoration. Self-adhesive cements achieve lower bond strengths in comparison with etch-and-rinse systems. Thermocycling has a greater impact on bonding behavior than water storage. Air-particle abrasion and additional silane treatment should be applied to enhance the resin bond to laboratory-processed composites. However, there is an urgent need for in vitro studies that evaluate the bond strength to new ceramic/polymer materials. This article reviews the available dental literature on resin bond of laboratory composites and gives scientifically based guidance for their successful placement. Furthermore, this review demonstrated that future research for new ceramic/polymer materials is required. © 2014 Wiley Periodicals, Inc.

  3. Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity

    Science.gov (United States)

    Han, Baoshuai; Guo, Enyu; Xue, Xiang; Zhao, Zhiyong; Li, Tiejun; Xu, Yanjin; Luo, Liangshun; Hou, Hongliang

    2018-05-01

    Combining the excellent properties of carbon nanotube (CNT) and copper, CNT/Cu composite fibers were fabricated by physical vapor deposition (PVD) and rolling treatment. Dense and continuous copper film (∼2 μm) was coated on the surface of the CNT fibers by PVD, and rolling treatment was adopt to strengthen the CNT/Cu composite fibers. After the rolling treatment, the defects between the Cu grains and the CNT bundles were eliminated, and the structure of both the copper film and the core CNT fibers were optimized. The rolled CNT/Cu composite fibers possess high tensile effective strength (1.01 ± 0.13 GPa) and high electrical conductivity ((2.6 ± 0.3) × 107 S/m), and thus, this material may become a promising wire material.

  4. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  5. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  6. Application of Composite Structures in Bridge Engineering. Problems of Construction Process and Strength Analysis

    Science.gov (United States)

    Flaga, Kazimierz; Furtak, Kazimierz

    2015-03-01

    Steel-concrete composite structures have been used in bridge engineering from decades. This is due to rational utilisation of the strength properties of the two materials. At the same time, the reinforced concrete (or prestressed) deck slab is more favourable than the orthotropic steel plate used in steel bridges (higher mass, better vibration damping, longer life). The most commonly found in practice are composite girder bridges, particularly in highway bridges of small and medium spans, but the spans may reach over 200 m. In larger spans steel truss girders are applied. Bridge composite structures are also employed in cable-stayed bridge decks of the main girder spans of the order of 600, 800 m. The aim of the article is to present the cionstruction process and strength analysis problems concerning of this type of structures. Much attention is paid to the design and calculation of the shear connectors characteristic for the discussed objects. The authors focused mainly on the issues of single composite structures. The effect of assembly states on the stresses and strains in composite members are highlighted. A separate part of problems is devoted to the influence of rheological factors, i.e. concrete shrinkage and creep, as well as thermal factors on the stresses and strains and redistribution of internal forces.

  7. Mechanistic Effects of Porosity on Structural Composite Materials

    Science.gov (United States)

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  8. Heat treatment of a direct composite resin: influence on flexural strength

    Directory of Open Access Journals (Sweden)

    Caroline Lumi Miyazaki

    2009-09-01

    Full Text Available The purpose of this study was to evaluate the flexural strength of a direct composite, for indirect application, that received heat treatment, with or without investment. One indirect composite was used for comparison. For determination of the heat treatment temperature, thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were performed, considering the initial weight loss temperature and glass transition temperature (Tg. Then, after photoactivation (600 mW/cm² - 40 s, the specimens (10 x 2 x 2 mm were heat-treated following these conditions: 170ºC for 5, 10 or 15 min, embedded or not embedded in investment. Flexural strength was assessed as a means to evaluate the influence of different heat treatment periods and investment embedding on mechanical properties. The data were analyzed by ANOVA and Tukey's test (α = 0.05. TGA showed an initial weight loss temperature of 180ºC and DSC showed a Tg value of 157°C. Heat treatment was conducted in an oven (Flli Manfredi, Italy, after 37°C storage for 48 h. Flexural strength was evaluated after 120 h at 37°C storage. The results showed that different periods and investment embedding presented similar statistical values. Nevertheless, the direct composite resin with treatments presented higher values (178.7 MPa compared to the indirect composite resin (146.0 MPa and the same direct composite submitted to photoactivation only (151.7 MPa. Within the limitations of this study, it could be concluded that the heat treatment increased the flexural strength of the direct composite studied, leading to higher mechanical strength compared to the indirect composite.

  9. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  10. Volumetric composition and shear strength evaluation of pultruded hybrid kenaf/glass fiber composites

    DEFF Research Database (Denmark)

    Hashemi, Fariborz; Tahir, Paridah Md; Madsen, Bo

    2015-01-01

    by using a gravimetrically based method. Optical microscopy was used to determine the location of voids. The short-beam test method was used to determine the interlaminar shear strength of the composites, and the failure mode was observed. It was found that the void volume fraction of the composites...

  11. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  12. Characterization of Dentine to Assess Bond Strength of Dental Composites

    Directory of Open Access Journals (Sweden)

    Saad Liaqat

    2015-04-01

    Full Text Available This study was performed to develop alternating dentine adhesion models that could help in the evaluation of a self-bonding dental composite. For this purpose dentine from human and ivory was characterized chemically and microscopically before and after acid etching using Raman and SEM. Mechanical properties of dentine were determined using 3 point bend test. Composite bonding to dentine, with and without use of acid pre-treatment and/or the adhesive, were assessed using a shear bond test. Furthermore, micro gap formation after restoration of 3 mm diameter cavities in dentine was assessed by SEM. Initial hydroxyapatite level in ivory was half that in human dentine. Surface hydroxyapatites decreased by approximately half with every 23 s of acid etch. The human dentine strength (56 MPa was approximately double that of ivory, while the modulus was almost comparable to that of ivory. With adhesive use, average shear bond strengths were 30 and 26 MPa with and without acid etching. With no adhesive, average bond strength was 6 MPa for conventional composites. This, however, increased to 14 MPa with a commercial flowable “self–bonding” composite or upon addition of low levels of an acidic monomer to the experimental composite. The acidic monomer additionally reduced micro-gap formation with the experimental composite. Improved bonding and mechanical properties should reduce composite failures due to recurrent caries or fracture respectively.

  13. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials

    Science.gov (United States)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na

    2017-11-01

    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  14. Characterization of SiC based composite materials by the infiltration of ultra-fine SiC particles

    International Nuclear Information System (INIS)

    Lee, J.K.; Lee, S.P.; Byun, J.H.

    2010-01-01

    The fabrication route of SiC materials by the complex compound of ultra-fine SiC particles and oxide additive materials has been investigated. Especially, the effect of additive composition ratio on the characterization of SiC materials has been examined. The characterization of C/SiC composites reinforced with plain woven carbon fabrics was also investigated. The fiber preform for C/SiC composites was prepared by the infiltration of complex mixture into the carbon fabric structure. SiC based composite materials were fabricated by a pressure assisted liquid phase sintering process. SiC materials possessed a good density higher than about 3.0 Mg/m 3 , accompanying the creation of secondary phase by the chemical reaction of additive materials. C/SiC composites also represented a dense morphology in the intra-fiber bundle region, even if this material had a sintered density lower than that of monolithic SiC materials. The flexural strength of SiC materials was greatly affected by the composition ratio of additive materials.

  15. Monitoring the residual life of atomic power station equipment based on the indices of stress-corrosion strength of constructional materials

    International Nuclear Information System (INIS)

    Stepanov, I.A.

    1994-01-01

    The properties of a constructional material determining life are strength, plasticity, and crack resistance. Loss of properties occurs as the result of corrosion, temperature action, actual and residual stresses, and neutron and gamma-radiation. Corrosion leads to a decrease in thickness, loss of density, changes in the composition and structure of the surface layers, and a reduction in strength, plasticity, and crack resistance of constructional materials. The influence of temperature on the loss of properties of materials is revealed as possible phase and structural transformations of the metal and the surface layers and a reduction in the stress-rupture, plastic, and thermal-fatigue properties. The actual and residual stresses not only strengthen the influence of corrosive media but also directly determine the stress-rupture strength and cyclic life. The influence of neutron and gamma-radiation is based o the change in composition of the corrosive medium (radiolysis), radiation embrittlement of the material, and the change in properties of the surface and oxide layers. The authors discuss the concepts and design of automated monitoring systems for determining the fitness of the components of on atomic power plant

  16. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  17. Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.

    Science.gov (United States)

    Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia

    2016-01-01

    The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.

  18. Effect of Different Anti-Oxidants on Shear Bond Strength of Composite Resins to Bleached Human Enamel

    Science.gov (United States)

    Saladi, Hari Krishna; Bollu, Indira Priyadarshini; Burla, Devipriya; Ballullaya, Srinidhi Vishnu; Devalla, Srihari; Maroli, Sohani; Jayaprakash, Thumu

    2015-01-01

    Introduction The bond strength of the composite to the bleached enamel plays a very important role in the success and longevity of an aesthetic restoration. Aim The aim of this study was to compare and evaluate the effect of Aloe Vera with 10% Sodium Ascorbate on the Shear bond strength of composite resin to bleached human enamel. Materials and Methods Fifty freshly extracted human maxillary central incisors were selected and divided into 5 groups. Group I and V are unbleached and bleached controls groups respectively. Group II, III, IV served as experimental groups. The labial surfaces of groups II, III, IV, V were treated with 35% Carbamide Peroxide for 30mins. Group II specimens were subjected to delayed composite bonding. Group III and IV specimens were subjected to application of 10% Sodium Ascorbate and leaf extract of Aloe Vera following the Carbamide Peroxide bleaching respectively. Specimens were subjected to shear bond strength using universal testing machine and the results were statistically analysed using ANOVA test. Tukey (HSD) Honest Significant Difference test was used to comparatively analyse statistical differences between the groups. A p-value <0.05 is taken as statistically significant. Results The mean shear bond strength values of Group V showed significantly lower bond strengths than Groups I, II, III, IV (p-value <0.05). There was no statistically significant difference between the shear bond strength values of groups I, II, III, IV. Conclusion Treatment of the bleached enamel surface with Aloe Vera and 10% Sodium Ascorbate provided consistently better bond strength. Aloe Vera may be used as an alternative to 10% Sodium Ascorbate. PMID:26674656

  19. Quantitative evaluation of the mechanical strength of titanium/composite bonding using laser-generated shock waves

    Science.gov (United States)

    Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.

    2018-03-01

    Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.

  20. [Biomimetic nanohydroxyapatite/gelatin composite material preparation and in vitro study].

    Science.gov (United States)

    Li, Siriguleng; Hu, Xiaowen

    2014-09-01

    To prepare nHA/gelatin porous scaffold and to evaluate its physical and chemical properties and biocompatibility. We used nano-powders of HA and gelatin to prepare 3D porous composite scaffold by freeze-drying technique, and used scanning electron microscope, fourier transform infrared spectroscopy and universal testing machine to characterize the composite material. Osteoblasts were primarily cultured, and the third-passage osteoblasts were co-cultured with the composite material. The cell adhesion and morphology were examined under scanning electron microscope. The cell viability analysis was performed by MTT assay, and the alkaline phosphatase activity was measured with alkaline phosphatase kit. Scanning electron microscope showed that the scaffold possessed a 3-dimensional interconnected homogenous porous structure with pore sizes ranging from 150 to 400 μm. Fourier transform infrared spectroscopy showed that the composite material had a strong chemical bond between the inorganic phase and organic phase. The scaffold presented the compressive strength of (3.28 ± 0.51) MPa and porosities of (80.6 ± 4.1)%. Composite materials showed features of had good biocompatibility. Mouse osteoblasts were well adhered and spread on the materials. The grade of the cell toxicity ranged from I to II. On the 5th and 7th day the proliferative rate of osteoblasts on scaffolds in the composite materials was significantly higher than that in the control group. The activity of alkaline phosphatase was obviously higher than that in the control group on Day 1 and 3. Nano-hydroxyapatite and gelatin in certain proportions and under certain conditions can be prepared into a composite biomimetic porous scaffolds with high porosity and three-dimensional structure using freeze-drying method. The scaffold shows good biocompatibility with mouse osteoblasts and may be a novel scaffolds for bone tissue engineering.

  1. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness.

    Science.gov (United States)

    Shim, Bong Sup; Zhu, Jian; Jan, Edward; Critchley, Kevin; Ho, Szushen; Podsiadlo, Paul; Sun, Kai; Kotov, Nicholas A

    2009-07-28

    Efficient coupling of mechanical properties of SWNTs with the matrix leading to the transfer of unique mechanical properties of SWNTs to the macroscopic composites is a tremendous challenge of today's materials science. The typical mechanical properties of known SWNT composites, such as strength, stiffness, and toughness, are assessed in an introductory survey where we focused on concrete numerical parameters characterizing mechanical properties. Obtaining ideal stress transfer will require fine optimization of nanotube-polymer interface. SWNT nanocomposites were made here by layer-by-layer (LBL) assembly with poly(vinyl alcohol) (PVA), and the first example of optimization in respect to key parameters determining the connectivity at the graphene-polymer interface, namely, degree of SWNT oxidation and cross-linking chemistry, was demonstrated. The resulting SWNT-PVA composites demonstrated tensile strength (σ(ult)) = 504.5 ± 67.3 MPa, stiffness (E) = 15.6 ± 3.8 GPa, and toughness (K) = 121.2 ± 19.2 J/g with maximum values recorded at σ(ult) = 600.1 MPa, E = 20.6 GPa, and K = 152.1 J/g. This represents the strongest and stiffest nonfibrous SWNT composites made to date outperforming other bulk composites by 2-10 times. Its high performance is attributed to both high nanotube content and efficient stress transfer. The resulting LBL composite is also one of the toughest in this category of materials and exceeding the toughness of Kevlar by 3-fold. Our observation suggests that the strengthening and toughening mechanism originates from the synergistic combination of high degree of SWNT exfoliation, efficient SWNT-PVA binding, crack surface roughening, and fairly efficient distribution of local stress over the SWNT network. The need for a multiscale approach in designing SWNT composites is advocated.

  2. Multi-physics modeling of multifunctional composite materials for damage detection

    Science.gov (United States)

    Sujidkul, Thanyawalai

    This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to

  3. Evaluation of shear-compressive strength properties for laminated GFRP composites in electromagnet system

    Science.gov (United States)

    Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon

    2014-07-01

    Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.

  4. The chemical composition and compression strengths of refractory ceramics, tested for 3 curing temperatures

    International Nuclear Information System (INIS)

    Wan Khairuddin bin Wan Ali

    1994-01-01

    An investigation was carried out to determine and compile the mechanical strength of a refractory ceramic made of ground fire bricks and refractory fire mortar. Three different compositions were studied for the compression strength and it was found that the composition with 50% fire bricks and 50% fire mortar gives the best mechanical strength. With this composition the maximum failure compression stress is 3.2 MPa. and the Young Modulus is 403.5 MPa. The investigation also shows that the curing temperatures and the composition percentages play an important role in determining the strength of the ceramic. The trend obtained from the investigation shows that there is the possibility that an optimum value of composition percentage exist

  5. Use of diffusion bonded SS-Al composite material in the development of neutron detectors

    International Nuclear Information System (INIS)

    Alex, Mary; Prasad, K.R.; Pappachan, A.L.; Grover, A.K.; Krishnan, J.; Derose, D.J.; Bhanumurthy, K.; Kale, G.B.

    2005-01-01

    The present paper describes the development of a SS-Al composite plate in-house at BARC by diffusion bonding technique. Details of the several tests carried out on the composite material and the use of the plate in the development of a boron lined neutron chamber for Dhruva reactor control instrumentation has been described. The bonded sample has withstood tensile strength test, leak test and thermal cycling test and the leak rate was observed to be less than 3 x 10 -10 stdcc/sec. The chamber with the composite material has been installed in Dhruva Basket C location and connected to the log rate safety channel. It has been working successfully for the past two years. The use of SS-Al composite material has improved the reliability and long-term performance of the detector. (author)

  6. Compressive strength of dental composites photo-activated with different light tips

    International Nuclear Information System (INIS)

    Galvão, M R; Campos, E A; Rastelli, A N S; Andrade, M F; Caldas, S G F R; Calabrez-Filho, S; Bagnato, V S

    2013-01-01

    The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm −2 when using the fiber optic light tip and 596 mW cm −2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min −1 . The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth. (paper)

  7. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P; Boterel, F; Lostec, J; Bertot, J P; Haussonne, J M [Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR)

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  8. FY 1999 project on the development of new industry support type international standards. Standardization of a method to evaluate the strength of aerospace use hi-tech composite materials; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Koku uchuyo sentan fukugozai no kyodo hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As to the evaluation method of the strength of aerospace use composite materials and the repair materials/repair parts, the R and D were conducted for international standardization. The FY 1999 results were summed up. Concerning the damage resistance of base structure, tests to give damages to three kinds of sandwich panels and tests on the strength of damaged parts were conducted, and it was confirmed that the foamed core was more easily damaged and less in strength lowering than the honeycomb core. Relating to damages of composite material parts which are caused by aircraft operation, surveys were carried out at Swissair, Japan Air Lines and Lufthansa German Airlines. In the investigational study of the repair method of composite material structures, it was found out that there were typical forms of repair: only one face plate, one face plate and core, and both face plates and core, and according to these, the analysis of strength should also be adopted. The survey of the repair method was also made at each airframe maker. In the study of the analysis method of strength at repair parts, it was confirmed that the finite element method was high in accuracy and can be adopted also to complicated shapes, and that it was a method suitable for the actual analysis of repair strength. (NEDO)

  9. High strength Al–Al2O3p composites: Optimization of extrusion parameters

    DEFF Research Database (Denmark)

    Luan, B.F.; Hansen, Niels; Godfrey, A.

    2011-01-01

    Composite aluminium alloys reinforced with Al2O3p particles have been produced by squeeze casting followed by hot extrusion and a precipitation hardening treatment. Good mechanical properties can be achieved, and in this paper we describe an optimization of the key processing parameters...... on an investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion....... The parameters investigated are the extrusion temperature, the extrusion rate and the extrusion ratio. The materials chosen are AA 2024 and AA 6061, each reinforced with 30vol.% Al2O3 particles of diameter typically in the range from 0.15 to 0.3μm. The extruded composites have been evaluated based...

  10. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  11. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  12. Magnetic losses in composite materials

    International Nuclear Information System (INIS)

    Ramprecht, J; Sjoeberg, D

    2008-01-01

    We discuss some of the problems involved in homogenization of a composite material built from ferromagnetic inclusions in a nonmagnetic background material. The small signal permeability for a ferromagnetic spherical particle is combined with a homogenization formula to give an effective permeability for the composite material. The composite material inherits the gyrotropic structure and resonant behaviour of the single particle. The resonance frequency of the composite material is found to be independent of the volume fraction, unlike dielectric composite materials. The magnetic losses are described by a magnetic conductivity which can be made independent of frequency and proportional to the volume fraction by choosing a certain bias. Finally, some concerns regarding particles of small size, i.e. nanoparticles, are treated and the possibility of exciting exchange modes are discussed. These exchange modes may be an interesting way to increase losses in composite materials

  13. Nanocellulose Composite Materials Synthesizes with Ultrasonic Agitation

    Science.gov (United States)

    Kidd, Timothy; Folken, Andrew; Fritch, Byron; Bradley, Derek

    We have extended current techniques in forming nanocellulose composite solids, suspensions and aerogels to enhance the breakdown of cellulose into its molecular components. Using only mechanical processing which includes ball milling, using a simple mortar and pestle, and ultrasonic agitation, we are able to create very low concentration uniform nanocellulose suspensions in water, as well as incorporate other materials such as graphite, carbon nanotubes, and magnetic materials. Of interest is that no chemical processing is necessary, nor is the use of nanoparticles, necessary for composite formation. Using both graphite and carbon nanotubes, we are able to achieve conducting nanocellulose solids and aerogels. Standard magnetic powder can also be incorporated to create magnetic solids. The technique also allows for the creation of an extremely fine nanocellulose suspension in water. Using extremely low concentrations, less than 1% cellulose by mass, along with careful control over processing parameters, we are able to achieve highly dilute, yet homogenous nanocellulose suspensions. When air dried, these suspensions have similar hardness and strength properties to those created with more typical starting cellulose concentrations (2-10%). However, when freeze-dried, these dilute suspensions form aerogels with a new morphology with much higher surface area than those with higher starting concentrations. We are currently examining the effect of this higher surface area on the properties of nanocellulose aerogel composites and how it influences the impact of incorporating nanocellulose into other polymer materials.

  14. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    International Nuclear Information System (INIS)

    Fang Yutang; Kang Huiying; Wang Weilong; Liu Hong; Gao Xuenong

    2010-01-01

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic.

  15. Effect of Protein Intake on Strength, Body Composition and Endocrine Changes in Strength/Power Athletes

    Directory of Open Access Journals (Sweden)

    Kang Jie

    2006-12-01

    Full Text Available Abstract Comparison of protein intakes on strength, body composition and hormonal changes were examined in 23 experienced collegiate strength/power athletes participating in a 12-week resistance training program. Subjects were stratified into three groups depending upon their daily consumption of protein; below recommended levels (BL; 1.0 – 1.4 g·kg-1·day-1; n = 8, recommended levels (RL; 1.6 – 1.8 g·kg-1·day-1; n = 7 and above recommended levels (AL; > 2.0 g·kg-1·day-1; n = 8. Subjects were assessed for strength [one-repetition maximum (1-RM bench press and squat] and body composition. Resting blood samples were analyzed for total testosterone, cortisol, growth hormone, and insulin-like growth factor. No differences were seen in energy intake (3,171 ± 577 kcal between the groups, and the energy intake for all groups were also below the recommended levels for strength/power athletes. No significant changes were seen in body mass, lean body mass or fat mass in any group. Significant improvements in 1-RM bench press and 1-RM squat were seen in all three groups, however no differences between the groups were observed. Subjects in AL experienced a 22% and 42% greater change in Δ 1-RM squat and Δ 1-RM bench press than subjects in RL, however these differences were not significant. No significant changes were seen in any of the resting hormonal concentrations. The results of this study do not provide support for protein intakes greater than recommended levels in collegiate strength/power athletes for body composition improvements, or alterations in resting hormonal concentrations.

  16. Mechanics in Composite Materials and Process

    International Nuclear Information System (INIS)

    Lee, Dae Gil

    1993-03-01

    This book includes introduction of composite materials, stress, in-plane stiffness of laminates strain rate, ply stress, failure criterion and bending, composite materials micromechanics, composite plates and micromechanics of composite materials. It also deals with process of composite materials such as autoclave vacuum bag degassing process, connection of composite materials, filament winding process, resin transfer molding, sheet molding compound and compression molding.

  17. Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, J., E-mail: J.Li5@lboro.ac.uk; Monaghan, T.; Masurtschak, S.; Bournias-Varotsis, A.; Friel, R.J.; Harris, R.A.

    2015-07-15

    Ultrasonic Additive Manufacturing (UAM) enables the integration of a wide variety of components into solid metal matrices due to the process induced high degree of metal matrix plastic flow at low bulk temperatures. Exploitation of this phenomenon allows the fabrication of previously unobtainable novel engineered metal matrix components. The feasibility of directly embedding electrical materials within UAM metal matrices was investigated in this work. Three different dielectric materials were embedded into UAM fabricated aluminium metal-matrices with, research derived, optimal processing parameters. The effect of the dielectric material hardness on the final metal matrix mechanical strength after UAM processing was investigated systematically via mechanical peel testing and microscopy. It was found that when the Knoop hardness of the dielectric film was increased from 12.1 HK/0.01 kg to 27.3 HK/0.01 kg, the mechanical peel testing and linear weld density of the bond interface were enhanced by 15% and 16%, respectively, at UAM parameters of 1600 N weld force, 25 µm sonotrode amplitude, and 20 mm/s welding speed. This work uniquely identified that the mechanical strength of dielectric containing UAM metal matrices improved with increasing dielectric material hardness. It was therefore concluded that any UAM metal matrix mechanical strength degradation due to dielectric embedding could be restricted by employing a dielectric material with a suitable hardness (larger than 20 HK/0.01 kg). This result is of great interest and a vital step for realising electronic containing multifunctional smart metal composites for future industrial applications.

  18. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.

    Science.gov (United States)

    Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J

    2018-04-01

    In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in

  19. Carbon Fiber Reinforced Carbon-Al-Cu Composite for Friction Material.

    Science.gov (United States)

    Cui, Lihui; Luo, Ruiying; Ma, Denghao

    2018-03-31

    A carbon/carbon-Al-Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al-Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C-Al-Cu composites were analyzed. The results showed that the bending property of the C/C-Al-Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C-Al-Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C-Al-Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the "network conduction" structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al₄C₃. The friction coefficients of the C/C, C/C-Al-Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C-Al-Cu composites reached a minimum value of 2.56 × 10 -7 mm³/Nm. The C/C-Al-Cu composite can be appropriately used as railway current collectors for locomotives.

  20. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  1. Effect of Pre-heating on Microtensile Bond Strength of Composite Resin to Dentin.

    Directory of Open Access Journals (Sweden)

    Abdolrahim Davari

    2014-10-01

    Full Text Available Direct composite resin restorations are widely used and the impact of different storage temperatures on composites is not well understood. The purpose of this study was to evaluate the microtensile bond strength of composite to dentin after different pre-curing temperatures.Occlusal surfaces of 44 human molars were ground with diamond burs under water coolant and polished with 600 grit silicon carbide papers to obtain flat dentin surfaces. The dentin was etched with 37% phosphoric acid and bonded with Adper Single Bond 2 according to the manufacturer's instructions. The specimens were randomly divided into two groups (n=22 according to the composite resin applied: FiltekP60 and Filtek Z250. Each group included three subgroups of composite resin pre-curing temperatures (4°C, 23°C and 37°C. Composite resins were applied to the dentin surfaces in a plastic mold (8mm in diameter and 4mm in length incrementally and cured. Twenty-two composite-to-dentin hour-glass sticks with one mm(2 cross-sectional area per group were prepared. Microtensile bond strength measurements were made using a universal testing machine at a crosshead speed of one mm/min. For statistical analysis, t-test, one-way and two-way ANOVA were used. The level of significance was set at P<0.05.Filtek P60 pre-heated at 37ºC had significantly higher microtensile bond strength than Filtek Z250 under the same condition. The microtensile bond strengths were not significantly different at 4ºC, 23ºC and 37ºC subgroups of each composite resin group.Filtek P60 and Filtek Z250 did not have significantly different microtensile bond strengths at 4ºC and 23ºC but Filtek P60 had significantly higher microtensile bond strength at 37 ºC. Composite and temperature interactions had significant effects on the bond strength.

  2. Evaluation of the effects of strain rate on material properties of the high strength concrete used in nuclear facilities

    International Nuclear Information System (INIS)

    Kawaguchi, Shohei; Shirai, Koji; Takayanagi, Hideaki

    2011-01-01

    Concrete physical properties (compressive strength, tensile strength, initial elastic modulus and maximum strain) affected by strain rate weren't fully utilize for material model in dynamic response analysis for seismic and impact load because of few reports and various difficulties of impact tests. Split Hopkinson Pressure Bar (SHPB) methods are the most popular high-speed material testing and were also applied for composite material. We applied SHPB for concrete specimen and reported the strain rate effect to the concrete physical property. We used hydraulic testing device for 10 -5 /s to 10 0 /s strain rate and SHPB methods for over 10 1 /s. Four cases of concrete tests (high (50MPa at 28days)/low (35MPa at 28days) compressive strength (based on the test of exiting nuclear power facilities) and dry/wet condition) were done. And we formulated strain rate effect about compressive strength and initial elastic modulus from comparing with previous studies. (author)

  3. Application of electron and Bremsstrahlung beams for composite materials processing

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Avilov, A.M.; Popov, G.F.; Rudychev, V.G.

    1998-01-01

    In Kharkiv University the radiation process of obtaining composite polymer materials, CPM, with high strength properties and corrosion resistance was studied. CPM are manufactured by vacuum impregnating capillary-porous materials with synthetic monomers and oligomers or by molding granular waste and resins which are further treated by relativistic electron or Bremsstrahlung beam. Such radiation treatment yields new CPM in which capillary-porous structure acting as reinforcement is filled with polymer. The results of the applied research with industrial electron accelerator in the field of thick CPM formation are presented

  4. The effect of water storage, elapsed time and contaminants on the bond strength and interfacial polymerization of a nanohybrid composite.

    Science.gov (United States)

    Perriard, Jean; Lorente, Maria Cattani; Scherrer, Susanne; Belser, Urs C; Wiskott, H W Anselm

    2009-12-01

    To systematically characterize the effect of time lapse, water storage, and selected contaminants on the bond strength of a nanofilled dental composite. Half-dumbbell-shaped samples were fabricated out of light-polymerizing composite resin. To function as substrates they were aged for 30 days in water. Prior to bonding, the substrates' surfaces were subjected to the following treatments: 1) Removing a 0.2- to 0.4-mm layer using a fluted carbide bur; 2) grit blasting with 50 microm alumina particles; 3) etching with phosphoric acid gel; 4) grit blasting followed by etching; 5) blasting with tribochemical particles followed by silane application; 6) sanding with 400-grit paper, air aging of the adherent half-sample before bonding; 7) surface contamination with saliva; 8) surface contamination with blood. In each group (n = 30), freshly polymerized (except in group 6) adherent half-samples were bonded to the substrate half-samples by a layer of unfilled adhesive resin. Fifteen full dumbbell-shaped specimens were subjected to tensile testing after 1 h and 15 after 7 days water storage. In a positive control group, freshly cured half-samples were bonded shortly after fabrication. The tensile strength was analyzed using Weibull statistics and presented in terms of the material's characteristic strength and shape parameter. Fractographs of the two weakest and strongest samples of each group were produced. The surfaces were searched to locate hackle, wake hackle and the origin of the fracture. Surface roughness and time lapse increased the bond strength of the repaired specimens. All groups in which surface roughness was produced before bonding increased in repair strength. Post-bonding aging improved strength. Fractographs yielded interpretable data whenever larger surfaces of single phase bonding resin were present. 1) Roughening and etching an aged composite's surface prior to applying a coat of unfilled resin and the filled material increases repair bond strength by up

  5. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  6. Viscoelastic behaviour and static fatigue strength of glass/epoxy composites. Influence of hydrothermal ageing

    International Nuclear Information System (INIS)

    Chateauminois, Antoine

    1991-01-01

    As ageing strength of composites appears to be one of the main criteria of their durability, this research thesis addresses the hydrothermal ageing of unidirectional glass/epoxy composites used for load-bearing structures. After having presented the used materials (epoxy matrix, reinforcement, composite elaboration), the author present the experimental techniques: viscoelastic analysis, three-point bend static fatigue test, coupled gravimetry and calorimetry, and thermogravimetry. In the next parts, the author reports the study of water sorption processes (bibliographical study, experimental study of water sorption kinetics, experimental study of interfacial diffusion within the composite), the study of plasticizing phenomena (methodology of study of plasticizing phenomena, study of the modifications of the linear viscoelastic behaviour in the glass transition region and at room temperature, relationship between plasticizing and fatigue mechanical properties by fracture studies), and the study of irreversible degradation and damage mechanisms

  7. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Dahl, Anders Bjorholm

    2017-01-01

    The aim of this paper is to characterise the fibre orientation in unidirectional fibre reinforced polymers, namely glass and carbon fibre composites. The compression strength of the composite is related to the orientation of the fibres. Thus the orientation is essential when designing materials...... of composites with high fibre volume fraction. From the individual fibre orientations, it is possible to obtain results which are independent of the scanning quality. The compression strength for both composites is estimated from the average fibre orientations and is found to be of the same order of magnitude...

  8. SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices

    Science.gov (United States)

    Shikunov, S. L.; Kurlov, V. N.

    2017-12-01

    We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.

  9. A comparative study to determine strength of autopolymerizing acrylic resin and autopolymerizing composite resin influenced by temperature during polymerization: An In Vitro study

    Directory of Open Access Journals (Sweden)

    Anuj Chhabra

    2017-01-01

    Full Text Available Aim: Temporary coverage of a prepared tooth is an important step during various stages of the fixed dental prosthesis. Provisional restorations should satisfy proper mechanical requirements to resist functional and nonfunctional loads. A few studies are carried out regarding the comparison of the effect of curing environment, air and water, on mechanical properties of autopolymerizing acrylic and composite resin. Hence, the aim of this study was to compare the transverse strength of autopolymerizing acrylic resin and autopolymerizing composite resin as influenced by the temperature of air and water during polymerization. Materials and Methods: Samples of autopolymerizing acrylic resin and composite resin were prepared by mixing as per manufacturer's instructions and were placed in a preformed stainless steel mold. The mold containing the material was placed under different controlled conditions of water temperature and air at room temperature. Polymerized samples were then tested for transverse strength using an Instron universal testing machine. Results: Alteration of curing condition during polymerization revealed a significant effect on the transverse strength. The transverse strength of acrylic resin specimens cured at 60°C and composite resin specimens cured at 80°C was highest. Polymerizing the resin in cold water at 10°C reduced the mechanical strength. Conclusions: Polymerization of the resin in hot water greatly increased its mechanical properties. The method of placing resin restoration in hot water during polymerization may be useful for improving the mechanical requirements and obtaining long-lasting performance.

  10. Notched Strength of Woven Fabric Kenaf Composite Plates with Different Stacking Sequences and Hole Sizes

    Directory of Open Access Journals (Sweden)

    Hans Romayne Anders

    2016-01-01

    Full Text Available Advantages of using kenaf fibres over synthetic fibres in composites manufacturing are relatively cheap, less abrasive and hazardous during handling, and renewable materials. Current work investigates parametric effects on notched strength of woven fabric kenaf polymer composites plates with variation of lay-up types, notch sizes and plate thickness. Testing coupons are prepared using hand lay-up technique and circular notch were drilled prior to mechanical testing. Stress concentration at the notch edge promotes micro-damage event as tensile loading was applied leading to crack initiation and propagations across the plate width. It is suggested that woven fabric kenaf polymer composites are potentially used in low and medium load bearing applications.

  11. Status and prospects for SiC-SiC composite materials development for fusion applications

    International Nuclear Information System (INIS)

    Sharafat, S.; Jones, R.H.; Kohyama, A.; Fenici, P.

    1995-01-01

    Silicon carbide (SiC) composites are very attractive for fusion applications because of their low afterheat and low activation characteristics coupled with excellent high temperature properties. These composites are relatively new materials that will require material development as well as evaluation of hermiticity, thermal conductivity, radiation stability, high temperature strength, fatigue, thermal shock, and joining techniques. The radiation stability of SiC-SiC composites is a critical aspect of their application as fusion components and recent results will be reported. Many of the non-fusion specific issues are under evaluation by other ceramic composite development programs, such as the US national continuous fiber ceramic composites.The current development status of various SiC-SiC composites research and development efforts is given. Effect of neutron irradiation on the properties of SiC-SiC composite between 500 and 1200 C are reported. Novel high temperature properties specific to ceramic matrix composite (CMC) materials are discussed. The chemical stability of SiC is reviewed briefly. Ongoing research and development efforts for joining CMC materials including SiC-SiC composites are described. In conclusion, ongoing research and development efforts show extremely promising properties and behavior for SiC-SiC composites for fusion applications. (orig.)

  12. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  13. Strength and dynamic characteristics analyses of wound composite axial impeller

    Science.gov (United States)

    Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert

    2012-03-01

    A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.

  14. Chairside CAD/CAM materials. Part 2: Flexural strength testing.

    Science.gov (United States)

    Wendler, Michael; Belli, Renan; Petschelt, Anselm; Mevec, Daniel; Harrer, Walter; Lube, Tanja; Danzer, Robert; Lohbauer, Ulrich

    2017-01-01

    Strength is one of the preferred parameters used in dentistry for determining clinical indication of dental restoratives. However, small dimensions of CAD/CAM blocks limit reliable measurements with standardized uniaxial bending tests. The objective of this study was to introduce the ball-on-three-ball (B3B) biaxial strength test for dental for small CAD/CAM block in the context of the size effect on strength predicted by the Weibull theory. Eight representative chairside CAD/CAM materials ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Specimens were prepared with highly polished surfaces in rectangular plate (12×12×1.2mm 3 ) or round disc (Ø=12mm, thickness=1.2mm) geometries. Specimens were tested using the B3B assembly and the biaxial strength was determined using calculations derived from finite element analyses of the respective stress fields. Size effects on strength were determined based on results from 4-point-bending specimens. A good agreement was found between the biaxial strength results for the different geometries (plates vs. discs) using the B3B test. Strength values ranged from 110.9MPa (Vitablocs Mark II) to 1303.21MPa (e.max ZirCAD). The strength dependency on specimen size was demonstrated through the calculated effective volume/surface. The B3B test has shown to be a reliable and simple method for determining the biaxial strength restorative materials supplied as small CAD/CAM blocks. A flexible solution was made available for the B3B test in the rectangular plate geometry. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    Science.gov (United States)

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Nanodiamond composite as a material for cold electron emitters

    International Nuclear Information System (INIS)

    Arkhipov, A V; Sominski, G G; Uvarov, A A; Gordeev, S K; Korchagina, S B

    2008-01-01

    Characteristics of field-induced electron emission were investigated for one of newly designed all-carbon materials - nanodiamond composite (NDC). The composite is comprised by 4-6 nm diamond grains covered with 0.2-1 nm-thick graphite-like shells that merge at grain junctions and determine such properties as mechanical strength and high electric conductivity. Large number of uniformly distributed sp 3 -sp 2 interfaces allowed to expect enhanced electron emission in electric field. Combination of these features makes NDC a promising material for cold electron emitters in various applications. Experimental testing confirmed high efficiency of electron emission from NDC. In comparison with previousely tested forms of nanocarbon, NDC emitters demonstrated better stabily and tolerance to performance conditions. Unusual activation scenarios and thermal dependencies of emission characteristics observed in experiments with NDC can add new background for explanation of facilitated electron emission from nanocarbons with relatively 'smooth' surface morphology

  17. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    Science.gov (United States)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  18. In Vitro Evaluation of Various Surface Treatments of Fiber Posts on the Bond Strength to Composite Core

    Directory of Open Access Journals (Sweden)

    Sareh Nadalizadeh

    Full Text Available Introduction: The reliable bond at the root-post-core interface is critical for the clinical success of post-retained restorations. To decrease the risk of fracture, it is important to optimize the adhesion. Therefore, various post surface treatments have been proposed. The purpose of this study was to investigate the influence of various surface treatments of fiber posts on the bond strength to composite core. Materials & Methods: In this study, 40 fiber reinforced posts were used. After preparing and sectioning them, resulting specimens were divided into four groups (N=28. The posts received different surface treatments such as no surface treatment (control group, preparing with hydrogen peroxide 10%, preparing with silane, preparing with HF and silane. Then, posts were tested in micro tensile testing machine. The results were analyzed by One-Way ANOVA and Dunnett T3 test. Results: The greatest bond strength observed was in treatment with hydrogen peroxide 10% (19.84±8.95 MPa, and the lowest strength was related to the control group (12.44±3.40 MPa. The comparison of the groups with Dunnett T3 test showed that the differences between the groups was statistically significant (α=0.05.Conclusion: Based on the results of this study, preparing with H2O2 -10 % and silane increases the bond strength of FRC posts to the composite core more than the other methods. Generally, the bond strength of posts to the composite core increases by surface treatment.

  19. Preparation and characterisation of poly p-phenylene-2,6-benzobisoxazole fibre-reinforced resin matrix composite for endodontic post material: a preliminary study.

    Science.gov (United States)

    Hu, Chen; Wang, Feng; Yang, Huiyong; Ai, Jun; Wang, Linlin; Jing, Dongdong; Shao, Longquan; Zhou, Xingui

    2014-12-01

    Currently used fibre-reinforced composite (FRC) intracanal posts possess low flexural strength which usually causes post fracture when restoring teeth with extensive loss. To improve the flexural strength of FRC, we aimed to apply a high-performance fibre, poly p-phenylene-2, 6-benzobisoxazole (PBO), to FRCs to develop a new intracanal post material. To improve the interfacial adhesion strength, the PBO fibre was treated with coupling agent (Z-6040), argon plasma, or a combination of above two methods. The effects of the surface modifications on PBO fibre were characterised by determining the single fibre tensile strength and interfacial shear strength (IFSS). The mechanical properties of PBO FRCs were characterised by flexural strength and flexural modulus. The cytotoxicity of PBO FRC was evaluated by the MTT assay. Fibres treated with a combination of Z-6040 and argon plasma possessed a significantly higher IFSS than untreated fibres. Fibre treated with the combination of Z-6040-argon-plasma FRC had the best flexural strength (531.51 ± 26.43MPa) among all treated fibre FRCs and had sufficient flexural strength and appropriate flexural moduli to be used as intracanal post material. Furthermore, an in vitro cytotoxicity assay confirmed that PBO FRCs possessed an acceptable level of cytotoxicity. In summary, our study verified the feasibility of using PBO FRC composites as new intracanal post material. Although the mechanical property of PBO FRC still has room for improvement, our study provides a new avenue for intracanal post material development in the future. To our knowledge, this is the first study to verify the feasibility of using PBO FRC composites as new intracanal post material. Our study provided a new option for intracanal post material development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Composite Materials Based on Hemp and Flax for Low-Energy Buildings

    Science.gov (United States)

    Brzyski, Przemysław; Barnat-Hunek, Danuta; Suchorab, Zbigniew; Łagód, Grzegorz

    2017-01-01

    The article presents the results obtained in the course of a study on prospective application of flax/hemp wastes as a filling material of lime-based composites in the construction of low-energy buildings. The utilized filler comprised the hydrated lime with clay and Portland cement used as additives. The analysis involved evaluation of such properties as porosity, density, thermal conductivity, absorptivity, permeability, as well as compressive and flexural strength. Depending on the quantity of the filler, the properties of the composite changed. This, in turn, enabled to evaluate whether the utilized composite met the thermal requirements established for low-energy buildings. Afterwards, the obtained data were cross-referenced with the results gathered in the case of a room built of autoclaved aerated concrete. In order to prevent reaching the critical surface humidity, the internal surface temperature had to be calculated. Moreover, the chances of interstitial condensation occurring in the wall made of the analyzed lime–flax–hemp composite were determined as well. The study showed that the composite exhibits low strength, low density, low thermal conductivity, and high absorptivity. The external walls made of the lime–flax–hemp composite receive a limited exposure to condensation, but not significant enough to constitute any threat. The requirements established for low-energy buildings can be met by using the analyzed composite. PMID:28772871

  1. Flexural strength and modulus of elasticity of different types of resin-based composites.

    Science.gov (United States)

    Rodrigues Junior, Sinval Adalberto; Zanchi, Cesar Henrique; Carvalho, Rodrigo Varella de; Demarco, Flávio Fernando

    2007-01-01

    The aim of the study was to test whether the filler composition of resin composites influences their flexural strength and modulus of elasticity. Flexural strength and modulus of elasticity were obtained through a three-point bending test. Twelve bar shaped specimens of 5 commercially available composites--Supreme (3M/ESPE), a universal nanofilled composite; Esthet-X (Dentsply), Z-250 (3M/ESPE), Charisma (Heraeus Kulzer), universal hybrid composites; and Helio Fill (Vigodent), a microfine composite--were confectioned according to the ISO 4049/2000 specifications. The test was performed after a 7-days storage time using a universal test machine with a crosshead speed of 1 mm/min. The filler weight content was determined by the ashing technique. The data obtained on the mechanical properties were submitted to ANOVA and Tukey test (p elasticity results were observed among the universal hybrid composites. The nanofilled composite presented intermediary results. Within the limitations of this in vitro study, it could be concluded that the filler content significantly interfered in the flexural strength and modulus of elasticity of the composites tested.

  2. Composite material making from empty fruit bunches of palm oil (EFB) and Ijuk (Arengapinnata) using plastic bottle waste as adhesives

    Science.gov (United States)

    Rihayat, T.; Salim, S.; Audina, N.; Khan, N. S. P.; Zaimahwati; Sami, M.; Yunus, M.; Salisah, Z.; Alam, P. N.; Saifuddin; Yusuf, I.

    2018-03-01

    Reviewed from the current technological required a new methods to capable offering a high profit value without overriding the quality. The development of composite technology is now beginning to shift from traditional composite materials based petroleum to natural fibers composite. In the present study, aim to made specimens using natural fibers in form of EFB as a composite reinforcedment with Polyethylene Terephtalate (PET) derived from Plastic bottles waste as matrix with mixed composition parameters and time-tolerance in the mixing process to build a biocomposite material. The characterization of mechanical properties includes tensile test (ASTM D638-01) and bending test (ASTM D790-02) followed by thermal analysis using Thermogravimetric Analysis (TGA), and morphological analysis using scanning electron microscope (SEM). The analysis effect of EFB, Ijuk and PET mixtures on the composite matrix is very influential with mechanical properties characterization, including tensile test and bending strength. The results demonstrated that from the sample named : 50 : 25: 25, hybrid composites showed improved properties such as tensile strength of 167 MPa while the 90:05:05 based composites exhibited tensile strength values of 30 MPa, respectively. In term the flexural test the best result of composition on the properties with 10 minutes duration time its load value 7,5 Mpa for 80:10:10.

  3. State of the Art of degasification techniques, in the shaping processes of composite materials prepared by resin infusion

    OpenAIRE

    Tarazona Romero, Myriam Andrea

    2014-01-01

    The development of composite materials has represented many advances in the naval, aeronautical and aerospace sector complying with specific properties that increase the strength of the material, depending on the application being used and the environmental conditions to which it is exposed. Composite materials as the constituted with carbon fiber reinforcements of epoxy type matrix, nowadays are used for the manufacture of components in the structure of the aircrafts for their reductions of ...

  4. Estimation of Lamina Stiffness and Strength of Quadriaxial Non-Crimp Fabric Composites Based on Semi-Laminar Considerations

    Directory of Open Access Journals (Sweden)

    Yong Cao

    2016-09-01

    Full Text Available Quadriaxial non-crimp fabric (QNCF composites are increasingly being used as primary structural materials in aircraft and automotive applications. Predicting the mechanical properties of QNCF lamina is more complicated compared with that of unidirectional (UD composites, because of the knitting connection of different plies. In this study, to analyze the stiffness and strength of the QNCF composites, a novel modeling strategy for the meso-scale features is presented based on the semi-laminar assumption. Following the view of the mechanical properties of single composite lamina, the complex QNCF layer is decomposed into individual plies. Three different representative unit cells along fiber direction are selected to predict the mechanical performance of QNCF, including in-plane stiffness, damage initiation, and stiffness degradation. To validate the developed modeling strategy, the predictions are compared with existing experimental results, where a good agreement is presented on the prediction of in-plane stiffness and strength. Furthermore, the effect of in-plane fiber distortion, induced by the stitching yarn on the mechanical properties, is studied.

  5. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  6. New classes of tough composite materials-Lessons from natural rigid biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, G. [Department of Materials Science and Engineering, Box 352120, University of Washington, Seattle, WA 98195-2120 (United States)]. E-mail: gmayer@u.washington.edu

    2006-09-15

    The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based.

  7. New classes of tough composite materials-Lessons from natural rigid biological systems

    International Nuclear Information System (INIS)

    Mayer, G.

    2006-01-01

    The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based

  8. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  9. SWCNT Composites, Interfacial Strength and Mechanical Properties

    DEFF Research Database (Denmark)

    Ma, Jing; Larsen, Mikael

    2013-01-01

    Abstract: Single-Walled Carbon Nanotubes (SWCNT) have despite the superior mechanical properties not fully lived up to the promise as reinforcement in SWCNT composites. The strain transfer from matrix to carbon nanotubes (CNT) is poorly understood and is caused by both fewer localized strong...... is applied to the composite materials. The effect of polymer matrix, modification and concentration of the CNTs are discussed. The strain transfer i.e. 2D band shift under tension is compared to the mechanical properties of the SWCNT composite material....

  10. Shear bond strength of composite bonded with three adhesives to Er,Cr:YSGG laser-prepared enamel.

    Science.gov (United States)

    Türkmen, Cafer; Sazak-Oveçoğlu, Hesna; Günday, Mahir; Güngör, Gülşad; Durkan, Meral; Oksüz, Mustafa

    2010-06-01

    To assess in vitro the shear bond strength of a nanohybrid composite resin bonded with three adhesive systems to enamel surfaces prepared with acid and Er,Cr:YSGG laser etching. Sixty extracted caries- and restoration-free human maxillary central incisors were used. The teeth were sectioned 2 mm below the cementoenamel junction. The crowns were embedded in autopolymerizing acrylic resin with the labial surfaces facing up. The labial surfaces were prepared with 0.5-mm reduction to receive composite veneers. Thirty specimens were etched with Er,Cr:YSGG laser. This group was also divided into three subgroups, and the following three bonding systems were then applied on the laser groups and the other three unlased groups: (1) 37% phosphoric acid etch + Bond 1 primer/adhesive (Pentron); (2) Nano-bond self-etch primer (Pentron) + Nano-bond adhesive (Pentron); and (3) all-in-one adhesive-single dose (Futurabond NR, Voco). All of the groups were restored with a nanohybrid composite resin (Smile, Pentron). Shear bond strength was measured with a Zwick universal test device with a knife-edge loading head. The data were analyzed with two-factor ANOVA. There were no significant differences in shear bond strength between self-etch primer + adhesive and all-in-one adhesive systems for nonetched and laser-etched enamel groups (P > .05). However, bond strength values for the laser-etched + Bond 1 primer/adhesive group (48.00 +/- 13.86 MPa) were significantly higher than the 37% phosphoric acid + Bond 1 primer/adhesive group (38.95 +/- 20.07 MPa) (P enamel surface more effectively than 37% phosphoric acid for subsequent attachment of composite material.

  11. Profiled Deck Composite Slab Strength Verification: A Review

    Directory of Open Access Journals (Sweden)

    K. Mohammed

    2017-12-01

    Full Text Available The purpose of this article is to present an overview on alternate profiled deck composite slab (PDCS strength verification devoid of the expensive and complex laboratory procedures in establishing its longitudinal shear capacity. Despite the several deterministic research findings leading to the development of proposals and modifications on the complex shear characteristics of PDCS that defines its strength behaviour, the laboratory performance testing stands to be the only accurate means for the PDCS strength assessment. The issue is critical and warrants much further thoughts from different perspective other than the deterministic approach that are rather expensive and time consuming. Hence, the development of a rational-based numerical test load function from longitudinal shear capacity consideration is a necessity in augmenting the previous futile attempts for strength determination of PDCS devoid of the costlier and expensive laboratory procedure.

  12. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    Science.gov (United States)

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  13. Composite Materials in Overhead Lines

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim

    2009-01-01

    towers and recently conductors based on composite materials are available at transmission levels. In this paper it is investigated which composite based solutions are available in connection with complete overhead line systems including insulators, towers and conductors. The components are reviewed......The use of composite materials, e.g. fibreglass materials, in overhead transmission line systems is nothing new. Composite based insulators have been applied to transmission lines for over 30 years, mainly as suspension and post insulators and often as an option for special applications. Also...... with respect to solved and persisting known failures/problems of both mechanical and electrical nature. Major challenges related to extensive use of composite materials in an overhead line system are identified, as are possible benefits - both when using standard as well as customised composite components, e...

  14. New Design Concept for a Lifting Platform Made of Composite Material

    Science.gov (United States)

    Solazzi, L.; Scalmana, R.

    2013-08-01

    Elevating work platforms are hoists equipment that are increasingly used in many applications, like in the construction industry and in the maintenance field. The maintenance of the hub of the wind turbines, for example, can be done through the use of a working platform; these structures have to reach great heights and obviously they have to satisfy the constraints induced by the highway standards, like the maximum axle load and the maximum overall dimensions. To satisfy these requests the material of the structures changed from the classic structural steel (S235 JR, S275 JR or S355JR) to high strength steel (S700 to S1100 or more), characterized by a significantly higher specific resistance. The idea of this paper is to use a composite material for the construction of the arms of an elevating platform in order to reduce the global weight of the machine. The analyses on the new kind of platform show the technical possibility to change the material of the arms with composite materials and this produces a significant reduction of the weight of the machine components, about 50 %. Being a feasibility study, still remain open some problems such as the mechanical behavior of the used composite materials (fatigue, environment effects, etc.).

  15. Nanodiamond composite as a material for cold electron emitters

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, A V; Sominski, G G; Uvarov, A A [St.Petersburg State Polytechnic University, 29 Politchnicheskaya, St.Petersburg, 195251 (Russian Federation); Gordeev, S K; Korchagina, S B [FSUE ' Central Research Institute for Materials' , 8 Paradnaya Street, St.Petersburg, 191014 (Russian Federation)], E-mail: arkhipov@rphf.spbstu.ru

    2008-03-15

    Characteristics of field-induced electron emission were investigated for one of newly designed all-carbon materials - nanodiamond composite (NDC). The composite is comprised by 4-6 nm diamond grains covered with 0.2-1 nm-thick graphite-like shells that merge at grain junctions and determine such properties as mechanical strength and high electric conductivity. Large number of uniformly distributed sp{sup 3}-sp{sup 2} interfaces allowed to expect enhanced electron emission in electric field. Combination of these features makes NDC a promising material for cold electron emitters in various applications. Experimental testing confirmed high efficiency of electron emission from NDC. In comparison with previousely tested forms of nanocarbon, NDC emitters demonstrated better stabily and tolerance to performance conditions. Unusual activation scenarios and thermal dependencies of emission characteristics observed in experiments with NDC can add new background for explanation of facilitated electron emission from nanocarbons with relatively 'smooth' surface morphology.

  16. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... CNT nanoreinforcement into the matrix and/or the sizing of carbon fiber/reinforced composites ensures strong increase of the composite strength. The effect of secondary CNTs reinforcement is strongest when some small addition of CNTs in the polymer matrix is complemented by the fiber sizing with high...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...

  17. Residual-strength determination in polymetric materials

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.M.

    1981-10-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data.

  18. Residual-strength determination in polymetric materials

    International Nuclear Information System (INIS)

    Christensen, R.M.

    1981-01-01

    Kinetic theory of crack growth is used to predict the residual strength of polymetric materials acted upon by a previous history. Specifically, the kinetic theory is used to characterize the state of growing damage that occurs under a constant-stress (load) state. The load is removed before failure under creep-rupture conditions, and the residual instantaneous strength is determined from the theory by taking account of the damage accumulation under the preceding constant-load history. The rate of change of residual strength is found to be strongest when the duration of the preceding load history is near the ultimate lifetime under that condition. Physical explanations for this effect are given, as are numerical examples. Also, the theoretical prediction is compared with experimental data

  19. Plasma Methods of Obtainment of Multifunctional Composite Materials, Dispersion-Hardened by Nanoparticles

    Science.gov (United States)

    Sizonenko, O. N.; Grigoryev, E. G.; Pristash, N. S.; Zaichenko, A. D.; Torpakov, A. S.; Lypian, Ye. V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.

    2017-09-01

    High voltage electric discharge (HVED) in disperse system "hydrocarbon liquid - powder" due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10-20 %), hardness and wear-resistance (by 30-60 %) of obtained materials.

  20. Strength analysis of filament-wound composite tubes

    Directory of Open Access Journals (Sweden)

    Vasović Ivana

    2010-01-01

    Full Text Available The subject of this work is focused on strength analysis of filament-wound composite tubes made of E glass/polyester under internal pressure. The primary attention of this investigation is to develop a reliable computation procedure for stress, displacement and initial failure analysis of layered composite tubes. For that purpose we have combined the finite element method (FEM with corresponding initial failure criterions. In addition, finite element analyses using commercial code, MSC/NASTRAN, were performed to predict the behavior of filament wound structures. Computation results are compared with experiments. Good agreement between computation and experimental results are obtained.

  1. Modeling of interface roughness in thermoelectric composite materials

    International Nuclear Information System (INIS)

    Gather, F; Heiliger, C; Klar, P J

    2011-01-01

    We use a network model to calculate the influence of the mesoscopic interface structure on the thermoelectric properties of superlattice structures consisting of alternating layers of materials A and B. The thermoelectric figure of merit of such a composite material depends on the layer thickness, if interface resistances are accounted for, and can be increased by proper interface design. In general, interface roughness reduces the figure of merit, again compared to the case of ideal interfaces. However, the strength of this reduction depends strongly on the type of interface roughness. Smooth atomic surface diffusion leading to alloying of materials A and B causes the largest reduction of the figure of merit. Consequently, in real structures, it is important not only to minimize interface roughness, but also to control the type of roughness. Although the microscopic effects of interfaces are only empirically accounted for, using a network model can yield useful information about the dependence of the macroscopic transport coefficients on the mesoscopic disorder in structured thermoelectric materials.

  2. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Science.gov (United States)

    de ANDRADE, Andrea Mello; MOURA, Sandra Kiss; REIS, Alessandra; LOGUERCIO, Alessandro Dourado; GARCIA, Eugenio Jose; GRANDE, Rosa Helena Miranda

    2010-01-01

    Objectives The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (µTBS) and microshear bond strength (µSBS) tests on enamel, and to correlate the bond strength means between them. Material and methods Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for µTBS and the other one for µSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37ºC/24 h) specimens were stressed (0.5 mm/ min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). Results The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (padhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions. PMID:21308290

  3. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Science.gov (United States)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  4. The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments.

    Science.gov (United States)

    Manoharan, M P; Sharma, A; Desai, A V; Haque, M A; Bakis, C E; Wang, K W

    2009-07-22

    Carbon nanotubes and nanofibers are extensively researched as reinforcing agents in nanocomposites for their multifunctionality, light weight and high strength. However, it is the interface between the nanofiber and the matrix that dictates the overall properties of the nanocomposite. The current trend is to measure elastic properties of the bulk nanocomposite and then compare them with theoretical models to extract the information on the interfacial strength. The ideal experiment is single fiber pullout from the matrix because it directly measures the interfacial strength. However, the technique is difficult to apply to nanocomposites because of the small size of the fibers and the requirement for high resolution force and displacement sensing. We present an experimental technique for measuring the interfacial strength of nanofiber-reinforced composites using the single fiber pullout technique and demonstrate the technique for a carbon nanofiber-reinforced epoxy composite. The experiment is performed in situ in a scanning electron microscope and the interfacial strength for the epoxy composite was measured to be 170 MPa.

  5. Development and application of new composite grouting material for sealing groundwater inflow and reinforcing wall rock in deep mine.

    Science.gov (United States)

    Jinpeng, Zhang; Limin, Liu; Futao, Zhang; Junzhi, Cao

    2018-04-04

    With cement, bentonite, water glass, J85 accelerator, retarder and water as raw materials, a new composite grouting material used to seal groundwater inflow and reinforce wall rock in deep fractured rock mass was developed in this paper. Based on the reaction mechanism of raw material, the pumpable time, stone rate, initial setting time, plastic strength and unconfined compressive strength of multi-group proportion grouts were tested by orthogonal experiment. Then, the optimum proportion of composite grouting material was selected and applied to the grouting engineering for sealing groundwater inflow and reinforcing wall rock in mine shaft lining. The results show the mixing proportion of the maximum pumpable time, maximum stone rate and minimum initial setting time of grout are A K4 B K1 C K4 D K2 , A K3 B K1 C K1 D K4 and A K3 B K3 C K4 D K1 , respectively. The mixing proportion of the maximum plastic strength and unconfined compressive strength of grouts concretion bodies are A K1 B K1 C K1 D K3 and A K1 B K1 C K1 D K1 , respectively. Balanced the above 5 indicators overall and determined the optimum proportion of grouts: bentonite-cement ratio of 1.0, water-solid ratio of 3.5, accelerator content of 2.9% and retarder content of 1.45%. This new composite grouting material had good effect on the grouting engineering for sealing groundwater inflow and reinforcing wall rock in deep fractured rock mass.

  6. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    Directory of Open Access Journals (Sweden)

    A.E. Ismail

    2015-12-01

    Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.

  7. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  8. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  9. Design Optimization of Laminated Composite Structures with Many Local Strength Criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    This paper presents different strategies for handling very many local strength criteria in structural optimization of laminated composites. Global strength measures using Kreisselmeier-Steinhauser or p-norm functions are introduced for patch-wise parameterizations, and the efficiency of the metho...

  10. Composite material dosimeters

    Science.gov (United States)

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  11. Lifetime and residual strength of materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    of load amplitude, load average, fractional time under maximum load, and load frequency.The analysis includes prediction of residual strength (re-cycle strength) during the process of load cycling. It is concluded that number of cycles to failure is a very poor design criterion. It is demonstrated how...... the theory developed can be generalized also to consider non-harmonic load variations.Algorithms are presented for design purposes which may be suggested as qualified alternatives to the Palmgren-Miner's methods normally used in fatigue analysis of materials under arbitrary load variations. Prediction...

  12. The strength of compressed structures with CFRP materials reinforcement when exceeding the cross-section size

    Science.gov (United States)

    Polskoy, Petr; Mailyan, Dmitry; Georgiev, Sergey; Muradyan, Viktor

    2018-03-01

    The increase of high-rise construction volume or «High-Rise Construction» requires the use of high-strength concrete and that leads to the reduction in section size of structures and to the decrease in material consumption. First of all, it refers to the compressed elements for which, when the transverse dimensions are reduced, their flexibility and deformation increase but the load bearing capacity decreases. Growth in construction also leads to the increase of repair and restoration works or to the strengthening of structures. The most effective method of their strengthening in buildings of «High-Rise Construction» is the use of composite materials which reduces the weight of reinforcement elements and labour costs on execution of works. In this article the results of experimental research on strength and deformation of short compressed reinforced concrete structures, reinforced with external carbon fiber reinforcement, are presented. Their flexibility is λh=10, and the cross-section dimensions ratio b/h is 2, that is 1,5 times more, than recommended by standards in Russia. The following research was being done for three kinds of strained and deformed conditions with different variants of composite reinforcement. The results of the experiment proved the real efficiency of composite reinforcement of the compressed elements with sides ratio equal to 2, increasing the bearing capacity of pillars till 1,5 times. These results can be used for designing the buildings of different number of storeys.

  13. Isolation of aramid nanofibers for high strength multiscale fiber reinforced composites

    Science.gov (United States)

    Lin, Jiajun; Patterson, Brendan A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2018-03-01

    Aramid fibers are famous for their high specific strength and energy absorption properties and have been intensively used for soft body armor and ballistic protection. However, the use of aramid fiber reinforced composites is barely observed in structural applications. Aramid fibers have smooth and inert surfaces that are unable to form robust adhesion to polymeric matrices due to their high crystallinity. Here, a novel method to effectively integrate aramid fibers into composites is developed through utilization of aramid nanofibers. Aramid nanofibers are prepared from macroscale aramid fibers (such as Kevlar®) and isolated through a simple and scalable dissolution method. Prepared aramid nanofibers are dispersible in many polymers due to their improved surface reactivity, meanwhile preserve the conjugated structure and likely the strength of their macroscale counterparts. Simultaneously improved elastic modulus, strength and fracture toughness are observed in aramid nanofiber reinforced epoxy nanocomposites. When integrated in continuous fiber reinforced composites, aramid nanofibers can also enhance interfacial properties by forming hydrogen bonds and π-π coordination to bridge matrix and macroscale fibers. Such multiscale reinforcement by aramid nanofibers and continuous fibers results in strong polymeric composites with robust mechanical properties that are necessary and long desired for structural applications.

  14. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  15. Composite Material Suitable for Use as Electrode Material in a SOC

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to composite material suitable for use as an electrode material in a solid oxide cell, said composite material consist of at least two non-miscible mixed ionic and electronic conductors. Further provided is a composite material suitable for use as an electrode material...... in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-[delta] or (Ln1-xSrx)1-sFe1-yCioyO3-[delta](s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material...... being obtainable by the glycine nitrate combustion method. Said composite material may be used for proving an electrode material in the form of at least a two-phase system showing a very low area specific resistance of around 0.1 [Omega]cm2 at around 600 DEG C....

  16. Development and Sliding Wear Response of Epoxy Composites Filled with Coal Mine Overburden Material

    Science.gov (United States)

    Das, Prithika; Satapathy, Alok; Mishra, M. K.

    2018-03-01

    The paper reports on development and characterization of epoxy based composites filled with micro-sized mine overburden material. Coal mine overburden material is typically highly heterogeneous and is considered as waste material. For excavating each ton of coal, roughly 5 tons of overburden materials are removed and is dumped nearby occupying large space. Gainful utilization of this waste is a major challenge. In the present work, this material is used as filler materials in making a new class of epoxy matrix composites. Composites with different weight proportions of fillers (0, 10, 20, 30 and 40) wt. % are prepared by hand layup technique. Compression tests are performed as per corresponding ASTM standards to assess the compressive strength of these composites. Further, dry sliding tests are performed following ASTM G99 standards using a pin on disk machine. A design of experiment approach based on Taguchi’s L16 orthogonal arrays is adopted. Tests are performed at different sliding velocities for multiple sliding distances under varying normal loads. Specific wear rates of the composites under different test conditions are obtained. The analysis of the test results revealed that the filler content and the sliding velocity are the most predominant control factors affecting the wear rate. This work thus, opens up a new avenue for the value added utilization of coal mine overburden material.

  17. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  18. Fiscal 1991-1993 summary report on R and D on new forming technology of composite materials; Fukugo zairyo shinseikei gijutsu no kenkyu kaihatsu 1991 nendo - 1993 nendo sokatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    Developed were the materials which can be easily formed by manifesting superplasticity simultaneously with high toughness and high strength through selection of material composition and micronizing of the structure, in regard to composite materials answering to high strength and resistance to high temperature suitable for engines or the like. Developed for ceramic matrix composite materials were composite technology of silicon nitride matrix composites by a casting method, composite technology of Al{sub 2}O{sub 3}/TiC matrix composites by a material preparation method using aqueous slurry, and superplastic forming technology of yttria stabilized zirconia/alumina matrix composites; developed for metallic matrix composite materials were composite technology of reinforced ceramics particulate aluminum alloy matrix composites by a voltex method, composite technology of ceramic short fibers reinforced aluminum alloy composites by a high pressure casting method under reduced pressure, composite technology of titanium matrix composites by a mechanical alloying method, and composite technology of aluminum alloy composites by ceramics particles, superplastic forming technology of SiC whisker reinforced aluminum alloy reinforced composites, and superplastic forming technology of aluminum alloy matrix reinforced composites reinforced by SiC particles. (NEDO)

  19. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    Keulemans, F.; Palav, P.; Aboushelib, M.M.N.; van Dalen, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a

  20. Color stability and flexural strength of poly (methyl methacrylate) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: an in vitro study.

    Science.gov (United States)

    Gujjari, Anil K; Bhatnagar, Vishrut M; Basavaraju, Ravi M

    2013-01-01

    To evaluate the color stability and flexural strength of poly (methyl methacrylate) (PMMA) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA) (Group A), and one Protemp 4 Temporization Material (bis-acrylic composite) (Group B) were used. Disk-shaped specimens for color stability testing (n = 30 for each material) and bar-shaped specimens for flexural strength testing (n = 30 for each material) were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.

  1. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    Science.gov (United States)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  2. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    International Nuclear Information System (INIS)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-01-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO 2 70 mol%, CaO 26 mol % and P 2 O 5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  3. Color stability and flexural strength of poly (methyl methacrylate and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: An in vitro study

    Directory of Open Access Journals (Sweden)

    Anil K Gujjari

    2013-01-01

    Full Text Available Aim: To evaluate the color stability and flexural strength of poly (methyl methacrylate (PMMA and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Materials and Methods: Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA (Group A, and one Protemp 4 Temporization Material (bis-acrylic composite (Group B were used. Disk-shaped specimens for color stability testing (n = 30 for each material and bar-shaped specimens for flexural strength testing (n = 30 for each material were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Results: Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. Conclusion: The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.

  4. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    Science.gov (United States)

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  5. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2014-11-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  6. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2015-07-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  7. Electrically conductive composite material

    Science.gov (United States)

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  8. Production and characterization of composite material based on ablative phenolic resin and carbon fibers

    International Nuclear Information System (INIS)

    Srebrenkoska, Vineta

    2002-01-01

    The optimisation of technology for production of moulding compound based on short carbon fibers and ablative phenolic resin is carried out. The characterisation of the starting raw materials is performed and moulding compounds With different fiber/matrix ratios and different fiber lengths are prepared. From the different samples, mouldings are produced by thermal compression. All physical, mechanical and thermal properties of the composites are tested. From the obtained results the optimal fiber/matrix ratio, for high temperature moulding compounds production are determined. Also, in order to meet the request for high thermal and mechanics properties of the composite, optimization is carded out on the moulding process itself. The optimization is fulfilled by a planned experiment. The full factorial experimental design is applied in which the following parameters are varied: fiber length, temperature and time of the press cycle. Regression equations for the influence of the parameters to the impact resistance, compression strength, flexural strength and the modulus of elasticity of the molding, are obtained. The obtained mechanical properties of the composite rate this material for potential application in the automotive, leisure, military and other industries.(Author)

  9. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    Directory of Open Access Journals (Sweden)

    Cafer Türkmen

    2011-08-01

    Full Text Available OBJECTIVE: The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. MATERIAL AND METHODS: Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group: direct composite resin restoration (Alert with etch-and-rinse adhesive system (Bond 1 primer/adhesive, Group 2: indirect composite restoration (Estenia luted with a resin cement (Cement-It combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond, Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. RESULTS: The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7 showed better results compared to the other groups (p0.05. The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. CONCLUSION: The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  10. Composite materials pipings: selection of basic materials and manufacturing process, quality control during manufacture

    International Nuclear Information System (INIS)

    Pays, M.F.

    1997-01-01

    The purpose of the paper is to present a summary of the knowledge acquired at the R and D on resins used as composite matrix, the resistance to hydrolysis and mechanical strength of pipings made from these materials, and on quality control during manufacture. The initial targets concerning the material selection, industrial manufacturing and quality control procedures are presented. The paper describes the results obtained concerning the investigation of the damage produced by hydrolysis in polyesters, vinyl esters and epoxides, the influence of temperature, reinforcement and the mechanical characterization of the tubing manufacturing. The performances of the nondestructive testings (radiography, ultrasonic controls, differential interferometry and infrared thermography) used are also reported. The paper ends with a further research and testings programme. (author)

  11. Radiation processing of composite materials on the basis of coconut hair and plastics

    International Nuclear Information System (INIS)

    Owolabi, O.; Czvikovszky, T.

    1983-01-01

    Composite materials containing coconut hair as fibrous reinforcements and synthetic polyester resin as matrix were prepared. The coconut hair, together with the unsaturated polyester resin and other required ingredients (fillers, complexing agents, etc.) were pre-processed in a BRABENDER-type kneader or similar equipment to produce a bulk moulding compound ('BMC' or 'Premix') and later hot pressed for 10 minutes at 130 degC and 30 bars to produce sheets of 2 mm thickness. The tensile-, flexural- and impact strength of the sheets were measured and served as the main basis of comparison. The effect of increasing coconut hair percentage was studied. The effect of preirradiation of the coconut hair, pretreatment with hot sodium hydroxide solution and a combination of the two, to improve the coupling of the coconut hair and synthetic polyester were also studied. Composite materials were also made from a mixture of coconut hair and chopped glass fibers as reinforcements in the same BMC material. The radiation-treated coconut fiber gives a useful composite material for hot-press moulding. (author)

  12. Prediction on flexural strength of encased composite beam with cold-formed steel section

    Science.gov (United States)

    Khadavi, Tahir, M. M.

    2017-11-01

    A flexural strength of composite beam designed as boxed shaped section comprised of lipped C-channel of cold-formed steel (CFS) facing each other with reinforcement bars is proposed in this paper. The boxed shaped is kept restrained in position by a profiled metal decking installed on top of the beam to form a slab system. This profiled decking slab is cast by using self-compacting concrete where the concrete is in compression when load is applied to the beam. Reinforcement bars are used as shear connector between slab and CFS as beam. A numerical analysis method proposed by EC4 is used to predict the flexural strength of the proposed composite beam. It was assumed that elasto-plastic behaviour is developed in the cross -sectional of the proposed beam. The calculated predicted flexural strength of the proposed beam shows reasonable flexural strength for cold-formed composite beam.

  13. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    International Nuclear Information System (INIS)

    Beg, M.D.H.; Pickering, K.L.; Weal, S.J.

    2005-01-01

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre

  14. Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs

    Science.gov (United States)

    Attree, N.; Groussin, O.; Jorda, L.; Nébouy, D.; Thomas, N.; Brouet, Y.; Kührt, E.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hartogh, P.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Auger, A.-T.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Hviid, S.; Ip, W.-H.; Kovacs, G.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Lowry, S.; Marchi, S.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Toth, I.; Tubiana, C.; Vincent, J.-B.; Shi, X.

    2018-03-01

    We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features andthe implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the 10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).

  15. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  16. Composite materials processing, applications, characterizations

    CERN Document Server

    2017-01-01

    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  17. SiC-C Composite as A Highly Stable and Easily Regenerable Photothermal Material for Practical Water Evaporation

    KAUST Repository

    Shi, Le

    2018-05-26

    Solar-driven water distillation by photothermal materials is emerging as a promising way of renewable energy-driven clean water production. In designing photothermal materials, light absorption, photo-to-thermal conversion efficiency, and ability to localize thermal energy at the water-air interface are three important considerations. However, one additional consideration, regenerability, has so far slipped out of the photothermal material designs at status quo. This work reveals that there is a fouling layer formed during photothermal evaporation of real seawater (Red Sea water) and domestic wastewater, which once formed, would be difficult to remove. Herein, we synthesize a SiC-C composite monolith as an effective photothermal material where carbon acts as photothermal component and SiC serves as a heat conductor and strong structural support. The high mechanical strength of the monolithic composite makes it able to withstand repeatedly high strength physical cleaning by brush scrubbing and sonication and the anti-carbon-loss mechanism generates zero carbon loss during the physical cleaning. In the case of the domestic wastewater evaporation, the bio- and organic foulants on the SiC-C composite monolith can be totally removed by annealing at 1000 oC in N2 atmosphere. We believe that the SiC-C composite monoliths are promising photothermal materials in practical solar-driven water evaporation applications thanks to their highly stable and easily regenerable properties and therefore more research efforts are warranted to further improve their performances.

  18. Factors influencing the thermally-induced strength degradation of B/Al composites

    International Nuclear Information System (INIS)

    Dicarlo, J.A.

    1983-01-01

    Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed

  19. Composite Material Switches

    Science.gov (United States)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  20. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Robbins, J.M.; Strizak, J.P.

    1991-01-01

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.59 dpa at 600 degrees C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes, thermal conductivity and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-Carbon composite dimensional changes are interpreted in terms of simple microstructural models

  1. Nickel-Graphite Composite Compliant Interface and/or Hot Shoe Material

    Science.gov (United States)

    Firdosy, Samad A.; Chun-Yip Li, Billy; Ravi, Vilupanur A.; Fleurial, Jean-Pierre; Caillat, Thierry; Anjunyan, Harut

    2013-01-01

    Next-generation high-temperature thermoelectric-power-generating devices will employ segmented architectures and will have to reliably withstand thermally induced mechanical stresses produced during component fabrication, device assembly, and operation. Thermoelectric materials have typically poor mechanical strength, exhibit brittle behavior, and possess a wide range of coefficient of thermal expansion (CTE) values. As a result, the direct bonding at elevated temperatures of these materials to each other to produce segmented leg components is difficult, and often results in localized microcracking at interfaces and mec hanical failure due to the stresses that arise from the CTE mismatch between the various materials. Even in the absence of full mechanical failure, degraded interfaces can lead to increased electrical and thermal resistances, which adversely impact conversion efficiency and power output. The proposed solution is the insertion of a mechanically compliant layer, with high electrical and thermal conductivity, between the low- and high-temperature segments to relieve thermomechanical stresses during device fabrication and operation. This composite material can be used as a stress-relieving layer between the thermoelectric segments and/or between a thermoelectric segment and a hot- or cold-side interconnect material. The material also can be used as a compliant hot shoe. Nickel-coated graphite powders were hot-pressed to form a nickel-graphite composite material. A freestanding thermoelectric segmented leg was fabricated by brazing the compliant pad layer between the high-temperature p- Zintl and low-temperature p-SKD TE segments using Cu-Ag braze foils. The segmented leg stack was heated in vacuum under a compressive load to achieve bonding. The novelty of the innovation is the use of composite material that re duces the thermomechanical stresses en - countered in the construction of high-efficiency, high-temperature therm - o-electric devices. The

  2. Strength of cellulosic fiber/starch acetate composites with variable fiber and plasticizer content

    DEFF Research Database (Denmark)

    Joffe, Roberts; Madsen, Bo; Nättinen, Kalle

    2015-01-01

    In this experimental study, the performance of injection-molded short flax and hemp fibers in plasticized starch acetate were analyzed in terms of strength. Parameters involved in the analysis are a variable fiber and plasticizer content. The measured strength of the composites varies in the range...... of 12–51 MPa for flax fibers and 11–42 MPa for hemp fibers, which is significantly higher than the properties of the unreinforced starch acetate matrix. The micro-structural parameters used in modeling of composite strength were obtained from optical observations and indirect measurements. Some...

  3. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  4. Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.

    Science.gov (United States)

    Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O

    2012-01-01

    To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (palginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible

  5. Laminated Ti-Al composites: Processing, structure and strength

    DEFF Research Database (Denmark)

    Du, Yan; Fan, Guohua; Yu, Tianbo

    2016-01-01

    Laminated Ti-Al composite sheets with different layer thickness ratios have been fabricated through hot pressing followed by multi-pass hot rolling at 500 °C.The laminated sheets show strong bonding with intermetallic interface layers of nanoscale thickness between the layers of Ti and Al....... The mechanical properties of the composites with different volume fractions of Al from 10% to 67% show a good combination of strength and ductility. A constraint strain in the hot-rolled laminated structure between the hard and soft phases introduces an elastic-plastic deformation stage, which becomes more...

  6. Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    Directory of Open Access Journals (Sweden)

    M. Scafè

    2014-07-01

    Full Text Available In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen. The method chosen to perform the compression tests is the Wyoming Combined Loading Compression (CLC Test Method, described in ASTM D 6641 / D 6641M-09. This method presents many advantages, especially: the load application on the specimen (end load combined with shear load, the reproducibility of measurements and the experimental equipment quite simplified. Six different laminates were tested in compressive tests. They were realized by the same unidirectional prepreg, but with different stacking sequences: two cross-ply [0/90]ns, two angle-ply [0/90/±45]ns and two unidirectional laminates [0]ns and [90]ns. The estimate of the compressive strength of the unidirectional laminates at 0°, was done by an indirect analytical method, developed from the classical lamination theory, and which uses a multiplicative parameter known as Back-out Factor (BF. The BF is determined by using the experimental values obtained from compression tests.

  7. Synthesis of new metal-matrix Al-Al2O3-graphene composite materials

    Science.gov (United States)

    Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.

    2017-08-01

    The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.

  8. Longevity of posterior composite restorations: not only a matter of materials.

    Science.gov (United States)

    Demarco, Flávio F; Corrêa, Marcos B; Cenci, Maximiliano S; Moraes, Rafael R; Opdam, Niek J M

    2012-01-01

    Resin composites have become the first choice for direct posterior restorations and are increasingly popular among clinicians and patients. Meanwhile, a number of clinical reports in the literature have discussed the durability of these restorations over long periods. In this review, we have searched the dental literature looking for clinical trials investigating posterior composite restorations over periods of at least 5 years of follow-up published between 1996 and 2011. The search resulted in 34 selected studies. 90% of the clinical studies indicated that annual failure rates between 1% and 3% can be achieved with Class I and II posterior composite restorations depending on several factors such as tooth type and location, operator, and socioeconomic, demographic, and behavioral elements. The material properties showed a minor effect on longevity. The main reasons for failure in the long term are secondary caries, related to the individual caries risk, and fracture, related to the presence of a lining or the strength of the material used as well as patient factors such as bruxism. Repair is a viable alternative to replacement, and it can increase significantly the lifetime of restorations. As observed in the literature reviewed, a long survival rate for posterior composite restorations can be expected provided that patient, operator and materials factors are taken into account when the restorations are performed. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Effect of three porcelain etchants type (HF-APF-PHA on porcelain- composite shear bond strength

    Directory of Open Access Journals (Sweden)

    Kermanshah H.

    2005-05-01

    Full Text Available Statement of Problem: Porcelain restorations are susceptible to fracture and a common method for repairing is the use of silane and composite on etched porcelain. Although HF is very effective in porcelain etching but has detrimental effects on tissues. Purpose: In this study, the effect of APF and PHA was compared with HF in porcelain etching. Also the role of silane, unfilled resin and dentin bonding in bond strength of composite- porcelain was evaluated. Methods and Materials: In this experimental in-vitro study, one-hundred twenty porcelain square blocks (552 mm were prepared and bonding surfaces of each sandblasted. Samples were divided into three groups. The first group (n=40 were etched with buffered HF 9.5% (Ultradent for 1 min., the second group (n=40 were etched with Iranian APF 1.23% (Kimia for 10 minutes and the third group (n=40 were etched with Iranian PHA 37% (Kimia for 1 min. Ultradent silane was applied on the surfaces of half of cases in each group. On the surfaces of half of silane-treated samples unfilled resin was applied and dentin bonding was used on the surfaces of the remaining. Samples without silane were treated in a similar manner. Composite cylinder with 4mm diameter and 2 mm height was bonded to porcelain. Specimens were stored in 37°C distilled water for 24 hours and subjected to 500 cycles. Shear bond strength was measured with an Instron machine and type of fracture was evaluated using a stereomicroscope. Results were analyzed using 3 way ANOVA, Kaplan- Maier and Tukey HSD tests. Results: Findings showed that PHA and APF roughened the porcelain surface without creating retentive micro undercuts but HF etches porcelain and creates retentive microundercuts. Ultradent silane had no significant effect on bond strength of porcelain- composite. Unfilled resin with Ultradent silane compared with dentin bonding with the same silane is more effective in bond strength of composite- porcelain. Conclusion: Based on

  10. Shape memory alloy wires turn composites into smart structures: I. Material requirements

    Science.gov (United States)

    Schrooten, Jan; Michaud, Veronique J.; Zheng, Yanjun; Balta-Neumann, J. Antonio; Manson, Jan-Anders E.

    2002-07-01

    Composites containing thin Shape Memory Alloy (SMA) wires show great potential as materials able to adapt their shape, thermal behavior or vibrational properties to external stimuli. The functional properties of SMA-composites are directly related to the constraining effect of the matrix on the reversible martensitic transformation of the embedded pre-strained SMA wires. The present work reports results of a concerted European effort towards a fundamental understanding of the manufacturing and design of SMA composites. This first part investigates the transformational behavior of constrained SMA wires and its translation into functional properties of SMA composites. Thermodynamic and thermomechanical experiments were performed on SMA wires. A model was developed to simulate the thermomechanical behavior of the wires. From the screening of potential wires it was concluded that NiTiCu, as well as R-phase NiTi appeared as best candidates. Requirements for the host composite materials were surveyed. A Kevlar-epoxy system was chosen. Finally, the quality of the SMA wire-resin interface was assessed by two different techniques. These indicated that a thin oxide layer seems to provide the best interfacial strength. A temperature window in which SMA composites can be safely used was also defined. The manufacturing and properties of the SMA composites will be discussed in Part II.

  11. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  12. Predicting the tensile strength of A UD basalt/ epoxy composite used for the confinement of concrete structures

    Science.gov (United States)

    Ciniņa, I.; Zīle, O.; Andersons, J.

    2013-01-01

    The principal aim of the present research was to predict the strength of UD basalt fiber/epoxy matrix composites in tension along the reinforcement direction. Tension tests on single basalt fibers were performed to determine the functional form of their strength distribution and to evaluate the parameters of the distribution. Also, microbond tests were carried out to assess the interfacial shear strength of the fibers and polymer matrix. UD composite specimens were produced and tested for the longitudinal tensile strength. The predicted strength of the composite was found to exceed the experimental values by ca. 20%, which can be explained by imperfections in the fiber alignment, impregnation, and adhesion in the composite specimens.

  13. Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2003-01-01

    Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.

  14. Composite materials

    International Nuclear Information System (INIS)

    Sambrook, D.J.

    1976-01-01

    A superconductor composite is described comprising at least one longitudinally extending superconductor filament or bundle of sub-filaments, each filament or bundle of sub-filaments being surrounded by and in good electrical contact with a matrix material, the matrix material comprising a plurality of longitudinally extending cells of a metal of high electrical conductivity surrounded by a material of lower electrical conductivity. The high electrical conductivity material surrounding the superconducting filament or bundle of sub-filaments is interrupted by a radially extending wall of the material of the lower electrical conductivity, the arrangement being such that at least two superconductor filaments or sub-filaments are circumferentially circumscribed by a single annulus of the material of high electrical conductivity. The annulus is electrically interrupted by a radially extending wall of the material of low electrical conductivity

  15. Factors influencing the thermally-induced strength degradation of B/Al composites

    Science.gov (United States)

    Dicarlo, J. A.

    1983-01-01

    Literature data related to the thermally-induced strength degradation of B/Al composites were examined in the light of fracture theories based on reaction-controlled fiber weakening. Under the assumption of a parabolic time-dependent growth for the interfacial reaction product, a Griffith-type fracture model was found to yield simple equations whose predictions were in good agreement with data for boron fiber average strength and for B/Al axial fracture strain. The only variables in these equations were the time and temperature of the thermal exposure and an empirical factor related to fiber surface smoothness prior to composite consolidation. Such variables as fiber diameter and aluminum alloy composition were found to have little influence. The basic and practical implications of the fracture model equations are discussed. Previously announced in STAR as N82-24297

  16. Composite slab behavior and strength analysis under static and dynamic loads

    Directory of Open Access Journals (Sweden)

    Florin Radu HARIGA

    2012-07-01

    Full Text Available Steel-framed buildings are typically constructed using steel-deck-reinforced concrete floor slabs. The in-plane (or diaphragm strength and stiffness of the floor system are frequently utilized in the lateral load-resisting system design. This paper presents the results of an experimental research program in which four full size composite diaphragms were vertically loaded to the limit state, under static or dynamic loads. Two test specimens were provided with longitudinal steel-deck ribs, and the other two specimens with cross steel-deck ribs. Typical composite diaphragm limit states are described, and the controlling limit state for each of the full size tests is indicated. The interaction effects between the reinforced concrete slab and the steel girder on the composite slab strength and stiffness were mainly studied.

  17. An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

    Science.gov (United States)

    Du, Yicheng

    Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite

  18. A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.

  19. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  20. Do Dental Resin Composites Accumulate More Oral Biofilms and Plaque than Amalgam and Glass Ionomer Materials?

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-11-01

    Full Text Available A long-time drawback of dental composites is that they accumulate more biofilms and plaques than amalgam and glass ionomer restorative materials. It would be highly desirable to develop a new composite with reduced biofilm growth, while avoiding the non-esthetics of amalgam and low strength of glass ionomer. The objectives of this study were to: (1 develop a protein-repellent composite with reduced biofilms matching amalgam and glass ionomer for the first time; and (2 investigate their protein adsorption, biofilms, and mechanical properties. Five materials were tested: A new composite containing 3% of protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC; the composite with 0% MPC as control; commercial composite control; dental amalgam; resin-modified glass ionomer (RMGI. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate metabolic activity, colony-forming units (CFU, and lactic acid production. Composite with 3% MPC had flexural strength similar to those with 0% MPC and commercial composite control (p > 0.1, and much greater than RMGI (p < 0.05. Composite with 3% MPC had protein adsorption that was only 1/10 that of control composites (p < 0.05. Composite with 3% MPC had biofilm CFU and lactic acid much lower than control composites (p < 0.05. Biofilm growth, metabolic activity and lactic acid on the new composite with 3% MPC were reduced to the low level of amalgam and RMGI (p > 0.1. In conclusion, a new protein-repellent dental resin composite reduced oral biofilm growth and acid production to the low levels of non-esthetic amalgam and RMGI for the first time. The long-held conclusion that dental composites accumulate more biofilms than amalgam and glass ionomer is no longer true. The novel composite is promising to finally overcome the major biofilm-accumulation drawback of dental composites in order to reduce biofilm acids and secondary caries.

  1. Identification of material properties of orthotropic composite plate using experimental frequency response function data

    Science.gov (United States)

    Tam, Jun Hui; Ong, Zhi Chao; Ismail, Zubaidah; Ang, Bee Chin; Khoo, Shin Yee

    2018-05-01

    The demand for composite materials is increasing due to their great superiority in material properties, e.g., lightweight, high strength and high corrosion resistance. As a result, the invention of composite materials of diverse properties is becoming prevalent, and thus, leading to the development of material identification methods for composite materials. Conventional identification methods are destructive, time-consuming and costly. Therefore, an accurate identification approach is proposed to circumvent these drawbacks, involving the use of Frequency Response Function (FRF) error function defined by the correlation discrepancy between experimental and Finite-Element generated FRFs. A square E-glass epoxy composite plate is investigated under several different configurations of boundary conditions. It is notable that the experimental FRFs are used as the correlation reference, such that, during computation, the predicted FRFs are continuously updated with reference to the experimental FRFs until achieving a solution. The final identified elastic properties, namely in-plane elastic moduli, Ex and Ey, in-plane shear modulus, Gxy, and major Poisson's ratio, vxy of the composite plate are subsequently compared to the benchmark parameters as well as with those obtained using modal-based approach. As compared to the modal-based approach, the proposed method is found to have yielded relatively better results. This can be explained by the direct employment of raw data in the proposed method that avoids errors that might incur during the stage of modal extraction.

  2. Strength and thermal stability of fiber reinforced plastic composites ...

    African Journals Online (AJOL)

    Therefore, the strength properties and thermal stability of plastic composites reinforced with rattan fibers were investigated in this work. Particles of rattan species (Eremospatha macrocarpa (EM) and Laccosperma secundiflorum (LS)) were blended with High-Density Polyethylene (HDPE) to produce fiber reinforced plastic ...

  3. High Porosity Alumina as Matrix Material for Composites of Al-Mg Alloys

    International Nuclear Information System (INIS)

    Gömze, L A; Egész, Á; Gömze, L N; Ojima, F

    2013-01-01

    The sophisticated industry and technologies require higher and higher assumptions against mechanical strength and surface hardness of ceramic reinforced metal alloys and metal matrix composites. Applying the well-known alumina powders by dry pressing technology and some special pore-forming additives and sintering technology the authors have successfully developed a new, high porosity alumina matrix material for composites of advenced Al-Mg alloys. The developed new matrix material have higher than 30% porosity, with homogenous porous structure and pore sizes from few nano up to 2–3 mm depending on the alloys containments. Thanks to the used materials and the sintering conditions the authors could decrease the wetting angles less than 90° between the high porosity alumina matrix and the Al-Mg alloys. Applied analytical methods in this research were laser granulometry, scanning electron microscopy, and X-ray diffraction. Digital image analysis was applied to microscopy results, to enhance the results of transformation

  4. Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications.

    Science.gov (United States)

    Meischel, M; Eichler, J; Martinelli, E; Karr, U; Weigel, J; Schmöller, G; Tschegg, E K; Fischerauer, S; Weinberg, A M; Stanzl-Tschegg, S E

    2016-01-01

    Aim of this study was to evaluate the response of bone to novel biodegradable polymeric composite implants in the femora of growing rats. Longitudinal observation of bone reaction at the implant site (BV/TV) as well as resorption of the implanted pins were monitored using in vivo micro-focus computed tomography (µCT). After 12, 24 and 36 weeks femora containing the implants were explanted, scanned with high resolution ex vivo µCT, and the surface roughness of the implants was measured to conclude on the ingrowth capability for bone tissue. Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to observe changes on the surface of Polyhydroxybutyrate (PHB) during degradation and cell ingrowth. Four different composites with zirconium dioxide (ZrO2) and Herafill(®) were compared. After 36 weeks in vivo, none of the implants did show significant degradation. The PHB composite with ZrO2 and a high percentage (30%) of Herafill® as well as the Mg-alloy WZ21 showed the highest values of bone accumulation (increased BV/TV) around the implant. The lowest value was measured in PHB with 3% ZrO2 containing no Herafill®. Roughness measurements as well as EDX and SEM imaging could not reveal any changes on the PHB composites׳ surfaces. Biomechanical parameters, such as the adhesion strength between bone and implant were determined by measuring the shear strength as well as push-out energy of the bone-implant interface. The results showed that improvement of these mechanical properties of the studied PHBs P3Z, P3Z10H and P3Z30H is necessary in order to obtain appropriate load-bearing material. The moduli of elasticity, tensile strength and strain properties of the PHB composites are close to that of bone and thus promising. Compared to clinically used PLGA, PGA and PLA materials, their additional benefit is an unchanged local pH value during degradation, which makes them well tolerated by cells and immune system. They might be used

  5. Radiation Processing of Advanced Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Jeun, Joonpyo; Nho, Young Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-04-15

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and {gamma}-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose.

  6. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M.D.H. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Pickering, K.L. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)]. E-mail: klp@waikato.ac.nz; Weal, S.J. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2005-12-05

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre.

  7. An Approach for Measuring the Dielectric Strength of OLED Materials

    Directory of Open Access Journals (Sweden)

    Sujith Sudheendran Swayamprabha

    2018-06-01

    Full Text Available Surface roughness of electrodes plays a key role in the dielectric breakdown of thin-film organic devices. The rate of breakdown will increase when there are stochastic sharp spikes on the surface of electrodes. Additionally, surface having spiking morphology makes the determination of dielectric strength very challenging, specifically when the layer is relatively thin. We demonstrate here a new approach to investigate the dielectric strength of organic thin films for organic light-emitting diodes (OLEDs. The thin films were deposited on a substrate using physical vapor deposition (PVD under high vacuum. The device architectures used were glass substrate/indium tin oxide (ITO/organic material/aluminum (Al and glass substrate/Al/organic material/Al. The dielectric strength of the OLED materials was evaluated from the measured breakdown voltage and layer thickness.

  8. Nanocellulose based polymer composite for acoustical materials

    Science.gov (United States)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  9. Influence of superconductor film composition on adhesion strength of coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  10. Influence of superconductor film composition on adhesion strength of coated conductors

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2016-01-01

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare-earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples. (paper)

  11. Correlation between Composition and Properties of Composite Material Based on Scrap Tires

    OpenAIRE

    Mālers, L; Plēsuma, R; Ločmele, L; Kalniņš, M

    2010-01-01

    Purpose of present work is to investigate mechanical and insulation properties of the composite material based on scrap tires and polyurethane-type binder in correlation with composition of composite material. The studies of material’s hardness must be considered as an express-method for estimation of the selected mechanical properties (E and ccompressive stress) of the composite material without direct experimental testing of given parameters. It was shown that composite material must be r...

  12. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    Science.gov (United States)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  13. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials.

    Science.gov (United States)

    Espinosa, Horacio D; Juster, Allison L; Latourte, Felix J; Loh, Owen Y; Gregoire, David; Zavattieri, Pablo D

    2011-02-01

    Nacre, the iridescent material in seashells, is one of many natural materials employing hierarchical structures to achieve high strength and toughness from relatively weak constituents. Incorporating these structures into composites is appealing as conventional engineering materials often sacrifice strength to improve toughness. Researchers hypothesize that nacre's toughness originates within its brick-and-mortar-like microstructure. Under loading, bricks slide relative to each other, propagating inelastic deformation over millimeter length scales. This leads to orders-of-magnitude increase in toughness. Here, we use in situ atomic force microscopy fracture experiments and digital image correlation to quantitatively prove that brick morphology (waviness) leads to transverse dilation and subsequent interfacial hardening during sliding, a previously hypothesized dominant toughening mechanism in nacre. By replicating this mechanism in a scaled-up model synthetic material, we find that it indeed leads to major improvements in energy dissipation. Ultimately, lessons from this investigation may be key to realizing the immense potential of widely pursued nanocomposites.

  14. Experimental data on the properties of natural fiber particle reinforced polymer composite material.

    Science.gov (United States)

    Chandramohan, D; Presin Kumar, A John

    2017-08-01

    This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  15. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  16. An investigation of the compressive strength of Kevlar 49/epoxy composites

    Science.gov (United States)

    Kulkarni, S. V.; Rosen, B. W.; Rice, J. S.

    1975-01-01

    Tests were performed to evaluate the effect of a wide range of variables including matrix properties, interface properties, fiber prestressing, secondary reinforcement, and others on the ultimate compressive strength of Kevlar 49/epoxy composites. Scanning electron microscopy is used to assess the resulting failure surfaces. In addition, a theoretical study is conducted to determine the influence of fiber anisotropy and lack of perfect bond between fiber and matrix on the shear mode microbuckling. The experimental evaluation of the effect of various constituent and process characteristics on the behavior of these unidirectional composites in compression did not reveal any substantial increase in strength. However, theoretical evaluations indicate that the high degree of fiber anisotropy results in a significant drop in the predicted stress level for internal instability. Scanning electron microscope data analysis suggests that internal fiber failure and smooth surface debonding could be responsible for the measured low compressive strengths.

  17. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-filled Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the shear bond strength (SBS of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI was also evaluated using a stereomicroscope. Results: AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91± 2.13 and Filtek TM Supreme XT (6.04± 2.01. Statistical analysis revealed a significant difference between groups II and III (P 0.05. Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Conclusion: Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.

  18. Composite materials with ionic conductivity: from inorganic composites to hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslavtsev, Andrei B [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-11-30

    Information on composite materials with ionic conductivity including inorganic composites and hybrid polymeric ion exchange membranes containing inorganic or polymeric nanoparticles is generalized. The nature of the effect of increase in the ionic conductivity in this type of materials and the key approaches used for theoretical estimation of the conductivity are considered. Data on the ionic conductivity and some other important properties of composites and membrane materials are presented. Prospects for utilization of composite materials and hybrid membranes in hydrogen power engineering are briefly outlined.

  19. Immediate repair bond strengths of microhybrid, nanohybrid and nanofilled composites after different surface treatments

    NARCIS (Netherlands)

    Rinastiti, Margareta; Siswomihardjo, Widowati; Busscher, Henk J.; Ozcan, Mutlu

    Objectives: To evaluate immediate repair bond strengths and failure types of resin composites with and without surface conditioning and characterize the interacting composite surfaces by their surface composition and roughness. Methods: Microhybrid, nanohybrid and nanofilled resin composites were

  20. Designing magnetic composite materials using aqueous magnetic fluids

    CERN Document Server

    Galicia, J A; Cousin, F; Guemghar, D; Menager, C; Cabuil, V

    2003-01-01

    In this paper, we report on how to take advantage of good knowledge of both the chemistry and the stability of an aqueous magnetic colloidal suspension to realize different magnetic composites. The osmotic pressure of the magnetic nanoparticles is set prior to the realization of the composite to a given value specially designed for the purpose for each hybrid material: magnetic particles in polymer networks, particles as probes for studying the structure of clay suspensions and shape modification of giant liposomes. First, we show that the introduction of magnetic particles in polyacrylamide gels enhances their Young modulus and reduces the swelling caused by water. The particles cause both a mechanical and an osmotic effect. The latter is strongly dependent on the ionic strength and is attributed to an attraction between particles and the polymeric matrix. In the second part, we determine the microscopic structure of suspensions of laponite as a function of concentration, by combining SANS and magneto-optica...

  1. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.

    Science.gov (United States)

    Hamzeh, Yahya; Ziabari, Kamran Pourhooshyar; Torkaman, Javad; Ashori, Alireza; Jafari, Mohammad

    2013-03-15

    This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    Science.gov (United States)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  3. STUDY ON THE USAGE OF SPECIAL MATERIALS FOR HIGH-STRENGTH PARTS USED IN THE MACHINES MANUFACTURING INDUSTRY

    Directory of Open Access Journals (Sweden)

    BIBU Marius

    2016-09-01

    Full Text Available Whereas formerly metallic materials were used extensively and for various purposes in the machines manufacturing industry, nowadays new materials are sought that can replace the "conventional" machines manufacturing materials with new ones. This is especially challenging in areas where parts need to be able to withstand very tough conditions, such as high temperatures or large forces applied to them. The current paper intends to analyze some of the most widely used materials for high-strength applications. A special focus in this regard is on the one hand in fiber-reinforced composite materials with the polymer matrix and on the other hand on basalt. The most important properties, processing technologies and applications of these materials are analyzed and discussed and conclusions are drawn regarding their compatibility with the intended purpose.

  4. Evaluation of Impact Strength of Epoxy Based Hybrid Composites Reinforced with E-Glass/Kevlar 49

    OpenAIRE

    Jogi , Subhan Ali; Moazam Baloch , Muhammad; Chandio , Ali ,; Memon , Iftikhar Ahmed; Chandio , Ghulaqm Sarwar

    2017-01-01

    International audience; In hybridization different fibers are stacked layer by layer to produce laminates have specific strength and stiffness and employed in light weight high strength applications. Physically mean fabricated hybrid composites used in aerospace, under water, body armors and armed forces establishment. In present work drop-weight impact response of hybrid composites were investigated by making laminates of hybrid composites. In Hybridization layers of E-glass (roving) and Kev...

  5. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  6. Push-out bond strength of bioceramic materials in a synthetic tissue fluid.

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2013-12-01

    Full Text Available This study compared the push-out bond strength of EndoSequence Root Repair Material (ERRM and Bioaggregate (BA, new bioceramic materials, to that of mineral trioxide aggregate (MTA after incubation in phosphate-buffered saline (PBS, a synthetic tissue fluid, for either 1 week or 2 months.One-hundred and twenty root sections were filled with ProRoot MTA, BA, or ERRM. Each tested material was then randomly divided into two subgroups (n = 20: root sections were immersed in PBS for 1 week or 2 months. The bond strengths were measured using a universal testing machine. After that, the failure modes were examined with stereomicroscopy and scanning electron microscopy (SEM. The push-out data and failure mode categories were analyzed by two-way ANOVA and chi-square tests, respectively.The bond strength of ERRM was significantly higher than that of BA and MTA at both incubation periods. No significant difference was found between the bond strength of MTA and BA at either 1 week or 2 months. Increasing the incubation time to 2 months resulted in a significant increase in bond strength of all the materials. The failure mode was mainly mixed for MTA and BA, but cohesive for ERRM at both incubation periods.ERRM had significantly higher bond strength to root canal walls compared to MTA and BA. Increasing the incubation time significantly improved the bond strength and bioactive reaction products of all materials.

  7. Experimental data on the properties of natural fiber particle reinforced polymer composite material

    Directory of Open Access Journals (Sweden)

    D. Chandramohan

    2017-08-01

    Full Text Available This paper presents an experimental study on the development of polymer bio-composites. The powdered coconut shell, walnut shells and Rice husk are used as reinforcements with bio epoxy resin to form hybrid composite specimens. The fiber compositions in each specimen are 1:1 while the resin and hardener composition 10:1 respectively. The fabricated composites were tested as per ASTM standards to evaluate mechanical properties such as tensile strength, flexural strength, shear strength and impact strength are evaluated in both with moisture and without moisture. The result of test shows that hybrid composite has far better properties than single fibre glass reinforced composite under mechanical loads. However it is found that the incorporation of walnut shell and coconut shell fibre can improve the properties.

  8. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  9. New Design Concept for an Excavator Arms by Using Composite Material

    Science.gov (United States)

    Solazzi, L.; Assi, A.; Ceresoli, F.

    2018-06-01

    The purpose of the present paper is to lightweight design an excavator arms, by using a different materials and in particular composite material. Specifically, the research is based on the study of a commercial excavator, by determining its geometry and analyzing the load conditions to which it is exposed. These are determined in relation to either the load diagram of the machine or the possible utilities of the excavator, such as the rotation of the machine. The materials used and implemented in the different analytical and numerical elaborations are classic construction steel S 355 (UNI EN 10025-3), high-resistance steel S 890 (UNI EN 10025-6), aluminum Al 6063 T6 (UNI EN 573-3) and the composite material made by carbon fiber and epoxy resin. The adopted constraints for the design of new arms with different materials, non-conventional for these applications, are numerous. The new solutions must present a safety factor either with respect to the yield tensile strength or to the critical load of buckling greater than or equal to the one determined for the excavator in its original geometrical conformation. Another criterion, which has heavily conditioned the geometry of the arms, was given by the fact that the developed solutions must present a very similar value of the maximum displacement in the different load conditions analyzed. A new geometry for arms made by composite material was developed. It was an elliptical conic section, instead of the classic rectangular section, in order to use the filament winding technological process. As for the adoption of the composite material, we focused on the study and the design of this material as long as the interaction with the extremities (made of aluminum) which are interfaced either with the link between the arms or with the elements of the hydraulic plant which serves for the arms movement. From the results developed, it emerges that the solution developed by adopting composite materials is the one that permits the

  10. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Directory of Open Access Journals (Sweden)

    Andrea Mello de Andrade

    2010-12-01

    Full Text Available OBJECTIVES: The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350 and adhesive system [(Solobond Plus, Futurabond NR (VOCO and Adper Single Bond (3M ESPE] on the microtensile (μTBS and microshear bond strength (μSBS tests on enamel, and to correlate the bond strength means between them. MATERIAL AND METHODS: Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for μTBS and the other one for μSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37(0C/24 h specimens were stressed (0.5 mm/min. Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05. RESULTS: The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05. For both tests only the main factor resin composite was statistically significant (p<0.05. The correlation test detected a positive (r=0.91 and significant (p=0.01 correlation between the tests. CONCLUSIONS: The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.

  11. IMPROVING AIRCRAFT PARTS DUE TO USING NANO-COMPOSITE AND MICRO-COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Hassany Merhdad Boer

    2017-01-01

    Full Text Available In this paper it is investigated how to make composite carbon nanofiber/ epoxy resin and carbon micro-fiber / epoxy resin. Also, these materials' features are compared and it is shown how effective and benefitial are the received products containing carbon nano- and micro-fibers.In this study, epoxy composites were prepared in order to improve their mechanical and electrical properties. Ergo, carbon nanofibers and carbon microfibers were used as fillers. On the one hand, purchased microfibers were incorporatedinto the epoxy resin to produce epoxy/carbon microfiber composites via mechanical mixing at 1800 rpm in different concentrations (0.0125, 0.0225, 0.05, and 0.1.On the other hand, carbon nanofibers were prepared via electrospining method at room temperature, then epoxy/carbon nanofiber nanocomposites were prepared at mixing temperature of 60 °C at 1200 rpm at different concentrations (0.0125, 0.05, and 0.1.Morphology of samples was investigated via Field Emission Scanning Electron Microscopy (FESEM. Mechanical properties of samples were investigated via tensile and bending tests. Tensile test results revealed that incorporation of 0.0125 wt% carbon naofibers increased the epoxy resins modulus about 200%. Bending strength of sample containing 0.1wt% carbon microfibers had the most increment (from 20 to 100 MPa.

  12. The effect of processing on autohesive strength development in thermoplastic resins and composites

    Science.gov (United States)

    Howes, Jeremy C.; Loos, Alfred C.; Hinkley, Jeffrey A.

    1989-01-01

    In the present investigation of processing effects on the autohesive bond strength of neat polysulfone resin and graphite-reinforced polysulfone-matrix composites measured resin bond strength development in precracked compact tension specimens 'healed' by heating over a contact period at a given temperature. The critical strain energy release rate of refractured composite specimens did not exhibit the strong time or temperature dependence of the neat resin tests; only 80-90 percent of the undamaged fracture energy is recoverable.

  13. Carbon/carbon composite materials

    International Nuclear Information System (INIS)

    Thebault, J.; Orly, P.

    2006-01-01

    Carbon/carbon composites are singular materials from their components, their manufacturing process as well as their characteristics. This paper gives a global overview of these particularities and applications which make them now daily used composites. (authors)

  14. Composites and blends from biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.S. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  15. In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials.

    Science.gov (United States)

    Piwowarczyk, Andree; Lauer, Hans-Christoph; Sorensen, John A

    2004-09-01

    Durable bonding to fixed prosthodontic restorations is desirable; however, little information is available on the strength of the bond between different cements and fixed prosthodontic restorative materials. This study determined the shear-bond strength of cementing agents to high-gold-content alloy castings and different dental ceramics: high-strength aluminum oxide (Procera AllCeram), leucite-reinforced (IPS Empress), and lithium disilicate glass-ceramic (IPS Empress 2). Prepolymerized resin composite cylinders (5.5 mm internal diameter, n=20) were bonded to the pretreated surfaces of prosthodontic materials. High-gold-content alloy and high-strength aluminum oxide surfaces were airborne-particle-abraded, and pressable ceramics were hydrofluoric acid-etched and silanized prior to cementing. The cementing agents tested were a zinc-phosphate cement (Fleck's zinc cement), glass ionomer cements (Fuji I, Ketac-Cem), resin-modified glass ionomer cements (Fuji Plus, Fuji Cem, RelyX Luting), resin cements (RelyX ARC, Panavia F, Variolink II, Compolute), and a self-adhesive universal resin cement (RelyX Unicem). Half the specimens (n=10) were tested after 30 minutes; the other half (n=10) were stored in distilled water at 37 degrees C for 14 days and then thermal cycled 1000 times between 5 degrees C and 55 degrees C prior to testing. Shear-bond strength tests were performed using a universal testing machine at a constant crosshead speed of 0.5 mm/min. Statistical analysis was performed by multifactorial analysis of variance taking interactions between effects into account. For multiple paired comparisons, the Tukey method was used (alpha=.05). In a 3-way ANOVA model, the main factors substrate, cement, time, and all corresponding interactions were statistically significant (all P <.0001). In subsequent separate 1-way or 2-way ANOVA models for each substrate type, significant differences between cement types and polymerizing modes were found (all P <.001). None of the

  16. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength

    International Nuclear Information System (INIS)

    He, Hongwei; Wang, Jianlong; Li, Kaixi; Wang, Jian; Gu, Jianyu

    2010-01-01

    The objective of this work is to improve the interlaminar shear strength of composites by mixing epoxy resin and modifying carbon fibres. The effect of mixed resin matrix's structure on carbon fibres composites was studied. Anodic oxidation treatment was used to modify the surface of carbon fibres. The tensile strength of multifilament and interlaminar shear strength of composites were investigated respectively. The morphologies of untreated and treated carbon fibres were characterized by scanning electron microscope and X-ray photoelectron spectroscopy. Surface analysis indicates that the amount of carbon fibres chemisorbed oxygen-containing groups, active carbon atom, the surface roughness, and wetting ability increases after treatment. The tensile strength of carbon fibres decreased little after treatment by anodic oxidation. The results show that the treated carbon fibres composites could possess excellent interfacial properties with mixed resins, and interlaminar shear strength of the composites is up to 85.41 MPa. The mechanism of mixed resins and treated carbon fibres to improve the interfacial property of composites is obtained.

  17. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    Science.gov (United States)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  18. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber

    DEFF Research Database (Denmark)

    Ranjbar, Navid; Mehrali, Mehdi; Mehrali, Mohammad

    2016-01-01

    -matrix interaction. In this present study, effects of micro steel fibers (MSF) incorporation on mechanical properties of fly ash based geopolymer was investigated at different volume ratio of matrix. Various properties of the composite were compared in terms of fresh state by flow measurement and hardened state......As a ceramic-like material, geopolymers show a high quasi-brittle behavior and relatively low fracture energy. To overcome this, the addition of fibers to a brittle matrix is a well-known method to improve the flexural strength. Moreover, the success of the reinforcements is dependent on the fiber...... by variation of shrinkage over time to assess performance of the composites subjected to flexural and compressive load. The fiber-matrix interface, fiber surface and toughening mechanisms were assessed using field emission scan electron microscopy (FESEM) and atomic force microscopy (AFM) through a period...

  19. Morphology and microstructure of composite materials

    Science.gov (United States)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  20. Towards More Sustainable Material Formulations: A Comparative Assessment of PA11-SGW Flexural Performance versus Oil-Based Composites

    Directory of Open Access Journals (Sweden)

    Helena Oliver-Ortega

    2018-04-01

    Full Text Available The replacement of commodity polyolefin, reinforced with glass fiber (GF, by greener alternatives has been a topic of research in recent years. Cellulose fibers have shown, under certain conditions, enough tensile capacities to replace GF, achieving competitive mechanical properties. However, if the objective is the production of environmentally friendlier composites, it is necessary to replace oil-derived polymer matrices by bio-based or biodegradable ones, depending on the application. Polyamide 11 (PA11 is a totally bio-based polyamide that can be reinforced with cellulosic fibers. Composites based on this polymer have demonstrated enough tensile strength, as well as stiffness, to replace GF-reinforced polypropylene (PP. However, flexural properties are of high interest for engineering applications. Due to the specific character of short-fiber-reinforced composites, significant differences are expected between the tensile and flexural properties. These differences encourage the study of the flexural properties of a material prior to the design or development of a new product. Despite the importance of the flexural strength, there are few works devoted to its study in the case of PA11-based composites. In this work, an in-depth study of the flexural strength of PA11 composites, reinforced with Stoneground wood (SGW from softwood, is presented. Additionally, the results are compared with those of PP-based composites. The results showed that the SGW fibers had lower strengthening capacity reinforcing PA11 than PP. Moreover, the flexural strength of PA11-SGW composites was similar to that of PP-GF composites.

  1. Structural and mechanical factors of construction strength and service life

    International Nuclear Information System (INIS)

    Makhutov, N.A.; Romanov, A.N.

    1977-01-01

    The methods are considered of solution of strength and long-term stability probems of fabricated structures on the basis of proper mechanical characteristics of materials determined by material composition and structure. The principle equations of structural mechanics, the theories of elasticity, plasticity, creep and strength are used in the analysis of structural strength. The initial parameters of these equations are geometric and service characteristics of structures and the properties of structural materials determined by laboratory specimen testing

  2. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    Science.gov (United States)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  3. Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation.

    Science.gov (United States)

    Mamanee, Teerapong; Takahashi, Masahiro; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2015-01-01

    This study evaluated the effect of adding silane coupling agent on initial and long-term bond strengths of one-step self-etch adhesives to enamel-dentin-composite in combined situation. Cervical cavities were prepared on extracted molars and filled with Clearfil AP-X. After water-storage for one-week, the filled teeth were sectioned in halves to expose enamel, dentin and composite surfaces and then enamel-dentin-composite surface was totally applied with one of adhesive treatments (Clearfil SE One, Clearfil SE One with Clearfil Porcelain Bond Activator, Beautibond Multi, Beautibond Multi with Beautibond Multi PR Plus and Scotchbond Universal). After designed period, micro-shear bond strengths (µSBSs) to each substrate were determined. For each period of water-storage, additive silane treatments significantly increased µSBS to composite (penamel (p>0.05). Moreover, the stability of µSBS was depended on materials and substrates used.

  4. Effect of curing and silanizing on composite repair bond strength using an improved micro-tensile test method.

    Science.gov (United States)

    Eliasson, Sigfus Thor; Dahl, Jon E

    2017-01-01

    Objectives: To evaluate the micro-tensile repair bond strength between aged and new composite, using silane and adhesives that were cured or left uncured when new composite was placed. Methods: Eighty Filtek Supreme XLT composite blocks and four control blocks were stored in water for two weeks and thermo-cycled. Sandpaper ground, etched and rinsed specimens were divided into two experimental groups: A, no further treatment and B, the surface was coated with bis-silane. Each group was divided into subgroups: (1) Adper Scotchbond Multi-Purpose, (2) Adper Scotchbond Multi-Purpose adhesive, (3) Adper Scotchbond Universal, (4) Clearfil SE Bond and (5) One Step Plus. For each adhesive group, the adhesive was (a) cured according to manufacturer's instructions or (b) not cured before repair. The substrate blocks were repaired with Filtek Supreme XLT. After aging, they were serially sectioned, producing 1.1 × 1.1 mm square test rods. The rods were prepared for tensile testing and tensile strength calculated at fracture. Type of fracture was examined under microscope. Results: Leaving the adhesive uncured prior to composite repair placement increased the mean tensile values statistically significant for all adhesives tested, with or without silane pretreatment. Silane surface treatment improved significantly ( p strength values for all adhesives, both for the cured and uncured groups. The mean strength of the control composite was higher than the strongest repair strength ( p strength. Not curing the adhesive before composite placement increased the tensile bond strength.

  5. The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthijn; Grouve, Wouter; Akkerman, Remko

    2017-01-01

    Co-consolidated titanium – carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the interface between the titanium and the thermoplastic composite is crucial for the strength of the entire hybrid joint. Application of a

  6. Impairment of resin cement application on the bond strength of indirect composite restorations

    Directory of Open Access Journals (Sweden)

    Jovito Adiel SKUPIEN

    2015-01-01

    Full Text Available The aims of this study were to evaluate the effect of immediate and delayed resin cement application on the microtensile bond strength of indirect composite resin restorations and, to evaluate adhesive strategies (for regular resin cement or humidity parameters for self-adhesive resin cement. Forty-five enamel/dentin discs (0.5 mm height and 10 mm of diameter obtained from bovine teeth were divided into nine groups (n = 5. For regular cement, the variation factors were cementation technique at three levels (immediate cementation, 5 or 30 min after adhesive system application; and type of adhesive system at two levels (three- or two-step. For self-adhesive cement, the dentin moisture was the source of variation at three levels (normal, dry, or wet cementation. The specimens were submitted to microtensile bond strength (μTBS testing using a universal testing machine. Data were analyzed by ANOVA, Tukey’s test, and linear regression. Regular cement and three-step etch-and-rinse adhesive system showed the highest values of bond strength (25.21 MPa–30 min of delay. Only for this condition, three-step adhesive showed higher bond strength than the two-step adhesive. Nevertheless, the linear regression showed that irrespective of the strategy, the use of the two-step approach when compared with three-step adhesive system decreased μTBS (p < 0.001. The failure analysis showed predominant adhesive failures for all tested groups. All groups had comparable values of bond strength to bovine dentin when the same materials were used, even in suboptimal clinical conditions.

  7. Effect of Green Tea Extract as Antioxidant on Shear Bond Strength of Resin Composite to in-Office and Home-Bleached Enamel

    Directory of Open Access Journals (Sweden)

    Sharafeddin F

    2016-09-01

    Full Text Available Statement of Problem: Shear bond strength (SBS of home and office bleached enamel will be compromised by immediate application of composite restoration. Antioxidant agent may overcome this problem. Objectives: This in vitro study assessed the effect of green tea extract on shear bond strength of resin composite to in-office and home-bleached enamel. Materials and Methods: In this experimental study, 40 extracted intact human incisors were embedded in cylindrical acrylic resin blocks (2.5 ×1.5 cm, with the coronal portion above the cemento enamel junction out of the block. Then, after bleaching labial enamel surfaces of 20 teeth with 15% carbamide peroxide 6 hours a day for 5 days, they were randomly divided into two groups: A1 and A2 (n = 10, depending upon whether or not they are treated with antioxidant. Labial enamel surfaces of the remaining 20 teeth were bleached with 38% hydrogen peroxide before being randomly divided into groups B1 and B2 (n = 10, again depending on whether or not the antioxidant was used in their treatment . The experimental groups (A2,B2 were treated with 5% solution of green tea extract before resin composite restoration was done by a cylindrical Teflon mould (5×2 mm. Shear bond strength of the specimens was tested under a universal testing machine (Zwick/Roell Z020. The SBS data were analyzed by using One-way ANOVA and Tukey HSD tests (p < 0.05. Results: There were no statistically significant differences between shear bond strength of the control group (A1 and treated group (A2 but there were statistically significant differences between the groups B1 and B2 (p < 0.05. Conclusions: Application of antioxidant did not increase the shear bond strength of home-bleached enamel to resin composite but its application increased the shear bond strength of in-office bleached enamel to resin composite.

  8. The influence of ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2.

    Science.gov (United States)

    Panah, Faride Gerami; Rezai, Sosan Mir Mohammad; Ahmadian, Leila

    2008-07-01

    An increasing demand for esthetic restorations has resulted in the development of new ceramic systems, but fracture of veneering ceramics still remains the primary cause of failure. Porcelain repair frequently involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studied extensively. The purpose of this study was to evaluate the influence of different ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2 coping material. Sixteen 7 x 7 x 1 mm(3) lithia disilicate-based core ceramic plates were fabricated using the lost wax technique. The plates were divided into eight groups, and eight different surface treatments were performed: (1) no treatment (NT); (2) airborne-particle abrasion with 50-mum alumina particles (Al); (3) acid etching with 9.6% hydrofluoric acid for 1 min (HF); (4) silane coating (S); (5) AlHF; (6) AlS; (7) HFS; and (8) AlHFS. Then, ten composite resin cylinders (0.8-mm diameter x 0.5-mm height) were light-polymerized onto the ceramic plates in each group. Each specimen was subjected to a shear load at a crosshead speed of 0.5 mm/min until fracture occurred. The fracture sites were examined with scanning electron microscopy (SEM) to determine the location of failure during debonding and to examine the surface treatment effects. One-way analysis of variance (ANOVA) and multiple comparison (Dunnet T3) tests were used for statistical analysis of data. The mean micro-shear bond strength values (SD) in MPa were--NT: 4.10 (3.06), Al: 7.56 (4.11), HF: 14.04 (2.60), S: 14.58 (2.14), AlHF: 15.56 (3.36), AlS: 23.02 (4.17), HFS: 24.7 (4.43), AlHFS: 26.0 (3.71). ANOVA indicated the influence of surface treatment was significant (p Empress 2 was significantly different depending on the surface treatment method. Among the investigated methods, silane coating after airborne-particle abrasion and etching was the most effective surface treatment

  9. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    Directory of Open Access Journals (Sweden)

    Lucas eBrely

    2015-07-01

    Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  10. Bond strength of resin composite to differently conditioned amalgam

    NARCIS (Netherlands)

    Ozcan, M; Vallittu, PK; Huysmans, MC; Kalk, W; Vahlberg, T

    Bulk fracture of teeth, where a part of the amalgam restoration and/or the cusp is fractured, is a common clinical problem. The aim of this study was to evaluate the effect of different surface conditioning methods on the shear bond strength of a hybrid resin composite to fresh amalgam. Amalgams (N

  11. Composite materials from new textile technologies

    Directory of Open Access Journals (Sweden)

    Jiménez, M. A.

    1997-12-01

    Full Text Available The present paper describes in a general way the most important of the advanced textile technologies which are oriented to the manufacturing of organic matrix composite materials, the paper presents their applications and the possibilities of future development. The use of these advanced weaving techniques allows the production of near-net-shaped preforms, which results in important savings in processing costs; moreover, these textile processes offer the possibility of introducing out-of plane reinforcing fibres, so there is an important increment of the impact strength and the damage tolerance of the final material.

    En el presente artículo se describen, de forma genérica, las más importantes de las tejedurías avanzadas destinadas a la fabricación de materiales compuestos de matriz orgánica, presentándose sus aplicaciones y futuras posibilidades de desarrollo. La utilización de estos procesos de tejeduría avanzados permite la elaboración de preformas cercanas a la forma final de la pieza, lo que se traduce en importantes reducciones en los costes de fabricación; además, estos procesos textiles ofrecen la posibilidad de introducir fibras de refuerzo fuera del plano, aumentando de forma considerable la resistencia a impacto y la tolerancia al daño del material final.

  12. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  13. Strength and fatigue life evaluation of composite laminate with embedded sensors

    Science.gov (United States)

    Rathod, Vivek T.; Hiremath, S. R.; Roy Mahapatra, D.

    2014-04-01

    Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and noninvasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.

  14. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    Science.gov (United States)

    Hejazi, Vahid

    data are collected in terms of oleophobicity especially when underwater applications are of interest. We develop models for four-phase rough interface of underwater oleophobicity and develop a novel approach to predict the CA of organic liquid on the rough surfaces immersed in water. We investigate wetting transition on a patterned surface in underwater systems, using a phase field model. We demonstrated that roughening on an immersed solid surface can drive the transition from Wenzel to Cassie-Baxter state. This discovery improves our understanding of underwater systems and their surface interactions during the wetting phenomenon and can be applied for the development of underwater oil-repellent materials which are of interest for various applications in the water industry, and marine devices. In chapter five, we experimentally and theoretically investigate the icephobicity of composite materials. A novel comprehensive definition of icephobicity, broad enough to cover a variety of situations including low adhesion strength, delayed ice crystallization, and bouncing is determined. Wetting behavior and ice adhesion properties of various samples are theoretically and experimentally compared. We conclude superhydrophobic surfaces are not necessarily icephobic. The models are tested against the experimental data to verify the good agreement between them. The models can be used for the design of novel superhydrophobic, oleophobic, omniphobic and icephobic composite materials. Finally we conclude that creating surface micro/nanostructures using mechanical abrasion or chemical etching as well as applying low energy materials are the most simple, inexpensive, and durable techniques to create superhydrophobic, oleophobic, and icephobic materials.

  15. Concept selection of car bumper beam with developed hybrid bio-composite material

    International Nuclear Information System (INIS)

    Davoodi, M.M.; Sapuan, S.M.; Ahmad, D.; Aidy, A.; Khalina, A.; Jonoobi, Mehdi

    2011-01-01

    Highlights: → We simulate the low impact test by Abaqus Ver16R9 using the same material model. → Six different weighted criteria were discussed to nominate the best concept. → Double Hat Profile showed the best concept to fulfil the defined PDS. → Geometric parameters may overcome the weak inherent properties of bio composite. → Toughened bio-composite material may employ in structural automotive components. -- Abstract: Application of natural fibre composites is going to increase in different areas caused by environmental, technical and economic advantages. However, their low mechanical properties have limited their particular application in automotive structural components. Hybridizations with other reinforcements or matrices can improve mechanical properties of natural fibre composite. Moreover, geometric optimizations have a significant role in structural strength improvement. This study focused on selecting the best geometrical bumper beam concept to fulfill the safety parameters of the defined product design specification (PDS). The mechanical properties of developed hybrid composite material were considered in different bumper beam concepts with the same frontal curvature, thickness, and overall dimensions. The low-speed impact test was simulated under the same conditions in Abaqus V16R9 software. Six weighted criteria, which were deflection, strain energy, mass, cost, easy manufacturing, and the rib possibility were analyzed to form an evaluation matrix. Topsis method was employed to select the best concept. It is concluded that double hat profile (DHP) with defined material model can be used for bumper beam of a small car. In addition, selected concept can be strengthened by adding reinforced ribs or increasing the thickness of the bumper beam to comply with the defined PDS.

  16. It's material strength, not a negative Grueneisen gamma

    International Nuclear Information System (INIS)

    Sinz, K.H.P.H.; Moss, W.C.

    1993-01-01

    Hydrocode simulations of CORRTEX data (shock position as a function of time) require a model for the material properties of the medium in which the explosion occurs. Prior to the BULLION underground nuclear test, Furnish performed gun experiments on core samples that were taken from a satellite hole near the working point. We have analyzed some of these data and constructed a constitutive model that is consistent with the gun data. The model consists of a Mie-Grueneisen equation of state that is parameterized using a Hugoniot, a Grueneisen gamma that is only volume dependent, and a pressure dependent strength model. Previous analyses of these particular experiments have ignored material strength, because of its lack of influence on numerical simulations of the CORRTEX data. However, if strength is excluded, negative gammas are required to fit Furnish's data, but these negative gammas give an extremely poor fit to the CORRTEX field data. Our simple model, which includes strength, has a positive volume dependent gamma. The model fits Furnish's laboratory data and the measured experimental CORRTEX data. What is remarkable about the model is that all of the parameters in it can be obtained from the gun data, indicating that laboratory experiments of this type (and perhaps others) on core samples are potentially more useful than believed previously

  17. It's material strength, not a negative Grueneisen gamma

    International Nuclear Information System (INIS)

    Sinz, K.H.P.H.; Moss, W.C.

    1993-02-01

    Hydrocode simulations of CORRTEX data (shock position as a function of time) require a model for the material properties of the medium in which the explosion occurs. Prior to the BULLION underground nuclear test, Furnish performed gun experiments on core samples that were taken from a satellite hole near the working point. The authors have analyzed some of these data and constructed a constitutive model that is consistent with the gun data. The model consists of a Mie-Grueneisen equation of state that is parameterized using the Hugoniot, a Grueneisen gamma that is only volume dependent, and a pressure dependent strength model. Previous analyses of these particular experiments have ignored material strength, because of its lack of influence on numerical simulations of the CORRTEX data. However, if strength is excluded, negative gammas are required to fit Furnish's data, but these negative gammas give an extremely poor fit to the CORRTEX field data. The simple model, which includes strength, has a positive volume dependent gamma. The model fits Furnish's laboratory data and the measured experimental CORRTEX data. What is remarkable about the model is that all of the parameters in it can be obtained from the gun data, indicating that laboratory experiments of this type (and perhaps others) on core samples are potentially more useful than believed previously

  18. Fixation of waste materials in grouts. Part II. An empirical equation for estimating compressive strength for grouts from different wastes

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Godsey, T.T.

    1986-04-01

    Compressive strength data for grouts prepared from three different nuclear waste materials have been correlated. The wastes include ORNL low-level waste (LLW) solution, Hanford Facility Waste (HFW) solution, and Hanford cladding removal waste (CRW) slurry. Data for the three wastes can be represented with a 0.96 coefficient of correlation by the following equation: S = -9.56 + 9.27 D/I + 18.11/C + 0.010 R, where S denotess 28-d compressive strength, in mPa; D designates Waste concentration, fraction of the original; I is ionic strength; C denotes Attapulgite-150 clay content of dry blend, in wt %; and R is the mix ratio, kg/m 3 . The equation may be used to estimate 28-d compressive strengths of grouts prepared within the compositional range of this investigation

  19. INFLUENCE OF SILANE HEAT TREATMENT ON THE TENSILE BOND STRENGTH BETWEEN EX-3 SYNTHETIC VENEERING PORCELAIN AND COMPOSITE RESIN USING FIVE DIFFERENT ACTIVATION TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Spartak Yanakiev

    2017-02-01

    Full Text Available Purpose: The purpose of the present study is to assess the effect of five different silane activation temperatures and eight activation methods on the tensile bond strength between one veneering porcelain and one composite resin material. Material and methods: A total of 81 ceramic rods were made of EX-3 veneering ceramic (Kuraray Noritake Dental, Japan. Sintered ceramic bars were grinded with diamond disks to size 10x2x2mm ± 0,05mm. The front part of each bar was polished. After ultrasonic cleaning in distilled water, the specimens were divided into nine groups. Silane was activated with air at room temperature, 38º С, 50º С, 100º С, 120º С using a custom made blow drier. In a silicone mold, a composite resin Z250 (3М ESPE, St. Paul, USA was condensed toward the bond ceramic surface. A total of 81 specimens approximately 2,0 cm long were prepared for tensile bond testing. One way ANOVA, followed by Bonferroni and Games-Howell tests were used for statistical analysis. Results: The lowest tensile bond strength was observed in the control group (3,51MPa. Group 2 yielded the highest bond strength among all groups (19,54MPa. Silane heat treatment enhanced the bond strength for all treatment methods. Within the polished specimens, the highest bond strength was yielded with warm air at 120ºС (11,31MPa. Conclusion: The most effective method for bonding Z250 composite resin to EX-3 veneering ceramic includes HF etching, silane, and adhesive resin. The most effective heat treatment method for bonding is hot air at 120ºС.

  20. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Bele, E.; Bouwhuis, B.A.; Codd, C.; Hibbard, G.D.

    2011-01-01

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al 2 O 3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al 2 O 3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al 2 O 3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al 2 O 3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  1. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    OpenAIRE

    A.E. Ismail; M.A. Che Abdul Aziz

    2015-01-01

    This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that...

  2. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    Science.gov (United States)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  3. Shear Bond Strength of Composite to Nd-YAG Lased Dentin with and without Dye

    Directory of Open Access Journals (Sweden)

    H. Kermanshah

    2004-06-01

    Full Text Available Statement of Problem: The achievement of a good and durable dentin/composite resin bond is an important task in restorative dentistry. The application of acid conditioners and dentin bonding agents is an accepted method to enhance this bond strength. Pretreating of dentin surface by laser irradiation seems to be a supplemental way to obtain better results,since lased dentin is more roughened and has a widest surface area to interact with acidconditioner.Purpose: In this study, the effect of dentin surface pretreating by Nd-YAG laser on dentin/composite shear bond strength was examined. Moreover, the effect of Chinese ink as a surface energy absorber on this value was investigated.Methods and Materials: Thirty-nine freshly extracted human teeth without dentinal caries were collected and their occlusal dentins were exposed using a diamond disk. The collected samples were divided into three identical groups. The dentin surface of the first group was lased by an Nd-YAG pulsed laser (100 mJ, 20 Hz through a 320 mm fiber optic in a swiping movement. In the second group, 10% solution of Chinese ink was applied on the dentinal surface before lasing. The samples of the third group were not lased at all. Thedentinal surface prepared by 35% phosphoric acid and Scotchbond MP primer and adhesive. Then, composite resin was cured on dentinal surface. After incubation, in water at 37°C for 24 hours, the samples were tested by Digital Tritest ELE machine.Results: The values of bond strength were 20.83±3.96 MPa, 17.83±3.63 MPa and 19.38±4.88 MPa for the lased, unlased and dye-enhanced groups, respectively. The results were not significant by ANOVA test (a=0.05. Although in the Weiboul modulus, the lased group offered better bond strength.Conclusion: Further studies are required to determine whether chemical as well as physical alterations to the dentin surface are induced by laser etching, and whether these influence the performance of the range of dentin

  4. Enhancing the Adhesive Strength of a Plywood Adhesive Developed from Hydrolyzed Specified Risk Materials

    Directory of Open Access Journals (Sweden)

    Birendra B. Adhikari

    2016-08-01

    Full Text Available The current production of wood composites relies mostly on formaldehyde-based adhesives such as urea formaldehyde (UF and phenol formaldehyde (PF resins. As these resins are produced from non-renewable resources, and there are some ongoing issues with possible health hazard due to formaldehyde emission from such products, the purpose of this research was to develop a formaldehyde-free plywood adhesive utilizing waste protein as a renewable feedstock. The feedstock for this work was specified risk material (SRM, which is currently being disposed of either by incineration or by landfilling. In this report, we describe a technology for utilization of SRM for the development of an environmentally friendly plywood adhesive. SRM was thermally hydrolyzed using a Canadian government-approved protocol, and the peptides were recovered from the hydrolyzate. The recovered peptides were chemically crosslinked with polyamidoamine-epichlorohydrin (PAE resin to develop an adhesive system for bonding of plywood specimens. The effects of crosslinking time, peptides/crosslinking agent ratio, and temperature of hot pressing of plywood specimens on the strength of formulated adhesives were investigated. Formulations containing as much as 78% (wt/wt peptides met the ASTM (American Society for Testing and Materials specifications of minimum dry and soaked shear strength requirement for UF resin type adhesives. Under the optimum conditions tested, the peptides–PAE resin-based formulations resulted in plywood specimens having comparable dry as well as soaked shear strength to that of commercial PF resin.

  5. Strength of biodegradable polypropylene tapes filled with a modified starch

    Science.gov (United States)

    Vinidiktova, N. S.; Ermolovich, O. A.; Goldade, V. A.; Pinchuk, L. S.

    2006-05-01

    The possibility of creating composite materials with high deformation and strength characteristics based on polypropylene (PP) and a natural polysaccharide in the form of a modified starch (MS) has been studied. The modified starch is shown to interact chemically with functional groups of PP, thereby positively affecting the physicomechanical properties, structure, and water absorption properties of films and oriented flat fibers based on starch-filled PP. The strength characteristics of both oriented and unoriented composites are 1.5-2.0 times as high as those of the initial PP. The water absorption ability of the materials varies symbatically with content of MS, which points to the dominant contribution of interactions at the PP-MS interface. The introduction of MS into synthetic polymers offers a possibility of producing new ecologically safe materials with high strength characteristics.

  6. Strength Assessment of Controlled Low Strength Materials (CLSM) Utilizing Recycled Concrete Aggregate and Waste Paper Sludge Ash

    OpenAIRE

    Ridzuan, Ahmad Ruslan Mohd; Fauzi, Mohd Azrizal; Ghazali, Ezliana; Arshad, Mohd Fadzil; Fauzi, Mohd Afiq; Mohd Fauzi, Mohd Afiq

    2013-01-01

    This paper studies the strength development of low-strength material (CLSM) is controlled by using waste paper sludge ash (WPSA) in CLSM mixtures without adding Portland cement. Series of four (4) compounds which is the CLSM containing 5%, 10%, 20% and 30% of waste paper sludge ash (WPSA) as a substitute for Portland cement. CLSM cubes the sizes of 100mm x 100mm x 100mm compressive strength were tested at age 7, 14 and 28days. It was found that this activity contributes to strength developmen...

  7. Does modifying the particle size distribution of a granular material (i.e., material scalping alters its shear strength?

    Directory of Open Access Journals (Sweden)

    Azéma Emilien

    2017-01-01

    Full Text Available By means of two dimensional contact dynamics simulations, we analyzed the effect of the particle size distribution (PSD on the shear strength of granular materials composed of un-breakable disks. We modelled PSDs with a normalized beta function, which allows for building S-shaped gradation curves, such as those that typically occur in soils. We systematically controlled and varied the size span and the shape of the PSD, and found that the shear strength is independent both characteristics. This implies that PSD modification procedures such as material scalping (i.e., removing the smallest and/or largest particles in the sample should not affect significantly the shear strength of the material composed of unbreakable discs. In order to explore the origins of the invariance of the shear strength with PSD, we analyzed the connectivity, force transmission, and friction mobilization in terms of anisotropies, finding that the constant shear strength is due to a subtle compensation of anisotropies.

  8. Can Whitening Strips interfere with the Bond Strength of Composite Resins?

    Science.gov (United States)

    Firoozmand, Leily Macedo; Reis, Washington Luís Machado dos; Vieira, Mercêdes Aroucha; Nunes, Adriana Gomes; Tavarez, Rudys Rodolfo de Jesus; Tonetto, Mateus Rodrigues; Bramante, Fausto Silva; Bhandi, Shilpa H; Roma, Regina Vieira de Oliveira; Bandeca, Matheus Coelho

    2015-04-01

    The aim of this study was to investigate in vitro the bond strength of composite resins on enamel previously treated with whitening strips. A total of 48 bovine incisors were allocated to four experimental groups (n = 12 each): G1 (WSC)- treated with 9.5% hydrogen peroxide whitening strips (3D White Whitestrips® Advanced Vivid/CREST); G2 (WSO)-treated with 10% hydrogen peroxide whitening strips (3D WhiteTM/Oral B); G3 (WG)-treated with 7.5% hydrogen peroxide gel with fluorine, calcium and potassium nitrate (White Class®/FGM); and G4 (C)-control not subjected to bleaching treatment. The specimens were subjected to bleaching over 2 weeks following the manufacturers' instructions. Following the elaboration of the composite resin test specimens, the samples were stored in artificial saliva and subsequently subjected to the micro-shear test using the universal testing machine (EMIC®). The bond strength values were analyzed by one-way ANOVA and Tukey's statistical test (5%). Significant differences were observed among the investigated groups (p enamel-resin interface. The bond strength decreased following 14 days of treatment with bleaching strips, whereas the whitening gel with 7.5% hydrogen peroxide, calcium and fluorine increased the bond strength.

  9. Comparison of Open-Hole Compression Strength and Compression After Impact Strength on Carbon Fiber/Epoxy Laminates for the Ares I Composite Interstage

    Science.gov (United States)

    Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.

    2011-01-01

    Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.

  10. THE EFFECT OF PHASE CHANGE MATERIALS ON THE TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    HERROELEN Thomas

    2016-05-01

    Full Text Available PCM’s need some important properties to have use such as high heat storage capacity, easy availability and low cost and can have different effects such as flavour, softness or exchange of heat. They are put inside of microcapsules, so they can be inbedded inside the strain, otherwise it wouldn’t be so effective. So basically the microcapsules consist of a core that’s the PCM and a polymer shell. This shell needs to be strong enough to hold the PCM and also withstand up to a certain level of heat and mechanical damage. This study investigates the tensile strength of fabrics composed by fibres, some of these fibres have benn inbedded phase change microcapsules (PCM’s. The investigated fabrics are divided by composition and by structure. By knitting the fabrics in different structures you could be able to investigate which knitting way could be the most effective to have a high tensile strength. Tensile strength tests are performed on specimens with different structures but also with different compositions which could indicate that some strains are tougher then others and more specifically if the PCM’s have a different effect on them.

  11. Composites as structural materials in fusion reactors

    International Nuclear Information System (INIS)

    Megusar, J.

    1989-01-01

    In fusion reactors, materials are used under extreme conditions of temperature, stress, irradiation, and chemical environment. The absence of adequate materials will seriously impede the development of fusion reactors and might ultimately be one of the major difficulties. Some of the current materials problems can be solved by proper design features. For others, the solution will have to rely on materials development. A parallel and balanced effort between the research in plasma physics and fusion-related technology and in materials research is, therefore, the best strategy to ultimately achieve economic, safe, and environmentally acceptable fusion. The essential steps in developing composites for structural components of fusion reactors include optimization of mechanical properties followed by testing under fusion-reactor-relevant conditions. In optimizing the mechanical behavior of composite materials, a wealth of experience can be drawn from the research on ceramic matrix and metal matrix composite materials sponsored by the Department of Defense. The particular aspects of this research relevant to fusion materials development are methodology of the composite materials design and studies of new processing routes to develop composite materials with specific properties. Most notable examples are the synthesis of fibers, coatings, and ceramic materials in their final shapes form polymeric precursors and the infiltration of fibrous preforms by molten metals

  12. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  13. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    International Nuclear Information System (INIS)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-01-01

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  14. Body Composition, Muscular Strength and Bone Status among Undernourished Children in Malaysia

    International Nuclear Information System (INIS)

    Chong, Kar Hau; Poh, Bee Koon

    2014-01-01

    Full text: Despite significant advances in social and economic development, undernutrition remains a devastating public health problem that affects millions of children across the globe, particularly in developing nations. It is important to understand how changes in nutritional status affect physical health and function, so that undernutrition-related alterations can be identified and interpreted correctly. This paper aimed to determine the impact of undernutrition in children through the assessment of three nutrition-related indicators: body composition, muscular strength and bone status. This study is part of the Nutrition Survey of Malaysian Children, which is part of the four-country South East Asian Nutrition Surveys (SEANUTS). A total of 208 school children (102 boys, 106 girls) in the age range of 7 to 10 years were included in this analysis, of which 104 were underweight (WAZ<-2SD) and 104 were normal-weight group (-2SD≤WAZ≤+2SD), individually-matched for sex, age, and ethnicity. Anthropometric measurements included weight and height; and body composition was measured by bioelectrical impedance analysis. Muscular strength of both hands was assessed independently by hand-held dynamometer. Bone status was evaluated using a radial quantitative ultrasound system at one-third distal radius of the non-dominant hand. Anthropometric measurements and bone status were not significantly different between the sexes. Boys had significantly higher muscular strength and lean mass (p<0.05), but lower fat mass when compared to the girls (p<0.01). In both sexes, the undernourished group presented significantly lower anthropometric and body composition measurements and muscular strength than their normal-weight counterparts (p<0.001). However, no significant differences were observed for bone status between the two weight groups in boys (p = 0.09) and girls (p = 0.98). These findings imply that undernutrition can have profound negative impact on body composition as well

  15. Wood-plastic composites as promising green-composites for automotive industries!

    Science.gov (United States)

    Ashori, Alireza

    2008-07-01

    Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.

  16. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    Science.gov (United States)

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions.

  17. Effects of weightlifting vs. kettlebell training on vertical jump, strength, and body composition.

    Science.gov (United States)

    Otto, William H; Coburn, Jared W; Brown, Lee E; Spiering, Barry A

    2012-05-01

    Effects of weightlifting vs. kettlebell training on vertical jump, strength, and body composition. J Strength Cond Res 26(5): 1199-1202, 2012-The present study compared the effects of 6 weeks of weightlifting plus traditional heavy resistance training exercises vs. kettlebell training on strength, power, and anthropometric measures. Thirty healthy men were randomly assigned to 1 of 2 groups: (a) weightlifting (n = 13; mean ± SD: age, 22.92 ± 1.98 years; body mass, 80.57 ± 12.99 kg; height, 174.56 ± 5.80 cm) or (b) kettlebell (n = 17; mean ± SD: age, 22.76 ± 1.86 years; body mass, 78.99 ± 10.68 kg; height, 176.79 ± 5.08 cm) and trained 2 times a week for 6 weeks. A linear periodization model was used for training; at weeks 1-3 volume was 3 × 6 (kettlebell swings or high pull), 4 × 4 (accelerated swings or power clean), and 4 × 6 (goblet squats or back squats), respectively, and the volume increased during weeks 4-6 to 4 × 6, 6 × 4, and 4 × 6, respectively. Participants were assessed for height (in centimeters), body mass (in kilograms), and body composition (skinfolds). Strength was assessed by the back squat 1 repetition maximum (1RM), whereas power was assessed by the vertical jump and power clean 1RM. The results of this study indicated that short-term weightlifting and kettlebell training were effective in increasing strength and power. However, the gain in strength using weightlifting movements was greater than that during kettlebell training. Neither method of training led to significant changes in any of the anthropometric measures. In conclusion, 6 weeks of weightlifting induced significantly greater improvements in strength compared with kettlebell training. No between-group differences existed for the vertical jump or body composition.

  18. Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers.

    Science.gov (United States)

    Alp, Gülce; Murat, Sema; Yilmaz, Burak

    2018-01-28

    To compare the flexural strength of different computer-aided design/computer-aided manufacturing (CAD/CAM) poly(methyl methacrylate)-based (PMMA) polymers and conventional interim resin materials after thermocycling. Rectangular-shaped specimens (n = 15, for each material) (25 × 2 × 2 mm 3 ) were fabricated from 3 CAD/CAM PMMA-based polymers (Telio CAD [T]; M-PM-Disc [M]; Polident-PMMA [P]), 1 bis-acrylate composite resin (Protemp 4 [PT]), and 1 conventional PMMA (ArtConcept Artegral Dentine [C]) according to ISO 10477:2004 Standards (Dentistry-Polymer-Based Crown and Bridge Materials). The specimens were subjected to 10,000 thermocycles (5 to 55°C). Three-point flexural strength of the specimens was tested in a universal testing machine at a 1.0 mm/min crosshead speed, and the flexural strength data (σ) were calculated (MPa). The flexural strength values were statistically analyzed using 1-way ANOVA, and Tukey HSD post-hoc test for multiple comparisons (α = 0.05). Flexural strength values ranged between 66.1 ± 13.1 and 131.9 ± 19.8 MPa. There were significant differences among the flexural strengths of tested materials, except for between T and P CAD/CAM PMMA-based polymers (p > 0.05). CAD/CAM PMMA-based polymer M had the highest flexural strength and conventional PMMA had the lowest (p CAD/CAM PMMA-based T and P polymers had significantly higher flexural strength than the bis-acrylate composite resin (p CAD/CAM PMMA-based M (p CAD/CAM PMMA-based polymers was greater than the flexural strength of bis-acrylate composite resin, which had a greater flexural strength compared to conventional PMMA resin. © 2018 by the American College of Prosthodontists.

  19. Influence of Er,Cr:YSGG Laser Surface Treatments on Micro Push-Out Bond Strength of Fiber Posts to Composite Resin Core Materials

    Directory of Open Access Journals (Sweden)

    Mehrsima Ghavami-Lahiji

    2018-03-01

    Full Text Available Statement of problem: The bonding of fiber post to resin core or root dentin is challenged by limited penetration of resin material to the polymeric matrix of fiber posts. Objectives: The purpose of this study was to investigate the effect of Er,Cr:YSGG on micro push-out bond strength of glass fiber posts to resin core material. Materials and Methods: We used 2 commercially available fiber posts, Exacto (Angelus and White Post DC (FGM, which had similar coronal diameters. Specimens of each fiber post (n=36 were randomly divided into three subgroups (n=12 posts per group according to different surface treatment methods: control (no surface treatment, irradiation by 1W Er,Cr:YSGG, and irradiation by 1.5W Er,Cr:YSGG. A cylindrical plastic tube was placed around the post. Resin core material was filled into the tube and cured. Coronal portions of the posts were sectioned into 1-mm-thick slices. Then, the specimens were subjected to a thermocyling device for 3000 cycles. The micro push-out test was carried out using a Universal Testing Machine. Data were analyzed using one-way ANOVA followed by Tukey’s HSD post hoc test to investigate the effect of different surface treatments on each type of fiber post. Results: The 1.5W Er,Cr:YSGG laser statistically reduced micro push-out bond strength values in the Exacto groups (P0.05. Mode of failure analysis showed that mixed failure was the predominant failure type for all surface treatment groups. Conclusions: The beneficial effect of Er,Cr:YSGG laser application could not be confirmed based on the results of this in vitro study. Er,Cr:YSGG laser could not significantly enhance the bond strength values. However, the 1.5W laser statistically decreased micro push-out bond strength in the Exacto fiber posts.

  20. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Directory of Open Access Journals (Sweden)

    Mohammad Joulaei

    2012-11-01

    Full Text Available Background and aims. Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS of silica- (Spectrum TPH and zirconia-filled (Filtek Z250 composite resins. Materials and methods. Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05. Results. Analysis of data showed that the effect of composite resin type was not significant (p > 0.05, but the effects of the type of surface treatment (p = 0.01 and the type of adhesive system (p = 0.01 were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05. However, the cumulative effects of the adhesive system-surface treatment (p = 0.03 and the composite type-the adhesive system-surface treatments (p = 0.002 were significant. Conclusion. Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently.

  1. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Science.gov (United States)

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  2. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition.

    Science.gov (United States)

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-11-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.

  3. Sapropel as a Binder: Properties and Application Possibilities for Composite Materials

    Science.gov (United States)

    Obuka, V.; Šinka, M.; Kļaviņš, M.; Stankeviča, K.; Korjakins, A.

    2015-11-01

    Recent development trends largely look for possibilities of a wider use of natural materials and local resources. In this perspective, the use of organic rich lake sediment - sapropel - as a binding material in line with other environmentally friendly filling materials can be considered as a challenge. Sapropel itself is a valuable resource with multiple areas of application, for example, medicine, veterinary, agriculture, livestock farming, balneology, cosmetic applications, construction, and its application options have been widely studied in the 20th century in the Baltic countries, Ukraine and Russia. Birch wood fibre and sanding dust, hemp shives, ‘Aerosil’ are used as a filler and three types of sapropel are used as a binder in making composites. After material preparation and curing, physical and mechanical properties - density, thermal conductivity, compressive and flexural strength, were determined and compared to the data in the literature, and the opportunities to use them in the ecological construction were considered. The obtained results give insight into possibilities to use sapropel as a raw material, which can be considered as prospective material for construction materials and design products.

  4. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadizenouz

    2016-03-01

    Full Text Available Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1; air abrasion with 50-μm aluminum oxide particles (group 2; irradiation with Er:YAG laser beams (group 3; roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4; and etching with 9% hydrofluoric acid for 120 s (group 5. Another group of Filtek Z350XT composite resin samples (4×6 mm was fabricated for the measurement of cohesive strength (group 6. A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05. Results. One-way ANOVA indicated significant differences between the groups (P < 0.05. SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  5. A general solution to the material performance index for bending strength design

    International Nuclear Information System (INIS)

    Burgess, S.C.; Pasini, D.; Smith, D.J.; Alemzadeh, K.

    2006-01-01

    This paper presents a general solution to the material performance index for the bending strength design of beams. In general, the performance index for strength design is ρ f q /ρ where σ f is the material strength, ρ is the material density and q is a function of the direction of scaling. Previous studies have only solved q for three particular cases: proportional scaling of width and height (q=2/3), constrained height (q=1) and constrained width (q=1/2). This paper presents a general solution to the exponent q for any arbitrary direction of scaling. The index is used to produce performance maps that rank relative material performance for particular design cases. The performance index and the performance maps are applied to a design case study

  6. Development of carbon/carbon composite control rod for HTTR. 2. Concept, specifications and mechanical test of materials

    International Nuclear Information System (INIS)

    Eto, Motokuni; Ishiyama, Shintaro; Fukaya, Kiyoshi; Saito, Tamotsu; Ishihara, Masahiro; Hanawa, Satoshi.

    1998-01-01

    A concept and specifications of carbon/carbon composite (C/C) control rod were proposed, aiming at the application of the material to the HTTR. The outer diameter and length of the control rod were kept as the same as those of the present control rod, i.e., 113 mm and 3094 mm, respectively. According to the concept, the rod consists of ten units which are connected in series using bolts. Then, the stresses generated by dead loads in the control rod elements were estimated and compared with the design strengths which were derived from the results of measurements of tensile, compressive, bending and shear strengths of two candidate materials, AC250 (Across Co.) and CX-270 (Toyo Tanso Co.). Design strength was preliminarily determined as one-third or one-fifth of the mean strength. Ratio of the design strength to generated stress for the AC250 (2D) was : Tensile stress in the outer sleeve tube, 66, tensile and shear stresses in the M16 bolt, 8.8 and 8.5, shear stress in the plug support bolt M8, 2.43. These results are believed to indicate the mechanical integrity of the control rod structure. Data available on the candidate materials were also compiled in the Appendix. (author)

  7. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  8. Composite material and method of making

    Science.gov (United States)

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  9. Effect of simulated pulpal pressure on composite bond strength to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Key words: Bond strength, laser treatment, pulpal pressure, resin composite. INTRODUCTION ... bilities for operative and esthetic dentistry (Kato and. Nakabayashi ... E-mail: kimyais@tbzmed.ac.ir. Tel: 0098411- ... pulse repetition rate of 20 pulses per second (20 Hz). ..... Stern RH, Sognnaes RF (1965).

  10. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  11. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  12. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  13. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles.

    Science.gov (United States)

    Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu

    2017-04-07

    Energy piles-A fairly new renewable energy concept-Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications.

  14. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles

    Science.gov (United States)

    Yang, Haibin; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi; Li, Dongxu

    2017-01-01

    Energy piles—A fairly new renewable energy concept—Use a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the supported building. Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature within the piles and can then influence the axial load acting on the piles. In this study, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter, a systematic study was performed and different characterization tests were carried out on two composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications. PMID:28772752

  15. The effect of different surface treatments of stainless steel crown and different bonding agents on shear bond strength of direct composite resin veneer

    Directory of Open Access Journals (Sweden)

    Ajami B

    2007-01-01

    Full Text Available Background and Aim: Stainless steel crown (SSC is the most durable and reliable restoration for primary teeth with extensive caries but its metalic appearance has always been a matter of concern. With advances in restorative materials and metal bonding processes, composite veneer has enhanced esthetics of these crowns in clinic. The aim of this study was to evaluate the shear bond strength of SSC to composite resin using different surface treatments and adhesives. Materials and Methods: In this experimental study, 90 stainless steel crowns were selected. They were mounted in molds and divided into 3 groups of 30 each (S, E and F. In group S (sandblast, buccal surfaces were sandblasted for 5 seconds. In group E (etch acidic gel was applied for 5 minutes and in group F (fissure bur surface roughness was created by fissure diamond bur. Each group was divided into 3 subgroups (SB, AB, P based on different adhesives: Single Bond, All Bond2 and Panavia F. Composite was then bonded to specimens. Cases were incubated in 100% humidity at 37°C for 24 hours. Shear bond strength was measured by Zwick machine with crosshead speed of 0.5 mm/min. Data were analyzed by ANOVA test with p0.05 so the two variables were studied separately. No significant difference was observed in mean shear bond strength of composite among the three kinds of adhesives (P>0.05. Similar results were obtained regarding surface treatments (P>0.05. Conclusion: Based on the results of this study, treating the SSC surface with bur and using single bond adhesive and composite can be used successfully to obtain esthetic results in pediatric restorative treatments.

  16. A composite material based on recycled tires

    Science.gov (United States)

    Malers, L.; Plesuma, R.; Locmele, L.

    2009-01-01

    The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.

  17. Influence of Curing Humidity on the Compressive Strength of Gypsum-Cemented Similar Materials

    Directory of Open Access Journals (Sweden)

    Weiming Guan

    2016-01-01

    Full Text Available The analogous simulation experiment is widely used in geotechnical and mining engineering. However, systematic errors derived from unified standard curing procedure have been underestimated to some extent. In this study, 140 gypsum-cemented similar material specimens were chosen to study their curing procedure with different relative humidity, which is 10%–15%, 40%, 60%, and 80%, respectively. SEM microstructures and XRD spectra were adopted to detect the correlation between microstructures and macroscopic mechanical strength during curing. Our results indicated that the needle-like phases of similar materials began to develop in the early stage of the hydration process through intersecting with each other and eventually transformed into mat-like phases. Increase of humidity may inhibit the development of needle-like phases; thus the compressive strength changes more smoothly, and the time required for the material strength to reach the peak value will be prolonged. The peak strength decreases along with the increase of humidity while the humidity is higher than 40%; however, the reverse tendency was observed if the humidity was lower than 40%. Finally, we noticed that the material strength usually reaches the peak value when the water content continuously reduces and tends towards stability. Based on the above observation, a curing method determination model and experimental strength predication method for gypsum-cemented similar materials were proposed.

  18. Investigation on fabrication of SiC/SiC composite as a candidate material for fuel sub-assembly

    International Nuclear Information System (INIS)

    Lee, Jae-Kwang; Naganuma, Masayuki; Park, Joon-Soo; Kohyama, Akira

    2005-01-01

    The possibility of SiC/SiC (Silicon carbide fiber reinforced Silicon carbide) composites application for fuel sub-assembly of Fast Breeder Reactor was investigated. To select a raw material of SiC/SiC composites, a few kinds of SiC nano powder was estimated by SEM observation and XRD analysis. Furthermore, SiC monolithic was sintered from them and estimated by flexural test. SiC nano-powder which showed good sinterability, it was used for fabrication of SiC/SiC composites by Hot Pressing method. From the sintering condition of 1800, 1820degC temperature and 15, 20 MPa pressure, SiC/SiC composite was fabricated and then estimated by tensile test. SiC/SiC composite, which made by 1820degC and 20 MPa condition, showed the highest mechanical strength by the monotonic tensile test. SiC/SiC composite, which made by 1800degC and 15 MPa condition, showed a stable fracture behavior at the monotonic and cyclic tensile test. And then, the hoop stress of ideal model of SiC/SiC composites was discussed. It was confirmed that applicability of SiC/SiC composites by Hot Pressing method for fuel sub-assembly structural material. To make it real attractive one, to maintain the reliability and safety as a high temperature structural material, the design and process study on SiC/Sic composites material will be continued. (author)

  19. TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

    Science.gov (United States)

    Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.

    2012-09-01

    Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

  20. Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength

    Science.gov (United States)

    Pan, Hai; Xu, Mingzhen; Liu, Xiaobo

    2017-12-01

    PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.

  1. Mechanical properties of organic composite materials irradiated with 2 MeV electrons

    International Nuclear Information System (INIS)

    Egusa, S.; Kirk, M.A.; Birtcher, R.C.; Argonne National Lab., IL; Hagiwara, M.; Kawanishi, S.

    1983-01-01

    Four kinds of cloth-filled organic composites (filter: glass or carbon fiber; matrix; epoxy or polyimide resin) were irradiated with 2 MeV electrons at room temperature, and were examined with regard to the mechanical properties. Following irradiation the Young's (tensile) modulus of these composites remains practically unchanged even after irradiation up to 15.000 Mrad. The shear modulus and the ultimate strength, on the other hand, begin to decrease after the absorbed dose reaches about 2.000 Mrad for the glass/epoxy composite and about 5.000-10.000 Mrad for the other composites. This result is ascribed to the decrease in the capacity of load transfer from the matrix to the fiber due to the radiation damage at the interface, and the dose dependence is interpreted and formulated based on the mechanics of composite materials and the target theory used in radiation biology. As to the fracture behavior, the propagation energy increases from the beginning of irradiation. This result is attributed to the radiation-induced decrease in the bonding energy at the interface. (orig.)

  2. The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.

    Science.gov (United States)

    Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G

    1998-11-01

    To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.

  3. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    Science.gov (United States)

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (Porthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  4. Study on reactor building structure using ultrahigh strength materials, 1

    International Nuclear Information System (INIS)

    Ishimura, Kikuo; Odajima, Masahiro; Irino, Kazuo; Hashiba, Toshio.

    1991-01-01

    This study was promoted to be aimed at realization of the optimal nuclear reactor building structure of the future. As the first step, the study regarding ultrahigh strength reinforced concrete (abbr. RC) shear wall was selected. As the result of various tests, the application of ultrahigh strength RC shear walls was verified. The tests conducted were relevant to; ultrahigh strength concrete material tests; pure shear tests of RC flat panels; and bending shear tests and its simulation analysis of RC shear walls. (author)

  5. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  6. On strength design using free material subjected to multiple load cases

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2013-01-01

    Multiple load cases and the consideration of strength is a reality that most structural designs are exposed to. Improved possibility to produce specific materials, say by fiber lay-up, put focus on research on free material optimization. A formulation for such design problems together with a prac......Multiple load cases and the consideration of strength is a reality that most structural designs are exposed to. Improved possibility to produce specific materials, say by fiber lay-up, put focus on research on free material optimization. A formulation for such design problems together...... with a practical recursive design procedure is presented and illustrated with examples. The presented finite element analysis involve many elements as well as many load cases. Separating the local amount of material from a description with unit trace for the local anisotropy, gives the free materials formulation...

  7. Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications

    Science.gov (United States)

    Williams, Martha K.; Fesmire, James E.

    2016-01-01

    This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.

  8. Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites

    Science.gov (United States)

    Farzanian, Shafee; Shahsavari, Rouzbeh

    2018-03-01

    Despite significant progresses on understanding and mimicking the delicate nano/microstructure of biomaterials such as nacre, decoding the indistinguishable merger of materials and structures in controlling the tradeoff in mechanical properties has been long an engineering pursuit. Herein, we focus on an archetype platelet-matrix composite and perform ∼400 nonlinear finite element simulations to decode the complex interplay between various structural features and material characteristics in conferring the balance of mechanical properties. We study various combinatorial models expressed by four key dimensionless parameters, i.e. characteristic platelet length, matrix plasticity, platelet dissimilarity, and overlap offset, whose effects are all condensed in a new unifying parameter, defined as the multiplication of strength, toughness, and stiffness over composite volume. This parameter, which maximizes at a critical characteristic length, controls the transition from intrinsic toughening (matrix plasticity driven without crack growths) to extrinsic toughening phenomena involving progressive crack propagations. This finding, combined with various abstract volumetric and radar plots, will not only shed light on decoupling the complex role of structure and materials on mechanical performance and their trends, but provides important guidelines for designing lightweight staggered platelet-matrix composites while ensuring the best (balance) of their mechanical properties.

  9. Effect of Various Treatment Modalities on Surface Characteristics and Shear Bond Strengths of Polyetheretherketone-Based Core Materials.

    Science.gov (United States)

    Çulhaoğlu, Ahmet Kürşat; Özkır, Serhat Emre; Şahin, Volkan; Yılmaz, Burak; Kılıçarslan, Mehmet Ali

    2017-11-13

    To investigate the effect of different surface treatments on the surface roughness (Ra), wettability, and shear bond strength of polyetheretherketone (PEEK) to composite resin. One hundred ninety eight PEEK specimens were divided into six groups (n = 33). Specimen surfaces were treated with the following surface treatment modalities: silicoating (CoJet), acetone treatment, acid etching (H 2 SO 4 ), airborne particle abrasion (Al 2 O 3 ), laser irradiation (Yb:PL laser), and the nontreated surface serving as the control. Surface roughness was measured with an profilometer (n = 11) and a goniometer was used to measure the surface wettability through contact angle (θ)(n = 11). PEEK surfaces were veneered with a composite resin (n = 11). The specimens were then thermocycled for 10,000 cycles at 5 to 55°C. Shear bond strengths between the PEEK and composite resin were measured with an universal test machine. One-way ANOVA was used to analyze the data. Tukey's post-hoc test was used to determine significant differences between groups (α = 0.05). Surface roughness and wettability of PEEK surfaces along with shear bond strength of PEEK to composite resin were influenced by the surface treatments. (p PEEK surfaces treated by laser irradiation (2.85 ± 0.2 µm) followed by airborne particle abrasion (2.26 ± 0.33 µm), whereas other surface treatment modalities provided similar Ra values, with the acid-etched PEEK surfaces having the lowest mean Ra values (0.35 ± 0.14 µm). Silicoating provided the most wettable PEEK surfaces (48.04 ± 6.28º), followed by either acetone treatment (70.19 ± 4.49º) or acid treatment (76.07 ± 6.61º). Decreased wettability was observed for airborne particle abraded (84.83 ± 4.56º) and laser-treated PEEK surfaces (103.06 ± 4.88º). The highest mean shear bond strength values were observed for acid-etched PEEK surfaces (15.82 ± 4.23 MPa) followed by laser irradiated (11.46 ± 1.97 MPa), airborne particle abraded (10.81 ± 3.06 MPa

  10. New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials

    Directory of Open Access Journals (Sweden)

    Duszyński Remigiusz

    2017-12-01

    Full Text Available The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.

  11. New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials

    Science.gov (United States)

    Duszyński, Remigiusz; Duszyńska, Angelika; Cantré, Stefan

    2017-12-01

    The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.

  12. A Study on the quantification of hydration and the strength development mechanism of cementitious materials including amorphous phases by using XRD/Rietveld method

    International Nuclear Information System (INIS)

    Yamada, Kazuo; Hoshino, Seiichi; Hirao, Hiroshi; Yamashita, Hiroki

    2008-01-01

    X-ray diffraction (XRD)/Rietveld method was applied to measure the phase composition of cement. The quantative analysis concerning the progress of hydration was accomplished in an error of about the maximum 2-3% in spite of including amorphous materials such as blast furnace slag, fly ash, silica fume and C-S-H. The influence of the compressive strength on the lime stone fine powder mixture material was studied from the hydration analysis by Rietveld method. The two stages were observed in the strength development mechanism of cement; the hydration promotion of C 3 S in the early stage and the filling of cavities by carbonate hydrate for the longer term. It is useful to use various mixture materials for the formation of the resource recycling society and the durability improvement of concrete. (author)

  13. Multilayer composite material and method for evaporative cooling

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  14. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Science.gov (United States)

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength.

    Science.gov (United States)

    Song, Minju; Shin, Yooseok; Park, Jeong-Won; Roh, Byoung-Duck

    2015-02-01

    This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p composite resin (p composite resin than other manufacturer's composite resin. Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  16. Effects of electron beam irradiation on mechanical properties at low and high temperature of fiber reinforced composites using PEEK as matrix material

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao; Sakai, Hideo; Odajima, Toshikazu; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-11-01

    Carbon fiber reinforced composite (PEEK-CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and the electron beam radiation effects on the mechanical properties at low and high temperature and the effects of annealing after irradiation were studied. Cooling down to 77 K, the flexural strength of PEEK-CF increased to about 20 % than that at room temperature. The data of flexural strength for the irradiated specimens showed some scattering, but the strength and modulus at 77 K were changed scarcely up to 120 MGy. The flexural strength and modulus in the unirradiated specimen decreased with increasing of measurement temperature, and the strength at 140 deg C, which is the just below temperature of the glass transition of PEEK, was to 70 % of the value at room temperature. For the irradiated specimens, the strength and modulus increased with dose and the values at 140 deg C for the specimen irradiated with 120 MGy were nearly the same with the unirradiated specimen measured at room temperature. The improvement of mechanical properties at high temperature by irradiation was supported by a viscoelastic measurement in which the glass transition shifted to the higher temperature by the radiation-induced crosslinking. A glass fiber reinforced PEEK composite (PEEK-GF) was prepared and its irradiation effects by electron beam was studied. Unirradiated PEEK-GF showed the same performance with that for GFRP of epoxide resin as matrix material, but by irradiation the flexual strength and modulus decreased with dose. It was revealed that this composite was destroyed by delamination because inter laminar shear strength (ILSS) decreased with dose and analysis of the profile of S-S curve showed typical delamination. Fractoglaphy by electron microscopy supported the delamination which is caused by the lowering of adhesion on interface between the fiber and matrix with increase of dose. (author)

  17. Developing polymer composite materials: carbon nanotubes or graphene?

    Science.gov (United States)

    Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng

    2013-10-04

    The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Numerical simulation of mechanical behavior of composite materials

    CERN Document Server

    Oller, Sergio

    2014-01-01

    An original mechanical formulation to treat nonlinear orthotropic behavior of composite materials is presented in this book. It also examines different formulations that allow us to evaluate the behavior of composite materials through the composition of its components, obtaining a new composite material. Also two multiple scale homogenization methods are given, one based on the analytical study of the cells (Ad-hoc homogenization), and other one, more general based on the finite element procedure applied on the macro scale (upper-scale) and in the micro scale (sub-scale). A very general formulation to simulate the mechanical behavior for traditional composite structures (plywood, reinforced concrete, masonry, etc.), as well as the new composite materials reinforced with long and short fibers, nanotubes, etc., are also shown in this work. Typical phenomena occurring in composite materials are also described in this work, including fiber-matrix debounding, local buckling of fibers and its coupling with the over...

  19. Effects of neutron irradiation on the strength of continuous fiber reinforced SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H. Jr.; Jones, R.H. [Pacific National Lab., Richland, WA (United States)

    1997-04-01

    Flexural strength data as a function of irradiation temperature and dose for a SiC{sub f}/SiC composite made with Nicalon-CG fiber suggest three major degradation mechanisms. Based on an analysis of tensile strength and microstructural data for irradiated Nicalon-CG and Hi-Nicalon fibers, it is anticipated that these degradation mechanisms will be alleviated in Hi-Nicalon reinforced composites.

  20. Ultrasonic Characterization of Aerospace Composites

    Science.gov (United States)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.